WorldWideScience

Sample records for current limiting elements

  1. High-temperature superconducting fault-current limiter - optimisation of superconducting elements

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the findings of a study initiated to continue the work of a DTI-LINK Collaborative Research Programme 'Enhancing the Properties of Bulk High Temperature Superconductors and their Potential Application as Fault Current Limiters (FCL). Details are given of computer modelling of the quenching process involving the transition from superconducting to normal conducting states undergone by the material when large currents are present. The design of compound elements, and a multi-element model are described along with FCL design covering distribution bus-coupler, embedded generator connection, larger generator connection, hazardous area safety, and interconnection to fault-prone network. The evaluation of thermal loss, test equipment and schedule, the optimised element, installed cost data, and the UK market are considered

  2. Passive fault current limiting device

    Science.gov (United States)

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  3. Study on current limiting characteristics of SFCL with two trigger current levels

    International Nuclear Information System (INIS)

    Lim, S.H.

    2010-01-01

    In this paper, the superconducting fault current limiter (SFCL) with two trigger current levels was suggested and its effectiveness through the analysis on the current limiting characteristics was described. The proposed SFCL, which consists of the triggering and the limiting components, can limit the fault current by generating the limiting impedance through two steps according to the amplitude of the initial fault current. In case that the fault happens, the lower initial fault current causes the only superconducting element of the triggering component to be quenched. On the other hand, the higher initial fault current makes both the superconducting elements comprising the triggering and the limiting components of the SFCL to be quenched, which contributes to the higher impedance of the SFCL. Therefore, the effective fault current limiting operation of the SFCL can be performed by generating the SFCL's impedance in proportion to the amplitude of the initial fault current. To confirm the current limiting operation of the proposed SFCL, the short-circuit tests of the SFCL according to the fault angle were carried out and its effective fault current limiting operations could be discussed.

  4. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  5. Refractive error assessment: influence of different optical elements and current limits of biometric techniques.

    Science.gov (United States)

    Ribeiro, Filomena; Castanheira-Dinis, Antonio; Dias, Joao Mendanha

    2013-03-01

    To identify and quantify sources of error on refractive assessment using exact ray tracing. The Liou-Brennan eye model was used as a starting point and its parameters were varied individually within a physiological range. The contribution of each parameter to refractive error was assessed using linear regression curve fits and Gaussian error propagation analysis. A MonteCarlo analysis quantified the limits of refractive assessment given by current biometric measurements. Vitreous and aqueous refractive indices are the elements that influence refractive error the most, with a 1% change of each parameter contributing to a refractive error variation of +1.60 and -1.30 diopters (D), respectively. In the phakic eye, axial length measurements taken by ultrasound (vitreous chamber depth, lens thickness, and anterior chamber depth [ACD]) were the most sensitive to biometric errors, with a contribution to the refractive error of 62.7%, 14.2%, and 10.7%, respectively. In the pseudophakic eye, vitreous chamber depth showed the highest contribution at 53.7%, followed by postoperative ACD at 35.7%. When optic measurements were considered, postoperative ACD was the most important contributor, followed by anterior corneal surface and its asphericity. A MonteCarlo simulation showed that current limits of refractive assessment are 0.26 and 0.28 D for the phakic and pseudophakic eye, respectively. The most relevant optical elements either do not have available measurement instruments or the existing instruments still need to improve their accuracy. Ray tracing can be used as an optical assessment technique, and may be the correct path for future personalized refractive assessment. Copyright 2013, SLACK Incorporated.

  6. Resistive current limiter with high-temperature superconductors. Final report

    International Nuclear Information System (INIS)

    Schubert, M.

    1995-12-01

    Fundamental results of the possibility of using high temperature superconductors (HTSC) in resistive fault current limiters are discussed. Measurement of the homogeneity of BSCCO-powder-in-tube materials were made. In addition, investigations of the transition from superconducting to normalconducting state under AC-current conditions were carried out. Based on these results, simulations of HTSC-materials on ceramic substrate were made and recent results are presented. Important results of the investigations are: 1. Current-limiting without external trigger only possible when the critical current density of HTSC exceeds 10 4 A/cm 2 . 2. Inhomogeneities sometimes cause problems with local destruction. This can be solved by parallel-elements or external trigger. 3. Fast current-limiting causes overvoltages which can be reduced by using parallel-elements. (orig.) [de

  7. Current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  8. Analysis on current limiting characteristics of a transformer type SFCL with two triggering current levels

    International Nuclear Information System (INIS)

    Lim, Sung-Hun; Ko, Seckcheol; Han, Tae-Hee

    2013-01-01

    Highlights: ► We suggested the transformer type SFCL with two triggering current levels. ► The short-circuit tests for the suggested SFCL was executed. ► The fault angle as the fault conditions to verify its operation was selected. ► The usefulness of the suggested SFCL was confirmed through the short-circuit test. -- Abstract: In this paper, the transformer type superconducting fault current limiter (SFCL) with two triggering current levels was suggested and its current limiting characteristics were analyzed. The structure of the suggested transformer type SFCL with two triggering current levels largely consists of two parts. One is the transformer with two magnetically coupled coils, which correspond to the primary winding and the secondary one connected with one high-T C superconducting (HTSC) element. The other is third coil, or, another secondary winding with one HTSC element, which is wound on the same iron core together with two coils. This suggested transformer type SFCL can limit the fault current by generating its limiting impedance with two different amplitudes, which are dependent on the initial amplitude of the fault current in case of the fault occurrence. To confirm the usefulness of the proposed SFCL, the current limiting tests of the SFCL according to the fault angle, one of the effective fault conditions to affect the amplitude of the initial fault current, were carried out and its effective limiting operations were discussed

  9. Test results of fault current limiter using YBCO tapes with shunt protection

    Energy Technology Data Exchange (ETDEWEB)

    Baldan, Carlos A; Lamas, Jerika S; Shigue, Carlos Y [Escola de Engenharia de Lorena, EEL USP, Lorena - SP (Brazil); Filho, Ernesto Ruppert, E-mail: cabaldan@gmail.co [Faculdade de Engenharia Eletrica, FEEC Unicamp, Campinas - SP (Brazil)

    2010-06-01

    A Fault Current Limiter (FCL) based on high temperature superconducting elements with four tapes in parallel were designed and tested in 220 V line for a fault current peak between 1 kA to 4 kA. The elements employed second generation (2G) HTS tapes of YBCO coated conductor with stainless steel reinforcement. The tapes were electrically connected in parallel with effective length of 0.4 m per element (16 elements connected in series) constituting a single-phase unit. The FCL performance was evaluated through over-current tests and its recovery characteristics under load current were analyzed using optimized value of the shunt protection. The projected limiting ratio achieved a factor higher than 4 during fault of 5 cycles without degradation. Construction details and further test results will be shown in the paper.

  10. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    Science.gov (United States)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample

  11. Recovery characteristics of flux-lock type superconducting fault current limiter

    International Nuclear Information System (INIS)

    Han, T.H.; Choi, H.S.; Lim, S.H.; Lee, N.Y.

    2007-01-01

    The flux-lock type superconducting fault current limiter (SFCL) has attractive characteristics that the current limiting level can be adjusted by a winding direction and the inductance ratio between two coils. We changed the winding direction and the number of coils to compare the resistive type SFCL with the flux-lock type SFCL. The initial limiting current (I ini ) and quench characteristic were dependent on the winding direction and the inductance ratio of two coils. As a winding number was increased from 21 to 42, I ini and quench characteristic were proportionally increased. In additive polarity winding, I ini was 10.2 A and the quench time (T q ) was 0.53 ms, which was faster than that of a subtractive polarity winding. The consumed energy and recovery characteristics in a superconducting element showed the same tendency. Recovery characteristics in the flux-lock type SFCL were dependent on the consumed energy of a superconducting element. The recovery time was related to a heat energy and it was represented as the consuming time of the heat energy. As the heat energy was shown in H 0.24I 2 Rt, the recovery time was shortened in the following order: a subtractive polarity winding, a resistive type and an additive polarity winding. It was known that the recovery time was proportional to a consumed energy of a superconducting element

  12. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  13. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  14. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  15. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)], E-mail: heydari@iust.ac.ir, E-mail: faramarz_faghihi@ee.iust.ac.ir, E-mail: reza_sharifi@ee.iust.ac.ir, E-mail: amirhosseinp@ee.iust.ac.ir

    2008-09-15

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  16. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  17. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-01-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT

  18. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  19. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  20. Characterization of high-current, high-temperature superconductor current lead elements

    International Nuclear Information System (INIS)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures

  1. AC over-current test results of YBCO conductor for YBCO power transformer with fault current limiting function

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The single-layer coils with a diameter of 250 mm and 12 turns were manufactured with YBCO tapes with a CuNi- or Cu-Tape. The AC over-current tests were carried out in subcooled liquid nitrogen at 66 K and 74 K to develop power transformers with current limiting function. The AC over-current was two to seven times larger than the I c of conductor and it was reduced to the same level of I c . The I c of model coils did not degrade. The test results showed the possibility of YBCO superconducting transformers with current limiting function. We are developing elemental technology for 66 kV/6.9 kV 20 MVA-class YBCO power transformer. The YBCO transformer is considered to have a possibility to stabilize the power system by improving function of fault current limiting. Current limiting behavior functions over critical current flows. There is a possibility that superconducting characteristic may be damaged due to increase in temperature of YBCO tapes. Therefore, we have taken a measure to combine YBCO tape with CuNi tape or Cu Tape. We manufactured model coils using these conductors and conducted the AC over-current tests. The test current was two to seven times larger than the I c of conductor and it was damped with time from its maximum value according to the generation of conductor resistance. We verified the effectiveness of current limiting characteristics. In these tests, the I c of model coil did not degrade. We consider this conductor to be able to withstand AC over-current with the function of current limiting.

  2. Analysis on fault current limiting and recovery characteristics of a flux-lock type SFCL with an isolated transformer

    International Nuclear Information System (INIS)

    Ko, Seckcheol; Lim, Sung-Hun; Han, Tae-Hee

    2013-01-01

    Highlights: ► Countermeasure to reduce the power burden of HTSC element consisting of the flux-lock type SFCL was studied. ► The power burden of HTSC element could be decreased by using the isolated transformer. ► The SFCL designed with the additive polarity winding could be confirmed to cause less power burden of the HTSC element. -- Abstract: The flux-lock type superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes. However, the superconducting element comprising the flux-lock type SFCL can be destructed when the high fault current passes through the SFCL. Therefore, the countermeasure to control the fault current and protect the superconducting element is required. In this paper, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, was proposed and the short-circuit experimental device to analyze the fault current limiting and the recovery characteristics of the flux-lock type SFCL with the isolated transformer were constructed. Through the short-circuit tests, the flux-lock type SFCL with the isolated transformer was confirmed to perform more effective fault current limiting and recovery operation compared to the flux-lock type SFCL without the isolated transformer from the viewpoint of the quench occurrence and the recovery time of the SFCL

  3. Adjustable direct current and pulsed circuit fault current limiter

    Science.gov (United States)

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  4. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    Science.gov (United States)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  5. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  6. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    International Nuclear Information System (INIS)

    P. Bernot

    2005-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO 2 as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with 231 Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise

  7. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  8. LANSCE Beam Current Limiter (XL)

    International Nuclear Information System (INIS)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device

  9. Superconducting dc fault current limiter

    International Nuclear Information System (INIS)

    Cointe, Y.

    2007-12-01

    Within the framework of the electric power market liberalization, DC networks have many interests compared to alternative ones, but their protections need to use new systems. Superconducting fault current limiters enable by an overstepping of the critical current to limit the fault current to a preset value, lower than the theoretical short-circuit current. For these applications, coated conductors offer excellent opportunities. We worked on the implementation of these materials and built a test bench. We carried out limiting experiments to estimate the quench homogeneity at various short-circuit parameters. An important point is the temperature measurement by deposited sensors on the ribbon, results are in good correlation with the theoretical models. Improved quench behaviours for temperatures close to the critical temperature have been confirmed. Our results enable to better understand the limitation mechanisms of coated conductors. (author)

  10. Limiting currents in superconducting composites

    International Nuclear Information System (INIS)

    Keilin, V.E.; Romanovskii, V.R.

    1992-01-01

    In this paper the results of numerical and analytical calculations of the process of current charging into a round superconducting composite with properties homogenized over cross-section are presented. In the numerical solution taken was into account a common proceeding of the thermal and electromagnetic processes. A wire with real volt-ampere characteristics approximated by exponential dependence was considered. The calculations carried out at various rates of current charging, voltampere characteristics, matrix materials, heat transfer coefficients and other parameters showed: the existence of characteristic limiting value of current below which the wire remains in a superconducting state if the current charging ceases and above which changes into a normal state; this current is somewhat less than a quench current; the existence of finite value for limiting current at any low heat transfer from a surface. The analytical solution of the problem is given. It permitted to write the stability criterion from which the dependence of limiting currents on initial parameters follows. The wire nonisothermality, its heat capacity, thermal and electric conductivities are taken into account additionally, as compared to results published earlier

  11. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  12. Self-triggering superconducting fault current limiter

    Science.gov (United States)

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  13. Recognizing limitations in eddy current testing

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.

    1981-11-01

    This paper addresses known limitations and constraints in eddy current nondestructive testing. Incomplete appreciation for eddy current limitations is believed to have contributed to both under-utilization and misapplication of the technique. Neither situation need arise if known limitations are recognized. Some, such as the skin depth effect, are inherent to electromagnetic test methods and define the role of eddy current testing. Others can be overcome with available technology such as surface probes to find circumferential cracks in tubes and magnetic saturation of ferromagnetic alloys to eliminate permeability effects. The variables responsible for limitations in eddy current testing are discussed and where alternative approaches exist, these are presented. Areas with potential for further research and development are also identified

  14. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  15. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  16. Optimal design of superconducting fault detector for superconductor triggered fault current limiters

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.; Park, K.B.; Lee, B.W.

    2008-01-01

    We have designed and tested a superconducting fault detector (SFD) for a 22.9 kV superconductor triggered fault current limiters (STFCLs) using Au/YBCO thin films. The SFD is to detect a fault and commutate the current from the primary path to the secondary path of the STFCL. First, quench characteristics of the Au/YBCO thin films were investigated for various faults having different fault duration. The rated voltage of the Au/YBCO thin films was determined from the results, considering the stability of the Au/YBCO elements. Second, the recovery time to superconductivity after quench was measured in each fault case. In addition, the dependence of the recovery characteristics on numbers and dimension of Au/YBCO elements were investigated. Based on the results, a SFD was designed, fabricated and tested. The SFD successfully detected a fault current and carried out the line commutation. Its recovery time was confirmed to be less than 0.5 s, satisfying the reclosing scheme in the Korea Electric Power Corporation (KEPCO)'s power grid

  17. Fault-current limiter using a superconducting coil

    International Nuclear Information System (INIS)

    Boenig, H.J.; Paice, D.A.

    1982-01-01

    A novel circuit, consisting of solid-state diodes and a biased superconducting coil, for limiting the fault currents in three-phase ac systems is presented. A modification of the basic circuit results in a solid-state ac breaker with current-limiting features. The operating characteristics of the fault-current limiter and the ac breaker are analyzed. An optimization procedure for sizing the superconducting coil is derived

  18. Using of explosive technologies for development of a compact current-limiting device for operation on 110 kV class systems

    Science.gov (United States)

    Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.

    2016-11-01

    This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.

  19. Using of explosive technologies for development of a compact current-limiting device for operation on 110 kV class systems

    International Nuclear Information System (INIS)

    Shurupov, A V; Shurupov, M A; Kozlov, A A; Kotov, A V

    2016-01-01

    This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation. (paper)

  20. A General Finite Element Scheme for Limit State Analysis and Optimization

    DEFF Research Database (Denmark)

    Damkilde, Lars

    1999-01-01

    Limit State analysis which is based on a perfect material behaviour is used in many different applications primarily within Structural Engineering and Geotechnics. The calculation methods have not reached the same level of automation such as Finite Element Analysis for elastic structures....... The computer based systems are more ad hoc based and are typically not well-integrated with pre- and postprocessors well-known from commercial Finite Element codes.A finite element based formulation of limit state analysis is presented which allows an easy integration with standard Finite Element codes...... for elastic analysis. In this way the user is able to perform a limit state analysis on the same model used for elastic analysis only adding data for the yield surface.The method is based on the lower-bound theorem and uses stress-based elements with a linearized yield surface. The mathematical problem...

  1. Fault current limiter using bulk oxides superconductors

    International Nuclear Information System (INIS)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M.; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R.

    1998-01-01

    We study the limitation possibilities of bulk Bi high T c materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.)

  2. Limiting currents of overcompensated electron beams

    International Nuclear Information System (INIS)

    Malafaev, V.A.

    1990-01-01

    A possibility of producing recompensated electron beam and increasing its limiting currents in the magnetic field is experimentally investigated. It is shown that such a possibility is realized when the beam is surrounded by a cylindrical net placed into the tube located under the positive potential relative to the net. In this case an increase of limiting current at the expense of increasing the ion life time, takes place. Current, exceeding the Pierce threshold 1.5 times, is obtained

  3. Fault current limiter

    Science.gov (United States)

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  4. Dissolved Concentration Limits of Radioactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  5. Dissolved Concentration Limits of Radioactive Elements

    International Nuclear Information System (INIS)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  6. Development of a prototype solid state fault current limiting and interrupting device for low voltage distribution networks.

    OpenAIRE

    Ahmed, M.; Putrus, G. A.; Ran, L.; Penlington, R.

    2006-01-01

    This paper describes the development of a solid-state Fault Current Limiting and Interrupting Device (FCLID) suitable for low voltage distribution networks. The main components of the FCLID are a bidirectional semiconductor switch that can disrupt the short-circuit current, and a voltage clamping element that helps in controlling the current and absorbing the inductive energy stored in the network during current interruption. Using a hysteresis type control algorithm, the short-circuit curren...

  7. Z limit of elements in the universe

    International Nuclear Information System (INIS)

    Yoshikawa, S.

    1985-02-01

    From a general consideration of atomic models, the Z of elements cannot exceed 1/α, where α is the fine structure constant. Combined with a knowledge of nuclear physics, we may conclude that the limit on strong interaction is that no long-lived nucleus exists beyond Z = 1/α

  8. A magnetic vector potential corresponding to a centrally conservative current element force

    International Nuclear Information System (INIS)

    Minteer, Timothy M

    2015-01-01

    The magnetic vector potential (Coulomb gauge) is commonly introduced in magnetostatic chapters of electromagnetism textbooks. However, what is not typically presented are the infinite subsets of the Coulomb gauge associated with differential current elements. This work provides a comparison of various differential magnetic vector potentials, differential magnetostatic potential energies, as well as differential current element forces as a collective work not available elsewhere. The differential magnetic vector potential highlighted in this work is the Coulomb–Ampère gauge corresponding to the centrally conservative Ampère current element force. The centrally conservative force is modeled as a mean valued continual exchange of energy carrier mediators accounting for both the differential magnetostatic potential energy and Ampère current element force of two differential current elements. (paper)

  9. Problems and limitations of eddy current tube inspection

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Khairul Anuar Mohd Salleh; Mohamed Hairul Hasmoni

    2003-01-01

    Incomplete appreciation of eddy current limitations has contributed to both under-utilization and misapplication of the technique. A brief review on the physical principle of eddy current is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The variables responsible for limitation in eddy current tube inspection are discussed and alternative approaches, where they exist, are suggested. (Author)

  10. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  11. Maximum time-dependent space-charge limited diode currents

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  12. The limiting current in a one-dimensional situation: Transition from a space charge limited to magnetically limited flow

    International Nuclear Information System (INIS)

    Kumar, Raghwendra; Biswas, Debabrata

    2008-01-01

    For a nonrelativistic electron beam propagating in a cylindrical drift tube, it is shown that the limiting current density does not saturate to the electrostatic one-dimensional (1D) estimate with increasing beam radius. Fully electromagnetic particle-in-cell (PIC) simulation studies show that beyond a critical aspect ratio, the limiting current density is lower than the 1D electrostatic prediction. The lowering in the limiting current density is found to be due to the transition from the space charge limited to magnetically limited flow. An adaptation of Alfven's single particle trajectory method is used to estimate the magnetically limited current as well as the critical radius beyond which the flow is magnetically limited in a drift tube. The predictions are found to be in close agreement with PIC simulations

  13. Forward transformation for high resolution eddy current tomography using whitney elements

    International Nuclear Information System (INIS)

    Szewczyk, R.; Salach, J.; Nowicki, M.; Ruokolainen, J.; Raback, P.

    2014-01-01

    Tomographic methods are intensively developed field of non-destructive testing. The main advantage of this type of NDT method is 3D information concerning the shape of the discontinuities in investigated material. On the other hand, the most common tomography method utilizing X-rays creates the significant risks typical to X-ray technique. As a result, Xray tomography is difficult to use in industry. Introduced to the industry in 2007, the eddy current tomography is safe and cost effective. However, in opposite to X-ray tomography, eddy current tomography requires sophisticated and time consuming inverse transformation creating 2D or 3D view of discontinuities. For this reason solutions presented previously are focused on 2D inverse transformation and exhibit limited resolution. For eddy current tomography, the forward tomographic transformation is most important, which is the base of inverse transformation. This paper presents the novel, fast and cost-effective solution utilizing Whitney elements method for such forward transformation. As a result, new possibilities of development in the area of high resolution 3D eddy current tomography are created. (authors)

  14. Current limiting capability of diffused resistors

    International Nuclear Information System (INIS)

    Shedd, W.; Cappelli, J.

    1979-01-01

    An experimental evaluation of the current limiting capability of dielectrically isolated diffused resistors at transient ionizing dose rates up to 6*10 12 rads(Si)/sec is presented. Existing theoretical predictions of the transient response of diffused resistors are summarized and compared to the experimentally measured values. The test resistors used allow the effects of sheet resistance and geometry on the transient response to be determined. The experimental results show that typical dielectrically isolated diffused resistors maintain adequate current limiting capability for use in radiation hardened integrated circuits

  15. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  16. The current matrix elements from HAL QCD method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  17. Superconducting fault current limiter for railway transport

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M., E-mail: LMFisher@niitfa.ru; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  18. Superconducting fault current limiter for railway transport

    International Nuclear Information System (INIS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-01-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered

  19. MgB2-based superconductors for fault current limiters

    Science.gov (United States)

    Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.

    2017-02-01

    A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.

  20. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.

    Science.gov (United States)

    Merchant, Sabeeha S; Helmann, John D

    2012-01-01

    Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. Copyright © 2012

  1. Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer

    International Nuclear Information System (INIS)

    Im, I.G.; Choi, H.S.; Jung, B.I.

    2013-01-01

    Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types

  2. Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer

    Energy Technology Data Exchange (ETDEWEB)

    Im, I.G., E-mail: asiligo@gmail.com; Choi, H.S., E-mail: hyosang@chosun.ac.kr; Jung, B.I.

    2013-11-15

    Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types.

  3. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  4. Current limiting experiment with 600 V/100A rectification type superconducting fault current limiter; 600 V-100A kyu seiryugata chodendo genryuki no genryu shiken

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, J.; Tsurunaga, K.; Urata, M. [Toshiba Corp., Tokyo (Japan); Okuma, T.; Sato, Y.; Iwata, Y. [Tokyo Electric Power Co., Inc., Tokyo (Japan)

    1999-06-07

    The rectification type current limiter with the current-limiting system of the new type which combined rectifier circuits with the direct current reactor has been proposed until now, and it has succeeded in the current-limiting test by the normal conduction reactor by the 6.6kV class model vessel. Since the loss of the conductor becomes fundamentally the zero, in the same current limiter, by using superconducting wire rod, because direct current always flows in the reactor, making into low-loss becomes possible. In this report, this paper describes cut-off characteristic of 600V/100A rectification type superconductive current limiter using the metal type superconductive conductor. (NEDO)

  5. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle

  6. Reverse engineering of inductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Pina, J M; Neves, M Ventim; Rodrigues, A L [Centre of Technology and Systems Faculdade de Ciencias e Tecnologia, Nova University of Lisbon Monte de Caparica, 2829-516 Caparica (Portugal); Suarez, P; Alvarez, A, E-mail: jmmp@fct.unl.p [' Benito Mahedero' Group of Electrical Applications of Superconductors Escuela de IngenierIas Industrials, University of Extremadura Avenida de Elvas s/n, 06006 Badajoz (Spain)

    2010-06-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  7. Reverse engineering of inductive fault current limiters

    International Nuclear Information System (INIS)

    Pina, J M; Neves, M Ventim; Rodrigues, A L; Suarez, P; Alvarez, A

    2010-01-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  8. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  9. Investigations of current limiting properties of the MgB{sub 2} wires subjected to pulse overcurrents in the benchtop tester

    Energy Technology Data Exchange (ETDEWEB)

    Ye Lin [Interdisciplinary Research Center (IRC) in Superconductivity, Department of Engineering, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Majoros, M [Laboratories for Applied Superconductivity and Magnetism, Ohio State University, Columbus, OH 43210 (United States); Campbell, A M [Interdisciplinary Research Center (IRC) in Superconductivity, Department of Engineering, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T [Interdisciplinary Research Center (IRC) in Superconductivity, Department of Engineering, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Harrison, S [Scientific Magnetics, Culham Science Centre, Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Sargent, P [Diboride Conductors Ltd, Cambridge CB1 3QJ (United Kingdom); Haslett, M [Diboride Conductors Ltd, Cambridge CB1 3QJ (United Kingdom); Husband, M [Strategic Research Center (SRC)-Electrical Engineering, Rolls-Royce Plc., Derby DE24 8BJ (United Kingdom)

    2007-04-15

    A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB{sub 2} wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB{sub 2} samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB{sub 2} for future superconducting fault current limiter (SFCL) applications.

  10. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  11. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    Science.gov (United States)

    Chung, D. C.; Choi, H. S.; Lee, N. Y.; Nam, G. Y.; Cho, Y. S.; Sung, T. H.; Han, Y. H.; Kim, B. S.; Lim, S. H.

    2007-10-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 × 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 × 2 MFCL module and a 3 × 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m × n MFCL.

  12. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    International Nuclear Information System (INIS)

    Chung, D.C.; Choi, H.S.; Lee, N.Y.; Nam, G.Y.; Cho, Y.S.; Sung, T.H.; Han, Y.H.; Kim, B.S.; Lim, S.H.

    2007-01-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 x 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 x 2 MFCL module and a 3 x 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m x n MFCL

  13. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire

    International Nuclear Information System (INIS)

    Smith, A C; Pei, X; Oliver, A; Husband, M; Rindfleisch, M

    2012-01-01

    A prototype resistive superconducting fault current limiter (SFCL) was developed using single-strand round magnesium diboride (MgB 2 ) wire. The MgB 2 wire was wound with an interleaved arrangement to minimize coil inductance and provide adequate inter-turn voltage withstand capability. The temperature profile from 30 to 40 K and frequency profile from 10 to 100 Hz at 25 K were tested and reported. The quench properties of the prototype coil were tested using a high current test circuit. The fault current was limited by the prototype coil within the first quarter-cycle. The prototype coil demonstrated reliable and repeatable current limiting properties and was able to withstand a potential peak current of 372 A for one second without any degradation of performance. A three-strand SFCL coil was investigated and demonstrated scaled-up current capacity. An analytical model to predict the behaviour of the prototype single-strand SFCL coil was developed using an adiabatic boundary condition on the outer surface of the wire. The predicted fault current using the analytical model showed very good correlation with the experimental test results. The analytical model and a finite element thermal model were used to predict the temperature rise of the wire during a fault. (paper)

  14. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)

    2004-04-01

    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  15. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    Directory of Open Access Journals (Sweden)

    Sunardi Sunardi

    2010-06-01

    Full Text Available Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec.  At this research condition of neutron generator was set at current 1 mA that produced neutron flux about 5,47.107 n/cm2.s and  experimental result shown that the limit detection for the elements N, P, K, Si, Al, Fe, Cu, Cd are  2,44 ppm, 1,88 ppm, 2,15 ppm, 1,44 ppm, 1,26 ppm, 1,35 ppm, 1,05 ppm, 2,99 ppm, respectively.  The data  indicate that the limit detection or sensitivity of appliance of neutron generator to analyze the element is very good, which is feasible to get accreditation AANC laboratory using neutron generator.   Keywords: limit detection, AANC, neutron generator

  16. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  17. Characterization of superconducting coil for fault current limitation

    International Nuclear Information System (INIS)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres; Gomes Junior, George; Amorim, Helio Salim

    2010-01-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  18. Validation of Finite-Element Models of Persistent-Current Effects in Nb3Sn Accelerator Magnets

    International Nuclear Information System (INIS)

    Wang, X.; Ambrosio, G.; Chlachidze, G.; Collings, E. W.; Dietderich, D. R.; DiMarco, J.; Felice, H.; Ghosh, A. K.; Godeke, A.; Gourlay, S. A.; Marchevsky, M.; Prestemon, S. O.; Sabbi, G.; Sumption, M. D.; Velev, G. V.; Xu, X.; Zlobin, A. V.

    2015-01-01

    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb 3 Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnet designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed

  19. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  20. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  1. Fault current limiter with shield and adjacent cores

    Science.gov (United States)

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  2. Market potential of superconductor current limiters; Marktpotential von supraleitenden Strombegrenzern

    Energy Technology Data Exchange (ETDEWEB)

    Lakner, M.; Braun, D. [ABB Schweiz AG, Corporate Research, Baden-Daettwil (Switzerland); Schnyder, G.; Mauchle, P. [Schnyder Ingenieure AG, Huenenberg (Switzerland)

    2003-07-01

    This final report for the Swiss Federal Office of Energy describes the two concepts - 'resistive' and 'inductive' - used for Superconducting Fault Current Limiters (SCFCL) that utilise the transition from zero to finite resistance to limit short-circuit currents. The main advantages of SCFCL are compared to other current-limiting technologies: They can limit any type of prospective fault current, operate fail-safe, be self-triggered and self-restoring. Their main disadvantage - the cooling effort necessary - is also discussed. The application possibilities of SCFCL were investigated by simulating the impact on utility and industrial grids. Applications of SCFCL such as the coupling of medium-voltage grids and their use in series with a circuit-breaker on the secondary side of a substation transformer are discussed. It is also shown that, by using fault current limiters, considerable cost savings can be made, especially in connection with new installations or the extension of existing plants.

  3. Perspectives on setting limits for RF contact currents: a commentary.

    Science.gov (United States)

    Tell, Richard A; Tell, Christopher A

    2018-01-15

    Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the

  4. Development of an air coil superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Naeckel, Oliver

    2016-07-01

    Electrical power grids are the lifeline of technical infrastructure and fundamental for industry and modern lives. Fault Currents can disrupt the continuous supply of electrical energy, cause instable grid conditions and damage electrical equipment. The Air Coil Superconducting Fault Current Limiter (AC-SFCL) is a measure to effectively limit fault currents. The concept is investigated and proven experimentally by designing, building and successfully testing a 60 kV, 400 V, z=6% demonstrator.

  5. Superconductive AC current limiter

    International Nuclear Information System (INIS)

    Bekhaled, M.

    1987-01-01

    This patent describes an AC current limiter for a power transport line including a power supply circuit and feeding a load circuit via an overload circuit-breaker member. The limiter comprises a transformer having a primary winding connected in series between the power supply circuit and the load circuit and at least one secondary winding of superconductor material contained in a cryogenic enclosure and short-circuited on itself. The leakage reactance of the transformer as seen from the primary winding is low, and the resistance of the at least one secondary winding when in the non-superconducting state and as seen from the primary is much greater than the nominal impedance of the transformer. The improvement whereby the at least one secondary winding of the transformer comprises an active winding in association with a set of auxiliary windings. The set of auxiliary windings is constituted by an even number of series-connected auxiliary windings wound in opposite directions, with the total number of turns in one direction being equal to the total number of turns in the opposite direction, and with the thermal capacity of the secondary winding as a whole being sufficiently high to limit the expansion thereof to a value which remains small during the time it takes the circuit-breaking member to operate

  6. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  7. Finite-element 3D simulation tools for high-current relativistic electron beams

    Science.gov (United States)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  8. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  9. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  10. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  11. CURRENT-VOLTAGE CURVES FOR TREATING EFFLUENT CONTAINING HEDP: DETERMINATION OF THE LIMITING CURRENT

    Directory of Open Access Journals (Sweden)

    T. Scarazzato

    2015-12-01

    Full Text Available Abstract Membrane separation techniques have been explored for treating industrial effluents to allow water reuse and component recovery. In an electrodialysis system, concentration polarization causes undesirable alterations in the ionic transportation mechanism. The graphic construction of the current voltage curve is proposed for establishing the value of the limiting current density applied to the cell. The aim of this work was to determine the limiting current density in an electrodialysis bench stack, the function of which was the treatment of an electroplating effluent containing HEDP. For this, a system with five compartments was used with a working solution simulating the rinse waters of HEDP-based baths. The results demonstrated correlation between the regions defined by theory and the experimental data.

  12. Effects of Birkeland current limitation on high-latitude convection patterns

    International Nuclear Information System (INIS)

    Marklund, G.T.; Raadu, M.A.; Lindqvist, P.-A.

    1984-12-01

    It is shown how the high-latitude convection pattern may be mo- dified by substorm-enhanced polarization electric fields. These are generated whenever the flow of those Birkeland currents which are associated with ionospheric conductivity gradients is limited. Such Birkeland currents are fed mainly by the enhanced Pedersen current in the evening and morning sectors of the auro- ral oval and by the enhanced Hall current around local midnight. As the current limitation increases, the ionospheric potential, represented here by a symmetric two-cell pattern, will rotate clockwise and deform, just as the associated Birkeland current distribution. The resulting patterns are shown to agree well with observations. A pronounced westward intrusion of the equi- potential contours occurs in the auroral oval, and may be asso- ciated with the Westward Travelling Surge. This feature does not however require any assumed longitudinal conductivity gradi- ents. Rather it falls out naturally when the limitation of the enhanced Pedersen current is taken into account. (Author)

  13. From the Chloride of Tungsten to the Upper Limit of the Periodic Table of Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2012-01-01

    Full Text Available Experimental study of the physical chemical properties and the technology of manufac- turing chemically clean hexachloride of tungsten has led to unexpected results. It was found that each element of the Periodic Table of Elements has its own hyperbola in the graph “molecular mass — content of the element”. The hyperbolas differ according to the atomic mass of the elements. Lagrange’s theorem shows that the tops of the hyper- bolas approach to an upper limit. This upper limit means the heaviest element, which is possible in the Table. According to the calculation, its atomic mass is 411.66, while its number is 155.

  14. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    International Nuclear Information System (INIS)

    Gineys, N.; Aouad, G.; Sorrentino, F.; Damidot, D.

    2011-01-01

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C 3 S, C 2 S, C 3 A and C 4 AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C 3 S, 18% C 2 S, 8% C 3 A and 8% C 4 AF). The threshold limits for Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO 2 ) and Sn reacted with lime to form a calcium stannate (Ca 2 SnO 4 ). Cu changed the crystallisation process and affected therefore the formation of C 3 S. Indeed a high content of Cu in clinker led to the decomposition of C 3 S into C 2 S and of free lime. Zn, in turn, affected the formation of C 3 A. Ca 6 Zn 3 Al 4 O 15 was formed whilst a tremendous reduction of C 3 A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.

  15. Long wavelength limit of the current convective instability

    International Nuclear Information System (INIS)

    Huba, J.D.

    1984-01-01

    A linear theory is presented of the current convective instability in the long wavelength limit, i.e., kL >ω) and inertial (ν/sub i/n>>ω) limits where ω is the wave frequency and ν/sub i/n is the ion-neutral collision frequency. It is shown that the growth rate scales as k in the collisional limit and as k/sup 2/3/ in the inertial limit. The analytical solutions are compared to exact numerical solutions, and very good agreement is found. Applications to the auroral ionosphere are discussed

  16. Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Using 3D Finite-Element Limit Analyses

    International Nuclear Information System (INIS)

    Jang, Hyun Min; Cho, Doo Ho; Kim, Young Jin; Huh, Nam Su; Shim, Do Jun; Choi, Young Hwan; Park, Jung Soon

    2011-01-01

    On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions

  17. Eddy current inspection on heat exchanger tubes - problems and limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz; Zainal Abidin Mohamed; Hairul Hasmoni Khairul Anuar; Mohd Salleh; Mahmood Dollah

    2005-01-01

    This paper focus on problems associated to eddy current inspection of heat exchanger tubes. A brief review on heat exchanger design and operation is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The limitation of the eddy current probe and equipment pertinent to the inspection are identified and areas of improvement are discussed. (Author)

  18. Construction and assessment of hierarchical edge elements for three-dimensional computations of eddy currents

    Energy Technology Data Exchange (ETDEWEB)

    Midtgaard, Ole-Morten

    1997-12-31

    This thesis considers the feasibility of doing calculations to optimize electrical machines without the need to build expensive prototypes. It deals with the construction and assessment of new, hierarchical, hexahedral edge elements for three-dimensional computations of eddy currents with the electric vector potential formulation. The new elements, five in all, gave up to second-order approximations for both the magnetic field and the current density. Theoretical arguments showed these elements to be more economical for a given polynomial order of the approximated fields than the serendipity family of nodal elements. Further it was pointed out how the support of a source field computed by using edge elements could be made very small provided that a proper spanning tree was used in the edge element mesh. This was exploited for the voltage forcing technique, where source fields were used as basis functions, with unknown total currents in voltage forced conductors as degrees of freedom. The practical assessment of the edge elements proved the accuracy to improve with increasing polynomial order, both for local and global quantities. The most economical element was, however, one giving only complete first-order approximations for both fields. Further, the edge elements turned out to be better than the nodal elements also in practice. For the voltage forcing technique, source field basis functions which had small support, resulted in large reduction of the CPU-time for solving the main equation system, compared to source fields which had large support. The new elements can be used in a p-type adaptive scheme, and they should also be applicable for other tangentially continuous field problems. 67 refs., 34 figs., 10 tabs.

  19. Determinants of sick-leave length: still limited to diagnosis elements.

    Science.gov (United States)

    Lévy, Yvan; Denis, Angélique; Fassier, Jean-Baptiste; Kellou, Nadir; Schott, Anne-Marie; Letrilliart, Laurent

    2017-12-01

    Sickness certification implies that a health problem impairs ability to work. However, its assessment is seldom performed by physicians. Our objective was, therefore, to assess the specific influence of functional and environmental limitations on the length of sick-leave prescriptions. We conducted a cross-sectional study in French general teaching practices and recorded 353 initial sick-leave certifications. For each of them, the functional and environmental limitations were collected using the ATCIF questionnaire, derived from the International Classification of Functioning. Data analysis was based on a linear regression multivariate model. Among the functional limitations, "pain" was the main body function impairment (22% of impairments) and "mobility" the main activity limitation (48%). An environmental barrier was identified in 39% of sick-listed patients, mainly relating to "products and technology" (20%), which refers to workplace factors. The prescription was longer in cases of activity limitations relating to "mobility" and in cases of environmental barriers relating to "products and technology". The multivariate model explained 27% of the variability of sick-leave length through diagnosis elements and only 7% through functional and contextual elements. In sick-leave prescription, a functional and contextual approach, in addition to the traditional diagnosis-based approach, could better support patients' shared understanding and follow-up, and accountability towards health authorities. Implication for Rehabilitation Although sickness certification implies that a health problem impairs ability to work, decision on sick-leave length in general practice is primarily based on diagnosis. A more functional and contextual approach could better support patients' and other health professionals' shared understanding and follow-up, and accountability towards health authorities. Such evolution requires a change of paradigm in medical education, and the way of

  20. A micro-power LDO with piecewise voltage foldback current limit protection

    International Nuclear Information System (INIS)

    Wei Hailong; Liu Youbao; Guo Zhongjie; Liao Xue

    2012-01-01

    To achieve a constant current limit, low power consumption and high driving capability, a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented. The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA. To increase the loop stability of the proposed LDO, a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole, and a zero is designed for the purpose of the second pole phase compensation. The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA, the constant limit current under a high drop-out voltage is 440 mA, and the maximum load current under a low drop-out voltage is up to 800 mA. In addition, the quiescent current of the LDO is only 7 μA, the load regulation is about 0.56% on full scale, the line regulation is about 0.012%/V, the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA. (semiconductor integrated circuits)

  1. Determination of the stability limit of a thermoacoustic engine by means of finite elements

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2013-01-01

    A finite element model is presented to obtain the stability limit of, as an example, 2D standing wave thermoacoustic engine. The stability limit is the required heating to obtain self-sustained (thermo)acoustic oscillations. The method used to obtain the stability limit is not restricted to the

  2. On the Necessity of Using Element No.155 in the Chemical Physical Calculations: Again on the Upper Limit in the Periodic Table of Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2010-10-01

    Full Text Available It is shown how the properties of different elements of the Periodic System of Elements can be obtained using the properties of the theoretically predicted heaviest element No.155 (it draws the upper principal limit of the Table, behind which stable elements cannot exist. It is suggested how the properties of element No.155 can be used in the synthesis of superheavy elements. An analysis of nuclear reactions is also produced on the same basis.

  3. Super conducting fault current limiter and inductor design

    International Nuclear Information System (INIS)

    Rogers, J.; Boenig, H.; Chowdhuri, P.; Schermer, R.; Weldon, D.; Wollan, J.

    1983-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components--superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator--included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits

  4. Nonequivalence of the magnetostatic potential energy corresponding to the Ampère and Grassmann current element force formulas

    International Nuclear Information System (INIS)

    Minteer, Timothy M

    2013-01-01

    The equivalence of the Ampère and Grassmann (Biot–Savart/Lorentz) current element force formulas is well established. However, when the magnetostatic potential energy corresponding to these force formulas is evaluated, the formulas are found to be nonequivalent. The historical current element force formulas are first presented. The magnetostatic potential energy corresponding to these historical current element force formulas are then analysed. The end result establishes the Grassmann and Neumann current element force formulas as the only commonly referenced formulas giving the correct magnetostatic potential energy for circuital currents. (paper)

  5. Reversible thermal fusing model of carbon black current-limiting thermistors

    International Nuclear Information System (INIS)

    Martin, James E.; Heaney, Michael B.

    2000-01-01

    Composites of carbon black particles in polyethylene exhibit an unusually rapid increase in resistivity as the applied electric field is increased, making this material commercially useful as current-limiting thermistors, also known as automatically resettable fuses. In this application the composite is in series with the circuit it is protecting: at low applied voltages the circuit is the load, but at high applied voltages the composite becomes the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network of nonlinear resistors. Each resistor has a resistance that depends explicitly and reversibly on its instantaneous power dissipation. This model predicts that in the soft fusing, or current-limiting, regime, where the current through the composite decreases with increasing voltage, a platelike dissipation instability develops normal to the applied field, in agreement with experimental observations, which is solely due to fluctuations in the microstructure

  6. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  7. Current limitations and challenges in nanowaste detection, characterisation and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Part, Florian; Zecha, Gudrun [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria); Causon, Tim [Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna (Austria); Sinner, Eva-Kathrin [Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria)

    2015-09-15

    Highlights: • First review on detection of nanomaterials in complex waste samples. • Focus on nanoparticles in solid, liquid and gaseous waste samples. • Summary of current applicable methods for nanowaste detection and characterisation. • Limitations and challenges of characterisation of nanoparticles in waste. - Abstract: Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while

  8. INVESTIGATION OF PROPERTIES OF CURRENT COLLECTOR ELEMENTS AND THEIR EFFECT ON THE PERFORMANCE OF TRIBOSYSTEM «CONTACT WIRE - CURRENT COLLECTOR ELEMENT»

    Directory of Open Access Journals (Sweden)

    Yu. L. Bolshakov

    2015-11-01

    Full Text Available Purpose. The paper is devoted to the detailed analysis of interrelations at the contact point of friction pair «contact wire – current collector insert». In the work it is necessary: 1 to examine quality of manufacturing of specimens of current collector elements from different manufacturers; 2 to narrow the range of hardness for carbon inserts; 3 to develop a technique of sorting carbon current collector inserts for the structural parameters. Methodology. The executed work was based on the use of the theory of reliability of technical systems and electromechanical processes. Findings. The paper studies the interrelation at the contact point of friction pair «contact wire – current col lector insert», the connection was established between the hardness and electrical resistivity. It is proposed to narrow the range of carbon inserts hardness. The method of sorting coal collector inserts in hardness was developed, and the research has revealed the discrepancy of current collector inserts with existing regulations. It was proposed to equip the pantographs slide with current collector elements using special scheme and to develop a specialized research facility, which will be possible to conduct studies of the interaction of the friction pair «contact wire – current collector insert». Originality. In the course of the study the current collector inserts the sharp structural heterogeneity and fluctuations of the density of the material along the length of the insert were established. The dependence between hardness of inserts and electrical resistivity was established. It was analyzed and concluded about the need to reduce the values of the normal range of hardness. Based on the results of the research, the experimental dependences were obtained and proposed the method for sorting carbon current collector inserts for the structural parameters. Practical value. The obtained results of coal current collector inserts define the need to use

  9. Characteristics of transformer-type superconducting fault current limiter depending on reclosing in changing the number of turns of secondary winding

    International Nuclear Information System (INIS)

    Choi, S.G.; Choi, H.S.; Cho, Y.S.; Park, H.M.; Jung, B.I.; Ha, K.H.

    2011-01-01

    The amount of consumed power is increasing with industrial development and rapidly increasing population. In accidents due to increased power consumption, the fault current sharply increases. Superconducting fault current limiters (SFCL) are studied widely to limit such fault currents. In this study, the characteristics of a transformer-type SFCL are analyzed depending on reclosing in changing the number of secondary winding turns. For experiment conditions, the turn ratio of the primary and secondary windings of a transformer-type SFCL was set to 4:2 and 4:4. The voltage was incremented by 80 V from 120 V for the experiment. The circuit breaker was operated with two open times of CO-0.17 s -CO-0.17 s -CO seconds (C; closed, O; open), respectively. Comparing the result for the experiment conditions with the case of the turn ratios of the primary and secondary windings at 4:4 and 4:2, the fault current was limited effectively in 4:2 than in 4:4 for the fault current limit ratios. With respect to the result of recovery characteristics, it was examined that the superconducting unit recovered faster when the turn ratio of the primary and secondary windings was 4:2 than 4:4. Comparing the amount of consumed power related to the recovery characteristics of the superconducting element, it was examined that the recovery time was faster in less power consumption for the superconducting unit. As such, since a transformer-type SFCL depending on reclosing in changing the number of turns of the secondary winding controls the turn ratio of the secondary winding to control fault current limiting and recovery characteristics, it can normally operate.

  10. Current limitation in low pressure mercury arcs

    International Nuclear Information System (INIS)

    Torven, S.; Babic, M.

    1976-06-01

    When the electric current in a low pressure arc with a long positive column is increased sufficiently, an electrostatic instability develops in the plasma which leads to formation of thin space charge layers across the column. The instability is investigated in a mercury plasma column kept axially homogeneous by a special technique. Values of some plasma parameters are measured at the instability threshold. It is found that the plasma is in a weakly ionized state in contrast to predictions by widely accepted current limitation theories. It is concluded that new types of theories are required to explain the observations. (Auth.)

  11. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  12. On the Upper Limit (Heaviest Element in the Periodic Table of Elements, and the Periodic Table of Anti-Substance

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2009-04-01

    Full Text Available On the basis of the method involving equilateral hyperbolas developed by us with ref- erence to the Periodic Table, its Top Limit has been established. It is the last element with atomic mass 411.66 and serial number 155. The great value, according to our calculation, has adjacent hyperbolas whose center is the point (0; 1. With the method, it has been possible to find just one element in the Periodic Table — Rhodium, which does not demand additional calculations involving the definition of the valid axes. Cal- culations towards updating the charge of a nucleus and the quantity of neutrons in end N-Z part of the diagram by means of the serial number 155 are herein executed. The variant of the Periodic Table of Elements with the eighth period is recommended. On the basis of symmetry, with the application of the Hyperbolic Law in the Periodic Table of Elements, the existence of Anti-Substances is herein indirectly proved.

  13. Evaluation on current-limiting performance of the YBCO thin-film wire considering electric coupling condition

    International Nuclear Information System (INIS)

    Du, H.-I.; Han, B.-S.; Kim, Y.-J.; Lee, D.-H.; Song, S.-S.; Han, T.-H.; Han, S.-C.

    2011-01-01

    The basic way to improve the performance of a superconducting current limiter is to apply and evaluate a superconducting device that is appropriate to the superconducting current limiter. Among the many types of superconducting devices, the YBCO thin film wire has excellent current-limiting performance that is appropriate for actual system application. For the application of the YBCO thin film wire to superconducting current limiters, its current-limiting performance as a unit device must be accurately evaluated, and measures to improve its current-limiting performance must be sought. Accordingly, to evaluate the current-limiting performance of the YBCO thin film wire, this study was conducted to evaluate its resistance-increasing trend, V max , T r , I max , I qt , and current-limiting rate as a unit device, after which the electric coupling condition that consists of a core and windings was used to evaluate the current-limiting performance of the YBCO thin film wire.

  14. Transuranium element toxicity: dose-response relationships at low exposure levels. Summary and speculative interpretation relative to exposure limits

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1975-01-01

    A summary is given of information on transuranium element toxicity and the correlation of this information with current established exposure limits. It is difficult to calculate a biologically relevant radiation dose from deposited plutonium; it is exposure that must be controlled in order to prevent biological effect, and if the relationship between exposure and effect is known, then radiation dose is of no concern. There are extensive data on the effects of plutonium in bone. Results of studies at the University of Utah indicate that plutonium in beagles may be as much as ten times more toxic than radium. It has been suggested that this toxicity ratio may be even higher in man than in the beagle dog because of differences in surface-to-volume ratios and differences in the rate of burial of surface-deposited plutonium. The present capabilities for extrapolating dose-effect relationships seem to be limited to the setting of upper limits, based on assumptions of linearity and considerations related to natural background

  15. Finite element-based limit load of piping branch junctions under combined loadings

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Li Peining

    2004-01-01

    The limit load is an important input parameter in engineering defect-assessment procedures and strength design. In the present work, a total of 100 different piping branch junction models for the limit load calculation were performed under combined internal pressure and moments in use of non-linear finite element (FE) method. Three different existing accumulation rules for limit load, i.e., linear equation, parabolic equation and quadratic equation were discussed on the basis of FE results. A novel limit load solution was developed based on detailed three-dimensional FE limit analyses which accommodated the geometrical parameter influence, together with analytical solutions based on equilibrium stress fields. Finally, six experimental results were provided to justify the presented equation. According to the FE limit analysis, limit load interaction of the piping tees under combined pressure and moments has a relationship with the geometrical parameters, especially with the diameter ratio d/D. The predicted limit loads from the presented formula are very close to the experimental data. The resulting limit load solution is given in a closed form, and thus can be easily used in practice

  16. A superconducting direct-current limiter with a power of up to 8 MVA

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2016-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  17. A superconducting direct-current limiter with a power of up to 8 MVA

    Science.gov (United States)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2016-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  18. Thermal studies of a superconducting current limiter using Monte-Carlo method

    International Nuclear Information System (INIS)

    Leveque, J.; Rezzoug, A.

    1999-01-01

    Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones. (orig.)

  19. Limiting beta of stellarators with no net current

    International Nuclear Information System (INIS)

    Strauss, H.R.; Monticello, D.A.

    1981-01-01

    Using reduced nonlinear MHD equations, we find finite beta, resistive, l = 2 stellarator equilibria with no net current. We then investigate stability to low mode number internal MHD modes, and find beta limits comparable to tokamaks. Low shear equilibria appear to be substantially more stable than high shear

  20. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  1. Food for Thought: A Critical Overview of Current Practical and Conceptual Challenges in Trace Element Analysis in Natural Waters

    Directory of Open Access Journals (Sweden)

    Montserrat Filella

    2013-07-01

    Full Text Available The practical and conceptual challenges faced by the analysis of trace elements present in natural waters are not merely, as is often thought, an endless race towards lower detection limits or to the development of techniques allowing the determination of any possible chemical species formed by all chemical elements. Rather, as discussed in this paper, they include the development of (i robust, cheap, and reliable methods that could also be used by laypeople (the experience gained in the development of field kits for As is discussed as an example from which similar developments for other elements may be drawn; (ii more environmentally-friendly methods (the current guiding criteria probably being too simplistic; and (iii methods making it possible to follow diel concentration changes and sharp concentration variations caused by the probable increase of heavy rainfall events. This paper also claims that neither the measurement of total concentrations (reliable methods are lacking for many elements of the periodic table of trace elements, as illustrated through the cases of Bi, Te, and Sb, nor chemical speciation analysis, are as mature as often thought. In particular, chemical speciation studies demand the development of a better, comprehensive conceptual framework. A trial is carried out to lay the basis of such a framework.

  2. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Directory of Open Access Journals (Sweden)

    Youri P. A. Tan

    2018-03-01

    Full Text Available Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  3. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Science.gov (United States)

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  4. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  5. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  6. The short-circuit test results of 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer with fault current limiting function

    International Nuclear Information System (INIS)

    Tomioka, A.; Bohno, T.; Kakami, S.; Isozaki, M.; Watanabe, K.; Toyama, K.; Sugiyama, S.; Konno, M.; Gosho, Y.; Okamoto, H.; Hayashi, H.; Tsutsumi, T.; Iwakuma, M.; Saito, T.; Tanabe, K.; Shiohara, Y.

    2013-01-01

    Highlights: ► We manufactured the 400 kV A-class YBCO model transformer with FCL function. ► Short-circuit test was performed by applying 6.9 kV on primary side. ► The short-circuit current was limited to 174 A for a prospective current of 559 A. ► It agreed with the design and we also confirmed the I c did not degrade. ► The results suggest the possibility to design YBCO transformers with FCL function. -- Abstract: We are developing an elemental technology for 66/6.9 kV 20 MVA-class superconducting power transformer with fault current limiting function. In order to obtain the characteristics of YBCO conductor when the AC over current supplied to the conductor, the model coils were manufactured with YBCO tapes and tested. Based on these results, we manufactured the 6.9 kV/2.3 kV 400 kVA-class YBCO model transformer with fault current limiting function and performed short-circuit test. At the 0.25 s after short-circuit, the short-circuit current of primary winding was limited to about 174 A for a prospective current of 559 A. It was consistent with the design. The I–V characteristics of the winding did not change before and after the test. We consider the model transformer to be able to withstand AC over-current with the function of current limiting. The results suggest the possibility to design YBCO superconducting transformers with fault current limiting function for practical power grid

  7. Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas

    International Nuclear Information System (INIS)

    Watanabe, K.Y.

    2001-01-01

    The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)

  8. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  9. Resistive Fault Current Limiter Prototypes: Mechanical and Electrical Analyses

    International Nuclear Information System (INIS)

    Martini, L; Arcos, I; Bocchi, M; Brambilla, R; Dalessandro, R; Frigerio, A; Rossi, V

    2006-01-01

    The problem of excessive short-circuit currents has become an important issue for power systems operators and there are clear indications for a growing interest in superconducting fault current limiter devices for MV and HV grids. In this work, we report on both simulation and electrical testing on single-phase SFCL prototypes developed in the framework of an Italian RTD project to be completed with a 3-phase SFCL unit by the end of 2005

  10. Investigation via numerical simulation of limiting currents in the presence of dielectric loads

    International Nuclear Information System (INIS)

    Baedke, W. C.

    2009-01-01

    An investigation of the space-charge-limited currents for unneutralized relativistic particle beams drifting through a dielectrically loaded cylindrical conductor is presented. The first limiting current expression investigated assumes a uniform axial velocity profile, is commonly found in the literature, and has been applied to solid and annular beams with and without a dielectric present. The second limiting current expression investigated is self-consistent and is developed for annular beams in the presence of a dielectric load provided that the beams' inner and outer radii are less than the dielectric inner radius. Comparing both of these expressions to particle-in-cell simulations shows that the first expression under predicts the limiting current by no more than 20% and no less than 10% for all geometries and relativistic mass factors considered. It is also shown that the second expression over predicts the limiting current for all scenarios investigated by as much as 20% and in certain cases only a few percent. In addition, estimates for the accumulated charge densities at the vacuum-dielectric interface are presented and the possibility of breakdown within the dielectric is addressed.

  11. Beta and current limits in the Doublet III tokamak

    International Nuclear Information System (INIS)

    Strait, E.J.; Chu, M.S.; Jahns, G.L.

    1986-04-01

    Neutral-beam heated discharges in Doublet III exhibit an operational beta limit, β/sub T/(%) less than or equal to 3.5 I(MA)/a(m)B(T), in good agreement with several theoretical predictions for ideal external kink or ballooning modes. These theories predict that the β limit has no explicit dependence on plasma shape (for nominal dee shapes). This aspect of the theory was confirmed in Doublet III by varying the elongation (kappa) from 1.0 to 1.6 and the triangularity (delta) from -0.1 to 0.9 and finding in all cases the same β limit. The maximum achievable beta thus depends on the minimum achievable value of the safety factor q. In Doublet III, the operational current limit is given by q greater than or equal to 1.7 for limiter-defined discharges and q greater than or equal to 2.7 for separatrix-defined discharges. Operation with q approx.2 was achieved for 1.0 less than or equal to kappa less than or equal to 1.6. Both β and q limits are characterized by major disruptions which usually terminate the discharge. In both cases, the disruptions often have a precursor oscillation with toroidal mode number n = 1, poloidal mode number m = 2 or 3, a frequency of zero to a few kHz, and a growth time on the order of a millisecond. These observations suggest that the proximate cause of these disruptions is a kink or tearing mode, pressure-driven in one case and current-driven in the other. Theoretical analyses of discharges at both limits will be compared. Modes with a high toroidal mode number, 3 less than or equal to n less than or equal to 5, and ballooning character have been observed near the β/sub T/ limit. These modes do not appear to be closely connected with the disruptions. Heating efficiency, ΔW/ΔP, remains constant up to the limiting disruption. Fishbone modes appear to be mainly a feature of high β/sub p/ operation and not connected to the β/sub T/ limit

  12. Removing the current-limit of vertical organic field effect transistors

    Science.gov (United States)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  13. Network coupling via a current-limiting throttle with a high-Tc superconductor core

    International Nuclear Information System (INIS)

    Bochenek, E.; Fischer, R.; Lampen, U.; Voigt, H.

    1989-01-01

    A current-limiting concept is tested by means of a choke with a current-responsive inductivity for linking three-phase current supplies. The choke has a core of a material with a high transition point T c . In the case of nominal current, the core is superconductive and keeps the resulting inductance of the choke low by shield currents. In the case of overload, the core passes into the normal conductive state due to the increased magnetic field of the winding. The resulting inductance of the choke rises and, in doing so, effects current limitation. (orig.) [de

  14. Fault current limitation with HTc superconductors; Limitation de courant a partir de materiaux supraconducteurs HTc

    Energy Technology Data Exchange (ETDEWEB)

    Buzon, D.

    2002-09-15

    This report deals with the possibility of using high critical temperature (HTc) superconductors for current limitation. The transition from a superconductive to a high dissipative state could be used to limit inrush currents. This application of superconductivity is very attractive because it's an innovative device for electrical networks without any conventional equivalence at high voltage. This device would allow to improve the density of connections and the continuity of the electrical distribution. This study can be divided into two fields. The aim of the first one is to analyse the behaviour of different HTc superconductors for current limitation. We carried out experimental measurements to characterise those conductors during a nominal AC rating (measurements of losses) and during a fault setting. Particularly, a description of the transition in bulk textured YBCO samples near Tc was made of inhomogeneous transition of the device and to estimate its losses. Finally, a 1 kV / 100 A demonstrator made of 43 meanders of textured YBCO was tested at 90,5 K. Thermal gradients seem to be responsible of the altering of some of the samples. The other part of this study concerns the dynamic of the transition. Near Tc, our experiments showed that the transition is more homogeneous. Experimental measurements also showed the influence of thermal exchanges with the cryogenic surrounding on the transition. This point can be justified if the dissipated energy is locally concentrated. (author)

  15. Fault current limitation with HTc superconductors; Limitation de courant a partir de materiaux supraconducteurs HTc

    Energy Technology Data Exchange (ETDEWEB)

    Buzon, D

    2002-09-15

    This report deals with the possibility of using high critical temperature (HTc) superconductors for current limitation. The transition from a superconductive to a high dissipative state could be used to limit inrush currents. This application of superconductivity is very attractive because it's an innovative device for electrical networks without any conventional equivalence at high voltage. This device would allow to improve the density of connections and the continuity of the electrical distribution. This study can be divided into two fields. The aim of the first one is to analyse the behaviour of different HTc superconductors for current limitation. We carried out experimental measurements to characterise those conductors during a nominal AC rating (measurements of losses) and during a fault setting. Particularly, a description of the transition in bulk textured YBCO samples near Tc was made of inhomogeneous transition of the device and to estimate its losses. Finally, a 1 kV / 100 A demonstrator made of 43 meanders of textured YBCO was tested at 90,5 K. Thermal gradients seem to be responsible of the altering of some of the samples. The other part of this study concerns the dynamic of the transition. Near Tc, our experiments showed that the transition is more homogeneous. Experimental measurements also showed the influence of thermal exchanges with the cryogenic surrounding on the transition. This point can be justified if the dissipated energy is locally concentrated. (author)

  16. Regge limit of R-current correlators in AdS supergravity

    International Nuclear Information System (INIS)

    Bartels, J.; Kotanski, J.; Mischler, A.M.; Schomerus, V.

    2009-08-01

    Four-point functions of R-currents are discussed within Anti-de Sitter supergravity. In particular, we compute Witten diagrams with graviton and gauge boson exchange in the high energy Regge limit. Assuming validity of the AdS/CFT correspondence, our results apply to R-current four-point functions of N=4 super Yang-Mills theory at strong coupling. (orig.)

  17. Limiting velocity of reconnection in a current layer

    International Nuclear Information System (INIS)

    Podgornyj, A.N.; Syrovatskij, S.I.

    1981-01-01

    Formation of a plasma current layer from a strong perturbation wave with the Mach magnetic number Msub(a)=1 is investigated numerically within the framework of magnetic hydrodynamics. It is shown that velocity of plasma flowing into the layer is established as small one as compared with the Alfven velocity. At the current layer boundary the Mach magnetic number Msub(a, c)=0.14-0.2. A great decrease in plasma velocity to the current layer results from the counterpressure of a magnetic field, intensity of which near the layer increases due to the storage of magnetic force lines which do not yet reconnect. Calculational results demonstrate the existence of limiting velocity of magnetic reconnection constituting tenth shares of the Mach magnetic number. Influence of this phenomenon on a character of reconnection in the Earth magnetosphere is discussed

  18. Hybrid superconducting a.c. current limiter extrapolation 63 kV-1 250 A

    Science.gov (United States)

    Tixador, P.; Levêque, J.; Brunet, Y.; Pham, V. D.

    1994-04-01

    Following the developement of a.c. superconducting wires a.c. current superconducting limiters have emerged. These limiters limit the fault currents nearly instantaneously, without detection nor order giver and may be suitable for high voltages. They are based on the natural transition from the superconducting state to the normal resistive state by overstepping the critical current of a superconducting coil which limits or triggers the limitation. Our limiter device consists essentially of two copper windings coupled through a saturable magnetic circuit and of a non inductively wound superconducting coil with a reduced current compared to the line current. This design allows a simple superconducting cable and reduced cryogenic losses but the dielectric stresses are high during faults. A small model (150 V/50 A) has experimentally validated our design. An industrial scale current limiter is designed and the comparisons between this design and other superconducting current limiters are given. Les courants de court-circuit sur les grands réseaux électriques ne cessent d'augmenter. Dans ce contexte sont apparus les limiteurs supraconducteurs de courant suite au développement des brins supraconducteurs alternatifs. Ces limiteurs peuvent limiter les courants de défaut presque instantanément, sans détection de défaut ni donneur d'ordre et ils sont extrapolables aux hautes tensions. Ils sont fondés sur la transition naturelle de l'état supraconducteur à l'état normal très résistif par dépassement du courant critique d'un enroulement supraconducteur qui limite ou déclenche la limitation. Notre limiteur est composé de deux enroulements en cuivre couplés par un circuit magnétique saturable et d'une bobine supraconductrice à courant réduit par rapport au courant de la ligne. Cette conception permet un câble supraconducteur simple et des pertes cryogéniques réduites mais les contraintes diélectriques en régime de défaut sont importantes. Une maquette

  19. Superconducting fault current limiter using high-resistive YBCO tapes

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan)], E-mail: takashi.yazawa@toshiba.co.jp; Koyanagi, K.; Takahashi, M.; Ono, M.; Toba, K.; Takigami, H.; Urata, M. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Iijima, Y.; Saito, T. [Fujikura Ltd., 1-5-1 Kiba, Koto, Tokyo 135-0042 (Japan); Ameniya, N. [Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto, Tokyo 135-0062 (Japan)

    2008-09-15

    One of the programs in the Ministry of Economy and Trade and Industry (METI) project regarding R and D on YBCO conductor is to evaluate the applicability of the developed conductor toward several applications. This paper focuses on a fault current limiter (FCL) as one of the expected power applications. YBCO tape conductors with ion beam assisted deposition (IBAD) substrate are used in this work. In order to obtain high resistance of the conductor, which is preferable to an FCL, the thickness of the protecting layer made of silver was decreased as possible. Then high-resistive metal stabilizing layer is attached on the silver layer to improve stability. Obtaining the relevant current limiting performance on short sample experiments, model coils were developed to aim the 6.6 kV-class FCL. Short circuit experiments were implemented with a short circuit generator. The coil successfully restricted the short circuit current over 17 kA to about 700 A by the applied voltage of 3.8 kV, which is nominal phase-to-ground voltage. The experimental results show good agreement with computer analyses and show promising toward the application.

  20. Space-charge-limited currents in electron-irradiated dielectrics

    International Nuclear Information System (INIS)

    Nunes de Oliveira, L.; Gross, B.

    1975-01-01

    This paper develops the theory of steady-state currents generated in a dielectric placed between positively or negatively biased electrodes and irradiated with a partially penetrating electron beam. The dielectric is divided into an irradiated region (IR), which extends from the electrode of incidence to the extrapolated range of the beam, and a nonirradiated region (NIR). In the IR the primary beam generates an electron-hole plasma. Its end plane acts as a virtual electrode embedded in the dielectric. Currents are space-charge limited in the NIR and Ohmic in the IR which is characterized by a uniform radiation-induced conductivity. Depending on the polarity of the electrode bias, electrons or holes are drawn from the IR into the NIR. The theory correctly predicts an apparent threshold effect for the inset of steady-state currents: the current amplitudes remain small as long as the electron range is smaller than half the sample thickness, and increase strongly only afterwards. Calculated current curves for different beam energies are in satisfactory agreement with experimental results. The role of the electron beam as a virtual electrode is discussed

  1. C-Reactor I and E loading instability limits

    Energy Technology Data Exchange (ETDEWEB)

    Hess, K.W.

    1957-01-24

    The pilot charging of I & E fuel elements has been implemented at C-Reactor under Production Test IP-19-A. It was necessary to provide adequate tube protection against flow interruption by establishing proper trip setting on the Panellit pressure gauges. the administration of these Panellit trip settings is done by trip-before- boiling tube outlet temperature limits, which are similar in principle to the current instability limits. Trip-before-boiling limits for C-Reactor I & E fuel elements loadings are presented in this document.

  2. Eddy current examination of the nuclear fuel elements of IPR-R1 research reactor

    International Nuclear Information System (INIS)

    Silva, Roger F.; Frade, Rangel T.; Oliveira, Paulo F.; Silva, Marlucio A.; Silva Junior, Silverio F.

    2015-01-01

    Tubes of AISI 304 stainless steel as well as tubes of Aluminum 1100-F are used as cladding of the fuel elements of TRIGA MARK 1 nuclear research reactor. Usually, these tubes are periodically inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements in which the cladding has failed, but it is not able to determine the place where the discontinuity is located. In turn, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In this paper, a study about the use of eddy current testing for detection and characterization of discontinuities in the fuel elements cladding is proposed. The study involves the development of probes able to operate in underwater inspections, the design and manufacture of reference standards and the development of a test methodology to perform the evaluations. (author)

  3. Eddy current examination of the nuclear fuel elements of IPR-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F.; Frade, Rangel T.; Oliveira, Paulo F.; Silva, Marlucio A.; Silva Junior, Silverio F., E-mail: rfs@cdtn.br, E-mail: rtf@cdtn.br, E-mail: pfo@cdtn.br, E-mail: mas@cdtn.br, E-mail: silvasf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Tubes of AISI 304 stainless steel as well as tubes of Aluminum 1100-F are used as cladding of the fuel elements of TRIGA MARK 1 nuclear research reactor. Usually, these tubes are periodically inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements in which the cladding has failed, but it is not able to determine the place where the discontinuity is located. In turn, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In this paper, a study about the use of eddy current testing for detection and characterization of discontinuities in the fuel elements cladding is proposed. The study involves the development of probes able to operate in underwater inspections, the design and manufacture of reference standards and the development of a test methodology to perform the evaluations. (author)

  4. Superconducting fault current limiter. Fifth quarterly technical progress report, August 8, 1978-November 7, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Progress in the development of fault current limiters for superconducting power transmission systems is reported. The analysis and design of a magnetically switched resistive device and the experimental program were emphasized and reported. A transient heat transfer model was developed which indicates the parameters which are important in determining the thermal heating and recovery of the superconduting film. Designs for the switching coil and the S/C element were also carried out and are reported. A four-pole magnetic coil is recommended; this generates a magnetic field which is nearly perpendicular to spiral or helical S/C film geometrics. A spirally-designed, 3000 ohm limiter is shown to be able to fit within a .5 to 1m inner radius, .05 to .03 m wide, 1.3 to 3.9 m long annualr region. The experimental program has included work on materials development and on prepartion of the switching and thermal recovery experimental facility. The material development program has uncovered several serious short-comings of NbN as the S/C film material. Macroscopic holes and surface debris, and microscopic imperfections reduce the critical current density below the expected value and, in addition, cause nonuniform switching. Reasons for these effects are postulated, and a continuing, vigorous materials program is suggested in hopes of alleviating these problems. Virtually all of the experimental equipment had been installed, and so the magnetic switching and thermal recovery experiments can begin and progress during the next quarter. (LCL)

  5. Design Aspects and Test of an Inductive Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Arsénio Pedro

    2014-05-01

    Full Text Available Magnetic shielding inductive fault current limiters with high temperature superconducting tapes are considered as emerging devices that provide technology for the advent of modern power grids. The development of such limiters requires magnetic iron cores and leads to several design challenges regarding the constitutive parts of the limiter, namely the primary and secondary windings. Preliminary tests in a laboratory scale prototype have been carried out considering an assembly designed for simplicity in which the optimization of the magnetic coupling between the primary and secondary was not the main focus. This work addresses the design configuration of an inductive current limiter prototype regarding the assembly of the primary and secondary windings in the core. The prototype is based on a closed magnetic core wound by a primary, built from a normal electric conductor, and a short-circuited secondary, built from first generation superconducting tape. Four different design configurations are considered. Through experimental tests, the performance of such prototype is discussed and compared, in terms of normal and fault operation regimes. The results show that all the configurations assure effective magnetic shielding at normal operation regime, however, at fault operation regime, there are differences among configurations.

  6. Flux-lock type of superconducting fault current limiters: A comprehensive review

    Science.gov (United States)

    Badakhshan, M.; Mousavi G., S. M.

    2018-04-01

    Power systems must be developed and extended to supply the continuous enhancement of demands for electrical energy. This development of systems in addition to the integration of distributed generation (DG) units to the power systems results higher capacity of system. Hence, short circuit current of network is confronted with persistent increasing. Since exploration of high temperature superconducting (HTS) materials, superconducting fault current limiters (SFCLs) have attracted a lot of attention all over the world. There are different types of SFCLs. Flux-lock type of SFCL because of its characteristics in fault current limitation is an important category of SFCLs. This paper aims to present a comprehensive review of research activities and applications of Flux-lock type of SFCLs in power systems.

  7. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  8. Adaptation of superconducting fault current limiter to high-speed reclosing

    International Nuclear Information System (INIS)

    Koyama, T.; Yanabu, S.

    2009-01-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  9. The soft-gluon current at one-loop order

    CERN Document Server

    Catani, S

    2000-01-01

    We study the soft limit of one-loop QCD amplitudes and we derive the process-independent factorization formula that controls the singular behaviour in this limit. This is obtained from the customary eikonal factorization formula valid at tree (classical) level by introducing a generalized soft-gluon current that embodies the quantum corrections. We compute the explicit expression of the soft-gluon current at one-loop order. It contains purely non-abelian correlations between the colour charges of each pair of hard-momentum partons in the matrix element. This leads to colour correlations between (two and) three hard partons in the matrix element squared. Exploiting colour conservation, we recover QED-like factorization for the square of the matrix elements with two and three hard partons.

  10. Method and apparatus to trigger superconductors in current limiting devices

    Science.gov (United States)

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  11. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    Science.gov (United States)

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  12. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    International Nuclear Information System (INIS)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    Highlights: ► A line-commutation type hybrid FCL was modified for 1st peak current limitation. ► A superconducting module of current limitation and fault detection was fabricated. ► The superconducting module was applied to a hybrid FCL system and tested. ► 7.4 kA p fault current was limited to 4.3 kA p at the first-half cycle by the FCL. -- Abstract: A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage

  13. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  14. Rated-voltage enhancement by fast-breaking of the fault current for a resistive superconducting fault current limiter component

    International Nuclear Information System (INIS)

    Park, C.-R.; Kim, M.-J.; Yu, S.-D.; Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.

    2010-01-01

    Performance of a resistive superconducting fault current limiter (SFCL) component is usually limited by temperature rise associated with energy input by fault current application during a fault. Therefore, it is expected that short application of the fault current may enhance the power ratings of the component. This can be accomplished by a combination of a HTS component and a mechanical switch. The fast switch (FS) developed recently enables the fault duration to be as short as 1/2 cycle after a fault. Various second-generation (2G) high temperature superconductors (HTS) and YBCO thin films have been tested. The relation between the rated voltage V and the fault duration time t was found to be V 2 ∼ t -1 . Based upon the relation, we predict that when the FS break the fault current within 1/2 cycle after a fault, the amount of HTS components required to build an SFCL can be reduced by as much as about 60%, of that when breaking the fault current at three cycles.

  15. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  16. High voltage fault current limiter having immersed phase coils

    Science.gov (United States)

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  17. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  18. Current Status and Research into Overcoming Limitations of Capsule Endoscopy

    Directory of Open Access Journals (Sweden)

    Won Gun Kwack

    2016-01-01

    Full Text Available Endoscopic investigation has a critical role in the diagnosis and treatment of gastrointestinal (GI diseases. Since 2001, capsule endoscopy (CE has been available for small-bowel exploration and is under continuous development. During the past decade, CE has achieved impressive improvements in areas such as miniaturization, resolution, and battery life. As a result, CE is currently a first-line tool for the investigation of the small bowel in obscure gastrointestinal bleeding and is a useful alternative to wired enteroscopy. Nevertheless, CE still has several limitations, such as incomplete examination and limited diagnostic and therapeutic capabilities. To resolve these problems, many groups have suggested several models (e.g., controlled CO2 insufflation system, magnetic navigation system, mobile robotic platform, tagging and biopsy equipment, and targeted drug-delivery system, which are in development. In the near future, new technological advances will improve the capabilities of CE and broaden its spectrum of applications not only for the small bowel but also for the colon, stomach, and esophagus. The purpose of this review is to introduce the current status of CE and to review the ongoing development of solutions to address its limitations.

  19. The non-easily ionized elements as spectrochemical buffers

    International Nuclear Information System (INIS)

    Tripkovic, M.; Radovanov, S.; Holclajtner-Antunovic, I.; Todorovic, M.

    1985-01-01

    A method is developed for determining trace elements (In, Ga, B, V, Mo, Mn, Pt, P, Be) in graphite with the aid of a low current d.c. arc. The method makes use of the enhancement of the radiation intensities of trace elements by non-easily ionized elements (NEIE). As a NEIE, this method uses Cd which is added up to a concentration of 150 mg/g sample. The absolute detection limits for all of the above mentioned elements are at the ng-level. (orig.) [de

  20. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  1. Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Duca, Vittorio Del [Istituto Nazionale di Fisica Nucleare, Sez. di Torino, via P. Giuria, 1 - 10125 Torino (Italy)

    2005-06-01

    We describe how to disentangle the singly- and doubly-unresolved (soft and/or collinear) limits of tree-level QCD squared matrix elements. Using the factorization formulae presented in this paper, we outline a viable general subtraction scheme for computing next-to-next-to-leading order corrections for electron-positron annihilation into jets.

  2. Technology development and commercial production of current-carrying elements on the basis of Nb3Sn superconductor

    International Nuclear Information System (INIS)

    Nikulin, A.D.; Shikov, A.K.; Davydov, I.I.

    1995-01-01

    A description of a current carrying element intended for Tokamak-15 magnetic system is presented. The element is produced from multicore wires with superconducting Nb 3 Sn cores and calculated for 8.5 kA critical current in magnetic field of 8 T. Main processing procedures of its manufacturing are shown. Extrusion conditions needed for production of composite bronze-niobium rods and multicore wire 1.5 mm in diameter with 14641 niobium cores are determined. Heat treatment used results in formation of Nb 3 Sn intermetallics and assures maximal current-carrying capacity of 910-920 A in 8 T magnetic field. 15 refs., 9 figs

  3. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  4. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  5. First experimental results with the Current Limit Avoidance System at the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Galeani, S. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Jachmich, S. [Association EURATOM-Belgian State, Koninklijke Militaire School - Ecole Royale Militaire, B-1000 Brussels (Belgium); Joffrin, E. [IRFM-CEA, Centre de Cadarache, 13108 Saint-paul-lez-Durance (France); Lennholm, M. [EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); European Commission, B-1049 Brussels (Belgium); Lomas, P.J. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A.C. [Associazione EURATOM-IST, Instituto de Plasmas e Fusao Nuclear, IST, 1049-001 Lisboa (Portugal); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Sips, A.C.C. [European Commission, B-1049 Brussels (Belgium); Varano, G.; Vitelli, R. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Zaccarian, L. [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse (France); Universitè de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-06-15

    The Current Limit Avoidance System (CLA) has been recently deployed at the JET tokamak to avoid current saturations in the poloidal field (PF) coils when the eXtreme Shape Controller is used to control the plasma shape. In order to cope with the current saturation limits, the CLA exploits the redundancy of the PF coils system to automatically obtain almost the same plasma shape using a different combination of currents in the PF coils. In the presence of disturbances it tries to avoid the current saturations by relaxing the constraints on the plasma shape control. The CLA system has been successfully implemented on the JET tokamak and fully commissioned in 2011. This paper presents the first experimental results achieved in 2011–2012 during the restart and the ITER-like wall campaigns at JET.

  6. Numerical Limit Analysis of Precast Concrete Structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen

    Precast concrete elements are widely used in the construction industry as they provide a number of advantages over the conventional in-situ cast concrete structures. Joints cast on the construction site are needed to connect the precast elements, which poses several challenges. Moreover, the curr...... problems are solved efficiently using state-of-the-art solvers. It is concluded that the framework and developed joint models have the potential to enable efficient design of precast concrete structures in the near future......., the current practice is to design the joints as the weakest part of the structure, which makes analysis of the ultimate limit state behaviour by general purpose software difficult and inaccurate. Manual methods of analysis based on limit analysis have been used for several decades. The methods provide...... of the ultimate limit state behaviour. This thesis introduces a framework based on finite element limit analysis, a numerical method based on the same extremum principles as the manual limit analysis. The framework allows for efficient analysis and design in a rigorous manner by use of mathematical optimisation...

  7. Limiting currents of an unneutralized magnetized electron beam in a cylindrical drift tube

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sloan, M.L.

    1978-01-01

    Results of an investigation of the steady state injection of a uniform unneutralized, magnetized, relativistic electron beam into a cylindrical drift tube are presented. The space-charge-limited current and the asymptotic kinetic energy of electrons on axis is determined both numerically and analytically as a function of the input kinetic energy (γ 0 -1) mc 2 and of the ratio of beam-to-wall radii. A previously cited ''interpolation formula'' is obtained in the pencil beam limit, but more accurate limiting current expressions are developed for other cases (such as the fat beam limit) where the interpolation formula is as much as 20% in error. The corresponding axial electron energy is also found to be significantly smaller than the previously cited value of (γ/sup 1/3/ 0 -1) mc 2 except in the strong pencil beam limit

  8. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  9. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    DEFF Research Database (Denmark)

    Yang, Zhenyu

    2015-01-01

    An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the pot...... characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.......An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated...... is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis...

  10. An approximative solution for limit load of piping branch junctions with circumferential crack and finite element validation

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Liu Changjun; Li Peining

    2005-01-01

    This paper is concerned with the prediction of limit load of the piping branch junctions with circumferential crack under internal pressure. Recently, we have developed a new approach for predicting the limit load of two-cylinder intersection structures with diameter ratio larger than 0.5, which has been successfully applied to defect free cases under various loading conditions. In the present work, we consider the extension of the approach to cover cracked piping branch junctions. On the basis of stress analysis in the vicinity of intersection line, a closed form of limit load solution for piping branch junctions with circumferential crack was developed. Then, 36 finite element (FE) models of piping branch junction with various dimensions of structure and crack were analyzed by using nonlinear finite element software. The limit loads from FE analysis and the proposed solution are compared with each other. Overall good agreement between the estimated solutions and the FE results provides confidence in the use of the proposed formulae for defect assessment of piping branch junctions in practice

  11. Active superconducting DC fault current limiter based on flux compensation

    International Nuclear Information System (INIS)

    Shi Jing; Tang Yuejin; Wang, Chen; Zhou Yusheng; Li Jingdong; Ren Li; Chen Shijie

    2006-01-01

    With the extensive application of DC power systems, suppression of DC fault current is an important subject that guarantees system security. This paper presents an active superconducting DC fault current limiter (DC-SFCL) based on flux compensation. The DC-SFCL is composed of two superconducting windings wound on a single iron core, the primary winding is in series with DC power system, and the second winding is connected with AC power system through a PWM converter. In normal operating state, the flux in the iron core is compensated to zero, and the SFCL has no influence on DC power system. In the case of DC system accident, through regulating the active power exchange between the SFCL's second winding and the AC power system, the current on the DC side can be limited to different level complying with the system demand. Moreover, the PWM converter that interface the DC system and AC system can be controlled as a reactive power source to supply voltage support for the AC side, which has little influence on the performance of SFCL. Using MATLAB SIMULINK, the mathematic model of the DC-SFCL is created, simulation results validate the dynamics of system, and the performance of DC-SFCL is confirmed

  12. Limiting diffusion current at rotating disk electrode with dense particle layer.

    Science.gov (United States)

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.

  13. A Finite Element Versus Analytical Approach to the Solution of the Current Diffusion Equation in Tokamaks

    Czech Academy of Sciences Publication Activity Database

    Šesnic, S.; Dorić, V.; Poljak, D.; Šušnjara, A.; Artaud, J.F.

    2018-01-01

    Roč. 46, č. 4 (2018), s. 1027-1034 ISSN 0093-3813 R&D Projects: GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : Finite element analysis * Tokamaks * current diffusion equation (CDE) * finite-element method (FEM) Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.052, year: 2016

  14. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  15. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  16. Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic Table of Elements, with Use of Rhodium

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2011-01-01

    Full Text Available In the earlier study (Khazan A. Upper Limit in Mendeleev's Periodic Table - Element No.155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010 the author showed how Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in order to calculate, with high precision, all other elements conceivable in the Table. Here we obtain the same result, with use of fraction linear functions (adjacent hyperbolas.

  17. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    Science.gov (United States)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.

  18. Limiting stable states of high-Tc superconductors in the alternating current modes

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.

    2014-01-01

    The limiting current-carrying capacity of high-T c superconductor and superconducting tape has been studied in the alternating current states. The features that are responsible for their stable formation have been investigated under the conduction-cooled conditions when the operating peak values of the electric field and the current may essentially exceed the corresponding critical values of superconductor. Besides, it has been proved that these peak values are higher than the values of the electric field and the current, which lead to the thermal runaway phenomenon when the current instability onset occurs in the operating modes with direct current. As a result, the stable extremely high heat generation exists in these operating states, which can be called as overloaded states. The limiting stable peak values of charged currents and stability conditions have been determined taking into account the flux creep states of superconductors. The analysis performed has revealed that there exist characteristic times defining the corresponding time windows in the stable development of overloaded states of the alternating current. In order to explain their existence, the basic thermo-electrodynamics mechanisms have been formulated, which have allowed to explain the high stable values of the temperature and the induced electric field before the onset of alternating current instability. In general, it has been shown that the high-T c superconductors may stably operate in the overloaded alternating current states even under the not intensive cooling conditions at a very high level of heat generation, which is not considered in the existing theory of losses. (authors)

  19. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  20. Theory of space charge limited currents in films and nanowires with dopants

    Science.gov (United States)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  1. Finite element model predicts current density distribution for clinical applications of tDCS and tACS

    Directory of Open Access Journals (Sweden)

    Toralf eNeuling

    2012-09-01

    Full Text Available Transcranial direct current stimulation (tDCS has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA, tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm2 are commonly used and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite element (FE models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. Toface the challenge to predict the location, magnitude and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS, we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to theirusability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.

  2. Agora: A proposal to overcome the limitations of the current knowledge creation process

    OpenAIRE

    ScientistFive

    2015-01-01

    Agora: A proposal to overcome the limitations of the current knowledge creation process ======================================================================================= By Scientistsfive () Abstract: The knowledge creation process is broken and can be improved by a combination of currently emerging tools. The rationale for this proposal is the notion that the current scientific process is not optimal: * Artificially staged competitions (g...

  3. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  4. A 1.8 V LDO voltage regulator with foldback current limit and thermal protection

    International Nuclear Information System (INIS)

    Liu Zhiming; Fu Zhongqian; Huang Lu; Xi Tianzuo

    2009-01-01

    This paper introduces the design of a l.8 V low dropout voltage regulator (LDO) and a foldback current limit circuit which limits the output current to 3 mA when load over-current occurs. The LDO was implemented in a 0.18 μm CMOS technology. The measured result reveals that the LDO's power supply rejection (PSR) is about -58 dB and -54 dB at 20 Hz and 1 kHz respectively, the response time is 4 μs and the quiescent current is 20 μA. The designed LDO regulator can work with a supply voltage down to 2.0 V with a drop-out voltage of 200 mV at a maximum load current of 240 mA. (semiconductor integrated circuits)

  5. Thermal studies of a superconducting current limiter using Monte-Carlo method

    Science.gov (United States)

    Lévêque, J.; Rezzoug, A.

    1999-07-01

    Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones. L'augmentation des courants de défaut dans les grands réseaux électriques ravive l'intérêt pour les limiteurs de courant. Les limiteurs supraconducteurs de courants peuvent limiter quasi-instantanément, sans donneur d'ordre ni détection de défaut, les courants de court-circuit réduisant ainsi les contraintes supportées par les installations électriques situées en amont du défaut. La limitation s'accompagne nécessairement de la transition du supraconducteur par dépassement de son courant critique. Pour éviter la destruction de la bobine supraconductrice la température ne doit pas excéder une certaine valeur. La conception d'une bobine supraconductrice exige donc la résolution simultanée d'une équation électrique et d'une équation thermique. Nous présentons une résolution de ce problème electrothermique par la méthode de Monte-Carlo. Cette méthode nous permet de calculer l'évolution de la résistance de la bobine et du courant de limitation. Des résultats expérimentaux sont comparés avec les résultats théoriques.

  6. Comparative study on current limiting characteristics of flux-lock type SFCL with series or parallel connection of two coils

    International Nuclear Information System (INIS)

    Lim, S.H.

    2008-01-01

    We investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) with series or parallel connection of two coils. These two flux-lock type SFCLs with magnetically coupled two coils have the same operational principle that the fault current can be limited by the magnetic flux generated between two coils of the SFCL when a fault happens. In addition, the inductance ratio and the winding direction of two coils in both the SFCLs are the major design parameters that affect the fault current limiting characteristics of the SFCL. On the other hand, the operational current and the limiting impedance of both the SFCLs under the same design condition have the different tendency, which results from the different winding methods of two coils on an iron core. Therefore, the comparative study for both the SFCLs from the current limiting performance of the SFCL point of view is needed. To compare the current limiting characteristics of both the SFCLs, the operational current and the limiting impedance of the SFCL, which describes the performance of the SFCL, were derived from each SFCL's electrical equivalent circuit. Through the analysis for the fault current limiting experiments of both the SFCLs, the different current limiting characteristics of both the SFCLs were discussed

  7. Finite element transport methods for criticality calculations - current status and potential applications

    International Nuclear Information System (INIS)

    Oliveira, C.R.E. de; Goddard, A.

    1991-01-01

    In this paper we review the current status of the finite element method applied to the solution of the neutron transport equation and we discuss its potential role in the field of criticality safety. We show that the method's ability in handling complex, irregular geometry in two- and three-dimensions coupled with its accurate solutions potentially renders it an attractive alternative to the longer-established Monte Carlo method. Details of the most favoured form of the method - that which combines finite elements in space and spherical harmonics in angle - are presented. This form of the method, which has been extensively investigated over the last decade by research groups at the University of London, has been numerically implemented in the finite element code EVENT. The code has among its main features the capability of solving fixed source eigenvalue and time-dependent complex geometry problems in two- and three-dimensions. Other features of the code include anisotropic up- and down-scatter, direct and/or adjoint solutions and access to standard data libraries. Numerical examples, ranging from simple criticality benchmark studies to the analysis of idealised three-dimensional reactor cores, are presented to demonstrate the potential of the method. (author)

  8. A local isotropic/global orthotropic finite element technique for modeling the crush of wood in impact limiters

    International Nuclear Information System (INIS)

    Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Wood is often used as the energy absorbing material in impact limiters, because it begins to crush at low strains, then maintains a near constant crush stress up to nearly 60% volume reduction, and then locks up. Hill (Hill and Joseph, 1974) has performed tests that show that wood is an excellent absorber. However, wood's orthotropic behavior for large crush is difficult to model. In the past, analysts have used isotropic foam-like material models for modeling wood. A new finite element technique is presented in this paper that gives a better model of wood crush than the model currently in use. The orthotropic technique is based on locally isotropic, but globally orthotropic (LIGO) (Attaway, 1988) assumptions in which alternating layers of hard and soft crushable material are used. Each layer is isotropic; however, by alternating hard and soft thin layers, the resulting global behavior is orthotropic. In the remainder of this paper, the new technique for modeling orthotropic wood crush will be presented. The model is used to predict the crush behavior for different grain orientations of balsa wood. As an example problem, an impact limiter containing balsa wood as the crushable material is analyzed using both an isotropic model and the LIGO model

  9. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  10. Finite element analysis of ageing reinforced and prestressed concrete structures in nuclear plant - An international review of current capabilities and priorities for future developments

    International Nuclear Information System (INIS)

    2002-01-01

    Nuclear plants contain a variety of concrete structures whose structural performance is essential to the safety of the plant. There is a requirement to demonstrate the robustness of these structures during normal operating and extreme accident conditions, throughout their life. During this time, the concrete may degrade due to the effects of ageing. This degradation must be accounted for during the assessment of their performance. Finite Element Analysis (FEA) techniques have tremendous potential for providing valuable insight into the behaviour of these aged concrete structures under a range of different loading conditions. Advanced FEA techniques currently enjoy widespread use within the nuclear industry for the non-linear analysis of concrete. Many practitioners within the nuclear industry are at the forefront of the industrial application of these methods. However, in some areas, the programs that are commercially available lag behind the best information available from research. This document is an international review of current capabilities and priorities for future development relating to non-linear finite element analysis of reinforced and prestressed concrete in the nuclear industry in the various member states. Particular attention is paid to the analysis of degraded or ageing structures. This report: 1. Summarises the needs for FEA of aged concrete nuclear structures; 2. Details the existing capabilities, not just in terms of what the software is capable of, but also in terms of the current practices employed by those in industry; 3. Looks at how engineers, within the nuclear industry, working in this field would like to see methods improved, and identifies the factors that are limiting current practice; 4. Summarises ongoing research that may provide beneficial technological advances; 5. Assigns priorities to the different development requests; 6. Selects those developments that are felt to be of greatest benefit to industry and provides a qualitative

  11. A 1.8 V LDO voltage regulator with foldback current limit and thermal protection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhiming; Fu Zhongqian; Huang Lu; Xi Tianzuo, E-mail: zml1985@mail.ustc.edu.c [Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027 (China)

    2009-08-15

    This paper introduces the design of a l.8 V low dropout voltage regulator (LDO) and a foldback current limit circuit which limits the output current to 3 mA when load over-current occurs. The LDO was implemented in a 0.18 {mu}m CMOS technology. The measured result reveals that the LDO's power supply rejection (PSR) is about -58 dB and -54 dB at 20 Hz and 1 kHz respectively, the response time is 4 {mu}s and the quiescent current is 20 {mu}A. The designed LDO regulator can work with a supply voltage down to 2.0 V with a drop-out voltage of 200 mV at a maximum load current of 240 mA. (semiconductor integrated circuits)

  12. Modeling beams with elements in phase space

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1998-01-01

    Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated

  13. Structural Phenomenon of Cement-Based Composite Elements in Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    I. Iskhakov

    2016-01-01

    Full Text Available Cement-based composite materials have minimum of two components, one of which has higher strength compared to the other. Such materials include concrete, reinforced concrete (RC, and ferrocement, applied in single- or two-layer RC elements. This paper discusses experimental and theoretical results, obtained by the authors in the recent three decades. The authors have payed attention to a structural phenomenon that many design features (parameters, properties, etc. at ultimate limit state (ULS of a structure are twice higher (or lower than at initial loading state. This phenomenon is evident at material properties, structures (or their elements, and static and/or dynamic structural response. The phenomenon is based on two ideas that were developed by first author: quasi-isotropic state of a structure at ULS and minimax principle. This phenomenon is supported by experimental and theoretical results, obtained for various structures, like beams, frames, spatial structures, and structural joints under static or/and dynamic loadings. This study provides valuable indicators for experiments’ planning and estimation of structural state. The phenomenon provides additional equation(s for calculating parameters that are usually obtained experimentally and can lead to developing design concepts and RC theory, in which the number of empirical design coefficients will be minimal.

  14. Experiment study on an inductive superconducting fault current limiter using no-insulation coils

    Science.gov (United States)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.

    2018-03-01

    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  15. The counter-current flooding limit in vertical tubes with and without orifices

    International Nuclear Information System (INIS)

    Tye, P.; Davidson, M.; Teyssedou, A.; Tapucu, A.; Matuszkiewicz, A.; Midvidy, W.

    1993-01-01

    For hypothetical loss of coolant accidents in nuclear reactors, rapid reflooding of the core is desirable. In CANDU reactors the cooling water is injected into the headers which are connected to the fuel channels by the feeder pipes. These pipes consist of vertical and horizontal runs; in some feeders, orifices and/or venturi flow meters are installed for flow adjustments and measurements respectively. For certain postulated accident scenarios, steam coming from the fuel channels and/or generated in the hot feeders may flow in the direction opposite to that of the cooling water thereby, creating a vertical or horizontal counter-current two-phase flow. Under these conditions, the rate at which cooling water can enter the fuel channels may be limited by the flooding phenomena. This phenomena is greatly affected by the geometry of the feeder pips, shape and number of fittings, and the flow area restrictions located in the feeders. In this paper the influence that orifice type flow area restrictions have on the counter-current flooding limit (CCFL) in a vertical tube is examined. air and water at close to atmospheric conditions are used as the working fluids. The data collected on the counter-current flooding limit in a vertical tube both with and without flow area restrictions is compared against some of the most commonly used correlations that are available in the open literature. Data on the two-phase counter-current pressure drop below the flooding point are also presented. 12 refs., 10 figs., 1 tab

  16. Automated eddy-current installation AVD-01 for detecting flaws in fuel element cans

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Martishchenko, L.G.; Popov, V.K.; Romanov, M.L.; Shlepnev, I.O.; Shmatok, V.P.

    1986-01-01

    This paper describes an automated installation for eddy-current flaw detection in thin-walled pipes with small diameter; its unified transport system makes it possible to use the installation in inspection lines and production lines of fuel elements. The article describes the structural diagrams of the installation and presents the results of investigations connected with the selection for establishing the optimum regimes and sensitivity of feedthrough transducers with focusing screens

  17. Application of the (Hg,Re)-1223 ceramic on superconducting fault current limiter

    International Nuclear Information System (INIS)

    Passos, C.A.C.; Passamai, J.L.; Orlando, M.T.D.; Medeiros, E.F.; Sampaio, R.V.; Oliveira, F.D.C.; Fardin, J.F.; Simonetti, D.S.L.

    2007-01-01

    We have investigated a small resistive SFCL device based on Hg 0.8 Re 0.2 Ba 2 Ca 2 Cu 3 O 8+δ , (Hg,Re)-1223, ceramic in order to obtain in the future a SFCL prototype for protecting a low impedance and high current system. Our initial study has shown that a fault current of 1.55 x 10 2 A peak /cm 2 at 60 Hz was reduced to 0.82 x 10 2 A peak /cm 2 , that is, the device limited the current at 59% without any damage on the (Hg,Re)-1223 superconductor in this range of current. It was observed that the device immediately recovered the initial conditions after that the fault current event is finished without any damage

  18. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-09-01

    Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.

  19. Implementation of superconducting fault current limiter for flexible operation in the power substation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong Suk, E-mail: chong_suk@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Lee, Hansang [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Cho, Yoon-sung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Suh, Jaewan [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of)

    2014-09-15

    Highlights: • The power load concentrated in load centers results in high levels of fault current. • This paper introduces a fault current reduction scheme using SFCLs in substations. • The SFCL is connected in parallel to the bus tie between the two busbars. • The fault current mitigation using SFCLs is verified through PSS/e simulations. - Abstract: The concentration of large-scale power loads located in the metropolitan areas have resulted in high fault current levels during a fault thereby requiring the substation to operate in the double busbar configuration mode. However, the double busbar configuration mode results in deterioration of power system reliability and unbalanced power flow in the adjacent transmission lines which may result in issues such as overloading of lines. This paper proposes the implementation of the superconducting fault current limiter (SFCL) to be installed between the two substation busbars for a more efficient and flexible operation of the substation enabling both single and double busbar configurations depending on the system conditions for guaranteeing power system reliability as well as fault current limitations. Case studies are being performed for the effectiveness of the SFCL installation and results are compared for the cases where the substation is operating in single and double busbar mode and with and without the installation of the SFCL for fault current mitigation.

  20. Fast current amplifier for background-limited operation of photovoltaic InSb detectors

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, J; Koehler, S; Lahmann, W

    1981-01-01

    A fast current amplifier for use with photovoltaic indium antimonide detectors is described which was designed for detection of lidar return signals. Near background-limited operation was possible for bandwidths up to 0.8 MHz.

  1. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  2. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  3. DC-transport properties of QMG(reg sign) current-limiting elements; QMG(reg sign) genryusoshi no chokuryutuden tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Morita, M.; Tokunaga, Y. [Nippon Steel Corporation, Tokyo (Japan); Miura, D.; Ito, D. [Tokyo Metroporitan University, Tokyo (Japan)

    1999-11-25

    The V-I properties of YBCO bulk superconductor (QMG(reg sign) :YBa{sub 2}Cu{sub 3}O{sub 7-x} single-crystal containing Y{sub 2}BaCuO{sub 5} particles) were measured using a single rectangular pule current at 77 and 87 K to obtain basic data for super-normal transition. Because of its high J{sub c} property, QMG is a promising bulk material for resistive-type HTC-FCL application. I-shaped QMG rods having cross sections of 0.5 x 1.0 mm were prepared to measure voltage due to pule current. The plots of ln V vs ln I yielded a straight line with a gradient ranging from 5 to 7. By changing the amplitude and length of pulses, the time from the start of sending electricity till the occurrence of quenching was obtained for various amplitudes of pulse current. In this experiment, it is considered that quenching did not occur in the whole rod but only in a small part of it. (author)

  4. Catalytic polarographic currents of platinum metal complexes and their application to determination of trace concentrations of the elements

    International Nuclear Information System (INIS)

    Ezerskaya, N.A.; Kiseleva, I.N.

    1984-01-01

    Several types of catalytic electrode processes with the participation of platinum metal complexes and used for the determination of the element microconcentrations have been considered in the review. It is pointed out that to measure catalytic currents of hydrogen solutions nitroso compounds, which are prepared by heating chloride complexes of Ru(3) and (4) with NaNO 2 are used. The method is applicable for ruthenium determination in commercial nitric acid solutions. Ru determination in solution of ruthenium (4) dimeric chloride complex on graphite electrode, using catalytic currents of hydrogen, surpasses in sensitivity the determination of the element, using the method of inversion voltammetry. Certain other complexes of Ru and determination methods of ruthenium in them are considered. Hydrogen catalytic currents in the complexes solutions with organic ligands are the most perspective for analysis

  5. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    Science.gov (United States)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  6. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    1980-01-01

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  7. A novel method of flat YBCO rings development for shield-type superconducting fault current limiters fabrication

    International Nuclear Information System (INIS)

    Hekmati, Arsalan; Hosseini, Mehdi; Vakilian, Mehdi; Fardmanesh, Mehdi

    2012-01-01

    A method has been proposed for flat YBCO ring Fabrication. A prototype SFCL with proposed design has been fabricated using the rings. J c characteristics of the rings are measured using an innovative method. The application of flat superconductor rings has been investigated in the structure of inductive shield-type high temperature superconducting fault current limiters, HT c -SFCL. A laboratory scale inductive shield-type HT c -SFCL has been designed and fabricated using flat superconductor rings. The fabrication process has been fully presented. YBCO powder has been used for the fabrication of superconductor rings. This fabrication process, being quite innovative, is introduced completely. The method of the trapped field measurement has been used for the critical current density measurement of the fabricated superconductor rings. The device with nominal current of 2 A was tested in a 30 V circuit. The SFCL successfully limited the fault currents of up to 10 times the nominal current to an approximately fixed value of 3 A. The voltage-current characteristic of the fabricated prototype has also been obtained and has shown compatibility with the fault current limitation results.

  8. Limit on flavor-changing neutral currents from a measurement of neutrino-electron elastic scattering

    International Nuclear Information System (INIS)

    Krakauer, D.A.; Talaga, R.L.; Allen, R.C.; Chen, H.H.; Hausammann, R.; Lee, W.P.; Lu, X.; Mahler, H.J.; Wang, K.C.; Bowles, T.J.; Burman, R.L.; Carlini, R.D.; Cochran, D.R.F.; Doe, P.J.; Frank, J.S.; Potter, M.E.; Sandberg, V.D.; Piasetzky, E.

    1992-01-01

    From a measurement of the absolute cross section in ν ee - elastic scattering we have set a limit on flavor-changing neutral currents in the neutrino sector. We find that an off-diagonal, flavor-changing coupling is limited to 1-f ee <0.35 (90% C.L.)

  9. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  10. MESH-TO-BIM: FROM SEGMENTED MESH ELEMENTS TO BIM MODEL WITH LIMITED PARAMETERS

    Directory of Open Access Journals (Sweden)

    X. Yang

    2018-05-01

    Full Text Available Building Information Modelling (BIM technique has been widely utilized in heritage documentation and comes to a general term Historical/Heritage BIM (HBIM. The current HBIM project mostly employs the scan-to-BIM process to manually create the geometric model from the point cloud. This paper explains how it is possible to shape from the mesh geometry with reduced human involvement during the modelling process. Aiming at unbuilt heritage, two case studies are handled in this study, including a ruined Roman stone architectural and a severely damaged abbey. The pipeline consists of solid element modelling based on documentation data using Autodesk Revit, a common BIM platform, and the successive modelling from these geometric primitives using Autodesk Dynamo, a visual programming built-in plugin tool in Revit. The BIM-based reconstruction enriches the classic visual model from computer graphics approaches with measurement, semantic and additional information. Dynamo is used to develop a semi-automated function to reduce the manual process, which builds the final BIM model from segmented parametric elements directly. The level of detail (LoD of the final models is dramatically relevant with the manual involvement in the element creation. The proposed outline also presents two potential issues in the ongoing work: combining the ontology semantics with the parametric BIM model, and introducing the proposed pipeline into the as-built HBIM process.

  11. Influence of CFC quality on the performance of TS limiter elements under cyclic heat loading

    International Nuclear Information System (INIS)

    Missirlian, M.; Greuner, H.; Hoeschen, T.; Linsmeier, Ch.; Richou, M.; Lipa, M.; Boeswirth, B.; Boscary, J.

    2011-01-01

    For the fabrication of 600 actively cooled finger elements for the Tore Supra pump limiter in operation since 2001 it was necessary to rely on two different batches of the CFC N11 grade (Carbon Fibre reinforced Composite) namely so-called SEP N11-92 (fabricated in 1992) and N11-98 (fabricated in 1998). It came out during the incoming inspection of the fingers that the bonding quality was degraded for the 98-batch so that an important number of tiles had to be repaired. Due to the coming upgrade of the Tore Supra heating system, two high heat flux test campaigns were performed on the neutral beam GLADIS facility (IPP Garching, Germany) including micro-structural analyses in order to evaluate, compare and understand the fatigue behaviour of 92- and 98-batch finger elements.

  12. Induced critical current density limit of Ag sheathed Bi-2223 tape conductor

    International Nuclear Information System (INIS)

    Ogiwara, H.; Satou, M.; Yamada, Y.; Kitamura, T.; Hasegawa, T.

    1994-01-01

    The authors have already reported the best critical current density of 66,000 A/cm 2 with an Ag sheathed Bi-2223 tape conductor. The Brick-wall model is for explaining the current transport mechanism of this conductor. The model has its roots in the fact that the Bi-2223 tape core is a complicated stack of crystals which have a mica-flake structure. The orientation of the crystals which have a mica-flake structure. The orientation of the crystals seriously affects the current transport capability. Moreover, the contacts between the stacking crystals are very important. The transport current flows dividing into many branch paths. Under high magnetic field, the different paths experienced different electromagnetic forces. Differences between the electromagnetic forces on the different crystals can affect the contacts so as to increase resistivity and decrease overall critical current density of the tape. This effect can foretell the limit of the critical current density obtainable with these kinds of conductors

  13. A dulal-functional medium voltage level DVR to limit downstream fault currents

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Li, Yun Wei; Vilathgamuwa, D. Mahinda

    2007-01-01

    on the other parallel feeders connected to PCC. Furthermore, if not controlled properly, the DVR might also contribute to this PCC voltage sag in the process of compensating the missing voltage, thus further worsening the fault situation. To limit the flow of large line currents, and therefore restore the PCC...... situations. Controlling the DVR as a virtual inductor would also ensure zero real power absorption during the DVR compensation and thus minimize the stress in the dc link. Finally, the proposed fault current limiting algorithm has been tested in Matlab/Simulink simulation and experimentally on a medium......The dynamic voltage restorer (DVR) is a modern custom power device used in power distribution networks to protect consumers from sudden sags (and swells) in grid voltage. Implemented at medium voltage level, the DVR can be used to protect a group of medium voltage or low voltage consumers. However...

  14. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  15. Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic Table of Elements, with Use of Rhodium

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2011-01-01

    Full Text Available In the earlier study (Khazan A. Upper Limit in Mendeleev’s Periodic Table — Ele- ment No. 155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010 the author showed how Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in or- der to calculate, with high precision, all other elements conceivable in the Table. Here we obtain the same result, with use of fraction linear functions (adjacent hyperbolas.

  16. Transport properties of triarylamine based dendrimers studied by space charge limited current transients

    Science.gov (United States)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-08-01

    We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.

  17. Current components data from current meters from the NE Pacific (limit-180) from 1954-06-01 to 1970-06-01 (NODC Accession 7601441)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components data were collected from current meters in the NE Pacific (limit-180). Data were collected by the Japanese Hydrographic Office from 01 June 1954...

  18. Effect of solvent composition on the limiting current of anodic dissolution of tungsten in aqueous-ethanol solutions of alkali

    International Nuclear Information System (INIS)

    Konoplyantseva, N.A.; L'vova, L.A.; Davydov, A.D.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1987-01-01

    The effect of quantitative composition of solvent on tungsten anodic dissolution in aqueous-ethanol solutions of KOH is studied. It is shown that with an increase in ethanol content in aqueous-ethanol solutions of alkali the limiting current of tungsten anodic dissolution decreases. An increase in KOH concentration in certain limits (in ethanol solutions it is the range between 0.75 and 1.0 M KOH) results in the increase of the limiting current; with further increase in solution concentration the limiting current decreases, which can be related to the change of the limiting stage. An assumption is made that total reaction of tungsten anodic dissolution and the main reasons for the limiting current appearance do not change from aqueous to aqueous-ethanol and ethanol solutions of alkali

  19. Control Strategy for Three-Phase Grid-Connected PV Inverters Enabling Current Limitation Under Unbalanced Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Rahimi, Ramin

    2017-01-01

    Power quality and voltage control are among the most important aspects of the grid-connected power converter operation under faults. Non-sinusoidal current is injected during unbalanced voltage sag and active or/and reactive power includes double frequency content. This paper introduces a novel...... control strategy to mitigate the double grid frequency oscillations in the active power and dc-link voltage of the two-stage three-phase grid-connected Photovoltaic (PV) inverters during unbalanced faults. With the proposed control method, PV inverter injects sinusoidal currents under unbalanced grid...... faults. In addition, an efficient and easy-to-implement current limitation method is introduced, which can effectively limit the injected currents to the rated value during faults. In this case, the fault-ride-through operation is ensured and it will not trigger the overcurrent protection. A non...

  20. Current Enhancement with Contact-Area-Limited Doping for Bottom-Gate, Bottom-Contact Organic Thin-Film Transistors

    Science.gov (United States)

    Noda, Kei; Wakatsuki, Yusuke; Yamagishi, Yuji; Wada, Yasuo; Toyabe, Toru; Matsushige, Kazumi

    2013-02-01

    The current enhancement mechanism in contact-area-limited doping for bottom-gate, bottom-contact (BGBC) p-channel organic thin-film transistors (OTFTs) was investigated both by simulation and experiment. Simulation results suggest that carrier shortage and large potential drop occur in the source-electrode/channel interface region in a conventional BGBC OTFT during operation, which results in a decrease in the effective field-effect mobility. These phenomena are attributed to the low carrier concentration of active semiconductor layers in OTFTs and can be alleviated by contact-area-limited doping, where highly doped layers are prepared over source-drain electrodes. According to two-dimensional current distribution obtained from the device simulation, a current flow from the source electrode to the channel region via highly doped layers is generated in addition to the direct carrier injection from the source electrode to the channel, leading to the enhancement of the drain current and effective field-effect mobility. The expected current enhancement mechanism in contact-area-limited doping was experimentally confirmed in typical α-sexithiophene (α-6T) BGBC thin-film transistors.

  1. Finite element limit loads for non-idealized through-wall cracks in thick-walled pipe

    International Nuclear Information System (INIS)

    Shim, Do-Jun; Han, Tae-Song; Huh, Nam-Su

    2013-01-01

    Highlights: • The lower bound bulging factor of thin-walled pipe can be used for thick-walled pipe. • The limit loads are proposed for thick-walled, transition through-wall cracked pipe. • The correction factors are proposed for estimating limit loads of transition cracks. • The limit loads of short transition cracks are similar to those of idealized cracks. - Abstract: The present paper provides plastic limit loads for non-idealized through-wall cracks in thick-walled pipe. These solutions are based on detailed 3-dimensional finite element (FE) analyses which can be used for structural integrity assessment of nuclear piping. To cover a practical range of interest, the geometric variables and loading conditions affecting the plastic limit loads of thick-walled pipe with non-idealized through-wall cracks were systematically varied. In terms of crack orientation, both circumferential and axial through-wall cracks were considered. As for loading conditions, axial tension, global bending, and internal pressure were considered for circumferential cracks, whereas only internal pressure was considered for axial cracks. Furthermore, the values of geometric factor representing shape characteristics of non-idealized through-wall cracks were also systematically varied. In order to provide confidence in the present FE analyses results, plastic limit loads of un-cracked, thick-walled pipe resulting from the present FE analyses were compared with the theoretical solutions. Finally, correction factors to the idealized through-wall crack solutions were developed to determine the plastic limit loads of non-idealized through-wall cracks in thick-walled pipe

  2. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    International Nuclear Information System (INIS)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T.; Rodrigues, Juliano S.

    2017-01-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  3. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T. [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rodrigues, Juliano S., E-mail: rfs@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: rtf@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  4. Ultimate limit state design of sheet pile walls by finite elements and nonlinear programming

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars; Krabbenhøft, Sven

    2005-01-01

    The design of sheet pile walls by lower bound limit analysis is considered. The design problem involves the determination of the necessary yield moment of the wall, the wall depth and the anchor force such that the structure is able to sustain the given loads. This problem is formulated...... as a nonlinear programming problem where the yield moment of the wall is minimized subject to equilibrium and yield conditions. The finite element discretization used enables exact fulfillment of these conditions and thus, according to the lower bound theorem, the solutions are safe....

  5. A Current Limiting Strategy to Improve Fault Ride-Through of Inverter Interfaced Autonomous Microgrids

    DEFF Research Database (Denmark)

    Sadeghkhani, Iman; Esmail Hamedani Golshan, Mohamad; Guerrero, Josep M.

    2017-01-01

    With high penetration of distributed energy resources (DER), fault management strategy is of great importance for the distribution network operation. The objective of this paper is to propose a current and voltage limiting strategy to enhance fault ride-through (FRT) capability of inverter...... for both four- and three-wire configurations. The proposed strategy provides high voltage and current quality during overcurrent conditions, which is necessary for sensitive loads. Several time-domain simulation studies are conducted to investigate the FRT capability of the proposed strategy against both...... asymmetrical and symmetrical faults. Moreover, the proposed method is tested on the CIGRE benchmark microgrid to demonstrate the effectiveness of the proposed limiting strategy....

  6. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  7. Improvement of Protection Coordination for a Distribution System Connected to a Microgrid using Unidirectional Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Mazen Abdel-Salam

    2017-09-01

    Full Text Available The presence of distributed generation (DG units in distribution systems increases the fault current level, which disrupts the existing coordination time interval of the protective overcurrent relays. One of the ways for decreasing DG effects on the coordination of protective devices is re-coordination of the relays by installing unidirectional fault current limiter (UFCL between the main grid (upstream network and the microgrid (downstream network. The UFCL does not limit fault current contribution of the upstream network when fault occurs in downstream but limits fault current contribution of the downstream network when fault occurs in the upstream. Moreover, it preserves the coordination between all of the relays. Several case studies are carried out for illustrating the performance of the UFCL in maintaining the relay coordination.

  8. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  9. Predicting the behavioural impact of transcranial direct current stimulation: issues and limitations

    Directory of Open Access Journals (Sweden)

    Archy Otto De Berker

    2013-10-01

    Full Text Available The transcranial application of weak currents to the human brain has enjoyed a decade of success, providing a simple and powerful tool for non-invasively altering human brain function. However, our understanding of current delivery and its impact upon neural circuitry leaves much to be desired. We argue that the credibility of conclusions drawn with tDCS is contingent upon realistic explanations of how tDCS works, and that our present understanding of tDCS limits the technique’s use to localize function in the human brain. We outline two central issues where progress is required: the localization of currents, and predicting their functional consequence. We encourage experimenters to eschew simplistic explanations of mechanisms of transcranial current stimulation. We suggest the use of individualized current modelling, together with computational neurostimulation to inform mechanistic frameworks in which to interpret the physiological impact of tDCS. We hope that through mechanistically richer descriptions of current flow and action, insight into the biological processes by which transcranial currents influence behaviour can be gained, leading to more effective stimulation protocols and empowering conclusions drawn with tDCS.

  10. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  11. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    International Nuclear Information System (INIS)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk

    2013-01-01

    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  12. Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1979-01-01

    The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base

  13. Current limitations and challenges in nanowaste detection, characterisation and monitoring.

    Science.gov (United States)

    Part, Florian; Zecha, Gudrun; Causon, Tim; Sinner, Eva-Kathrin; Huber-Humer, Marion

    2015-09-01

    Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from

  14. Inductive fault current limiter based on multiple superconducting rings of small diameter

    International Nuclear Information System (INIS)

    Osorio, M R; Cabo, L; Veira, J A; Vidal, F

    2004-01-01

    We present a fault current limiter prototype based on the use of a secondary comprised of an array of magnetic cores of small sections, each one of them with several superconducting rings. The main advantage of this configuration is that it is easier to make small diameter superconducting rings which, in addition, are more homogeneous and allow better refrigeration. We then present detailed measurements that show that, in addition to these advantages, this prototype offers the same limitation performances than when using a unique core and a superconducting ring with an equivalent area as the array of small section cores

  15. Limitations of commonly used thick-element personal dosimeters

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1983-01-01

    In the ANSI Standard N13.11, accepted in June 1982, radiation dose depths of 1.0 cm and 0.007 cm in tissue for protection dosimetry have been adopted for deep and shallow dose equivalent estimations respectively. This standard is presently used for a mandatory personnel dosimetry performance testing program in the United States. Estimation of shallow-dose equivalent using a two-element dosimeter is described under the guidelines of this standard and the dosimetry practices followed by most dosimeter processors. A mathematical formulation, correlating a dosimeter response and shallow-dose equivalent factors at different energies, is presented. Also, the performance of a two-element thermoluminescent dosimeter is examined and the shallow-dose equivalent response results, both for the beta particles and photons, are discussed

  16. Dimensional measurements and eddy currents control of the sheath integrity for a set of irradiated candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2015-01-01

    During irradiation in the nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of sheath surface condition as well, which can lead to damages and even loss of integrity. This paper presents the results of dimensional measurements and of examination technique with eddy currents for three fuel elements of an irradiated CANDU fuel bundle. One of the fuel elements (FE), which is studied in detail, presented a crack about 40 mm long. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. This paper contains images of defects and interpretations of the causes of their occurrence. (authors)

  17. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    Science.gov (United States)

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  19. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  20. DC current in the collisionless limit induced by a travelling wave

    International Nuclear Information System (INIS)

    Midzuno, Yukio; Fukuda, Masaji.

    1977-03-01

    The DC current induced by a Travelling Wave is calculated on the basis of the assumption that the distribution function of electrons in the collisionless limit should be determined by a condition derived from the nature of the collision operator, as in the case of the calculation of the neoclassical transport in a torus. The resultant net current is found to have the same parameter dependence as the one derived in a previous analysis, in which we assumed the initial distribution of electrons to be uniform and isotropic Maxwellian. The numerical coefficient is found, however, to be a little different from the previous one. The importance of the accurate matching of the distribution function of untrapped particles to the Maxwellian one for large velocity is demonstrated. (auth.)

  1. Current-limiting and ultrafast system for the characterization of resistive random access memories.

    Science.gov (United States)

    Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X

    2016-06-01

    A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.

  2. Particle Swarm Optimization Algorithm Coupled with Finite Element Limit Equilibrium Method for Geotechnical Practices

    Directory of Open Access Journals (Sweden)

    Hongjun Li

    2012-01-01

    Full Text Available This paper proposes a modified particle swarm optimization algorithm coupled with the finite element limit equilibrium method (FELEM for the minimum factor of safety and the location of associated noncircular critical failure surfaces for various geotechnical practices. During the search process, the stress compatibility constraints coupled with the geometrical and kinematical compatibility constraints are firstly established based on the features of slope geometry and stress distribution to guarantee realistic slip surfaces from being unreasonable. Furthermore, in the FELEM, based on rigorous theoretical analyses and derivation, it is noted that the physical meaning of the factor of safety can be formulated on the basis of strength reserving theory rather than the overloading theory. Consequently, compared with the limit equilibrium method (LEM and the shear strength reduction method (SSRM through several numerical examples, the FELEM in conjunction with the improved search strategy is proved to be an effective and efficient approach to routine analysis and design in geotechnical practices with a high level of confidence.

  3. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  4. New functionalities in abundant element oxides: ubiquitous element strategy

    International Nuclear Information System (INIS)

    Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi

    2011-01-01

    While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A 'rare-element crisis' is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a 'ubiquitous element strategy' for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. (topical review)

  5. Current perspectives on indications and limitations of mammography

    International Nuclear Information System (INIS)

    Pope, T.L. Jr.

    1983-01-01

    Women have a 7 percent natural lifetime risk of developing breast cancer, which is the leading cause of death in women aged 40 to 50 years. Most data suggest that the earlier the disease is diagnosed, the better the chance for cure. Women with ''minimal breast cancer'' have an actuarial 20-year survival rate of 93.2 percent. The majority of these breast cancers are diagnosed by mammography. The radiation doses from this technique have been dramatically decreased over the last ten years to about 0.1 to 0.6 rads per study. The two largest breast cancer screening studies, the Health Insurance Plan of Greater New York and the Breast Cancer Detection Demonstration Project, have shown conclusively that women over 50 years old can benefit from annual mammography and that certain groups can benefit from mammography at close intervals before the age of 50 years. This article describes the development of mammography and outlines current perspectives on its indications and limitations

  6. Assessment of the impact of HTSCs on superconducting fault-current limiters

    International Nuclear Information System (INIS)

    Giese, R.F.; Runde, M.

    1992-01-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconducting at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity at 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Therefore, a high critical current density, probably at least 10 5 A/cm 2 , is required

  7. Effect of current profile evolution on plasma-limiter interaction and the energy confinement time

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Bol, K.; Bretz, N.

    1979-04-01

    Experiments conducted on the PLT tokamak have shown that both plasma-limiter interaction and the gross energy confinement time are functions of the gas influx during the discharge. By suitably controlling the gas influx, it is possible to contract the current channel, decrease impurity radiation from the core of the discharge, and increase the gross energy confinement time, whether the aperture limiters were of tungsten, stainless steel or carbon

  8. Current status of the transient integral fuel element performance code URANUS

    International Nuclear Information System (INIS)

    Preusser, T.; Lassmann, K.

    1983-01-01

    To investigate the behavior of fuel pins during normal and off-normal operation, the integral fuel rod code URANUS has been extended to include a transient version. The paper describes the current status of the program system including a presentation of newly developed models for hypothetical accident investigation. The main objective of current development work is to improve the modelling of fuel and clad material behavior during fast transients. URANUS allows detailed analysis of experiments until the onset of strong material transport phenomena. Transient fission gas analysis is carried out due to the coupling with a special version of the LANGZEIT-KURZZEIT-code (KfK). Fuel restructuring and grain growth kinetics models have been improved recently to better characterize pre-experimental steady-state operation; transient models are under development. Extensive verification of the new version has been carried out by comparison with analytical solutions, experimental evidence, and code-to-code evaluation studies. URANUS, with all these improvements, has been successfully applied to difficult fast breeder fuel rod analysis including TOP, LOF, TUCOP, local coolant blockage and specific carbide fuel experiments. Objective of further studies is the description of transient PCMI. It is expected that the results of these developments will contribute significantly to the understanding of fuel element structural behavior during severe transients. (orig.)

  9. Current densities in a space-time-dependent and CP-violating Higgs background in the adiabatic limit

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    1996-01-01

    Motivated by cosmological applications such as electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time-dependent and CP-violating Higgs background in the adiabatic limit. We consider the standard model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields describing the profile of the bubble wall. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. copyright 1996 The American Physical Society

  10. Lower hybrid current drive experiments with graphite limiters in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Liu, J.; Gao, X.; Hu, L.Q.; Asif, M.; Chen, Z.Y.; Ding, B.J.; Zhou, Q.; Liu, H.Q.; Jie, Y.X.; Kong, W.; Lin, S.Y.; Ding, Y.H.; Gao, L.; Xu, Q.

    2006-01-01

    Recent progress of lower hybrid (LH) experiments with new graphite limiters configuration in the HT-7 tokamak is presented. The lower hybrid current drive (LHCD) efficiency can be determined by fitting based on experimental data. Improved particle confinement was observed via LHCD (P LHW >300 kW) characterized by the particle confinement time τ p increased about 1.56 times. It is found that runaways are suppressed during loop voltage is decreasing at the flat-top phase of LH discharges. The main limitations of pulse length are presented in long-pulse experiments with new limiter configuration

  11. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    Science.gov (United States)

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  12. Influence of Current Transformer Saturation on Operation of Current Protection

    Directory of Open Access Journals (Sweden)

    F. A. Romaniouk

    2010-01-01

    Full Text Available An analysis of the influence of instrument current transformer errors on operation of current protection of power supply diagram elements has been carried out in the paper. The paper shows the influence of an aperiodic component of transient current and secondary load on current  transformer errors.Peculiar operational features of measuring elements of electromechanical and microprocessor current protection with their joint operation with electromagnetic current transformers have been analyzed in the paper.

  13. Experimental modeling of eddy currents and deflections for tokamak limiters

    International Nuclear Information System (INIS)

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field

  14. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  15. PELTIER ELEMENTS

    CERN Document Server

    Tani, Laurits

    2015-01-01

    To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.

  16. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  17. Mass current in 3He - A: Some exact representations and their London limit near zero temperature

    International Nuclear Information System (INIS)

    Malyshev, C.

    1995-09-01

    New representations for normal Green's function of the superfluid A-phase of helium-3 are obtained by an exact solution of the Dyson-Gor'kov equation. These representations result in new formulae for the mass current j-vector near zero temperature. Specific limiting cases for j-vector such ast the limit of lowest order in gradients, following the limit of zero temperature, and vice versa, are investigated. It is shown that the mass current previously known as j-vector = j-vector 0 , where j-vector 0 is an expression of first order in gradients, should be treated as a ''quasiclassical'' object in view of the approximations chosen. The parameter 1/χ implying the ''quasiclassics'', is a small quantity, as the London limit condition holds. Expansion of j-vector in powers of 1/χ is considered and first corrections to j-vector 0 are obtained at zero temperature, for two gauges of the order parameter. (author). 26 refs

  18. Relativistic space-charge-limited current for massive Dirac fermions

    Science.gov (United States)

    Ang, Y. S.; Zubair, M.; Ang, L. K.

    2017-04-01

    A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.

  19. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    Science.gov (United States)

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  20. Finite element limit analysis based plastic limit pressure solutions for cracked pipes

    International Nuclear Information System (INIS)

    Shim, Do Jun; Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2002-01-01

    Based on detailed FE limit analyses, the present paper provides tractable approximations for plastic limit pressure solutions for axial through-wall cracked pipe; axial (inner) surface cracked pipe; circumferential through-wall cracked pipe; and circumferential (inner) surface cracked pipe. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach

  1. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?

    Science.gov (United States)

    Sturrock, A M; Trueman, C N; Darnaude, A M; Hunter, E

    2012-07-01

    Otolith microchemistry can provide valuable information about stock structure and mixing patterns when the magnitude of environmental differences among areas is greater than the cumulative influence of any vital effects. Here, the current understanding of the underlying mechanisms governing element incorporation into the otolith is reviewed. Hard and soft acid and base (HSAB) theory is employed to explore the differences in chemical behaviours, distributions and affinities between elements. Hard acid cations (e.g. Mg(2+) , Li(+) and Ba(2+) ) tend to be less physiologically influenced and accepted more readily into the otolith crystal lattice but are relatively homogeneous in seawater. Soft acid cations (e.g. Zn(2+) and Cu(2+) ) on the other hand, exhibit more varied distributions in seawater, but are more likely to be bound to blood proteins and less available for uptake into the otolith. The factors influencing the geographical distribution of elements in the sea, and their incorporation into the otoliths of marine fishes are reviewed. Particular emphasis is placed on examining physiological processes, including gonad development, on the uptake of elements commonly used in population studies, notably Sr. Finally, case studies are presented that either directly or indirectly compare population structuring or movements inferred by otolith elemental fingerprints with the patterns indicated by additional, alternative proxies. The main obstacle currently limiting the application of otolith elemental microchemistry to infer movements of marine fishes appears to lie in the largely homogeneous distribution of those elements most reliably measured in the otolith. Evolving technologies will improve the discriminatory power of otolith chemistry by allowing measurement of spatially explicit, low level elements; however, for the time being, the combination of otolith minor and trace element fingerprints with alternative proxies and stable isotopic ratios can greatly extend the

  2. Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Lu, Zhigang

    2017-01-01

    The grid-connected inverters may experience excessive current stress in case of unbalanced grid voltage Fault Ride Through (FRT), which significantly affects the reliability of the power supply system. In order to solve the problem, the inherent mechanisms of the excessive current phenomenon...... with the conventional FRT solutions are discussed. The quantitative analysis of three phase current peak values are conducted and a novel current-limited control strategy is proposed to achieve the flexible active and reactive power regulation and successful FRT in a safe current operation area with the aim...

  3. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    Science.gov (United States)

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  4. Characteristic Of Induction Magnetic Field On The Laboratory Scale Superconducting Fault Current Limiter Circuit

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, E.; Didin, S.W.; Yustinus, P.M.; Siregar, Riswal H.

    2004-01-01

    Model construction of the laboratory scale superconducting fault current limiter circuit (SFCL) has been performed. The SFCL is fault current limiter and used as electric network security. It mainly consists of a copper coil, a superconducting ring and an iron core that are concentrically arranged. The SFCL circuit is essentially a transformer where the secondary windings are being replaced by the ring of YBa 2 Cu 3 O 7-x superconductor (HTS). The ring has critical transition temperature Tc = 92 K and critical current Ic = 3.61 A. Characterization of the SFCL circuit is simulated by ANSYS version 5.4 software. The SFCL circuit consists of load and transformer impedances. The results show that the inductions of magnet field flux in the iron core of primer windings and ring disappear to one other before fault state. It means that impedance of the transformer is zero. After the condition a superconductivity behavior of the ring is disappear so that the impedance of the transformer becomes very high. From this experiment, we concluded that the SFCL circuit could work normally if the resultant of induction magnetic in the iron core (transformer) is zero

  5. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  6. Upper Limit in the Periodic Table of Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2007-01-01

    Full Text Available The method of rectangular hyperbolas is developed for the first time, by which a means for estimating the upper bound of the Periodic Table is established in calculating that its last element has an atom mass of 411.663243 and an atomic number (the nuclear charge of 155. The formulating law is given.

  7. Matrix effect on the detection limit and accuracy in total reflection X-ray fluorescence analysis of trace elements in environmental and biological samples

    International Nuclear Information System (INIS)

    Karjou, J.

    2007-01-01

    The effect of matrix contents on the detection limit of total reflection X-ray fluorescence analysis was experimentally investigated using a set of multielement standard solutions (500 ng/mL of each element) in variable concentrations of NH 4 NO 3 . It was found that high matrix concentration, i.e. 0.1-10% NH 4 NO 3 , had a strong effect on the detection limits for all investigated elements, whereas no effect was observed at lower matrix concentration, i.e. 0-0.1% NH 4 NO 3 . The effect of soil and blood sample masses on the detection limit was also studied. The results showed decreasing the detection limit (in concentration unit, μg/g) with increasing the sample mass. However, the detection limit increased (in mass unit, ng) with increasing sample mass. The optimal blood sample mass of ca. 200 μg was sufficient to improve the detection limit of Se determination by total reflection X-ray fluorescence. The capability of total reflection X-ray fluorescence to analyze different kinds of samples was discussed with respect to the accuracy and detection limits based on certified and reference materials. Direct analysis of unknown water samples from several sources was also presented in this work

  8. Upper Limit of the Periodic Table and Synthesis of Superheavy Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2007-04-01

    Full Text Available For the first time, using the heaviest possible element, the diagram for known nuclides and stable isotopes is constructed. The direction of search of superheavy elements is indicated. The Periodic Table with an eighth period is tabulated.

  9. Fault ride-through enhancement of fixed speed wind turbine using bridge-type fault current limiter

    Directory of Open Access Journals (Sweden)

    Mostafa I. Marei

    2016-05-01

    Full Text Available The interaction between wind energy turbines and the grid results in two main problems, increasing the short-circuit level and reducing the Fault Ride-Through (FRT capability during faults. The objective of this paper is to solve these problems, for fixed speed Wind Energy Systems (WECS, utilizing the bridge-type Fault Current Limiter (FCL with a discharging resistor. A simple cascaded control system is proposed for the FCL to regulate the terminal voltage of the generator and limit the current. The system is simulated on PSCAD/EMTDC software to evaluate the dynamic performance of the proposed WECS compensated by FCL. The simulation results show the potentials of the FCL as a simple and effective method for solving grid interconnection problems of WECS.

  10. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  11. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  12. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  13. Survey of potential light water reactor fuel rod failure mechanisms and damage limits

    International Nuclear Information System (INIS)

    Courtright, E.L.

    1979-07-01

    The findings and conclusions are presented of a survey to evaluate current information applicable to the development of fuel rod damage and failure limits for light water reactor fuel elements. The survey includes a review of past fuel failures, and identifies potential damage and failure mechanisms for both steady state operating conditions and postulated accident events. Possible relationships between the various damage and failure mechanisms are also proposed. The report identifies limiting criteria where possible, but concludes that sufficient data are not currently available in many important areas

  14. Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T., E-mail: takashi.yazawa@toshiba.co.j [Toshiba Corporation, Power Systems Company (Japan); Koyanagi, K.; Takahashi, M.; Toba, K.; Takigami, H.; Urata, M. [Toshiba Corporation, Power Systems Company (Japan); Iijima, Y.; Saitoh, T. [Fujikura Ltd. (Japan); Amemiya, N. [Superconductivity Research Laboratory, ISTEC (Japan); Shiohara, Y. [Department of Electrical Engineering, Kyoto University (Japan); Ito, T. [Tokyo Gas Co., Ltd. (Japan)

    2009-10-15

    As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R and D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.

  15. Key Elements of Strategy in the Telecommunication Industry – Overview of Discussion

    Directory of Open Access Journals (Sweden)

    Ladislav Možný

    2017-10-01

    Full Text Available The purpose of this article is to examine current empirical and theoretical approaches to the strategies of companies operating in the telecommunication industry and to identify important strategy elements for the telecommunication industry. These elements are systematically categorized into the overall strategic framework. Strategic elements not covered in current literature are identified as topics for future research. As the first conclusion, the article identifies the most frequent strategic element discussed in connection with the strategy in the telecommunication industry which is Market offering/Value proposition including its more detailed structure. Highly debated elements of Market offering are Price and Product and their features. On the other hand, only limited attention is paid to Resources and no attention at all is paid to Value chain in the selected articles. Thus, there is space for future research regarding strategy in telecommunications mainly in the areas of Value chain and Resources (both tangible and intangible. Even Market offering is highly debated, the strategic element Availability (sales and service channels from the Market offering/Value proposition is covered only marginally and thus it should be a subject for future research.

  16. ABCXYZ: vector potential (A) and magnetic field (B) code (C) for Cartesian (XYZ) geometry using general current elements

    International Nuclear Information System (INIS)

    Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.

    1976-01-01

    ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table

  17. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    International Nuclear Information System (INIS)

    Kılıç, Emre; Eibert, Thomas F.

    2015-01-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained

  18. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  19. Distributions of 12 elements on 64 absorbers from simulated Hanford Neutralized Current Acid Waste (NCAW)

    International Nuclear Information System (INIS)

    Svitra, Z.V.; Bowen, S.M.; Marsh, S.F.

    1994-12-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions

  20. Common elements of adolescent prevention programs: minimizing burden while maximizing reach.

    Science.gov (United States)

    Boustani, Maya M; Frazier, Stacy L; Becker, Kimberly D; Bechor, Michele; Dinizulu, Sonya M; Hedemann, Erin R; Ogle, Robert R; Pasalich, Dave S

    2015-03-01

    A growing number of evidence-based youth prevention programs are available, but challenges related to dissemination and implementation limit their reach and impact. The current review identifies common elements across evidence-based prevention programs focused on the promotion of health-related outcomes in adolescents. We reviewed and coded descriptions of the programs for common practice and instructional elements. Problem-solving emerged as the most common practice element, followed by communication skills, and insight building. Psychoeducation, modeling, and role play emerged as the most common instructional elements. In light of significant comorbidity in poor outcomes for youth, and corresponding overlap in their underlying skills deficits, we propose that synthesizing the prevention literature using a common elements approach has the potential to yield novel information and inform prevention programming to minimize burden and maximize reach and impact for youth.

  1. Vector current scattering in two dimensional quantum chromodynamics

    International Nuclear Information System (INIS)

    Fleishon, N.L.

    1979-04-01

    The interaction of vector currents with hadrons is considered in a two dimensional SU(N) color gauge theory coupled to fermions in leading order in an N -1 expansion. After giving a detailed review of the model, various transition matrix elements of one and two vector currents between hadronic states were considered. A pattern is established whereby the low mass currents interact via meson dominance and the highly virtual currents interact via bare quark-current couplings. This pattern is especially evident in the hadronic contribution to inelastic Compton scattering, M/sub μν/ = ∫ dx e/sup iq.x/ , which is investigated in various kinematic limits. It is shown that in the dual Regge region of soft processes the currents interact as purely hadronic systems. Modification of dimensional counting rules is indicated by a study of a large angle scattering analog. In several hard inclusive nonlight cone processes, parton model ideas are confirmed. The impulse approximation is valid in a Bjorken--Paschos-like limit with very virtual currents. A Drell--Yan type annihilation mechanism is found in photoproduction of massive lepton pairs, leading to identification of a parton wave function for the current. 56 references

  2. Power load limits of the WENDELSTEIN 7-X target elements-comparison of experimental results and design values for power loads up to the critical heat flux

    International Nuclear Information System (INIS)

    Greuner, H; Boeswirth, B; Boscary, J; Leuprecht, A; Plankensteiner, A

    2007-01-01

    The power load limits of the WENDELSTEIN7-X divertor target elements were experimentally evaluated with heat loads considerably exceeding the expected operating conditions. The water-cooled elements are designed for steady-state heat flux of 10 MW m -2 and to remove a power load up to 100 kW. The elements must allow a limited operation time at 12 MW m -2 steady-state and should not fail for short pulses of up to 15 MW m -2 for cooling conditions in the subcooled nucleate boiling regime. In the framework of the qualification phase, pre-series target elements were loaded up to 24 MW m -2 without loss of CFC tiles. A critical heat flux at the target of 31 MW m -2 was achieved. The paper discusses the results of the tests performed at the high heat flux test facility GLADIS. The experimental results compared to transient nonlinear fine element method (FEM) calculations confirm a high thermal safety margin of the target design sufficient for plasma operation in W7-X

  3. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  4. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  5. Towards a reliable design of facade and roof elements against wind loading

    NARCIS (Netherlands)

    Geurts, C.P.W.; Staalduinen, P.C. van; Wit, M.S. de

    2004-01-01

    The most vulnerable parts of buildings with respect to wind loading are facades and roofs. Current standards on wind loading provide data to determine design loads for the elements in facades and roofs. These data are available for a limited number of simple building shapes. Up to now there is no

  6. LIFELONG LEARNING THROUGH SECOND LIFE: CURRENT TRENDS, POTENTIALS AND LIMITATIONS

    Directory of Open Access Journals (Sweden)

    Nil GOKSEL-CANBEK

    2011-08-01

    Full Text Available Lifelong Learning (LLL has been a remarkable response to people-centered educational demand of 21st century. In order to provide effective formal, non-formal, and informal learning, immersive educational activities undertaken throughout life should be aimed to create a learning society in which people can experience individual and collective learning with no constrains of time or location. The concept of lifelong learning within the context of distance immersive education encompasses diverse 3D activities. The three dimensional, Web-based structured activities supported by distance learning technologies can be viewed as interactive tools which foster LLL. In this perspective, Second Life (SL can be regarded as one of the learning simulation milieus that allow learners to participate in various educational LLL activities in individual or group forms. The following paper examines how SL, taking advantage of its simulative nature and the possibility for creative interaction among participants, which are also common in games, allows the learners to participate in immersive constructivist learning activities. The article will also touch on the current uses of SL as a tool for LLL, as well as its potentials for further development according to the current trends in adult education. Further, the authors will discuss its limitations and will make suggestions towards a more complete pedagogical use.

  7. Two numerical methods for the solution of two-dimensional eddy current problems

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.

    1978-07-01

    A general method for the solution of eddy current problems in two dimensions - one component of current density and two of magnetic field, is reported. After examining analytical methods two numerical methods are presented. Both solve the two dimensional, low frequency limit of Maxwell's equations for transient eddy currents in conducting material, which may be permeable, in the presence of other non-conducting permeable material. Both solutions are expressed in terms of the magnetic vector potential. The first is an integral equation method, using zero order elements in the discretisation of the unknown source regions. The other is a differential equation method, using a first order finite element mesh, and the Galerkin weighted residual procedure. The resulting equations are solved as initial-value problems. Results from programs based on each method are presented showing the power and limitations of the methods and the range of problems solvable. The methods are compared and recommendations are made for choosing between them. Suggestions are made for improving both methods, involving boundary integral techniques. (author)

  8. Bearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis

    Directory of Open Access Journals (Sweden)

    Javad Mofidi rouchi

    2014-06-01

    Full Text Available Stability of foundations near slopes is one of the important and complicated problems in geotechnical engineering, which has been investigated by various methods such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The complexity of this problem is resulted from the combination of two probable failures: foundation failure and overall slope failure. The current paper describes a lower bound solution for estimation of bearing capacity of strip footings near slopes. The solution is based on the finite element formulation and linear programming technique, which lead to a collapse load throughout a statically admissible stress field. Three-nodded triangular stress elements are used for meshing the domain of the problem, and stress discontinuities occur at common edges of adjacent elements. The Mohr-Coulomb yield function and an associated flow rule are adopted for the soil behavior. In this paper, the average limit pressure of strip footings, which are adjacent to slopes, is considered as a function of dimensionless parameters affecting the stability of the footing-on-slope system. These parameters, particularly the friction angle of the soil, are investigated separately and relevant charts are presented consequently. The results are compared to some other solutions that are available in the literature in order to verify the suitability of the methodology used in this research.

  9. A new concept for design of fibered high strength reinforced concrete elements using ultimate limit state method

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.

    2013-01-01

    Highlights: • A new concept for design of two layer reinforced concrete beams is proposed. • Concrete class and section height of bending elements are calculated. • Good correlation between experimental and numerical results is obtained. - Abstract: Existing methods for design of reinforced concrete (RC) bending elements in the ultimate limit state are based on calculating the compressed zone depth of the section. At the same time, in isotropic materials the neutral axis of the bending section crosses its center of gravity (CG). It was proved that if a neutral axis of bending RC element crosses the section’s CG, the total reinforcement section (A s +A s ′ ) is minimal. Therefore the compressed zone depth should be selected so that under the design load the neutral axis should pass through the section’s CG. In this case the compressed zone depth that is unknown in existing design methods becomes a known value. This concept enables to select other parameters as unknowns (bending element concrete class, section height, etc.). It is especially important for design of modern high strength concrete (HSC) bending elements, for which the concrete class can be calculated, but not selected. It is demonstrated that applying the proposed concept enables to assume that the neutral axis location is constant for all stages of stress - strain state in bending. As HSC is rather brittle, stresses diagram in the compressed section zone has a form close to triangular. However, adding steel fibers allows improving the elastic–plastic properties of HSC. In this case a rectangular stresses diagram can be used, as for normal strength concrete. Consequently, the proposed concept yields more economical solutions and allows more effective using the HSC properties

  10. A Combined Experimental and Finite Element Analysis Method for the Estimation of Eddy-Current Loss in NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Radu Fratila

    2014-05-01

    Full Text Available NdFeB permanent magnets (PMs are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.

  11. A combined experimental and finite element analysis method for the estimation of eddy-current loss in NdFeB magnets.

    Science.gov (United States)

    Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude

    2014-05-14

    NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.

  12. Current-limiting mechanisms in YBa2Cu3O7-δ thin layers and quasi-multilayers

    International Nuclear Information System (INIS)

    Haenisch, J.

    2004-01-01

    In this work, electrical transport properties and the maximum current carrying capability of YBa 2 Cu 3 O 7 -[δ] thin films and so called quasi-multilayers are investigated. These samples are prepared with pulsed laser deposition on single-crystalline substrates (SrTiO 3 ) as well as on biaxially textured Ni tapes. The critical current density of coated conductors is limited by small-angle grain boundaries in low magnetic fields, but by the intra-grain pinning properties in higher magnetic fields. Accordingly, these investigations are divided into two parts: In the first part, the limitation of the critical current density by grain-boundaries and grain boundary networks is investigated with the main focus on the influence of geometrical factors such as the conductor width or the grain aspect ratio. In the second part, a possible enhancement of the critical current density due to different doping types (atomar doping using Zn and precipitate doping using BaMO 3 where M is a transition metal) will be discussed. Here, not only the irreversibility field but also the pinning behaviour in very low magnetic fields is of interest to better understand the pinning mechanism of thin films. (Orig.)

  13. A View of Current Evaluative Practices in Instrumental Music Teacher Education

    Science.gov (United States)

    Peterson, Amber Dahlén

    2014-01-01

    The purpose of this study was to examine how instrumental music educator skills are being evaluated in current undergraduate programs. While accrediting organizations mandate certain elements of these programs, they provide limited guidance on what evaluative approaches should be used. Instrumental music teacher educators in the College Music…

  14. New elements - approaching Z=114

    International Nuclear Information System (INIS)

    Hofmann, S.

    1998-03-01

    The search for new elements is part of the broader field of investigations of nuclei at the limits of stability. In two series of experiments at SHIP, six new elements (Z=107-112) were synthesized via fusion reactions using 1n-deexcitation channels and lead or bismuth targets. The isotopes were unambiguously identified by means of α-α correlations. Not fission, but alpha decay is the dominant decay mode. The collected decay data establish a means of comparison with theoretical data. This aids in the selection of appropriate models that describe the properties of known nuclei. Predictions based on these models are useful in the preparation of the next generation of experiments. Cross-sections decrease by two orders of magnitude from bohrium (Z=107) to element 112, for which a cross-section of 1 pb was measured. The development of intense beam currents and sensitive detection methods is essential for the production and identification of still heavier elements and new isotopes of already known elements, as well as the measurement of small α-, β- and fission-branching ratios. An equally sensitive set-up is needed for the measurement of excitation functions at low cross-sections. Based on our results, it is likely that the production of isotopes of element 114 close to the island of spherical super heavy elements (SHE) could be achieved by fusion reactions using 208 Pb targets. Systematic studies of the reaction cross-sections indicate that the transfer of nucleons is an important process for the initiation of fusion. The data allow for the fixing of a narrow energy window for the production of SHE using 1n-emission channels. (orig.)

  15. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit

    Directory of Open Access Journals (Sweden)

    Flávio Oliveira

    2015-12-01

    Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.

  16. Double-curved precast concrete elements : Research into technical viability of the flexible mould method

    NARCIS (Netherlands)

    Schipper, H.R.

    2015-01-01

    The production of precast, concrete elements with complex, double-curved geometry is expensive due to the high costcosts of the necessary moulds and the limited possibilities for mould reuse. Currently, CNC-milled foam moulds are the solution applied mostly in projects, offering good aesthetic

  17. DETERMINATION OF LIMIT DETECTION OF THE ELEMENTS N, P, K, Si, Al, Fe, Cu, Cd, WITH FAST NEUTRON ACTIVATION USING NEUTRON GENERATOR

    OpenAIRE

    Sunardi, Sunardi; Muryono, Muryono

    2010-01-01

    Determination of limit detection of the elements N, P, K, Si, Al, Fe, Cu, Cd, with fast neutron activation using neutron generator has been done.  Samples prepared from SRM 2704, N, P, K elements from MERCK, Cu, Cd, Al from activation foil made in San Carlos, weighted and packed for certain weight then iradiated during 30 minutes with 14 MeV fast neutron using the neutron generator and then counted with gamma spectrometry (accuspec).  At this research condition of neutron generator was set at...

  18. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  19. THE MATHEMATIC MODEL OF POTENTIAL RELAXATION IN COULOSTATIC CONDITIONS FOR LIMITING DIFFUSION CURRENT CASE

    Directory of Open Access Journals (Sweden)

    O. H. Kapitonov

    2010-05-01

    Full Text Available A mathematical model of coulostatic relaxation of the potential for solid metallic electrode was presented. The solution in the case of limiting diffusion current was obtained. On the basis of this model the technique of concentration measurements for heavy metal ions in diluted solutions was suggested. The model adequacy was proved by experimental data.

  20. Evaluation of plate type fuel elements by eddy current test method

    International Nuclear Information System (INIS)

    Frade, Rangel Teixeira

    2015-01-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  1. Application limits of finite element models for simulation of shock transfer processes in concrete structures

    International Nuclear Information System (INIS)

    Krutzik, Norbert J.; Eibl, Josef

    2005-01-01

    Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models

  2. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    Science.gov (United States)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  3. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    Science.gov (United States)

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns

    International Nuclear Information System (INIS)

    Birguel, Oezlem; Eyueboglu, B Murat; Ider, Y Ziya

    2003-01-01

    Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a scale factor. EIT surface potential measurements are then used to scale the reconstructed image in order to find the true conductivity values. This process is iterated until a stopping criterion is met. Several simulations are carried out for opposite and cosine current injection patterns to select the best current injection pattern for a 2D thorax model. The contrast resolution and accuracy of the proposed algorithm are also studied. In all simulation studies, realistic noise models for voltage and magnetic flux density measurements are used. It is shown that, in contrast to the conventional EIT techniques, the proposed method has the capability of reconstructing conductivity images with uniform and high spatial resolution. The spatial resolution is limited by the larger element size of the finite element mesh and twice the magnetic resonance image pixel size

  5. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    Science.gov (United States)

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. A Secondary-Control Based Fault Current Limiter for Four-Wire Three Phase Inverter-Interfaced DGs

    DEFF Research Database (Denmark)

    Beheshtaein, Siavash; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    Fault current limiters (FCLs) are one class of solutions to cope with the upcoming challenges in microgrid protection. Considering high penetration of distributed generations (DGs) in microgrids, the necessity of designing cheap and effective FCL is getting higher. This paper attempts to fill thi...

  7. Trace elements and radioactivity in aerosol particles, produced in the area of Ptolemais (Greece)

    International Nuclear Information System (INIS)

    Kallithrakas-Kontos, N.; Zoumi, K.; Nikolakaki, S.; Kritidis, P.

    1998-01-01

    Most of the Greek lignite power plants have been installed in the area of Ptolemais, and a major part of them during the period 1981-1990. Aerosol filters collected in the first and the last years of the decade have been analysed for trace elements as well as for radioactivity (total beta) content. Analysis was performed by radioisotope excited X-ray fluorescence, and 17 elements were determined. A special interest is focused on lead concentrations, an element whose environmental concentrations are regulated by the Greek law; the results for lead were validated by atomic absorption spectrometry. Trace element and radioactivity levels were found significantly lower than the current limit. Enrichment factors and correlation among the analysed elements were also estimated. (author)

  8. Lateral resolution of eddy current imaging

    International Nuclear Information System (INIS)

    Hassan, W.; Blodgett, M.; Nagy, P.B.

    2002-01-01

    Analytical, finite element simulation, and experimental methods were used to investigate the lateral resolution of eddy current microscopy. It was found that the lateral resolution of eddy current imaging is ultimately limited by the probe-coil geometry and dimensions, but both the inspection frequency and the phase angle can be used to optimize the resolution, to some degree, at the expense of sensitivity. Electric anisotropy exhibited by noncubic crystallographic classes of materials such as titanium alloys can play a very similar role in electromagnetic materials characterization of polycrystalline metals to that of elastic anisotropy in ultrasonic materials characterization. Our results demonstrate that eddy current microscopy can be enhanced via a high-resolution, small diameter probe-coil which delivers a unique materials characterization tool well suited for the evaluation of Ti alloys

  9. Elemental chemical characterization of coins of currently national circulating by X-ray fluorescence non-destructive techniques

    International Nuclear Information System (INIS)

    Olivera, Paula; Calcina, Esly

    2013-01-01

    Given the frequent counterfeit bills and coins is proposed in this paper to identify the elemental chemical composition; for now, the current official currencies circulating in our country, by Energy Dispersive X-ray Fluorescence technique and non-destructive methods, the goal is to compare with the false and establish the differences that could help identify them immediately taking advantage of the fast response of this technique. Have been identified the elements Al in the coins of 5 cents, Cu and Zn for 10 and 20 cents, Ni, Cu and Zn for 50 cents and a Un Nuevo Sol and Cr, Cu and Zn 2 coins 5 Nuevos Soles. 57 Peruvian coins of different production years and a counterfeit coin of 5 Nuevos Soles have been analyzed, finding Cu and Zn in central part and Fe in circulating edge ring, looking for this one the absence of Ni and Cr, which in the official currency was found. (authors).

  10. Fault Ride Through Capability Enhancement of a Large-Scale PMSG Wind System with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    ALAM, M. S.

    2018-02-01

    Full Text Available In this paper, bridge type fault current limiter (BFCL is proposed as a potential solution to the fault problems of permanent magnet synchronous generator (PMSG based large-scale wind energy system. As PMSG wind system is more vulnerable to disturbances, it is essential to guarantee the stability during severe disturbances by enhancing the fault ride through capability. BFCL controller has been designed to insert resistance and inductance during the inception of system disturbances in order to limit fault current. Constant capacitor voltage has been maintained by the grid voltage source converter (GVSC controller while current extraction or injection has been achieved by machine VSC (MVSC controller. Symmetrical and unsymmetrical faults have been applied in the system to show the effectiveness of the proposed BFCL solution. PMSG wind system, BFCL and their controllers have been implemented by real time hardware in loop (RTHIL setup with real time digital simulator (RTDS and dSPACE. Another significant feature of this work is that the performance of the proposed BFCL is compared with that of series dynamic braking resistor (SDBR. Comparative RTHIL implementation results show that the proposed BFCL is very efficient in improving system fault ride through capability by limiting the fault current and outperforms SDBR.

  11. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    International Nuclear Information System (INIS)

    Maguire, J.F.; Yuan, J.

    2009-01-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  12. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.F., E-mail: jmaguire@amsc.co [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States); Yuan, J. [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States)

    2009-10-15

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  13. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Science.gov (United States)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  14. Suggestions on performance of finite element limit analysis for eliminating the necessity of stress classifications in design and defect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, T. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2001-07-01

    In structural design of a nuclear power component, stress classification from elastic stress analysis resultants is often used. Alternatively, to improve accuracy, finite element limit analysis may be performed. This paper examines some issues relating to the use of limit analysis; specifically, the treatment of multiple applied loads and the definition of the limit load from analysis using hardening plasticity laws. These are addressed both by detailed analysis for a simple geometry and by using the reference stress approach to estimate the inelastic displacement. The proposals are also applicable to a defect assessment of a cracked component, and treatment of distributed loads. It is shown that multiple or distributed loads should be treated as if they were applied proportionally irrespective of the actual nature of loads, and that the limit load from analysis with general plasticity laws may be estimated using a newly suggested reduced elastic slope method. (author)

  15. Suggestions on performance of finite element limit analysis for eliminating the necessity of stress classifications in design and defect assessment

    International Nuclear Information System (INIS)

    Fujioka, T.

    2001-01-01

    In structural design of a nuclear power component, stress classification from elastic stress analysis resultants is often used. Alternatively, to improve accuracy, finite element limit analysis may be performed. This paper examines some issues relating to the use of limit analysis; specifically, the treatment of multiple applied loads and the definition of the limit load from analysis using hardening plasticity laws. These are addressed both by detailed analysis for a simple geometry and by using the reference stress approach to estimate the inelastic displacement. The proposals are also applicable to a defect assessment of a cracked component, and treatment of distributed loads. It is shown that multiple or distributed loads should be treated as if they were applied proportionally irrespective of the actual nature of loads, and that the limit load from analysis with general plasticity laws may be estimated using a newly suggested reduced elastic slope method. (author)

  16. Addressing Circuitous Currents MVDC Power Systems Protection

    Science.gov (United States)

    2017-12-31

    Addressing Circuitous Currents MVDC Power Systems Protection 5b. GRANT NUMBER N00014-16-1-3113 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR($) Sd. PROJECT NUMBER...efficiency. A challenge with DC distribution is electrical protection . Z-source DC breakers alt! an pti n b&i g cvr.sidcrcd and this w rk ~xplores...zonal distribution, electric ship 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT u u u uu 18. NUMBER

  17. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Soestbergen, M. van, E-mail: m.vansoestbergen@tudelft.n [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Precision and Microsystems Engineering, University of Technology Delft, Mekelweg 2, 2628 CD Delft (Netherlands)

    2010-02-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  18. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    International Nuclear Information System (INIS)

    Soestbergen, M. van

    2010-01-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  19. A review of mild traumatic brain injury diagnostics: current perspectives, limitations, and emerging technology.

    Science.gov (United States)

    Cook, Glen A; Hawley, Jason S

    2014-10-01

    Mild traumatic brain injury (mTBI) or concussion is a common battlefield and in-garrison injury caused by transmission of mechanical forces to the head. The energy transferred in such events can cause structural and/or functional changes in the brain that manifest as focal neurological, cognitive, or behavioral dysfunction. Current diagnostic criteria for mTBI are highly limited, variable, and based on subjective self-report. The subjective nature of the symptoms, both in quantity and quality, together with their large overlap in other physical and behavioral maladies, limit the clinician's ability to accurately diagnose, treat, and make prognostic decisions after such injuries. These diagnostic challenges are magnified in an operational environment as well. The Department of Defense has invested significant resources into improving the diagnostic tools and accuracy for mTBI. This focus has been to supplement the clinician's examination with technology that is better able to objectify brain dysfunction after mTBI. Through this review, we discuss the current state of three promising technologies--soluble protein biomarkers, advanced neuroimaging, and quantitative electroencephalography--that are of particular interest within military medicine. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  20. The spatial limitations of current neutral models of biodiversity.

    Directory of Open Access Journals (Sweden)

    Rampal S Etienne

    Full Text Available The unified neutral theory of biodiversity and biogeography is increasingly accepted as an informative null model of community composition and dynamics. It has successfully produced macro-ecological patterns such as species-area relationships and species abundance distributions. However, the models employed make many unrealistic auxiliary assumptions. For example, the popular spatially implicit version assumes a local plot exchanging migrants with a large panmictic regional source pool. This simple structure allows rigorous testing of its fit to data. In contrast, spatially explicit models assume that offspring disperse only limited distances from their parents, but one cannot as yet test the significance of their fit to data. Here we compare the spatially explicit and the spatially implicit model, fitting the most-used implicit model (with two levels, local and regional to data simulated by the most-used spatially explicit model (where offspring are distributed about their parent on a grid according to either a radially symmetric Gaussian or a 'fat-tailed' distribution. Based on these fits, we express spatially implicit parameters in terms of spatially explicit parameters. This suggests how we may obtain estimates of spatially explicit parameters from spatially implicit ones. The relationship between these parameters, however, makes no intuitive sense. Furthermore, the spatially implicit model usually fits observed species-abundance distributions better than those calculated from the spatially explicit model's simulated data. Current spatially explicit neutral models therefore have limited descriptive power. However, our results suggest that a fatter tail of the dispersal kernel seems to improve the fit, suggesting that dispersal kernels with even fatter tails should be studied in future. We conclude that more advanced spatially explicit models and tools to analyze them need to be developed.

  1. Fault Ride Though Control of Photovoltaic Grid-connected Inverter with Current-limited Capability under Offshore Unbalanced Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guo, Xiaoqiang; Savaghebi, Mehdi

    2016-01-01

    The photovoltaic (PV) inverter installed on board experiences the excessive current stress in case of the offshore unbalanced voltage fault ride through (FRT), which significantly affects the operation reliability of the power supply system. In order to solve the problem, the inherent mechanism...... of the excessive current phenomenon with the conventional fault ride through control is discussed. The quantitative analysis of the current peak value is conducted and a new current-limiting control strategy is proposed to achieve the flexible power control and successful fault ride through in a safe current...

  2. Sustainability of rare earth elements chain: from production to food - a review.

    Science.gov (United States)

    Turra, Christian

    2018-02-01

    Rare earth elements (REE) are a group of chemical elements that include lanthanoids (lanthanum to lutetium), scandium and yttrium. In the last decades, the REE demand in the industry and other areas has increased significantly. In general, REE have shown low concentrations in soils, plants, water and atmosphere, but they may accumulate in such environments due to anthropogenic inputs. In areas where there is REE contamination, the slow accumulation of these elements in the environment could become problematic. Many studies have shown environmental areas contaminated with REE and their toxic effects. Thus, it is important to review, in order to improve the current understanding of these elements in the environment, showing the effects of REE exposure in mining, soil, water, plants and food. Besides, there are few suppliers and a limited quantity of these elements in the world. This paper suggests options to improve the sustainability management of REE chain.

  3. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  4. Rare Earth element (REE) incorporation in natural calcite. Upper limits for actinide uptake in a secondary phase

    International Nuclear Information System (INIS)

    Stipp, S.L.S.; Christensen, J.T.; Waight, T.E.; Lakshtanov, L.Z.; Baker, J.A.

    2006-01-01

    Secondary minerals have the potential to sequester escaped actinides in the event of a radioactive waste repository failure, but currently, data to define their maximum uptake capacity are generally lacking. To estimate a maximum limit for solid solution in calcite, we took advantage of the behavioural similarities of the 4f-orbital lanthanides with some of the 5f-orbital actinides and used rare Earth element (REE) concentration as an analogue. A suite of 65 calcite samples, mostly pure single crystals, was assembled from a range of geological settings, ages and locations and analysed by isotope dilution MC-ICP-MS (multiple-collector inductively-coupled plasma mass spectroscopy). All samples were shown to contain significant lanthanide concentrations. The highest were in calcite formed from hydrothermal solutions and from carbonatite magma. Maximum total mole fraction of REE was 4.72 x 10 -4 , which represents one substituted atom for about 2000 Ca sites. In comparison, synthetic calcite, precipitated at growth rates slow enough to insure solid solution formation, incorporated 7.5 x 10 -4 mole fraction Eu(III). For performance assessment, we propose that 7.5 mmole substitution/kg calcite should be considered the upper limit for actinide incorporation in secondary calcite. The largest source of uncertainty in this estimate results from extrapolating lanthanide data to actinides. However, the data offer confidence that for waters in the hydrothermal temperature range, such as in the near-field, or at groundwater temperatures, such as in the far-field, if calcite formation is favoured and actinides are present, those with behaviour like the trivalent lanthanides, especially Am 3+ and Cm 3+ , will be incorporated. REE are abundant and widely distributed, and they have remained in calcite for millions of years. Thus, one can be certain that incorporated actinides will also remain immobilised in calcite formed in fractures and pore spaces, as long as solution conditions

  5. On Dynamic Range Limitations of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range.......This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...

  6. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  7. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  8. Impact and Limitations Deriving from Basel II within the Context of the Current Financial Crisis

    Directory of Open Access Journals (Sweden)

    Oana Miruna DĂNILĂ

    2012-06-01

    Full Text Available The Banking sector risk management framework, geared towards maintaining a solid capital adequacy level, has witnessed a permanent evolution, determined by the global economic and financial reality.Basel II has brought an improvement of the risk management framework by adding minimum capital levels corresponding to market and operational risk and by the introduction of internal rating models. However the current crisis has brought forward some adverse effects as well as limitations.This paper analyses the evolution of prudential rules and regulations introduced by Basel II and their impact on the banking system together with outlining certain limitations.

  9. Modification of working parameters for routine determination of trace elemental impurities in PuO2 samples by direct current arc-AES

    International Nuclear Information System (INIS)

    Pant, D.K.; Phadke, M.P.; Dapolikar, T.T.; Kapur, H.N.; Kumar, Rajendra; Dubey, K.

    2015-01-01

    In the present work we have altered the parameters of routine method to determine the trace elemental impurities in PuO 2 samples using DC arc source optically coupled with CCD based spectrometer system. The method is basically a fractional distillation technique using DC arc source, involving ignition, dilution of the sample with U 3 O 8 containing carrier mixture, arcing of the sample/standard mixture in DC arc and measurement of analyte signals by spectrometer system. In all fifteen elemental impurities including Boron and Cadmium were determined. Detection limits are comparable with ICP-AES method. (author)

  10. Recent searches for superheavy elements at the superhilac

    International Nuclear Information System (INIS)

    Hulet, E.K.

    1978-01-01

    The results of the search for superheavy elements are negative with respect to the finding of such elements. However, by assuming 2 spontaneous fission events as the lower limit of detection, the limits to their formation cross sections are calculated and plotted. It is noted that the half-life limits, also shown are easily within the huge uncertainties of the theoretical predicted half lives for any superheavy element nuclides produced in the experiment. 19 references

  11. Discrimination of Inrush from Fault Currents in Power Transformers Based on Equivalent Instantaneous Inductance Technique Coupled with Finite Element Method

    Directory of Open Access Journals (Sweden)

    M. Jamali

    2011-09-01

    Full Text Available The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equivalent instantaneous inductance (EII technique is used to discriminate inrush current from fault currents. For this purpose, a three-phase power transformer has been simulated in Maxwell software that is based on finite elements. This three-phase power transformer has been used to simulate different conditions. Then, the results have been used as inputs in MATLAB program to implement the equivalent instantaneous inductance technique. The results show that in the case of inrush current, the equivalent instantaneous inductance has a drastic variation, while it is almost constant in the cases of fault conditions.

  12. Development of a safety case for the use of current limiting devices to manage short circuit currents on electrical distribution networks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The original objective of this study was to review the safety issues associated with the use of current limiting devices and to write a risk assessment in accordance with good practice. But, when legislative procedures became apparent, the scope was changed to include involvement with the HSE, the DTI and Ofgem. It turned out that it would have been very difficult to write a safety case that would satisfy all of the agencies, or a risk assessment that would cover all applications. The scope of the study was therefore changed to focus on how the existing barriers should be tackled and the implications of the existing legislation. The approach to the study is described; it included reviews of background information and literature, questionnaires to manufacturers, a review of the reliability and hazards of the devices, and a review of UK safety legislation. The Final Report describes all this and includes discussion on the consequences of failure of fault current limiting devices, control measures which could be used to minimise risk, and recommendations for a way forward.

  13. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  14. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  15. Stability Analysis of Landslide on the R1 Expressway by Limit Equilibrium and Finite Element Methods

    Science.gov (United States)

    Janták, Viktor

    2017-12-01

    The most difficult problem by designing the superior infrastructure is tracing the expressways and higways in an environment of Quaternary and Neogene complexes of finegrained cohesive and non-cohesive soils. At the last time the typical examples are stability problems on the R1 Nitra - Tekovské Nemce Expressway. The article is focused on the description of reasons of stability loss in the deep earth cut in the 79,000 km of expressway R1, the course of the landslide, slide correction and especially slope-stability assessment before and after the occurrence of slope failures by limit equilibrium and finite elements methods by comparing the behaviour of the slope in the various model situations.

  16. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    International Nuclear Information System (INIS)

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  17. Parameter design and performance simulation of a 10 kV voltage compensation type active superconducting fault current limiter

    International Nuclear Information System (INIS)

    Chen, L.; Tang, Y.J.; Song, M.; Shi, J.; Ren, L.

    2013-01-01

    Highlights: •For a practical 10 kV system, the 10 kV active SFCL’s basic parameters are designed. •Under different fault conditions, the 10 kV active SFCL’s performances are simulated. •The designed 10 kV active SFCL’s engineering feasibility is discussed preliminarily. -- Abstract: Since the introduction of superconducting fault current limiter (SFCL) into electrical distribution system may be a good choice with economy and practicability, the parameter design and current-limiting characteristics of a 10 kV voltage compensation type active SFCL are studied in this paper. Firstly, the SFCL’s circuit structure and operation principle are presented. Then, taking a practical 10 kV distribution system as its application object, the SFCL’s basic parameters are designed to meet the system requirements. Further, using MATLAB, the detailed current-limiting performances of the 10 kV active SFCL are simulated under different fault conditions. The simulation results show that the active SFCL can deal well with the faults, and the parameter design’s suitability can be testified. At the end, in view of the engineering feasibility of the 10 kV active SFCL, some preliminary discussions are carried out

  18. Investigation of disorder and its effect on electrical transport in electrochemically doped polymer devices by current-voltage and impedance spectroscopy

    Science.gov (United States)

    Rahman Khan, Motiur; Anjaneyulu, P.; Koteswara Rao, K. S. R.; Menon, R.

    2017-03-01

    We report on the analysis of temperature-dependent current-voltage characteristics and impedance measurements of electrochemically doped poly(3-methylthiophene) devices at different doping levels. The extent of doping is carefully tailored such that only the bulk-limited transport mechanism prevails. A transition from exponentially distributed trap-limited transport to trap-free space-charge-limited current is observed in current-voltage conduction upon increasing the doping. The obtained trap densities (3.2  ×  1016 cm-3 and 8.6  ×  1015 cm-3) and trap energies (31.7 meV and 16.6 meV) for different devices signify the variation in disorder with doping, which is later supported by impedance measurements. Impedance-frequency data for various devices can not be explained using the parallel resistance-capacitance (RC) model in the equivalent circuit. However, this was established by incorporating a constant phase element Q (CPE) instead of the capacitance parameter. It should be emphasized that low doping devices in particular are best simulated with two CPE elements, while the data related to other devices are fitted well with a single CPE element. It is also observed from evaluated circuit parameters that the spatial inhomogeneity and disorder are the cause of variability in different samples, which has an excellent correlation with the temperature-dependent current-voltage characteristics.

  19. TRACE ELEMENTS LATERAL DISTRIBUTION AND LIMITATIONS FOR REVEGETATION IN LEAD MINE SOILS: CASE OF LAKHOUAT MINE, TUNISIA

    Directory of Open Access Journals (Sweden)

    H. Sahraoui

    2016-01-01

    Full Text Available Anthropogenic activities such as mining have increased the prevalence and occurrence of trace elements soil contamination. Abandoned mine tailings cause the contamination of adjacent agricultural soils. In Lakhouat mining area (West-Northern Tunisia, the dispersion of particles containing Pb, Zn and Cd results in the contamination of the surrounding agricultural soils. These soils presented high concentrations of Pb (1272 mg kg-1, Zn (5543 mg kg-1 and Cd (25 mg kg-1. Furthermore, the tailing sample and soil sample close the dam tailing presented higher concentrations of Pb, Zn and Cd and conferred more limitation factors for revegetation than adjacent soils of mining area. The main limiting factors of mine soils are their low effective depth, low organic matter content and low phosphorus content and an imbalance between potassium and manganese exchangeable cations. These mine soils are strongly affected by high Pb, Zn and Cd levels which hinder revegetation.

  20. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2015-11-15

    Highlights: • The role of SFCL in types of HVDC system was evaluated. • A simulation model based on Korea Jeju–Haenam HVDC power system was designed in Matlab/Simulink. • Utilizing the designed both HVDC power system models, the efficiency of DC-SFCL was relatively low, compared to AC-SFCL. • It was deduced that the AC-SFCL was more effective in LCC-HVDC system than VSC-HVDC system. - Abstract: High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  1. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-01-01

    Highlights: • The role of SFCL in types of HVDC system was evaluated. • A simulation model based on Korea Jeju–Haenam HVDC power system was designed in Matlab/Simulink. • Utilizing the designed both HVDC power system models, the efficiency of DC-SFCL was relatively low, compared to AC-SFCL. • It was deduced that the AC-SFCL was more effective in LCC-HVDC system than VSC-HVDC system. - Abstract: High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  2. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  3. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  4. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  5. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    Science.gov (United States)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  6. Limits on the scaling of nucleon magnetic moments in nuclei

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; State Univ. of New York, Stony Brook; Richter, A.; State Univ. of New York, Stony Brook

    1987-01-01

    In view of the suggestion that nucleon magnetic moments inside nuclei may be modified due to a rescaling of the nucleon size, we investigate empirically how large such an effect can be. The method is based on a nearly model-independent scaling relation between the axial vector matrix element and the main part of the corresponding magnetic dipole matrix element supplemented by a small and well understood contribution from the one-pion exchange current. Taking the mass A = 3 and 12 systems as examples the upper limit, for such a change of the nucleon magnetic moment inside nuclei is found to be about 2%, considerably smaller than previous estimates in the literature. (orig.)

  7. Experimental studies of the quench behaviour of MgB{sub 2} superconducting wires for fault current limiter applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye Lin [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Majoros, M [Laboratories for Applied Superconductivity and Magnetism, Ohio State University, Columbus, OH 43210 (United States); Campbell, A M [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Coombs, T [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Astill, D [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Harrison, S [Scientific Magnetics, Culham Science Centre, Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Husband, M [Strategic Research Center (SRC)-Electrical Engineering, Rolls-Royce plc, Derby DE24 8BJ (United Kingdom); Rindfleisch, M [Hyper Tech Research Inc., Columbus, OH 43212 (United States); Tomsic, M [Hyper Tech Research Inc., Columbus, OH 43212 (United States)

    2007-07-15

    Various MgB{sub 2} wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26 K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB{sub 2} wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83 mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 deg. C for a hold time of 20-40 min. Current limiting properties of MgB{sub 2} wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50 Hz. The quench currents extracted from the pulse measurements were in a range of 200-328 A for different samples, corresponding to an average engineering critical current density (J{sub e}) of around 4.8 x 10{sup 4} A cm{sup -2} at 25 K in the self-field, based on the 1 {mu}V cm{sup -1} criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB{sub 2} wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB{sub 2} wires.

  8. Dependence of the DIII-D beta limit on the current profile

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E.J.; Chu, M.S.; Ferron, J.R.; Lao, L.L.; Osborne, T.H.; Taylor, T.S.; Turnbull, A.D. (General Atomics, San Diego, CA (United States)); Lazarus, E.A. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The maximum beta values achieved in DIII-D are not fully described by the simple scaling law [beta][sub max][proportional to]I/aB. There is, in addition, a dependence on the form of the current profile as parameterized by the safety factor q and internal inductance l[sub i]. The maximum experimentally achieved value of normalized beta [beta][sub N] = [beta]/(I/aB) varies from 3.5 at low safety factor q (q[sub 95]<3) to 5 at higher values of q. At low q, discharges are terminated by disruptions at high [beta][sub N] and at both the low and high l[sub i] boundaries of the stable range. These disruptions are attributed to external and global kink modes. At higher q, such disruptions are much less frequent, and beta is limited by slowly growing resistive modes, fishbones, and possibly by ballooning modes. At each value of q, the maximum beta tends to increase with internal inductance l[sub i]. A numerical study of kink mode stability has shown a similar trend for optimized pressure profiles. These observations have suggested a new scaling law for the operational beta limit: [beta][sub max]=4l[sub i](I/aB), which fits the DIII-D data well. (author) 13 refs., 4 figs.

  9. Finite element circuit theory of the numerical code EDDYMULT for solving eddy current problems in a multi-torus system

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Ozeki, Takahisa

    1986-07-01

    The finite element circuit theory is extended to the general eddy current problem in a multi-torus system, which consists of various torus conductors and axisymmetric coil systems. The numerical procedures are devised to avoid practical restrictions of computer storage and computing time, that is, the reduction technique of eddy current eigen modes to save storage and the introduction of shape function into the double area integral of mode coupling to save time. The numerical code EDDYMULT based on the theory is developed to use in designing tokamak device from the viewpoints of the evaluation of electromagnetic loading on the device components and the control analysis of tokamak equilibrium. (author)

  10. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  11. Development and Testing of a Transmission Voltage SuperLimiter™ Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Romanosky, Walter [American Superconductor Corporation, Devens, MA (United States)

    2012-09-01

    This report summarizes work by American Superconductor (AMSC), Los Alamos National Laboratory (LANL), Nexans, Siemens and Southern California Edison on a 138kV resistive type high temperature superconductor (HTS) fault current limiter (FCL) under a cooperative agreement with the U.S. Department of Energy (DOE). Phase 1A encompassed core technology development and system design and was previously reported (see summary that follows in Section 1.1 of the Introduction). This report primarily discusses work performed during Phase 1B, and addresses the fabrication and test of a single-phase prototype FCL. The results are presented along with a discussion of requirements/specifications and lessons learned to aid future development and product commercialization.

  12. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  13. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  14. Plasma self-oscillations in the temperature-limited current regime of a hot cathode discharge

    International Nuclear Information System (INIS)

    Arnas Capeau, C.; Bachet, G.; Doveil, F.

    1995-01-01

    Experimental observations of self-oscillations occurring in the so-called ''temperature-limited current regime'' of a hot cathode discharge are presented. Their frequency and amplitude are strongly dependent on the discharge parameters. The scaling laws of their variation and an example of a period-doubling route to chaos are reported. A two probe experiment showing that the plasma behavior is closely related to the hot cathode sheath stability is also reported. copyright 1995 American Institute of Physics

  15. A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination

    Energy Technology Data Exchange (ETDEWEB)

    Mellor, A.; Domenech-Garret, J.L.; Chemisana, D.; Rosell, J.I. [Departament de Medi Ambient i C.S., University of Lleida, Av. Alcalde Rovira Roure 191, E25198 (Spain)

    2009-09-15

    A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail. (author)

  16. Elemental hair analysis: A review of procedures and applications

    International Nuclear Information System (INIS)

    Pozebon, D.; Scheffler, G.L.; Dressler, V.L.

    2017-01-01

    Although exogenous contamination and unreliable reference values have limited the utility of scalp hair as a biomarker of chemical elements exposure, its use in toxicological, clinical, environmental and forensic investigations is growing and becoming more extensive. Therefore, hair elemental analysis is reviewed in the current manuscript which spans articles published in the last 10 years. It starts with a general discussion of history, morphology and possible techniques for elemental analysis, where inductively coupled plasma-mass spectrometry (ICP-MS) is clearly highlighted since this technique is leading quantitative ultra-trace elemental analysis. Emphasis over sampling, quality assurance, washing procedures and sample decomposition is given with detailed protocols compiled in tables as well as the utility of hair to identify human gender, age, diseases, healthy conditions, nutrition status and contamination sites. Isotope ratio information, chemical speciation analysis and analyte preconcentration are also considered for hair. Finally, the potential of laser ablation ICP-MS (LA-ICP-MS) to provide spatial resolution and time-track the monitoring of elements in hair strands instead of conventional bulk analysis is spotlighted as a real future trend in the field. - Highlights: • Elemental analysis of hair is critically reviewed, with focus on ICP-MS employment. • Standards protocols of hair washing and sample decomposition are compiled. • The usefulness of elemental and/or isotopic analysis of hair is demonstrated. • The potential of LA-ICP-MS for elemental time tracking in hair is highlighted.

  17. Potentially toxic elements and rare earth elements in plants from the lake Kalimantsi bank (NE Republic of Macedonia)

    International Nuclear Information System (INIS)

    Vrhovnik, Petra; Doloenets, Matej

    2017-01-01

    Potentially toxic elements (PTE) and rare earth elements (REE) are often increased in the environment, especially nearby active or abandoned mines . While NE Macedonia is very rich with metal ore bodies also elevated pollution is expected in the surrounding ecosystems. NE part of the country is also very important agricultural area where several food crops are being produced and consequently water from local lakes and rivers is being used for irrigation. In present paper we have focused on different plant species growing on the Lake Kalimantsi bank. All plant species were analyzed for PTE and REE. Results revealed that the PTE s (Cr, Cu, Pb, Zn, Ni, As and Cd) in the studied plant species show great enhancement in all samples and also exceed the recommended and allowable limits. Meanwhile REE s reflect a very similar range among all samples. Generally, all REE s were in the safe range, according to currently known regulations. (author)

  18. Improvement of detection limits in the annular 241Am radioisotope-excited X-ray fluorescence analysis for minor elements of environmental sample

    International Nuclear Information System (INIS)

    Thai My Phe; Ngo Quang Huy; Nguyen Van Suc; Tran Van Luyen; Nguyen Van Mai; Dao Van Hoang; Trinh Thi Bich

    2003-01-01

    The improvement of limit detection to elements Pb, Sr, Zr, Nd, and Ba in mud samples is presented. Two ways for reducing background radiation are: 1/ choosing the optimum γ-ray-excited X-ray assembly such as scattering angle (θ), filter for primary beam, excited holder, collimator for fluorescent lines, etc; 2/ using the chemical separation method to remove major composition for matrix reduction. (NHA)

  19. State of the art of superconducting fault current limiters and their application to the electric power system

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2013-01-01

    Highlights: ► The state of the art of superconducting fault current limiters is reviewed. ► An innovative concept of FCL is discussed and the potential of MgB 2 is outlined. ► The use of FCL to allow more interconnection of MV bus-bar is discussed. ► The use of FCL to increase the immunity from voltage dips is discussed. ► The use of FCL to integrate more distributed generation is pointed out. -- Abstract: Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered

  20. Concentration of key elements in North American meat and bone meal

    International Nuclear Information System (INIS)

    Garcia, Rafael A.; Rosentrater, Kurt A.

    2008-01-01

    Meat and bone meal (MBM) and related rendered protein commodities have potential for use in applications other than animal feed, including use as a fuel or a phosphorus fertilizer. In order to develop these applications, data on the elemental composition are required; the currently available elemental composition data have important limitations. To generate more appropriate and reliable data, MBM samples were collected from 17 North American rendering plants, carefully prepared and analyzed for 20 elements. Preliminary studies showed that the sample preparation process artificially increased levels of sulfur and nickel in a manner that was correctable. Concentrations of many elements were found to agree with previously published values, but concentrations of potassium, magnesium and copper were significantly different from the most authoritative reference. Concentrations of heavy metals tested for were low, and arsenic and cadmium were not detected in any sample. Among the elements tested, there were a number of pairs of elements whose concentration was correlated with high significance, which in some cases was due to the varying proportions of soft tissue and bone in the MBM. The data presented should allow the development of non-feed applications for MBM to proceed with increased confidence

  1. The Tore Supra toroidal pump limiter: experience feedback of HHF elements series manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J.; Bayetti, P.; Chappuis, P.; Durocher, A.; Escourbiac, F.; Grosman, A.; Lipa, M.; Mitteau, R.; Schlosser, J.; Van Houtte, D

    2003-07-01

    Since 1992, reliable High Heat Flux PFCs based on copper alloy heat sink structures and a CFC armour, have been developed. The final result is an actively cooled high heat flux element that is capable of removing up to 10 MW.m{sup -2} in stationary operating conditions. About 600 of these high performance individual components have then been manufactured and assembled in order to equip a Toroidal Pump Limiter (TPL). The final deliveries was successfully achieved end of 2001. The paper deals with the experience feedback built-up along the four years duration of the TPL components manufacture. We will show where issues were encountered, how solutions were found to achieve the fabrication of components and will highlight what are the main technical lessons to be learned: acceptance criteria, choice of materials, margins of processes. Finally a proposal of an alternative optimised design is presented, fruit of the experience gained from this up to now, unique series manufacture of actively cooled plasma facing HHF components. We believe that such experience will certainly be of use to ITER as well as to Wendelstein 7-X as far as PFC is concerned. (authors)

  2. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    Science.gov (United States)

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid

  3. A 2D finite element study on the role of material properties on eddy current losses in soft magnetic composites

    Science.gov (United States)

    Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent

    2016-02-01

    The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low eddy current losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute eddy current losses in these materials. The computations allow to quantify the role of exciting source and material properties on eddy current losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  4. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  5. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations

    International Nuclear Information System (INIS)

    Merschel, F.; Noe, M.; Stemmle, M.; Hobl, A.; Sauerbach, O.

    2013-01-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  6. Advances in chemical investigations of the heaviest elements

    Directory of Open Access Journals (Sweden)

    Türler Andreas

    2016-01-01

    Full Text Available Although somewhat in the shadow of the discoveries of new elements, experimental chemical investigations of the heaviest elements have made tremendous progress in the last decades. Indeed, it was possible to experimentally determine thermochemical properties of heavy transactinide elements such as copernicium or flerovium. But will it be possible to chemically study all currently known elements of the periodic table up to element 118? While it is experimentally feasible to work with single atoms, the short half-lives of even the longest currently known isotopes of elements 115 through 118 call for new experimental approaches.

  7. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  8. Constraints on Non-Standard Contributions to the Charged-Current Interactions

    CERN Document Server

    Hagiwara, K; Hagiwara, Kaoru; Matsumoto, Seiji

    1998-01-01

    The success of the quantum level predictions of the Standard Model on the $Z$ boson properties, on $\\mw$ and on $\\mt$, which makes use of the muon lifetime as an input, implies a stringent constraint on new physics contributions to the $V-A$ charged-current interactions among leptons. Observed unitarity of the CKM matrix elements then implies constraints on non-standard contributions to the lepton-quark charged-current interactions. By using the recent electroweak data as inputs, we find the 95% CL limits for the corresponding contact interactions: $\\Lambda_{CC,+}^{\\ell\\ell}>7.5$ TeV and the lepton-quark contact interactions.

  9. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    Science.gov (United States)

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  10. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5 micrometer spectrum

    Science.gov (United States)

    Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.

    1978-01-01

    A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.

  11. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    Science.gov (United States)

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  12. Peaking for optimal performance: Research limitations and future directions.

    Science.gov (United States)

    Pyne, David B; Mujika, Iñigo; Reilly, Thomas

    2009-02-01

    A key element of the physical preparation of athletes is the taper period in the weeks immediately preceding competition. Existing research has defined the taper, identified various forms used in contemporary sport, and examined the prescription of training volume, load, intensity, duration, and type (progressive or step). Current limitations include: the lack of studies on team, combative, racquet, and precision (target) sports; the relatively small number of randomized controlled trials; the narrow focus on a single competition (single peak) compared with multiple peaking for weekly, multi-day or multiple events; and limited understanding of the physiological, neuromuscular, and biomechanical basis of the taper. Future research should address these limitations, together with the influence of prior training on optimal tapering strategies, and the interactions between the taper and long-haul travel, heat, and altitude. Practitioners seek information on how to prescribe tapers from season to season during an athlete's career, or a team's progression through a domestic league season, or multi-year Olympic or World Cup cycle. Practical guidelines for planning effective tapers for the Vancouver 2010 and London 2012 Olympics will evolve from both experimental investigations and modelling of successful tapers currently employed in a wide range of sports.

  13. Medicare Current Beneficiary Survey - Limited Data Set

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Current Beneficiary Survey (MCBS) is a continuous, multipurpose survey of a representative national sample of the Medicare population. There are two...

  14. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  15. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  16. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis

    International Nuclear Information System (INIS)

    Meija, Juris; Mester, Zoltan

    2008-01-01

    Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method

  17. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2016-11-15

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  18. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-01-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  19. Mitigation of commutation failures in LCC-HVDC systems based on superconducting fault current limiters

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-11-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  20. Approach to high stability beta limit and its control by fast wave current drive in reversed field pinch plasma

    International Nuclear Information System (INIS)

    Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.

    2001-01-01

    Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)

  1. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  2. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  3. Determination of experimental conditions for the analysis of rare-earth elements by X-ray fluorescence spectrometry. Application to oxalates and potassium sulphate matrices

    International Nuclear Information System (INIS)

    Bayon Fuentes, A.; Bermudez Polonio, J.

    1969-01-01

    A previous theoretical and experimental study is carried out in order to analyze the rare earths elements by X-ray florescence spectrometry. All possible spectral interferences are considered. The working conditions for each element were selected, taking into account the peak/background ratio values for the following parameters: tungsten, molybdenum and chromium targets, current and voltage, analyzing crystals, and scintillation and flow proportional counters. Calibration curves were plotted showing the concentration of rare earths elements in oxalates and potassium sulphate matrices, and the theoretical detection limits for each element: are calculated. (Author) 8 refs

  4. Space charge limitation of the current in implanted SiO2 layers

    International Nuclear Information System (INIS)

    Szydlo, N.; Poirier, R.

    1974-01-01

    Metal-oxide-semiconductor capacitors were studied where the metal is a semitransparent gold layer of 5mm diameter, the oxide is thermal silica whose, thickness depends on the nature of the implant, and the semiconductor is N-type silicon of 5 ohms/cm. The SiO 2 thickness was chosen in such a way that the maximum of the profile of the implanted substance is in the medium of the oxide layer. In the case of virgin silica, the oscillations in the photocurrent versus energy and exponential variations versus the applied voltage show that the photoconduction obeys the model of injection limited current. In the case of the oxide after ion bombardment, the photocurrent similarity, independent of the direction of the electric field in silica, shows that volume transport phenomena become preponderent [fr

  5. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuñ a, Javier; Xie, Wei; Salleo, Alberto

    2012-01-01

    bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact

  6. Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-04-15

    We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)

  7. A passive terahertz video camera based on lumped element kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Sam, E-mail: sam.rowe@astro.cf.ac.uk; Pascale, Enzo; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Ade, Peter A. R.; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; House, Julian; Moseley, Paul; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian [Astronomy Instrumentation Group, School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Wood, Ken [QMC Instruments Ltd., School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Grainger, William [Rutherford Appleton Laboratory, STFC, Swindon SN2 1SZ (United Kingdom); Mauskopf, Philip [Astronomy Instrumentation Group, School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); School of Earth Science and Space Exploration, Arizona State University, Tempe, Arizona 85281 (United States); Spencer, Locke [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada)

    2016-03-15

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  8. A passive terahertz video camera based on lumped element kinetic inductance detectors

    International Nuclear Information System (INIS)

    Rowe, Sam; Pascale, Enzo; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Ade, Peter A. R.; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; House, Julian; Moseley, Paul; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian; Wood, Ken; Grainger, William; Mauskopf, Philip; Spencer, Locke

    2016-01-01

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  9. On the Production of Superheavy Elements

    CERN Document Server

    Armbruster, P

    2003-01-01

    Since the discovery of Deformed Superheavy Nuclei (1983–85) a bridge connects the island of SHE to known isotopes of lighter elements. What we know experimentally and theoretically on the nuclear structure of SHE is reported in a first section. The making of the elements, with an analysis of production cross sections, and the macroscopic limitation to Z=112+ is presented in a second section. The break-down of fusion cross sections in the ‘Coulomb Falls’ within a range of about 10 elements is introduced as the universal limiting phenomenon. How the nuclear structure of the collision partners modifies the on-set of this limitation is presented in Section 3. Reactions induced by deformed nuclei are pushed by side collisions to higher excitation energies (4n- and 5n-channels), whereas reactions driven by the cluster-like, closed-shell nuclei, 208126Pb and 13882Ba, are kept at low excitation energies (1n- and 2n-channels). The on-set of production limitation for deformed collision partners is moved to smalle...

  10. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    Science.gov (United States)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  11. Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics

    KAUST Repository

    Carpenter, Mark H.

    2016-01-04

    Nonlinearly stable finite element methods of arbitrary type and order, are currently unavailable for discretizations of the compressible Navier-Stokes equations. Summation-by-parts (SBP) entropy stability analysis provides a means of constructing nonlinearly stable discrete operators of arbitrary order, but is currently limited to simple element types. Herein, recent progress is reported, on developing entropy-stable (SS) discontinuous spectral collocation formulations for hexahedral elements. Two complementary efforts are discussed. The first effort generalizes previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort extends previous work on entropy stability to include p-refinement at nonconforming interfaces. A generalization of existing entropy stability theory is required to accommodate the nuances of fully multidimensional SBP operators. The entropy stability of the compressible Euler equations on nonconforming interfaces is demonstrated using the newly developed LG operators and multidimensional interface interpolation operators. Preliminary studies suggest design order accuracy at nonconforming interfaces.

  12. Element size and other restrictions in finite-element modeling of reinforced concrete at elevated temperatures

    DEFF Research Database (Denmark)

    Carstensen, Josephine Voigt; Jomaas, Grunde; Pankaj, Pankaj

    2013-01-01

    to extend this approach for RC at elevated temperatures. Prior to the extension, the approach is investigated for associated modeling issues and a set of limits of application are formulated. The available models of the behavior of plain concrete at elevated temperatures were used to derive inherent......One of the accepted approaches for postpeak finite-element modeling of RC comprises combining plain concrete, reinforcement, and interaction behaviors. In these, the postpeak strain-softening behavior of plain concrete is incorporated by the use of fracture energy concepts. This study attempts...... fracture energy variation with temperature. It is found that the currently used tensile elevated temperature model assumes that the fracture energy decays with temperature. The existing models in compression also show significant decay of fracture energy at higher temperatures (>400°) and a considerable...

  13. Aluminum limiter experiment in ST tokamak

    International Nuclear Information System (INIS)

    Meservey, E.B.; Bretz, N.; Dimock, D.L.; Hinnov, E.

    1976-01-01

    In order to investigate the effects of a light-element limiter on plasma parameters, aluminum rail limiters interchangeable with Mo rails were installed top, bottom, and outside directions in the ST tokamak. The inside limiter remained a fixed Mo rail. Compared with discharges produced immediately before and after with the usual Mo limiters, the ''aluminum'' discharges showed an increase of T/sub e/ (by factors of 1.4-2 near the center) and of energy confinement (by factors of 2 to 3 in el. energy/power input, depending on time of observation). H 2 and He discharges showed practically identical effects. In plasma composition, the Mo concentration dropped significantly, but Fe only slightly if at all; the Al concentration was about 3-5 percent (i.e., large compared to the heavier metals), whereas oxygen, about 4 to 8 percent to start with, dropped to insignificance, probably as a result of Al evaporation. The z/sub eff/ from resistivity increased 20-30 percent although the resistance dropped because of the higher T/sub e/. The improved T/sub e/ and energy confinement are thought to be the result of cumulative effects of more favorable radial current and power input distributions rather than direct energy losses by radiation

  14. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  15. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    Directory of Open Access Journals (Sweden)

    Zhenyu Yang

    2015-01-01

    Full Text Available An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis also showed a moderate capability in diagnosis of point defect faults depending on the type of fault, severity of the fault, and the operational condition. The temporal feature indicated a feasibility to detect generalized roughness fault. The practical issues, such as deviations of predicted characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.

  16. Size of the virtual source behind a convex spherical surface emitting a space charge limited ion current

    International Nuclear Information System (INIS)

    Chavet, I.

    1987-01-01

    A plasma source fitted with a circular orifice and emitting a space charge limited ion current can be made to operate with a convex spherical plasma boundary (meniscus) by appropriately adjusting its extraction parameters. In this case, the diameter of the virtual source behind the meniscus is much smaller than the orifice diameter. The effective value of this virtual source diameter depends significantly on various practical factors that are more or less controllable. Its lower ideal limit, however, depends only on the radio δ of the interelectrode distance to the meniscus curvature radius and on the ratio ω of the initial to final ion energy. This ideal limit is given for the ranges 0.1 ≤ δ ≤ 10 and 10 -7 ≤ ω ≤ 10 -3 . Preliminary experimental results are reported. (orig.)

  17. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  18. Injection-limited electron current in a methanofullerene

    NARCIS (Netherlands)

    Duren, J.K.J. van; Mihailetchi, V.D.; Blom, P.W.M.; Woudenbergh, T. van; Hummelen, J.C.; Rispens, M.T.; Janssen, R.A.J.; Wienk, M.M.

    2003-01-01

    The dark current of bulk-heterojunction photodiodes consisting of a blend of a methanofullerene (PCBM) as n-type electron acceptor and a dialkoxy-(p-phenylene vinylene) (OC1C10-PPV) as a p-type electron donor sandwiched between electrodes with different work functions has been investigated. With

  19. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  20. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-03-01

    The purpose of this paper is to demonstrate a statistical method for verifying superconducting wire process stability as represented by I c . The paper does not propose changing the I c testing frequency for wire during Phase 1 of the present Vendor Qualification Program. The actual statistical limits demonstrated for one supplier's data are not expected to be suitable for all suppliers. However, the method used to develop the limits and the potential for improved process through their use, may be applied equally. Implementing the demonstrated method implies that the current practice of testing all pieces of wire from each billet, for the purpose of detecting manufacturing process errors (i.e. missing a heat-treatment cycle for a part of the billet, etc.) can be replaced by other less costly process control measures. As used in this paper process control limits for critical current are quantitative indicators of the source manufacturing process uniformity. The limits serve as alarms indicating the need for manufacturing process investigation

  1. The effects of phosphorus limitation on carbon metabolism in diatoms.

    Science.gov (United States)

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  2. Studies of the disruption prevention by ECRH at plasma current rise stage in limiter discharges

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Borshegovskij, A.A.; Chistyakov, V.V.

    1999-01-01

    Studies of disruption prevention by means of ECRH in T-10 at the plasma current rise phase in limiter discharges with circular plasma cross-section were performed. Reliable disruption prevention by ECRH at HF power (P HF ) min level equal to 20% of ohmic heating power P OH was demonstrated. m/n=2/1 mode MHD-activity developed before disruption (with characteristic time ∼120 ms) can be considered as disruption precursor and can be used in a feedback system. (author)

  3. Modeling interfacial glass-water reactions: recent advances and current limitations

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-01-01

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries-pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and timescales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the mesoscale changes that occur as the system evolves. These modeling approaches include geochemical simulations (i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer simulations), Monte Carlo simulations, and molecular dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers. New results are presented as examples of each approach. (authors)

  4. Clinical Uses of Botulinum Neurotoxins: Current Indications, Limitations and Future Developments

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2012-10-01

    Full Text Available Botulinum neurotoxins (BoNTs cause flaccid paralysis by interfering with vesicle fusion and neurotransmitter release in the neuronal cells. BoNTs are the most widely used therapeutic proteins. BoNT/A was approved by the U.S. FDA to treat strabismus, blepharospam, and hemificial spasm as early as 1989 and then for treatment of cervical dystonia, glabellar facial lines, axillary hyperhidrosis, chronic migraine and for cosmetic use. Due to its high efficacy, longevity of action and satisfactory safety profile, it has been used empirically in a variety of ophthalmological, gastrointestinal, urological, orthopedic, dermatological, secretory, and painful disorders. Currently available BoNT therapies are limited to neuronal indications with the requirement of periodic injections resulting in immune-resistance for some indications. Recent understanding of the structure-function relationship of BoNTs prompted the engineering of novel BoNTs to extend therapeutic interventions in non-neuronal systems and to overcome the immune-resistance issue. Much research still needs to be done to improve and extend the medical uses of BoNTs.

  5. A Novel Current-Mode SIMO Type Universal Filter Using CFTAs

    OpenAIRE

    Herencsár, Norbert; Koton, Jaroslav; Vrba, Kamil; Mišurec, Jiří

    2009-01-01

    In this paper a new active element for the realization of current-mode analog blocks Current Follower Transconductance Amplifier (CFTA) is presented. The element is a combination of the Current Follower (CF) and the Balanced Output Transconductance Amplifier (BOTA). In the paper we also document another extended active element CFTA which has more current outputs than can be realized by the UCC-N1B circuit, which was developed at our workplace. The application of this active element is shown o...

  6. Finite-element modelling of superconductors in over-critical regime with temperature dependent resistivity

    International Nuclear Information System (INIS)

    Duron, J; Grilli, F; Antognazza, L; Decroux, M; Stavrev, S; Dutoit, B; Fischer, Oe

    2006-01-01

    In this paper, we present a new numerical model, in which both the thermal and the electromagnetic aspects of the over-critical current regime of HTS materials are taken into account. The electromagnetic and thermal equations have been implemented in finite-element method (FEM) software in order to obtain a novel, closer to reality model for investigating the behaviour of the superconductor when the current exceeds I c . This model has been applied for studying the behaviour of strip lines of an YBCO/Au FCL with a sapphire substrate. Simulations with currents largely exceeding I c have been performed, showing that the total current limitation occurs only when the temperature dependence of the electrical parameters is taken into consideration. Such modelling can replace experiments with currents far exceeding I c which may damage or destroy the studied sample or HTS device

  7. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    International Nuclear Information System (INIS)

    Kim, Sang-Koog

    2010-01-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  8. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    Science.gov (United States)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  9. Quantitative elemental imaging of octopus stylets using PIXE and the nuclear microprobe

    International Nuclear Information System (INIS)

    Doubleday, Zoe; Belton, David; Pecl, Gretta; Semmens, Jayson

    2008-01-01

    By utilising targeted microprobe technology, the analysis of elements incorporated within the hard bio-mineralised structures of marine organisms has provided unique insights into the population biology of many species. As hard structures grow, elements from surrounding waters are incorporated effectively providing a natural 'tag' that is often unique to the animal's particular location or habitat. The spatial distribution of elements within octopus stylets was investigated, using the nuclear microprobe, to assess their potential for determining dispersal and population structure in octopus populations. Proton Induced X-ray Emission (PIXE) was conducted using the Dynamic Analysis method and GeoPIXE software package, which produced high resolution, quantitative elemental maps of whole stylet cross-sections. Ten elements were detected within the stylets which were heterogeneously distributed throughout the microstructure. Although Ca decreased towards the section edge, this trend was consistent between individuals and remained homogeneous in the inner region of the stylet, and thus appears a suitable internal standard for future microprobe analyses. Additional analyses used to investigate the general composition of the stylet structure suggested that they are amorphous and largely organic, however, there was some evidence of phosphatic mineralisation. In conclusion, this study indicates that stylets are suitable for targeted elemental analysis, although this is currently limited to the inner hatch region of the microstructure

  10. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  11. Limit analysis of narrow support elements in W7-X considering the serration effect of the stress-strain relation at 4 K

    International Nuclear Information System (INIS)

    Briani, E.; Gianini, C.; Lucca, F.; Marin, A.; Fellinger, J.; Bykov, V.

    2011-01-01

    The magnet support system of the Wendelstein 7-X (W7-X) fusion stellarator includes challenging components, called Narrow Support Elements (NSEs), placed between the Non Planar Coils (NPCs) at the inboard side and aimed at reducing deformation of the coils. NSEs are small contact elements, with special coating to reduce friction, that have to withstand high compressive and shear forces. The objective of this article is to demonstrate the structural reliability of the NSEs under electromagnetic loading (EML), taking into account in a conservative way the relevant material properties at cryogenic temperatures. To this purpose, an appropriate parametric local Finite Element (FE) model of one highly loaded NSE with its components (pad, pad frame and counter pad) and of a portion of the coils has been developed with ABAQUS code and isotropic elastic-plastic material model with hardening/softening has been used, in order to include the serration effect at 4 K. Different mechanical limit analyses have been performed including consecutive steps of shrink fitting the NSEs in the coils, cooling down to 4 K and gradual increasing of the coil displacements induced by the EML.

  12. Limit analysis of narrow support elements in W7-X considering the serration effect of the stress-strain relation at 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Briani, E., E-mail: erica.briani@ltcalcoli.it [L.T.Calcoli SaS, Piazza Prinetti 26/B, 23807, Merate (Saint Lucia) (Italy); Gianini, C.; Lucca, F.; Marin, A. [L.T.Calcoli SaS, Piazza Prinetti 26/B, 23807, Merate (Saint Lucia) (Italy); Fellinger, J.; Bykov, V. [MPI fur Plasmaphysik (IPP) Wendelsteinstrasse I, D-17491 Greifswald (Germany)

    2011-10-15

    The magnet support system of the Wendelstein 7-X (W7-X) fusion stellarator includes challenging components, called Narrow Support Elements (NSEs), placed between the Non Planar Coils (NPCs) at the inboard side and aimed at reducing deformation of the coils. NSEs are small contact elements, with special coating to reduce friction, that have to withstand high compressive and shear forces. The objective of this article is to demonstrate the structural reliability of the NSEs under electromagnetic loading (EML), taking into account in a conservative way the relevant material properties at cryogenic temperatures. To this purpose, an appropriate parametric local Finite Element (FE) model of one highly loaded NSE with its components (pad, pad frame and counter pad) and of a portion of the coils has been developed with ABAQUS code and isotropic elastic-plastic material model with hardening/softening has been used, in order to include the serration effect at 4 K. Different mechanical limit analyses have been performed including consecutive steps of shrink fitting the NSEs in the coils, cooling down to 4 K and gradual increasing of the coil displacements induced by the EML.

  13. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    International Nuclear Information System (INIS)

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator

  14. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  15. The Chemistry of Superheavy Elements

    CERN Document Server

    Schädel, M

    2003-01-01

    The chemistry of transactinide or superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. The current status of this atom-at-a-time chemical research and its future perspectives are reviewed from an experimental point of view together with some of the interesting results from n -rich nuclides near and at the N=162 neutron shell. Experimental techniques and important results enlightening typical chemical properties of elements 104 through 108 are presented in an exemplary way. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements in to groups 4 through 8, respectively. However, mainly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements simply from this position.

  16. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  17. Response to 'Comment on 'Pinch current limitation effect in plasma focus'' [Appl. Phys. Lett. 94, 076101 (2009)

    International Nuclear Information System (INIS)

    Lee, S.; Saw, S. H.

    2009-01-01

    The main point of the comment [Appl. Phys. Lett. 94, 076101 (2009)] is that Eq. (2) and consequentially Eq. (3) of the commented paper [Appl. Phys. Lett. 92, 021503 (2008)] require correction. The alternative equation suggested in the comment is derived using Kirchhoff's voltage rule. The comment consider only the energy distribution in the inductive components and the resultant equation confirms a progressive lowering of the I pinch /I peak ratio as the static inductance L 0 is reduced, lowering from 0.87 to 0.31 as L 0 is reduced from 100 to 5 nH according to the revised formula corresponding to Eq. (3), compared to 0.63-0.25 according to Eq. (3). This progressive lowering of the ratio I pinch /I peak due to the inductive energy distribution is one of two factors responsible for the pinch current limitation. The other factor is the progressive reduction in the L-C interaction time compared to the current dip duration denoted by δ cap in Eq. (2). The comment does not deal with δ cap at all; hence, its conclusion based on inductive energy distribution only is not useful, since in the low L 0 region when pinch current limitation begins to manifest, δ cap becomes more and more the dominant factor. In any case, the results of the paper do not depend on Eqs. (2) and (3), which are used in the paper only for illustrative purposes

  18. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  19. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  20. Statistical Analysis of the Spatial Distribution of Multi-Elements in an Island Arc Region: Complicating Factors and Transfer by Water Currents

    Directory of Open Access Journals (Sweden)

    Atsuyuki Ohta

    2017-01-01

    Full Text Available The compositions and transfer processes affecting coastal sea sediments from the Seto Inland Sea and the Pacific Ocean are examined through the construction of comprehensive terrestrial and marine geochemical maps for western Japan. Two-way analysis of variance (ANOVA suggests that the elemental concentrations of marine sediments vary with particle size, and that this has a greater effect than the regional provenance of the terrestrial material. Cluster analysis is employed to reveal similarities and differences in the geochemistry of coastal sea and stream sediments. This analysis suggests that the geochemical features of fine sands and silts in the marine environment reflect those of stream sediments in the adjacent terrestrial areas. However, gravels and coarse sands do not show this direct relationship, which is likely a result of mineral segregation by strong tidal currents and the denudation of old basement rocks. Finally, the transport processes for the fine-grained sediments are discussed, using the spatial distribution patterns of outliers for those elements enriched in silt and clay. Silty and clayey sediments are found to be transported and dispersed widely by a periodic current in the inner sea, and are selectively deposited at the boundary of different water masses in the outer sea.

  1. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Kratz, Sylvia, E-mail: sylvia.kratz@jki.bund.de; Schick, Judith; Schnug, Ewald

    2016-01-15

    68 rock phosphates and 162 P containing (organo-)mineral fertilizers sold in Germany were evaluated with regard to trace element contents. While Al, As, B, Be, Cd, Cr, Mo, Ni, Pb, Sb, Se, Tl, U, and Zn were higher in sedimentary than in igneous rock phosphates, the opposite was true for Co, Cu, Sn, Mn, Ti, Fe, and Sr. Comparing element concentrations to the currently valid legal limit values defined by the German Fertilizer Ordinance, it was found that some PK and many straight P fertilizers (superphosphate, triple superphosphate, partly acidulated rock phosphates) exceeded the limit of 50 mg Cd/kg P{sub 2}O{sub 5}. Mean values for As, Ni, Pb, and Tl remained below legal limits in almost all cases. While no legal limit has been defined for U in Germany yet, the limit of 50 mg U/kg P{sub 2}O{sub 5} for P containing fertilizers proposed by the German Commission for the Protection of Soils was clearly exceeded by mean values for all fertilizer types analyzed. A large share of the samples evaluated in this work contained essential trace elements at high concentrations, with many of them not being declared as such. Furthermore, trace elements supplied with these fertilizers at a fertilization rate leveling P uptake would exceed trace element uptake by crops. This may become most relevant for B and Fe, since many crops are sensitive to an oversupply of B, and Fe loads exceeding plant uptake may immobilize P supplies for the crops by forming Fe phosphate salts. The sample set included two products made from thermochemically treated sewage sludge ash. The products displayed very high concentrations of Fe and Mn and exceeded the legal limit for Ni, emphasizing the necessity to continue research on heavy metal removal from recycled raw materials and the development of environmentally friendly and agriculturally efficient fertilizer products. - Highlights: • Mineral fertilizers (MF) sold in Germany often exceed legal limits for Cd • MF sold in Germany contain high

  2. Prediction of Counter-Current Flow Limitation at Hot Leg Pipe During a Small-Break Loca

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    The possibility of hot leg flooding during reflux condensation cooling after a small-break loss-of-coolant accident in a nuclear power plant is evaluated. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13 %, 1.02 % and 10.19 % cold leg break. The effect of initial water level to counter-current flow limitation is taken into account. It is predicted that the hot leg flooding is precluded when all steam generators are available for heat removal. It is also shown the both hot leg flooding and SG flooding are possible under the operation of one steam generators. Therefore, it can be said that the occurrence of hot leg flooding under reflux condensation cooling is possible when the number of steam generators available for heat removal is limited. (author). 15 refs., 15 figs., 3 tabs.

  3. Chemical experiments with superheavy elements.

    Science.gov (United States)

    Türler, Andreas

    2010-01-01

    Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.

  4. Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation

    International Nuclear Information System (INIS)

    Lübken, Manfred; Koch, Konrad; Gehring, Tito; Horn, Harald; Wichern, Marc

    2015-01-01

    Highlights: • Estimation of ADM1 parameter uncertainty by nonlinear, correlated parameter analysis. • Unbounded confidence regions were obtained for single hydrolysis rate constants. • ADM1 carbohydrates were divided into a slowly and readily degradable part. • Bioavailability of trace metals explained discrepancies between modeled and measured data. - Abstract: The Anaerobic Digestion Model No. 1 (ADM1) was modified to describe the long-term process stability of a two-stage agricultural biogas system operated for 494 days with a mono-substrate. The ADM1 model fraction for carbohydrates was divided into a slowly and readily degradable part. Significant different hydrolysis rate constants were found for proteins and single fractions of carbohydrates in batch experiments. Degradation of starch, xylan (hemicellulose), cellulose and zein (protein) were modeled with first order hydrolysis rate coefficients of 1.20 d −1 , 0.70 d −1 , 0.18 d −1 and 0.30 d −1 , respectively. While the hydrolysis rate coefficients found in batch experiments could be used for predicting continuous process data, the statistically calculated confidence regions (nonlinear parameter estimation) showed that the upper limits were unbounded. Single discrepancies between measured and modeled process data of the two-stage pilot system could be explained by the lack of bioavailability of trace elements. Addition of iron, as Fe(III)Cl 3 , allowed stable process conditions for an organic loading rate (OLR) up to 2.5 g VS L −1 d −1 . Additional supplement of trace elements was necessary for process operation at OLRs above 2.5 g VS L −1 d −1

  5. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A V; Coombs, T A [Electrical Engineering Division, University of Cambridge (United Kingdom)

    2006-06-15

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10{sup -3}-10{sup 3} of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%.

  6. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    International Nuclear Information System (INIS)

    Velichko, A V; Coombs, T A

    2006-01-01

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10 -3 -10 3 of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%

  7. Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one

    Science.gov (United States)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2011-03-01

    Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Improved determination of hadron matrix elements using the variational method

    International Nuclear Information System (INIS)

    Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ.

    2015-11-01

    The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current g A and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.

  9. Study on a linear relationship between limited pressure difference and coil current of on/off valve and its influential factors.

    Science.gov (United States)

    Zhang, Junzhi; Lv, Chen; Yue, Xiaowei; Li, Yutong; Yuan, Ye

    2014-01-01

    On/off solenoid valves with PWM control are widely used in all types of vehicle electro-hydraulic control systems respecting to their desirable properties of reliable, low cost and fast acting. However, it can hardly achieve a linear hydraulic modulation by using on/off valves mainly due to the nonlinear behaviors of valve dynamics and fluid, which affects the control accuracy significantly. In this paper, a linear relationship between limited pressure difference and coil current of an on/off valve in its critical closed state is proposed and illustrated, which has a great potential to be applied to improve hydraulic control performance. The hydraulic braking system of case study is modeled. The linear correspondence between limited pressure difference and coil current of the inlet valve is simulated and further verified experimentally. Based on validated simulation models, the impacts of key parameters are researched. The limited pressure difference affected by environmental temperatures is experimentally studied, and the amended linear relation is given according to the test data. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Computer code determination of tolerable accel current and voltage limits during startup of an 80 kV MFTF sustaining neutral beam source

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Eckard, R.D.

    1979-01-01

    We have used a Lawrence Livermore Laboratory (LLL) version of the WOLF ion source extractor design computer code to determine tolerable accel current and voltage limits during startup of a prototype 80 kV Mirror Fusion Test Facility (MFTF) sustaining neutral beam source. Arc current limits are also estimated. The source extractor has gaps of 0.236, 0.721, and 0.155 cm. The effective ion mass is 2.77 AMU. The measured optimum accel current density is 0.266 A/cm 2 . The gradient grid electrode runs at 5/6 V/sub a/ (accel voltage). The suppressor electrode voltage is zero for V/sub a/ < 3 kV and -3 kV for V/sub a/ greater than or equal to 3 kV. The accel current density for optimum beam divergence is obtained for 1 less than or equal to V/sub a/ less than or equal to 80 kV, as are the beam divergence and emittance

  11. A study on the short-circuit test by fault angle control and the recovery characteristics of the fault current limiter using coated conductor

    International Nuclear Information System (INIS)

    Park, D.K.; Kim, Y.J.; Ahn, M.C.; Yang, S.E.; Seok, B.-Y.; Ko, T.K.

    2007-01-01

    Superconducting fault current limiters (SFCLs) have been developed in many countries, and they are expected to be used in the recent electric power systems, because of their great efficiency for operating these power system stably. It is necessary for resistive FCLs to generate resistance immediately and to have a fast recovery characteristic after the fault clearance, because of re-closing operation. Short-circuit tests are performed to obtained current limiting operational and recovery characteristics of the FCL by a fault controller using a power switching device. The power switching device consists of anti-parallel connected thyristors. The fault occurs at the desired angle by controlling the firing angle of thyristors. Resistive SFCLs have different current limiting characteristics with respect to the fault angle in the first swing during the fault. This study deals with the short-circuit characteristic of FCL coils using two different YBCO coated conductors (CCs), 344 and 344s, by controlling the fault angle and experimental studies on the recovery characteristic by a small current flowing through the SFCL after the fault clearance. Tests are performed at various voltages applied to the SFCL in a saturated liquid nitrogen cooling system

  12. Computation of the current density in nonlinear materials subjected to large current pulses

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.

    1991-01-01

    This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments

  13. Lean Management Systems in Radiology: Elements for Success.

    Science.gov (United States)

    Schultz, Stacy R; Ruter, Royce L; Tibor, Laura C

    2016-01-01

    This article is a review of the literature on Lean and Lean Management Systems and how they have been implemented in healthcare organizations and particularly in radiology departments. The review focuses on the elements required for a successful implementation of Lean by applying the principles of a Lean Management System instead of a Lean tools-only approach. This review shares the successes and failures from healthcare organizations' efforts to improve the quality and safety of the services they provide. There are a limited number of healthcare organizations in the literature who have shared their experiences and additional research is necessary to determine whether a Lean Management System is a viable alternative to the current management structure in healthcare.

  14. Fuel elements of research reactors in China

    International Nuclear Information System (INIS)

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  15. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    Science.gov (United States)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  16. Determination of the distribution of uranium and the transuranic elements in the environment by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Chastagner, P.

    1987-01-01

    Protection of the world population from releases of uranium, plutonium, and other transuranic materials requires, among other things, a knowledge of the sources, transport, and distribution of these elements in the environment. Both isotopic and quantitative analytical data are required in the determination of these factors. Also, the analyses must be precise and accurate enough to distinguish newly released material from older material such as the worldwide deposits from atmospheric weapons testing. For this reason, uranium, neptunium, and plutonium and other transuranic elements in the environment are routinely determined by high-sensitivity thermal ionization mass spectrometric techniques. With current instrumentation and techniques, routine isotope dilution and isotopic analyses are made with purified elemental samples as small as 2 x 10 -14 g. The detection limit for uranium and most of the transuranic isotopes is ∼ 5 x 10 18 g (∼ 13,000 atoms), which is at least an order of magnitude better than the detection limits of the radiometric counting techniques normally employed. The mass spectral sensitivities are equal for all of the isotopes of a given element but vary from element to element. Thus, each elemental sample must be highly purified. Separation techniques recover ∼ 80% of the uranium and the transuranic material from soils and other materials. Interelement separation factors > 10 5 are achieved with advanced ion exchange methods. Results of recent application of these techniques at the Savannah River Lab. and other laboratories are include

  17. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  18. Analysis of Biot-Savart’s law in comparison with Ampère’s force between current elements

    Directory of Open Access Journals (Sweden)

    Hugo Shigueo Tanaka dos Santos

    2017-12-01

    Full Text Available Nowadays, we use Biot-Savart’s Law and Grassmann’s force to study the magnetic fields effects. We can observe that this force apparently do not always satisfy the principle of action and reaction. In contrast, Ampère’s force always satisfies this principle explicitly and always along the straight line connecting the two currents elements. The present work presents a historic analysis of the development of these two forces, which have been developed based on interpretations of the Ørsted’s experiment. We also compare these two forces in order to verify if both have the same result. We show that the Grassmann’s expression, in fact, does not satisfy to the principle of action and reaction. Ampère’s force not only follows the principle of action and reaction in the strongest way, but it also explains the phenomena based action at a distance, which is easier to be observed and has many other powerful results, not only in the electromagnetism. In order to compare these two approaches, we calculate the force that an infinite rectilinear wire exerts on a loop of conductive material, both with current.

  19. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

    2010-01-01

    Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  20. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  1. Beam-limiting and radiation-limiting interlocks

    International Nuclear Information System (INIS)

    Macek, R.J.

    1996-01-01

    This paper reviews several aspects of beam-limiting and radiation- limiting interlocks used for personnel protection at high-intensity accelerators. It is based heavily on the experience at the Los Alamos Neutron Science Center (LANSCE) where instrumentation-based protection is used extensively. Topics include the need for ''active'' protection systems, system requirements, design criteria, and means of achieving and assessing acceptable reliability. The experience with several specific devices (ion chamber-based beam loss interlock, beam current limiter interlock, and neutron radiation interlock) designed and/or deployed to these requirements and criteria is evaluated

  2. Scrape-off layer based modelling of the density limit in beryllated JET limiter discharges

    International Nuclear Information System (INIS)

    Borrass, K.; Campbell, D.J.; Clement, S.; Vlases, G.C.

    1993-01-01

    The paper gives a scrape-off layer based interpretation of the density limit in beryllated JET limiter discharges. In these discharges, JET edge parameters show a complicated time evolution as the density limit is approached and the limit is manifested as a non-disruptive density maximum which cannot be exceeded by enhanced gas puffing. The occurrence of Marfes, the manner of density control and details of recycling are essential elements of the interpretation. Scalings for the maximum density are given and compared with JET data. The relation to disruptive density limits, previously observed in JET carbon limiter discharges, and to density limits in divertor discharges is discussed. (author). 18 refs, 10 figs, 1 tab

  3. Examination of Deposited Layers Composition on the Discharge Chamber Constructional Elements Tokamak T-11M after Two-Year Operation with Lithium Limiter

    International Nuclear Information System (INIS)

    Buzhinskij, O.; Barsuk, V.

    2006-01-01

    In this work the results of the research of internal structural elements state of the T11-M tokamak discharge chamber after two-year operation with lithium limiter are given [V.B. Lazarev, E.A. Azizov et al., Compatibility of the Lithium Capillary Limiter with Plasma in T-11M, 26 th EPS Conf. on Contr. Fusion Plasma Physics, ECA, vol. 231, pp. 845-848, 1999, V.A. Evtikhin, I.E. Lyublinski, A.V. Vertkov et al., Technology Aspects of Lithium Capillary pore Systems Application in Tokamak Device, SOFT-21 (Madrid), A-37, 2000]. The condition of molybdenic wall surface of the discharge chamber and internal steel surface of diagnostic ports has been investigated. X-ray microanalysis of deposited surface of the first wall has shown, that in deposited layer are contained in the main Mo and small amount Cu. In a composition of deposited layer on the ports surface, except the above-named elements, in a small amount is Fe. Because of the instrumental restrictions of this method of analysis, detection opportunity of lithium traces was missing. X-ray diffractometer analysis of deposited layer on the first wall surface has detected a mixture of several phases. The main phase is Li 2 CO 3 , one third from all deposited substance is Li 2 MoO 4 , there is also LiOH-HO phase. The deposited layer on diagnostic ports in the main consists of LiOH-H 2 O phase, there is also Li 2 CO 3 phase. The results of X-ray analysis of a dust probe from the B 4 C coated graphite limiter surface have not detected whatever extra phases, except a crystalline boron carbide phase. (author)

  4. Quantitative elemental imaging of octopus stylets using PIXE and the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Doubleday, Zoe [Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Tasmania 7001 (Australia)], E-mail: zoeanned@utas.edu.au; Belton, David [CSIRO Exploration and Mining, University of Melbourne (School of Physics), Melbourne 3010 (Australia); Pecl, Gretta; Semmens, Jayson [Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 49, Tasmania 7001 (Australia)

    2008-01-15

    By utilising targeted microprobe technology, the analysis of elements incorporated within the hard bio-mineralised structures of marine organisms has provided unique insights into the population biology of many species. As hard structures grow, elements from surrounding waters are incorporated effectively providing a natural 'tag' that is often unique to the animal's particular location or habitat. The spatial distribution of elements within octopus stylets was investigated, using the nuclear microprobe, to assess their potential for determining dispersal and population structure in octopus populations. Proton Induced X-ray Emission (PIXE) was conducted using the Dynamic Analysis method and GeoPIXE software package, which produced high resolution, quantitative elemental maps of whole stylet cross-sections. Ten elements were detected within the stylets which were heterogeneously distributed throughout the microstructure. Although Ca decreased towards the section edge, this trend was consistent between individuals and remained homogeneous in the inner region of the stylet, and thus appears a suitable internal standard for future microprobe analyses. Additional analyses used to investigate the general composition of the stylet structure suggested that they are amorphous and largely organic, however, there was some evidence of phosphatic mineralisation. In conclusion, this study indicates that stylets are suitable for targeted elemental analysis, although this is currently limited to the inner hatch region of the microstructure.

  5. Biotechnological uses of Azotobacter vinelandii : Current state, limits ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 33 (2010) >. Log in or Register to get access to full text downloads.

  6. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, J.E.; Bonten, L.T.C. [Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen (Netherlands); Dijkstra, J.J. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands); De Vries, W. [Department of Environmental Systems Analysis, Wageningen University, Wageningen UR, P.O. Box 47, 6700 AA Wageningen (Netherlands); Comans, R.N.J. [Department of Soil Quality, Wageningen University, Wageningen UR, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2012-07-15

    Here we evaluate the performance and limitations of two frequently used model-types to predict trace element solubility in soils: regression based 'partition-relations' and thermodynamically based 'multisurface models', for a large set of elements. For this purpose partition-relations were derived for As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, V, Zn. The multi-surface model included aqueous speciation, mineral equilibria, sorption to organic matter, Fe/Al-(hydr)oxides and clay. Both approaches were evaluated by their application to independent data for a wide variety of conditions. We conclude that Freundlich-based partition-relations are robust predictors for most cations and can be used for independent soils, but within the environmental conditions of the data used for their derivation. The multisurface model is shown to be able to successfully predict solution concentrations over a wide range of conditions. Predicted trends for oxy-anions agree well for both approaches but with larger (random) deviations than for cations.

  7. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  8. Chalcogenide phase-change memory nanotubes for lower writing current operation

    International Nuclear Information System (INIS)

    Jung, Yeonwoong; Agarwal, Rahul; Yang, Chung-Ying; Agarwal, Ritesh

    2011-01-01

    We report the synthesis and characterization of Sb-doped Te-rich nanotubes, and study their memory switching properties under the application of electrical pulses. Te-rich nanotubes display significantly low writing currents due to their small cross-sectional areas, which is desirable for power-efficient memory operation. The nanotube devices show limited resistance ratio and cyclic switching capability owing to the intrinsic properties of Te. The observed memory switching properties of this new class of nanostructured memory elements are discussed in terms of fundamental materials properties and extrinsic geometrical effects.

  9. Nuclear chemistry of transactinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    The current status on the nuclear chemistry studies of transactinide elements is reviewed. The production of transactinides in heavy ion reactions is briefly discussed, and nuclear properties on the stability of transactinides are presented. Chemical properties of the trans-actinide elements 104, 105 and 106, and a typical experimental technique used to study these properties on an atom-at-a-time base are introduced. (author)

  10. Numerical simulations of eddy current testing signals of steam generator tubes by 3-D finite element method

    International Nuclear Information System (INIS)

    Sakai, Takayuki; Soneda, Naoki

    1996-01-01

    In every inspection of Japanese PWR plants, all of steam generator tubes are inspected using Eddy Current Testing (ECT) method. However, the relationships between the ECT signals and the defect shapes are known only for the representative shapes of defects. In order to improve the reliability of inspections and the capability of ECT probes, development of numerical simulation technique of the ECT signals for arbitrarily shaped defects is essential. In this study, three-dimensional finite element code is developed to simulate the ECT signals for any kinds of defects in the SG tubes. The code is fully vectorized so that it runs on the supercomputers very efficiently. The simulation results agree very well with the experimental results. Sensitivity analyses are performed to investigate the relationships between the defect shapes and the ECT signals. (author)

  11. Assessment of finite element and smoothed particles hydrodynamics methods for modeling serrated chip formation in hardened steel

    Directory of Open Access Journals (Sweden)

    Usama Umer

    2016-05-01

    Full Text Available This study aims to perform comparative analyses in modeling serrated chip morphologies using traditional finite element and smoothed particles hydrodynamics methods. Although finite element models are being employed in predicting machining performance variables for the last two decades, many drawbacks and limitations exist with the current finite element models. The problems like excessive mesh distortions, high numerical cost of adaptive meshing techniques, and need of geometric chip separation criteria hinder its practical implementation in metal cutting industries. In this study, a mesh free method, namely, smoothed particles hydrodynamics, is implemented for modeling serrated chip morphology while machining AISI H13 hardened tool steel. The smoothed particles hydrodynamics models are compared with the traditional finite element models, and it has been found that the smoothed particles hydrodynamics models have good capabilities in handling large distortions and do not need any geometric or mesh-based chip separation criterion.

  12. Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review.

    Science.gov (United States)

    Tseng, Wei-Chang; Hsu, Keng-Chang; Shiea, Christopher Stephen; Huang, Yeou-Lih

    2015-07-16

    Trace element speciation in biomedical and environmental science has gained increasing attention over the past decade as researchers have begun to realize its importance in toxicological studies. Several nanomaterials, including titanium dioxide nanoparticles (nano-TiO2), carbon nanotubes (CNTs), and magnetic nanoparticles (MNPs), have been used as sorbents to separate and preconcentrate trace element species prior to detection through mass spectrometry or optical spectroscopy. Recently, these nanomaterial-based speciation techniques have been integrated with microfluidics to minimize sample and reagent consumption and simplify analyses. This review provides a critical look into the present state and recent applications of nanomaterial-based microanalytical systems in the speciation of trace elements. The adsorption and preconcentration efficiencies, sample volume requirements, and detection limits of these nanomaterial-based speciation techniques are detailed, and their applications in environmental and biological analyses are discussed. Current perspectives and future trends into the increasing use of nanomaterial-based microfluidic techniques for trace element speciation are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    Science.gov (United States)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  14. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  15. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  16. Selective mobilization of critical elements in incineration ashes; Selektiv mobilisering av kritiska element hos energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Malin; Herrmann, Inga; Ecke, Holger [Luleaa Univ. of Technology (Sweden); Sjoeblom, Rolf [TEKEDO AB, Nykoeping (Sweden)

    2005-05-01

    In the project SMAK, the selective mobilization of critical elements in ashes was studied. Non-hazardous bottom ash from Daava kraftvaermeverk, Umeaa, and hazardous fly ash from Hoegdalenverket, Stockholm, line P6 were investigated. Sb, Mo, Cu, Cr and Cl{sup -} were identified as critical elements in the bottom ash since these elements exceeded the limit values for acceptance on landfills as inert waste according to the Council decision on acceptance criteria at landfills. Critical elements in the fly ash were Cr, Se, Pb and Cl{sup -}, these elements exceeded the limit values for acceptance on landfills as non-hazardous waste. The mobilization of the critical elements was studied in experiments performed according to a reduced 2{sup 6-1} factorial design with three centerpoints. Factors in the experiments were ultrasonic pre-treatment, pre-treatment with carbonation, L/S-ratio, pH, time and temperature. Empirical models of the mobilization were used to identify the optimal factor setting ensuring sufficient mobilization of critical elements, i.e. to achieve a solid residue meeting non-hazardous and inert landfill criteria for fly ash and bottom ash, respectively. No ultrasonic treatment, pre-treatment with carbonation, L/Sratio 5, pH 12, time 2h and temperature at 20 deg C were identified as optimal factor setting for the bottom ash. For the fly ash, no ultrasonic treatment, no pre-treatment with carbonation, L/S-ratio 5, pH 7, time 2h and temperature at 20 deg C were identified as optimal factor setting. The treatment with optimal factor settings did not change the classification according to the Council decision on acceptance criteria at landfills of neither ash. For the bottom ash, Sb, Mo and Cr exceeded the limit values for landfilling as inert waste according to the Council decision on acceptance criteria at landfills. Only Cr exceeded the limit value for landfilling the fly ash as non-hazardous waste. According to the Waste Decree (Avfallsfoerordningen) both

  17. Advancement of the Eddy Current Testing using neural network technique. Development of 3-D finite element analysis sytem of elctro-magnetic field

    International Nuclear Information System (INIS)

    Sakai, Takayuki; Soneda, Naoki

    1994-01-01

    In PWR plants, an automatic recognition system of Eddy Current Testing (ECT) signals of steam generator tubes are strongly required to reduce inspectors' labor and to improve the reliability of the testing. Although the neural-network technique is very promising for this kind of system, it is necessary to evaluate its applicability to ECT signals throughly, where a database of the relationship of the defects and ECT signals plays a very important role. In this paper, a three dimensional finite element analysis system of electromagnetic field, which consists of an FEM code and pre/post processor, is developed to generate a database of ECT signals. T-Ω method and the edge element are employed in the FEM code to reduce the required computer memory. The code is verified through some comparisons with experiments and other calculations. (author)

  18. Trace element emissions from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    Trace elements are emitted during coal combustion. The quantity, in general, depends on the physical and chemical properties of the element itself, the concentration of the element in the coal, the combustion conditions and the type of particulate control device used, and its collection efficiency as a function of particle size. Some trace elements become concentrated in certain particle streams following combustion such as bottom ash, fly ash, and flue gas particulate matter, while others do not. Various classification schemes have been developed to describe this partitioning behaviour. These classification schemes generally distinguish between: Class 1: elements that are approximately equally concentrated in the fly ash and bottom ash, or show little or no fine particle enrichment, examples include Mn, Be, Co and Cr; Class 2: elements that are enriched in the fly ash relative to bottom ash, or show increasing enrichment with decreasing particle size, examples include As, Cd, Pb and Sb; Class 3: elements which are emitted in the gas phase (primarily Hg (not discussed in this review), and in some cases, Se). Control of class 1 trace elements is directly related to control of total particulate matter emissions, while control of the class 2 elements depends on collection of fine particulates. Due to the variability in particulate control device efficiencies, emission rates of these elements can vary substantially. The volatility of class 3 elements means that particulate controls have only a limited impact on the emissions of these elements.

  19. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  20. HIGH PERCENTAGE OF RARE EARTH ELEMENT CONNECTION WITH THE ACCUMULATION SEDIMENT AS RESPONSE LONGSHORE CURRENTS IN THE BELITUNG WATERS

    Directory of Open Access Journals (Sweden)

    Delyuzar Ilahude

    2017-07-01

    Full Text Available The study area is geographically located in the West coast of Belitung island at coordinates 105o48'00" - 106o06' 00" E and 06o46'00" - 06o50' 00" S. The beach and coastal area is influenced by wave energy from the West and North directions The purpose of this study is to analyze the relationship between the zone of sediment accumulation of empirical approaches on oceanography parameter containing rare earth elements. The approach used is to predict the shore wave energy using wave prediction curve deep waters to obtain the energy flux of the wave at each point of reference. Sediments containing rare earth elements tend to lead to the south as a result of the movement of longshore currents. Regional coastal area of the western part of the island of Belitung, especially in the southern part of the estuary of the river Tanjung Pandan is estimated to be a zone of sediment accumulation. The movement of sediment caused by wave energy from the north led to sedimentation evolved significantly in the south which is thought to contain rare earths minerals derived from land. This sedimentation process takes place on a seasonal basis, which allegedly took place in the west. The movement of sediment to the south of the mouth of the Cerucuk River it is predicted that rare earth elements were supplied from these rivers tend to settle in the southern part of the estuary Cerucuk throughout the year.

  1. Research on Stabilization Properties of Inductive-Capacitive Transducers Based on Hybrid Electromagnetic Elements

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.

    2017-01-01

    Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.

  2. Chemistry of the superheavy elements.

    Science.gov (United States)

    Schädel, Matthias

    2015-03-13

    The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship Discoverer and other platforms from the NE Pacific (limit-180) from 1993-08-18 to 1994-09-28 (NODC Accession 9500006)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship DISCOVERER and other platforms from the NE Pacific (limit-180)....

  4. Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship Discoverer and other platforms from the NE Pacific (limit-180) from 1994-04-22 to 1995-08-20 (NODC Accession 9500150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship DISCOVERER and other platforms from the NE Pacific (limit-180)....

  5. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  6. Generally applicable limits on intakes of uranium based on its chemical toxicity and the radiological significance of intakes at those limits

    International Nuclear Information System (INIS)

    Thorne, M C; Wilson, J

    2015-01-01

    Uranium is chemically toxic and radioactive, and both considerations have to be taken into account when limiting intakes of the element, in the context of both occupational and public exposures. Herein, the most recent information available on the chemical toxicity and biokinetics of uranium is used to propose new standards for limiting intakes of the element. The approach adopted allows coherent standards to be set for ingestion and inhalation of different chemical forms of the element by various age groups. It also allows coherent standards to be set for occupational and public exposures (including exposures of different age groups) and for various exposure regimes (including short-term and chronic exposures). The proposed standards are more restrictive than those used previously, but are less restrictive than the Minimal Risk Levels proposed recently by the US Agency for Toxic Substances and Disease Registry. Having developed a set of proposed limits based solely on chemical toxicity considerations, the radiological implications of exposure at those proposed limits are investigated for natural, depleted and enriched uranium. (paper)

  7. New elements

    International Nuclear Information System (INIS)

    Flerov, G.

    1976-01-01

    The history is briefly described of the investigation of superheavy elements at the Joint Institute for Nuclear Research at Dubna. The significance of the investigation is assessed from the point of view of the nuclear structure study and major problems encountered in experimental efforts are indicated. Current experimental methods aiming at the discovery or the production of superheavy nuclei with Z approximately 114 are listed. (I.W.)

  8. Major inorganic elements in tap water samples in Peninsular Malaysia.

    Science.gov (United States)

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  9. Analysis of light elements by PIGE

    International Nuclear Information System (INIS)

    Kim, Y. S.; Choi, H. W.; Kim, D. K.; Woo, H. J.; Kim, N. B.; Park, K. S.

    2000-01-01

    The PIGE (Proton Induced Gamma ray Emission) method was applied for the measurement of light elements Li - K. A test measurement has been performed for geological, biological, environmental and material samples by using a standard sample for each element. The measurement was performed for the two proton energies of 2.4 and 3.4 MeV, and 3.4MeV was found to yield better result for multielemental analysis. The result shows a fair agreement within 15% for all elements with standard values. The detection limits of Li, B, F and Na are less than 100 ppm, while those of the other elements are from a few hundred ppm to a few percents. (author)

  10. Ecological effect of rare earth elements

    International Nuclear Information System (INIS)

    Hu Aitang; Zhou Quansuo; Zheng Shaojian; Zhai Hai; Zhao Xiulan; Pang Yonglin; Wang Yuqi; Sun Jingxin; Zhang Shen; Wang Lijun

    1997-01-01

    Water and soil culture were carried out to study the ecological effect of rare earth elements (REEs) in the aspect of plant-soil system. Contents of REEs were determined by instrumental neutron activation analysis (INAA). There was a limit to REEs-tolerance of crops, which differed with the development periods of plant and soil types. The REEs concentration in plant, especially in root, was marked related to the concentration in culture material. Beyond the concentration-limit appeared phototoxicity. The chemical behavior of REEs in plants and soils varied with soil types and elements. The bio-availability of REEs in soil mainly depended on the exchangeable fraction of REEs affected strongly by the physi-chemical properties of soils

  11. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Limit of detection in the presence of instrumental and non-instrumental errors: study of the possible sources of error and application to the analysis of 41 elements at trace levels by inductively coupled plasma-mass spectrometry technique

    International Nuclear Information System (INIS)

    Badocco, Denis; Lavagnini, Irma; Mondin, Andrea; Tapparo, Andrea; Pastore, Paolo

    2015-01-01

    In this paper the detection limit was estimated when signals were affected by two error contributions, namely instrumental errors and operational-non-instrumental errors. The detection limit was theoretically obtained following the hypothesis testing schema implemented with the calibration curve methodology. The experimental calibration design was based on J standards measured I times with non-instrumental errors affecting each standard systematically but randomly among the J levels. A two-component variance regression was performed to determine the calibration curve and to define the detection limit in these conditions. The detection limit values obtained from the calibration at trace levels of 41 elements by ICP-MS resulted larger than those obtainable from a one component variance regression. The role of the reagent impurities on the instrumental errors was ascertained and taken into account. Environmental pollution was studied as source of non-instrumental errors. The environmental pollution role was evaluated by Principal Component Analysis technique (PCA) applied to a series of nine calibrations performed in fourteen months. The influence of the seasonality of the environmental pollution on the detection limit was evidenced for many elements usually present in the urban air particulate. The obtained results clearly indicated the need of using the two-component variance regression approach for the calibration of all the elements usually present in the environment at significant concentration levels. - Highlights: • Limit of detection was obtained considering a two variance component regression. • Calibration data may be affected by instrumental and operational conditions errors. • Calibration model was applied to determine 41 elements at trace level by ICP-MS. • Non instrumental errors were evidenced by PCA analysis

  13. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  14. Limitations of the electromagnetic isolation for multi-antenna systems on small terminals with capacitive coupling elements

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Alrabadi, Osama; Franek, Ondrej

    2012-01-01

    Recently, there has been a growing interest for evaluating the performance potential of multiple antenna systems on small terminals. This work focuses on Capacitive Coupling Elements (CCEs), which are expected to perform differently with respect to self-resonating elements. Several CCEs...

  15. Limiting factors in single particle cryo electron tomography

    Directory of Open Access Journals (Sweden)

    Mikhail Kudryashev

    2012-07-01

    Full Text Available Modern methods of cryo electron microscopy and tomography allow visualization of protein nanomachines in their native state at the nanometer scale. Image processing methods including sub-volume averaging applied to repeating macromolecular elements within tomograms allow exploring their structures within the native context of the cell, avoiding the need for protein isolation and purification. Today, many different data acquisition protocols and software solutions are available to researchers to determine average structures of macromolecular complexes and potentially to classify structural intermediates. Here, we list the density maps reported in the literature, and analyze each structure for the chosen instrumental settings, sample conditions, main processing steps, and obtained resolution. We present conclusions that identify factors currently limiting the resolution gained by this approach.

  16. The impact of the thermal conductivities of the color conversion elements of phosphor converted LEDs under different current driving schemes

    Energy Technology Data Exchange (ETDEWEB)

    Fulmek, Paul; Nicolics, Johann [Institute of Sensor & Actuator Systems, Vienna University of Technology, Gusshausstraße 27-29, A-1040 Vienna (Austria); Nemitz, Wolfgang; Schweitzer, Susanne; Sommer, Christian; Hartmann, Paul [Institute of Surface Technologies and Photonics, Joanneum Research Forschungsges mbH, Franz-Pichler Straße 30, A-8160 Weiz (Austria); Schrank, Franz [Tridonic Jennersdorf GmbH, Technologiepark 10, A-8380 Jennersdorf (Austria); Wenzl, Franz P., E-mail: Franz-Peter.Wenzl@joanneum.at [Institute of Sensor & Actuator Systems, Vienna University of Technology, Gusshausstraße 27-29, A-1040 Vienna (Austria)

    2016-01-15

    For a systematic approach to improve the reliability and the white light quality of phosphor converted light-emitting diodes (LEDs) it is imperative to gain a better understanding of the individual parameters that affect color temperature constancy and maintenance. By means of a combined optical and thermal simulation procedure, in this contribution we give a comprehensive discussion on the impact of different thermal conductivities of the color conversion elements (CCE) of phosphor converted LEDs on their respective thermal load for different current driving schemes. In particular we show that, while for the thermal load of CCEs with low thermal conductivities also effects due to the non-linearity between the blue radiant flux and the current have to be considered, these effects are largely diminished in case of CCEs with higher thermal conductivities. - Highlights: • We discuss the thermal load of phosphor based LEDs for different current driving. • We report on the time scales for the thermal load of phosphor based LEDs. • We report on the impact of the non-linearity of the radiant flux on the thermal load. • We discuss the impact of the thermal conductivity on the thermal load.

  17. Construction of testing facilities and verifying tests of a 22.9 kV/630 A class superconducting fault current limiter

    Science.gov (United States)

    Yim, S.-W.; Yu, S.-D.; Kim, H.-R.; Kim, M.-J.; Park, C.-R.; Yang, S.-E.; Kim, W.-S.; Hyun, O.-B.; Sim, J.; Park, K.-B.; Oh, I.-S.

    2010-11-01

    We have constructed and completed the preparation for a long-term operation test of a superconducting fault current limiter (SFCL) in a Korea Electric Power Corporation (KEPCO) test grid. The SFCL with rating of 22.9 kV/630 A, 3-phases, has been connected to the 22.9 kV test grid equipped with reclosers and other protection devices in Gochang Power Testing Center of KEPCO. The main goals of the test are the verification of SFCL performance and protection coordination studies. A line-commutation type SFCL was fabricated and installed for this project, and the superconducting components were cooled by a cryo-cooler to 77 K in the sub-cooled liquid nitrogen pressurized by 3 bar of helium gas. The verification test includes un-manned - long-term operation with and without loads and fault tests. Since the test site is 170 km away from the laboratory, we will adopt the un-manned operation with real-time remote monitoring and controlling using high speed internet. For the fault tests, we will apply fault currents up to around 8 kArms to the SFCL using an artificial fault generator. The fault tests may allow us not only to confirm the current limiting capability of the SFCL, but also to adjust the SFCL - recloser coordination such as resetting over-current relay parameters. This paper describes the construction of the testing facilities and discusses the plans for the verification tests.

  18. Construction of testing facilities and verifying tests of a 22.9 kV/630 A class superconducting fault current limiter

    International Nuclear Information System (INIS)

    Yim, S.-W.; Yu, S.-D.; Kim, H.-R.; Kim, M.-J.; Park, C.-R.; Yang, S.-E.; Kim, W.-S.; Hyun, O.-B.; Sim, J.; Park, K.-B.; Oh, I.-S.

    2010-01-01

    We have constructed and completed the preparation for a long-term operation test of a superconducting fault current limiter (SFCL) in a Korea Electric Power Corporation (KEPCO) test grid. The SFCL with rating of 22.9 kV/630 A, 3-phases, has been connected to the 22.9 kV test grid equipped with reclosers and other protection devices in Gochang Power Testing Center of KEPCO. The main goals of the test are the verification of SFCL performance and protection coordination studies. A line-commutation type SFCL was fabricated and installed for this project, and the superconducting components were cooled by a cryo-cooler to 77 K in the sub-cooled liquid nitrogen pressurized by 3 bar of helium gas. The verification test includes un-manned - long-term operation with and without loads and fault tests. Since the test site is 170 km away from the laboratory, we will adopt the un-manned operation with real-time remote monitoring and controlling using high speed internet. For the fault tests, we will apply fault currents up to around 8 kA rms to the SFCL using an artificial fault generator. The fault tests may allow us not only to confirm the current limiting capability of the SFCL, but also to adjust the SFCL - recloser coordination such as resetting over-current relay parameters. This paper describes the construction of the testing facilities and discusses the plans for the verification tests.

  19. Cumulative and competitive effects of chemical elements on nuclear glass alteration

    International Nuclear Information System (INIS)

    Arena, Helene

    2016-01-01

    This work takes place in the context of the long-term behavior of nuclear glasses under repository conditions. The main objective is to identify, understand and compare the effects of some chemical elements present in the glass composition and/or in the repository media (Zn, Mg, Ni, Co, Fe, Ca, Gd, Ce, K, Cs, Cr and Ag) on the processes involved in glass alteration by water. The cumulative or competitive nature of the effects of these chemical elements was determined. To reach this goal, a 6 oxides simple glass (ISG) has been altered for more than 500 days in a solution containing one or more of the chemical elements of interest. The results indicate that Zn, Mg, Ni, Co and Fe elements increase glass alteration forming secondary phases with the same structure and stoichiometry (tri-octahedral smectites). To form, these silicates consume chemical elements (Si, Al) from the environment and induce a pH decrease until a limiting value of pH. Beyond this pH the precipitation of secondary phases is inhibited and these chemical elements can be integrated into the gel, replacing Ca whose solubility increases at lower pH. As long as they form secondary phases, the effects of these elements are cumulative. Rare earths Gd and Ce also increase glass alteration forming secondary phases but their effects are lower as they contain less silicon. These elements are not integrated in the gel. Chromium increases glass alteration by precipitating with Ca and leading to a less protective gel, depleted in Ca. Silver precipitates as AgCl and has no effect on the alteration of the glass. The chemical elements K, Cs and Ca limit glass alteration by integrating into the gel and slowing down the transport phenomena therein. This integration is competitive: the order of integration (quantity and effectiveness glass alteration limitation) is the following Ca≥≥Cs≥K. Thus, the increase of glass alteration may be proportional to the quantity of elements promoting the precipitation of

  20. Biological trace element measurements using synchrotron radiation

    International Nuclear Information System (INIS)

    Giauque, R.D.; Jaklevic, J.M.; Thompson, A.C.

    1985-07-01

    The feasibility of performing x-ray fluorescence trace element determinations at concentrations substantially below the ppM level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppM were measured for most elements

  1. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  2. Improvement of the detection limits in radio-frequency-powered glow discharge optical emission spectrometry associated with bias-current conduction method; Jiko bias denryu donyuho ni yoru koshuha glow hoden hakko bunseki ni okeru kenshutsu genkai no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Wagatsuma, K. [Tohoku University, Sendai (Japan). Research Institute for Materials

    1999-01-01

    A d.c. bias current driven by the self-bias voltage which is conducted through the r.f.-powered glow discharge plasma varies the emission characteristics drastically, leading to improvement of the detection power in the optical emission spectrometry. By conducting the bias currents of 20-30 mA, the emission intensities of the atomic resonance lines were 10-20 times larger than those obtained with conventional r.t.- powered plasmas. The detection limits for determination of alloyed elements in the re-based binary alloy samples were estimated to be l.6 x 10{sup -3}% Cr for CrI 425.43nm, 7 x 10{sup -4}% Mn for MnI 403.10nm, 1.9>10{sup -3}% Cu for CuI 327.40nm, 1.1 x 10{sup -3}% Al for AlI 396.16nm, and 6.6 x 10{sup -3}% Ni for NiI 352.45 nm. (author)

  3. Thermal analysis of linear pulse motor for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Hur, H.; Kim, J. H.; Kim, J. I.; Jang, K. C.; Kang, D. H.

    1999-01-01

    It is important that the temperature of the motor windings be maintained within the allowable limit of the insulation, since the linear pulse motor of CEDM is always supplied with current during the reactor operation. In this study three motor windings were fabricated with three different diameters of coil wires, and the temperatures inside the windings were measured with different current values. As the insulation of the windings is composed of teflon, glass fiber, and air, it is not an easy task to determine experimentally the thermal properties of the complex insulation. In this study, the thermal properties of the insulation were obtained by comparing the results of finite element thermal analyses and those of experiment. The thermal properties obtained here will be used as input for the optimization analysis of the motor

  4. Polarized Kink Waves in Magnetic Elements: Evidence for Chromospheric Helical Waves

    Energy Technology Data Exchange (ETDEWEB)

    Stangalini, M.; Giannattasio, F. [INAF-OAR National Institute for Astrophysics, Via Frascati 33, I-00078 Monte Porzio Catone (RM) (Italy); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Consolini, G.; Ermolli, I. [INAF-IAPS National Institute for Astrophysics, Via del Fosso del Cavaliere, 100, I-00133 Rome (Italy); Criscuoli, S. [NSO, National Solar Observatory, Boulder, CO 80303 (United States); Guglielmino, S. L.; Zuccarello, F., E-mail: marco.stangalini@inaf.it [Department of Physics and Astronomy, University of Catania, Via S. Sofia 78, I-95125 Catania (Italy)

    2017-05-01

    In recent years, new high spatial resolution observations of the Sun's atmosphere have revealed the presence of a plethora of small-scale magnetic elements down to the resolution limit of the current cohort of solar telescopes (∼100–120 km on the solar photosphere). These small magnetic field concentrations, due to the granular buffeting, can support and guide several magnetohydrodynamic wave modes that would eventually contribute to the energy budget of the upper layers of the atmosphere. In this work, exploiting the high spatial and temporal resolution chromospheric data acquired with the Swedish 1 m Solar Telescope, and applying the empirical mode decomposition technique to the tracking of the solar magnetic features, we analyze the perturbations of the horizontal velocity vector of a set of chromospheric magnetic elements. We find observational evidence that suggests a phase relation between the two components of the velocity vector itself, resulting in its helical motion.

  5. CDX-U Operation with a Large Area Liquid Lithium Limiter

    International Nuclear Information System (INIS)

    R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; M. Ulrickson

    2002-01-01

    The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, B(subscript)toroidal = 2 kG, I(subscript)P = 100 kA, T(subscript)e(0) ∼ 100 eV, n(subscript)e(0) ∼ 5 x 10 19 m -3 ] short-pulse (<25 msec) spherical torus with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. Surface coatings are evident on part of the lithium. Despite the surface coatings, tokamak discharges operated in contact with the lithium-filled tray show evidence of reduced impurities and recycling. The reduction in recycling is largest when the lithium is liquefied by heating to 250 degrees Celsius

  6. Analysis of a T-10 graphite limiter

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Laux, M.; Lingertat, J.; Pech, P.; Reiner, H.D.; Strusny, H.; Wolff, H.

    1981-01-01

    Parts of a T-10 graphite limiter used during ohmic heated discharges have been investigated. Erosion and deposition phenomena have been studied by morphological and elemental surface analysis methods. From the results estimates of the plasma parameters near the limiter surface have been made. (orig.)

  7. Transuranium elements: Past, present, and future

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1995-01-01

    In this illustrative Account the authors shall concentrate on four of these elements, chosen for their current interest or pivotal role. The story of plutonium is one of the most dramatic in the history of science, and today, plutonium is at the focus of an extraordinary dilemma. Mendelevium (element 101) has played a pivotal role in blazing the trail for the discovery of the heaviest elements on the basis of open-quotes one atom at a timeclose quotes production. Seaborgium (element 106) was recently named in my honor by the discoverers and may be the last element, at least for some time, for which it will be possible to determine many chemical properties. And element 110 represents recent evidence, after a lapse of 10 years, for the discovery of a chemical element. Recent (1994) recommendations of the IUPAC Commission on the Nomenclature of Inorganic Chemistry for the renaming of elements 104-108 have met with widespread rejection. The author is using the names proposed by the acknowledged discoverers (elements 106-109) or, in the case of the disputed elements 104 and 105, the most logical names. 21 refs., 5 figs

  8. Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails

    Science.gov (United States)

    Mlilo, Nhlanganiso; Kaewunruen, Sakdirat

    2017-12-01

    Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure

  9. Summary of Dissolved Concentration Limits

    International Nuclear Information System (INIS)

    Yueting Chen

    2001-01-01

    According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M and O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits

  10. Summary of Dissolved Concentration Limits

    Energy Technology Data Exchange (ETDEWEB)

    Yueting Chen

    2001-06-11

    According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M&O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits.

  11. Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting

    CERN Document Server

    De Ford, John F; Petillo, John

    2005-01-01

    Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...

  12. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    Science.gov (United States)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  13. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  14. The finite element response matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-02-01

    A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt

  15. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    Science.gov (United States)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  16. Signal sensitivity of alternating current potential drop measurement for crack detection of conductive substrate with tunable coating materials through finite element modeling

    International Nuclear Information System (INIS)

    Rao, Simha Sandeep; Zhao, Huijuan; Liu, Ming; Peng, Fei; Zhang, Bo

    2016-01-01

    We adopt a finite element numerical modeling approach to investigate the electromagnetic coupling effect of two parallel electric conductors with tunable electric conductivity σ and magnetic permeability μ . For two parallel conductors C and S ( μ C   ⋅  σ C   ≤  μ S   ⋅  σ S ), we find that the shape of current density profile of conductor S is dependent on the product of μ C   ⋅  σ C , while the magnitude is determined by the AC current frequency f . On the other hand, the frequency f affects not only the shape but also the magnitude of the current density profile of conductor C. We further adopt a coplanar model to investigate the signal sensitivity of alternating current potential drop (ACPD) measurement for both surface crack and inner crack detection. We find that with modified coating materials (lower electric conductivity and higher magnetic permeability, compared with the substrate material properties), the crack detection signal sensitivity can be greatly enhanced for both the cracks within the coating and at the coating/substrate interface, where cracks are most commonly encountered in real situations. (paper)

  17. Current status of nuclear medicine in chronic airflow limitation

    International Nuclear Information System (INIS)

    Clarke, S.W.; Agnew, J.E.; Royal Free Hospital, London

    1987-01-01

    Radionuclide imaging, quite apart from its role in the diagnosis of pulmonary embolism, offers information about the distribution of ventilatory and perfusion abnormalities within the lung. The extent of ventilatory abnormality seen can be related to the severity of airways obstruction as assessed spirometrically, whilst abnormalities in the matching of perfusion to ventilation can be related to the severity of hypoxaemia in patients with chronic airflow limitation. Clearance of mucus from the lungs of patients with chronic mucus hypersection may be assessed by following the clearance rate of insoluble radioaerosol particles; by such means the relative contributions of mucociliary transport and of cough to the overall clearance can be observed. Clearance is often severely impaired in patients with airways obstruction; the radioaerosol technique can be used to determine the effects of drug or physiotherapy treatment. Chronic airflow limitation leading to hypoxaemia can be associated with pulmonary artery hypertension and right ventricular hypertrophy - this may be investigated noninvasively by a radionuclide test of right ventricular ejection fraction. (orig.)

  18. Current status of nuclear medicine in chronic airflow limitation

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, S.W.; Agnew, J.E.

    1987-06-01

    Radionuclide imaging, quite apart from its role in the diagnosis of pulmonary embolism, offers information about the distribution of ventilatory and perfusion abnormalities within the lung. The extent of ventilatory abnormality seen can be related to the severity of airways obstruction as assessed spirometrically, whilst abnormalities in the matching of perfusion to ventilation can be related to the severity of hypoxaemia in patients with chronic airflow limitation. Clearance of mucus from the lungs of patients with chronic mucus hypersection may be assessed by following the clearance rate of insoluble radioaerosol particles; by such means the relative contributions of mucociliary transport and of cough to the overall clearance can be observed. Clearance is often severely impaired in patients with airways obstruction; the radioaerosol technique can be used to determine the effects of drug or physiotherapy treatment. Chronic airflow limitation leading to hypoxaemia can be associated with pulmonary artery hypertension and right ventricular hypertrophy - this may be investigated noninvasively by a radionuclide test of right ventricular ejection fraction.

  19. Technique and Calculation Results of Currents and Voltages in the Circuits of the Measuring Element of the Protection Device of the Transmission Line Based on the Control of Transient Processes

    Science.gov (United States)

    Lachugin, V. F.; Kulikov, A. L.; Platonov, P. S.; Vucolov, V. Yu.

    2017-12-01

    The specifics of generation of the signals of current and voltage in the circuits of a directional element of wave relay protection during short circuit (SC) in overhead power transmission lines are considered. The computing method of transient processes in the protection circuits, including frequency filters, that attenuate the parameters of currents and voltages of the mode taking into account the higher harmonic components and probable deviations of the frequency of transmission line from the rated value is presented. It is revealed that it is advisable to implement the measuring circuits of the directional elements of wave relay protection with the three-section filter attenuating the frequencies from 45 to 55 Hz and the low pass filter with cutoff frequency that does not exceed 1 kHz.

  20. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei, E-mail: stclchen1982@163.com [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zhu, Lin [Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville 37996 (United States); Guo, Fang [Department of Substation, Guang Dong Electric Power Design Institute, Guangzhou 510663 (China)

    2015-11-15

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.