WorldWideScience

Sample records for current manufacturing processes

  1. Current manufacturing processes of drug-eluting sutures.

    Science.gov (United States)

    Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine

    2017-11-01

    Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.

  2. 77 FR 16158 - Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs...

    Science.gov (United States)

    2012-03-20

    .... FDA-1997-N-0518] (formerly 97N-0300) Current Good Manufacturing Practice in Manufacturing, Processing... labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS 0 1. The authority citation for 21 CFR part...

  3. 21 CFR 113.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 113.5 Section... CONTAINERS General Provisions § 113.5 Current good manufacturing practice. The criteria in §§ 113.10, 113.40..., methods, practices, and controls used by the commercial processor in the manufacture, processing, or...

  4. 21 CFR 120.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 120.5 Section... Provisions § 120.5 Current good manufacturing practice. Part 110 of this chapter applies in determining whether the facilities, methods, practices, and controls used to process juice are safe, and whether the...

  5. 21 CFR 129.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 129.1 Section... Current good manufacturing practice. The applicable criteria in part 110 of this chapter, as well as the..., methods, practices, and controls used in the processing, bottling, holding, and shipping of bottled...

  6. Current good manufacturing practice in manufacturing, processing, packing, or holding of drugs; revision of certain labeling controls. Final rule.

    Science.gov (United States)

    2012-03-20

    The Food and Drug Administration (FDA) is amending the packaging and labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and veterinary drug products by limiting the application of special control procedures for the use of cut labeling to immediate container labels, individual unit cartons, or multiunit cartons containing immediate containers that are not packaged in individual unit cartons. FDA is also permitting the use of any automated technique, including differentiation by labeling size and shape, that physically prevents incorrect labeling from being processed by labeling and packaging equipment when cut labeling is used. This action is intended to protect consumers from labeling errors more likely to cause adverse health consequences, while eliminating the regulatory burden of applying the rule to labeling unlikely to reach or adversely affect consumers. This action is also intended to permit manufacturers to use a broader range of error prevention and labeling control techniques than permitted by current CGMPs.

  7. Manufacturing Process Simulation of Large-Scale Cryotanks

    Science.gov (United States)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  8. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives.

    Science.gov (United States)

    Singh, Nripen; Arunkumar, Abhiram; Chollangi, Srinivas; Tan, Zhijun George; Borys, Michael; Li, Zheng Jian

    2016-04-01

    Considerable progress has been made increasing productivity of cell cultures to meet the rapidly growing demand for antibody biopharmaceuticals through increased cell densities and longer culture times. This in turn has dramatically increased the burden of process and product related impurities on the purification processes. In addition, current trends in the biopharmaceutical industry point toward both increased productivity and targeting smaller patient populations for new indications. Taken together, these developments are driving the industry to explore alternative separation technologies as a future manufacturing strategy. Clarification technologies well established in other industries, such as flocculation and precipitation are increasingly considered as a viable solution to address this bottleneck in antibody processes. However, several technical issues need to be fully addressed including suitability as a platform application, robustness, process cost, toxicity, and clearance. This review will focus on recent efforts to incorporate new generation clarification technologies for mammalian cell cultures producing monoclonal antibodies as well as challenges to their implementation supported by a case study. © 2015 Wiley Periodicals, Inc.

  9. Mock-up qualification and prototype manufacture for ITER current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tingzhi, E-mail: tingszhou@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Lu, Kun; Ran, Qingxiang; Ding, Kaizhong; Feng, Hansheng; Wu, Huan; Liu, Chenglian; Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Niu, Erwu [CNDA, Ministry of Science and Technology, Beijing (China); Bauer, Pierre; Devred, Arnaud [Magnet Division, ITER Organization, Cadarache (France)

    2015-10-15

    Highlights: • Vacuum brazing and electron beam welding qualification. • Machine and assembly strategy of fin type heat exchanger. • Soldering and joint resistance test of superconducting joint. • Pre-preg technology with vacuum bag on insulation. - Abstract: Three types of high temperature superconducting current leads (HTSCL) are designed to carry 68 kA, 55 kA or 10 kA to the ITER magnets. Before the supply of the HTS current lead series, the design and manufacturing process is qualified through mock-ups and prototypes. Seven mock-ups, representing the critical technologies of the current leads, were built and tested successfully in the Institute of Plasma Physics of the Chinese Academy of Sciences (ASIPP) in 2013. After the qualification some design features of the HTS leads were updated. This paper summarizes the qualification through mock-ups. In 2014 ASIPP started the manufacture of the prototypes. The preparation and manufacturing process are also described.

  10. 21 CFR 110.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 110.5 Section...) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN FOOD General Provisions § 110.5 Current good manufacturing practice. (a) The criteria and...

  11. 21 CFR 225.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Current good manufacturing practice. 225.1 Section...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR MEDICATED FEEDS General Provisions § 225.1 Current good manufacturing practice. (a) Section 501(a)(2)(B) of the Federal Food, Drug, and Cosmetic Act...

  12. 21 CFR 226.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Current good manufacturing practice. 226.1 Section...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR TYPE A MEDICATED ARTICLES General Provisions § 226.1 Current good manufacturing practice. (a) The criteria in §§ 226.10 through 226.115, inclusive...

  13. Tracking the course of the manufacturing process in selective laser melting

    Science.gov (United States)

    Thombansen, U.; Gatej, A.; Pereira, M.

    2014-02-01

    An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

  14. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  15. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry.

    Science.gov (United States)

    Revilla-León, Marta; Özcan, Mutlu

    2018-04-22

    There are 7 categories of additive manufacturing (AM) technologies, and a wide variety of materials can be used to build a CAD 3D object. The present article reviews the main AM processes for polymers for dental applications: stereolithography (SLA), digital light processing (DLP), material jetting (MJ), and material extrusion (ME). The manufacturing process, accuracy, and precision of these methods will be reviewed, as well as their prosthodontic applications. © 2018 by the American College of Prosthodontists.

  16. Study, design and manufacture eddy current probes for industry applications

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung

    2016-01-01

    This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)

  17. 21 CFR 123.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 123.5 Section...) FOOD FOR HUMAN CONSUMPTION FISH AND FISHERY PRODUCTS General Provisions § 123.5 Current good manufacturing practice. (a) Part 110 of this chapter applies in determining whether the facilities, methods...

  18. Ramp Technology and Intelligent Processing in Small Manufacturing

    Science.gov (United States)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  19. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  20. Current use and potential of additive manufacturing for optical applications

    Science.gov (United States)

    Brunelle, Matthew; Ferralli, Ian; Whitsitt, Rebecca; Medicus, Kate

    2017-10-01

    Additive manufacturing, or 3D printing, has become widely used in recent years for the creation of both prototype and end-use parts. Because the parts are created in a layer-by-layer manner, the flexibility of additive manufacturing is unparalleled and has opened the design space to enable features like undercuts and internal channels which cannot exist on traditional, subtractively manufactured parts. This flexibility can also be leveraged for optical applications. This paper outlines some of the current uses of 3D printing in the optical manufacturing process at Optimax. Several materials and additive technologies are utilized, including polymer printing through fused deposition modeling, which creates parts by depositing a softened thermoplastic filament in a layerwise fashion. Stereolithography, which uses light to cure layers of a photopolymer resin, will also be discussed. These technologies are used to manufacture functional prototypes, fixtures, sealed housings, and other components. Additionally, metal printing through selective laser melting, which uses a laser to melt metal powder layers into a dense solid, will be discussed due to the potential to manufacture thermally stable opticalmechanical assembly frameworks and functional optics. Examples of several additively manufactured optical components will be shown.

  1. 21 CFR 114.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 114.5 Section...) FOOD FOR HUMAN CONSUMPTION ACIDIFIED FOODS General Provisions § 114.5 Current good manufacturing practice. The criteria in §§ 114.10, 114.80, 114.83, 114.89, and 114.100, as well as the criteria in part...

  2. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    Science.gov (United States)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  3. 78 FR 4307 - Current Good Manufacturing Practice Requirements for Combination Products

    Science.gov (United States)

    2013-01-22

    ...-2009-N-0435] Current Good Manufacturing Practice Requirements for Combination Products AGENCY: Food and...) is issuing this regulation on the current good manufacturing practice (CGMP) requirements applicable... this subpart? (Sec. 4.2) D. What current good manufacturing practice requirements apply to my...

  4. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  5. DECOMPOSITION OF MANUFACTURING PROCESSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    N.M.Z.N. Mohamed

    2012-06-01

    Full Text Available Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme and project shop (slow extreme. Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.

  6. Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing

    Directory of Open Access Journals (Sweden)

    Yan-Yan Wang

    2011-09-01

    Full Text Available How to design a production process with low carbon emissions and low environmental impact as well as high manufacturing performance is a key factor in the success of low-carbon production. It is important to address concerns about climate change for the large carbon emission source manufacturing industries because of their high energy consumption and environmental impact during the manufacturing stage of the production life cycle. In this paper, methodology for determining a production process is developed. This methodology integrates process determination from three different levels: new production processing, selected production processing and batch production processing. This approach is taken within a manufacturing enterprise based on prior research. The methodology is aimed at providing decision support for implementing Environmentally Benign Manufacturing (EBM and low-carbon production to improve the environmental performance of the manufacturing industry. At the first level, a decision-making model for new production processes based on the Genetic Simulated Annealing Algorithm (GSAA is presented. The decision-making model considers not only the traditional factors, such as time, quality and cost, but also energy and resource consumption and environmental impact, which are different from the traditional methods. At the second level, a methodology is developed based on an IPO (Input-Process-Output model that integrates assessments of resource consumption and environmental impact in terms of a materials balance principle for batch production processes. At the third level, based on the above two levels, a method for determining production processes that focus on low-carbon production is developed based on case-based reasoning, expert systems and feature technology for designing the process flow of a new component. Through the above three levels, a method for determining the production process to identify, quantify, assess, and optimize the

  7. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  8. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    Science.gov (United States)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  9. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  10. Improved Manufacturing Process for Pyronaridine Tetraphosphate

    International Nuclear Information System (INIS)

    Lee, Dong Won; Lee, Seung Kyu; Cho, Jun Ho; Yoon, Seung Soo

    2014-01-01

    Pyronaridine tetraphosphate (1) is a well-known antimalarial drug. However, it required a carefully optimized production process for the manufacture of pyronaridine tetraphosphate. Each step of its manufacturing process was reinvestigated. For the cyclization of 4-chloro-2-(6-methoxy-pyridin-3-yl-amino)-benzoic acid 6 to 7,10-dichloro-2-methoxybenzo[b]-1,5-naphthyridine 5, an improved process was developed to eliminated critical process impurity (BIA). By the redesign of the formation of triphosphate salt, the purity as API grade was increased. Thus, a robust manufacturing process with an acceptable process performance has been developed to produce high quality pyronaridine tetraphosphate

  11. A Process Management System for Networked Manufacturing

    Science.gov (United States)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  12. Fundamentals of semiconductor manufacturing and process control

    CERN Document Server

    May, Gary S

    2006-01-01

    A practical guide to semiconductor manufacturing from process control to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Control covers all issues involved in manufacturing microelectronic devices and circuits, including fabrication sequences, process control, experimental design, process modeling, yield modeling, and CIM/CAM systems. Readers are introduced to both the theory and practice of all basic manufacturing concepts. Following an overview of manufacturing and technology, the text explores process monitoring methods, including those that focus on product wafers and those that focus on the equipment used to produce wafers. Next, the text sets forth some fundamentals of statistics and yield modeling, which set the foundation for a detailed discussion of how statistical process control is used to analyze quality and improve yields. The discussion of statistical experimental design offers readers a powerful approach for systematically varying controllable p...

  13. Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen, 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  14. Manufacturing process modeling for composite materials and structures, Sandia blade reliability collaborative

    Energy Technology Data Exchange (ETDEWEB)

    Guest, Daniel A.; Cairns, Douglas S.

    2014-02-01

    The increased use and interest in wind energy over the last few years has necessitated an increase in the manufacturing of wind turbine blades. This increase in manufacturing has in many ways out stepped the current understanding of not only the materials used but also the manufacturing methods used to construct composite laminates. The goal of this study is to develop a list of process parameters which influence the quality of composite laminates manufactured using vacuum assisted resin transfer molding and to evaluate how they influence laminate quality. Known to be primary factors for the manufacturing process are resin flow rate and vacuum pressure. An incorrect balance of these parameters will often cause porosity or voids in laminates that ultimately degrade the strength of the composite. Fiber waviness has also been seen as a major contributor to failures in wind turbine blades and is often the effect of mishandling during the lay-up process. Based on laboratory tests conducted, a relationship between these parameters and laminate quality has been established which will be a valuable tool in developing best practices and standard procedures for the manufacture of wind turbine blade composites.

  15. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability

    Directory of Open Access Journals (Sweden)

    Muhammad Syafrudin

    2017-11-01

    Full Text Available Currently, the manufacturing industry is experiencing a data-driven revolution. There are multiple processes in the manufacturing industry and will eventually generate a large amount of data. Collecting, analyzing and storing a large amount of data are one of key elements of the smart manufacturing industry. To ensure that all processes within the manufacturing industry are functioning smoothly, the big data processing is needed. Thus, in this study an open source-based real-time data processing (OSRDP architecture framework was proposed. OSRDP architecture framework consists of several open sources technologies, including Apache Kafka, Apache Storm and NoSQL MongoDB that are effective and cost efficient for real-time data processing. Several experiments and impact analysis for manufacturing sustainability are provided. The results showed that the proposed system is capable of processing a massive sensor data efficiently when the number of sensors data and devices increases. In addition, the data mining based on Random Forest is presented to predict the quality of products given the sensor data as the input. The Random Forest successfully classifies the defect and non-defect products, and generates high accuracy compared to other data mining algorithms. This study is expected to support the management in their decision-making for product quality inspection and support manufacturing sustainability.

  16. 21 CFR 212.2 - What is current good manufacturing practice for PET drugs?

    Science.gov (United States)

    2010-04-01

    ..., holding, or distribution of PET drugs intended for human use. Current good manufacturing practice is... 21 Food and Drugs 4 2010-04-01 2010-04-01 false What is current good manufacturing practice for... HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR POSITRON EMISSION...

  17. 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering

    CERN Document Server

    2017-01-01

    This volume presents selected papers from the 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering (ICMMPE 2016) which was held from 23rd to 24th November, 2016 in Kuala Lumpur, Malaysia. The proceedings discuss genuine problems of joining technologies that are heart of manufacturing sectors. It discusses the findings of experimental and numerical works from soldering, arc welding to solid state joining technology that faced by current industry. .

  18. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  19. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  20. Technological and economical assessment of alternative process chains for blisk manufacture

    OpenAIRE

    Klocke, Fritz; Schmitt, Robert; Zeis, Markus; Heidemanns, Lukas; Kerkhoff, Johannes; Heinen, Daniel; Klink, Andreas

    2015-01-01

    Due to the increase of blisk (blade integrated disk) demands instead of the conventional fir-tree design in current aero-engine concepts there is a high resource-driven need for a comprehensive evaluation of different process chain alternatives for blisk manufacture. Therefore, in this paper different manufacturing chains consisting of roughing, pre-finishing and finishing/polishing are compared to each other by the example of a HPC-blisk out of Inconel 718. Beside conventional milling and el...

  1. 21 CFR 1005.25 - Service of process on manufacturers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...

  2. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  3. Process monitoring for intelligent manufacturing processes - Methodology and application to Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas

    Process monitoring provides important information on the product, process and manufacturing system during part manufacturing. Such information can be used for process optimization and detection of undesired processing conditions to initiate timely actions for avoidance of defects, thereby improving...... quality assurance. This thesis is aimed at a systematic development of process monitoring solutions, constituting a key element of intelligent manufacturing systems towards zero defect manufacturing. A methodological approach of general applicability is presented in this concern.The approach consists...... of six consecutive steps for identification of product Vital Quality Characteristics (VQCs) and Key Process Variables (KPVs), selection and characterization of sensors, optimization of sensors placement, validation of the monitoring solutions, definition of the reference manufacturing performance...

  4. Multiphysics modelling of manufacturing processes: A review

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Baran, Ismet; Mohanty, Sankhya

    2018-01-01

    Numerical modelling is increasingly supporting the analysis and optimization of manufacturing processes in the production industry. Even if being mostly applied to multistep processes, single process steps may be so complex by nature that the needed models to describe them must include multiphysics...... the diversity in the field of modelling of manufacturing processes as regards process, materials, generic disciplines as well as length scales: (1) modelling of tape casting for thin ceramic layers, (2) modelling the flow of polymers in extrusion, (3) modelling the deformation process of flexible stamps...... for nanoimprint lithography, (4) modelling manufacturing of composite parts and (5) modelling the selective laser melting process. For all five examples, the emphasis is on modelling results as well as describing the models in brief mathematical details. Alongside with relevant references to the original work...

  5. A comparison of BPMN 2.0 with other notations for manufacturing processes

    Science.gov (United States)

    García-Domínguez, A.; Marcos, Mariano; Medina, I.

    2012-04-01

    In order to study their current practices and improve on them, manufacturing firms need to view their processes from several viewpoints at various abstraction levels. Several notations have been developed for this purpose, such as Value Stream Mappings or IDEF models. More recently, the BPMN 2.0 standard from the Object Management Group has been proposed for modeling business processes. A process organizes several activities (manual or automatic) into a single higher-level entity, which can be reused elsewhere in the organization. Its potential for standardizing business interactions is well-known, but there is little work on using BPMN 2.0 to model manufacturing processes. In this work some of the previous notations are outlined and BPMN 2.0 is positioned among them after discussing it in more depth. Some guidelines on using BPMN 2.0 for manufacturing are offered, and its advantages and disadvantages in comparison with the other notations are presented.

  6. Rapsodie first core manufacture. 1. part: processing plant

    International Nuclear Information System (INIS)

    Masselot, Y.; Bataller, S.; Ganivet, M.; Guillet, H.; Robillard, A.; Stosskopf, F.

    1968-01-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [fr

  7. QUALITY IMPROVEMENT MODEL AT THE MANUFACTURING PROCESS PREPARATION LEVEL

    Directory of Open Access Journals (Sweden)

    Dusko Pavletic

    2009-12-01

    Full Text Available The paper expresses base for an operational quality improvement model at the manufacturing process preparation level. A numerous appropriate related quality assurance and improvement methods and tools are identified. Main manufacturing process principles are investigated in order to scrutinize one general model of manufacturing process and to define a manufacturing process preparation level. Development and introduction of the operational quality improvement model is based on a research conducted and results of methods and tools application possibilities in real manufacturing processes shipbuilding and automotive industry. Basic model structure is described and presented by appropriate general algorithm. Operational quality improvement model developed lays down main guidelines for practical and systematic application of quality improvements methods and tools.

  8. Key Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  9. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    Science.gov (United States)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  10. A risk-based auditing process for pharmaceutical manufacturers.

    Science.gov (United States)

    Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan

    2014-01-01

    The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.

  11. 31 CFR 500.412 - Process vs. manufacture.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Process vs. manufacture. 500.412 Section 500.412 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE... Interpretations § 500.412 Process vs. manufacture. A commodity subject to § 500.204 remains subject howsoever it...

  12. Proposal of a Modelling of the Innovation Process in an International Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Pauline Lacom

    2017-07-01

    Full Text Available Nowadays, to cope with the competition, and to ensure the durability of their activities, companies have to be able to innovate. Manufacturing companies operating in a B2B market often perceive innovation as a technological result. However, innovation is often more characterized as a process. The needs of the users, and not only the technology, can achieve innovation. In this context, our paper intends to determine how to involve better the users in the innovation process of an international manufacturing company, which is, according to us, representative of the current manufacturing companies. The aim of our research paper is to help manufacturing companies to manage innovation led by users, and to implement their innovation process so that they will be able to set up specific tools for each action of the process. The study proposes a diagram-based language Structured Analysis and Design Technique (SADT that is based on the normative guide FD X50-271 of the French national organization for standardization (AFNOR. The SADT model we propose usefully complements this guide, to make the innovation process more understandable, practical and operational, for manufacturing companies, which are often helpless when faced with the subject. A critical analysis of the model we propose completed in a manufacturing company through semi-structured interviews of the innovation team and questionnaire for all the employees shows the application of the model in the company.

  13. 15 CFR 400.33 - Restrictions on manufacturing and processing activity.

    Science.gov (United States)

    2010-01-01

    ...-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.33 Restrictions on manufacturing and processing activity. (a) In general. In approving manufacturing or processing activity for a zone... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on manufacturing and...

  14. Manufacturing processes 2 grinding, honing, lapping

    CERN Document Server

    Klocke, Fritz

    2009-01-01

    Presents a view of the most common machining and non-machining manufacturing processes. This volume describes the characteristics of abrasive tools, their design and manufacturing, followed by the fundamentals of grinding fluids. It also discusses grinding of different materials (steel, cast iron, hard and brittle materials, nickel and titanium).

  15. Additive Manufacturing of Tooling for Refrigeration Cabinet Foaming Processes

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K [ORNL; Nuttall, David [ORNL; Cukier, Michael Z [ORNL; Hile, Michael B [ORNL

    2016-07-29

    The primary objective of this project was to leverage the Big Area Additive Manufacturing (BAAM) process and materials into a long term, quick change tooling concept to drastically reduce product lead and development timelines and costs. Current refrigeration foam molds are complicated to manufacture involving casting several aluminum parts in an approximate shape, machining components of the molds and post fitting and shimming of the parts in an articulated fixture. The total process timeline can take over 6 months. The foaming process is slower than required for production, therefore multiple fixtures, 10 to 27, are required per refrigerator model. Molds are particular to a specific product configuration making mixed model assembly challenging for sequencing, mold changes or auto changeover features. The initial goal was to create a tool leveraging the ORNL materials and additive process to build a tool in 4 to 6 weeks or less. A secondary goal was to create common fixture cores and provide lightweight fixture sections that could be revised in a very short time to increase equipment flexibility reduce lead times, lower the barriers to first production trials, and reduce tooling costs.

  16. 78 FR 11611 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-02-19

    ... related to the proposed rule on ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based... . All comments should be identified with the title ``Current Good Manufacturing Practice and Hazard... rulemaking to modernize the regulation for ``Current Good Manufacturing Practice In Manufacturing, Packing...

  17. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  18. Current problems of raw fish material processing while manufacturing dried products

    Directory of Open Access Journals (Sweden)

    Yashonkov A. A.

    2017-09-01

    Full Text Available The substantiation for using techniques of fish raw material canning has been presented, raw fish being caught or farmed in aquaculture. The main problems in raw fish canning have been reviewed, including significant reduction in thermolabile vitamins in the ultimate product as compared with the raw material due to the thermal processing. Promising canning technique – vacuum drying – has been proposed. This technique makes possible to reduce the temperature of thermal processing down to 50…55 °С and significantly enlarge preservation of thermolabile vitamins from the raw fish. Sampling of raw materials, semi-finished products, finished products, including preparation for analysis has been conducted by standard methods. Disadvantages of this way have been found, it is low energy efficiency of the process. The way to intensify the vacuum drying of aquatic organisms has been proposed based on the method of preliminary pore-forming due to augmenting the area of moisture evaporation. The design of the pilot plant has been proposed in order to research the process of pore forming and vacuum drying. Target species for processing have been suggested. They are as follows: Azov goby (fillet for food products and Black Sea sprat for feeds. The recipes of the feed mixture for granulated floating food for trout have been developed. The results of the first series of the pilot research have been provided. The experiments have proved that preliminary pore forming immediately before vacuum drying makes possible to enlarge the surface area of moisture evaporation by 15…25 %. By processing photomicrographs of sections by means of a special software the authors have got the results demonstrating that when manufacturing dried products by pore forming and drying under pressure 10 kPa the pore take 35...38 % of the inner volume of the product and with drying under pressure 10 kPa – only 18...21 %, and when drying under the atmospheric pressure – 11...13 %.

  19. Risk calculations in the manufacturing technology selection process

    DEFF Research Database (Denmark)

    Farooq, S.; O'Brien, C.

    2010-01-01

    Purpose - The purpose of this paper is to present result obtained from a developed technology selection framework and provide a detailed insight into the risk calculations and their implications in manufacturing technology selection process. Design/methodology/approach - The results illustrated...... in the paper are the outcome of an action research study that was conducted in an aerospace company. Findings - The paper highlights the role of risk calculations in manufacturing technology selection process by elaborating the contribution of risk associated with manufacturing technology alternatives...... in the shape of opportunities and threats in different decision-making environments. Practical implications - The research quantifies the risk associated with different available manufacturing technology alternatives. This quantification of risk crystallises the process of technology selection decision making...

  20. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  1. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  2. Defect recognition in CFRP components using various NDT methods within a smart manufacturing process

    Science.gov (United States)

    Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe

    2018-04-01

    The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.

  3. Additive Manufacturing and Business Models: Current Knowledge and Missing Perspectives

    Directory of Open Access Journals (Sweden)

    Christina Öberg

    2018-06-01

    Full Text Available Additive manufacturing, that is 3D printing technology, may change the way companies operate their businesses. This article adopts a business model perspective to create an understanding of what we know about these changes. It summarizes current knowledge on additive manufacturing within management and business research, and it discusses future research directions in relation to business models for additive manufacturing. Using the scientific database Web of Science, 116 journal articles were identified. The literature review reveals that most research concerns manufacturing optimization. A more holistic view of the changes that additive manufacturing may bring about for firms is needed, as is more research on changed value propositions, and customer/sales-related issues. The article contributes to previous research by systematically summarizing additive manufacturing research in the business and management literature, and by highlighting areas for further investigation related to the business models of individual firms.

  4. Uranium manufacturing process employing the electrolytic reduction method

    International Nuclear Information System (INIS)

    Oda, Yoshio; Kazuhare, Manabu; Morimoto, Takeshi.

    1986-01-01

    The present invention related to a uranium manufacturing process that employs the electrolytic reduction method, but particularly to a uranium manufacturing process that employs an electrolytic reduction method requiring low voltage. The process, in which uranium is obtained by means of the electrolytic method and with uranyl acid as the raw material, is prior art

  5. Fundamental Issues in Manufacturing Photovoltaic Modules Beyond the Current Generation of Materials

    Directory of Open Access Journals (Sweden)

    G. F. Alapatt

    2012-01-01

    Full Text Available Many methods to improve the solar cell’s efficiency beyond current generation of bulk and thin film of photovoltaic (PV devices have been reported during the last five decades. Concepts such as multiple exciton generations (MEG, carrier multiplication (CM, hot carrier extraction, and intermediate band solar cells have fundamental flaws, and there is no experimental evidence of fabricating practical higher efficiency solar cells based on the proposed concepts. To take advantages of quantum features of nanostructures for higher performance PV devices, self-assembly-based bottom-up processing techniques are not suitable for manufacturing due to inherent problems of variability, defects, reliability, and yield. For processing nanostructures, new techniques need to be invented with the features of critical dimensional control, structural homogeneity, and lower cost of ownership as compared to the processing tools used in current generations of bulk and thin-film solar cells.

  6. Microeconomics of process control in semiconductor manufacturing

    Science.gov (United States)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  7. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  8. Process chain modeling and selection in an additive manufacturing context

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael

    2016-01-01

    This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... evolving fields like additive manufacturing....

  9. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-04-01

    This factsheet describes a project that developed and demonstrated a new manufacturing-informed design framework that utilizes advanced multi-scale, physics-based process modeling to dramatically improve manufacturing productivity and quality in machining operations while reducing the cost of machined components.

  10. Materials Selection And Fabrication Practices For Food Processing Equipment Manufacturers In Uganda

    Directory of Open Access Journals (Sweden)

    John Baptist Kirabira

    2017-08-01

    Full Text Available The food processing industry is one of the fast-growing sub-sectors in Uganda. The industry which is majorly composed of medium and small scale firms depends on the locally developed food processing equipment. Due to lack of effective materials selection practices employed by the equipment manufacturers the materials normally selected for most designs are not the most appropriate ones hence compromising the quality of the equipment produced. This has not only led to poor quality food products due to contamination but could also turn out health hazardous to the consumers of the food products. This study involved the assessment of the current materials selection and fabrication procedures used by the food processing equipment manufacturers with a view of devising best practices that can be used to improve the quality of the food products processed by the locally fabricated equipment. Results of the study show that designers experience biasness and desire to minimize cost compromise the materials selection procedure. In addition to failing to choose the best material for a given application most equipment manufacturers are commonly fabricating equipment with inadequate surface finish and improper weldments. This hinders the equipments ability to meet food hygiene standards.

  11. WWER-1000 nuclear fuel manufacturing process at PJSC MSZ

    International Nuclear Information System (INIS)

    Morylev, A.; Bagdatyeva, E.; Aksenov, P.

    2015-01-01

    In this report a brief description of WWER-1000 fuel manufacturing process steps at PJSC MSZ as: uranium dioxide powder fabrication; fuel pellet manufacture fuel rod manufacture working assembly and fuel assembly manufacture is given. The implemented innovations are also presented

  12. Additive Manufacturing: Multi Material Processing and Part Quality Control

    DEFF Research Database (Denmark)

    Pedersen, David Bue

    This Ph.D dissertation,ffAdditive Manufacturing: Multi Material Processing and Part Quality Controlff, deal with Additive Manufacturing technologies which is a common name for a series of processes that are recognized by being computer controlled, highly automated, and manufacture objects...... by a layered deposition of material. Two areas of particular interest is addressed. They are rooted in two very different areas, yet is intended to fuel the same goal. To help Additive Manufacturing technologies one step closer to becoming the autonomous, digital manufacturing method of tomorrow. Vision...... systems A paradox exist in the field of Additive Manufacturing. The technologies allow for close-to unrestrained and integral geometrical freedom. Almost any geometry can be manufactured fast, e"ciently and cheap. Something that has been missing fundamental capability since the entering of the industrial...

  13. Efficiency of manufacturing processes energy and ecological perspectives

    CERN Document Server

    Li, Wen

    2015-01-01

     This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes.  An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of  manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily co...

  14. 21 CFR 201.122 - Drugs for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs for processing, repacking, or manufacturing... for processing, repacking, or manufacturing. A drug in a bulk package, except tablets, capsules, or... manufacturing, processing, or repacking”; and if in substantially all dosage forms in which it may be dispensed...

  15. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  16. Big Data Analysis of Manufacturing Processes

    Science.gov (United States)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  17. Big Data Analysis of Manufacturing Processes

    International Nuclear Information System (INIS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-01-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results. (paper)

  18. 78 FR 48636 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-08-09

    ... collection related to the proposed rule, ``Current Good Manufacturing Practice and Hazard Analysis and Risk... period. These two proposals are related to the proposed rule ``Current Good Manufacturing Practice and... final extension of the comment period for the ``Current Good Manufacturing Practice and Hazard Analysis...

  19. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    Science.gov (United States)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  20. 40 CFR 761.80 - Manufacturing, processing and distribution in commerce exemptions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manufacturing, processing and..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Exemptions § 761.80 Manufacturing, processing and... any change in the manner of processing and distributing, importing (manufacturing), or exporting of...

  1. 78 FR 64425 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-10-29

    ..., 507, and 579 [Docket No. FDA-2011-N-0922] Current Good Manufacturing Practice and Hazard Analysis and... requirements for current good manufacturing practice and hazard analysis and risk-based preventive controls for..., packing, or holding of animal food in two ways. First, it would create new current good manufacturing...

  2. Introduction to powder metallurgy processes for titanium manufacturing

    International Nuclear Information System (INIS)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-01-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  3. Manufacturing Vision Development – Process and Dialogue

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra

    This Ph.D. project has been conducted in the context of PRODUCTION+5 methodology for devel¬oping manufacturing visions for companies, and related to Experimental Laboratory for Production. Both have been established in the Center for Industrial Production. The empirical parts of the research invo...... involve case studies of three companies that are part of the MCD-process. The cases primarily are focusing on the process and the dialogue dur¬ing the manufacturing vision development.......This Ph.D. project has been conducted in the context of PRODUCTION+5 methodology for devel¬oping manufacturing visions for companies, and related to Experimental Laboratory for Production. Both have been established in the Center for Industrial Production. The empirical parts of the research...

  4. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    Science.gov (United States)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  5. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  6. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    Science.gov (United States)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  7. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  8. Additive Manufacturing (AM) in Expeditionary Operations: Current Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    2016-06-01

    REPORT TYPE AND DATES COVERED Master’s Thesis 06-30-2014 to 06-17-2016 4. TITLE AND SUBTITLE ADDITIVE MANUFACTURING (AM) IN EXPEDITIONARY OPERATIONS: CUR...CODE 13. ABSTRACT (maximum 200 words) Additive manufacturing (AM), or 3D printing, is poised to change the world of military expeditionary operations...unlimited ADDITIVE MANUFACTURING (AM) IN EXPEDITIONARY OPERATIONS: CURRENT NEEDS, TECHNICAL CHALLENGES, AND OPPORTUNITIES Matthew Daniel Friedell Captain

  9. Application of Contact Mode AFM to Manufacturing Processes

    Science.gov (United States)

    Giordano, Michael A.; Schmid, Steven R.

    A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.

  10. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    Science.gov (United States)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  11. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  12. The roles of communication process for an effective lean manufacturing implementation

    OpenAIRE

    Puvanasvaran, Perumal; Megat, Hamdan; Hong, Tang Sai; Razali, Muhamad Mohd.

    2009-01-01

    Many companies are implementing lean manufacturing concept in order to remain competitive and sustainable, however, not many of them are successful in the process due to various reasons. Communication is an important aspect of lean process in order to successfully implement lean manufacturing. This paper determines the roles of communication process in ensuring a successful implementation of leanness in manufacturing companies. All the information of lean manufacturing practice...

  13. Manufacturing Process for OLED Integrated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Cheng-Hung [Vitro Flat Glass LLC, Cheswick, PA (United States). Glass Technology Center

    2017-03-31

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3+ year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm and an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.

  14. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  15. Cost Models for MMC Manufacturing Processes

    Science.gov (United States)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  16. Simulation based energy-resource efficient manufacturing integrated with in-process virtual management

    Science.gov (United States)

    Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard

    2016-09-01

    As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.

  17. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    OpenAIRE

    Kukla S.

    2016-01-01

    The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM). An analysis of wor...

  18. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    Science.gov (United States)

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  19. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...... contains a complex microstructure. In order to improve the cell performance as well as reducing the processing costs, it has been found necessary to consider the process chain holistically, because successful manufacture of such a cell and the achievement of optimal final properties depend on each...... of the processing steps and their interdependence. A large database for several thousand anode-supported SOFCs manufactured annually at the Risoe National Laboratory in collaboration with Topsoe Fuel Cell A/S has been constructed. This enables a statistical analysis of the various controlling parameters. Some...

  20. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  1. Applications Of Laser Processing For Automotive Manufacturing In Japan

    Science.gov (United States)

    Ito, Masashi; Ueda, Katsuhiko; Takagi, Soya

    1986-11-01

    Recently in Japan, laser processing is increasingly being employed for production, so that laser cutting, laser welding and other laser material processing have begun to be used in various industries. As a result, the number of lasers sold has been increasing year by year in Japan. In the Japanese automotive industry, a number applications have been introduced in laboratories and production lines. In this paper, several current instances of such laser applications will be introduced. In the case of welding, studies have been conducted on applying laser welding to automatic transmission components, in place of electron beam welding. Another example of application, the combination of lasers and robots to form highly flexible manufacturing systems, has been adopted for trimming steel panel and plastic components.

  2. Nuclear fuel manufacturing. Current activities and prospects at INR Pitesti

    International Nuclear Information System (INIS)

    Horhoianu, Grigore

    2001-01-01

    Development of the CANDU nuclear fuel is currently conducted world wide onto two principal directions: - increasing the service span of the current type of fuel and improving the efficiency of burnup in reactor; - reducing the costs of fuel manufacturing by improving the design and manufacturing technologies in condition of increasing fuel performance. In parallel, a research program, RAAN, is undergoing, concerning the development of advanced CANDU type fuels (SEU, RU, DUPIC, Th), aiming at reducing the overall costs per fuel cycle. In the INR TRIGA reactor a large number of experimental fuel elements manufactured in INR were irradiated under different conditions specific to the CANDU reactor operation. Post irradiation investigations both destructive and non-destructive were carried out in the hot cells at INR Pitesti. The experimental results were used in order to optimize and evaluate the fuel project, to check the fuel manufacturing technologies as well as to certify the computational codes. The local thermo-mechanical analyses by final element methods, modelling the SCC phenomenon, probabilistic evaluation of performance parameters of the fuel, constitute new directions in the modelling and developing computational code. The developed codes were submitted to a thorough validation process to comply with the quality assurance. The excellent results obtained in INR were confirmed by participation in the FUMEX International Exercises of computer code intercomparison, organized by IAEA Vienna. Progress was also recorded in establishing the behaviour of fuel elements failed during reactor operation and the effect their maintenance in the reactor core could have upon the power reactor operation. A system-expert variant was worked out able for a short term analysis of the decisions referring to removing the failing element at Cernavoda NPP. As advanced CANDU fuel is concerned, until now preliminary variants for a fuel bundle with 43 elements containing slightly

  3. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review

    Directory of Open Access Journals (Sweden)

    Panagiotis Sfakianakis

    2014-03-01

    Full Text Available Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization and further yogurt manufacture (fermentation physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields, and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review.

  4. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review

    Science.gov (United States)

    Sfakianakis, Panagiotis; Tzia, Constatnina

    2014-01-01

    Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review. PMID:28234312

  5. Physical evaluations of Co-Cr-Mo parts processed using different additive manufacturing techniques

    Science.gov (United States)

    Ghani, Saiful Anwar Che; Mohamed, Siti Rohaida; Harun, Wan Sharuzi Wan; Noar, Nor Aida Zuraimi Md

    2017-12-01

    In recent years, additive manufacturing with highly design customization has gained an important technique for fabrication in aerospace and medical fields. Despite the ability of the process to produce complex components with highly controlled architecture geometrical features, maintaining the part's accuracy, ability to fabricate fully functional high density components and inferior surfaces quality are the major obstacles in producing final parts using additive manufacturing for any selected application. This study aims to evaluate the physical properties of cobalt chrome molybdenum (Co-Cr-Mo) alloys parts fabricated by different additive manufacturing techniques. The full dense Co-Cr-Mo parts were produced by Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) with default process parameters. The density and relative density of samples were calculated using Archimedes' principle while the surface roughness on the top and side surface was measured using surface profiler. The roughness average (Ra) for top surface for SLM produced parts is 3.4 µm while 2.83 µm for DMLS produced parts. The Ra for side surfaces for SLM produced parts is 4.57 µm while 9.0 µm for DMLS produced parts. The higher Ra values on side surfaces compared to the top faces for both manufacturing techniques was due to the balling effect phenomenon. The yield relative density for both Co-Cr-Mo parts produced by SLM and DMLS are 99.3%. Higher energy density has influence the higher density of produced samples by SLM and DMLS processes. The findings of this work demonstrated that SLM and DMLS process with default process parameters have effectively produced full dense parts of Co-Cr-Mo with high density, good agreement of geometrical accuracy and better surface finish. Despite of both manufacturing process yield that produced components with higher density, the current finding shows that SLM technique could produce components with smoother surface quality compared to DMLS

  6. Process chains for the manufacturing of moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    process chains for the manufacturing of MIDs. This paper presents a comparison among the MID manufacturing process chains, and it presents experimental results based on two of the most industrially adapted processes. Experiments with two-component (2k) injection molding and subsequent selective......) process show that the success of the process is heavily dependant on the choice of material. It presents how the surface topographies are varied as a function of laser type and material choice. The amount of seed metal particles in the plastic material is a crucial factor that controls laser...

  7. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    Science.gov (United States)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  8. CIMOSA process classification for business process mapping in non-manufacturing firms: A case study

    Science.gov (United States)

    Latiffianti, Effi; Siswanto, Nurhadi; Wiratno, Stefanus Eko; Saputra, Yudha Andrian

    2017-11-01

    A business process mapping is one important means to enable an enterprise to effectively manage the value chain. One of widely used approaches to classify business process for mapping purpose is Computer Integrated Manufacturing System Open Architecture (CIMOSA). CIMOSA was initially designed for Computer Integrated Manufacturing (CIM) system based enterprises. This paper aims to analyze the use of CIMOSA process classification for business process mapping in the firms that do not fall within the area of CIM. Three firms of different business area that have used CIMOSA process classification were observed: an airline firm, a marketing and trading firm for oil and gas products, and an industrial estate management firm. The result of the research has shown that CIMOSA can be used in non-manufacturing firms with some adjustment. The adjustment includes addition, reduction, or modification of some processes suggested by CIMOSA process classification as evidenced by the case studies.

  9. Electropulsing to assist conventional manufacturing processes

    OpenAIRE

    Sánchez Egea, Antonio José

    2016-01-01

    This thesis presents a study on the variation of the mechanical properties of some materials. These variations are registered for processes as bottom bending, wire drawing or round turning, which are performed under high density electropulses. This research implied the study of several issues related to the manufacturing processes and the electric pulses. For example, some isolated systems are developed for each process. This is required for protecting the monitoring devices and machinery fro...

  10. External designers in product design processes of small manufacturing firms

    NARCIS (Netherlands)

    Berends, Hans; Reymen, Isabelle; Stultiëns, Rutger G L; Peutz, Murk

    Small manufacturing firms often fail to reap the benefits of good design practices. This study investigates how the involvement of external designers influences the evolution of product design processes in small manufacturing firms. Qualitative and quantitative process research methods were used to

  11. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  12. 21 CFR 801.122 - Medical devices for processing, repacking, or manufacturing.

    Science.gov (United States)

    2010-04-01

    ....122 Medical devices for processing, repacking, or manufacturing. A device intended for processing... act if its label bears the statement “Caution: For manufacturing, processing, or repacking”. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices for processing, repacking, or...

  13. 78 FR 18234 - Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United...

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...

  14. Numerical simulation of complex part manufactured by selective laser melting process

    Science.gov (United States)

    Van Belle, Laurent

    2017-10-01

    Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.

  15. 78 FR 69604 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-11-20

    ... Federal Register of January 16, 2013 (78 FR 3646), entitled ``Current Good Manufacturing Practice and... a proposed rule entitled ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based..., 114, 117, 120, 123, 129, 179, and 211 [Docket No. FDA-2011-N-0920] RIN 0910-AG36 Current Good...

  16. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  17. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  18. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  19. A product-process approach for development of the manufacturing footprint

    DEFF Research Database (Denmark)

    Farooq, Sami; Yang, Cheng; Johansen, John

    2009-01-01

    to ever changing global business environment there are certain other external factors that act as drivers for the manufacturing facility development process and therefore should be given considerable importance as they play a major role in defining the future footprint of a manufacturing organisation....... elaborating the development and establishment of various manufacturing facilities of a Danish pump manufacturer is then described. The discussion from the case leads to the conclusion that developing new manufacturing facilities can be explained using existing theories of manufacturing strategy. However due...

  20. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    Science.gov (United States)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  1. Current good manufacturing practice and investigational new drugs intended for use in clinical trials. Final rule.

    Science.gov (United States)

    2008-07-15

    The Food and Drug Administration (FDA) is amending the current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most phase 1 investigational drugs from complying with the regulatory CGMP requirements. FDA will continue to exercise oversight of the manufacture of these drugs under FDA's general statutory CGMP authority and through review of the investigational new drug applications (IND). In addition, elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document entitled "Guidance for Industry: CGMP for Phase 1 Investigational Drugs" dated November 2007 (the companion guidance). This guidance document sets forth recommendations on approaches to compliance with statutory CGMP for the exempted phase 1 investigational drugs. FDA is taking this action to focus a manufacturer's effort on applying CGMP that is appropriate and meaningful for the manufacture of the earliest stage investigational drug products intended for use in phase 1 clinical trials while ensuring safety and quality. This action will also streamline and promote the drug development process.

  2. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri

    2016-01-01

    The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...... between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based...

  3. The roles of communication process for an effective lean manufacturing implementation

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2009-07-01

    Full Text Available Many companies are implementing lean manufacturing concept in order to remain competitive and sustainable, however, not many of them are successful in the process due to various reasons. Communication is an important aspect of lean process in order to successfully implement lean manufacturing.  This paper determines the roles of communication process in ensuring a successful implementation of leanness in manufacturing companies. All the information of lean manufacturing practices and roles of communication in the implementation were compiled from related journals, books and websites. A study was conducted in an aerospace manufacturing in Malaysia. A five-point scale questionnaire is used as the study instrument. These questionnaires were distributed to 45 employees working in a kitting department and to 8 top management people. The results indicate that the degree of leanness were moderate.

  4. Topology Optimization for Reducing Additive Manufacturing Processing Distortions

    Science.gov (United States)

    2017-12-01

    distribution is unlimited. 1. Introduction Additive manufacturing (AM) is a production method that involves gradual, layer- by-layer building of material... design space—allowing the production of pre- viously unmanufacturable topologically optimized structures—constraints remain. One constraint, for...ARL-TR-8242•DEC 2017 US Army Research Laboratory Topology Optimization for ReducingAdditive Manufacturing ProcessingDistortions by Raymond A Wildman

  5. Processes for manufacture of products from plants

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed herein is a process for inhibiting browning of plant material comprising adding a chelating agent to a disrupted plant material and adjusting the pH to a value of 2.0 to 4.5. Processes for manufacture of soluble and insoluble products from a plant material are also disclosed. Soluble...

  6. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Science.gov (United States)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  7. Engineering aspects of rate-related processes in food manufacturing.

    Science.gov (United States)

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  8. Microstructure and corrosion characteristics of HANA 6 alloy with various manufacturing processes

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Choi, Byung Kwan; Jeong, Yong Hwan

    2008-01-01

    In order to obtain the best manufacturing process for the HANA 6 alloy, the various evaluations such as a corrosion test at 400 .deg. C steam condition, a microstructural analysis by using TEM, and texture analysis by using XRD were performed for the HANA 6 alloy with various manufacturing processes. This alloy was manufactured as sheets by applying 4 types of manufacturing processes which were controlled by a combination of the intermediate annealing temperature and reduction ratio, as well as two types of final annealing conditions which were applied to the HANA 6 alloy from TREX samples. The corrosion resistance of the HANA 6 alloy with various manufacturing processes was increased with a decreasing intermediate annealing temperature and the corrosion resistance of that alloy was decreased by increasing the final annealing temperature after a corrosion test up to 240 days. The precipitate of the HANA 6 alloy mainly consisted of Nb-containing precipitates in all the samples, but the size, distribution and Nb concentration of the precipitates was affected by the applied manufacturing processes. The Nb concentration in the precipitates was increased when the samples were annealed at 570.deg.C during the intermediate annealing processes. So, the corrosion rate of the HANA 6 alloy is affected considerably by a control of the intermediate and final annealing conditions which affect the precipitate characteristics in the matrix. The crystallographic texture of the HANA 6 alloy with various manufacturing processes is similar since the total reduction ratio was the same in all the manufactured sheet samples

  9. Biological features produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Mendez Ribo, Macarena; Pedersen, David Bue

    2017-01-01

    of micro biological features by Additive Manufacturing (AM) processes. The study characterizes the additive manufacturing processes for polymeric micro part productions using the vat photopolymerization method. A specifically designed vat photopolymerization AM machine suitable for precision printing...

  10. Data quality and processing for decision making: divergence between corporate strategy and manufacturing processes

    Science.gov (United States)

    McNeil, Ronald D.; Miele, Renato; Shaul, Dennis

    2000-10-01

    Information technology is driving improvements in manufacturing systems. Results are higher productivity and quality. However, corporate strategy is driven by a number of factors and includes data and pressure from multiple stakeholders, which includes employees, managers, executives, stockholders, boards, suppliers and customers. It is also driven by information about competitors and emerging technology. Much information is based on processing of data and the resulting biases of the processors. Thus, stakeholders can base inputs on faulty perceptions, which are not reality based. Prior to processing, data used may be inaccurate. Sources of data and information may include demographic reports, statistical analyses, intelligence reports (e.g., marketing data), technology and primary data collection. The reliability and validity of data as well as the management of sources and information is critical element to strategy formulation. The paper explores data collection, processing and analyses from secondary and primary sources, information generation and report presentation for strategy formulation and contrast this with data and information utilized to drive internal process such as manufacturing. The hypothesis is that internal process, such as manufacturing, are subordinate to corporate strategies. The impact of possible divergence in quality of decisions at the corporate level on IT driven, quality-manufacturing processes based on measurable outcomes is significant. Recommendations for IT improvements at the corporate strategy level are given.

  11. Risks and reliability of manufacturing processes as related to composite materials for spacecraft structures

    Science.gov (United States)

    Bao, Han P.

    1995-01-01

    Fabricating primary aircraft and spacecraft structures using advanced composite materials entail both benefits and risks. The benefits come from much improved strength-to-weight ratios and stiffness-to-weight ratios, potential for less part count, ability to tailor properties, chemical and solvent resistance, and superior thermal properties. On the other hand, the risks involved include high material costs, lack of processing experience, expensive labor, poor reproducibility, high toxicity for some composites, and a variety of space induced risks. The purpose of this project is to generate a manufacturing database for a selected number of materials with potential for space applications, and to rely on this database to develop quantitative approaches to screen candidate materials and processes for space applications on the basis of their manufacturing risks including costs. So far, the following materials have been included in the database: epoxies, polycyanates, bismalemides, PMR-15, polyphenylene sulfides, polyetherimides, polyetheretherketone, and aluminum lithium. The first four materials are thermoset composites; the next three are thermoplastic composites, and the last one is is a metal. The emphasis of this database is on factors affecting manufacturing such as cost of raw material, handling aspects which include working life and shelf life of resins, process temperature, chemical/solvent resistance, moisture resistance, damage tolerance, toxicity, outgassing, thermal cycling, and void content, nature or type of process, associate tooling, and in-process quality assurance. Based on industry experience and published literature, a relative ranking was established for each of the factors affecting manufacturing as listed above. Potential applications of this database include the determination of a delta cost factor for specific structures with a given process plan and a general methodology to screen materials and processes for incorporation into the current

  12. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  13. Microstructure devices for process intensification: Influence of manufacturing tolerances and design

    International Nuclear Information System (INIS)

    Brandner, Juergen J.

    2013-01-01

    Process intensification by miniaturization is a common task for several fields of technology. Starting from manufacturing of electronic devices, miniaturization with the accompanying opportunities and problems gained also interest in chemistry and chemical process engineering. While the integration of enhanced functions, e.g. integrated sensors and actuators, is still under consideration, miniaturization itself has been realized in all material classes, namely metals, ceramics and polymers. First devices have been manufactured by scaling down macro-scale devices. However, manufacturing tolerances, material properties and design show much larger influence to the process than in macro scale. Many of the devices generated alike the macro ones work properly, but possibly could be optimized to a certain extend by adjusting the design and manufacturing tolerances to the special demands of miniaturization. Thus, some considerations on the design and production of devices for micro process engineering should be made to provide devices which show reproducible and controllable process behavior. The aim of the following publication is to show the importance of considerations in manufacturing tolerances and dimensions as well as design of microstructures to avoid negative influences and optimize the process characteristics of miniaturized devices. Some examples will be shown to explain the considerations presented here

  14. Process monitoring of additive manufacturing by using optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zenzinger, Guenter, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Hess, Thomas, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Henkel, Benjamin, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de; Satzger, Wilhelm, E-mail: guenter.zenzinger@mtu.de, E-mail: alexander.ladewig@mtu.de [MTU Aero Engines AG, Dachauerstrasse 665, 80995 Munich (Germany)

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  15. Analysis of production flow process with lean manufacturing approach

    Science.gov (United States)

    Siregar, Ikhsan; Arif Nasution, Abdillah; Prasetio, Aji; Fadillah, Kharis

    2017-09-01

    This research was conducted on the company engaged in the production of Fast Moving Consumer Goods (FMCG). The production process in the company are still exists several activities that cause waste. Non value added activity (NVA) in the implementation is still widely found, so the cycle time generated to make the product will be longer. A form of improvement on the production line is by applying lean manufacturing method to identify waste along the value stream to find non value added activities. Non value added activity can be eliminated and reduced by utilizing value stream mapping and identifying it with activity mapping process. According to the results obtained that there are 26% of value-added activities and 74% non value added activity. The results obtained through the current state map of the production process of process lead time value of 678.11 minutes and processing time of 173.94 minutes. While the results obtained from the research proposal is the percentage of value added time of 41% of production process activities while non value added time of the production process of 59%. While the results obtained through the future state map of the production process of process lead time value of 426.69 minutes and processing time of 173.89 minutes.

  16. Mining manufacturing data for discovery of high productivity process characteristics.

    Science.gov (United States)

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  17. Intelligent technologies in process of highly-precise products manufacturing

    Science.gov (United States)

    Vakhidova, K. L.; Khakimov, Z. L.; Isaeva, M. R.; Shukhin, V. V.; Labazanov, M. A.; Ignatiev, S. A.

    2017-10-01

    One of the main control methods of the surface layer of bearing parts is the eddy current testing method. Surface layer defects of bearing parts, like burns, cracks and some others, are reflected in the results of the rolling surfaces scan. The previously developed method for detecting defects from the image of the raceway was quite effective, but the processing algorithm is complicated and lasts for about 12 ... 16 s. The real non-stationary signals from an eddy current transducer (ECT) consist of short-time high-frequency and long-time low-frequency components, therefore a transformation is used for their analysis, which provides different windows for different frequencies. The wavelet transform meets these conditions. Based on aforesaid, a methodology for automatically detecting and recognizing local defects in bearing parts surface layer has been developed on the basis of wavelet analysis using integral estimates. Some of the defects are recognized by the amplitude component, otherwise an automatic transition to recognition by the phase component of information signals (IS) is carried out. The use of intelligent technologies in the manufacture of bearing parts will, firstly, significantly improve the quality of bearings, and secondly, significantly improve production efficiency by reducing (eliminating) rejections in the manufacture of products, increasing the period of normal operation of the technological equipment (inter-adjustment period), the implementation of the system of Flexible facilities maintenance, as well as reducing production costs.

  18. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  19. Computational Process Modeling for Additive Manufacturing (OSU)

    Science.gov (United States)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  20. PURPOSE – PROCESS – PEOPLE A LEAN APPROACH TO BIOMEDICAL MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.D. Kahlen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Opportunities to improve production processes and access to markets through the implementation of lean manufacturing in biomedical manufacturing are presented. The importance of a unified definition of manufacturing, to which biomedical manufacturing is party, is emphasized, and the theory of “lean”, summarized as “purpose, process, people”, is elaborated. The requirements for the creation of value through the creation of flow and the elimination of wastes are highlighted in the context of biomedical manufacturing. Finally, case studies are presented to illustrate the approaches to “purpose, process, people”.

    AFRIKAANSE OPSOMMING: Geleenthede vir die verbetering van produksieprosesse en marktoegang via die implementering van skraalvervaardiging in die biomediese vervaardigingsbedryf word voorgehou. Aandag word geskenk aan die betekenis van terme soos “skraal, doel, proses, menes” in die konteks van biomediese vervaardiging. Waardeskepping, vloei en vermorsing word onder die loep geneem. Gevallestudies word ter illustrasie van begrippe aangebied.

  1. Lean Manufacturing - A Powerfull Tool for Reducing Waste During the Processes

    Directory of Open Access Journals (Sweden)

    Mihai Apreutesei

    2010-01-01

    Full Text Available Lean manufacturing provides a new management approach for many small and medium size manufacturers, especially older firms organized and managed under traditional push systems. Improvement results can be dramatic in terms of quality, cycle times, and customer responsiveness. Lean manufacturing is more than a set of tools and techniques and has been widely adopted by many production companies. Lean manufacturing is a culture in which all employees continuously look for ways to improve processes. In the present article are presented the Lean Manufacturing tools, like kaizen, Kanban, poka-yoke witch a company can use to reduce the waste(muda during a production process. The paper contains also, the most common seven types of waste from production and some examples from our daily activity.

  2. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process Development Considerations for Translation to Good Manufacturing Practice.

    Science.gov (United States)

    Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann

    2018-02-01

    Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.

  3. Fault tree analysis of the manufacturing process of nuclear fuel containers

    International Nuclear Information System (INIS)

    Liao Weixian; Men Dechun; Sui Yuxue

    1998-08-01

    The nuclear fuel container consists of barrel body, bottom, cover, locking ring, rubber seal ring, and so on. It should be kept sealed in transportation and storage, so keeps the fuel contained from leakage. Its manufacturing process includes blanking, forming, seam welding, assembling, derusting and painting. The seam welding and assembling of barrel body and bottom are two key procedures, and the slope grinding, barrel body flaring and deep drawing of the bottom are important procedures. Faults in the manufacturing process of the nuclear fuel containers are investigated in details as for its quality requirements. A fault tree is established with products being unqualified as the top event. Five causes resulting in process faults are classified and analysed, and some measures are suggested for controlling different failures in manufacturing. More research work should be conducted in rules how to set up fault trees for manufacturing process

  4. Scalable manufacturing processes with soft materials

    OpenAIRE

    White, Edward; Case, Jennifer; Kramer, Rebecca

    2014-01-01

    The emerging field of soft robotics will benefit greatly from new scalable manufacturing techniques for responsive materials. Currently, most of soft robotic examples are fabricated one-at-a-time, using techniques borrowed from lithography and 3D printing to fabricate molds. This limits both the maximum and minimum size of robots that can be fabricated, and hinders batch production, which is critical to gain wider acceptance for soft robotic systems. We have identified electrical structures, ...

  5. 78 FR 24691 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-04-26

    ... comments should be identified with the title ``Current Good Manufacturing Practice and Hazard Analysis and..., 114, 117, 120, 123, 129, 179, and 211 [Docket No. FDA-2011-N-0920] RIN 0910-AG36 Current Good Manufacturing Practice and Hazard Analysis and Risk- Based Preventive Controls for Human Food; Extension of...

  6. Offshoring trends in the manufacturing process within the automotive industry

    DEFF Research Database (Denmark)

    Simplay, S.; Hansen, Zaza Nadja Lee

    2014-01-01

    consisting of original equipment manufacturers and engineering service providers. The findings indicated some offshoring trends in the automotive industry. Offshoring in this industry is moving from a manufacturing focus to incorporate large parts of the process, including high-level product development...... engineering activities. This development has created several challenges. These challenges arose as organisations are not considering how offshoring activities could be integrated with an increasingly global supply chain for the manufacturing of the final product. The paper contributes to manufacturing theory...

  7. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Seongchan [General Motors; Wilson, Daniel [General Motors; Aitharaju, Venkat [General Motors; Kia, Hamid [General Motors; Yu, Hang [ESI, Group.; Doroudian, Mark [ESI Group

    2017-09-05

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide various scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper

  8. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    Science.gov (United States)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  9. A simulation study on garment manufacturing process

    Science.gov (United States)

    Liong, Choong-Yeun; Rahim, Nur Azreen Abdul

    2015-02-01

    Garment industry is an important industry and continues to evolve in order to meet the consumers' high demands. Therefore, elements of innovation and improvement are important. In this work, research studies were conducted at a local company in order to model the sewing process of clothes manufacturing by using simulation modeling. Clothes manufacturing at the company involves 14 main processes, which are connecting the pattern, center sewing and side neating, pockets sewing, backside-sewing, attaching the front and back, sleeves preparation, attaching the sleeves and over lock, collar preparation, collar sewing, bottomedge sewing, buttonholing sewing, removing excess thread, marking button, and button cross sewing. Those fourteen processes are operated by six tailors only. The last four sets of processes are done by a single tailor. Data collection was conducted by on site observation and the probability distribution of processing time for each of the processes is determined by using @Risk's Bestfit. Then a simulation model is developed using Arena Software based on the data collected. Animated simulation model is developed in order to facilitate understanding and verifying that the model represents the actual system. With such model, what if analysis and different scenarios of operations can be experimented with virtually. The animation and improvement models will be presented in further work.

  10. Development of a novel cold forging process to manufacture eccentric shafts

    Science.gov (United States)

    Pasler, Lukas; Liewald, Mathias

    2018-05-01

    Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.

  11. Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description

    DEFF Research Database (Denmark)

    Kellens, Karel; Dewulf, Wim; Overcash, Michael

    2012-01-01

    the provision of high-quality data for LCA studies of products using these unit process datasets for the manufacturing processes, as well as the in-depth analysis of individual manufacturing unit processes.In addition, the accruing availability of data for a range of similar machines (same process, different......This report proposes a life-cycle analysis (LCA)-oriented methodology for systematic inventory analysis of the use phase of manufacturing unit processes providing unit process datasets to be used in life-cycle inventory (LCI) databases and libraries. The methodology has been developed...... and resource efficiency improvements of the manufacturing unit process. To ensure optimal reproducibility and applicability, documentation guidelines for data and metadata are included in both approaches. Guidance on definition of functional unit and reference flow as well as on determination of system...

  12. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  13. Manufacturing of ceramic microcomponents by a rapid prototyping process chain

    International Nuclear Information System (INIS)

    Knitter, R.; Bauer, W.; Goehring, D.; Hausselt, J.

    2001-01-01

    Manufacturing of new ceramic components may be improved significantly by the use of rapid prototyping processes especially in the development of miniaturized or micropatterned components. Most known generative ceramic molding processes do not provide a sufficient resolution for the fabrication of microstructured components. In contrast to this, a rapid prototyping process chain that for example, combines micro-stereolithography and low-pressure injection molding, allows the rapid manufacturing of ceramic microcomponents from functional models to preliminary or small-lot series. (orig.)

  14. Review of manufacturing processes for fabrication of SOFC components

    International Nuclear Information System (INIS)

    Stacey, B.; Badwal, S.P.S.; Foger, K.

    1998-01-01

    In order for fuel cell technology to be commercial, it must meet stringent criteria of reliability, life-time expectations and cost. While materials play an important role in determining these parameters, engineering design and manufacturing processes for fuel cell stack components are equally important. Manufacturing processes must be low cost and suitable for large volume production for the technology to be viable and competitive in the market place. Several processes suitable for the production of ceramic components used in solid oxide fuel cells as well as ceramic coating techniques required for the protection of some metal components have been described. Copyright (1998) Australasian Ceramic Society

  15. Comparison of Composites Properties Manufactured by Vacuum Process and Autoclave Process

    Directory of Open Access Journals (Sweden)

    MA Rufei

    2017-01-01

    Full Text Available Two kinds of prepregs ZT7G/LT-03A(unidirectional carbon fiber prepreg and ZT7G3198P/LT-03A(plain carbon fabric prepreg were used to manufacture three Bateches of composites by vacuum process and autoclave process respectively. The physical properties of the prepregs and mechanical properties of composite were tested. The performance, fiber volume content and porosity of composites manufactured by vacuum cure and autoclave process show that the physical property retention rates of vacuum cured composites are all over 75%, some even more than 100%. Interlaminar shear strength keeps the lowest retention rate and warp tensile strength keeps the highest retention in unidirectional carbon fiber composites. For fabric composite material, compression strength keeps the lowest and warp tensile strength keeps the highest retention. Vacuum cured composites perform lower fiber volume content and higher porosity, which are the main reasons of the lower performance.

  16. Silicon Valley's Processing Needs versus San Jose State University's Manufacturing Systems Processing Component: Implications for Industrial Technology

    Science.gov (United States)

    Obi, Samuel C.

    2004-01-01

    Manufacturing professionals within universities tend to view manufacturing systems from a global perspective. This perspective tends to assume that manufacturing processes are employed equally in every manufacturing enterprise, irrespective of the geography and the needs of the people in those diverse regions. But in reality local and societal…

  17. 16 CFR 300.25 - Country where wool products are processed or manufactured.

    Science.gov (United States)

    2010-01-01

    ... an origin label on the unfinished product, the manufacturing processes as required in paragraph (a)(4... processed or manufactured. Further work or material added to the wool product in another country must effect...

  18. Case study of lean manufacturing application in a die casting manufacturing company

    Science.gov (United States)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  19. Enhancing Manufacturing Process Education via Computer Simulation and Visualization

    Science.gov (United States)

    Manohar, Priyadarshan A.; Acharya, Sushil; Wu, Peter

    2014-01-01

    Industrially significant metal manufacturing processes such as melting, casting, rolling, forging, machining, and forming are multi-stage, complex processes that are labor, time, and capital intensive. Academic research develops mathematical modeling of these processes that provide a theoretical framework for understanding the process variables…

  20. Global Production Planning Process considering the Supply Risk of Overseas Manufacturing Sites

    Directory of Open Access Journals (Sweden)

    Hosang Jung

    2015-01-01

    Full Text Available Although global manufacturers can produce most of their final products in local plants, they need to source components or parts from desirable overseas manufacturing partners at low cost in order to fulfill customer orders. In this global manufacturing environment, capacity information for planning is usually imprecise owing to the various risks of overseas plants (e.g., foreign governments’ policies and labor stability. It is therefore not easy for decision-makers to generate a global production plan showing the production amounts at local plants and overseas manufacturing facilities operated by manufacturing partners. In this paper, we present a new global production planning process considering the supply risk of overseas manufacturing sites. First, local experts estimate the supply capacity of an overseas plant using their judgment to determine when the risk could occur and how large the risk impact would be. Next, we run a global production planning model with the estimated supply capacities. The proposed process systematically adopts the qualitative judgments of local experts in the global production planning process and thus can provide companies with a realistic global production plan. We demonstrate the applicability of the proposed process with a real world case.

  1. Recommendations for composite manufacturing pultrusion process and equipment

    Science.gov (United States)

    Steiner, R. L.; Cole, J. D.; Strong, A. B.; Todd, R. H.

    1992-10-01

    Pultrusion is an important composite manufacturing process that holds great potential for reducing the cost of composite parts. However, pultrusion machine manufacturers and those using this continuous process have generally worked in relative isolation from each other and have, therefore, repeated many of the same errors. This paper reports the findings of a research program involving input from 15 pultruder manufacturers who have contributed non-proprietary information for the "best" design for the pultrusion machine. Key areas of design difficulty have been identified and some suggested remedies given. The results of this program will be used to construct a "state-of-the-art" pultrusion machine in the authors' laboratory. The initial findings provided input for a Quality Function Deployment (QFD) study which is basis for the functional specification for the pultrusion machine. By using QFD, capabilities of existing machines were determined and design requirements for an improved state-of-the-art machine were established. The QFD exercise provided an in-depth look at the relationship between desired machine capabilities and machine design requirements.

  2. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  3. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.

    Science.gov (United States)

    Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai

    2015-01-01

    The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.

  4. Development of manufacturing process for production of 500 MWe calandria sheets

    International Nuclear Information System (INIS)

    Hariharan, R.; Ramesh, P.; Lakshminarayana, B.; Bhaskara Rao, C.V.; Pande, P.; Agarwala, G.C.

    1992-01-01

    Calandria tubes made of zircaloy-2 are being used as structural components in pressurised heavy water power reactors. The sheets required for producing calandria tube for 235 MWe reactors are being manufactured at Zircaloy Fabrication Plant (ZFP), NFC utilizing a 2 Hi/4 Hi rolling mill procured for the purpose, by carrying out cold rolling process to achieve the required size after hot rolling suitable extruded slabs. Due to limitation of width of the sheet that can be rolled with the mill as well as the size of the slab that can be extruded with the existing press, difficulties arose in producing acceptable full length sheets of size 6600 mm long x 435 mm wide x 1.6 mm thick for manufacturing 500 MWe calandria tube. This paper deals with the details of the process problem resolved. They are: (a)designing of suitable hot and cold rolling pass schedules, (b)selection and standardization of process parameters such as beta quenching, hot rolling and cold rolling, and (c)details of the overall manufacturing process. Due to implementation of above, sheets required for manufacturing 500 MWe calandria tube sheets were successfully rolled. About 40 nos. of acceptable full length sheets have already been manufactured. (author). 1 fig., 3 tabs

  5. United States Department of Energy Integrated Manufacturing & Processing Predoctoral Fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, M.

    2003-03-31

    The objective of the program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design.

  6. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  7. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  8. In-Process Monitoring of Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this project is the implementation of an Imaging Fourier Transform Spectrometer (IFTS) for in situ metal additive manufacturing process...

  9. Adjustable broaching tool for tolerance compensation in precision manufacturing

    DEFF Research Database (Denmark)

    Nielsen, Emil Krabbe; Eriksen, Rasmus Solmer; Paldan, Nikolas Aulin

    2015-01-01

    Current manufacturing of precision tools for machining typically requires processes such as grinding, EDM or laser processing in order to comply with high requirements on tolerances. However even tools manufactured by these processes come short, when a new batch of workpieces are supplied...

  10. Hybrid indirect/direct contactor for thermal management of counter-current processes

    Science.gov (United States)

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  11. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  12. Sustainable manufacturing: Effect of material selection and design on the environmental impact in the manufacturing process

    International Nuclear Information System (INIS)

    Harun, Mohd Hazwan Syafiq; Salaam, Hadi Abdul; Taha, Zahari

    2013-01-01

    The environmental impact of a manufacturing process is also dependent on the selection of the material and design of a product. This is because the manufacturing of a product is directly connected to the amount of carbon emitted in consuming the electrical energy for that manufacturing process. The difference in the general properties of materials such as strength, hardness and impact will have significant effect on the power consumption of the machine used to complete the product. In addition the environmental impact can also be reduced if the proposed designs use less material. In this study, an LCA tool called Eco-It is used. Evaluate the environmental impact caused by manufacturing simple jig. A simple jig with 4 parts was used as a case study. Two experiments were carried out. The first experiment was to study the environmental effects of different material, and the second experiment was to study the environmental impact of different design. The materials used for the jig are Aluminium and mild steel. The results showed a decrease in the rate of carbon emissions by 60% when Aluminium is use instead from mild steel, and a decrease of 26% when the-design is modified

  13. Manufacturing Squares: An Integrative Statistical Process Control Exercise

    Science.gov (United States)

    Coy, Steven P.

    2016-01-01

    In the exercise, students in a junior-level operations management class are asked to manufacture a simple product. Given product specifications, they must design a production process, create roles and design jobs for each team member, and develop a statistical process control plan that efficiently and effectively controls quality during…

  14. Design and Optimization of Sheet Hydroforming Process for Manufacturing Oil tank

    International Nuclear Information System (INIS)

    Prakash, C.; Narasimhan, K.

    2005-01-01

    The need for reduction of weight is an important issue in sheet metal forming industry. The hydroforming process has become an effective manufacturing process, as it can be adapted for the manufacturing of complex structural components with high structural stiffness. The process parameters and material properties are important factors that influence the quality of final product. In this paper, an optimized window of process parameters is obtained for successful sheet hydroforming of Oil tank. The simulation of hydroforming process is performed by using a Finite Element Method based Commercial code

  15. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  16. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir

    2012-04-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.

  17. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  18. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    Science.gov (United States)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  19. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  20. Development of a virtual metrology for high-mix TFT-LCD manufacturing processes

    International Nuclear Information System (INIS)

    Chen Shan; Pan Tianhong; Jang Shishang

    2010-01-01

    Nowadays, TFT-LCD manufacturing has become a very complex process, in which many different products being manufactured with many different tools. The ability to predict the quality of product in such a high-mix system is critical to developing and maintaining a high yield. In this paper, a statistical method is proposed for building a virtual metrology model from a number of products using a high-mix manufacturing process. Stepwise regression is used to select 'key variables' that really affect the quality of the products. Multivariate analysis of covariance is also proposed for simultaneously applying the selected variables and product effect. This framework provides a systematic method of building a processing quality prediction system for a high-mix manufacturing process. The experimental results show that the proposed quality prognostic system can not only estimate the critical dimension accurately but also detect potentially faulty glasses.

  1. Reducing of Manufacturing Lead Time by Implementation of Lean Manufacturing Principles

    Directory of Open Access Journals (Sweden)

    Hussein Salem Ketan

    2015-08-01

    Full Text Available Many organizations today are interesting to implementing lean manufacturing principles that should enable them to eliminating the wastes to reducing a manufacturing lead time. This paper concentrates on increasing the competitive level of the company in globalization markets and improving of the productivity by reducing the manufacturing lead time. This will be by using the main tool of lean manufacturing which is value stream mapping (VSM to identifying all the activities of manufacturing process (value and non-value added activities to reducing elimination of wastes (non-value added activities by converting a manufacturing system to pull instead of push by applying some of pull system strategies as kanban and first on first out lane (FIFO. ARENA software is used to simulate the current and future state. This work is executed in the state company for electrical industries in Baghdad. The obtained results of the application showed that implementation of lean principles helped on reducing of a manufacturing lead time by 33%.

  2. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-03-01

    The purpose of this paper is to demonstrate a statistical method for verifying superconducting wire process stability as represented by I c . The paper does not propose changing the I c testing frequency for wire during Phase 1 of the present Vendor Qualification Program. The actual statistical limits demonstrated for one supplier's data are not expected to be suitable for all suppliers. However, the method used to develop the limits and the potential for improved process through their use, may be applied equally. Implementing the demonstrated method implies that the current practice of testing all pieces of wire from each billet, for the purpose of detecting manufacturing process errors (i.e. missing a heat-treatment cycle for a part of the billet, etc.) can be replaced by other less costly process control measures. As used in this paper process control limits for critical current are quantitative indicators of the source manufacturing process uniformity. The limits serve as alarms indicating the need for manufacturing process investigation

  3. Design of Test Parts to Characterize Micro Additive Manufacturing Processes

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Mischkot, Michael

    2015-01-01

    The minimum feature size and obtainable tolerances of additive manufacturing processes are linked to the smallest volumetric elements (voxels) that can be created. This work presents the iterative design of a test part to investigate the resolution of AM processes with voxel sizes at the micro...... scale. Each design iteration reduces the test part size, increases the number of test features, improves functionality, and decreases coupling in the part. The final design is a set of three test parts that are easy to orient and measure, and that provide useful information about micro additive...... manufacturing processes....

  4. Business process integration between European manufacturers and transport and logistics service providers

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, W

    2005-01-01

    The goal of the Supply Chain Management process is to create value for customers, stakeholders and all supply chain members, through the integration of disparate processes like manufacturing flow management, customer service and order fulfillment. However, many firms fail in the path of achieving...... a total integration. This study illustrates, from an empirical point of view, the problems associated to SC integration among European firms operating in global/international markets. The focus is on the relationship between two echelons in the supply chain: manufacturers and their transport and logistics...... service providers (TLSPs). The paper examines (1) the characteristics of the collaborative partnerships established between manufacturers and their TLSPs; (2) to what extent manufacturers and their TLSPs have integrated SC business processes; (3) the IT used to support the SC cooperation and integration...

  5. Dimensional metrology for process and part quality control in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gasparin, Stefania

    2011-01-01

    dimensions are scaled down and geometrical complexity of objects is increased, the available measurement technologies appear not sufficient. New solutions for measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration are necessary if micro......Micro manufacturing has gained interest over the last decade as the demand for micro mechanical components has increased. The need for dimensional metrology at micro scale is evident both in terms of quality assurance of components and products and in terms of process control. As critical...... manufacturing is to develop into industrial manufacturing solutions. In this paper the application of dimensional precision metrology to both component and process quality control will be demonstrated. The parts investigated are micro injection moulded polymer parts, typical for the field of micro manufacturing....

  6. 76 FR 36078 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Science.gov (United States)

    2011-06-21

    ...] Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for... to quality and sanitation requirements for the production and processing of manufacturing grade milk... Manufacturing Purposes and Its Production and Processing; Recommended Requirements for Adoption by State...

  7. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Sarah V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  8. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    Science.gov (United States)

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is

  9. 77 FR 24722 - Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes...

    Science.gov (United States)

    2012-04-25

    ...] Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes... Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food... determining whether changes in manufacturing process, including the intentional reduction in particle size to...

  10. Automation in Siemens fuel manufacturing - the basis for quality improvement by statistical process control (SPC)

    International Nuclear Information System (INIS)

    Drecker, St.; Hoff, A.; Dietrich, M.; Guldner, R.

    1999-01-01

    Statistical Process Control (SPC) is one of the systematic tools to perform a valuable contribution to the control and planning activities for manufacturing processes and product quality. Advanced Nuclear Fuels GmbH (ANF) started a program to introduce SPC in all sections of the manufacturing process of fuel assemblies. The concept phase is based on a realization of SPC in 3 pilot projects. The existing manufacturing devices are reviewed for the utilization of SPC. Subsequent modifications were made to provide the necessary interfaces. The processes 'powder/pellet manufacturing'. 'cladding tube manufacturing' and 'laser-welding of spacers' are located at the different locations of ANF. Due to the completion of the first steps and the experience obtained by the pilot projects, the introduction program for SPC has already been extended to other manufacturing processes. (authors)

  11. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  12. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    Science.gov (United States)

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Economic trade-offs of additive manufacturing integration in injection moulding process chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    2017-01-01

    Additive Manufacturing has emerged as an innovative set of novel technologies capable of replacing established manufacturing processes due to fabrication of highly complex parts and its continuous improvements of efficiency and cost effectiveness. This study is based on the idea that through...... the creation of synergies between additive and conventional manufacturing technologies it is possible to achieve greater cost advantages and operational benefits than by substituting injection moulding with additive manufacturing. The analysis presented explores the cost advantages that can be secured when...... additive manufacturing is used to support the fabrication of mould inserts for the product development phase of the injection moulding process chain. This study shows that fabrication of soft tooling by mean of AM is economically convenient with a cost reduction between 80% and 90%. Break-even points...

  14. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  15. Manufacturing process optimization of nuclear fuel guide tube using HANA alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Choi, B. K.; Park, J. Y.; Kim, H. G.; Jeong, Y. I.; Park, D. J.; Lim, J. K.

    2010-08-01

    From this project, the advanced manufacturing parameters which were contained of heat-treatment, reduction rate, and new process (2 step) were considered to increase the guide tube performance of HANA material. It was obtained that the strength and corrosion resistance of HANA material were improved by applying the improve manufacturing parameters when compared to the commercial guide tube material. · Manufacturing parameter study to increase mechanical property -Tensile strength increase of 30% by manufacturing parameter setup when compared to the guide tube specification · Manufacturing parameter study to decrease irradiation growth -Theoretical study of the texture effect on sample specimens related to the irradiation growth · Manufacturing parameter study to increase corrosion resistance -Corrosion resistance increase of 30% by manufacturing parameter setup when compared to the commercial guide tube

  16. Current trend in latex dipped products manufacturing

    International Nuclear Information System (INIS)

    Wong, W.S.C.

    1996-01-01

    The paper present the activities in dipped products manufacturing in Malaysia; the activities carried out by MARGMA - Malaysian Rubber Glove manufacturer; other issues discussed such as labour, pricing environmental issue, product certification in this activity

  17. Business integration between manufacturing and transport-logistics firms

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, Olga W.

    electronically through EDI. The current business integration practices are primarily restricted to some sub-processes in three key SC processes: Customer service management, order fulfillment and backwards logistics. In the future the manufacturers want a better integration with the TLSPs, but at the same time......Purpose - This paper analyses how manufacturers and transport-logistics service providers (TLSPs) work together and integrate their business processes. The information technologies used to support the integration, the processes currently integrated, and the expected future integration, are searched......, manufacturers would like to have the freedom of breaking the relationship, if the party does not fulfill the requisites and expectations. The future developments associated to the "commoditization" of TLSPs' services would reinforce this trend. Originality/value - This research has shed light on a relatively...

  18. 40 CFR 761.187 - Reporting importers and by persons generating PCBs in excluded manufacturing processes.

    Science.gov (United States)

    2010-07-01

    ...) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS General Records and Reports § 761.187 Reporting importers and by persons generating PCBs in excluded manufacturing processes. In addition to... generating PCBs in excluded manufacturing processes. 761.187 Section 761.187 Protection of Environment...

  19. Potential of Continuous Manufacturing for Liposomal Drug Products.

    Science.gov (United States)

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  20. 24 CFR 3282.53 - Service of process on foreign manufacturers and importers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Service of process on foreign manufacturers and importers. 3282.53 Section 3282.53 Housing and Urban Development Regulations Relating to... REGULATIONS Formal Procedures § 3282.53 Service of process on foreign manufacturers and importers. The...

  1. Process for the manufacture of a superconductor with an intermetallic compound

    International Nuclear Information System (INIS)

    Wilhelm, M.

    1980-01-01

    A superconductor with a superconducting intermetallic compound consisting of at least two elements can be manufactured by producing a conductor preproduct with a first component containing one element of the compound and a second component consisting of a carrier metal and the remaining element or elements of the alloy containing the compound, and by heat treating the conductor preproduct, so that the compound is formed by the reaction of the element of the first compound with the remaining element or elements of the second compound. In such a superconductor, one tries to increase the effective current density and critical current. The invention states that the heat treatment should be carried out in a hydrogen atmosphere. Superconductors produced by this process can be used for superconductor devices whose magnetic fields have a flux density above 10 Tesla. (orig.) [de

  2. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    OpenAIRE

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong’, George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were use...

  3. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Williams, T.

    1997-01-01

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  4. Fit of single tooth zirconia copings: comparison between various manufacturing processes.

    Science.gov (United States)

    Grenade, Charlotte; Mainjot, Amélie; Vanheusden, Alain

    2011-04-01

    Various CAD/CAM processes are commercially available to manufacture zirconia copings. Comparative data on their performance in terms of fit are needed. The purpose of this in vitro study was to compare the internal and marginal fit of single tooth zirconia copings manufactured with a CAD/CAM process (Procera; Nobel Biocare) and a mechanized manufacturing process (Ceramill; Amann Girrbach). Abutments (n=20) prepared in vivo for ceramic crowns served as a template for manufacturing both Procera and Ceramill zirconia copings. Copings were manufactured and cemented (Clearfil Esthetic Cement; Kuraray) on epoxy replicas of stone cast abutments. Specimens were sectioned. Nine measurements were performed for each coping. Over- and under-extended margins were evaluated. Comparisons between the 2 processes were performed with a generalized linear mixed model (α=.05). Internal gap values between Procera and Ceramill groups were not significantly different (P=.13). The mean marginal gap (SD) for Procera copings (51(50) μm) was significantly smaller than for Ceramill (81(66) μm) (P<.005). The percentages of over- and under-extended margins were 43% and 57% for Procera respectively, and 71% and 29% for Ceramill. Within the limitations of this in vitro study, the marginal fit of Procera copings was significantly better than that of Ceramill copings. Furthermore, Procera copings showed a smaller percentage of over-extended margins than did Ceramill copings. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  5. CHO Quasispecies—Implications for Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Florian M. Wurm

    2013-10-01

    Full Text Available Chinese hamster ovary (CHO cells are a source of multi-ton quantities of protein pharmaceuticals. They are, however, immortalized cells, characterized by a high degree of genetic and phenotypic diversity. As is known for any biological system, this diversity is enhanced by selective forces when laboratories (no sharing of gene pools grow cells under (diverse conditions that are practical and useful. CHO cells have been used in culture for more than 50 years, and various lines of cells are available and have been used in manufacturing. This article tries to represent, in a cursory way, the history of CHO cells, particularly the origin and subsequent fate of key cell lines. It is proposed that the name CHO represents many different cell types, based on their inherent genetic diversity and their dynamic rate of genetic change. The continuing remodeling of genomic structure in clonal or non-clonal cell populations, particularly due to the non-standardized culture conditions in hundreds of different labs renders CHO cells a typical case for “quasispecies”. This term was coined for families of related (genomic sequences exposed to high mutation rate environments where a large fraction of offspring is expected to carry one or more mutations. The implications of the quasispecies concept for CHO cells used in protein manufacturing processes are significant. CHO genomics/transcriptomics may provide only limited insights when done on one or two “old” and poorly characterized CHO strains. In contrast, screening of clonal cell lines, derived from a well-defined starting material, possibly within a given academic or industrial environment, may reveal a more narrow diversity of phenotypes with respect to physiological/metabolic activities and, thus, allow more precise and reliable predictions of the potential of a clone for high-yielding manufacturing processes.

  6. Thin Slits Manufacturing Process Using Electro Discharge Technique

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan

    -, č. 40 (2011), s. 175-178 ISSN 1584-5982 R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : thin slit * EDM process * manufacturing Subject RIV: JR - Other Machinery

  7. Toward Meaningful Manufacturing Variation Data in Design - Feature Based Description of Variation in Manufacturing Processes

    DEFF Research Database (Denmark)

    Eifler, Tobias; Boorla, Srinivasa Murthy; Howard, Thomas J.

    2016-01-01

    The need to mitigate the effects of manufacturing variation already in design is nowadays commonly acknowledged and has led to a wide use of predictive modeling techniques, tolerancing approaches, etc. in industry. The trustworthiness of corresponding variation analyses is, however, not ensured...... by the availability of sophisticated methods and tools alone, but does evidently also depend on the accuracy of the input information used. As existing approaches for the description of manufacturing variation focus however, almost exclusively, on monitoring and controlling production processes, there is frequently...... a lack of objective variation data in design. As a result, variation analyses and tolerancing activities rely on numerous assumptions made to fill the gaps of missing or incomplete data. To overcome this hidden subjectivity, a schema for a consistent and standardised description of manufacturing...

  8. 15 CFR 400.32 - Procedure for review of request for approval of manufacturing or processing.

    Science.gov (United States)

    2010-01-01

    ... approval of manufacturing or processing. 400.32 Section 400.32 Commerce and Foreign Trade Regulations... REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.32 Procedure for review of request for approval of manufacturing or processing. (a) Request as part of application...

  9. The Evolution of Process Safety: Current Status and Future Direction.

    Science.gov (United States)

    Mannan, M Sam; Reyes-Valdes, Olga; Jain, Prerna; Tamim, Nafiz; Ahammad, Monir

    2016-06-07

    The advent of the industrial revolution in the nineteenth century increased the volume and variety of manufactured goods and enriched the quality of life for society as a whole. However, industrialization was also accompanied by new manufacturing and complex processes that brought about the use of hazardous chemicals and difficult-to-control operating conditions. Moreover, human-process-equipment interaction plus on-the-job learning resulted in further undesirable outcomes and associated consequences. These problems gave rise to many catastrophic process safety incidents that resulted in thousands of fatalities and injuries, losses of property, and environmental damages. These events led eventually to the necessity for a gradual development of a new multidisciplinary field, referred to as process safety. From its inception in the early 1970s to the current state of the art, process safety has come to represent a wide array of issues, including safety culture, process safety management systems, process safety engineering, loss prevention, risk assessment, risk management, and inherently safer technology. Governments and academic/research organizations have kept pace with regulatory programs and research initiatives, respectively. Understanding how major incidents impact regulations and contribute to industrial and academic technology development provides a firm foundation to address new challenges, and to continue applying science and engineering to develop and implement programs to keep hazardous materials within containment. Here the most significant incidents in terms of their impact on regulations and the overall development of the field of process safety are described.

  10. Materials processing in zero gravity. [space manufacturing

    Science.gov (United States)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  11. Process development for green part printing using binder jetting additive manufacturing

    Science.gov (United States)

    Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li

    2018-05-01

    Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

  12. Additive manufacturing: state-of-the-art and application framework

    Directory of Open Access Journals (Sweden)

    Vinícius Picanço Rodrigues

    2017-09-01

    Full Text Available Additive manufacturing encompasses a class of production processes with increasing applications in different areas and supply chains. Due to its flexibility for production in small batches and the versatility of materials and geometries, this technology is recognized as being capable of revolutionizing the production processes as well as changing production strategies that are currently employed. However, there are different technologies under the generic label of additive manufacturing, materials and application areas with different requirements. Given the growing importance of additive manufacturing as a production process, and also considering the need to have a better insight into the potential applications for driving research and development efforts, this article presents a proposal of organization for additive manufacturing applications in seven areas. Additionally, the article provides a panorama of the current development stage of this technology, with a review of its major technological variants. The results presented aim to serve as a basis to support driving initiatives in additive manufacturing in companies, development agencies and research institutions.

  13. New model of enterprises resource planning implementation planning process in manufacturing enterprises

    Directory of Open Access Journals (Sweden)

    Mirjana Misita

    2016-05-01

    Full Text Available This article presents new model of enterprises resource planning implementation planning process in manufacturing enterprises based on assessment of risk sources. This assessment was performed by applying analytic hierarchy process. Analytic hierarchy process method allows variation of relative importance of specific risk sources dependent on the section from which the risk source originates (organizational environment, technical issues, people issues, adoption process management, and external support. Survey was conducted on 85 manufacturing enterprises involved with an enterprises resource planning solution. Ranking of risk sources assessments returns most frequent risks of enterprises resource planning implementation success in manufacturing enterprises, and representative factors were isolated through factor analysis by risk source origin. Finally, results indicate that there are hidden causes of failed implementation, for example, risk source “top management training and education,” from risk origin “adoption process management.”

  14. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NARCIS (Netherlands)

    Ocelik, V.; Janssen, Niels; Smith, Stefan; De Hosson, J. Th M.

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with

  15. Knowledge Assisted Integrated Design of a Component and Its Manufacturing Process

    Science.gov (United States)

    Gautham, B. P.; Kulkarni, Nagesh; Khan, Danish; Zagade, Pramod; Reddy, Sreedhar; Uppaluri, Rohith

    Integrated design of a product and its manufacturing processes would significantly reduce the total cost of the products as well as the cost of its development. However this would only be possible if we have a platform that allows us to link together simulations tools used for product design, performance evaluation and its manufacturing processes in a closed loop. In addition to that having a comprehensive knowledgebase that provides systematic knowledge guided assistance to product or process designers who may not possess in-depth design knowledge or in-depth knowledge of the simulation tools, would significantly speed up the end-to-end design process. In this paper, we propose a process and illustrate a case for achieving an integrated product and manufacturing process design assisted by knowledge support for the user to make decisions at various stages. We take transmission component design as an example. The example illustrates the design of a gear for its geometry, material selection and its manufacturing processes, particularly, carburizing-quenching and tempering, and feeding the material properties predicted during heat treatment into performance estimation in a closed loop. It also identifies and illustrates various decision stages in the integrated life cycle and discusses the use of knowledge engineering tools such as rule-based guidance, to assist the designer make informed decisions. Simulation tools developed on various commercial, open-source platforms as well as in-house tools along with knowledge engineering tools are linked to build a framework with appropriate navigation through user-friendly interfaces. This is illustrated through examples in this paper.

  16. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  17. Laser 3D micro-manufacturing

    International Nuclear Information System (INIS)

    Piqué, Alberto; Auyeung, Raymond C Y; Kim, Heungsoo; Charipar, Nicholas A; Mathews, Scott A

    2016-01-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications. (topical review)

  18. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  19. 75 FR 61418 - Milk for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for...

    Science.gov (United States)

    2010-10-05

    ... for Manufacturing Purposes and Its Production and Processing; Requirements Recommended for Adoption by... sanitation requirements for the production and processing of manufacturing grade milk. These Recommended... comments. SUMMARY: This document proposes to amend the recommended manufacturing milk requirements...

  20. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    International Nuclear Information System (INIS)

    Traub, Richard J.

    2008-01-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness

  1. Wellbore manufacturing processes for in situ heat treatment processes

    Science.gov (United States)

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  2. Printing Outside the Box: Additive Manufacturing Processes for Fabrication of Large Aerospace Structures

    Science.gov (United States)

    Babai, Majid; Peters, Warren

    2015-01-01

    To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of propulsion elements. Liquid rocket engines (LREs) are comprised of a thrust chamber and nozzle extension as illustrated in figure 1 for the J2X upper stage engine. Development of the J2X engine, designed for the Ares I launch vehicle, is currently being incorporated on the Space Launch System. A nozzle extension is attached to the combustion chamber to obtain the expansion ratio needed to increase specific impulse. If the nozzle extension could be printed as one piece using free-form additive manufacturing (AM) processes, rather than the current method of forming welded parts, a considerable time savings could be realized. Not only would this provide a more homogenous microstructure than a welded structure, but could also greatly shorten the overall fabrication time. The main objective of this study is to fabricate test specimens using a pulsed arc source and solid wire as shown in figure 2. The mechanical properties of these specimens will be compared with those fabricated using the powder bed, selective laser melting technology at NASA Marshall Space Flight Center. As printed components become larger, maintaining a constant temperature during the build process becomes critical. This predictive capability will require modeling of the moving heat source as illustrated in figure 3. Predictive understanding of the heat profile will allow a constant temperature to be maintained as a function of height from substrate while printing complex shapes. In addition, to avoid slumping, this will also allow better control of the microstructural development and hence the properties. Figure 4 shows a preliminary comparison of the mechanical properties obtained.

  3. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    International Nuclear Information System (INIS)

    Ilyas, Ismet P

    2013-01-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  4. Fuzzy linguistic hedges for the selection of manufacturing process for prosthetic sockets

    Directory of Open Access Journals (Sweden)

    Richa Pandey

    2014-08-01

    Full Text Available In this paper, a comparison is presented between two prime methods of producing prosthetic sockets by using the fuzzy linguistic hedges approach on the qualitative feedback of Indian prosthetic users. Recent trends indicate that the Indian manufacturers have tried to adopt the newer technologies like reverse engineering (RE approach to achieve the desired goals. However, the satisfaction of the user is of utmost importance for the unique and customized products for rehabilitation. In order to analyze the effectiveness of the manufacturing approaches, user case studies are taken, based on the linguistic feedbacks, and a comparative study is conducted. Thirteen users from four different manufacturing units are taken for study and sockets made by conventional as well as RE are experimented. Fuzzy membership functions are constructed using the linguistic hedges based on the user feedbacks. An analytical hierarchy process (AHP is applied to arrive at a decision to select the manufacturing process for user satisfaction and manufacturing excellence.

  5. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    Science.gov (United States)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  6. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  7. The ability of current statistical classifications to separate services and manufacturing

    DEFF Research Database (Denmark)

    Christensen, Jesper Lindgaard

    2013-01-01

    This paper explores the performance of current statistical classification systems in classifying firms and, in particular, their ability to distinguish between firms that provide services and firms that provide manufacturing. We find that a large share of firms, almost 20%, are not classified...... as expected based on a comparison of their statements of activities with the assigned industry codes. This result is robust to analyses on different levels of aggregation and is validated in an additional survey. It is well known from earlier literature that industry classification systems are not perfect....... This paper provides a quantification of the flaws in classifications of firms. Moreover, it is explained why the classifications of firms are imprecise. The increasing complexity of production, inertia in changes to statistical systems and the increasing integration of manufacturing products and services...

  8. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations

    KAUST Repository

    Siddiq, Amir; El Sayed, Tamer

    2012-01-01

    We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects

  9. Manufacturing process design for multi commodities in agriculture

    Science.gov (United States)

    Prasetyawan, Yudha; Santosa, Andrian Henry

    2017-06-01

    High-potential commodities within particular agricultural sectors should be accompanied by maximum benefit value that can be attained by both local farmers and business players. In several cases, the business players are small-medium enterprises (SMEs) which have limited resources to perform added value process of the local commodities into the potential products. The weaknesses of SMEs such as the manual production process with low productivity, limited capacity to maintain prices, and unattractive packaging due to conventional production. Agricultural commodity is commonly created into several products such as flour, chips, crackers, oil, juice, and other products. This research was initiated by collecting data by interview method particularly to obtain the perspectives of SMEs as the business players. Subsequently, the information was processed based on the Quality Function Deployment (QFD) to determine House of Quality from the first to fourth level. A proposed design as the result of QFD was produced and evaluated with Technology Assessment Model (TAM) and continued with a revised design. Finally, the revised design was analyzed with financial perspective to obtain the cost structure of investment, operational, maintenance, and workers. The machine that performs manufacturing process, as the result of revised design, was prototyped and tested to determined initial production process. The designed manufacturing process offers IDR 337,897, 651 of Net Present Value (NPV) in comparison with the existing process value of IDR 9,491,522 based on similar production input.

  10. Process and control systems for composites manufacturing

    Science.gov (United States)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  11. Manufacturing of tailored tubes with a process integrated heat treatment

    Science.gov (United States)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  12. Development of Integrated Programs for Aerospace-vehicle Design (IPAD): Product manufacture interactions with the design process

    Science.gov (United States)

    Crowell, H. A.

    1979-01-01

    The product manufacturing interactions with the design process and the IPAD requirements to support the interactions are described. The data requirements supplied to manufacturing by design are identified and quantified. Trends in computer-aided manufacturing are discussed and the manufacturing process of the 1980's is anticipated.

  13. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    Science.gov (United States)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  14. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    Science.gov (United States)

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to

  15. Tolerance analysis in manufacturing using process capability ratio with measurement uncertainty

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Mansourvar, Zahra; Hansen, Hans Nørgaard

    2017-01-01

    . In this paper, a new statistical analysis was applied to manufactured products to assess achieved tolerances when the process is known while using capability ratio and expanded uncertainty. The analysis has benefits for process planning, determining actual precision limits, process optimization, troubleshoot......Tolerance analysis provides valuable information regarding performance of manufacturing process. It allows determining the maximum possible variation of a quality feature in production. Previous researches have focused on application of tolerance analysis to the design of mechanical assemblies...... malfunctioning existing part. The capability measure is based on a number of measurements performed on part’s quality variable. Since the ratio relies on measurements, elimination of any possible error has notable negative impact on results. Therefore, measurement uncertainty was used in combination with process...

  16. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  17. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  18. Monitoring of the submerged arc welding process using current and voltage transducers

    International Nuclear Information System (INIS)

    Barrera, G.; Velez, M.; Espinosa, M.A.; Santos, O.; Barrera, E.; Gomez, G.

    1996-01-01

    Welding by fusion is one of the most used techniques to join materials in the manufacture industry. given the increase in applications of this welding process and the demand of more quality in the welding deposits, these welding processes are good candidates for the improvement of their instrumentation and control. Any improvement in the control technique will have a positive effect in the quality and productivity of the welding process. Some of the most significant variables in the submerged arc welding process are: current, voltage and torch speed. For the instrumentation of this research work, two transducers were designed, one for CD current monitoring and one for CD voltage monitoring of the welding machine. The design of both transducers includes an isolation amplifier. Graphical programming and the concept of virtual instrumentation were the main tools used for the design of the data acquisition system and the signal processing task. (Author) 9 refs

  19. 27 CFR 40.1 - Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Manufacture of tobacco... MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Scope of Regulations § 40.1 Manufacture of tobacco products, cigarette papers and tubes, and processed tobacco. This part contains...

  20. Automated input data management in manufacturing process simulation

    OpenAIRE

    Ettefaghian, Alireza

    2015-01-01

    Input Data Management (IDM) is a time consuming and costly process for Discrete Event Simulation (DES) projects. Input Data Management is considered as the basis of real-time process simulation (Bergmann, Stelzer and Strassburger, 2011). According to Bengtsson et al. (2009), data input phase constitutes on the average about 31% of the time of an entire simulation project. Moreover, the lack of interoperability between manufacturing applications and simulation software leads to a high cost to ...

  1. A factory concept for processing and manufacturing with lunar material

    Science.gov (United States)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  2. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  3. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  4. Customer-driven manufacturing in the food processing industry

    NARCIS (Netherlands)

    Donk, D.P. van

    2000-01-01

    Food processing industry copes with high logistical demands from its customers. This paper studies a company changing to more customer (order) driven manufacturing. In order to help decide which products should be made to order and which made to stock, a frame is developed and applied to find and

  5. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  6. Single-use disposable technologies for biopharmaceutical manufacturing.

    Science.gov (United States)

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  8. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  9. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  10. Research on Marketing Channel of Mobile Manufacturer Based on Analytic Hierarchy Process

    Institute of Scientific and Technical Information of China (English)

    XIONG Hui; LI Shi-ming; LAN Yong

    2006-01-01

    Research on "marketing channel" of mobile attracts much attention in these years,but there're only few articles referring to how to optimize the disposition of channel resources for mobile manufacturers. Based on a typically multiplex marketing channel system of mobile manufacturer, the analytic hierarchy process (AHP) structure model is established. Through the judgment matrix, simple and total hierarchy arrangement, consistent test, this paper gets the weight of each kind of marketing channel of mobile manufacturer. It provides the practical reference value for mobile manufacturers to distribute resources of marketing channels.

  11. The Development of a Practical Framework for the Implementation of JIT Manufacturing

    OpenAIRE

    Hallihan, A.

    1996-01-01

    This research develops a framework to guide practitioners through the process of implementing Just In Time manufacturing in the commercial aircraft manufacturing industry. The scope of Just In Time manufacturing is determined through an analysis of its evolution and current use. Current approaches to its implementation are reviewed and shortcomings are identified. A requirement to allow practitioners to tailor the approach to the implementation of Just In Time manufacturing, ...

  12. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  13. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-09-30

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are

  14. PROCESS PERFORMANCE EVALUATION USING HISTOGRAM AND TAGUCHI TECHNIQUE IN LOCK MANUFACTURING COMPANY

    Directory of Open Access Journals (Sweden)

    Hagos Berhane

    2013-12-01

    Full Text Available Process capability analysis is a vital part of an overall quality improvement program. It is a technique that has application in many segments of the product cycle, including product and process design, vendor sourcing, production or manufacturing planning, and manufacturing. Frequently, a process capability study involves observing a quality characteristic of the product. Since this information usually pertains to the product rather than the process, this analysis should strictly speaking be called a product analysis study. A true process capability study in this context would involve collecting data that relates to process parameters so that remedial actions can be identified on a timely basis. The present study attempts to analyze performance of drilling, pressing, and reaming operations carried out for the manufacturing of two major lock components viz. handle and lever plate, at Gaurav International, Aligarh (India. The data collected for depth of hole on handle, central hole diameter, and key hole diameter are used to construct histogram. Next, the information available in frequency distribution table, the process mean, process capability from calculations and specification limits provided by the manufacturing concern are used with Taguchi technique. The data obtained from histogram and Taguchi technique combined are used to evaluate the performance of the manufacturing process. Results of this study indicated that the performance of all the processes used to produce depth of hole on handle, key hole diameter, and central hole diameter are potentially incapable as the process capability indices are found to be 0.54, 0.54 and 0.76 respectively. The number of nonconforming parts expressed in terms of parts per million (ppm that have fallen out of the specification limits are found to be 140000, 26666.66, and 146666.66 for depth of hole on handle, central hole diameter, and key hole diameter respectively. As a result, the total loss incurred

  15. The use of LCA for modelling sustainability and environmental impact of manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Culaba, A.; Purvis, M. [Portsmouth Univ. (United Kingdom). Dept. of Mechanical and Manufacturing Engineering

    1995-12-31

    Most industries rely significantly on natural resources for raw materials and energy requirements. As a consequence of manufacturing activities, various pollutants are generated in the process. While effects on the environment can be detrimental, wastes and emissions account for a high percentage loss in the overall material balance. Unless these unnecessary losses are minimized and recovered, the environment would continue to be disadvantaged and long-term supply of raw materials and energy would likewise be affected. The key to the analysis of such problems concerns generalised procedures for the modelling of the sustainable use of resources in manufacturing processes and the development of associated sustainability criteria. This requires identifying the various aspects of manufacturing from the time the raw materials are extracted until they have been processed into products and then used or consumed and finally disposed of. The use of life cycle assessment (LCA) methodology encompasses these analyses and that of the identification of environmental effects associated with every stage of the manufacturing process. The presentation concludes that LCA is a very useful and effective tool in providing planners, legislator and decision-makers with the necessary information on the probable impacts of manufacture on the environment as well as underlying legislation, ecological, health standards and emission limits. (author)

  16. The use of LCA for modelling sustainability and environmental impact of manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Culaba, A; Purvis, M [Portsmouth Univ. (United Kingdom). Dept. of Mechanical and Manufacturing Engineering

    1996-12-31

    Most industries rely significantly on natural resources for raw materials and energy requirements. As a consequence of manufacturing activities, various pollutants are generated in the process. While effects on the environment can be detrimental, wastes and emissions account for a high percentage loss in the overall material balance. Unless these unnecessary losses are minimized and recovered, the environment would continue to be disadvantaged and long-term supply of raw materials and energy would likewise be affected. The key to the analysis of such problems concerns generalised procedures for the modelling of the sustainable use of resources in manufacturing processes and the development of associated sustainability criteria. This requires identifying the various aspects of manufacturing from the time the raw materials are extracted until they have been processed into products and then used or consumed and finally disposed of. The use of life cycle assessment (LCA) methodology encompasses these analyses and that of the identification of environmental effects associated with every stage of the manufacturing process. The presentation concludes that LCA is a very useful and effective tool in providing planners, legislator and decision-makers with the necessary information on the probable impacts of manufacture on the environment as well as underlying legislation, ecological, health standards and emission limits. (author)

  17. Evaluation of polymer micro parts produced by additive manufacturing processes using vat photopolymerization method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Micro manufacturing scale feature production by Additive Manufacturing (AM) processes for the direct production of miniaturized polymer components is analysed in this work. The study characterizes the AM processes for polymer micro parts productions using the vat photopolymerization method...

  18. AN OVERVIEW OF PHARMACEUTICAL PROCESS VALIDATION AND PROCESS CONTROL VARIABLES OF TABLETS MANUFACTURING PROCESSES IN INDUSTRY

    OpenAIRE

    Mahesh B. Wazade*, Sheelpriya R. Walde and Abhay M. Ittadwar

    2012-01-01

    Validation is an integral part of quality assurance; the product quality is derived from careful attention to a number of factors including selection of quality parts and materials, adequate product and manufacturing process design, control of the process variables, in-process and end-product testing. Recently validation has become one of the pharmaceutical industry’s most recognized and discussed subjects. It is a critical success factor in product approval and ongoing commercialization, fac...

  19. Design of production process main shaft process with lean manufacturing to improve productivity

    Science.gov (United States)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Anizar; Syahputri, K.

    2018-02-01

    This object research is one of manufacturing companies that produce oil palm machinery parts. In the production process there is delay in the completion of the Main shaft order. Delays in the completion of the order indicate the low productivity of the company in terms of resource utilization. This study aimed to obtain a draft improvement of production processes that can improve productivity by identifying and eliminating activities that do not add value (non-value added activity). One approach that can be used to reduce and eliminate non-value added activity is Lean Manufacturing. This study focuses on the identification of non-value added activity with value stream mapping analysis tools, while the elimination of non-value added activity is done with tools 5 whys and implementation of pull demand system. Based on the research known that non-value added activity on the production process of the main shaft is 9,509.51 minutes of total lead time 10,804.59 minutes. This shows the level of efficiency (Process Cycle Efficiency) in the production process of the main shaft is still very low by 11.89%. Estimation results of improvement showed a decrease in total lead time became 4,355.08 minutes and greater process cycle efficiency that is equal to 29.73%, which indicates that the process was nearing the concept of lean production.

  20. ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing.

  1. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    Science.gov (United States)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  2. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  3. Tendency of lubricating oil manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio

    1988-09-30

    The manufacturing method of paraffin base oil and the tendency are explained in details. The base oil is distillate of petroleum which is obtained at the high boiling of 400/degree/C or higher. The base oil is made from the distillate which is obtained through solvent deasphalting of the vacuum distillated residual oil. The refining process of those material is classified into the two different process steps such as refining and modifying process step in which the quality of the material is improved while eliminating unstable resin, aromatic compound, and sulfur contained in the material, and dewaxing process step in which the wax contained in the material is removed. The former is combination of the two different process steps such as solvent extraction process and hydrogen finishing process or hydroforming process. The latter is a combination of the two different process steps such as solvent dewaxing and catalytic dewaxing (hydro-dewaxing). Various examples of reactions, features and industrial processes are given in accordance with each of these process steps. Regarding the tendency toward the future, the kinds of materials will be expanded in the way that naphthene base oil will adopted as the material oil along with diversification of the quality of lubricating oil, and the processing technology including two-stage processing, catalytic dewaxing, etc. will be expected to be improved. 18 references, 11 figures, 7 tables.

  4. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  5. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  6. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  8. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  9. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  10. Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Aldona Kluczek

    2017-01-01

    Full Text Available The heating sector has begun implementing technologies and practices to tackle the environmental and social–economic problems caused by their production process. The purpose of this paper is to develop a methodology, “the Quick-Green-Scan”, that caters for the need of quick assessment decision-makers to improve green manufacturing performance in companies that produce heating devices. The study uses a structured approach that integrates Life Cycle Assessment-based indicators, framework and linguistic scales (fuzzy numbers to evaluate the extent of greening of the enterprise. The evaluation criteria and indicators are closely related to the current state of technology, which can be improved. The proposed methodology has been created to answer the question whether a company acts on the opportunity to be green and whether these actions are contributing towards greening, maintaining the status quo or moving away from a green outcome. Results show that applying the proposed improvements in processes helps move the facility towards being a green enterprise. Moreover, the methodology, being particularly quick and simple, is a practical tool for benchmarking, not only in the heating industry, but also proves useful in providing comparisons for facility performance in other manufacturing sectors.

  11. Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tethers Unlimited, Inc. (TUI) proposes to develop the Metal Advanced Manufacturing Bot-Assisted Assembly (MAMBA) Process, a robotically managed metal press and...

  12. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  13. An Integrated Environment for Batch Process Development - From Recipe to Manufacture

    DEFF Research Database (Denmark)

    Batch process development involves the process of converting a chemical synthesis into an optimum, safe, robust, and economical process for manufacturing the chemical of desired quality at the ultimate desired scale. In this paper we describe a strategy for developing a set of integrated decision...

  14. A Single-use Strategy to Enable Manufacturing of Affordable Biologics

    OpenAIRE

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adop...

  15. Modelling of additive manufacturing processes: a review and classification

    Science.gov (United States)

    Stavropoulos, Panagiotis; Foteinopoulos, Panagis

    2018-03-01

    Additive manufacturing (AM) is a very promising technology; however, there are a number of open issues related to the different AM processes. The literature on modelling the existing AM processes is reviewed and classified. A categorization of the different AM processes in process groups, according to the process mechanism, has been conducted and the most important issues are stated. Suggestions are made as to which approach is more appropriate according to the key performance indicator desired to be modelled and a discussion is included as to the way that future modelling work can better contribute to improving today's AM process understanding.

  16. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    Science.gov (United States)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  17. Technological review of the HRP manufacturing process R and D activity

    International Nuclear Information System (INIS)

    Visca, Eliseo; Pizzuto, A.; Gavila, P.; Riccardi, B.; Roccella, S.; Candura, D.; Sanguinetti, G.P.

    2013-01-01

    Highlights: • R and D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • Successful manufacturing by HRP (hot radial pressing) and PBC (pre-brazed casting) of both W and CFC armoured small and medium scale mockups. • ENEA-ANSALDO participate to the European programme for the qualification of the manufacturing technology for the ITER divertor IVT. • A qualification divertor inner vertical target prototype successfully tested at ITER relevant thermal heat fluxes. -- Abstract: ENEA and Ansaldo Nucleare S.p.A. have been deeply involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities for the manufacturing of high heat flux plasma-facing components (HHFC), and in particular for the inner vertical target (IVT) of the ITER divertor. This component has to be manufactured by using both armour and structural materials whose properties are defined by ITER. Their physical properties prevent the use of standard joining techniques. The reference armour materials are tungsten and carbon/carbon fibre composite (CFC). The cooling pipe is made of copper alloy (CuCrZr-IG). During the last years ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components of different length, geometry and materials, by using innovative processes: HRP (hot radial pressing) and PBC (pre-brazed casting). The history of the technical issues solved during the R and D phase and the improvements implemented to the assembling tools and equipments are reviewed in the paper together with the testing results. The optimization of the processes started from the successful manufacturing of both W and CFC armoured small scale mockups thermal fatigue tested in the worst ITER operating condition (20 MW/m 2 ) through the achievement of record

  18. Technological review of the HRP manufacturing process R and D activity

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Pizzuto, A. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Gavila, P.; Riccardi, B. [Fusion For Energy, C. Josep Pla 2, ES-08019 Barcelona (Spain); Roccella, S. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, Via E. Fermi 45, IT-00044 Frascati (Italy); Candura, D.; Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16121 Genova (Italy)

    2013-10-15

    Highlights: • R and D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • Successful manufacturing by HRP (hot radial pressing) and PBC (pre-brazed casting) of both W and CFC armoured small and medium scale mockups. • ENEA-ANSALDO participate to the European programme for the qualification of the manufacturing technology for the ITER divertor IVT. • A qualification divertor inner vertical target prototype successfully tested at ITER relevant thermal heat fluxes. -- Abstract: ENEA and Ansaldo Nucleare S.p.A. have been deeply involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities for the manufacturing of high heat flux plasma-facing components (HHFC), and in particular for the inner vertical target (IVT) of the ITER divertor. This component has to be manufactured by using both armour and structural materials whose properties are defined by ITER. Their physical properties prevent the use of standard joining techniques. The reference armour materials are tungsten and carbon/carbon fibre composite (CFC). The cooling pipe is made of copper alloy (CuCrZr-IG). During the last years ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components of different length, geometry and materials, by using innovative processes: HRP (hot radial pressing) and PBC (pre-brazed casting). The history of the technical issues solved during the R and D phase and the improvements implemented to the assembling tools and equipments are reviewed in the paper together with the testing results. The optimization of the processes started from the successful manufacturing of both W and CFC armoured small scale mockups thermal fatigue tested in the worst ITER operating condition (20 MW/m{sup 2}) through the achievement of record

  19. CIPSS [computer-integrated process and safeguards system]: The integration of computer-integrated manufacturing and robotics with safeguards, security, and process operations

    International Nuclear Information System (INIS)

    Leonard, R.S.; Evans, J.C.

    1987-01-01

    This poster session describes the computer-integrated process and safeguards system (CIPSS). The CIPSS combines systems developed for factory automation and automated mechanical functions (robots) with varying degrees of intelligence (expert systems) to create an integrated system that would satisfy current and emerging security and safeguards requirements. Specifically, CIPSS is an extension of the automated physical security functions concepts. The CIPSS also incorporates the concepts of computer-integrated manufacturing (CIM) with integrated safeguards concepts, and draws upon the Defense Advance Research Project Agency's (DARPA's) strategic computing program

  20. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  1. Analytic network process model for sustainable lean and green manufacturing performance indicator

    Science.gov (United States)

    Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik

    2014-09-01

    Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.

  2. Improving drug manufacturing with process analytical technology.

    Science.gov (United States)

    Rodrigues, Licinia O; Alves, Teresa P; Cardoso, Joaquim P; Menezes, José C

    2006-01-01

    Within the process analytical technology (PAT) framework, as presented in the US Food and Drug Administration guidelines, the aim is to design, develop and operate processes consistently to ensure a pre-defined level of quality at the end of the manufacturing process. Three PAT implementation scenarios can be envisaged. Firstly, PAT could be used in its most modest version (in an almost non-PAT manner) to simply replace an existing quality control protocol (eg, using near-infrared spectroscopy for an in-process quality control, such as moisture content). Secondly, the use of in-process monitoring and process analysis could be integrated to enhance process understanding and operation for an existing industrial process. Thirdly, PAT could be used extensively and exclusively throughout development, scale-up and full-scale production of a new product and process. Although the first type of implementations are well known, reports of the second and third types remain scarce. Herein, results obtained from PAT implementations of the second and third types are described for two industrial processes for preparing bulk active pharmaceutical ingredients, demonstrating the benefits in terms of increased process understanding and process control.

  3. Sustainable Manufacturing Practices in Malaysian Automotive Industry: Confirmatory Factor Analysis

    OpenAIRE

    Habidin, Nurul Fadly; Zubir, Anis Fadzlin Mohd; Fuz, Nursyazwani Mohd; Latip, Nor Azrin Md; Azman, Mohamed Nor Azhari

    2015-01-01

    Sustainable manufacturing practices (SMPs) have received enormous attention in current years as an effective solution to support the continuous growth and expansion of the automotive manufacturing industry. This reported study was conducted to examine confirmatory factor analysis for SMP such as manufacturing process, supply chain management, social responsibility, and environmental management based on automotive manufacturing industry. The results of confirmatory factor analysis show that fo...

  4. Current manufactured cigarette smoking and roll-your-own cigarette smoking in Thailand: findings from the 2009 Global Adult Tobacco Survey.

    Science.gov (United States)

    Benjakul, Sarunya; Termsirikulchai, Lakkhana; Hsia, Jason; Kengganpanich, Mondha; Puckcharern, Hataichanok; Touchchai, Chitrlada; Lohtongmongkol, Areerat; Andes, Linda; Asma, Samira

    2013-03-27

    Current smoking prevalence in Thailand decreased from 1991 to 2004 and since that time the prevalence has remained flat. It has been suggested that one of the reasons that the prevalence of current smoking in Thailand has stopped decreasing is due to the use of RYO cigarettes. The aim of this study was to examine characteristics of users of manufactured and RYO cigarettes and dual users in Thailand, in order to determine whether there are differences in the characteristics of users of the different products. The 2009 Global Adult Tobacco Survey (GATS Thailand) provides detailed information on current smoking patterns. GATS Thailand used a nationally and regionally representative probability sample of 20,566 adults (ages 15 years and above) who were chosen through stratified three-stage cluster sampling and then interviewed face-to-face. The prevalence of current smoking among Thai adults was 45.6% for men and 3.1% for women. In all, 18.4% of men and 1.0% of women were current users of manufactured cigarettes only, while 15.8% of men and 1.7% of women were current users of RYO cigarettes only. 11.2% of men and 0.1% of women used both RYO and manufactured cigarettes. Users of manufactured cigarettes were younger and users of RYO were older. RYO smokers were more likely to live in rural areas. Smokers of manufactured cigarettes appeared to be more knowledgeable about the health risks of tobacco use. However, the difference was confounded with age and education; when demographic variables were controlled, the knowledge differences no longer remained. Smokers of manufactured cigarettes were more likely than dual users and those who used only RYO to report that they were planning on quitting in the next month. Users of RYO only appeared to be more addicted than the other two groups as measured by time to first cigarette. There appears to be a need for product targeted cessation and prevention efforts that are directed toward specific population subgroups in Thailand and

  5. Make-to-order manufacturing - new approach to management of manufacturing processes

    Science.gov (United States)

    Saniuk, A.; Waszkowski, R.

    2016-08-01

    Strategic management must now be closely linked to the management at the operational level, because only in such a situation the company can be flexible and can quickly respond to emerging opportunities and pursue ever-changing strategic objectives. In these conditions industrial enterprises seek constantly new methods, tools and solutions which help to achieve competitive advantage. They are beginning to pay more attention to cost management, economic effectiveness and performance of business processes. In the article characteristics of make-to-order systems (MTO) and needs associated with managing such systems is identified based on the literature analysis. The main aim of this article is to present the results of research related to the development of a new solution dedicated to small and medium enterprises manufacture products solely on the basis of production orders (make-to- order systems). A set of indicators to enable continuous monitoring and control of key strategic areas this type of company is proposed. A presented solution includes the main assumptions of the following concepts: the Performance Management (PM), the Balanced Scorecard (BSC) and a combination of strategic management with the implementation of operational management. The main benefits of proposed solution are to increase effectiveness of MTO manufacturing company management.

  6. Supply chain risk management processes for resilience: A study of South African grocery manufacturers

    Directory of Open Access Journals (Sweden)

    Simon Simba

    2017-09-01

    Full Text Available Background: The supply chain risk management (SCRM process is aimed at the implementation of strategies that assist in managing both daily and exceptional risks facing the supply chain through continuous risk assessment to reduce vulnerability and ensure continuity. Purpose: The purpose of the study was to determine whether the SCRM process enables supply chain resilience among grocery manufacturers in South Africa. The fast-moving consumer goods (FMCG-manufacturing industry faces increased risk because of the nature of their products being perishable with a limited shelf life. Method: This study was conducted using a descriptive qualitative research design. Data were collected by means of 12 semi-structured interviews with senior supply chain practitioners within the South African grocery manufacturing industry. Findings: The study found that most firms informally implement SCRM processes of risk identification, assessment, mitigation and monitoring to mitigate disruptions. Furthermore, the findings indicate that the SCRM processes facilitate resilience among grocery manufacturers in South Africa. Conclusion: The managerial implications show that supply chain managers of grocery manufacturers should formalise the SCRM process and develop risk assessment scales to better prioritise risks in order to run a resilient supply chain. The research contributes to the supply chain management field by adding to the scarce literature relating to SCRM as an enabler of supply chain resilience in a South African context.

  7. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    Science.gov (United States)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  8. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    Science.gov (United States)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  9. Crowd wisdom drives intelligent manufacturing

    Directory of Open Access Journals (Sweden)

    Jiaqi Lu

    2017-03-01

    Full Text Available Purpose – A fundamental problem for intelligent manufacturing is to equip the agents with the ability to automatically make judgments and decisions. This paper aims to introduce the basic principle for intelligent crowds in an attempt to show that crowd wisdom could help in making accurate judgments and proper decisions. This further shows the positive effects that crowd wisdom could bring to the entire manufacturing process. Design/methodology/approach – Efforts to support the critical role of crowd wisdom in intelligent manufacturing involve theoretical explanation, including a discussion of several prevailing concepts, such as consumer-to-business (C2B, crowdfunding and an interpretation of the contemporary Big Data mania. In addition, an empirical study with three business cases was conducted to prove the conclusion that our ideas could well explain the current business phenomena and guide the future of manufacturing. Findings – This paper shows that crowd wisdom could help make accurate judgments and proper decisions. It further shows the positive effects that crowd wisdom could bring to the entire manufacturing process. Originality/value – The paper highlights the importance of crowd wisdom in manufacturing with sufficient theoretical and empirical analysis, potentially providing a guideline for future industry.

  10. quality assurance calculation in UO2 pellet manufacturing process

    International Nuclear Information System (INIS)

    Can, S.; Acarkan, S.; Guereli, L. and others

    1997-01-01

    A process qualification plan is prepared for preparation of quality assurance documentation in accordance with ISO-9000 series of standards, for sintered UO 2 pellets manufactured in the Nuclear Fuel Technology Department. The objectives of this plan are to determine quantitatively and statistically process capability of the pellet production, to check product properties (are) in conformance with specifications at the pre-( ) confidence levels, to prepare necessary documents and to assess the results. The product properties taking into account are chemical composition, cracks, density, microstructure and grain size. The statistical parameters used for qualification element of quality assurance are calculated.Statistical values for sintered pellets are: LENGTH/WEIGHT/DIAMETER/DENSITY/%TD: MEAN:13,395/16,808/12,293/10,679/97,400 STD:0,1651/ 0,252/0,0212/0,015/0,140. It was seen that sintered pellets manufactured in the Nuclear Fuel Technology Department meet the criteria within 95% confidence level. In this paper specifications, criteria and calculations will be explained in detail

  11. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  12. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  13. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Science.gov (United States)

    2010-07-01

    ... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...

  14. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  15. Introduction to powder metallurgy processes for titanium manufacturing; Introduccion al procesado pulvimetalurgico del titanio

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, P. G.; Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E.

    2011-07-01

    The development of new extraction processes to produce titanium in powder form leads Powder Metallurgy to an advantage position among the manufacturing processes for titanium. The cost reduction of base material, coupled with the economy of the powder metallurgy processes, give titanium industry the chance to diversify its products, which could lead to production volumes able to stabilise the price of the metal. This work reviews some of the Powder Metallurgy techniques for the manufacturing of titanium parts, and describes the two typical approaches for titanium manufacturing: Blending Elemental and Prealloyed Powders. Among others, conventional pressing and sintering are described, which are compared with cold and hot isostatic pressing techniques. Real and potential applications are described. (Author) 71 refs.

  16. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  17. Computational manufacturing as a bridge between design and production.

    Science.gov (United States)

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  18. Quantifying the robustness of process manufacturing concept – A medical product case study

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Troldtoft, M.E.; Eifler, Tobias

    2017-01-01

    Product robustness refers to the consistency of performance of all of the units produced. It is often the case that process manufactured products are not designed concurrently, so by the end of the product design phase the Process Manufacturing Concept (PMC) has yet to be decided. Allocating...... the unit-to-unit robustness of an early-stage for a PMC is proposed. The method uses variability and adjustability information from the manufacturing concept in combination with sensitivity information from products' design to predict its functional performance variation. A Technology maturation factor...... process capable tolerances to the product during the design phase is therefore not possible. The robustness of the concept (how capable it is to achieve the product specification), only becomes clear at this late stage and thus after testing and iteration. In this article, a method for calculating...

  19. Fundamental atomic plasma chemistry for semiconductor manufacturing process analysis

    International Nuclear Information System (INIS)

    Ventzek, P.L.G.; Zhang, D.; Stout, P.J.; Rauf, S.; Orlowski, M.; Kudrya, V.; Astapenko, V.; Eletskii, A.

    2002-01-01

    An absence of fundamental atomic plasma chemistry data (e.g. electron impact cross-sections) hinders the application of plasma process models in semiconductor manufacturing. Of particular importance is excited state plasma chemistry data for metallization applications. This paper describes important plasma chemistry processes in the context of high density plasmas for metallization application and methods for the calculation of data for the study of these processes. Also discussed is the development of model data sets that address computational tractability issues. Examples of model electron impact cross-sections for Ni reduced from multiple collision processes are presented

  20. Development of iFab (Instant Foundry Adaptive Through Bits) Manufacturing Process and Machine Library

    Science.gov (United States)

    2012-08-01

    input shaft , pump, gearbox, rack & pinion… Wheel assy wheel, tire, drive hub, lug, spindle , bearing… Braking brake disc/drum, caliper, friction...processes and associated machines is provided. Progress with respect to Task 3 (to design and develop the Manufacturing Capability Modeling Environment...of Military Ground Vehicle Design , Materials, and Processes ............... 4 4.2 Task 2 Manufacturing Knowledge Characterization

  1. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    Science.gov (United States)

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  2. Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes.

    Science.gov (United States)

    Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert

    2014-04-01

    The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.

  3. Statistics to the Rescue!: Using Data to Evaluate a Manufacturing Process

    Science.gov (United States)

    Keithley, Michael G.

    2009-01-01

    The use of statistics and process controls is too often overlooked in educating students. This article describes an activity appropriate for high school students who have a background in material processing. It gives them a chance to advance their knowledge by determining whether or not a manufacturing process works well. The activity follows a…

  4. Hopper design for metallic powders used in additive manufacturing processes

    CSIR Research Space (South Africa)

    Visagie, N

    2013-10-01

    Full Text Available The influence of hopper geometry on the flow behaviour of typical metallic powders used in additive manufacturing processes is investigated. Bulk hopper theory provides a method of determining critical hopper parameters for bulk amounts...

  5. Unit operation in food manufacturing and processing. Shokuhin seizo/kako ni okeru tan'i sosa

    Energy Technology Data Exchange (ETDEWEB)

    Matsuno, R. (Kyoto Univ., Kyoto (Japan). Faculty of Aguriculture)

    1993-09-05

    Processed foods must be produced in mass, cheap and safe and should be suitable for the delicate taste of human being. Food tastes are effected by an outlook on human attitude, and the surrounding environment. And these factors are reflected to unit operation in food manufacturing and processing and it is clarified that there are many technical difficulties. The characteristics of unit operation for food manufacturing and processing are that the food materials are a multicomponent system, moreover, a very small amount of aroma components, taste components, vitamin, physiologically activation materials and so on are more important than the main components, and also inapplicable of the model centering to the most quantitative component. The purpose of unit operation in food manufacturing and processing is to produce the properties of matter matching to human sense, and therefore there are many problems left unsolved. The development of analytical technology also has an influence on manufacturing and processing technology. Consequently, food manufacturing and processing technology must be based on general science. It is necessary to develop unit operation with an understanding of mutual effect between food and human body.

  6. Future Supply Chains Enabled by Continuous Processing-Opportunities Challenges May 20-21 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig

    2015-03-01

    This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The paper recognizes that although current batch operational performance in pharma is far from optimal and not necessarily an appropriate end-state benchmark for batch technology, the adoption of continuous supply chain operating models underpinned by continuous production processing, as full or hybrid solutions in selected product supply chains, can support industry transformations to deliver right-first-time quality at substantially lower inventory profiles. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Process development for the manufacturing of state-of-the-art spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian; Dietrich, Matthias [Advanced Nuclear Fuels GmbH, Karlstein (Germany)

    2013-07-01

    At the beginning it was questioned if 'time to market' is really important for the nuclear industry. The clear answer is YES. Even if the development times might be longer compared to projects in other industries it is still beneficial to use concurrent engineering. In the world wide network of manufacturing sites, Advanced Nuclear Fuels GmbH in Karlstein is quite often involved when the development of new processes is necessary. As ANF Karlstein is delivering products around the world the experience with different customer requirements supports an optimized solution in order to fulfill these principle requirements and to deliver state-of-the-art products like spacer grids. Continues feedback from process development already improves the first prototypes. In the meantime ANF Karlstein manufactured the components for both new fuel assembly designs which are introduced as a first set of Lead Fuel Assemblies. For the manufacturing of the next sets of spacer grids (for tests and next series of Lead Fuel Assemblies) the described processes will be used and further improved, so that an industrialized solution is available. (orig.)

  8. Systems engineering management process maturity of South African manufacturing organisations

    CSIR Research Space (South Africa)

    Lemberger, ID

    2014-07-01

    Full Text Available to integrate people, processes and technologies to deliver innovative complex systems. The investigation set out to improve the understanding of systems engineering (SE) with focus on organisations in manufacturing of coke, petroleum, chemical products, rubber...

  9. Additive manufacturing in production: challenges and opportunities

    Science.gov (United States)

    Ahuja, Bhrigu; Karg, Michael; Schmidt, Michael

    2015-03-01

    Additive manufacturing, characterized by its inherent layer by layer fabrication methodology has been coined by many as the latest revolution in the manufacturing industry. Due to its diversification of Materials, processes, system technology and applications, Additive Manufacturing has been synonymized with terminology such as Rapid prototyping, 3D printing, free-form fabrication, Additive Layer Manufacturing, etc. A huge media and public interest in the technology has led to an innovative attempt of exploring the technology for applications beyond the scope of the traditional engineering industry. Nevertheless, it is believed that a critical factor for the long-term success of Additive Manufacturing would be its ability to fulfill the requirements defined by the traditional manufacturing industry. A parallel development in market trends and product requirements has also lead to a wider scope of opportunities for Additive Manufacturing. The presented paper discusses some of the key challenges which are critical to ensure that Additive Manufacturing is truly accepted as a mainstream production technology in the industry. These challenges would highlight on various aspects of production such as product requirements, process management, data management, intellectual property, work flow management, quality assurance, resource planning, etc. In Addition, changing market trends such as product life cycle, mass customization, sustainability, environmental impact and localized production will form the foundation for the follow up discussion on the current limitations and the corresponding research opportunities. A discussion on ongoing research to address these challenges would include topics like process monitoring, design complexity, process standardization, multi-material and hybrid fabrication, new material development, etc.

  10. Additive manufacturing for steels: a review

    Science.gov (United States)

    Zadi-Maad, A.; Rohib, R.; Irawan, A.

    2018-01-01

    Additive manufacturing (AM) of steels involves the layer by layer consolidation of powder or wire feedstock using a heating beam to form near net shape products. For the past decades, the AM technique reaches the maturation of both research grade and commercial production due to significant research work from academic, government and industrial research organization worldwide. AM process has been implemented to replace the conventional process of steel fabrication due to its potentially lower cost and flexibility manufacturing. This paper provides a review of previous research related to the AM methods followed by current challenges issues. The relationship between microstructure, mechanical properties, and process parameters will be discussed. Future trends and recommendation for further works are also provided.

  11. Multivariate modelling of the tablet manufacturing process with wet granulation for tablet optimization and in-process control

    NARCIS (Netherlands)

    Westerhuis, J.A; Coenegracht, P.M J; Lerk, C.F

    1997-01-01

    The process of tablet manufacturing with granulation is described as a two-step process. The first step comprises wet granulation of the powder mixture, and in the second step the granules are compressed into tablets. For the modelling of the pharmaceutical process of wet granulation and tableting,

  12. Numerical simulation of residual stress in laser based additive manufacturing process

    Science.gov (United States)

    Kalyan Panda, Bibhu; Sahoo, Seshadev

    2018-03-01

    Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.

  13. Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing

    Science.gov (United States)

    Sahasrabudhe, Himanshu

    Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three

  14. Methodology for systematic analysis and improvement of manufacturing unit process life cycle inventory (UPLCI) CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 2: case studies

    DEFF Research Database (Denmark)

    Kellens, Karel; Dewulf, Wim; Overcash, Michael

    2012-01-01

    industrial data and engineering calculations for energy use and material loss. This approach is illustrated by means of a case study of a drilling process.The in-depth approach, which leads to more accurate LCI data as well as the identification of potential for environmental improvements...... for environmental improvement based on the in-depth analysis of individual manufacturing unit processes. Two case studies illustrate the applicability of the methodology.......This report presents two case studies, one for both the screening approach and the in-depth approach, demonstrating the application of the life cycle assessment-oriented methodology for systematic inventory analysis of the machine tool use phase of manufacturing unit processes, which has been...

  15. The impact of the manufacturing process on the hardness and sensory properties of milk chocolate

    Directory of Open Access Journals (Sweden)

    Zarić Danica B.

    2012-01-01

    Full Text Available The aim of this paper was to examine the impact of the manufacturing process on the textural characteristics and sensory properties of milk chocolate. The research was conducted on the samples of chocolate produced in a ball mill during 30, 60 and 90 minutes of refining, each of them being pre-crystallized at 26, 28 and 30°C. A chocolate mass of identical ingredient composition was also produced using a standard manufacturing process at the same pre-crystallization temperatures. Chocolate hardness was examined using a piece of equipment called Texture Analyser, measuring the stress intensity which leads to chocolate crushing. Sensory analysis was performed using the point scoring method. The new manufacturing process, i.e. the manufacturing of chocolate in a ball mill improves sensory properties and hardness of milk chocolate. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  16. State-of-the-Art Multi-Objective Optimisation of Manufacturing Processes Based on Thermo-Mechanical Simulations

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    During the last couple of decades the possibility of modelling multi-physics phenomena has increased dramatically, thus making simulation of very complex manufacturing processes possible and in some fields even an everyday event. A consequence of this has been improved products with respect...... competition between manufacturers of products in combination with the possibility of doing these highly complex simulations. Thus, there is a crucial need for combining advanced simulation tools for manufacturing processes with systematic optimisation algorithms which are capable of searching for single....... These limitations eventually determine what is in fact possible today and hence define what the “state-of-the-art” is. So, seen from that perspective the very definition of the state-of-the-art itself in the field of optimisation of manufacturing processes constitutes an important discussion. Moreover, in the major...

  17. Corrosion and Creep Characteristics of the HANA-4 Alloy with the various Manufacturing Processes

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Jeong, Yong-Hwan

    2008-01-01

    Zirconium alloys have been used as a fuel cladding material for several decades, since these alloys have revealed a good corrosion resistance and mechanical properties in reactor operating conditions. The development of an advanced Zr-based alloy with an improved corrosion and creep resistance is necessary for the high burn-up operating conditions in PWRs. The alloying element effects of the Nb, Sn, Fe, Cr, Cu etc as well as an optimization of the manufacturing processes such as the reduction ratio and annealing temperatures have been studied to improve the corrosion and creep properties. A high Nb-containing Zr-based alloy named HANA-4 was designed at KAERI and its nominal composition is Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr in wt.%. For high Nb-containing Zr alloys, their corrosion resistance is very sensitive to their microstructural characteristics which are determined by a manufacturing process. In order to obtain the best manufacturing process for the HANA-4 alloy, various evaluations such as corrosion and creep tests, a microstructural analysis, and a texture analysis were performed on the HANA-4 alloy with various manufacturing processes

  18. Understanding evolutionary processes in non-manufacturing industries: Empirical insights from the shakeout in pharmaceutical wholesaling

    OpenAIRE

    Adam J. Fein

    1998-01-01

    Although the empirical pattern of industry shakeout has been documented for many manufacturing industries, we know little about the processes by which market structure evolves in non-manufacturing service industries. This paper establishes detailed empirical observations about the consolidation of a single non-manufacturing industry, the wholesale distribution of pharmaceuticals. These observations are used to explore differences between manufacturing and wholesaling in both the patterns and ...

  19. Accessibility analysis in manufacturing processes using visibility cones

    Institute of Scientific and Technical Information of China (English)

    尹周平; 丁汉; 熊有伦

    2002-01-01

    Accessibility is a kind of important design feature of products,and accessibility analysis has been acknowledged as a powerful tool for solving computational manufacturing problems arising from different manufacturing processes.After exploring the relations among approachability,accessibility and visibility,a general method for accessibility analysis using visibility cones (VC) is proposed.With the definition of VC of a point,three kinds of visibility of a feature,namely complete visibility cone (CVC),partial visibility cone (PVC) and local visibility cone (LVC),are defined.A novel approach to computing VCs is formulated by identifying C-obstacles in the C-space,for which a general and efficient algorithm is proposed and implemented by making use of visibility culling.Lastly,we discuss briefly how to realize accessibility analysis in numerically controlled (NC) machining planning,coordinate measuring machines (CMMs) inspection planning and assembly sequence planning with the proposed methods.

  20. Beryllium brazing considerations in CANDU fuel bundle manufacture

    International Nuclear Information System (INIS)

    Harmsen, J.; Pant, A.; Lewis, B.J.; Thompson, W.T.

    2010-01-01

    'Full text:' Appendages of CANDU fuel bundle elements are currently joined to zircaloy sheaths by vacuum beryllium brazing. Ongoing environmental and workplace concerns about beryllium combined with the continuous efforts by Cameco Fuel Manufacturing in its improvement process, initiated this study to find a substitute for pure beryllium. The presentation will review the necessary functionality of brazing alloy components and short list a series of alloys with the potential to duplicate the performance of pure beryllium. Modifications to current manufacturing processes based on in-plant testing will be discussed in relation to the use of these alloys. The presentation will conclude with a summary of the progress to date and further testing expected to be necessary.

  1. PDC Journeys to Product Analysis Development and Additive Manufacturing?

    International Nuclear Information System (INIS)

    Shalina Sheik Muhamad

    2015-01-01

    The technology for product development and manufacturing has gone through many advancements. It is widely recognised that it would provide competitive advantage for engineering organization in term of product development cycle, productivity, sustainability and efficiency. We begin by describing the general characteristic of design process that will need to be integrated in product life cycle management. In Nuclear Malaysia, especially in engineering design activities the majority have been using 3D modelling. This paper discusses on the current product design practiced in Nuclear Malaysia, new product development process and new manufacturing technique which is additive manufacturing. (author)

  2. Modelling of just-in-sequence supply of manufacturing processes

    Directory of Open Access Journals (Sweden)

    Bányai Tamás

    2017-01-01

    Full Text Available The customer oriented production led to the growth of complexity of manufacturing and connected logistics processes. In many production companies one of the largest asset on balance sheet is inventory. To avoid inventory problems and to be the winners of today’s market situation manufacturing companies try to decrease heavy inventory levels through just-in-time based supply strategies. The aim of this research work is to analyse these supply strategies. The first part of the paper describes the just-in-time based supply and summarises the most important characteristics of them. The second part focuses on the modelling of just-in-sequence based in-plant supply. The models makes it possible to determine different in-plant supply strategies.

  3. Additive manufacturing: state-of-the-art and application framework

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; de Senzi Zancul, Eduardo; Gonçalves Mançanares, Cauê

    2017-01-01

    Additive manufacturing encompasses a class of production processes with increasing applications indifferent areas and supply chains. Due to its flexibility for production in small batches and the versatilityof materials and geometries, this technology is recognized as being capable...... of revolutionizing theproduction processes as well as changing production strategies that are currently employed. However,there are different technologies under the generic label of additive manufacturing, materials and applicationareas with different requirements. Given the growing importance of additive...... manufacturingas a production process, and also considering the need to have a better insight into the potential applicationsfor driving research and development efforts, this article presents a proposal of organizationfor additive manufacturing applications in seven areas. Additionally, the article provides...

  4. Application of non-destructive liner thickness measurement technique for manufacturing and inspection process of zirconium lined cladding tube

    International Nuclear Information System (INIS)

    Nakazawa, Norio; Fukuda, Akihiro; Fujii, Noritsugu; Inoue, Koichi

    1986-01-01

    Recently, in order to meet the difference of electric power demand owing to electric power situation, large scale load following operation has become necessary. Therefore, the development of the cladding tubes which withstand power variation has been carried out, as the result, zirconium-lined zircaloy 2 cladding tubes have been developed. In order to reduce the sensitivity to stress corrosion cracking, these zirconium-lined cladding tubes require uniform liner thickness over the whole surface and whole length. Kobe Steel Ltd. developed the nondestructive liner thickness measuring technique based on ultrasonic flaw detection technique and eddy current flaw detection technique. These equipments were applied to the manufacturing and inspection processes of the zirconium-lined cladding tubes, and have demonstrated superiority in the control and assurance of the liner thickness of products. Zirconium-lined cladding tubes, the development of the measuring technique for guaranteeing the uniform liner thickness and the liner thickness control in the manufacturing and inspection processes are described. (Kako, I.)

  5. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  6. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    International Nuclear Information System (INIS)

    Blazek, Steve

    1999-01-01

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals

  7. Modular industrial robots as the tool of process automation in robotized manufacturing cells

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also

  8. Supply chain risk management processes for resilience: A study of South African grocery manufacturers

    OpenAIRE

    Simon Simba; Wesley Niemann; Theuns Kotzé; Assilah Agigi

    2017-01-01

    Background: The supply chain risk management (SCRM) process is aimed at the implementation of strategies that assist in managing both daily and exceptional risks facing the supply chain through continuous risk assessment to reduce vulnerability and ensure continuity. Purpose: The purpose of the study was to determine whether the SCRM process enables supply chain resilience among grocery manufacturers in South Africa. The fast-moving consumer goods (FMCG)-manufacturing industry faces incre...

  9. The quest for process operations variability reduction in manufacturing firms in South Africa

    Directory of Open Access Journals (Sweden)

    Madi Katombe

    2016-09-01

    Full Text Available In an era characterised by a volatile economy, intense competition, and rising energy and material costs, improving operational efficiency has become a necessity for margin purposes and long-term business success. This research study attempts to develop a model for process operations variability reduction that integrates the fundamental drivers, the intermediate measures and the four traditional competitive capabilities: quality, cost, delivery reliability and speed of delivery. In addition, it highlights the precise mechanisms in plants that lead to multiple competitive capabilities development. The concept of a routine-based approach to capabilities development provides a nexus between the earlier actions by the organisation and competitive advantage. Using longitudinal data from the Manufacturing Circle of South Africa, a statistical analysis was conducted to support the model, and path analysis models were developed which confirmed that the performance frontier is really a surface that spans many different dimensions. It is observed that the model clearly outlines pathways to process operations variability reduction through better execution of the routines concerned with maintaining the performance by current processes, improving existing processes, and transforming or changing to new processes.

  10. A guide to manufacturing CAR T cell therapies.

    Science.gov (United States)

    Vormittag, Philipp; Gunn, Rebecca; Ghorashian, Sara; Veraitch, Farlan S

    2018-02-17

    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  12. Toward industrialization: Supporting the manufacturing processes of superconducting cavities at DESY

    International Nuclear Information System (INIS)

    Buerger, J.; Dammann, J.A.; Hagge, L.; Iversen, J.; Matheisen, A.; Singer, W.

    2006-01-01

    Manufacturing high-gradient superconducting cavities for future accelerators requires detailed knowledge of the entire production process. This knowledge has to be transferred from the laboratories, which are developing the process, to industry in order to achieve reproducible results in the industrial production of large numbers of cavities. The paper introduces DESY's approach to process industrialization based on the use of an engineering data management system (EDMS)

  13. Laser processing of ceramics for microelectronics manufacturing

    Science.gov (United States)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  14. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    Energy Technology Data Exchange (ETDEWEB)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant

  15. Future supply chains enabled by continuous processing--opportunities and challenges. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig

    2015-03-01

    This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The significant opportunities to moving to a supply chain flow-through operating model, with substantial opportunities in inventory reduction, lead-time to patient, and radically different product assurance/stability regimes. Scenarios for decentralized production models producing a greater variety of products with enhanced volume flexibility. Production, supply, and value chain footprints that are radically different from today's monolithic and centralized batch manufacturing operations. Clinical trial and drug product development cost savings that support more rapid scale-up and market entry models with early involvement of SC designers within New Product Development. The major supply chain and industrial transformational challenges that need to be addressed. The paper recognizes that although current batch operational

  16. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts

    Directory of Open Access Journals (Sweden)

    Michele Carrabba

    2018-04-01

    Full Text Available Occlusive arterial disease, including coronary heart disease (CHD and peripheral arterial disease (PAD, is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid or self-assembled (cell-sheet, microtissue aggregation and bioprinting. Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.

  17. Technical cost modelling for a novel semi-solid metal (SSM) casting processes for automotive component manufacturing

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-09-01

    Full Text Available to predict the cost structure of a newly developed manufacturing process if it is to be considered by manufacturing enterprises for development to substitute a process that is in use. The costs of the new SSM technologies was established by technical cost...

  18. Development strategy and process models for phased automation of design and digital manufacturing electronics

    Science.gov (United States)

    Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.

    2018-03-01

    The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.

  19. Terrestrial photovoltaic technologies - Recent progress in manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Witt, C. E.; Surek, T.; Mitchell, R. L.; Symko-Davies, M.; Thomas, H. P.

    2000-05-15

    This paper describes photovoltaics (PV) as used for energy generation in terrestrial applications. A brief historical perspective of PV development is provided. Solar-to-electricity conversion efficiencies for various photovoltaic materials are presented, as well as expectations for further material improvements. Recent progress in reducing manufacturing costs through process R&D and product improvements are described. Applications that are most suitable for the different technologies are discussed. Finally, manufacturing capacities and current and projected module manufacturing costs are presented.

  20. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jay Jayakumar, R.; Tsuji, H.; Ohsaki, O.

    2001-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  1. ITER central solenoid manufacturing R and D

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Tsuji, H.; Ohsaki, O.

    1999-01-01

    The International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity (EDA) includes the development of high performance superconductors, high current joints between superconducting cables and insulating materials. Also in the EDA, the resulting products of this R and D are incorporated in a Central Solenoid Model Coil which utilizes full size conductors. The manufacturing of the model coil and components has led to the development of the design, materials, tooling and process which are fully applicable to the manufacture of the ITER relevant CS coil. The R and D is essentially complete and final stages of the CS Model Coil manufacturing are underway. (author)

  2. Chemistry, manufacturing and control (CMC) and clinical trial technical support for influenza vaccine manufacturers.

    Science.gov (United States)

    Wahid, Rahnuma; Holt, Renee; Hjorth, Richard; Berlanda Scorza, Francesco

    2016-10-26

    With the support of the Biomedical Advanced Research and Development Authority (BARDA) of the US Department of Health and Human Services, PATH has contributed to the World Health Organization's (WHO's) Global Action Plan for Influenza Vaccines (GAP) by providing technical and clinical assistance to several developing country vaccine manufacturers (DCVMs). GAP builds regionally based independent and sustainable influenza vaccine production capacity to mitigate the overall global shortage of influenza vaccines. The program also ensures adequate influenza vaccine manufacturing capacity in the event of an influenza pandemic. Since 2009, PATH has worked closely with two DCVMs in Vietnam: the Institute of Vaccines and Medical Biologicals (IVAC) and VABIOTECH. Beginning in 2013, PATH also began working with Torlak Institute in Serbia; Instituto Butantan in Brazil; Serum Institute of India Private Ltd. in India; and Changchun BCHT Biotechnology Co. (BCHT) in China. The DCVMs supported under the GAP program all had existing influenza vaccine manufacturing capability and required technical support from PATH to improve vaccine yield, process efficiency, and product formulation. PATH has provided customized technical support for the manufacturing process to each DCVM based on their respective requirements. Additionally, PATH, working with BARDA and WHO, supported several DCVMs in the clinical development of influenza vaccine candidates progressing toward national licensure or WHO prequalification. As a result of the activities outlined in this review, several companies were able to make excellent progress in developing state-of-the-art manufacturing processes and completing early phase clinical trials. Licensure trials are currently ongoing or planned for several DCVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    Science.gov (United States)

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. © 2014 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  4. Quality changes in krill and krill products during their manufacturing process

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Jacobsen, Charlotte; Bruheim, Inge

    The main objective of this study is to a) investigate the effect of temperature towards the non-enzymatic browning reactions and lipid oxidation in krill products sampled at different stages during their manufacturing process. In order to further investigate this, a simple model system comprising...... amino acids (leucine, isoleucine, valine, methionine and lysine) was prepared with addition of lipid (saturated and α, β-unsaturated aldehydes) or non-enzymatic (Strecker aldehydes and pyrazine) derived volatiles. Therefore, the secondary objective is to investigate if the occurrence of non......-enzymatic browning reactions and lipid oxidation in krill products during their manufacturing process. The occurrence of these reactions could be observed in krill meal and this was ascribed to the presence of carbonyl compounds derived lipid oxidation products. The presence of a high level of non...

  5. Patterns of order processing : a study of the formalization of the ordering process in order-driven manufacturing companies

    NARCIS (Netherlands)

    Welker, Geertruida Annigje

    2004-01-01

    It is essential for many order-driven manufacturing companies to be able to respond quickly to changing customer demand. In this respect, the ordering process plays a central role, as coordination between demand and production takes places within this process. The ordering process must contribute to

  6. Biomedical Titanium alloy prostheses manufacturing by means of Superplastic and Incremental Forming processes

    Directory of Open Access Journals (Sweden)

    Piccininni Antonio

    2016-01-01

    Full Text Available The present work collects some results of the three-years Research Program “BioForming“, funded by the Italian Ministry of Education (MIUR and aimed to investigate the possibility of using flexible sheet forming processes, i.e. Super Plastic Forming (SPF and Single Point Incremental Forming (SPIF, for the manufacturing of patient-oriented titanium prostheses. The prosthetic implants used as case studies were from the skull; in particular, two different Ti alloys and geometries were considered: one to be produced in Ti-Gr23 by SPF and one to be produced in Ti-Gr2 by SPIF. Numerical simulations implementing material behaviours evaluated by characterization tests were conducted in order to design both the manufacturing processes. Subsequently, experimental tests were carried out implementing numerical results in terms of: (i gas pressure profile able to determine a constant (and optimal strain rate during the SPF process; (ii tool path able to avoid rupture during the SPIF process. Post forming characteristics of the prostheses in terms of thickness distributions were measured and compared to data from simulations for validation purposes. A good correlation between numerical and experimental thickness distributions has been obtained; in addition, the possibility of successfully adopting both the SPF and the SPIF processes for the manufacturing of prostheses has been demonstrated.

  7. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    the electrode materials. For the existing electrode materials, the material analysis and cell characterization data from ADP dried electrodes showed equivalent (or slightly better) performance. However, for high loading and thicker electrode materials (for high energy densities) the ADP advantages are more prominent. There was less binder migration, the resistance was lower hence the current capacities and retention of the battery cells were higher. The success of the project has enabled credible communications with commercial end users as well as battery coating line integrators. Goal is to scale ADP up for high volume manufacturing of Li-ion battery electrodes. The implementation of ADP in high volume manufacturing will reduce a high cost production step to bring the overall price of Li-ion batteries down. This will ultimately have a positive impact on the public by making electric and hybrid vehicles more affordable.

  8. Affordable Design: A Methodolgy to Implement Process-Based Manufacturing Cost into the Traditional Performance-Focused Multidisciplinary Design Optimization

    Science.gov (United States)

    Bao, Han P.; Samareh, J. A.

    2000-01-01

    The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.

  9. Cost estimation of a specifically designed direct light processing (DLP) additive manufacturing machine for precision printing

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Davoudinejad, Ali; Tosello, Guido

    2017-01-01

    creating new opportunities for manufacturers in a variety of industrial sectors. AM is an essentialprototyping technique for product design and development that is used in many different fields. However, the suitability of AMapplications in actual production in an industrial context needs to be determined......Additive Manufacturing (AM) refers to a portfolio of novel manufacturing technologies based on a layer-by-layer fabrication method.The market and industrial application of additive manufacturing technologies as an established manufacturing process have increasedexponentially in the last years....... This study, presents a cost estimation model forprecision printing with a specifically designed Digital Light Processing (DLP) AM machine built and validated at the Technical Universityof Denmark. The model presented in this study can be easily adapted and applied to estimate within a high level...

  10. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  11. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    Science.gov (United States)

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.

  12. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    Science.gov (United States)

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Improvement of the Zircaloy fuel can manufacturing process

    International Nuclear Information System (INIS)

    1986-01-01

    The following work has been performed in order to ensure more reliable supply of start material for the manufacture of Zy-2 and Zy-4 fuel cans, and to improve the processing techniques and product quality: 1) Two complete production campaigns with the ingot suppliers Western Zirconium and Ugine Aciers. 2) Development of new ingot dimensions (rolling tests). 3) Development of a mechanized washing and cleansing procedure. 4) Development of a new abrasive treatment technique (wet sand blasting). (orig./HP) [de

  14. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    Science.gov (United States)

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  15. The manufacture process and properties of (U, Gd)O2 burnable poisonous fuel pellets

    International Nuclear Information System (INIS)

    Yi Wei; Tang Yueming; Dai Shengping; Yang Youqing; Zuo Guoping; Wu Shihong; Gu Xiaofei; Gu Mingfei

    2006-03-01

    The main properties of important raw powder materials used in the (U, Gd)O 2 burnable poisonous fuel pellets production line of NPIC are presented. The powders included UO 2 , Gd 2 O 3 , (U, Gd) 3 O 8 and necessary additives, such as ammonium oxalate and zinc stearate. And the main properties of (U, Gd)O 2 burnable poisonous fuel pellets and the manufacture processes, such as ball-milling blending, granulation, pressing, sintering and grinding are also described. Moreover, the main effect of the process parameters controlled in the manufacture process have been discussed. (authors)

  16. Process and quality control in manufacturing of nuclear fuel assemblies of LWRs

    International Nuclear Information System (INIS)

    Dietrich, M.; Hoff, A.; Reimann, P.

    2000-01-01

    Manufacturing of nuclear fuel assemblies requires a multitude of different process and quality methods to assure and maintain a high quality level. In recent years methods have been applied which prevent deviations rather than detect deviant products. This paper gives an example on how to control a complex manufacturing process by using a small number of key parameters and second, it demonstrates the importance of graphical data evaluation and presentation methods. In the past many product and product characteristics were inspected m comparison with specification limits only. However, todays methods allow the early identification of trends, increase of variation, shifts disturbances etc. before the product characteristics exceed the specification limits. These methods are process control charts, x-y-plots, boxplots, failure mode and effect analysis (FMEA), process capability numbers and others. This paper demonstrates the beneficial use of some of the methods by presenting selected examples applied at Advanced Nuclear Fuels GmbH (ANF). (author)

  17. Process Development for the Design and Manufacturing of Personalizable Mouth Sticks.

    Science.gov (United States)

    Berger, Veronika M; Pölzer, Stephan; Nussbaum, Gerhard; Ernst, Waltraud; Major, Zoltan

    2017-01-01

    To increase the independence of people with reduced hand/arm functionality, a process to generate personalizable mouth sticks was developed based on the participatory design principle. In a web tool, anybody can choose the geometry and the materials of their mouth piece, stick and tip. Manufacturing techniques (e.g. 3D printing) and materials used in the process are discussed and evaluated.

  18. Advances in second generation high temperature superconducting wire manufacturing and R and D at American Superconductor Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin W; Li Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James, E-mail: mrupich@amsc.co [American Superconductor Corporation, 64 Jackson Road, Devens, MA 01434-4020 (United States)

    2010-01-15

    The RABiTS(TM)/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cm{sub width}{sup -1} at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R and D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R and D improvements.

  19. Sustainable manufacturing challenges, solutions and implementation perspectives

    CERN Document Server

    Seliger, Günther; Bonvoisin, Jérémy

    2017-01-01

    Sustainability imposes an unprecedented challenge on society and has become the driving force of an urgent search for innovative solutions in all branches of economy. Manufacturing plays a key role in many areas of human living, and it is both part of the problem and of the solution. This book offers an overview of the broad field of research on sustainability in manufacturing with a particular focus on manufacturing technology and management. It summarizes the current challenges, describes best in class methods for development of sustainable manufacturing solutions and offers implementation perspectives. This volume covers areas of research such as production processes, product development, business model and corporate development, macro economy and education. The target audience primarily comprises research experts and practitioners in the field of manufacturing, but the book may also be beneficial for graduate students. .

  20. Test manufacture of a canister insert

    International Nuclear Information System (INIS)

    Raiko, H.

    2004-11-01

    This report describes the insert-manufacturing test of a disposal canister for spent nuclear fuel that was made by Metso Paper Oy, Jyvaeskylae Foundry, in 2003 on contract for Posiva Oy. The test manufacture was a part of the co-operation development programme of encapsulation technology between SKB AB and Posiva Oy. Insert casting was specified according to the current manufacturing specifications of SKB. The canister insert was of BWR-type with integral bottom. This was the first trial manufacture of this type of insert in Finland and, in total, the second test manufacture of insert by Metso Paper. The result fulfilled all the requirements but the material mechanical properties and metallurgical structure of the cast material. The measured tensile strength, ultimate strength and elongation at rupture were lower than specified. The reason for this was revealed in the metallurgical investigation of the cast material. The nodulizing of the graphite was not occurred during the casting process according to the requirements. (orig.)

  1. Process Machine Interactions Predicition and Manipulation of Interactions between Manufacturing Processes and Machine Tool Structures

    CERN Document Server

    Hollmann, Ferdinand

    2013-01-01

    This contributed volume collects the scientific results of the DFG Priority Program 1180 Prediction and Manipulation of Interactions between Structure and Process. The research program has been conducted during the years 2005 and 2012, whereas the primary goal was the analysis of the interactions between processes and structures in modern production facilities. This book presents the findings of the 20 interdisciplinary subprojects, focusing on different manufacturing processes such as high performance milling, tool grinding or metal forming. It contains experimental investigations as well as mathematical modeling of production processes and machine interactions. New experimental advancements and novel simulation approaches are also included.

  2. Process validation for the manufacturing of Tc-99m generator at Nuclear Malaysia

    International Nuclear Information System (INIS)

    Noriah Jamal; Rehir Dahlan; Wan Anuar Wan Awang; Zakaria Ibrahim; Shaaban Kassim; Wan Firdaus Wan Ishak; Nelly Bo Nai Lee; Noraisyah Yusof; Siti Selina Abdul Hamid; Ng Yen; Rahimah Abdul Rahim; Muhammad Hanafi Mohamad Mokhtar; Azahari Kasbollah; Abd Jalil Abd Hamid; Yahya Talib; Shafii Khamis; Zulkifli Mohamed Hashim

    2007-01-01

    Process validation provides the best platform in identifying potential problems in the actual radiopharmaceuticals manufacturing work. The purpose of this paper is to present experience in performing process validation for the manufacturing of Tc-99m generator at Nuclear Malaysia. Process validation for the manufacturing of Tc-99m generator was done by performing four try runs, between October 2006 to April 2007. It was done using saline instead of the actual product. Each try run took four days to complete. On day 1, clean room was cleaned and disinfected. On day 2, activity of washing and sterilization of utensils, columns, rubber stoppers and aluminium caps was carried out. On day 3, preparation of white top, alumina packed column and mixing solutions was performed. Apparatus was also sent for sterilizing test. On day 4, the actual production day of the try run by impregnating column with sterile saline was performed. Prior to the manufacturing activities, particle counts measurement and area clearance were performed to ensure that the temperature and humidity of the clean room are suitable for the production work. Settle plates were placed at the identified positions including in the Hot Cell. Personnel's finger print was performed before and after production work by using touch plates. After completion of try run, elution from the generators that been manufactured, settle and touch plates were sent to quality control unit for the microbiological test. It took fourteen days to get the test results. The first try run was failed, which may be due to insufficient of proper arrangement/preparation of work. It may also due to problem of cleaning/disinfection of clean room, which may not be done properly. The further three consecutive try runs meet all the specifications including the sterility test, endotoxin test and finger prints. It shows that the manufacturing of Tc-99m generator at Nuclear Malaysia is validated and ready for the active run. (Author)

  3. Real-Time Geometric Analysis of Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current selective laser melting additive manufacturing (AM) systems do not have adequate process control features for wide-spread adoption across NASA. In this...

  4. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    Science.gov (United States)

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effects of Processing Conditions During Manufacture on Retronasal-Aroma Compounds from a Milk Coffee Drink.

    Science.gov (United States)

    Ikeda, Michio; Akiyama, Masayuki; Hirano, Yuta; Miyazi, Kazuhiro; Kono, Masaya; Imayoshi, Yuriko; Iwabuchi, Hisakatsu; Onodera, Takeshi; Toko, Kiyoshi

    2018-03-01

    To develop a ready-to-drink (RTD) milk coffee retaining the original coffee flavor, the effects of processing conditions during manufacture on retronasal-arma (RA) compounds from the milk coffee were investigated by gas chromatography-mass spectrometry using an RA simulator (RAS). Thirteen of 46 detected compounds in the RAS effluent (RAS compounds) decreased significantly following pH adjustment of coffee (from pH 5.1 to 6.8) and 5 compounds increased. RAS compounds from coffee tended to decrease through the pH adjustment and subsequent sterilization. Significantly higher amounts of 13 RAS compounds were released from the milk coffee produced using a blending-after-sterilization (BAS) process without the pH adjustment than from that using a blending-before-sterilization (BBS) process with the pH adjustment. In BAS-processed milk coffee, significantly lower amounts of 8 high-volatility compounds and 1H-pyrrole were released from coffee containing infusion-sterilized (INF) milk than from coffee containing plate-sterilized (PLT) milk, whereas 3 low-volatility compounds were released significantly more from coffee using PLT milk. Principal component analysis revealed that the effect of the manufacturing process (BAS, BBS, or homemade (blending unsterilized coffee without pH adjustment with sterilized milk)) on milk coffee volatiles was larger than that of the sterilization method (INF or PLT) for milk, and that the sterilization method could result in different RAS volatile characteristics in BAS and homemade processes. In conclusion, a BAS process was found to be superior to a BBS process for the manufacture of an RTD milk coffee that retains volatile characteristics similar to that of a homemade milk coffee. Ready-to-drink (RTD) milk coffee manufactured using the conventional blending-before-sterilization process does not retain its original coffee flavor due to pH adjustment of the coffee during the process. The new blending-after-sterilization (BAS) process

  6. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  7. Process Intensification Tools in the Small‐Scale Pharmaceutical Manufacturing of Small Molecules

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Gernaey, Krist V.

    2015-01-01

    of processes are in a state of change. However, it is important to note that not all processes can be intensified easily, such as slow chemical reactions, processes with solids, slurries, and on the like. This review summarizes applications of promising tools for achieving process intensification in the small......‐scale pharmaceutical manufacturing of so‐called small molecules. The focus is on microwave radiation, microreactors, ultrasounds, and meso‐scale tubular reactors....

  8. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for

  9. Current perspectives on the use of ancillary materials for the manufacture of cellular therapies.

    Science.gov (United States)

    Solomon, Jennifer; Csontos, Lynn; Clarke, Dominic; Bonyhadi, Mark; Zylberberg, Claudia; McNiece, Ian; Kurtzberg, Joanne; Bell, Rosemarie; Deans, Robert

    2016-01-01

    Continued growth in the cell therapy industry and commercialization of cell therapies that successfully advance through clinical trials has led to increased awareness around the need for specialized and complex materials utilized in their manufacture. Ancillary materials (AMs) are components or reagents used during the manufacture of cell therapy products but are not intended to be part of the final products. Commonly, there are limitations in the availability of clinical-grade reagents used as AMs. Furthermore, AMs may affect the efficacy of the cell product and subsequent safety of the cell therapy for the patient. As such, AMs must be carefully selected and appropriately qualified during the cell therapy development process. However, the ongoing evolution of cell therapy research, limited number of clinical trials and registered cell therapy products results in the current absence of specific regulations governing the composition, compliance, and qualification of AMs often leads to confusion by suppliers and users in this field. Here we provide an overview and interpretation of the existing global framework surrounding AM use and investigate some common misunderstandings within the industry, with the aim of facilitating the appropriate selection and qualification of AMs. The key message we wish to emphasize is that in order to most effectively mitigate risk around cell therapy development and patient safety, users must work with their suppliers and regulators to qualify each AM to assess source, purity, identity, safety, and suitability in a given application. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Characterizing performances of solder paste printing process at flexible manufacturing lines

    International Nuclear Information System (INIS)

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-01-01

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter

  11. Characterizing performances of solder paste printing process at flexible manufacturing lines

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Jit Ping; Low, Heng Chin [University of Science Malaysia, 11800 Minden, Penang (Malaysia); Teoh, Ping Chow [Wawasan Open University, 54 Jalan Sultan Ahmad Shah, 10050 Penang (Malaysia)

    2015-02-03

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  12. Structural and morphological approach of Co-Cr dental alloys processed by alternative manufacturing technologies

    Science.gov (United States)

    Porojan, Sorin; Bîrdeanu, Mihaela; Savencu, Cristina; Porojan, Liliana

    2017-08-01

    The integration of digitalized processing technologies in traditional dental restorations manufacturing is an emerging application. The objective of this study was to identify the different structural and morphological characteristics of Co-Cr dental alloys processed by alternative manufacturing techniques in order to understand the influence of microstructure on restorations properties and their clinical behavior. Metallic specimens made of Co-Cr dental alloys were prepared using traditional casting (CST), and computerized milling (MIL), selective laser sintering (SLS) and selective laser melting (SLM). The structural information of the samples was obtained by X-ray diffraction, the morphology and the topography of the samples were investigated by Scanning Electron Microscopy and Atomic Force Microscope. Given that the microstructure was significantly different, further differences in the clinical behavior of prosthetic restorations manufactured using additive techniques are anticipated.

  13. Carbon dioxide capture from a cement manufacturing process

    Science.gov (United States)

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  14. Detecting Attacks in CyberManufacturing Systems: Additive Manufacturing Example

    Directory of Open Access Journals (Sweden)

    Wu Mingtao

    2017-01-01

    Full Text Available CyberManufacturing System is a vision for future manufacturing where physical components are fully integrated with computational processes in a connected environment. However, realizing the vision requires that its security be adequately ensured. This paper presents a vision-based system to detect intentional attacks on additive manufacturing processes, utilizing machine learning techniques. Particularly, additive manufacturing systems have unique vulnerabilities to malicious attacks, which can result in defective infills but without affecting the exterior. In order to detect such infill defects, the research uses simulated 3D printing process images as well as actual 3D printing process images to compare accuracies of machine learning algorithms in classifying, clustering and detecting anomalies on different types of infills. Three algorithms - (i random forest, (ii k nearest neighbor, and (iii anomaly detection - have been adopted in the research and shown to be effective in detecting such defects.

  15. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  16. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  17. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  18. Additive Manufacturing of Porous Metal

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirka, Michael M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Currently, helium is obtained through separation from natural gas. The current industrial process incurs significant costs and requires large energy resources to successfully achieve separation. Through utilizing Additive Manufacturing (AM) technologies it is possible to reduce both of these burdens when refining helium gas. The ability to engineer porosity levels within Inconel 718 discs for controlled separation of helium from natural gas was investigated. Arrays of samples fabricated using the electron beam melting process were analyzed for their relative porosity density. Based upon the measurements, full scale discs were fabricated, and subsequently tested to determine their effectiveness in separating helium from liquefied natural gas.

  19. More Exact Approaches to Modernization and Renewal of the Manufacturing Base

    Directory of Open Access Journals (Sweden)

    Naqib Daneshjo

    2017-08-01

    Full Text Available Globalized development strategies in industry are currently focused on developing intelligent manufacturing concepts called Industry 4.0. Companies around the world will be forced to adopt this concept, especially in terms of maintaining competitiveness. One of the most serious obstacles of developing the concept of intelligent production is physical and moral obsolescence of the manufacturing base in general. Despite the fact that companies have historically renewed their manufacturing base, automated and robotized manufacturing processes and systems, nowadays highly current question of determining the form and timing of further modernization and renewal of the manufacturing base for intelligent production purposes. The authors present a model to determine optimal time to start upgrading and renewing the production base based on formulating and comparing costs of means of production throughout their lifecycle, including consideration of their moral obsolescence.

  20. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  1. Novel Complexity Indicator of Manufacturing Process Chains and Its Relations to Indirect Complexity Indicators

    Directory of Open Access Journals (Sweden)

    Vladimir Modrak

    2017-01-01

    Full Text Available Manufacturing systems can be considered as a network of machines/workstations, where parts are produced in flow shop or job shop environment, respectively. Such network of machines/workstations can be depicted as a graph, with machines as nodes and material flow between the nodes as links. The aim of this paper is to use sequences of operations and machine network to measure static complexity of manufacturing processes. In this order existing approaches to measure the static complexity of manufacturing systems are analyzed and subsequently compared. For this purpose, analyzed competitive complexity indicators were tested on two different manufacturing layout examples. A subsequent analysis showed relevant potential of the proposed method.

  2. The transformation factor: a measure for the productive behaviour of a manufacturing process

    NARCIS (Netherlands)

    Ron, de A.J.

    1993-01-01

    By using advanced manufacturing processes, production results should increase. Nevertheless managers have their doubts to invest in such processes because of the financial risks and the absence of adequate technical and economical measures which should support their decisions. Measures which contain

  3. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  4. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  5. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  6. Current information technology needs of small to medium sized apparel manufacturers and contractors

    Energy Technology Data Exchange (ETDEWEB)

    Wimple, C., LLNL

    1998-04-01

    This report documents recent efforts of the American Textile Partnership (AMTEX{sup TM}) Demand Activated Manufacturing Architecture (DAMA) Project to identify opportunities for cost effective enhanced information technology use by small to medium sized apparel manufacturers and contractors. Background on the AMTEX/DAMA project and objectives for the specific DAMA Small and Medium Enterprise (SME) effort are discussed in this section. The approach used to gather information about current opportunities or needs is outlined in Section 2 Approach, and relevant findings are identified and a brief analysis of the information gathered is presented in Section 3 Findings. Recommendations based on the analysis, are offered in Section 4 Recommendations, and plans are suggested for DAMA follow-on in Section 5 Future Plans. Trip reports for each of the companies visited are contained in Appendix E - Company Trip Reports. These individual reports contain the data upon which the analysis presented in Section 3 Findings is based.

  7. Cutting prepregs, cutting and processing polymer plastics in the manufacture of airсraft panels

    OpenAIRE

    MELUKHOV NIKITA; GRISHCHENKO TATIANA; LYUBUSHKIN VADIM

    2017-01-01

    The article presents an alternative to the solution of the problem of reduction of manual operations in manufacture. It may be achieved if cutting out prepregs and processing polymeric materials (PMP) be changed for sharp ultrasonic cutting when manufacturing components from polymeric composite materials (PCM). Described are the lines of investigations on new techniques of cutting out prepreg and processings polymeric material of the Nomex type with the use of the energy of ultrasonic waves. ...

  8. Characterization of additive manufacturing processes for polymer micro parts productions using direct light processing (DLP) method

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Pedersen, David Bue; Tosello, Guido

    The process capability of additive manufacturing (AM) for direct production of miniaturized polymer components with micro features is analyzed in this work. The consideration of the minimum printable feature size and obtainable tolerances of AM process is a critical step to establish a process...... chains for the production of parts with micro scale features. A specifically designed direct light processing (DLP) AM machine suitable for precision printing has been used. A test part is designed having features with different sizes and aspect ratios in order to evaluate the DLP AM machine capability...

  9. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  10. Current Trends on Lean Management – A review

    Directory of Open Access Journals (Sweden)

    M. Shabeena Begam

    2013-12-01

    Full Text Available All manufacturing industry has put in continuous efforts for its survival in the current impulsive and competitive economy. In order to handle the critical situation, manufacturers are trying to implement new and innovative techniques in their manufacturing process by making it more effective and efficient. A detailed literature survey has been conducted to identify the lean practices in various manufacturing industry. The results revealed that the status of Lean Manufacturing (LM implementation in still in thriving stage. This paper will further assist the organizations to improve its process, align it to the requirements of its customers and relentless contribution to manufacturing sector to enhance productivity, quality and competitiveness is immense.

  11. Additive Manufacturing Technology for Biomedical Components: A review

    Science.gov (United States)

    Aimi Zaharin, Haizum; Rani, Ahmad Majdi Abdul; Lenggo Ginta, Turnad; Azam, Farooq I.

    2018-03-01

    Over the last decades, additive manufacturing has shown potential application in ranging fields. No longer a prototyping technology, it is now being utilised as a manufacturing technology for giant industries such as the automotive, aircraft and recently in the medical industry. It is a very successful method that provides health-care solution in biomedical sectors by producing patient-specific prosthetics, improve tissues engineering and facilitate pre-operating session. This paper thus presents a brief overview of the most commercially important additive manufacturing technologies, which is currently available for fabricating biomedical components such as Stereolithography (SLA), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Fused Deposition Modelling (FDM) and Electron Beam Melting (EBM). It introduces the basic principles of the main process, highlights some of the beneficial applications in medical industry and the current limitation of applied technology.

  12. Laser-Based Additive Manufacturing of Zirconium

    Directory of Open Access Journals (Sweden)

    Himanshu Sahasrabudhe

    2018-03-01

    Full Text Available Additive manufacturing of zirconium is attempted using commercial Laser Engineered Net Shaping (LENSTM technique. A LENSTM-based approach towards processing coatings and bulk parts of zirconium, a reactive metal, aims to minimize the inconvenience of traditional metallurgical practices of handling and processing zirconium-based parts that are particularly suited to small volumes and one-of-a-kind parts. This is a single-step manufacturing approach for obtaining near net shape fabrication of components. In the current research, Zr metal powder was processed in the form of coating on Ti6Al4V alloy substrate. Scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS as well as phase analysis via X-ray diffraction (XRD were studied on these coatings. In addition to coatings, bulk parts were also fabricated using LENS™ from Zr metal powders, and measured part accuracy.

  13. Environmentally benign manufacturing of compact disc stampers[Final Phase II report]; FINAL

    International Nuclear Information System (INIS)

    None

    1999-01-01

    Optical data storage is currently a$10B/yr. business. With the introduction of the high capacity Digital Versatile Disc (D/D) as well as the continued growth of CD-Audio and CD-ROM worldwide sales of optical data products as a whole are growing at rate of more than 10% per year. In North America, more than 2.5 billion optical discs will be sold in 1998. By 1999, the numbers of optical discs produced for the North American market will grow to almost three billion. The optical disc manufacturing industry is dominated by Asian and European companies (e.g. Sony of Japan and Philips of Netherlands). Prism Corporation has created a process that could significantly improve US competitiveness in the business of optical disc production. The objectives of the Phase II STTR project were to build and test an ion machining system (IMS) for stamper fabrication, prove overall manufacturing system feasibility by fabrication stampers and replicas, and evaluate alternative materials and alternative process parameters to optimize the process. During tie period of the Phase II project Prism Corporation was able to meet these objectives. In the course of doing so, adjustments had been made to better the project and in turn the final product. An ion machining system was designed and built that produced stampers ready for the molding process. Also, many control steps in the manufacturing process were studied to improve the current process and make it even more compatible with the industry standards, fitting seamlessly into current manufacturing lines

  14. In-Space Manufacturing Baseline Property Development

    Science.gov (United States)

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  15. Manufacturing engineering and technology

    CERN Document Server

    Kalpakjian, Serope; Vijai Sekar, K S

    2014-01-01

    For courses in manufacturing processes at two- or four-year schools. An up-to-date text that provides a solid background in manufacturing processes. Manufacturing Engineering and Technology, SI Edition, 7e, presents a mostly qualitative description of the science, technology, and practice of manufacturing. This includes detailed descriptions of manufacturing processes and the manufacturing enterprise that will help introduce students to important concepts. With a total of 120 examples and case studies, up-to-date and comprehensive coverage of all topics, and superior two-color graphics, this text provides a solid background for manufacturing students and serves as a valuable reference text for professionals. Teaching and Learning Experience To provide a better teaching and learning experience, for both instructors and students, this program will: * Apply Theory and/or Research: An excellent overview of manufacturing conceptswith a balance of relevant fundamentals and real-world practices. * Engage Students: E...

  16. Manufacturing of Nanostructured Rings from Previously ECAE-Processed AA5083 Alloy by Isothermal Forging

    Directory of Open Access Journals (Sweden)

    C. J. Luis

    2013-01-01

    Full Text Available The manufacturing of a functional hollow mechanical element or ring of the AA5083 alloy previously equal channel angular extrusion (ECAE processed, which presents a submicrometric microstructure, is dealt with. For this purpose, the design of two isothermal forging dies (preform and final shape is carried out using the design of experiments (DOE methodology. Moreover, after manufacturing the dies and carrying out tests so as to achieve real rings, the mechanical properties of these rings are analysed as well as their microstructure. Furthermore, a comparison between the different forged rings is made from ECAE-processed material subjected to different heat treatments, previous to the forging stage. On the other hand, the ring forging process is modelled through the use of finite element simulation in order to improve the die design and to study the force required for the isothermal forging, the damage value, and the strain the material predeformed by ECAE has undergone. With this present research work, it is intended to improve the knowledge about the mechanical properties of nanostructured material and the applicability of this material to industrial processes that allow the manufacturing of functional parts.

  17. Advanced laser processing for industrial solar cell manufacturing (ALPINISM)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Fieret, J. [Exitech Ltd. (United Kingdom)

    2006-05-04

    The study was aimed at improving methods for the manufacture of high efficiency solar cells and thereby increase production rates. The project focused on the laser grooved buried contact solar cell (LGBC) which is produced by high-speed laser machining. The specific objectives were (i) to optimise the laser technology for high speed processing; (ii) to optimise the solar cell process conditions for high speed processing; (iii) to produce a prototype tool and demonstrate high throughput; and (iv) to demonstrate increased cell efficiency using laser processing of rear contact. Essentially, all the objectives were met and Exitech have already sold six production tools and one research tool developed in this study. In addition, it was found that laser processing at the rear cell surface offers the prospect of LGBC solar cells with an efficiency of 20 per cent. BP Solar Limited carried out this work under contract to the DTI.

  18. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  19. Advanced Manufacturing Office Clean Water Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-03-01

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  20. Progress and improvement of the manufacturing process of snake antivenom

    OpenAIRE

    Zolfagharian H.; Mohammadpour Dounighi, N.

    2013-01-01

    Antivenoms have been used successfully for more than a century and up to now constitute the only effectivetreatment for snakebites .The production of antivenin started long time ago when the calmette was preparedthe antivenom in 1894.The method currently used to prepare antivenom by most of the manufacturers areoriginated from the method of Pope which was develop in 1938. Several new approaches in the production ofantivenom have been proposed to produce IgG, F(ab)2, F(ab) antivenin to improve...

  1. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    Energy Technology Data Exchange (ETDEWEB)

    Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  2. Challenges and Recent Developments in Hearing Aids: Part II. Feedback and Occlusion Effect Reduction Strategies, Laser Shell Manufacturing Processes, and Other Signal Processing Technologies

    Science.gov (United States)

    Chung, King

    2004-01-01

    This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871

  3. A Single-use Strategy to Enable Manufacturing of Affordable Biologics

    Directory of Open Access Journals (Sweden)

    Renaud Jacquemart

    2016-01-01

    Full Text Available The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  4. Manufacturing history of etanercept (Enbrel®): Consistency of product quality through major process revisions.

    Science.gov (United States)

    Hassett, Brian; Singh, Ena; Mahgoub, Ehab; O'Brien, Julie; Vicik, Steven M; Fitzpatrick, Brian

    2018-01-01

    Etanercept (ETN) (Enbrel®) is a soluble protein that binds to, and specifically inhibits, tumor necrosis factor (TNF), a proinflammatory cytokine. ETN is synthesized in Chinese hamster ovary cells by recombinant DNA technology as a fusion protein, with a fully human TNFRII ectodomain linked to the Fc portion of human IgG1. Successful manufacture of biologics, such as ETN, requires sophisticated process and product understanding, as well as meticulous control of operations to maintain product consistency. The objective of this evaluation was to show that the product profile of ETN drug substance (DS) has been consistent over the course of production. Multiple orthogonal biochemical analyses, which included evaluation of attributes indicative of product purity, potency, and quality, were assessed on >2,000 batches of ETN from three sites of DS manufacture, during the period 1998-2015. Based on the key quality attributes of product purity (assessed by hydrophobic interaction chromatography HPLC), binding activity (to TNF by ELISA), potency (inhibition of TNF-induced apoptosis by cell-based bioassay) and quality (N-linked oligosaccharide map), we show that the integrity of ETN DS has remained consistent over time. This consistency was maintained through three major enhancements to the initial process of manufacturing that were supported by detailed comparability assessments, and approved by the European Medicines Agency. Examination of results for all major quality attributes for ETN DS indicates a highly consistent process for over 18 years and throughout changes to the manufacturing process, without affecting safety and efficacy, as demonstrated across a wide range of clinical trials of ETN in multiple inflammatory diseases.

  5. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    Science.gov (United States)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  6. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  7. Unveiling the fungal mycobiota present throughout the cork stopper manufacturing process

    NARCIS (Netherlands)

    Barreto, M.C.; Houbraken, J.; Samson, R.A.; Brito, D.; Gadanho, M.; San Romão, M.V.

    2012-01-01

    A particular fungal population is present in the main stages of the manufacturing process of cork discs. Its diversity was studied using both dependent (isolation) and independent culture methods (denaturing gel gradient electrophoresis and cloning of the ITS1-5.8S-ITS2 region). The mycobiota in the

  8. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product.

    Science.gov (United States)

    Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J

    2018-03-01

    The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Nano-Magnets and Additive Manufacturing for Electric Motors

    Science.gov (United States)

    Misra, Ajay K.

    2014-01-01

    High power density is required for application of electric motors in hybrid electric propulsion. Potential path to achieve high power density in electric motors include advanced materials, lightweight thermal management, lightweight structural concepts, high power density power electronics, and advanced manufacturing. This presentation will focus on two key technologies for achieving high power density, advanced magnets and additive manufacturing. The maximum energy product in current magnets is reaching their theoretical limits as a result of material and process improvements. Future improvements in the maximum energy product for magnets can be achieved through development of nanocomposite magnets combining the hard magnetic phase and soft magnetic phase at the nanoscale level. The presentation will provide an overview of the current state of development for nanocomposite magnets and the future path for doubling the maximum energy product. The other part of the presentation will focus on the role of additive manufacturing in fabrication of high power density electric motors. The presentation will highlight the potential opportunities for applying additive manufacturing to fabricate electric motors.

  10. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  11. Progress and improvement of the manufacturing process of snake antivenom

    Directory of Open Access Journals (Sweden)

    Zolfagharian H.

    2013-05-01

    Full Text Available Antivenoms have been used successfully for more than a century and up to now constitute the only effectivetreatment for snakebites .The production of antivenin started long time ago when the calmette was preparedthe antivenom in 1894.The method currently used to prepare antivenom by most of the manufacturers areoriginated from the method of Pope which was develop in 1938. Several new approaches in the production ofantivenom have been proposed to produce IgG, F(ab2, F(ab antivenin to improve their quality .Theseimprovement include complete or partial modification in the antivenom production regarding animal,immunization protocols , new adjuvants in hyperimmunization of animals , purification processes ( caprylicacid ,chromatography , diafiltration and ulterafiltration ,enzymatic digestion of IgG (pepsin, papain andfractionation of venom .When the IgG is digested enzymatically, different fragments are obtained depending on the enzyme used, that is, if papain is used, three fragments are obtained, the crystallizing fragment (Fc and two antigen-binding fragments F(ab and, if pepsin is used, one F(ab'2 fragment is obtained, while thecrystallizing fragment is digested. Fab and F(ab2 fragments conserve their capacity to specifically bind to the antigen that gave rise to them.

  12. Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing

    Science.gov (United States)

    Hilburn, Monty D.

    Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These

  13. A CRITICAL STUDY AND COMPARISON OF MANUFACTURING SIMULATION SOFTWARES USING ANALYTIC HIERARCHY PROCESS

    Directory of Open Access Journals (Sweden)

    ASHU GUPTA

    2010-03-01

    Full Text Available In a period of continuous change in global business environment, organizations, large and small, are finding it increasingly difficult to deal with, and adjust to the demands for such change. Simulation is a powerful tool for allowing designers imagines new systems and enabling them to both quantify and observe behavior. Currently the market offers a variety of simulation software packages. Some are less expensive than others. Some are generic and can be used in a wide variety of application areas while others are more specific. Some have powerful features for modeling while others provide only basic features. Modeling approaches and strategies are different for different packages. Companies are seeking advice about the desirable features of software for manufacturing simulation, depending on the purpose of its use. Because of this, the importance of an adequate approach to simulation software evaluation and comparison is apparent. This paper presents a critical evaluation of four widely used manufacturing simulators: NX-IDEAS, Star-CD, Micro Saint Sharp and ProModel. Following a review of research into simulation software evaluation, an evaluation and comparison of the above simulators is performed. This paper illustrates and assesses the role the Analytic Hierarchy Process (AHP played in simulation software evaluation and selection. The main purpose of this evaluation and comparison is to discover the suitability of certain types of simulators for particular purposes.

  14. Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

    OpenAIRE

    Visuwan D.; Phruksaphanrat B

    2014-01-01

    In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and de...

  15. The Selection of Materials for Roller Chains From The Perspective Of Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Rahmat Saptono

    2010-10-01

    Full Text Available The selection of materials for an engineering component is not only requested by its design function and shape, but also the sequence through which it is manufactured. The manufacturing operation of roller chains involves drawing and trimming processes aimed at producing semi-finished chain drives component with a well-standardized dimension. In addition to final combination of properties required by design constraints, the ability of materials to be formed into a desired shape and geometry without failure is also critical. The objective of materials selection should therefore involve additional attributes that are not typically  accommodated by the standard procedure of materials selection. The present paper deals with the selection of materials for roller chains from the perspective of manufacturing process. Ears and un-uniform wall thickness have been identified as a key problem in the mass production of component. Provided all process parameters were established, the  anisotropy factor of materials is critical. Simulative test can be reasonably used to obtain material performance indices that can be added up to the standard procedure of material selection. Of three commercially available steel grades evaluated with regard to the criteria defined, one grade is more suitable for the present objective.

  16. A Review of Current Machine Learning Techniques Used in Manufacturing Diagnosis

    OpenAIRE

    Ademujimi , Toyosi ,; Brundage , Michael ,; Prabhu , Vittaldas ,

    2017-01-01

    Part 6: Intelligent Diagnostics and Maintenance Solutions; International audience; Artificial intelligence applications are increasing due to advances in data collection systems, algorithms, and affordability of computing power. Within the manufacturing industry, machine learning algorithms are often used for improving manufacturing system fault diagnosis. This study focuses on a review of recent fault diagnosis applications in manufacturing that are based on several prominent machine learnin...

  17. 21 CFR 108.12 - Manufacturing, processing, or packing without a permit, or in violation of a permit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Manufacturing, processing, or packing without a permit, or in violation of a permit. 108.12 Section 108.12 Food and Drugs FOOD AND DRUG ADMINISTRATION... General Provisions § 108.12 Manufacturing, processing, or packing without a permit, or in violation of a...

  18. Integration of process-oriented control with systematic inspection in FRAMATOME-FBFC fuel manufacturing

    International Nuclear Information System (INIS)

    Kopff, G.

    2000-01-01

    The classical approach to quality control is essentially based on final inspection of the product conducted through a qualified process. The main drawback of this approach lies in the separation and , therefore, in the low feedback between manufacturing and quality control, leading to a very static quality system. As a remedy, the modern approach to quality management focuses on the need for continuous improvement through process-oriented quality control. In the classical approach, high reliability of nuclear fuel and high quality level of the main characteristics are assumed to be attained, at the manufacturing step, through 100% inspection of the product, generally with automated inspection equipment. Such a 100% final inspection is not appropriate to obtain a homogeneous product with minimum variability, and cannot be a substitute for the SPC tools (Statistical Process Control) which are rightly designed with this aim. On the other hand, SPC methods, which detect process changes and are used to keep the process u nder control , leading to the optimal distribution of the quality characteristics, do not protect against non systematic or local disturbances, at low frequency. Only systematic control is capable of detecting local quality troubles. In fact, both approaches, SPC and systematic inspection, are complementary , because they are remedies for distinct causes of process and product changes. The term 'statistical' in the expression 'SPC' refers less to the sampling techniques than to the control of global distribution parameters of product or process variables (generally location and dispersion parameters). The successive integration levels of process control methods with systematic inspection are described and illustrated by examples from FRAMATOME-FBFC fuel manufacturing, from the simple control chart for checking the performance stability of automated inspection equipment to the global process control system including systematic inspection. This kind of

  19. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    Science.gov (United States)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  20. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  1. Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...

  2. Multiple High-Fidelity Modeling Tools for Metal Additive Manufacturing Process Development, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Despite the rapid commercialization of additive manufacturing technology such as selective laser melting, SLM, there are gaps in process modeling and material...

  3. Immersive Technology for Human-Centric Cyberphysical Systems in Complex Manufacturing Processes: A Comprehensive Overview of the Global Patent Profile Using Collective Intelligence

    Directory of Open Access Journals (Sweden)

    Usharani Hareesh Govindarajan

    2018-01-01

    Full Text Available Immersive technology for human-centric cyberphysical systems includes broad concepts that enable users in the physical world to connect with the cyberworld with a sense of immersion. Complex systems such as virtual reality, augmented reality, brain-computer interfaces, and brain-machine interfaces are emerging as immersive technologies that have the potential for improving manufacturing systems. Industry 4.0 includes all technologies, standards, and frameworks for the fourth industrial revolution to facilitate intelligent manufacturing. Industrial immersive technologies will be used for smart manufacturing innovation in the context of Industry 4.0’s human machine interfaces. This research provides a thorough review of the literature, construction of a domain ontology, presentation of patent metatrend statistical analysis, and data mining analysis using a technology function matrix and highlights technical and functional development trends using latent Dirichlet allocation (LDA models. A total of 179 references from the IEEE and IET databases and 2,672 patents are systematically analyzed to identify current trends. The paper establishes an essential foundation for the development of advanced human-centric cyberphysical systems in complex manufacturing processes.

  4. The Current State of Additive Manufacturing in Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palmer, Sierra [Worcester Polytechnic Institute (WPI), , Worcester, MA (United States); Lee, Dominic [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, Dale Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% of the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).

  5. Determination of Process Parameters for High-Density, Ti-6Al-4V Parts Using Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-10

    In our earlier work, we described an approach for determining the process parameters that re- sult in high-density parts manufactured using the additive-manufacturing process of selective laser melting (SLM). Our approach, which combines simple simulations and experiments, was demon- strated using 316L stainless steel. We have also used the approach successfully for several other materials. This short note summarizes the results of our work in determining process parameters for Ti-6Al-4V using a Concept Laser M2 system.

  6. A social-level macro-governance mode for collaborative manufacturing processes

    Science.gov (United States)

    Gao, Ji; Lv, Hexin; Jin, Zhiyong; Xu, Ping

    2017-08-01

    This paper proposes the social-level macro-governance mode for innovating the popular centralized control for CoM (Collaborative Manufacturing) processes, and makes this mode depend on the support from three aspects of technologies standalone and complementary: social-level CoM process norms, CoM process supervision system, and rational agents as the brokers of enterprises. It is the close coupling of those technologies that redounds to removing effectively the uncontrollability obstacle confronted with by cross-management-domain CoM processes. As a result, this mode enables CoM applications to be implemented by uniting the centralized control of CoM partners for respective CoM activities, and therefore provides a new distributed CoM process control mode to push forward the convenient development and large-scale deployment of SME-oriented CoM applications.

  7. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  8. Friction Stir Welding: Standards and Specifications in Today's U.S. Manufacturing and Fabrication

    Science.gov (United States)

    Ding, Robert Jeffrey

    2008-01-01

    New welding and technology advancements are reflected in the friction stir welding (FSW) specifications used in the manufacturing sector. A lack of publicly available specifications as one of the reasons that the FSW process has not propagate through the manufacturing sectors. FSW specifications are an integral supporting document to the legal agreement written between two entities for deliverable items. Understanding the process and supporting specifications is essential for a successful FSW manufacturing operation. This viewgraph presentation provides an overview of current FSW standards in the industry and discusses elements common to weld specifications.

  9. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  10. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    International Nuclear Information System (INIS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-01-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength

  11. Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data

    International Nuclear Information System (INIS)

    Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi; Cecen, Ahmet; Madison, Jonathan D.; Kalidindi, Surya R.

    2017-01-01

    A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures that can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.

  12. Delivering Value In A Global Aerospace Manufacturer Through The Effective Use Of Numerical Process Simulation

    Science.gov (United States)

    Ward, M. J.; Walløe, S. J.

    2004-06-01

    Numerical models are used extensively in the aerospace sector to identify appropriate manufacturing parameters, and to minimize the risk associated with new product introduction and manufacturing change. This usage is equally prevalent in original equipment manufacturers (OEMs), and in their supply chains. The wide range of manufacturing processes and production environments involved, coupled with the varying degrees of technology maturity associated with numerical models of different processes leads to a situation of significant complexity from the OEM perspective. In addition, the intended use of simulation technology can vary considerably between applications, from simple geometric assessment of die shape at one extreme, to full process design or development at the other. Consequently there is an increasing trend towards multi-scale modelling, i.e. the use of several different model types, with differing attributes in terms of accuracy and speed to support a range of different new product introduction decisions. This makes the allocation of appropriate levels of activity to the research and implementation of new capabilities a difficult problem. This paper uses a number of industrial cases studies to illustrate a framework for making such allocation decisions such that value to the OEM is maximized, and investigates how such a framework is likely to shift over the next few years based on technological developments.

  13. DETERMINING THE NEED FOR ZERO SERIES EXECUTION IN MANUFACTURING PROCESSES IN THE TEXTILE GARMENT INDUSTRY

    Directory of Open Access Journals (Sweden)

    OANA Ioan Pave

    2017-05-01

    Full Text Available Because the industrial production requires the application of some transformation procedures on the material resources, so that a clothing product comes out with optimal use value in terms of maximum economic efficiency, one of the main influencial factors is the quality of the products. To make manufacturing processes more efficient, it is necessary to carry out the zero series in order to ensure the quality of the technological processes, as well as to prevent some design deficiencies. Among the main operations undertaken to ensure the quality of the zero series, we mention: creating the conditions for launch, tracking and finalizing the accompanying production documents under similar series production conditions; zero-series producers are usually the same workers who make up the series production line; equipping with the appropriate equipment and providing with necessary devices in order to create the technical conditions for the execution of the zero series; providing technical assistance in relation to manufacturing and control documentation for eliminating the design deficiencies. This paper presents the architecture of the zero series execution in manufacturing processes in the textile garment industry. The information obtained from the zero-series analysis is directed to the technical support, for possible corrections of the patterns according to which the products were manufactured.

  14. PLYMAP : a computer simulation model of the rotary peeled softwood plywood manufacturing process

    Science.gov (United States)

    Henry Spelter

    1990-01-01

    This report documents a simulation model of the plywood manufacturing process. Its purpose is to enable a user to make quick estimates of the economic impact of a particular process change within a mill. The program was designed to simulate the processing of plywood within a relatively simplified mill design. Within that limitation, however, it allows a wide range of...

  15. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  17. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  18. Control of three different continuous pharmaceutical manufacturing processes: Use of soft sensors.

    Science.gov (United States)

    Rehrl, Jakob; Karttunen, Anssi-Pekka; Nicolaï, Niels; Hörmann, Theresa; Horn, Martin; Korhonen, Ossi; Nopens, Ingmar; De Beer, Thomas; Khinast, Johannes G

    2018-05-30

    One major advantage of continuous pharmaceutical manufacturing over traditional batch manufacturing is the possibility of enhanced in-process control, reducing out-of-specification and waste material by appropriate discharge strategies. The decision on material discharge can be based on the measurement of active pharmaceutical ingredient (API) concentration at specific locations in the production line via process analytic technology (PAT), e.g. near-infrared (NIR) spectrometers. The implementation of the PAT instruments is associated with monetary investment and the long term operation requires techniques avoiding sensor drifts. Therefore, our paper proposes a soft sensor approach for predicting the API concentration from the feeder data. In addition, this information can be used to detect sensor drift, or serve as a replacement/supplement of specific PAT equipment. The paper presents the experimental determination of the residence time distribution of selected unit operations in three different continuous processing lines (hot melt extrusion, direct compaction, wet granulation). The mathematical models describing the soft sensor are developed and parameterized. Finally, the suggested soft sensor approach is validated on the three mentioned, different continuous processing lines, demonstrating its versatility. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  20. Media milling process optimization for manufacture of drug nanoparticles using design of experiments (DOE).

    Science.gov (United States)

    Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj

    2015-01-01

    Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.

  1. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... understood. Research indicates an orientation within the manufacturing layer and efforts have been made to achieve a more uniform orientation within the part. A vat polymerization machine consisting of a resin vat and a moving build plate has been simulated using the fluid flow module of Comsol Multiphysics...... photopolymer resin. The prediction can be used to identify potential clusters or misalignment of fibers and in the future allow for optimization of the machine design and manufacturing process....

  2. Current Status of Manufacturing Hazardous Waste in Shanghai

    Institute of Scientific and Technical Information of China (English)

    Liu Changqing; Zhang Jiangshan; Zhao Youcai

    2007-01-01

    It is difficult to manage the manufacturing hazardous waste(MHW)whichis generated from a huge amount of complicated sources and causes very serious pollution.Therefore more and more attention has been paid to MHW pollution.shanghai,as an industrial and economic center and an intemational metropolis in China,has a vast industrial system spanning a multitude of sectors,which generates MHW not only in a huge magnitude but also in a large variety of types from complicated sourrces,resulting in severe pollution.In 2003,the production of MHW in Shanghai is about 3.96 x 10ton,involving 33 indices.Most of MHW in Shanghai is treated and disposed of,but a significant portion is not handled properly and effectively.This paper carries out in-field investigation on the current status of MHW production and treat ment in Shanghai,and puts forward scientific proposals that Shanghai should facilitate cleaner production and minimize haz ardous waste;strictly enforce hazardous waste registration system, strengthen monitoring the certified enterprises;strengthen intent disposal center construction and realize hazardous waste reclamation;accelerate establishing tlle technical criteria and the management policy,promote the research and development on the treatment and disposal technology,and strengthen information management,thus realizing integrated management on MHW pollution.

  3. Manufacturing Improvement Program for the Oil and Gas Industry Supply Chain and Marketing Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert [Oklahoma State Univ., Stillwater, OK (United States)

    2016-09-28

    This project supported upgrades for manufacturing companies in the oil and natural gas supply chain in Oklahoma. The goal is to provide assistance that will lead to the improved efficiency advancement of the manufacturing processes currently used by the existing manufacturing clients. The basis for the work is to improve the economic environment for the clients and the communities they serve.

  4. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing

    International Nuclear Information System (INIS)

    Campoli, G.; Borleffs, M.S.; Amin Yavari, S.; Wauthle, R.; Weinans, H.; Zadpoor, A.A.

    2013-01-01

    Highlights: ► Finite element (FE) models were used to predict the mechanical properties of porous biomaterials. ► Porous materials were produced using additive manufacturing techniques. ► Manufacturing irregularities need to be implemented in FE models. ► FE models are more accurate than analytical models in predicting mechanical properties. - Abstract: An important practical problem in application of open-cell porous biomaterials is the prediction of the mechanical properties of the material given its micro-architecture and the properties of its matrix material. Although analytical methods can be used for this purpose, these models are often based on several simplifying assumptions with respect to the complex architecture and cannot provide accurate prediction results. The aim of the current study is to present finite element (FE) models that can predict the mechanical properties of porous titanium produced using selective laser melting or selective electron beam melting. The irregularities caused by the manufacturing process including structural variations of the architecture are implemented in the FE models using statistical models. The predictions of FE models are compared with those of analytical models and are tested against experimental data. It is shown that, as opposed to analytical models, the predictions of FE models are in agreement with experimental observations. It is concluded that manufacturing irregularities significantly affect the mechanical properties of porous biomaterials

  5. Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control.

    Science.gov (United States)

    Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A

    2007-10-31

    The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.

  6. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  7. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  8. The improvement of the manufacturing process of a company by the Sigma level: the case of the company BAG (Batna

    Directory of Open Access Journals (Sweden)

    Athmane MECHENENE

    2014-06-01

    Full Text Available This modest work aims to evaluate the performance of the manufacturing process of the company by a new measurement tool, namely the sigma level whose purpose is to quantify the costs inherent in each production process, measure the levels of six Sigma in adjacent processes, to achieve weight calculate DPMO (Defects Per Million Opportunity and thus assess the overall competitiveness of the company. This new tool for measuring the performance of the manufacturing process (sigma level is applied to manufacturing gas cylinders (BAG - Batna.

  9. Organizing for manufacturing innovation. The case of Flexible Manufacturing Systems

    DEFF Research Database (Denmark)

    Boer, Harry; Krabbendam, Koos

    1992-01-01

    addressing the manufacturing innovation process are even fewer and provide little insight into its true nature. Consequently, little is known about the effective organization of such processes. In the present article an organization model of manufacturing innovation is described, and its practicability...... the implementation of new technology effectively. This is not surprising, considering the innovative nature of this process. Although there is a host of literature on innovation, organization and (the benefits of) new technology, the literature in which these areas are linked together is scarce. Publications...... assessed using the results of seven case studies of the implementation of flexible manufacturing systems in British, Belgian and Dutch mechanical engineering companies....

  10. Interrelation of chemistry and process design in biodiesel manufacturing by heterogeneous catalysis

    NARCIS (Netherlands)

    Dimian, A.C.; Srokol, Z.W.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.

    2010-01-01

    The pros and cons of using heterogeneous catalysis for biodiesel manufacturing are introduced, and explained from a chemistry and engineering viewpoint. Transesterification reactions of various feed types are then compared in batch and continuous process operation modes. The results show that the

  11. Morphology Analysis and Process Research on Novel Metal Fused-coating Additive Manufacturing

    Science.gov (United States)

    Wang, Xin; Wei, Zheng ying; Du, Jun; Ren, Chuan qi; Zhang, Shan; Zhang, Zhitong; Bai, Hao

    2017-12-01

    Existing metal additive manufacturing equipment has high capital costs and slow throughput printing. In this paper, a new metal fused-coating additive manufacturing (MFCAM) was proposed. Experiments of single-track formation were conducted using MFCAM to validate the feasibility. The low melting alloy was selected as the forming material. Then, the effect of process parameters such as the flow rate, deposition velocity and initial distance on the forming morphology. There is a strong coupling effect between the single track forming morphology. Through the analysis of influencing factors to improve the forming quality of specimens. The experimental results show that the twice as forming efficiency as the metal droplet deposition. Additionally, the forming morphology and quality were analyzed by confocal laser scanning microscope and X-ray. The results show that the metal fused-coating process can achieve good surface morphology and without internal tissue defect.

  12. PM - processing for manufacturing of metals with cellular structures

    International Nuclear Information System (INIS)

    Strobl, S.; Danninger, H.

    2001-01-01

    In this review the major Processes about manufacturing of metals with cellular structure are described - based on powder metallurgy, chemical deposition and some other methods (without melting techniques). It can be shown that during the last decade many interesting innovations led to new production methods to design cellular materials. Some of them are used nowadays in industry. Also characterization and properties become more important and have therefore been carried out carefully, because of their strong influence on the functions and applications of such materials. (author)

  13. Survey of the US materials processing and manufacturing in space program

    Science.gov (United States)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  14. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  15. ANALYSIS OF CURRENT STATE AND FUTURE TRENDS OF AUTO PARTS MANUFACTURING SECTOR IN ROMANIA

    Directory of Open Access Journals (Sweden)

    DANIELA MIHAI

    2012-10-01

    Full Text Available In the economy of any country, the auto parts manufacturing sector holds an important percentage in the national automotive industry. The dynamics of sales within it can vary significantly on short term, depending on the automotive market trend. This is also the case of the current situation in Romania, where the effect of the regressive automotive sales evolution will propagate, most probably, with a significant delay for the companies involved in production and trade of auto parts (for both first-assembly manufacture and car maintenance and repair. The statistical data indicate that even though the total volume of vehicles delivered decreased with 7.4% in 2011 as compared to 2010, the total turnover of the companies in the automotive industry increased with 7.8%. The apparent paradox is explained in the present article through the particularities of the demand for spare parts intended for the rolling stock in operation and through the effective organization of the distribution system.

  16. USED IN THE MANUFACTURE OF EMULSION RUBBER WASTE OF SUGAR MANUFACTURE – MOLASSES

    OpenAIRE

    S. S. Nikulin; .; N. S. Nikulina

    2015-01-01

    Currently, much attention is paid to development, allowing use of waste and by-products formed during certain manufacturing processes. This allows you to either reduce or completely eliminate the use of valuable and expensive raw materials. The use of this raw material in the production of synthetic rubber will not only reduce the cost of coagulation and acidifying agents, but also to improve the environmental situation. Featured in some cases effective coalescing agents based on polymeric qu...

  17. Cloud Manufacturing Service Paradigm for Group Manufacturing Companies

    Directory of Open Access Journals (Sweden)

    Jingtao Zhou

    2014-07-01

    Full Text Available The continuous refinement of specialization requires that the group manufacturing company must be constantly focused on how to concentrate its core resources in special sphere to form its core competitive advantage. However, the resources in enterprise group are usually distributed in different subsidiary companies, which means they cannot be fully used, constraining the competition and development of the enterprise. Conducted as a response to a need for cloud manufacturing studies, systematic and detailed studies on cloud manufacturing schema for group companies are carried out in this paper. A new hybrid private clouds paradigm is proposed to meet the requirements of aggregation and centralized use of heterogeneous resources and business units distributed in different subsidiary companies. After the introduction of the cloud manufacturing paradigm for enterprise group and its architecture, this paper presents a derivation from the abstraction of paradigm and framework to the application of a practical evaluative working mechanism. In short, the paradigm establishes an effective working mechanism to translate collaborative business process composed by the activities into cloud manufacturing process composed by services so as to create a foundation resulting in mature traditional project monitoring and scheduling technologies being able to be used in cloud manufacturing project management.

  18. Nonclinical comparability studies of recombinant human arylsulfatase A addressing manufacturing process changes.

    Science.gov (United States)

    Wright, Teresa; Li, Aiqun; Lotterhand, Jason; Graham, Anne-Renee; Huang, Yan; Avila, Nancy; Pan, Jing

    2018-01-01

    Recombinant human arylsulfatase A (rhASA) is in clinical development for the treatment of patients with metachromatic leukodystrophy (MLD). Manufacturing process changes were introduced to improve robustness and efficiency, resulting in higher levels of mannose-6-phosphate and sialic acid in post-change (process B) compared with pre-change (process A) rhASA. A nonclinical comparability program was conducted to compare process A and process B rhASA. All doses were administered intrathecally. Pharmacodynamic comparability was evaluated in immunotolerant MLD mice, using immunohistochemical staining of lysosomal-associated membrane protein-1 (LAMP-1). Pharmacokinetic comparability was assessed in juvenile cynomolgus monkeys dosed once with 6.0 mg (equivalent to 100 mg/kg of brain weight) process A or process B rhASA. Biodistribution was compared by quantitative whole-body autoradiography in rats. Potential toxicity of process B rhASA was evaluated by repeated rhASA administration at doses of 18.6 mg in juvenile cynomolgus monkeys. The specific activities for process A and process B rhASA were 89 U/mg and 106 U/mg, respectively, which were both well within the target range for the assay. Pharmacodynamic assessments showed no statistically significant differences in LAMP-1 immunohistochemical staining in the spinal cord and in most of the brain areas assessed between process A and B rhASA-dosed mice. LAMP-1 staining was reduced with both process A and B rhASA compared with vehicle, supporting its activity. Concentration-time curves in cerebrospinal fluid and serum of cynomolgus monkeys were similar with process A and B rhASA. Process A and B rhASA were similar in terms of their pharmacokinetic parameters and biodistribution data. No process B rhASA-related toxicity was detected. In conclusion, manufacturing process changes did not affect the pharmacodynamic, pharmacokinetic or safety profiles of process B rhASA relative to process A rhASA.

  19. Energy efficiency solutions for driers used in the glass manufacturing and processing industry

    Directory of Open Access Journals (Sweden)

    Pătrașcu Roxana

    2017-07-01

    Full Text Available Energy conservation is relevant to increasing efficiency in energy projects, by saving energy, by its’ rational use or by switching to other forms of energy. The goal is to secure energy supply on short and long term, while increasing efficiency. These are enforced by evaluating the companies’ energy status, by monitoring and adjusting energy consumption and organising a coherent energy management. The manufacturing process is described, starting from the state and properties of the raw material and ending with the glass drying technological processes involved. Raw materials are selected considering technological and economic criteria. Manufacturing is treated as a two-stage process, consisting of the logistic, preparation aspect of unloading, transporting, storing materials and the manufacturing process itself, by which the glass is sifted, shredded, deferrized and dried. The interest of analyzing the latter is justified by the fact that it has a big impact on the final energy consumption values, hence, in order to improve the general performance, the driers’ energy losses are to be reduced. Technological, energy and management solutions are stated to meet this problem. In the present paper, the emphasis is on the energy perspective of enhancing the overall efficiency. The case study stresses the effects of heat recovery over the efficiency of a glass drier. Audits are conducted, both before and after its’ implementation, to punctually observe the balance between the entering and exiting heat in the drying process. The reduction in fuel consumption and the increase in thermal performance and fuel usage performances reveal the importance of using all available exiting heat from processes. Technical faults, either in exploitation or in management, lead to additional expenses. Improving them is in congruence with the energy conservation concept and is in accordance with the Energy Efficiency Improvement Program for industrial facilities.

  20. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  1. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  2. MODULAR RESEARCH EQUIPMENT FOR ON-LINE INSPECTION IN ADVANCED MANUFACTURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Davrajh, S.

    2012-11-01

    Full Text Available The significance of inspection processes increases when producing parts with high levels of customer input. These processes must adapt to variations in significant product characteristics. Mass customisation and reconfigurable manufacturing are currently being researched as ways to respond to high levels of customer input. This paper presents the research and development of modular inspection equipment that was designed to meet the on-line quality requirements of mass customisation and reconfigurable manufacturing environments. Simulated results were analysed for application in an industrial environment. The implementation of the equipment in South Africa is briefly discussed. The research indicates that manufacturers need only invest in the required equipment configurations when they are needed for on-line inspection.

  3. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers

    Directory of Open Access Journals (Sweden)

    Ian David Lockhart Bogle

    2017-04-01

    Full Text Available The challenges posed by smart manufacturing for the process industries and for process systems engineering (PSE researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, but benchmarking would give greater confidence. Technical challenges confronting process systems engineers in developing enabling tools and techniques are discussed regarding flexibility and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all key aspects are properly modeled, particularly where health, safety, and environmental concerns require accurate predictions of small but critical amounts at specific locations. Environmental concerns will require us to keep a closer track on all molecular species so that they are optimally used to create sustainable solutions. Disruptive business models may result, particularly from new personalized products, but that is difficult to predict.

  4. Research on reliability measures of the main transformer and GIS equipment manufacturing process

    International Nuclear Information System (INIS)

    Wu Honglong

    2014-01-01

    Based on the accidents of the main transformer GIS equipment and the accidents of the high voltage switch equipment, combined with the main transformer switch equipment maintenance experience and electrical theory, the reliability measures of the main transformer GIS equipment during manufacturing stage are studied and improved. Six successful reliability measures are identified: 1) design properly and check the ability of transformer for anti short circuit; 2) choose mature and reliable main transformer HV bushing; 3) choose GIS switch operation mechanism of high quality and reliability; 4) ensure that the insulation margin through tests piece by piece on withstand voltage and partial discharge of the GIS equipment insulation; 5) take test measures such as GIS conductor, shell polishing witness process and full form lightning impulse, to find out and eliminate the defects of abnormal electric field distribution; 6) Anti VFTO design for the main transformer connected with GIS with the voltage of 500 kV should be considered, and its anti VFTO ability to meet the safe operation under VFTO requirements should be checked. This paper proposed 2 new measures: 1) the main transformer insulation material quality standard is determined not only by its high dielectric strength, but more importantly by the homogeneous dielectric electric strength. Insulating Materials with a high and also uniform dielectric strength should be chosen. 2) During the silver-coating stage of the GIS equipment conductor, QC group activities should be organized to ensure that the plating layer quality, and the current lap surface DC resistance measurements should be supervised and witnessed to ensure the quality of the conductor contact surface. These measures are verified in Fuqing project of GIS main transformer equipment manufacturing process, and their effectiveness is proven. (author)

  5. Additive Manufacturing in the Marine Corps

    Science.gov (United States)

    2015-06-01

    TERMS additive manufacturing, 3D printing, improving logistics 15. NUMBER OF PAGES 123 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...One such method is ultrasonic agglomeration. The process produces compact snack items that are nutrient-dense and shelf-stable. Currently Army...possess outdated technology. Additionally, prices for the printers are dropping significantly.202 Therefore, the Marine Corps will not only have outdated

  6. Manufacturing processes of cellular metals. Part I. Liquid route processes

    International Nuclear Information System (INIS)

    Fernandez, P.; Cruz, L. J.; Coleto, J.

    2008-01-01

    With its interesting and particular characteristics, cellular metals are taking part of the great family of new materials. They can have open or closed porosity. At the present time, the major challenge for the materials researchers is based in the manufacturing techniques improvement in order to obtain reproducible and reliable cellular metals with quality. In the present paper, the different production methods to manufacture cellular metals by liquid route are reviewed; making a short description about the main parameters involved and the advantages and drawbacks in each of them. (Author) 106 refs

  7. Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Marwah O.M.F.

    2017-01-01

    Full Text Available Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA. In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products

  8. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    Science.gov (United States)

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    Directory of Open Access Journals (Sweden)

    Marco A. García-Morales

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high content of color (5952 ± 76 Pt-Co, turbidity (1648 ± 49 FAU, and COD (3608 ± 250 mg/L. Therefore, enhanced performance could be achieved by combining pretreatment techniques to increase the efficiencies of the physical, chemical, and biological treatments. In the integrated process, there was a turbidity reduction of 96.1 ± 0.2% and an increase in dissolved oxygen from 3.8 ± 0.05 mg/L (inlet sand filtration to 6.05 ± 0.03 mg/L (outlet sand filtration after 120 min of treatment. These results indicate good water quality necessary for all forms of elemental life. Color and COD removals were 98.2 ± 0.2% and 39.02 ± 2.2%, respectively, during the electrocoagulation process (0.2915 mA/cm2 current density and 120 min of treatment. The proposed integrated process could be an attractive alternative of pretreatment of real wastewater to increase water quality of conventional treatments.

  10. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  11. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review.

    Science.gov (United States)

    Alharbi, Nawal; Wismeijer, Daniel; Osman, Reham B

    The aim of this article was to critically review the current application of additive manufacturing (AM)/3D-printing techniques in prosthodontics and to highlight the influence of various technical factors involved in different AM technologies. A standard approach of searching MEDLINE, EMBASE, and Google Scholar databases was followed. The following search terms were used: (Prosth* OR Restoration) AND (Prototype OR Additive Manufacture* OR Compute* OR 3D-print* OR CAD/CAM) AND (Dentistry OR Dental). Hand searching the reference lists of the included articles and personal connections revealed additional relevant articles. Selection criteria were any article written in English and reporting on the application of AM in prosthodontics from 1990 to February 2016. From a total of 4,290 articles identified, 33 were seen as relevant. Of these, 3 were narrative reviews, 18 were in vitro studies, and 12 were clinical in vivo studies. Different AM technologies are applied in prosthodontics, directly and indirectly for the fabrication of fixed metal copings, metal frameworks for removable partial dentures, and plastic mock-ups and resin patterns for further conventional metal castings. Technical factors involved in different AM techniques influence the overall quality, the mechanical properties of the printed parts, and the total cost and manufacturing time. AM is promising and offers new possibilities in the field of prosthodontics, though its application is still limited. An understanding of these limitations and of developments in material science is crucial prior to considering AM as an acceptable method for the fabrication of dental prostheses.

  12. Advantages of utilizing DMD based rapid manufacturing systems in mass customization applications

    Science.gov (United States)

    El-Siblani, A.

    2010-02-01

    The Use of DMD based Rapid Manufacturing Systems has proven to be very advantageous in the production of highly accurate plastic based components for use in mass customization market such as hearing aids, and dental markets. The voxelization process currently afforded with the DLP technology eliminates any layering effect associated with all existing additive Rapid Manufacturing technologies. The smooth accurate surfaces produced in an additive process utilizing DLP technology, through the voxelization approach, allow for the production of custom finished products. The implementation of DLP technology in rapid prototyping and rapid manufacturing systems allow for the usage of highly viscous photopolymer based liquid and paste composites for rapid manufacturing that could not be used in any other additive process prior to implementation of DLP technology in RP and RM systems. It also allowed for the greater throughput in production without sacrificing quality and accuracy.

  13. Process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. Verfahren zur Herstellung eines Filterstoffes zur Reinigung von industriellen oder Brennkraftmaschinen-Abgasen und ein hiernach hergestellter Filterstoff

    Energy Technology Data Exchange (ETDEWEB)

    Bumbalek, A.

    1986-01-02

    This is a process for the manufacture of a filter material for cleaning industrial or internal combustion engine exhaust gases and filter material manufactured according to the process. The filter material is manufactured from the mineralized combustion product of peel of tropical fruits burnt at a temperature of 820/sup 0/C to 840/sup 0/C in an oxidising atmosphere excluding the production of carbon, particularly using banana skins and orange peels, which product is granulated with carrier materials or compressed.

  14. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  15. Method and Tool for Design Process Navigation and Automatic Generation of Simulation Models for Manufacturing Systems

    Science.gov (United States)

    Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji

    Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.

  16. An analytic framework for developing inherently-manufacturable pop-up laminate devices

    International Nuclear Information System (INIS)

    Aukes, Daniel M; Goldberg, Benjamin; Wood, Robert J; Cutkosky, Mark R

    2014-01-01

    Spurred by advances in manufacturing technologies developed around layered manufacturing technologies such as PC-MEMS, SCM, and printable robotics, we propose a new analytic framework for capturing the geometry of folded composite laminate devices and the mechanical processes used to manufacture them. These processes can be represented by combining a small set of geometric operations which are general enough to encompass many different manufacturing paradigms. Furthermore, such a formulation permits one to construct a variety of geometric tools which can be used to analyze common manufacturability concepts, such as tool access, part removability, and device support. In order to increase the speed of development, reduce the occurrence of manufacturing problems inherent with current design methods, and reduce the level of expertise required to develop new devices, the framework has been implemented in a new design tool called popupCAD, which is suited for the design and development of complex folded laminate devices. We conclude with a demonstration of utility of the tools by creating a folded leg mechanism. (paper)

  17. Sustainable Micro-Manufacturing of Micro-Components via Micro Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Valeria Marrocco

    2011-12-01

    Full Text Available Micro-manufacturing emerged in the last years as a new engineering area with the potential of increasing peoples’ quality of life through the production of innovative micro-devices to be used, for example, in the biomedical, micro-electronics or telecommunication sectors. The possibility to decrease the energy consumption makes the micro-manufacturing extremely appealing in terms of environmental protection. However, despite this common belief that the micro-scale implies a higher sustainability compared to traditional manufacturing processes, recent research shows that some factors can make micro-manufacturing processes not as sustainable as expected. In particular, the use of rare raw materials and the need of higher purity of processes, to preserve product quality and manufacturing equipment, can be a source for additional environmental burden and process costs. Consequently, research is needed to optimize micro-manufacturing processes in order to guarantee the minimum consumption of raw materials, consumables and energy. In this paper, the experimental results obtained by the micro-electrical discharge machining (micro-EDM of micro-channels made on Ni–Cr–Mo steel is reported. The aim of such investigation is to shed a light on the relation and dependence between the material removal process, identified in the evaluation of material removal rate (MRR and tool wear ratio (TWR, and some of the most important technological parameters (i.e., open voltage, discharge current, pulse width and frequency, in order to experimentally quantify the material waste produced and optimize the technological process in order to decrease it.

  18. RIs used in diagnosis and therapy in nuclear medicine and new manufacturing process of RIs

    International Nuclear Information System (INIS)

    Nagai, Yasuki; Hashimoto, Kazuyuki

    2014-01-01

    Although various types of RIs are utilized in the field of nuclear medicine, their stable supply in the future poses anxiety worldwide. Taking up Tc-99m, which is most widely used in diagnosis in nuclear medicine, as an example, this paper introduces the condition to make RIs available in nuclear medicine as well as the worldwide challenge to their stable supply. In the following step, this paper introduces the innovative manufacturing process of RIs that is under development in Japan, in which undermentioned various types of RIs are manufactured in an identical facility (accelerator), although both nuclear reactor and accelerator have been used for manufacturing/supplying various types of RIs up to now: (1) Mo-99 as the parent nuclide of Tc-99m, (2) Cu-67, whose manufacturing process is urgently desired as the RI to enable simultaneous diagnosis and therapy, and (3) Y-90, Cu-64, and Sc-47, which are expected for use in new nuclear medicine based on the creation of new medicines. It also describes the future challenge in Japan to the construction of a prototype accelerator. (A.O.)

  19. [Emission characteristics and safety evaluation of volatile organic compounds in manufacturing processes of automotive coatings].

    Science.gov (United States)

    Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping

    2013-12-01

    Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.

  20. The manufacturing and metrology of off-axis mirrors

    Science.gov (United States)

    Penzkofer, Karlheinz; Rascher, Rolf; Küpper, Lutz; Liebl, Johannes

    2015-10-01

    Especially in the area of the large mirror manufacturing only a few manufacturers are capable to produce optical surfaces of high quality. Therefore a deterministic process should be developed in the project IFasO. In the field of telescope optics off-axis optical systems are becoming increasingly important. These systems try to avoid an obstructing of the incoming light by moving the secondary mirror out of the primary mirror's optical axis. This advantage leads to an increasing market for this type of optical surface. Until now off-axis mirrors were difficult or almost impossible to produce. With the processes developed in IFasO, high quality mirrors become possible. For this reason, this paper describes the manufacturing of off-axis surfaces and its problems. The mirror production used in the project IFasO is based on the specific design of the CNC center developed by the company Optotech. This center UPG2000 is capable of grinding, polishing, sagitta measurement and interferometric measurement in one mounting of the specimen. Usually a large optics has to be transported during their manufacturing after every individual process step. There is always a risk of damage of the specimen. The exact orientation of the surface relatively to the tool position is also required. This takes a huge amount of time and makes up most of the production time. In this presentation the use of UPG2000 and the next steps within the process development are described. In the current status the manufacturing of large off-axis elements with a PV < λ/10 rms is reproducible.

  1. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    Science.gov (United States)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  2. Influence of manufacturing process on the in-reactor creep anisotropy of stress-relieved Zircaloy-2 cladding

    International Nuclear Information System (INIS)

    Shann, S.H.; Van Swam, L.F.

    1995-01-01

    A procedure to determine the axial/radial and circumferential/radial contractile strain ratios (the R and P factors respectively in the Backofen-modified von Mises-Hill yield criterion) from post-irradiation dimensional measurements of Zircaloy-2 cladding of BWR fuel rods, tie rods and water rods was developed and has been described previously (S.H. Shann and L.F. van Swam, Creep anisotropy of Zircaloy-2 cladding during irradiation, Trans. SMiRT-11, Vol. C, 1991). The present study employs the procedure to determine the anisotropy factors R and P for textured cold-worked stress-relieved (CWSR) Zircaloy-2 cladding fabricated by various manufacturing processes. The analysis indicates that the cladding manufacturing process can have a pronounced effect on the anisotropy of irradiation-induced creep. Cladding types with identical yield and ultimate tensile strengths but fabricated by different manufacturing processes have different values of R and P during in-reactor creep. ((orig.))

  3. JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturers

    OpenAIRE

    Richard E. White; John N. Pearson; Jeffrey R. Wilson

    1999-01-01

    Since the early 1980s, the diffusion of Just-In-Time (JIT) manufacturing from Japanese manufacturers to U.S. manufacturers has progressed at an accelerated rate. At this stage of the diffusion process, JIT implementations are more common and more advanced in large U.S. manufacturers than in small; consequently, U.S. businessmen's understanding of issues associated with JIT implementations in large manufacturers is more developed than that of small manufacturers. When small manufacturers repre...

  4. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  5. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  6. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... preeminent destination for investment in manufacturing throughout the world'' as provided for in Section 4 of... the viewpoint of those stakeholders on current and emerging issues in the manufacturing sector. In... the U.S. manufacturing industry in terms of industry sectors, geographic locations, demographics, and...

  7. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show...

  8. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  9. A mixed method approach to data collection for the development of a six sigma framework for Libyan Manufacturing Companies (LMCs)

    OpenAIRE

    Elgadi, Osama; Birkett, Martin; Cheung, Wai Ming

    2015-01-01

    This paper investigates the current quality management processes in use in Libyan Manufacturing Companies (LMCs), and proposes a methodology of mixed method approach to data collection to develop a novel six sigma framework. To date, there is no evidence of the use of six sigma in the Libyan manufacturing industry, and it is found that only 58 companies in Libya currently have ISO 9001 accreditation of which only 9 are manufacturing companies. This underutilisation of manufacturing systems su...

  10. SLM processing-microstructure-mechanical property correlation in an aluminum alloy produced by additive manufacturing

    Science.gov (United States)

    Alejos, Martin Fernando

    Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.

  11. Solid state laser applications in photovoltaics manufacturing

    Science.gov (United States)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  12. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  13. Perspectives on the design of safer nanomaterials and manufacturing processes

    International Nuclear Information System (INIS)

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-01-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial

  14. Perspectives on the design of safer nanomaterials and manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Geraci, Charles [National Institute for Occupational Safety and Health (United States); Heidel, Donna [Bureau Veritas North America, Inc. (United States); Sayes, Christie [Baylor University (United States); Hodson, Laura, E-mail: lhodson@cdc.gov; Schulte, Paul; Eastlake, Adrienne [National Institute for Occupational Safety and Health (United States); Brenner, Sara [Colleges of Nanoscale Science and Engineering at State University of New York Polytechnic Institute, (SUNY Poly) (United States)

    2015-09-15

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  15. Free-world microelectronic manufacturing equipment

    Science.gov (United States)

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  16. Composite materials pipings: selection of basic materials and manufacturing process, quality control during manufacture

    International Nuclear Information System (INIS)

    Pays, M.F.

    1997-01-01

    The purpose of the paper is to present a summary of the knowledge acquired at the R and D on resins used as composite matrix, the resistance to hydrolysis and mechanical strength of pipings made from these materials, and on quality control during manufacture. The initial targets concerning the material selection, industrial manufacturing and quality control procedures are presented. The paper describes the results obtained concerning the investigation of the damage produced by hydrolysis in polyesters, vinyl esters and epoxides, the influence of temperature, reinforcement and the mechanical characterization of the tubing manufacturing. The performances of the nondestructive testings (radiography, ultrasonic controls, differential interferometry and infrared thermography) used are also reported. The paper ends with a further research and testings programme. (author)

  17. RESEARCH METHODOLOGY FUNDAMENTALS OF THE UKRAINIAN PROCESSING AND MANUFACTURING ENTERPRISES ECONOMIC POTENTIAL

    Directory of Open Access Journals (Sweden)

    Yurii Gudz

    2016-11-01

    Full Text Available The purpose of the paper is to find the most appropriate application ways for simulating of the business activities of the manufacturing and processing agriculture enterprises dealing in the corruptive Ukrainian environment and to overcome the fundamental methodology contradictions to be able to perform more accurate results of the economic potential assessment despite the sophisticated defects inherent in current industry sector. Methodology includes publication research, interviews and practical comparison of the published statistic data and real production volume, returns and other indicators to be able to estimate actual potential of the target enterprises. The paper comes through the classical analytical methods showing their application pros and contras in highly corruptive environment with the strong trend of data falsification. Results of the survey show the basic economic methods applicable for the research activity of processing and manufacturing enterprises operating in the field of agriculture. The authors’ experience picks up the problem of the urgent need of new methodology among vast abstractive researching executed by the majority of the scientists as they have some contradictions when we apply them for the real industry segment or even an enterprise. Corruption affecting the general statistic data misrepresents the facts therefore current (classic methods are not able to show real economic trends in the industrial segment. So the authors persist on the significance of the corruption distortion considering e.g. to identify the actual macro- and microeconomic indicators, indexes and ratios we involve the stage researching system of multidimensional comparative analysis to rank received rating and find appropriate position for enterprise and as we cannot ignore a constantly growing shadow sector of Ukrainian economy we perform economic potential assessment of the target enterprise with the identification of the shadow sector with

  18. Modification Of The Manufacturing Process Of A Composite Structure- From System Needs To Elementary Tests

    Science.gov (United States)

    Touzard, Jerome; Veilleraud, Frederic; Collias, Michael

    2012-07-01

    The SYLDA5 structure (SYstème de Lancement Double Ariane 5 - Ariane 5 dual launch system) is a lightweight carbon composite structure designed and manufactured by Astrium Space Transportation at Les Mureaux premises. In order to improve the manufacturing process of t he SYLDA5, a proposal was made by SYLDA5 technical team to change the manufacturing process of the composite sandwich parts. The SYLDA5 is however one of the main contributors in the dynamic behaviour of the upper part of Ariane 5 launcher and plays an important role in the qualification of the launcher. The present paper describes the overall qualification logic retained, from System requirements to material tests and to global System qualification, in a classical V- type design cycle. It demonstrates the necessity to take into account System needs when modifying a part of it, especially when the System is qualified with actual characteristics of t he parts that may not be defined in product’s initial requirements.

  19. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing.

    Science.gov (United States)

    Dehurtevent, Marion; Robberecht, Lieven; Hornez, Jean-Christophe; Thuault, Anthony; Deveaux, Etienne; Béhin, Pascal

    2017-05-01

    The aim of this study was to compare the physical and mechanical properties of stereolithography (SLA)- manufactured alumina ceramics of different composition to those of subtractive- manufactured ceramics and to produce suitable dental crown frameworks. The physical and mechanical properties of a control and six experimental SLA ceramics prepared from slurries with small (S) and large (L) particles (0.46±0.03 and 1.56±0.04μm, respectively) and three dry matter contents (70%, 75%, 80%) were evaluated by dynamic rheometry, hydrostatic weighing, three3-point flexural strength measurements, and Weibull analyses, and by the micrometrics measurement of shrinkage ratio before and after the heat treatments. S75 was the only small particle slurry with a significantly higher viscosity than L70. The viscosity of the S80 slurry made it impossible to take rheological measurements. The viscosities of the S75 and S80 slurries caused deformations in the printed layers during SLA manufacturing and were excluded from further consideration. SLA samples with low dry matter content had significantly lower and densityflexural strengths. Only SLA samples with a large particle size and high dry matter content (L75 and L80) were similar in density and flexural strength to the subtractive- manufactured samples. The 95% confidence intervals of the Weibull modulus of the L80 ceramic were higher (no overlap fraction) than those of the L75 ceramic and were similar to the control (overlap fraction). The Weibull characteristics of L80 ceramic were higher than those of L75 ceramic and the control. SLA can be used to process suitable crown frameworks but shows results in anisotropic shrinkage. The hH High particle size and dry matter content of the L80 slurry allowed made it possible to produce a reliable ceramic by SLA manufacturing with an anisotropic shrinkage, and a density, and flexural strength similar to those of a subtractive-manufactured ceramic. SLA allowed made it possible to build

  20. Artificial neural networks in variable process control: application in particleboard manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.

    2009-07-01

    Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.