WorldWideScience

Sample records for current light water

  1. Current status of light water reactor and Hitachi's technical improvements for BWR

    International Nuclear Information System (INIS)

    Miki, Minoru; Ohki, Arahiko.

    1984-01-01

    Gradual technical improvements in Japan over the years has improved the reliability of light water reactors, and has achieved the highest capacity factor level in the world. Commercial operation of Fukushima 2-2 (1,100 MW) of the Tokyo Electric Power Co. was started in February, 1984, as the first standardized BWR base plant, ushering in a new age of domestic light water reactor technology. The ABWR (1,300 MW class) has been developed as Japan's next generation light water reactor, with construction aimed at the latter half of the 1980's. Hitachi's extensive efforts range from key nuclear equipment to various related robots, directed at improving safety, reliability, and the capacity factor, while reducing radiation exposure. This paper presents an outline of Hitachi's participation in the light water reactor's improvement and standardization, and the current status of our role in the international cooperation plan for the ABWR. (author)

  2. Categorization of failed and damaged spent LWR [light-water reactor] fuel currently in storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs

  3. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  4. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    International Nuclear Information System (INIS)

    Duan, Zhengang; Yang, Huilong; Satoh, Yuhki; Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie; Abe, Hiroaki

    2017-01-01

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  5. Current status and future perspective of upgrading on light water reactors in Japan

    International Nuclear Information System (INIS)

    Tateki, Hoshion

    1991-01-01

    Energy demands in the world would be expected to increase constantly furthermore. In this situation the role of nuclear energy has become more important than it used to be from the view of the countermeasure for the global warming issue resulting from the exhausted gases causing the greenhouse effect in addition to the view of the energy securities. In also Japan, the energy demand-supply perspective plan issued on October,1990 which aims to expand the capacity of nuclear power plants to 72,500MWe as a target. by 2010. (see table.l) Present Light Water Reactors(LWRs) have been experienced and this type of reactor will remain as major stream of nuclear power generation for a long time all over the world. Considering above perspective, Advisory Committee for Energy of MITI(Ministry of International Trade and Industry) has investigated the technology and technical development of coming LWRs and concluded the report on June of this year. In this paper the contents of above report are introduced

  6. Zinc injection on the EDF pressurized light water reactors. Current results and operating experience feedback

    International Nuclear Information System (INIS)

    Piana, Olivier; Duval, Arnaud; Moleiro, Edgar; Benfarah, Moez; Bretelle, Jean-Luc; Chaigne, Guy

    2014-01-01

    Nowadays, zinc injection, as well as pH management and hydrogen control, is increasingly considered as an essential element of PWR Primary Water Chemistry worldwide. After a first implementation of zinc injection at Bugey 2 since 2004 and Bugey 4 since 2006, EDF decided to extend this practice, which constitutes a modification of primary circuit chemical conditioning, to other units of its fleet. Currently, 15 among the 58 reactors of the French fleet are injecting depleted zinc acetate into the primary coolant water. Three main goals were identified at the beginning of this program. Indeed, the expected benefits of zinc injection were: Reduction of the rate of generalized corrosion and mitigation of stress corrosion cracking initiation on nickel based alloys (Material goal). Curative or preventive reduction of radiation sources to which workers are exposed (Radiation fields' goal). Mitigation of the AOA or CIPS risks by reduction of corrosion products releases and mitigation of crud deposition (Fuel protection goal). To monitor the zinc addition, EDF has defined a complete survey program concerning: chemistry and radiochemistry responses (primary coolant monitoring of corrosion and fission products and calculation of zinc injected, zinc removed and zinc incorporated in RCS surfaces) ; radiation fields (dose rates and deposited activities measurements) ; materials (statistical analysis of SG tube cracks) ; fuel (oxide thickness measurements and visual exams) ; effluents (corrosion products releases and isotopic distribution follow up) ; wastes (radiochemical characterization of filters). This paper will detail the present results of this monitoring program. It appears that the expected benefits of zinc injection have yet to be fully realized; further operating experience will be required in order to fully evaluate its impact. (author)

  7. Assessment of Current Inservice Inspection and Leak Monitoring Practices for Detecting Materials Degradation in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simonen, Fredric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Muscara, Joseph [US Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kupperman, David S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    An assessment was performed to determine the effectiveness of existing inservice inspection (ISI) and leak monitoring techniques, and recommend improvements, as necessary, to the programs as currently performed for light water reactor (LWR) components. Information from nuclear power plant (NPP) aging studies and from the U. S. Nuclear Regulatory Commission’s Generic Aging Lessons Learned (GALL) report (NUREG-1801) was used to identify components that have already experienced, or are expected to experience, degradation. This report provides a discussion of the key aspects and parameters that constitute an effective ISI program and a discussion of the basis and background against which the effectiveness of the ISI and leak monitoring programs for timely detection of degradation was evaluated. Tables based on the GALL components were used to systematically guide the process, and table columns were included that contained the ISI requirements and effectiveness assessment. The information in the tables was analyzed using histograms to reduce the data and help identify any trends. The analysis shows that the overall effectiveness of the ISI programs is very similar for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). The evaluations conducted as part of this research showed that many ISI programs are not effective at detecting degradation before its extent reached 75% of the component wall thickness. This work should be considered as an assessment of NDE practices at this time; however, industry and regulatory activities are currently underway that will impact future effectiveness assessments. A number of actions have been identified to improve the current ISI programs so that degradation can be more reliably detected.

  8. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  9. Light water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V. [B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre ' Kurchatov Institute' , Gatchina (Russian Federation)

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the

  10. Light water detritiation

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V.

    2015-01-01

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m 3 /day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m 3 ), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower

  11. Light water lattices

    International Nuclear Information System (INIS)

    1962-01-01

    The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs

  12. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  13. Current control of light by nonreciprocal magnetoplasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yongkang, E-mail: yongkang.gong@southwales.ac.uk; Li, Kang; Carver, Sara; Martinez, Juan Jose; Huang, Jungang; Copner, Nigel [Wireless and Optoelectronics Research and Innovation Centre (WORIC), Faculty of Computing, Engineering and Science, University of South Wales, Cardiff CF37 1DL (United Kingdom); Thueux, Yoann; Avlonitis, Nick [Airbus Group Innovations, Quadrant House, Celtic Springs, Coedkernew, NP10 8FZ Newport (United Kingdom)

    2015-05-11

    The ability to actively control light has long been a major scientific and technological goal. We proposed a scheme that allows for active control of light by utilizing the nonreciprocal magnetoplasmonic effect. As a proof of concept, we applied current signal through an ultrathin metallic film in a magneto-plasmonic multilayer and found that dynamic photonic nonreciprocity appears in magnetic-optical material layer due to the magnetic field being induced from current signal and modulates surface plasmon polaritons trapped in the metal surface and the light reflected. The proposed concept provides a possible way for the active control of light and could find potential applications such as ultrafast optoelectronic signal processing for plasmonic nanocircuit technology and ultrafast/large-aperture free-space electro-optic modulation platform for wireless laser communication technology.

  14. Light-water reactor accident classification

    International Nuclear Information System (INIS)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art

  15. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  16. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  17. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  18. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  19. Neutron thermalization in light water

    International Nuclear Information System (INIS)

    Abbate, M.J.; Lolich, J.V.

    1975-05-01

    Investigations related to neutron thermalization in light water have been made. Neutron spectra under quasi-infinite-medium conditions have been measured by the time-of-flight technique and calculations were performed with different codes. Through the use of improved experimental techniques and the best known calculational techniques available, the known discrepancies between experimentals and theoretical values were below from 40% to 16%. The present disagreement is believed to be due the scattering model used (ENDF-GASKET, based on the modified Haywood II frequency spectra), that shows to be very satisfactory for poisoned light water cases. Moreover, previous experiments were completed and differential, integral and pulse-source experimental techniques were improved. Also a second step of a neutron and reactor calculation system was completed. (author)

  20. LIGHT WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  1. Light-field-driven currents in graphene

    Science.gov (United States)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  2. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  3. Advanced light water reactor plant

    International Nuclear Information System (INIS)

    Giedraityte, Zivile

    2008-01-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  4. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  5. Collecting Currents with Water Turbines

    Science.gov (United States)

    Allen, J.; Allen, S.

    2017-12-01

    Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.

  6. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  7. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  8. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  9. Light-water reactor research and development

    International Nuclear Information System (INIS)

    1985-05-01

    This report on the national program of research and development on light water reactors is the second of two reports requested in 1982 by W. Kenneth Davis, Deputy Secretary of the Department of Energy. A first report, published in September 1983, treated the needs for safety-related R and D. In this second report, the Energy Research Advisory Board finds that, although many light water reactors are providing reliable and economic electricity, it appears unlikely that U.S. utilities will order additional reactors until the currently unacceptable economic risk, created by the regulatory climate and uncertain demand, is reduced. Thus it is unlikely that the private sector alone will fund major LWR design improvements. However, nuclear power will continue on its current course of expansion overseas. DOE participation is vitally needed to support the national interest in LWR technology. The report outlines R and D needs for a program to improve the safety, reliability, and economics of the present generation of plants; to develop evolutionary improved designs to be ready when needed; and to explore innovative longer-term concepts for deployment after the year 2000. The respective roles of government and the private sector are discussed

  10. Current-voltage model of LED light sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig

    2012-01-01

    Amplitude modulation is rarely used for dimming light-emitting diodes in polychromatic luminaires due to big color shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity of a diode and driving current. Current-voltage empirical model of light...

  11. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  12. Technologies for improving current and future light water reactor operation and maintenance: Development on the basis of experience. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-09-01

    Application of efficient technologies for improving operation and maintenance of nuclear power plants is an important element for assuring their economic competitiveness with other means of generating electricity. The competitive environment, which nuclear power plant operators face in many countries as a result of de-regulation of the electricity market, imposes cost pressures that must be met while at the same time satisfying stringent safety requirements. Further, as currently operating plants age, proper management includes development and application of better technologies for inspection, maintenance and repair. For future plants, the opportunity exists during the design phase to incorporate design features for performing efficient inspection, maintenance and repairs. Despite the prevailing low prices of fossil fuels, the generation costs of nuclear electricity continue to be competitive with electricity generation costs from fossil-fuelled plants for base load generation in several countries. For nuclear power, the capital investment component of electricity generation cost is relatively high, while the nuclear fuel cycle cost is - and is expected to remain - relatively low. The prices of fossil fuels are fairly low today but are likely to increase over the long term because the resource is limited. Moreover, governments may introduce incentives to reduce the use of fossil fuels in order to protect the environment. In many countries, nuclear utilities are experiencing increased competition with other sources of electricity production due to deregulation of the electricity market, and nuclear plant operators can no longer pass along the generation costs to consumers through regulated electricity rates. This competitive environment has significant implications for plant operations to achieve efficient use of all resources, and to effectively manage plant activities including outages and maintenance. Over the past several years, steady improvements have been

  13. Technologies for improving current and future light water reactor operation and maintenance: Development on the basis of experience. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Application of efficient technologies for improving operation and maintenance of nuclear power plants is an important element for assuring their economic competitiveness with other means of generating electricity. The competitive environment, which nuclear power plant operators face in many countries as a result of de-regulation of the electricity market, imposes cost pressures that must be met while at the same time satisfying stringent safety requirements. Further, as currently operating plants age, proper management includes development and application of better technologies for inspection, maintenance and repair. For future plants, the opportunity exists during the design phase to incorporate design features for performing efficient inspection, maintenance and repairs. Despite the prevailing low prices of fossil fuels, the generation costs of nuclear electricity continue to be competitive with electricity generation costs from fossil-fuelled plants for base load generation in several countries. For nuclear power, the capital investment component of electricity generation cost is relatively high, while the nuclear fuel cycle cost is - and is expected to remain - relatively low. The prices of fossil fuels are fairly low today but are likely to increase over the long term because the resource is limited. Moreover, governments may introduce incentives to reduce the use of fossil fuels in order to protect the environment. In many countries, nuclear utilities are experiencing increased competition with other sources of electricity production due to deregulation of the electricity market, and nuclear plant operators can no longer pass along the generation costs to consumers through regulated electricity rates. This competitive environment has significant implications for plant operations to achieve efficient use of all resources, and to effectively manage plant activities including outages and maintenance. Over the past several years, steady improvements have been

  14. Beyond the light water reactor

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1980-01-01

    One of the strong interests in examining alternative nuclear fuel cycles is to search for schemes that are more efficient than LWRs in their use of uranium, but that do not carry the additional proliferation hazard associated with widespread plutonium utilization. One possibility is to improve the uranium efficiency of current reactor types by other means than recycling. A second possibility, offering greater potential for improvement, is to utilize thorium-uranium fuel cycles in which uranium-233 is denatured by the addition of uranium-238, making enrichment necessary to yield weapons-usable material. The bulk of the reactor's fuel material would be thorium-232, so that most of the fissile material produced would be uranium-233. It is important to recognize that these two possibilities - once through improvements and denatured thorium-uranium - could be introduced sequentially in reactor types that are currently in use. Fuel cycles may change over time, but it is equally significant from the point of view of non-proliferation that they will also vary from place to place and, most importantly, from country to country. The author argues that alternative nuclear power systems and a slower growth may affect the diversion of nuclear materials to weapons. A real question, though, is whether we have time to explore the possibilities. It has become apparent that predictions made of the growth rate for nuclear power were too high. The 1000 large power plants the US was to have by the year 2000 have been reduced to fewer than 300. This reduces the pressure, resulting from our limited uranium resources, to push the LMFBR. Extra time gives us a chance to examine the possibilities

  15. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  16. European community light water reactor safety research projects. Experimental issue

    International Nuclear Information System (INIS)

    1975-01-01

    Research programs on light water reactor safety currently carried out in the European Community are presented. They cover: accident conditions (LOCA, ECCS, core meltdown, external influences, etc...), fault and accident prevention and means of mitigation, normal operation conditions, on and off site implications and equipment under severe accident conditions, and miscellaneous subjects

  17. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  18. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  19. Developmental Light-Water Reactor Program

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-12-01

    This report summarizes the progress of the Developmental Light-Water Reactor (DLWR) Program at Oak Ridge National Laboratory in FY 1989. It also includes (1) a brief description of the program, (2) definition of goals, (3) earlier achievements, and (4) proposed future activities

  20. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  1. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Moore, E.B. Jr.

    1979-12-01

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  2. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  3. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  4. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  5. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  6. Advanced light water reactors for the nineties

    International Nuclear Information System (INIS)

    Ross, F.A.; Sugnet, W.R.

    1987-01-01

    The EPRI/Industry advanced light water reactor (ALWR) program and the US Department of Energy ALWR program are closely coordinated to meet the common objective which is the availability of improved and simplified light water reactor plants that may be ordered in the next decade to meet new or replacement capacity requirements. The EPRI/Industry objectives, program participants, and foreign participants, utility requirements document, its organization and content, small plant conceptual design program, the DOE ALWR program, design verification program, General Electric ABWR design features, Combustion Engineering system design, mid-size plant development, General Electric SBWR objectives, Westinghouse/Burns and Roe design objectives, construction improvement, and improved instrumentation and control are discussed in the paper

  7. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  8. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  9. The light water natural uranium reactor

    International Nuclear Information System (INIS)

    Radkowsky, A.

    A new type of light water seed blanket with the seed having 20% enrichment and the blanket a special combination of elements of natural uranium and thorium, relatively close packed, but sufficient spacing for heat transfer purpose is described. The blanket would deliver approximately half the total energy for about 10,000 MWDIT, so this type of core would be just as economical or better in uranium ore consumation as present cores. (author)

  10. Neutron disadvantage factors in heavy water and light water reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1966-01-01

    A number od heavy water and light water reactor cells are analyzed in this paper by applying analytical methods of neutron thermalization. Calculations done according to the one-group Amouyal-Benoist method are included in addition. Computer codes for ZUSE Z-23 computer were written by applying both methods. The obtained results of disadvantage factors are then compared to results obtained by one-group P 3 approximation and by multigroup K7-THERMOS code [sr

  11. New lineup of light water reactors

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi; Oshima, Koichiro; Kitsukawa, Keisuke

    2007-01-01

    Toshiba is promoting technical studies for upcoming nuclear power plants based on its large accumulation of experience in boiling water reactor (BWR) design, manufacturing, construction, and maintenance. Our goal is to achieve higher reliability, lower life-cycle costs, and better competitiveness for nuclear power plants compared with other energy sources. In addition, we are developing a new light water reactor (LWR) lineup featuring the safest and most economical LWRs in the world as next-generation reactors almost at new construction and replacement in the Japanese and international markets expected to start from the 2020s. We are committed not only to developing BWRs with the world's highest performance but also to participating in the pressurized water reactor (PWR) market, taking advantage of the synergistic effect of both Toshiba's and Westinghouse's experience. (author)

  12. Electric currents induced by twisted light in Quantum Rings.

    Science.gov (United States)

    Quinteiro, G F; Berakdar, J

    2009-10-26

    We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.

  13. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  14. Light Water Reactor Sustainability Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  15. Trends in light water reactor dosimetry programs

    International Nuclear Information System (INIS)

    Rahn, F.J.; Serpan, C.Z.; Fabry, A.; McElroy, W.N.; Grundl, J.A.; Debrue, J.

    1977-01-01

    Dosimetry programs and techniques play an essential role in the continued assurance of the safety and reliability of components of light water reactors. Primary concern focuses on the neutron irradiation embrittlement of reactor pressure vessels and methods by which the integrity of a pressure vessel can be predicted and monitored throughout its service life. Research in these areas requires a closely coordinated program which integrates the elements of the calculational and material sciences, the development of advanced dosimetric techniques and the use of benchmarks and validation of these methods. The paper reviews the status of the various international efforts in the dosimetry area

  16. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific examples are provided where appropriate. A wide variety of readers, including operators, designers, and NRC staff, will find parts of this manual useful. Different sections are written at different levels, according to the most likely audience. The manual is not intended to provide specific plant procedures, but rather, to provide general guidance that may assist in the development of such procedures

  17. Development trends in light water reactors

    International Nuclear Information System (INIS)

    Fogelstroem, L.; Simon, M.

    1988-01-01

    The present market for new nuclear power plants is weak, but is expected to pick up again, which is why great efforts are being made to further develop the light water reactor line for future applications. There is both a potential and a need for further improvement, for instance with respect to even higher cost efficiency, a simplified operating permit procedure, shorter construction periods, and increased operational flexibility to meet rising demands in load following behavior and in better cycle data of fuel elements. However, also public acceptance must not be forgotten when deciding about the line to be followed in the development of LWR technology. (orig.) [de

  18. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  19. Tidal power harnessing energy from water currents

    CERN Document Server

    Lyatkher, Victor

    2014-01-01

    As the global supply of conventional energy sources, such as fossil fuels, dwindles and becomes more and more expensive, unconventional and renewable sources of energy, such as power generation from water sources, is becoming more and more important.  Hydropower has been around for decades, but this book suggests new methods that are more cost-effective and less intrusive to the environment for creating power sources from rivers, the tides, and other sources of water.   The energy available from water currents is potentially much greater than society's needs.  Presenting a detailed discussi

  20. Nuclear powerplant standardization: light water reactors. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1981-06-01

    This volume contains working papers written for OTA to assist in preparation of the report, NUCLEAR POWERPLANT STANDARDIZATION: LIGHT WATER REACTORS. Included in the appendixes are the following: the current state of standardization, an application of the principles of the Naval Reactors Program to commercial reactors; the NRC and standardization, impacts of nuclear powerplant standardization on public health and safety, descriptions of current control room designs and Duke Power's letter, Admiral Rickover's testimony, a history of standardization in the NRC, and details on the impact of standardization on public health and safety

  1. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-02-01

    The reactor-safety issue is one of the principal problems threatening the future of the nuclear option, at least in participatory democracies. It has contributed to widespread public distrust and is the direct cause of the escalation in design complexity and quality assurance requirements that are rapidly eroding the competitive advantage of nuclear power. Redesign of the light-water reactor can eliminate those features that leave it open to public distrust and obstructive intervention. This redesign appears feasible within the realm of proven technology in those fields (fuels, materials, water chemistry, waste technology, etc.) in which extended operating experience is essential for confidence in system performance. A pressurized water reactor outline design developed to achieve the above goal is presented. The key feature is the design of the primary system extracting heat from the core so that the latter is protected from damage caused by any credible system failure or any destructive intervention from the outside by either violent means (up to and including nonnuclear warfare) or by mistaken or malicious use of the plant control systems. Such a design objective can be achieved by placing the entire primary circulation system in a large pressurized pool of cold water with a high boric acid content. Enough water is provided in the pool to allow core-decay-heat removal by evaporation for at least one week following any incident with no cooling systems operating. Subsequently it is assumed that a supply of further water (a few cubic meters per hour) from the outside can be arranged, even without the presence of the plant operating personnel

  2. Environmentally assisted cracking in Light Water Reactors

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.; Ruther, W.E.; Kassner, T.F.; Michaud, W.F.; Park, J.Y.; Sanecki, J.E.; Shack, W.J.

    1993-09-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1992 to March 1993. Fatigue and EAC of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (1) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels. (2) EAC of cast stainless steels (SSs), (3) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence, and (4) EAC of low-alloy steels. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions and chromium-nickel-plated A533-Gr B steel in simulated boiling-water reactor (BWR) water at 289 degrees C. The data were compared with predictions based on crack growth correlations for ferritic steels in oxygenated water and correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy

  3. US Advanced Light Water Reactor Program; overall objective

    International Nuclear Information System (INIS)

    Klug, N.

    1989-01-01

    The overall objective of the US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) program is to perform coordinated programs of the nuclear industry and DOE to insure the availability of licensed, improved, and simplified light water reactor standard plant designs that may be ordered in the 1990's to help meet the US electrical power demand. The discussion includes plans to meet program objectives and the design certification program. DOE is currently supporting the development of conceptual designs, configurations, arrangements, construction methods/plans, and proof test key design features for the General Electric ASBWR and the Westinghouse AP600. Key features of each are summarized. Principal milestones related to licensing of large standard plants, simplified mid-size plant development, and plant lifetime improvement are noted

  4. Analytic formalism for current crowding in light emitting diodes

    International Nuclear Information System (INIS)

    Lee, Kyu-Seok

    2012-01-01

    This paper presents an analytic approach to simulating current crowding (CC) in light-emitting diodes with parallel p- and n-contacts. The electrical potential difference across the p-i-n layers is derived from the Laplace equation, whereas the current density through the p-i-n layers is obtained from the current density - voltage relation of a single-diode model. Since these two properties influence each other, they are calculated iteratively. It is found that CC depends on the applied voltage (or the average current density), the sheet resistances of the p- and the n-contact layers, the width of the active region, and the specific series resistance and ideality factor of the p-i-n layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Light extraction in planar light-emitting diode with nonuniform current injection: model and simulation.

    Science.gov (United States)

    Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei

    2014-07-20

    We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.

  6. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  7. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  8. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  9. Comparative evaluation of recent water hammer events in light water reactors

    International Nuclear Information System (INIS)

    House, R.K.; Sursock, J.P.; Kim, J.H.

    1987-01-01

    Water hammer events that occurred in commercial U.S. light water reactors in the five-year period from 1981 to 1985 were surveyed, and a preliminary evaluation of the events was conducted. The information developed supplements a previous study which evaluated water hammer events in the twelve-year period from 1969 to 1981. The current study of water hammer events in the 1980's confirms that the rate of events remains relatively constant (less than 0.25 events per plant year) in both PWRs and BWRs. Although water hammer events are not normally considered a safety issue, the economic impact of the events on plant operations can be significant. One particular severe water hammer event is estimated to have cost the plant owner $10 million for repair and evaluation alone. A variety of key characteristics of the recent water hammer events are summarized to establish a basis for further study of preventative methods

  10. Current path in light emitting diodes based on nanowire ensembles

    International Nuclear Information System (INIS)

    Limbach, F; Hauswald, C; Lähnemann, J; Wölz, M; Brandt, O; Trampert, A; Hanke, M; Jahn, U; Calarco, R; Geelhaar, L; Riechert, H

    2012-01-01

    Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect. (paper)

  11. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials

  12. Light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.

    1989-01-01

    Since the accident at Three Mile Island (TMI), Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During 1987 and 1988, the Department of Energy provided funds to the Nuclear Engineering Department at Penn State to investigate a plant reconfiguration originated by M.A. Schultz called ''The Light Water Ultra-Safe Plant Concept''. This report presents a final summary of the project with references to several masters' theses and addendum reports for further detail. The two year research effort included design verification with detailed computer simulation of: (a) normal operation characteristics of the unique pressurizing concept, (b) severe transients without loss of coolant, (c) combined primary and secondary system modeling, and (d) small break and large break loss of coolant accidents. Other studies included safety analysis, low power density core design, and control system design to greatly simplify the control room and required operator responses to plant upset conditions. The overall conclusion is that a reconfigured pressurized water reactor can achieve real and perceived safety improvements. Additionally, control system research to produce greatly simplified control rooms and operator requirements should be continued in future projects

  13. Model-independent study of light cone current commutators

    International Nuclear Information System (INIS)

    Gautam, S.R.; Dicus, D.A.

    1974-01-01

    An attempt is made to extract information on the nature of light cone current commutators (L. C. C.) in a model independent manner. Using simple assumptions on the validity of the DGS representation for the structure functions of deep inelastic scattering and using the Bjorken--Johnston--Low theorem it is shown that in principle the L. C. C. may be constructed knowing the experimental electron--proton scattering data. On the other hand the scaling behavior of the structure functions is utilized to study the consistency of a vanishing value for various L. C. C. under mild assumptions on the behavior of the DGS spectral moments. (U.S.)

  14. The industry/EPRI advanced light water reactor program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Sugnet, W.R.; Bilan, W.J.

    1986-01-01

    For the United States nuclear power industry to remain viable, it must be prepared to meet the expected need for new generating capacity in the late 1990s with an improved reactor system. The best hope of meeting this requirement is with evolutionary changes in current LWR systems through system simplification and reevaluation of safety and operational design margins. The grid characteristics and the difficulty in raising capital for large projects indicate that smaller light water reactors (400 to 600 MWe) may play an important role the next generation

  15. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  16. Light-water reactor pressure vessel surveillance standards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel steels throughout a pressure vessel's service life. Some of these are existing American Society for Testing and Materials (ASTM) standards, some are ASTM standards that have been modified, and some are newly proposed ASTM standards. The current (1) scope, (2) areas of application, (3) interrelationships, and (4) status and time table of development, improvement, validation, and calibration for a series of 16 ASTM standards are defined. The standard also includes a discussion of LWR pressure vessel surveillance - justification, requirements, and status of work

  17. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  18. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  19. Water Electrolysis at Different Current - Voltage Regimes

    International Nuclear Information System (INIS)

    Kleperis, J.; Blums, J.; Vanags, M.

    2007-01-01

    Full text: Electrochemical impedance and volt-amperic methods were used to compare an efficiency of water electrolysis for different materials and different electrode configurations. Two and three electrode measurements were made, using standard calomel reference electrode. Non-standard capacitative electrolysis was analyzed in special cell made from cylindrical steel electrodes. Volt-amperic measurements from - 15V to +15V DC didn't indicated the presence of oxidation - reduction reactions when distilled water was used as electrolyte. Impedance measurements showed unusual frequency behavior when the AC voltage increased till 0.5V. Different nickel and carbon electrodes (plate, porous and textile - type) were used to learn classical Faraday electrolysis in strong alkali solutions. Flying increase of current was indicator of the presence of electrolysis, and characteristic potential was used differ between materials accordingly they effectiveness for usage in an electrolyser device. (Aithors)

  20. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  1. Nuclear fuel for light water reactors

    International Nuclear Information System (INIS)

    Etemad, A.

    1976-01-01

    The goal of the present speech is to point out some of the now-a-day existing problems related to the fuel cycle of light water reactors and to foresee their present and future solutions. Economical aspects of nuclear power generation have been considerably improving, partly through technological advancements and partly due to the enlargement of unit capacity. The fuel cycle, defined in the course of this talk, discusses the exploration, mining, ore concentration, purification, conversion, enrichment, manufacturing of fuel elements, their utilization in a reactor, their discharge and subsequent storage, reprocessing, and their re-use or disposal. Uranium market in the world and the general policy of several uranium owning countries are described. The western world requirement for uranium until the year 2000, uranium resources and the nuclear power programs in the United States, Australia, Canada, South Africa, France, India, Spain, and Argentina are discussed. The participation of Iran in a large uranium enrichment plant based on French diffusion technology is mentioned

  2. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  3. Aging management of major light water reactor components

    International Nuclear Information System (INIS)

    Shah, V.N.; Sinha, U.P.; Ware, A.G.

    1992-01-01

    Review of technical literature and field experience has identified stress corrosion cracking as one of the major degradation mechanisms for the major light water reactor components. Three of the stress corrosion cracking mechanisms of current concern are (a) primary water stress corrosion cracking (PWSCC) in pressurized water reactors, and (b) intergranular stress corrosion cracking (IGSCC) and (c) irradiation-assisted stress corrosion cracking (IASCC) in boiling water reactors. Effective aging management of stress corrosion cracking mechanisms includes evaluation of interactions between design, materials, stressors, and environment; identification and ranking of susceptible sites; reliable inspection of any damage; assessment of damage rate; mitigation of damage; and repair and replacement using corrosion-resistant materials. Management of PWSCC includes use of lower operating temperatures, reduction in residual tensile stresses, development of reliable inspection techniques, and use of Alloy 690 as replacement material. Management of IGSCC of nozzle and attachment welds includes use of Alloy 82 as weld material, and potential use of hydrogen water chemistry. Management of IASCC also includes potential use of hydrogen water chemistry

  4. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  5. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  6. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  7. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  8. Development of light water reactors and subjects for hereafter

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1995-01-01

    As for light water reactors, the structure is relatively simple, and the power plants of large capacity can be realized easily, therefore, they have been used for long period as main nuclear reactors. During that period, the accumulation of experiences on the design, manufacture, operation, maintenance and regulation of light water has become enormous, and in Japan, the social base for maintaining and developing light water reactor technologies has been prepared sufficiently. If the nuclear power generation using seawater uranium is considered, the utilization of uranium for light water reactor technologies can become the method of producing the own energy for Japan. As the factors that threaten the social base of light water reactor technologies, there are a the lowering of the desire to promote light water reactors, the effect of secular deterioration, the price rise of uranium resources, the effect of plutonium accumulation, the effect of the circumstances in developing countries and the sure recruiting of engineers. The construction and the principle of working of light water reactors and the development of light water reactors hereafter, for example, the improvement on small scale and the addition of new technology resulting in cost reduction and the lowering of the quality requirement for engineers, the improvement of core design, the countermeasures by design to serious accidents and others are described. (K.I.)

  9. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  10. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1979-10-01

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm -2 , and at 35 to 90 0 C. Current densities up to 0.3 A cm -2 have been achieved in continuous operation, at 80 to 90 0 C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H 2 O at 0.2 A cm -2 and 5.0 kwh/kg H 2 O at 0.5 A cm -2 current density, compared to 6.4 and 8.0 kwh/kg H 2 O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  11. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  12. Qualification issues for advanced light-water reactor protection systems

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying the I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light-water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light-water reactor. The template was then used to suggest a methodology for the qualification of microprocessor-based protection systems. The methodology identifies standards/regulatory guides (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems. This approach addresses in part issues raised in NRC policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards. as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  13. Modeling Water Clarity and Light Quality in Oceans

    Science.gov (United States)

    Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of ade...

  14. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  15. 40 CFR 230.23 - Current patterns and water circulation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Current patterns and water circulation. 230.23 Section 230.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... the water body; and water stratification. ...

  16. The United States advanced light water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, J.C. Jr.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear Power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind

  17. The United States Advanced Light Water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, Jr.J.C.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind. (author)

  18. Anticipated transients without scram for light water reactors

    International Nuclear Information System (INIS)

    1978-12-01

    In the first two volumes of this report, Anticipated Transients without Scram for Light Water Reactors NUREG-0460, dated April 1978, the NRC staff reviewed the information on this subject that had been developed in the past and evaluated the susceptibility of current nuclear plants to ATWS events using fault tree/event tree analysis techniques. Based on that evaluation, the staff concluded that some corrective measures were required to reduce the risk of severe consequences arising from possible ATWS events. Since the issuance of NUREG-0460, new safety and cost information has become available on ATWS. Also, new insights have been developed on the general subject of quantitative risk assessment. The purpose of this supplement to NUREG-0460 is to summarize the important additions to the information base and to propose a course of action from among a variety of alternatives for resolving the ATWS concern

  19. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Soppet, W.K.; Shack, W.J.

    1992-03-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking in high water reactors during the six months from April 1991 through September 1991. Topics that have been investigated during this period include (1) fatigue and stress corrosion cracking (SCC) of low-alloy steel used in piping and in steam generator and reactor pressure vessels; (2) role of chromate and sulfate in simulated boiling water reactor (BWR) water on SCC of sensitized Type 304 SS; and (3) radiation-induced segregation (RIS) and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence. Fatigue data were obtained on medium-S-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor (PWR) water, and in air. Crack-growth-rates (CGRs) of composite specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B were determined under small- amplitude cyclic loading in HP water with ∼ 300 ppb dissolved oxygen. CGR tests on sensitized Type 304 SS indicate that low chromate concentrations in BWR water (25--35 ppb) may actually have a beneficial effect on SCC if the sulfate concentration is below a critical level. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain,rate- tensile tests were conducts on tubular specimens in air and in simulated BWR water at 289 degrees C

  20. Disinfection of drinking water by ultraviolet light

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It is no longer mandatory that a given residue of chlorine is present in drinking water and this has led to interest in the use of ultraviolet radiation for disinfection of water in large public waterworks. After a brief discussion of the effect of ultraviolet radiation related to wavelength, the most usual type of irradiation equipment is briefly described. Practioal considerations regarding the installation, such as attenuation of the radiation due to water quality and deposits are presented. The requirements as to dose and residence time are also discussed and finally it is pointed out that hydraulic imperfections can reduce the effectiveness drastically. (JIW)Ψ

  1. Modeling Water Clarity and Light Quality in Oceans

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdelrhman

    2016-11-01

    Full Text Available Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of adequate light intensity is a major factor in the health of algae and phytoplankton. There is a strong negative coupling between light intensity and phytoplankton concentration (e.g., through self-shading by the cells, which reduces available light and in return affects the growth rate of the cells. Proper modeling of this coupling is essential to understand primary productivity in the oceans. This paper provides the methodology to model light intensity in the water column, which can be included in relevant water quality models. The methodology implements relationships from bio-optical models, which use phytoplankton chlorophyll a (chl-a concentration as a surrogate for light attenuation, including absorption and scattering by other attenuators. The presented mathematical methodology estimates the reduction in light intensity due to absorption by pure seawater, chl-a pigment, non-algae particles (NAPs and colored dissolved organic matter (CDOM, as well as backscattering by pure seawater, phytoplankton particles and NAPs. The methods presented facilitate the prediction of the effects of various environmental and management scenarios (e.g., global warming, altered precipitation patterns, greenhouse gases on the wellbeing of phytoplankton communities in the oceans as temperature-driven chl-a changes take place.

  2. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  3. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  4. Contaminants in light water reactor coolants

    International Nuclear Information System (INIS)

    Michael, I.; Bechtold, G.

    1975-01-01

    At a lower oxygen content of the pressurized water a reduced metal loss by about 10% was detected. The state of oxidation for incoloy resulting from surface examination was 2,3 +- 0,3 which corresponds to Fe 3 O 4 and a smaller fraction of iron hydroxide. (orig.) [de

  5. Light induced degradation of testosterone in waters

    Energy Technology Data Exchange (ETDEWEB)

    Vulliet, Emmanuelle, E-mail: e.vulliet@sca.cnrs.fr [Service Central d' Analyse du CNRS - USR59, Chemin du Canal, F-69360 Solaize (France); Falletta, Marine; Marote, Pedro [Laboratoire des Sciences Analytiques - UMR 5180, Universite Claude Bernard, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France); Lomberget, Thierry [Laboratoire de Chimie Therapeutique, Universite de Lyon, Universite Lyon 1, Faculte de Pharmacie-ISPB, EA 4443 Biomolecules, Cancer et Chimioresistances, INSERM U863 Hormones steroides et proteines de liaison, IFR 62, 8 avenue Rockefeller, F-69373, Lyon Cedex 08 (France); Paisse, Jean-Olivier; Grenier-Loustalot, Marie-Florence [Service Central d' Analyse du CNRS - USR59, Chemin du Canal, F-69360 Solaize (France)

    2010-08-01

    The degradation of testosterone under simulated irradiations was studied in phosphate buffers and in natural waters at various excitation wavelengths. The quantum yield of photolysis was significantly lower at 313 nm (2.4 x 10{sup -3}) than at 254 nm (0.225). The formation of several photoproducts was observed, some of them being rapidly transformed in turn while others show higher stability towards subsequent irradiations. The nature of the main products was tentatively identified, both deduced from their spectral and spectrometric data and by comparison with synthesised standard compounds. Among the obtained photoproducts, the main one is possibly a spiro-compound, hydroxylated derivative of testosterone originating from the photohydratation of the enone group. The photodegradation pathway includes also photorearrangements. One of them leads to (1,5,10)-cyclopropyl-17{beta}-hydroxyandrostane-2-one. The pH of the water does not seem to affect the rate of phototransformation and the nature of the by-products.

  6. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  7. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  8. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    Continuous monitoring of the river flow is essential for assessing water availability. River flow velocity is crucial to simulate discharge hydrographs of water in the hydrological system.This study developed a digital water current meter with infrared. The infrared current meter was tested using Ebonyi River at Obollo-Etiti and ...

  9. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  10. A new book : 'light-water reactor materials'

    International Nuclear Information System (INIS)

    Olander, Donald R.; Motta, Arthur T.

    2005-01-01

    The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the UO 2 fuel, zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed

  11. A light-water detritiation project at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Boniface, H.A.; Castillo, I.; Everatt, A.E.; Ryland, D.K.

    2010-01-01

    The NRU reactor rod bays is a large, open pool of water that receives hundreds of fuel rods annually, each carrying a small amount of residual tritiated heavy water. The tritium concentration of the rod bays water has risen over the years, to a level that is of concern to the operations staff and to the environment. The proposed long-term solution is to reduce the rod bays tritium concentration by direct detritiation of the water. The Combined Electrolytic-Catalytic Exchange (CECE) process is well suited to the light-water detritiation problem. With a tritium-protium separation factor greater than five, a CECE detritiation process can easily achieve the eight orders of magnitude separation required to split a tritiated light-water feed into an essentially tritium-free effluent stream and a tritiated heavy water product suitable for recycling through a heavy water upgrader. This paper describes a CECE light-water detritiation process specifically designed to reduce the tritium concentration in the NRU rod bays to an acceptable level. The conceptual design of a 600 Mg/a detritiation process has been developed and is now at the stage of project review and the beginning of detailed design. (author)

  12. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  13. Survey of Current Best Practices for Diving in Contaminated Water

    National Research Council Canada - National Science Library

    Steigleman, W

    2002-01-01

    .... Navy divers operating in contaminated water. This survey attempted to identify the current best practices and equipment for diving in contaminated water, including personal protective equipment as well as hazard identification, diver training...

  14. Towards intrinsically safe light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hannerz, K

    1983-07-01

    Most of the present impediments to the rational use of the nuclear option have their roots in the reactor safety issue. The approach taken to satisfy the escalating safety concerns has resulted in excessively complex and expensive plant designs but has failed to create public confidence. This paper describes a new approach based on the principle of Process Inherent Ultimate Safety (PIUS). With the PIUS principle, ultimate safety is obtained by guaranteeing core integrity under all credible conditions. This is accomplished on the basis of the laws of gravity and thermohydraulics alone, interacting with the heat extraction process in an intact or damaged primary circuit, without recourse to engineered safety systems that may fail or dependence on error-prone human intervention. Application of the PIUS principle to the pressurized water reactor involves a substantial redesign of the reactor and primary system but builds on established PWR technology where long-term operation is needed for verification.

  15. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-07-01

    Most of the present impediments to the rational use of the nuclear option have their roots in the reactor safety issue. The approach taken to satisfy the escalating safety concerns has resulted in excessively complex and expensive plant designs but has failed to create public confidence. This paper describes a new approach based on the principle of Process Inherent Ultimate Safety (PIUS). With the PIUS principle, ultimate safety is obtained by guaranteeing core integrity under all credible conditions. This is accomplished on the basis of the laws of gravity and thermohydraulics alone, interacting with the heat extraction process in an intact or damaged primary circuit, without recourse to engineered safety systems that may fail or dependence on error-prone human intervention. Application of the PIUS principle to the pressurized water reactor involves a substantial redesign of the reactor and primary system but builds on established PWR technology where long-term operation is needed for verification

  16. Corrosion problems in light water nuclear reactors

    International Nuclear Information System (INIS)

    Berry, W.E.

    1984-01-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers

  17. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Park, J.Y.; Ruther, W.E.; Kassner, T.F.; Shack, W.J.

    1990-12-01

    Topics that have been investigated during this year include (1) SCC of A533-Gr B steel used in steam generator and reactor pressure vessels, (2) fatigue of Type 316NG SS, and (3) SCC of Type 347 and CF-3 cast duplex stainless steels in simulated BWR water. Crack-growth-rate (CGR) tests were performed on a composite A533-Gr B/Inconel-182 specimen in which the stress corrosion crack in the Inconel-182 weld metal penetrated and grew into the A533-Gr B steel. CGR tests were also conducted on conventional (unplated) and nickel- or gold-plated A533-Gr B specimens to provide insight into whether the nature of the surface layer on the low-alloy steel, either oxide corrosion products or a noble metal, influences the overall SCC process. CGR data on the A533-Gr B specimens were compared with the fatigue crack reference curves in the ASME Boiler and Pressure Vessel Code, Section XI, Appendix A. Fatigue tests were conducted on Type 316NG SS in air and simulated BWR water at low strain ranges and frequencies to better establish margins in the ASME Code Section III Fatigue Design Curves. CGR tests were also conducted on specimens of Type 347 SS with different heat-treatment conditions, and a specimen of CF-3 cast stainless steel with a ferrite content of 15.6%. The results were compared with previous data on another heat of Type 347 SS, which was very resistant to SCC, and a CF-3M steel with a ferrite content of 5%. 37 refs., 15 figs., 8 tabs

  18. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  19. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  20. Current schemes for National Synchrotron Light Source UV beamlines

    International Nuclear Information System (INIS)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2 0 and 15 0 are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines

  1. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  2. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  3. Safety research for evolutionary light water reactors

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1996-01-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author)

  4. Safety research for evolutionary light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D G [Karlsruhe Univ. (T.H.) (Germany). Universitaetsbibliothek

    1996-12-01

    The development of nuclear energy has been characterized by a continuous evolution of the technological and philosophical underpinnings of reactor safety to enable operation of the plant without causing harm to either the plant operators or the public. Currently, the safety of a nuclear plant is assured through the combined use of procedures and engineered safety features together with a system of multiple protective barriers against the release of radioactivity. This approach is embodied in the concept of Design-Basis Accidents (DBA), which requires the designers to demonstrate that all credible accidents have been identified and that all safety equipment and procedures perform their functions extremely reliably. Particularly important functions are the automatic protection to shut the reactor down and to remove the decay heat while ensuring the integrity of the containment structure. Within the DBA concept, the so-called severe accidents were conveniently defined to be those accidents that lie beyond the DBA envelope; hence, they did not form part of the safety case. (author).

  5. Ultraviolet light: sterile water without chlorine smell and taste

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm 2 for all known bacteria. In practice a dose of 40 mWs/cm 2 and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly. (JIW)

  6. Ultraviolet light: sterile water without chlorine smell and taste

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-14

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm/sup 2/ for all known bacteria. In practice a dose of 40 mWs/cm/sup 2/ and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly.

  7. Light Water Reactor Sustainability Program Integrated Program Plan

    International Nuclear Information System (INIS)

    Griffith, George; Youngblood, Robert; Busby, Jeremy; Hallbert, Bruce; Barnard, Cathy; McCarthy, Kathryn

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  8. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  9. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Busby, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barnard, Cathy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  10. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  11. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  12. Current lung water measurement methods in man

    International Nuclear Information System (INIS)

    Basset, G.; Moreau, F.; Marsac, J.; Capitini, R.; Botter, F.

    1979-01-01

    Two kinds of tracer method are used to estimate the lung water pools differing by the tracer intake and the sector observed. Airborne intake gives an estimate of the tissues irrigated by the lung and bronchial circulation, whereas vascular intake only shows the sectors perfused by the lung flow. Either of these methods is suitable for a general or regional analysis. In general methods the tracer is followed at the lung exit on expired air for the first method, on peripheral arterial blood for the second. Regional methods imply partial or whole-lung external detection systems [fr

  13. Removal and recovery of tritium from light and heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for removing tritium from light water are described, comprising contacting tritiated feed water in a catalyst column in countercurrent flow with hydrogen gas originating from an electrolysis cell so as to enrich this feed water with tritium from the electrolytic hydrogen gas and passing the tritium enriched water to an electrolysis cell wherein the electrolytic hydrogen gas is generated and then fed upwards through the catalyst column or recovered as product. The tritium content of the hydrogen gas leaving the top of the enricher catalyst column is further reduced in a stripper column containing catalyst which transfers the tritium to a countercurrent flow of liquid water. Anodic oxygen and water vapour from the anode compartment may be fed to a drier and condensed electrolyte recycled with a slip stream or recovered as a further tritium product stream. A similar method involving heavy water is also described. (author)

  14. Design features of the Light Water Breeder Reactor (LWBR) which improve fuel utilization in light water reactors (LWBR development program)

    International Nuclear Information System (INIS)

    Hecker, H.C.; Freeman, L.B.

    1981-08-01

    This report surveys reactor core design features of the Light Water Breeder Reactor which make possible improved fuel utilization in light water reactor systems and breeding with the uranium-thorium fuel cycle. The impact of developing the uranium-thorium fuel cycle on utilization of nuclear fuel resources is discussed. The specific core design features related to improved fuel utilization and breeding which have been implemented in the Shippingport LWBR core are presented. These design features include a seed-blanket module with movable fuel for reactivity control, radial and axial reflcetor regions, low hafnium Zircaloy for fuel element cladding and structurals, and a closely spaced fuel rod lattice. Also included is a discussion of several design modifications which could further improve fuel utilization in future light water reactor systems. These include further development of movable fuel control, use of Zircaloy fuel rod support grids, and fuel element design modifications

  15. Charge Injection and Current Flow in Organic Light Emitting Diodes

    Science.gov (United States)

    Smith, D. L.; Davids, P. S.; Heller, C. M.; Crone, B. K.; Campbell, I. H.; Barashkov, N. N.; Ferraris, J. P.

    1997-03-01

    We present a comparison between device model calculations and current-voltage measurements for a series of organic LED structures. The Schottky energy barrier of an injecting contact is systematically varied by changing the metal used to form that contact. The current-voltage characteristics of the structures are described using a device model that considers charge injection, transport and space charge effects in the low mobility organic material. Charge injection into the organic material is controlled by the Schottky energy barrier of the metal/organic contact. For Schottky energy barriers greater than about 0.4 eV injection into the organic material is the principal limitation to current flow. In this regime the net injected charge density is relatively small, the electric field in the structure is nearly uniform, and space charge effects are not important. For smaller energy barriers relatively large charge densities are injected into the organic material and space charge effects become the dominant limit to current flow. The measured current-voltage characteristics are quantitatively described by the device model using Schottky barrier values independently determined by internal photoemission and electroabsorption measurements.

  16. Current status of water chemistry in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8{open_square} of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  17. Current status of water chemistry in Japan

    International Nuclear Information System (INIS)

    Ishigure, K.

    2002-01-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8□ of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  18. The role of melatonin in the light of current knowledge

    Directory of Open Access Journals (Sweden)

    Barbara Algiert

    2016-02-01

    Full Text Available Recent studies have shed new light on the role of melatonin. Local tissue synthesis has been investigated. A special system responsible for the synthesis and metabolism of melatonin has developed in the human skin. The primary role of melatonin is the regulation of circadian rhythms, but studies have demonstrated the diversity of its activities. Potent antioxidant action of melatonin in the skin is emphasized. The skin has developed a specific antioxidant melatoninergic system which protects against oxidative stress. Presence of melatonin metabolites in the skin confirms its strong antioxidant properties. Melatonin has the ability to restore the physiological balance between synthesis and degradation of extracellular matrix proteins by induction of heme oxygenase in murine fibroblasts irradiated with UVR. There is a hypothesis concerning the participation of melatonin in etiology of vitiligo. Disturbances of melatonin skin synthesis and dysregulation of its receptors may explain the pathogenesis of disease.

  19. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  20. Neutron radiographic findings in light water reactor fuel

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1979-06-01

    The assessment of neutron radiographs of nuclear fuel elements can be much easier, faster and simpler if reference can be made to typical defects, which can be revealed by neutron radiography. In other fields of industrial radiography collections of reference radiographs, showing typical defects in welding, or casting have been completed and published long ago. Since 1974 neutron radiography is routinely used at Risoe National Laboratory, Denmark, for the quality and performance control of nuclear fuel. About 2000 neutron radiographs were taken, mainly during the post irradiation examination of light water reactor fuel. During assessment of neutron radiographs some typical defects of the fuel were found and it was felt that a classification of such defects will help to speed up the assessment procedure. Therefore an attempt was made to establish such a classification, which is currently used at Risoe now. This classification is presented in this atlas, which contains 36 neutron radiographs reproduced on film (in original size) and on paper (twice enlarged). (author)

  1. Capital costs of light water reactors: the USA

    International Nuclear Information System (INIS)

    MacKerron, G.

    1979-10-01

    The cost of building a modern nuclear power plant is greater than that of almost any other single civilian project - costs of individual plants are reckoned in hundreds of millions of pounds in the UK, and up to a billion dollars or more in the USA. Hence, depending on the size of nuclear programmes and their funding, escalation of nuclear capital costs may have important economic and social consequences through its effects on overall resource allocation. It is therefore important to analyse the extent and, as far as possible, the sources of cost increases and escalation, in order to see if the experience yields implications for technology policy. The USA has much the greatest experience in nuclear construction: it also has by far the largest amount of published information on the subject of capital costs. As all other countries lack either sufficient experience and/or adequate published cost information, it is impossible to conduct a genuine international comparison, and this paper is confined to an examination of US experience. This paper therefore assembles and evaluates currently available data on light water reactor (PWR and BWR) capital costs in the USA. (author)

  2. Forecasting Water Waves and Currents: A Space-time Approach

    NARCIS (Netherlands)

    Ambati, V.R.

    2008-01-01

    Forecasting water waves and currents in near shore and off shore regions of the seas and oceans is essential to maintain and protect our environment and man made structures. In wave hydrodynamics, waves can be classified as shallow and deep water waves based on its water depth. The mathematical

  3. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  4. Loose parts monitoring in light water reactor cooling systems

    International Nuclear Information System (INIS)

    Santos, A.; Alma, B.J.

    1982-01-01

    The work related to loose monitoring system for light water reactor, developed at GRS - Munique, are described. The basic problems due to the exact localization and detection of the loose part as well the research activities and development necessary aiming to obtain the best techniques in this field. (E.G.) [pt

  5. The manufacture of plutonium fuels for light water reactors

    International Nuclear Information System (INIS)

    Lebastard, G.

    1985-01-01

    This paper describes the agreement concluded between COGEMA and BELGONUCLEAIRE, reflected in the creation of the COMMOX group which has been made reponsible for promoting and marketing plutonium fuel rods for light water reactors. One then analyses the main aspects of manufacturing this type of fuel and the resources deployed. Finally one indicates the sales prospects scheduled to meet requirements (MELOX plant) [fr

  6. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  7. Overview of environmental materials degradation in light-water reactors

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Wu, P.

    1986-08-01

    This report provides a brief overview of analyses and conclusions reported in published literature regarding environmentally induced degradation of materials in operating light-water reactors. It is intended to provide a synopsis of subjects of concern rather than to address a licensing basis for any newly discovered problems related to reactor materials

  8. Tritium formation and elimination in light-water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Briec, M.; Miquel, P.

    1976-01-01

    Light-water reactors have a tritium balance which should be considered from both the working constraint and environmental pollution aspects. The formation of tritium in the primary circuit and in the fuel, the elimination and enrichment processes are considered [fr

  9. Design features to facilitate IAEA safeguards at light water reactors

    International Nuclear Information System (INIS)

    Pasternak, T.; Glancy, J.; Goldman, L.; Swartz, J.

    1981-01-01

    Several studies have been performed recently to identify and analyze light water reactor (LWR) features that, if incorporated into the facility design, would facilitate the implementation of International Atomic Energy Agency (IAEA) safeguards. This paper presents results and conclusions of these studies. 2 refs

  10. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  11. Audit Risk Assessment in the Light of Current European Regulations

    OpenAIRE

    Ciprian-Costel Munteanu

    2015-01-01

    Recent European reforms on audit regulations have been motivated by efforts to increase audit quality, functioning and performance. We believe the adoption of Directive 2014/56 and Regulation 537/2014 strengthened the role of independent audit and risk committees, which will positively contribute towards audit quality. This paper aims to critically assess the status quo of audit risk assessment in current European standards and regulations, by conducting a theoretical analysis of different as...

  12. Factors in the economic viability of advanced light water reactors

    International Nuclear Information System (INIS)

    Matzie, R.A.; Bagnal, C.W.; Rohde, K.R.

    1997-01-01

    Nuclear power currently produces over 20% of the electricity generated in the United States, and a similar number for the entire world. Electricity generated from these nuclear power plants is typically some of the most economical of all sources, and is becoming even more economical with time as utilities focus on reducing production costs. Nevertheless, with the exception of the Asia Pacific region, no new nuclear orders have been placed in many years, and none are planned for the forseeable future. Two reasons for this demise for nuclear power in the western world are usually put forward: the current price of alternative means of electric power generation and the political climate, which tends to be anti-nuclear. The first of these reasons is founded in the low price of natural gas, which has been the preferred fuel for recent power generation additions. These additions have principally been used as peaking units, which are required only at the highest demand periods and not as base load units. The second reason stems from some bad experiences in the post-TMI era, when projects experienced a rapidly changing regulatory environment, long schedule stretchouts, and huge cost overruns. In spite of this relatively poor environment for new nuclear power plants, major programs to develop advanced light water reactors are continuing to keep the nuclear option alive, both in the United States and Europe. These programs are aimed at capturing the lessons learned from past experience, to ensure the success of future nuclear projects. 6 refs., 8 figs., 1 tab

  13. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  14. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  15. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  16. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo; Kwak, Joon Seop, E-mail: jskwak@sunchon.ac.kr

    2016-10-15

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective current path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.

  17. Programme of research and development on plutonium recycling in light-water reactors

    International Nuclear Information System (INIS)

    1979-01-01

    This is the third annual progress report concerning the programme on plutonium recycling in light-water reactors (indirect action) of the Commission of the European Communities. It covers the year 1978 and follows the annual reports for 1977 (EUR 6002 EN) and 1976 (EUR 5780). The preliminary results obtained under the 1975-79 programme indicate that: (a) assuming that plutonium recycling in light-water reactors is industrially developed by the end of the century, the foreseeable radiological impact on both workers and the general public can be maintained within the limits of current radiation protection standards; (b) on the whole, there is a good knowledge and mastery of the specific aspects involved in the plutonium recycling in light-water reactors and in particular they indicate that plutonium fuels have a similar behaviour to uranium fuels

  18. Light Water Reactor Sustainability Program: Integrated Program Plan

    International Nuclear Information System (INIS)

    2016-02-01

    and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  19. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  20. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-02-15

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  1. Current-voltage characteristics of dendrimer light-emitting diodes

    International Nuclear Information System (INIS)

    Stevenson, S G; Samuel, I D W; Staton, S V; Knights, K A; Burn, P L; Williams, J H T; Walker, Alison B

    2010-01-01

    We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.

  2. Current-voltage characteristics of dendrimer light-emitting diodes

    Science.gov (United States)

    Stevenson, S. G.; Samuel, I. D. W.; Staton, S. V.; Knights, K. A.; Burn, P. L.; Williams, J. H. T.; Walker, Alison B.

    2010-09-01

    We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.

  3. Current-voltage characteristics of dendrimer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, S G; Samuel, I D W [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS (United Kingdom); Staton, S V; Knights, K A; Burn, P L [Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Williams, J H T; Walker, Alison B, E-mail: a.b.walker@bath.ac.u [Department of Physics, University of Bath, Bath, BA2 7AY (United Kingdom)

    2010-09-29

    We have investigated current-voltage (I-V) characteristics of unipolar and bipolar organic diodes that use phosphorescent dendrimers as the emissive organic layer. Through simulation of the measured I-V characteristics we were able to determine the device parameters for each device structure studied, leading to a better understanding of injection and transport behaviour in these devices. It was found that the common practice of assuming injection barriers are equal to the difference between bare electrode work functions and molecular orbital levels is unsuitable for the devices considered here, particularly for gold contacts. The studies confirm that different aromatic units in the dendrons can give significant differences in the charge transporting properties of the dendrimers.

  4. Aging assessment and mitigation for major LWR [light water reactor] components

    International Nuclear Information System (INIS)

    Shah, Y.N.; Ware, A.G.; Conley, D.A.; MacDonald, P.E.; Burns, J.J. Jr.

    1989-01-01

    This paper summarizes some of the results of the Aging Assessment and Mitigation Project sponsored by the US Nuclear Regulatory Commission (USNRC), Office of Nuclear Regulatory Research. The objective of the project is to develop an understanding of the aging degradation of the major light water reactor (LWR) structures and components and to develop methods for predicting the useful life of these components so that the impact of aging on the safe operation of nuclear power plants can be evaluated and addressed. The research effort consists of integrating, evaluating, and updating the available aging-related information. This paper discusses current accomplishments and summarizes the significant degradation processes active in two major components: pressurized water reactor pressurizer surge and spray lines and nozzles, and light water reactor primary coolant pumps. This paper also evaluates the effectiveness of the current inservice inspection programs and presents conclusions and recommendations related to aging of these two major components. 37 refs., 7 figs., 3 tabs

  5. Audit Risk Assessment in the Light of Current European Regulations

    Directory of Open Access Journals (Sweden)

    Ciprian-Costel Munteanu

    2015-06-01

    Full Text Available Recent European reforms on audit regulations have been motivated by efforts to increase audit quality, functioning and performance. We believe the adoption of Directive 2014/56 and Regulation 537/2014 strengthened the role of independent audit and risk committees, which will positively contribute towards audit quality. This paper aims to critically assess the status quo of audit risk assessment in current European standards and regulations, by conducting a theoretical analysis of different aspects of audit risk. Our main objective is to stress the importance of detecting inherent and control risk, which lead to material misstatement at the assertion level. They need to be assessed so as to determine the nature, timing and extent of further audit procedures necessary to obtain sufficient appropriate audit evidence. These pieces of evidence enable the auditor to express an opinion on the financial statements at an acceptably low level of audit risk. Therefore, we point to the fact that researchers as well as practitioners and policymakers have to be careful when using audit tools and assessing risk levels, as their conclusions continuously shape the regulations.

  6. Vitamin D in the light of current knowledge

    Directory of Open Access Journals (Sweden)

    Radlović Nedeljko

    2012-01-01

    Full Text Available Vitamin D, i.e. 1,25(OH 2D, is an essential factor, not only of homeostasis of calcium and phosphorus, but also of cell proliferation, differentiation and apoptosis, immune and hormonal regulation, as well as other body processes. Thus, its optimal presence in the body is of exceptional significance for health, both of children, as well as adults and elderly persons. Today, it is known that the lack of vitamin D, besides having negative effects on the skeleton and teeth, also contributes to the development of various malignancies, primarily of the large bowel, prostate and breasts, as well as of autoimmune and allergic diseases, diabetes mellitus type II, arterial hypertension and others. Considered from the biological aspect, physiological requirements in vitamin D are achieved by cutaneous synthesis from 7-dehydrocholesterol during sun exposure, while, except rarely, it is very scarce in food. Having in mind extensive evidence that sun exposure presents a high risk for the development of skin malignancies, primarily melanoma, it is clear that humans are deprived of the natural and basic source of vitamin D. In accordance, as well as based on numerous epidemiological studies showing the increase of diseases, in the basis of which vitamin D deficiency plays the important role, next led to the recommended dietary allowance of vitamin D, regardless of age. According to current attitudes, it is recommended that the daily dietary allowances of vitamin D. i.e. the quantity of oral intake that would safely cover the optimal body requirements should be 400 IU for ages 0-18 years, 600 IU for ages 19-70 years and 800 IU for persons aged over 70 years.

  7. Fuel cycle options for light water reactors in Germany

    International Nuclear Information System (INIS)

    Broecking, D.; Mester, W.

    1999-01-01

    In Germany 19 nuclear power plants with an electrical output of 22 GWe are in operation. Annually about 450 t of spent fuel are unloaded from the reactors. Currently most of the spent fuel elements are shipped to France and the United Kingdom for reprocessing according to contracts which have been signed since the late 70es. By the amendment of the Atomic Energy Act in 1994 the previous priority for reprocessing of spent nuclear fuel was substituted by a legal equivalency of the reprocessing and direct disposal option. As a consequence some utilities take into consideration the direct disposal of their spent fuel for economical reasons. The separated plutonium will be recycled as MOX fuel in light water reactors. About 30 tons of fissile plutonium will be available to German utilities for recycling by the year 2000. Twelve German reactors are already licensed for the use of MOX fuel, five others have applied for MOX use. Eight reactors are currently using MOX fuel or used it in the past. The spent fuel elements which shall be disposed of without reprocessing will be stored in two interim dry storage facilities at Gorleben and Ahaus. The storage capacities are 3800 and 4200 tHM, respectively. The Gorleben salt dome is currently investigated to prove its suitability as a repository for high level radioactive waste, either in a vitrified form or as conditioned spent fuel. The future development of the nuclear fuel cycle and radioactive waste management depends on the future role of nuclear energy in Germany. According to estimations of the German utilities no additional nuclear power plants are needed in the near future. Around the middle of the next decade it will have to be decided whether existing plants should be substituted by new ones. For the foreseeable time German utilities are interested in a highly flexible approach to the nuclear fuel cycle and waste management keeping open both spent fuel management options: the closed fuel cycle and direct disposal of

  8. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  9. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  10. Analysis of an accelerator-driven subcritical light water reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Wakker, P.H.; Wetering, T.F.H. van de; Verkooijen, A.H.M.

    1997-01-01

    An analysis of the basic characteristics of an accelerator-driven light water reactor has been made. The waste in the nuclear fuel cycle is considerably less than in the light water reactor open fuel cycle. This is mainly caused by the use of equilibrium nuclear fuel in the reactor. The accelerator enables the use of a fuel composition with infinite multiplication factor k ∞ < 1. The main problem of the use of this type of fuel is the strongly peaked flux distribution in the reactor core. A simple analytical model shows that a large core is needed with a high peak power factor in order to generate net electric energy. The fuel in the outer regions of the reactor core is used very poorly. 7 refs., 4 figs., 1 tab

  11. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  12. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  13. Coatings used in light-water nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The guide is intended to provide a common basis in the selection of test methods which may be required to evaluate and qualify protective coatings (paints) to be used in a light-water nuclear power plant. Standard test methods for the determination of fire resistance, chemical resistance, physical properties, effects of radiation, decontaminability, thermal conductivity, repairability, and for evaluation under accident conditions are included

  14. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  15. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  16. Nuclear Data Libraries for Hydrogen in Light Water Ice

    International Nuclear Information System (INIS)

    Torres, L; Gillette, V.H

    2000-01-01

    Nuclear data libraries were produced for hydrogen (H) in light water ice at different temperatures, 20, 30, 50, 77, 112, 180, 230 K.These libraries were produced using the NJOY nuclear data processing system.With this code we produce pointwise cross sections and related quantities, in the ENDF format, and in the ACE format for MCNP.Experimental neutron spectra at such temperatures were compared with MCNP4B simulations, based on the locally produced libraries, leading to satisfactory results

  17. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    Overview of water resource assessment in South Africa: Current state and future challenges. ... These studies illustrate how the exponential growth in computer power and the concomitant development of highly sophisticated tools have changed the manner in which our water resources have been appraised, allowing us to ...

  18. Kornwell-Norton moments and electromagnetic current commutator expansion on light cone

    International Nuclear Information System (INIS)

    Vitsorek, Eh.; Motts, G.

    1975-01-01

    Relations have been obtained between the asymptotic behaviour of moments and the commutator of electromagnetic currents on the light cone. The existence of the operator decomposition on the light cone and the applicability of Fourier transformation to it has not been assumed

  19. Seawater desalination using small and medium light water reactors

    International Nuclear Information System (INIS)

    Shimamura, Kazuo

    2000-01-01

    Water is an essential substance for sustaining human life. As Japan is an island country, surrounded by the sea and having abundant rainfall, there is no scarcity of water in daily life except during abnormally dry summers or after disasters such as earthquakes. Consequently, there is hardly any demand for seawater desalination plants except on remote islands, Okinawa and a part of Kyushu. However, the IAEA has forecast a scarcity of drinking water in developing countries at the beginning of the 21st century. Further, much more irrigation water will be required every year to prevent cultivated areas from being lost by desertification. If developing countries were to produce such water by seawater desalination using current fossil fuel energy technology, it would cause increased air pollution and global warming. This paper explains the concept of seawater desalination plants using small and medium water reactors (hereinafter called 'nuclear desalination'), as well as important matters regarding the export nuclear desalination plants to developing countries. (author)

  20. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  1. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  2. The delta18O composition of Antarctic coastal current waters

    International Nuclear Information System (INIS)

    Frew, R.; Heywood, K.; Dennis, P.

    1997-01-01

    The varying proportions of 18 O to 16 O in sea water provide an oceanographic trace like salinity, but with an extra degree of freedom: salt is a tracer for the oceanic fluid, whereas the isotopic composition is a tracer specifically for the water component of that fluid. Hydrogen and oxygen isotopes are the variables most intimately related to the water component in the sea, therefore thay furnish a direct link to the water in the atmosphere and on continents and to the precipitation cycle which caused the salinity changes. The ratio of 18 O to 16 O (delta 18 O) ot waters is a powerful tracer in polar regions where sea and glacial ice processes decouple delta 18 O from salinity. Here we present observations from a significant but relatively unexplored component of the Southern Ocean current system, the Antarctic Coastal Current, and its associated Antarctic Slope Front. (author)

  3. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  4. Dual-purpose light water reactor supplying heat for desalination

    International Nuclear Information System (INIS)

    Waplington, G.; Fichtner, H.

    1978-01-01

    The technical as well as the economic aspects of using a large commercial light water reactor for the production of both electricity and potable water have been examined. For the basis of the study, the multistage flash distillation process was selected, in conjunction with a reactor rated at not less than 2100 MW (thermal). Combined use of a condensing and a back-pressure turbine (the latter matched to distillation plant steam requirements) represents a convenient method for supplying process heat. Overall costs can be fairly allocated to the two products using the ''power credit'' method. A sample economic evaluation indicates highly favorable water costs as compared with more conventional distillation schemes based on fossil fuel

  5. Analysis of thermal fatigue events in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Thermal fatigue events, which may cause shutdown of nuclear power stations by wall-through-crack of pipes of RCRB (Reactor Coolant Pressure Boundary), are reported by licensees in foreign countries as well as in Japan. In this paper, thermal fatigue events reported in anomalies reports of light water reactors inside and outside of Japan are investigated. As a result, it is clarified that the thermal fatigue events can be classified in seven patterns by their characteristics, and the trend of the occurrence of the events in PWRs (Pressurized Water Reactors) has stronger co-relation to operation hours than that in BWRs (Boiling Water Reactors). Also, it is concluded that precise identification of locations where thermal fatigue occurs and its monitoring are important to prevent the thermal fatigue events by aging or miss modification. (author)

  6. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  7. Light-cone gauge approach to arbitrary spin fields, currents and shadows

    International Nuclear Information System (INIS)

    Metsaev, R R

    2014-01-01

    Totally symmetric arbitrary spin fields in AdS space, conformal fields, conformal currents, and shadow fields in flat space are studied. Light-cone gauge formulations for such fields, currents and shadows are obtained. Use of the Poincaré parametrization of AdS space and ladder operators allows us to treat fields in flat and AdS spaces on an equal footing. Light-cone gauge realization of relativistic symmetries for fields, currents and shadows is also obtained. The light-cone gauge formulation for fields is obtained by using the gauge invariant Lagrangian which is presented in terms of modified de Donder divergence, while the light-cone gauge formulation for currents and shadows is obtained by using the gauge invariant approach to currents and shadows. This allows us to demonstrate explicitly how the ladder operators entering the gauge invariant formulation of fields, currents and shadows manifest themselves in the light-cone gauge formulation for fields, currents and shadows. (paper)

  8. Red Sea Intermediate Water at the Agulhas Current termination

    Science.gov (United States)

    Roman, R. E.; Lutjeharms, J. R. E.

    2007-08-01

    The inter-ocean exchange of water masses at the Agulhas Current termination comes about through the shedding of rings, and this process plays an important role in the global thermohaline circulation. Using several hydrographic sections collected during the ARC (Agulhas Retroflection Cruise), MARE (Mixing of Agulhas Rings Experiment) and WOCE (World Ocean Circulation Experiment), this investigation aims to establish the degree to which Red Sea Intermediate Water (RSIW) is involved in this exchange and at what level of purity. To this end a wide range of hydrographic parameters were used. Upstream from the Agulhas Current retroflection water with clear RSIW origin is shown to move downstream on both the landward and seaward sides of the Agulhas Current with the highest water sample purity or water-mass content exceeding 15%. The least mixed water was found close to the continental shelf. At the retroflection the RSIW purity shows considerable variability that ranges between 5% and 20%. This suggests that RSIW moves down the current in patches of considerably varying degrees of previous mixing. This pattern was also observed in a ring sampled during the ARC experiment. The MARE sections in turn indicate that at times RSIW may be entirely absent in the Agulhas Current. RSIW is therefore shown to travel down the current as discontinuous filaments, and this intermittency is reflected in its presence in Agulhas Rings. From the sections investigated it is therefore clear that any calculation of RSIW fluxes involved in inter-ocean exchange can only be done on the basis of event scales. RSIW not trapped in Agulhas Rings flows east with the Agulhas Return Current.

  9. Light penetration in the coastal waters off Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Varadachari, V.V.R.

    February to April, and by May, just before the onset of the SW monsoon rains, the waters are once again highly turbid, this time apparently due to churning action of wind-waves and strong currents. It has been found that the average irradiance attenuation...

  10. Multi-Application Small Light Water Reactor Final Report

    International Nuclear Information System (INIS)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-01-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO 2 , 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration

  11. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    sanitary rules and regulations by the most of indicators of general health and specific indices. 19.0% of total water supply systems fail to meet the sanitary norms and regulations, in particular: 14.2% for the lack of sanitary protection zones; 1.9% because of unavailability of the necessary integrated treatment facilities, and 7.6% by the reason of absence of disinfecting plants. Possible ways of avoiding the depletion of water bodies are preventive water protection measures aimed at preventing or limiting pollution, water contamination and depletion; besides, it is necessary to educate people explaning them the current state and possible consequences of thoughtless water consumption.

  12. Graphene as current spreading layer on AlGaInP light emitting diodes

    Science.gov (United States)

    Guo, Xia; Feng, Yajie; Liu, Qiaoli; Hu, Anqi; He, Xiaoying; Hu, Zonghai

    2018-05-01

    Due to high transmittance and high mobility, graphene is one of the promising candidates for a current spreading layer, which is crucial to light emitting diode (LED) performance. In this paper, improved AlGaInP LED performance was reported after graphene was applied on the GaP surface. Due to its lowered work function difference than with the GaN material, the electrical properties remain the same without additional voltage bias. The light output power is enhanced by about 40% under the current injection of 5 mA at room temperature, which was confirmed by the light emission profile analysis in this study. Such results indicate that raphene is a promising candidate as a current spreading layer under low current injection.

  13. Hydrogen considerations in light-water power reactons

    International Nuclear Information System (INIS)

    Keilholtz, G.W.

    1976-02-01

    A critical review of the literature now available on hydrogen considerations in light-water power reactors (LWRs) and a bibliography of that literature are presented. The subject matter includes mechanisms for the generation of hydrogen-oxygen mixtures, a description of the fundamental properties of such mixtures, and their spontaneous ignition in both static and dynamic systems. The limits for hydrogen flammability and flame propagation are examined in terms of the effects of pressure, temperature, and additives; the emphasis is on the effects of steam and water vapor. The containment systems for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are compared, and methods to control hydrogen and oxygen under the conditions of both normal operation and postulated accidents are reviewed. It is concluded that hydrogen can be controlled so that serious complications from the production of hydrogen will not occur. The bibliography contains abstracts from the computerized files of the Nuclear Safety Information Center. Key-word, author, and permuted-title indexes are provided. The bibliography includes responses to questions asked by the U. S. Nuclear Regulatory Commission (NRC) which relate to hydrogen, as well as information on normal operations and postulated accidents including generation of hydrogen from core sprays. Other topics included in the ten sections of the bibliography are metal-water reactions, containment atmosphere, radiolytic gas, and recombiners

  14. Navigation by light polarization in clear and turbid waters

    Science.gov (United States)

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  15. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  16. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  17. Major outage trends in light water reactors. Interim report

    International Nuclear Information System (INIS)

    Burns, E.T.

    1978-04-01

    The report is a summary of the major outages which occurred in light water reactor plants during the period January 1971 through June 1977. Only those outages greater than 100 hours duration (exclusive of refueling outages) are included in the report. The trends in outages related to various reactor systems and components are presented as a function of plant age, and alternatively, calendar year. The principal contributors to major outages are ranked by their effect on the overall outage time for PWRs and BWRs. In addition, the outage history of each operating nuclear plant greater than 150 MWe is presented, along with a brief summary of those outages greater than two months duration

  18. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  19. Enhancing proliferation resistance in advanced light water reactor fuel cycles

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Pilat, E.E.; Driscoll, M.J.; Xu, Z.; Wang, D.; Zhao, X.

    2001-01-01

    Alternative once-through, light water reactor fuel designs are evaluated for capability to reduce the amount and quality of plutonium produced. Doubling the discharge burnup is quite effective, producing modest reductions in total plutonium and significant increases in 238 Pu whose heat generation and spontaneous neutrons complicate weapon usability. Reductions in the hydrogen to heavy metal ratio are counterproductive. Increases are helpful, but only small changes can be accommodated. Use of ThO 2 in a homogeneous mixture with UO 2 can reduce plutonium production to about 50% of that in a typical present day PWR, and in heterogeneous seed-blanket designs can reduce it to 30 to 45%. (author)

  20. The economics of the fuel cycle (light water reactors)

    International Nuclear Information System (INIS)

    Lepine, J.

    1979-01-01

    The economical characteristics of the fuel cycle (of light water reactors) as well as the definition and calculation method for the average updated cost of the kWh are recalled. The evolution followed by the unit prices of the different operations of the cycle, their total cost and the part taken by this cost in the overall cost of nuclear kWh are described. The effects on the cost of fuel of certain hypotheses, operating requirements and additional cost factors are considered [fr

  1. Light water reactors fuel assembly mechanical design and evaluation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard establishes a procedure for performing an evaluation of the mechanical design of fuel assemblies for light water-cooled commercial power reactors. It does not address the various aspects of neutronic or thermalhydraulic performance except where these factors impose loads or constraints on the mechanical design of the fuel assemblies. This standard also includes a set of specific requirements for design, various potential performance problems and criteria aimed specifically at averting them. This standard replaces ANSI/ANS-57.5-1978

  2. Environment sensitive cracking in light water reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Haenninen, H.; Aho-Mantila, I.

    1985-01-01

    The purpose of the paper is to review the available methods and the most promising future possibilities of preventive maintenance to counteract the various forms of environment sensitive cracking of pressure boundary materials in light water reactors. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strenght Ni-base alloys, as well as on corrosion fatigue of low alloy and stainless steels. Finally, some general ideas how to predict, reduce or eliminate environment sensitive cracking in service are presented

  3. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  4. Properties of light water reactor spent fuel cladding. Interim report

    International Nuclear Information System (INIS)

    Farwick, D.G.; Moen, R.A.

    1979-08-01

    The Commercial Waste and Spent Fuel Packaging Program will provide containment packages for the safe storage or disposal of spent Light Water Reactor (LWR) fuel. Maintaining containment of radionuclides during transportation, handling, processing and storage is essential, so the best understanding of the properties of the materials to be stored is necessary. This report provides data collection, assessment and recommendations for spent LWR fuel cladding materials properties. Major emphasis is placed on mechanical properties of the zircaloys and austenitic stainless steels. Limited information on elastic constants, physical properties, and anticipated corrosion behavior is also provided. Work is in progress to revise these evaluations as the program proceeds

  5. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  6. Examination of the current practice of lighting in Virginia : nighttime work zones and improving safety through the development of nighttime lighting specifications : final report.

    Science.gov (United States)

    2017-09-01

    This project evaluated current nighttime work zone lighting practices for limited-access highways and primary routes in Virginia through (1) an on-site evaluation of lighting levels in work zones; (2) an illuminance characterization of various commer...

  7. Examination of the current practice of lighting in Virginia : nighttime work zones and improving safety through the development of nighttime lighting specifications : summary report.

    Science.gov (United States)

    2017-09-01

    This project evaluated current nighttime work zone lighting practices for limited-access highways and primary routes in Virginia through (1) an on-site evaluation of lighting levels in work zones; (2) an illuminance characterization of various commer...

  8. Water management: Current and future challenges and research directions

    Science.gov (United States)

    Cosgrove, William J.; Loucks, Daniel P.

    2015-06-01

    Water distinguishes our planet compared to all the others we know about. While the global supply of available freshwater is more than adequate to meet all current and foreseeable water demands, its spatial and temporal distributions are not. There are many regions where our freshwater resources are inadequate to meet domestic, economic development and environmental needs. In such regions, the lack of adequate clean water to meet human drinking water and sanitation needs is indeed a constraint on human health and productivity and hence on economic development as well as on the maintenance of a clean environment and healthy ecosystems. All of us involved in research must find ways to remove these constraints. We face multiple challenges in doing that, especially given a changing and uncertain future climate, and a rapidly growing population that is driving increased social and economic development, globalization, and urbanization. How best to meet these challenges requires research in all aspects of water management. Since 1965, the journal Water Resources Research has played an important role in reporting and disseminating current research related to managing the quantity and quality and cost of this resource. This paper identifies the issues facing water managers today and future research needed to better inform those who strive to create a more sustainable and desirable future.

  9. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  10. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder-form photocatalysts directly produces a mixture of H 2 and O2 (chemical energy) in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. Development of highly efficient photocatalysts is desired. This review addresses why visible light responsive photocatalysts are essential to be developed. The state of the art for the photocatalysts for overall water splitting is briefly described. Moreover, various fundamental aspects for developing efficient photocatalysts, such as particle size of photocatalysts, cocatalysts, and reaction kinetics are discussed. Copyright © 2011 De Gruyter.

  11. Tritium formation and elimination in light-water electronuclear plants

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1977-01-01

    In light-water reactors, the tritium balance should be considered from both the working constraint and environmental pollution aspects. In light-water electronuclear stations with pressurized reactors using boric acid in solution for reactivity control, the amounts of tritium formed in the primary circuit are worthy of note. The estimations concerning the tritium production in a hypothetical 1000 MWe reactor are discussed. In the tritium build-up, the part which takes the tritium formed by fission in the fuel, owing to diffusion through cladding, is still difficult to estimate. The tritium balance in different working nuclear power stations are consequently of interest. But the tritium produced by ternary fission in the fuel is always much more abundant, and remains almost entirely confined in the uranium oxide if the fuel is clad with zircaloy. The annual quantity stored in the fuel elements is more than 20 times larger than that of the built up free tritium in the primary circuit water of a reactor. It reaches about 12,400 Ci in the hypothetical reactor. In the presently operated reprocessing plants, tritium is all going over in the effluents, and is almost entirely released in the environment. Taking into account the increasing quantities of high irradiated fuel to be reprocessed, it seems necessary to develop separation processes. Development work and tests have been achieved jointly by CEA and SAINT-GOBAIN TECHNIQUES NOUVELLES in order to: contain the tritium in the high activity part of the plant; and keep small the tritiated effluent volume, about 300 liters per ton of reprocessed uranium. It is then possible to envisage a storage for decay of isotopic separation processes. Such separation processes have been estimated by CEA assuming a daily output of 1500 liters of water containing 2,3 Ci.1 -1 of tritium, the desired decontamination factor being 100 [fr

  12. Fatigue and environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

    1991-12-01

    Fatigue and environmentally assisted cracking of piping, pressure vessels, and core components in light water reactors (LWRs) are important concerns as extended reactor lifetimes are envisaged. The degradation processes include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or SCC cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Similar cracking has also occurred in upper shell-to-transition cone girth welds in pressurized water reactor (PWR) steam generator vessels. Another concern is failure of reactor-core internal components after accumulation of relatively high fluence, which has occurred in both BWRs and PWRs. Research during the past year focused on (1) fatigue and SCC of ferritic steels used in piping and in steam generator and reactor pressure vessels, (2) role of chromate and sulfate in simulated BWR water in SCC of sensitized Type 304 SS, and (3) irradiation-assisted SCC in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs. Failure after accumulation of relatively high fluence has been attributed to radiation-induced segregation (RIS) of elements such as Si, P, Ni, and Cr. This document provides a summary of research progress in these areas

  13. Survey of potential light water reactor fuel rod failure mechanisms and damage limits

    International Nuclear Information System (INIS)

    Courtright, E.L.

    1979-07-01

    The findings and conclusions are presented of a survey to evaluate current information applicable to the development of fuel rod damage and failure limits for light water reactor fuel elements. The survey includes a review of past fuel failures, and identifies potential damage and failure mechanisms for both steady state operating conditions and postulated accident events. Possible relationships between the various damage and failure mechanisms are also proposed. The report identifies limiting criteria where possible, but concludes that sufficient data are not currently available in many important areas

  14. Long term review of research on light water reactor types

    International Nuclear Information System (INIS)

    Sumiya, Yutaka

    1982-01-01

    In Japan, 24 nuclear power plants of 17.18 million kWe capacity are in operation, and their rate of operation has shown the good result of more than 60% since 1980. One of the research on the development of light water reactors is the electric power common research, which was started in 1976, and 272 researches were carried out till 1982. It contributed to the counter-measures to stress corrosion cracking, thermal fatigue and the thinning of steam generator tubes, to the reduction of crud generation and the remote control and automation of inspection and maintenance, and to the verification of safety. The important items for the future are the cost down of nuclear power plant construction, the development of robots for nuclear power plants, the improvement of the ability to follow load variation, and the development of light water reactors of new types. It is necessary to diversify the types of reactors to avoid the effect of a serious trouble which may occur in one type of reactors. Tokyo Electric Power Co., Inc., thinks that the Japanese type PWRs having the technical features of KWU type PWRs are desirable for the future development. The compatibility with the condition of installation permission in Japan, the required design change and the economy of the standard design PWRs of KWU (1.3 million kW) have been studied since October, 1981, by KWU and three Japanese manufacturers. (Kako, I.)

  15. Mechanical design of a light water breeder reactor

    International Nuclear Information System (INIS)

    Fauth, W.L. Jr.; Jones, D.S.; Kolsun, G.J.; Erbes, J.G.; Brennan, J.J.; Weissburg, J.A.; Sharbaugh, J.E.

    1976-01-01

    In a light water reactor system using the thorium-232--uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements. 4 claims, 24 drawing figures

  16. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons Ultraviolet light and Ultraviolet compounded with chlorine (Ultraviolet/chlorine) has been brought to attention ed in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studies with 6000,16000 and 30000 μW.s/cm 2 Ultraviolet dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (Ultraviolet/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum Ultraviolet dose was 16000 μW.s/cm 2 attention to 50 percent Ultraviolet absorption ca sued to TSS,TDS and turbidity. In the Ultraviolet/chlorine system suitable rate was 16000μW.s/cm 2 Ultraviolet dose/0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600 CFU/100 ml for Pseudomonas aeroginosa. Most probable number (MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E. Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with Ultraviolet in microbial density about 840 CFU/100 ml for Total coliform and 12 CFU/100 ml for pseudomonas aeroginosa. Attention to lower

  17. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons UV light and UV compounded with chlorine (UV/chlorine) has been brought to attention in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studied with 6000,16000 and 30000 μW.s/cm 2 UV dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (UV/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum UV dose was 16000 μW.s/cm 2 attention to 50 percent UV absorption caused to TSS,TDS and turbidity. In the UV/chlorine system suitable rate was 16000μW.s/cm 2 UV dose /0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600CFU/100 ml for Pseudomonas aeroginosa. Most probable number(MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E.Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with UV in microbial density about 840 CFU/100 ml for Total coliform and 12CFU/100 ml for Pseudomonas aeroginosa. Attention to lower turbidity, TSS and TDS in tap water, higher flow rate about 560 cm 3 /s or 2 m 3 /h acessesed

  18. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    Overview of water resource assessment in South Africa: Current state and future challenges. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  19. Data system for multiplexed water-current meters

    Science.gov (United States)

    Ramsey, C. R.

    1977-01-01

    Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.

  20. Current status of radiation treatment of water and wastewater

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1997-01-01

    This is a brief review of the current status of radiation treatment of surface water, groundwater, wastewaters, and sewage sludges. Sources of ionizing radiation, and combination radiation methods for purification are described in some detail. Special attention is paid to pilot and industrial facilities. (author)

  1. High resolution conductometry for isotopic assay of deuterium in mixtures of heavy water and light water

    International Nuclear Information System (INIS)

    Ananthanarayanan, R.; Sahoo, P.; Murali, N.

    2014-01-01

    A PC based high resolution conductivity monitoring technique has been deployed for determination of isotopic purity of heavy water in samples containing heavy water and light water mixtures using pulsating sensor based conductivity monitoring instrument. The technique involves accurate determination of conductivities of a series of specially treated heavy water and light water mixtures of various compositions at a constant solution temperature. The shift in conductivity (Δκ), which is the difference between conductivities of composite mixture after and before the formation of a typical complex compound (boric acid–mannitol complex in this case), shows a smooth and reproducible decreasing trend with increase in percentage composition of heavy water. This relation, which is obtained by appropriate calibration, is used in the software program for direct display of isotopic purity of heavy water. The technique is examined for determination of percentage composition of heavy water in the entire range of concentration (0-100 %) with reasonable precision (relative standard deviation, RSD ≤1.5 %). About 1 mL of sample is required for each analysis and analysis is completed within a couple of minutes after pretreatment of sample. The accuracy in measurement is ≤1.75 %. (author)

  2. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  3. Nondestructive examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties

  4. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  5. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  6. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    International Nuclear Information System (INIS)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749

  7. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  8. Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes.

    Science.gov (United States)

    Cao, Bin; Li, Shuiming; Hu, Run; Zhou, Shengjun; Sun, Yi; Gan, Zhiying; Liu, Sheng

    2013-10-21

    Current crowding effects (CCEs) on light extraction efficiency (LEE) of conventional GaN-based light-emitting diodes (LEDs) are analyzed through Monte Carlo ray-tracing simulation. The non-uniform radiative power distribution of the active layer of the Monte Carlo model is obtained based on the current spreading theory and rate equation. The simulation results illustrate that CCE around n-pad (n-CCE) has little effect on LEE, while CCE around p-pad (p-CCE) results in a notable LEE droop due to the significant absorption of photons emitted under p-pad. LEE droop is alleviated by a SiO₂ current blocking layer (CBL) and reflective p-pad. Compared to the conventional LEDs without CBL, the simulated LEE of LEDs with CBL at 20 A/cm² and 70 A/cm² is enhanced by 7.7% and 19.0%, respectively. It is further enhanced by 7.6% and 11.4% after employing a reflective p-pad due to decreased absorption. These enhancements are in accordance with the experimental results. Output power of LEDs with CBL is enhanced by 8.7% and 18.2% at 20 A/cm² and 70 A/cm², respectively. And the reflective p-pad results in a further enhancement of 8.9% and 12.7%.

  9. Light requirements of water lobelia (Lobelia dortmanna L.

    Directory of Open Access Journals (Sweden)

    Borowiak Dariusz

    2017-12-01

    Full Text Available Maximum depth of colonization (zC and total area covered by a population of Lobelia dortmanna, as well as underwater light regime were studied in 25 soft water lobelia lakes in north-western Poland. Variations in underwater light conditions among the lakes were described by Secchi disc depths (zSD, and by attenuation coefficients of irradiance within photosynthetically active radiation range (Kd,PAR, and euphotic zone depths (zEU derived from photometric measurements conducted twice a year (in midspring and midsummer during the period 2014–2015. Maximum depth of colonization of water lobelia ranged from 0.1 to 2.2 m (median zC = 0.8 m; mean zC = 1.0 m. Nine lakes showed the relative coverage of the littoral zone (RCLZ by L. dortmanna to be greater than the mean value, which was 4.8%. Studies showed that light requirements of water lobelia increase when the maximum depth of colonization also increases. This pattern could be partially related to the greater energy needs of deeper growing individuals due to enlarged seed production and their incubation, and for the creation of much heavier inflorescences. Assessment of the light requirements of L. dortmanna along the depth gradient indicates that relative irradiance (percentage of subsurface irradiance of PAR should be at the level of: (i 47–50% (annual total of quantum irradiance 3083–3280 mol m−2 yr−2 for plants growing within a depth range of 2.0–2.5 m; (ii 44–47% (2886–3083 mol m−2yr−1 for plants growing within a depth range of 1.5–2.0 m; (iii 41–44% (2690–2886 mol m−2yr−2 for plants growing within a depth range of 1.0–1.5 m; and (iv 34–41% (2230–2690 mol m−1 yr−1 for those growing in the littoral zone at a depth of between 0.5 and 1.0 m. In average conditions in the Pomeranian lakes, the maximum depth of colonization by L. dortmanna accounts for approximately a third of the Secchi disc depth and a fifth of the depth of the euphotic zone with irradiance

  10. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  11. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  12. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  14. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  15. Isovector meson-exchange currents in the light-front dynamics

    International Nuclear Information System (INIS)

    Desplanques, B.; Karmanov, V.A.; Mathiot, J.F.

    1994-09-01

    In the light-front dynamics, there is no pair term that plays the role of the dominant isovector pion exchange current. This current gives rise to the large and experimentally observed contribution to the deuteron electrodisintegration cross-section near threshold for pseudo-scalar πNN coupling. It is analytically shown that in leading 1/m order the amplitude in the light-front dynamics coincides, however, with the one given by the pair term. At high Q 2 , it consists of two equal parts. One comes from extra components of the deuteron and final state relativistic wave functions. The other results from the contact NNπγ interaction which appears in the light-front dynamics. This provides a transparent link between relativistic and non-relativistic approaches. (author). 16 refs., 4 figs

  16. Nanostructured current-confined single quantum dot light-emitting diode at 1300 nm

    NARCIS (Netherlands)

    Monat, C.; Alloing, B.; Zinoni, C.; Li, L.; Fiore, A.

    2006-01-01

    A novel light-emitting-diode structure is demonstrated, which relies on nanoscale current injection through an oxide aperture to achieve selective excitation of single InAs/GaAs quantum dots. Low-temp. electroluminescence spectra evidence discrete narrow lines around 1300 nm (line width ~ 75 micro

  17. Improvement of light-current characteristic linearity in a quantum well laser with asymmetric barriers

    DEFF Research Database (Denmark)

    Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.

    2014-01-01

    The effect of asymmetric barriers on the light-current characteristic (LCC) of a quantum well laser was studied theoretically and experimentally. It is shown that the utilization of asymmetric barriers in a waveguide prevents the nonlinearity of LCC and, consequently, allows rising of the maximum...

  18. Current Spreading Layer with High Transparency and Conductivity for near-ultraviolet light emitting diodes

    DEFF Research Database (Denmark)

    Lin, Li; Jensen, Flemming; Herstrøm, Berit

    Transparent conductive aluminum-doped zinc oxide (AZO) layer was deposited on GaN-based near-ultraviolet (NUV) light emitting epitaxial wafers as current spreading layer by a sputtering process. Efforts were made to improve the electrical properties of AZO in order to produce ohmic contact....

  19. Force and light tuning vertical tunneling current in the atomic layered MoS2.

    Science.gov (United States)

    Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie

    2018-07-06

    In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.

  20. Matching of heavy-light flavour currents between HQET at order 1/m and QCD

    DEFF Research Database (Denmark)

    Della Morte, Michele; Dooling, Samantha; Heitger, Jochen

    2014-01-01

    We present a strategy how to match the full set of components of the heavy-light axial and vector currents in Heavy Quark Effective Theory (HQET), up to and including 1/m-corrections, to QCD. While the ultimate goal is to apply these matching conditions non-perturbatively, in this study we first...

  1. Safety considerations concerning light water reactors in Sweden

    International Nuclear Information System (INIS)

    Nilsson, T.

    1977-01-01

    In 1975 the Swedish Nuclear Power Inspectorate was commissioned by the Government to perform a Reactor Safety Study concerning commercial light water reactors. The study will contain an account of: - rules and regulations for reactor designs; - operation experience of the Swedish nuclear power plants with international comparisons; - the development of reactor designs during the last 10 years; - demands and conditions for inspection and inspection methods; - nuclear power plant operation organization; - training of operators; and - the results of research into nuclear safety. The study is scheduled for completion by July 1st, 1977, however, this paper gives a summary of the results of the Reactor Safety Study already available. The paper contains detailed statistics concerning safety related occurrences and reactor scrams in Sweden from July 1st, 1974 until the beginning of 1977

  2. Historical perspective of thermal reactor safety in light water reactors

    International Nuclear Information System (INIS)

    Levy, S.

    1986-01-01

    A brief history of thermal reactor safety in U.S. light water reactors is provided in this paper. Important shortcomings in safety philosophy evolution versus time are identified and potential corrective actions are suggested. It should be recognized, that this analysis represents only one person's opinion and that most historical accountings reflect the author's biases and specific areas of knowledge. In that sense, many of the examples used in this paper are related to heat transfer and fluid flow safety issues, which explains why it has been included in a Thermal Hydraulics session. One additional note of caution: the value of hindsight and the selective nature of human memory when looking at the past cannot be overemphasized in any historical perspective

  3. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  4. Aging management of light water reactor concrete containments

    International Nuclear Information System (INIS)

    Shah, V.N.; Hookhman, C.J.

    1994-01-01

    This paper evaluates aging of light water reactor concrete containments and identifies three degradation mechanisms that have potential to cause widespread aging damage after years of satisfactory experience: alkali-silica reaction, corrosion of reinforcing steel, and sulfate attack. The evaluation is based on a comprehensive review of the relevant technical literature. Low-alkali cement and slow-reacting aggregates selected according to ASTM requirements cause deleterious alkali-silica reactions. Low concentrations of chloride ions can initiate corrosion of the reinforcing steel if the hydroxyl ions are sufficiently reduced by carbonation, leaching, or magnesium sulfate attack. Magnesium sulfate attack on concrete can cause loss of strength and cementitious properties after long exposure. Techniques to detect and mitigate these long-term aging effects are discussed

  5. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  6. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    International Nuclear Information System (INIS)

    Lewis, M.R.

    2000-01-01

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork

  7. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  8. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  9. Comparative economics of the breeder and light water reactor

    International Nuclear Information System (INIS)

    Chow, B.G.

    1980-01-01

    The issue of breeder timing is studied in this article via a breakeven analysis in which the key driving variables are conveniently segregated into two groups, with uranium price providing the linkage. In one group, the technical and cost characteristics of reactors and fuel cycles determine the uranium breakeven price. In the other group, nuclear demand projections and the uranium supply schedule determine the time paths of uranium price for a given composition of reactor types. The author finds that, even if proliferation risk is ignored, the breeder is not economically competitive with a 30%-improved once-through light water reactor before the year 2030 in the USA and in the world outside communist areas as a whole in 90% of the cases examined. In the exceptional cases, the penalty of delaying commercial breeder introduction to 2030 is small and well within the noise level of long-term energy planning. (author)

  10. Nuclide inventories of spent fuels from light water reactors

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Okamoto, Tsutomu

    2012-02-01

    Accurate information on nuclide inventories of spent fuels from Light Water Reactors (LWRs) is important for evaluations of criticality, decay heat, radioactivity, toxicity, and so on, in the safety assessments of storage, transportation, reprocessing and waste disposal of the spent fuels. So, a lot of lattice burn-up calculations were carried out for the possible fuel specifications and irradiation conditions in Japanese commercial LWRs by using the latest nuclear data library JENDL-4.0 and a sophisticated lattice burn-up calculation code MOSRA-SRAC. As a result, burn-up changes of nuclide inventories and their possible ranges were clarified for 21 heavy nuclides and 118 fission products, which are important from the viewpoint of impacts to nuclear characteristics and nuclear fuel cycle and environment. (author)

  11. Non-linear analysis in Light Water Reactor design

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.

    1980-03-01

    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation

  12. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  13. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  14. Waste disposal from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Costello, J.M.; Hardy, C.J.

    1981-05-01

    Alternative nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. The paper concentrates upon management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium enrichment, and, to a lesser extent, nuclear power reactor wastes. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes have been made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation

  15. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  16. Study for improvement of light water reactor technology, (3)

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Morita, Terumichi; Igarashi, Hiroshi; Tabata, Hiroaki

    1991-01-01

    The Japan Atomic Power Company has performed some studies, which are referred to as 'some feasibility studies of LWR technology', in order to help improve and up-grade the light water reactor technology. We would like to show the key results of the above studies in an orderly fashion in this document. As the third issue, this paper describes the study of the feasibility of applying a suppression pool system in a 4-loop PWR plant in order to reduce containment volume and evaluates the merits of such a system. The results confirmed the feasibility of such a plant consisting of a 4-loop plant with a suppression pool system. The expected merits of a suppression pool type PWR are as follows: (1) The volume within the containment boundary is half of that for the conventional plant. This reduces the material quantity substantially. (2) A wider layout space is obtained since the operating floor is located outside the containment are. And this improves the maneuverability of plant outage. (3) Low center of gravity of the plant contributes to improving the ability to withstand seismic activity. Although there are some open items left that should be confirmed, we consider that PWR with small CV is an appealing plant in the light of further sales points such as relaxing siting conditions, extending the use of robotics and so on. (author)

  17. Utility Leadership in Defining Requirements for Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    Sugnet, William R.; Layman, William H.

    1990-01-01

    It is appropriate, based on twenty five years of operating experience, that utilities take a position of leadership in developing the technical design and performance requirements for the next generations of nuclear electric generating plants. The U. S. utilities, through the Electric Power Research Institute, began an initiative in 1985 to develop such Utility requirements. Many international Utility organizations, including Korea Electric Power Corporation, have joined as full participants in this important Utility industry initiative. In light of the closer linkage among countries of the world due to rapid travel and telecommunications, it is also appropriate that there be international dialogue and agreement on the principal standards for nuclear power plant acceptability and performance. The Utility/EPRI Advanced Light Water Reactor Program guided by the ALRR Utility Steering Committee has been very successful in developing these Utility requirements. This paper will summarize the state of development of the ALRR Utility Requirements for Evolutionary Plants, recent developments in their review by the U. S. Nuclear Regulatory Commission, resolution of open issues, and the extension of this effort to develop a companion set of ALRR Utility Requirements for plants employing passive safety features

  18. Potential of light water reactors for future nuclear power plants

    International Nuclear Information System (INIS)

    Gueldner, R.

    2003-01-01

    Energy consumption worldwide is going to increase further in the next few decades. Reliable supplies of electricity can be achieved only by centralized power plant structures. In this scenario, nuclear power plants are going to play a leading role as reliable and competitive plants, also under deregulated market conditions. Today, light water reactors have achieved a leading position, both technically and economically, contributing 85% to worldwide electricity generation in nuclear plants. They will continue to be a proven technology in power generation. In many countries, activities therefore are concentrated on extending the service life of plants beyond a period of forty years. New nuclear generating capacities are expected to be created and added from the end of this decade onward. Most of this capacity will be in light water reactors. The concepts of third-generation reactors will meet all economic and technical safety requirements of the 21st century and will offer considerable potential for further development. Probably some thirty years from now, fourth-generation nuclear power plants will be ready for commercial application. These plants will penetrate especially new sectors of the energy markets. Public acceptance of new nuclear power plants is not a matter of reactor lines, provided that safety requirements are met. The important issue is the management of radioactive waste. The construction of new nuclear power plants in Western Europe and North America mainly hinges on the ability to explain to the public that there is a need for new plants and that nuclear power is fundamental to assuring sustainable development. (orig.)

  19. Materials Inventory Database for the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  20. Passive safety features in current and future water cooled reactors

    International Nuclear Information System (INIS)

    1990-11-01

    Better understanding of the passive safety systems and components in current and future water-cooled reactors may enhance the safety of present reactors, to the extend passive features are backfitted. This better understanding should also improve the safety of future reactors, which can incorporate more of these features. Passive safety systems and components may help to prevent accidents, core damage, or release radionuclides to the environment. The Technical Committee Meeting which was hosted by the USSR State Committee for Utilization of Nuclear Energy was attended by about 80 experts from 16 IAEA Member States and the NEA-OECD. A total of 21 papers were presented during the meeting. The objective of the meeting was to review and discuss passive safety systems and features of current and future water cooled reactor designs and to exchange information in this area of activity. A separate abstract was prepared for each of the 21 papers published in this proceedings. Refs, figs and tabs

  1. Development of pre-startup equipment for light water reactors

    International Nuclear Information System (INIS)

    Ram, Rajit; Borkar, S.P.; Dixit, M.Y.; Das, Debashis; Patil, R.K.

    2010-01-01

    Light water reactor (LWR) core typically has high excess reactivity as compared to Pressurized Heavy Water Reactor (PHWR). Unlike PHWR, where online refueling is done, LWR is operated for a long period to achieve maximum fuel burn-up before refueling. Since the reactivity is always reducing with burn-up of the core, the positions of control rods at criticality are always changing in a single direction, i.e. away from the core. Therefore it is possible to start the LWR even if the nuclear instrumentation is not online, provided the criticality position of control rods is known for previous operation. However, for the very first startup, the criticality position of control rods is required to be determined. A special nuclear instrumentation system, called Pre-startup equipment (PSE) is developed using two numbers of in-core detectors along with the processing electronics. The PSE enables operators to determine the criticality position of control rods for the first startup at zero power. The same equipment can also be used during loading of fuel assemblies. This paper discusses the features and architecture of PSE, its individual circuit blocks and specifications. (author)

  2. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  3. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  4. Light water ultra-safe plant concept: First annual report

    International Nuclear Information System (INIS)

    Klevans, E.

    1987-01-01

    Since the accident at Three Mile Island (TMI) Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During the last year, the Department of Energy funded the study of a plant reconfiguration originally proposed by M.A. Shultz. This report presents the status of the project at the end of the first year. A broad set of specifications to improve safety and public perception were set forth and the realization of these goals is achieved in a plant design named, ''The Light Water Ultra-Safe Plant Concept.'' The most significant goals of the concept address the station black-out problem and simplification of required operator actions during abnormal situations. These goals are achieved in the Ultra-Safe Concept by addition of an in-containment atmospheric tank containing a large quantity of cool water, replacement of the conventional PWR pressurizer system with a pressurizing pump, internal emergency power generation, and arrangement of components to utilize natural circulation at shut-down. The first year effort included an evaluation of the normal operation characteristics of the primary system pressurizing concept, evaluating parameters and modeling for analysis of the shutdown scenario, design of a low power density core, design of a low-pressure waste handling system, arrangement of a drainage system for pipe break considerations, and failure modes and effects analysis

  5. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  6. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  7. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  8. Current-controlled light scattering and asymmetric plasmon propagation in graphene

    Science.gov (United States)

    Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe

    2018-02-01

    We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.

  9. A collection of publications and articles for a light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1988-01-01

    This collection contains reports titled: ''The Penn State Ultra-Safe Reactor Concept; '' ''Ultra Safe Nuclear Power; '' ''Use of the Modular Modeling System, in the Design of the Penn State Advanced Light Water Reactor; '' ''Use of the Modular Modeling System in Severe Transient Analysis of Penn State Advanced Light Water Reactor; '' ''PSU Engineers' Reactor Design May Stop a Future TMI; '' and ''The Penn State Advanced Light Water reactor Concept.''

  10. Light-induced, GTP-binding protein mediated membrane currents of Xenopus oocytes injected with rhodopsin of cephalopods.

    Science.gov (United States)

    Ando, H; Seidou, M; Kito, Y

    1991-01-01

    Xenopus oocytes that were injected with rhabdomeric membranes of squid and octopus photoreceptors acquired light sensitivity. The injected oocytes showed a light-induced current having characteristics similar to other G-protein-mediated Cl- currents induced by the activation of other membrane receptors. Pretreatment of the oocytes with pertussis toxin before the injection suppressed the generation of the light-induced current, indicating an ability of cephalopod rhodopsin to cross-react with an endogenous G-protein of Xenopus oocytes.

  11. Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices

    Energy Technology Data Exchange (ETDEWEB)

    Caria, S [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Como, E Da [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Murgia, M [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Zamboni, R [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Melpignano, P [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy); Biondo, V [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy)

    2006-08-23

    The electro-optical behaviour of organic light emitting diode devices (OLEDs) is greatly influenced by the morphology of the films. A major parameter is due to the important role that the morphology of the active organic thin films plays in the phenomena that lead to light emission. For vacuum-grown OLEDs, the morphology of the specific thin films can be varied by modification of the deposition conditions. We have assessed the method (ultrahigh-vacuum organic molecular beam deposition) and conditions (variation of the deposition rate) for electro-emission (EL) optimization in a standard {alpha}-NPB (N,N'-bis-(1-naphthyl)-N,N' diphenyl-1,1' biphenyl-4-4' diamine)/Alq3 (tris-(8-hydroxyquinoline) aluminium) vacuum-grown OLED device. The best EL performances have been obtained for OLEDs made in ultrahigh vacuum with the Alq3 layer deposited with a differential deposition rate ranging from 1.0 to 0.3Angsts{sup -1}. The results are consistent with a model of different Alq3 morphologies, allowing efficient charge injection at the metal/organic interface, and of the minimization of grain boundaries at the electron-hole recombination interface, allowing efficient radiative excitonic decay. At the same time, with the objective of controlling and stabilizing the morphology changes and stabilizing the charge transport over a long OLED operating time, we have studied the effect of thermal annealing processing in the standard current behaviour of OLEDs. The large current fluctuations typically observed for standard vacuum-grown OLEDs have been smeared out and kept constant over a long operating time by the given thermal annealing conditions. The results are interpreted in terms of the stabilization of intrinsic polymorphism of the organic film's structure induced by thermal energy and leading the morphology to a lowest-energetic configuration.

  12. Monochromator for synchrotron light with temperature controlled by electrical current on silicon crystal

    Energy Technology Data Exchange (ETDEWEB)

    Cusatis, Cesar; Souza, Paulo E.N. [Universidade Federal do Parana (LORXI/UFPR), Curitiba, PR (Brazil). Dept. de Fisica. Lab. de Optica de Raios X e Instrumentacao; Franco, Margareth Kobayaski; Kakuno, Edson [Laboratorio Nacional de Luz Sincroton (LNLS), Campinas, SP (Brazil); Gobbi, Angelo; Carvalho Junior, Wilson de [Centro de Pesquisa e Desenvolvimento em Telecomunicacoes (CPqD), Campinas, SP (Brazil)

    2011-07-01

    Full text. doped silicon crystal was used simultaneously as a monochromator, sensor and actuator in such way that its temperature could be controlled. Ohmic contacts allowed resistance measurements on a perfect silicon crystal, which were correlated to its temperature. Using the ohmic contacts, an electrical current caused Joule heating on the monochromator that was used to control its temperature. A simple stand-alone electronic box controlled the system. The device was built and tested with white beam synchrotron light on the double crystal monochromator of the XRD line of LNLS, Laboratorio Nacional de Luz Sincrotron, Campinas. The first crystal of a double crystal monochromator determines the energy that is delivered to a synchrotron experimental station and its temperature instability is a major source of energy and intensity instability. If the (333) silicon monochromator is at theta Bragg near 45 degree the variation of the diffraction angle is around one second of arc per degree Kelvin. It may take several minutes for the first crystal temperature to stabilize at the beginning of the station operation when the crystal and its environment are cold. With water refrigeration, the average overall temperature of the crystal may be constant, but the temperature of the surface changes with and without the white beam. The time used to wait for stabilization of the beam energy/intensity is lost unless the temperature of the crystal surface is kept constant. One solution for keeping the temperature of the monochromator and its environment constant or nearly constant is Joule heating it with a controlled small electrical current flowing on the surface of a doped perfect crystal. When the white beam is on, this small amount of extra power will be more concentrated at the beam footpath because the resistance is lower in this region due to the higher temperature. In addition, if the crystal itself is used to detect the temperature variation by measuring the electrical

  13. A breeze-driven current on sloped littoral waters

    Science.gov (United States)

    Tohidi, A.; Jamali, M.

    2017-12-01

    Various natural phenomena, e. g. uniform/non-uniform solar radiation and diurnal cycles, affect water circulation patterns through aquatic canopies, that is (usually shallow) shorelines of the rivers, lakes, and lagoons. Amongst these factors is vegetation that, plays a crucial role in conserving and dispersing the nutrients, oxygen, temperature, and generally regulating the life and interactions of organisms with each other (ecology) in aquatic canopies. So far, however, very little attention has been paid to the effects of very low, breeze-like, winds over the water surface in these vegetated regions. In this exploratory study, the evolution of a breeze-driven gravity current traveling up the slope towards the shorelines is shown, experimentally. The flow is characterized using Particle Image Velocimetry (PIV) technique. In addition, a detailed dimensional analysis of the parameter space of the phenomenon is conducted. The results strongly corroborate the experimental observations.

  14. Temperature effects studies in light water reactor lattices

    International Nuclear Information System (INIS)

    Erradi, Lahoussine.

    1982-02-01

    The CREOLE experiments performed in the EOLE critical facility located in the Nuclear Center of CADARACHE - CEA (UO 2 and UO 2 -PuO 2 lattice reactivity temperature coefficient continuous measurements between 20 0 C and 300 0 C; integral measurements by boron equivalent effect in the moderator; water density effects measurements with the use of over cladding aluminium tubes to remove moderator) allow to get an interesting and complete information on the temperature effects in the light water reactor lattices. A very elaborated calcurated scheme using the transport theory and the APOLLO cross sections library, has been developed. The analysed results of the whole lot of experiments show that the discrepancy between theory and experiment strongly depends on the temperature range and on the type of lattices considered. The error is mainly linked with the thermal spectrum effects. A study on the temperature coefficient sensitivity to the different cell neutron parameters has shown that only the shapes of the 235 U and 238 U thermal cross sections have enough weight and uncertainty margins to explain the observed experimental/calculation bias. Instead of arbitrarily fitting the identified wrong data on the calculation of the reactivity temperature coefficient we have defined a procedure of modification of the cross sections based on the consideration of the basic nuclear data: resonance parameters and associated statistic laws. The implementation of this procedure has led to propose new thermal cross sections sets for 235 U and 238 U consistent with the uncertainty margins associated with the previously accepted values and with some experimental data [fr

  15. Summary of Research on Light Water Reactor Improvement Concepts

    International Nuclear Information System (INIS)

    Mowery, Alfred L.

    2002-01-01

    The Arms Control and Disarmament Agency of the U.S. Department of State instituted a study aimed at improving the light water reactor (LWR) fuel consumption efficiency as an alternative to fuel recycle in the late 1970s. Comparison of the neutron balance tables of an LWR (1982 design) and an 'advanced' Canada deuterium uranium (CANDU) reactor explained that the relatively low fuel efficiency of the LWR was not primarily a consequence of water moderator absorptions. Rather, the comparatively low LWR fuel efficiency resulted from its use of poison to hold down startup reactivity together with other neutron losses. The research showed that each neutron saved could reduce fuel consumption by about 5%. In a typical LWR some 5 neutrons (out of 100) were absorbed in control poisons over a cycle. There are even more parasitic and leakage neutron absorptions. The objective of the research was to find ways to minimize control, parasitic, and other neutron losses aimed at improved LWR fuel consumption. Further research developed the concept of 'putting neutrons in the bank' in 238 U early in life and 'drawing them out of the bank' late in life by burning the 239 Pu produced. Conceptual designs were explored that could both control the reactor and substantially improve fuel efficiency and minimize separative work requirements.The U.S. Department of Energy augmented its high burnup fuel program based on the research in the late 1970s. As a result of the success of this program, fuel burnup in U.S. LWRs has almost doubled in the intervening two decades

  16. Application of fully ceramic microencapsulated fuels in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  17. Application of fully ceramic microencapsulated fuels in light water reactors

    International Nuclear Information System (INIS)

    Gentry, C.; George, N.; Maldonado, I.; Godfrey, A.; Terrani, K.; Gehin, J.

    2012-01-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO 2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  18. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  19. Job-related doses in light water reactors

    International Nuclear Information System (INIS)

    Schnuer, K.

    1993-01-01

    The Treaty of 1957 establishing the European Atomic Energy Community, (EURATOM) was an essential prerequisite for the development of a strong nuclear industry in Europe. Among other things the Treaty provides that the Community shall lay down Basic Safety Standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation and ensure that they are applied. Following adoption of the Council Directive of 1980, the European Commission defined the basic principles of Justification, Optimization and Limitation to be applied in order to ensure the greatest possible protection of workers and the general public. Subsequently the Commission took initiatives in order to find ways of implementing these three basic principles in practical radiation protection. In 1980 the Commission in close collaboration with the leading nuclear power station operators, set up its own system of 'occupational radiation dose statistics from light water reactors operating in Western Europe'. This was designed for PWRs and BWRs, and the Commission benefited from the experience of neighbouring non-EC countries such as Sweden, Finland, Switzerland and Spain (not yet a member) operating nuclear power stations made by different manufacturers. The paper provides some general information on developments and trends in collective and individual doses to workers in nuclear power stations, based on a unique European databank of approximately 1000 operating reactor years. 9 figs

  20. Investigation of activity release during light water reactor core meltdown

    International Nuclear Information System (INIS)

    Albrecht, H.; Matschoss, V.; Wild, H.

    1978-01-01

    A test facility was developed for the determination of activity release and of aerosol characteristics under realistic light water reactor core melting conditions. It is composed of a high-frequency induction furnace, a ThO 2 crucible system, and a collection apparatus consisting of membrane and particulate filters. Thirty-gram samples of a representative core material mixture (corium) were melted under air, argon, or steam at 0.8 to 2.2 bar. In air at 2700 0 C, for example, the relative release was 0.4 to 0.7% for iron, chromium, and cobalt and 4 to 11% for tin, antimony, and manganese. Higher release values of 20 to 40% at lower temperatures (2150 0 C, air) were found for selenium, cadmium, tellurium, and cesium. The size distribution of the aerosol particles was trimodal with maxima at diameters of 0.17, 0.30, and 0.73 μm. The result of a qualitative x-ray microanalysis was that the main elements of the melt were contained in each aerosol particle. Further investigations will include larger melt masses and the additional influence of concrete on the release and aerosol behavior

  1. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  2. Study on unstable fracture characteristics of light water reactor piping

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi

    1998-08-01

    Many testing studies have been conducted to validate the applicability of the leak before break (LBB) concept for the light water reactor piping in the world. It is especially important among them to clarify the condition that an inside surface crack of the piping wall does not cause an unstable fracture but ends in a stable fracture propagating only in the pipe thickness direction, even if the excessive loading works to the pipe. Pipe unstable fracture tests performed in Japan Atomic Energy Research Institute had been planned under such background, and clarified the condition for the cracked pipe to cause the unstable fracture under monotonous increase loading or cyclic loading by using test pipes with the inside circumferential surface crack. This paper examines the pipe unstable fracture by dividing it into two parts. One is the static unstable fracture that breaks the pipe with the inside circumferential surface crack by increasing load monotonously. Another is the dynamic unstable fracture that breaks the pipe by the cyclic loading. (author). 79 refs

  3. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    Neely, H.H.; Jeanmougin, N.M.; Corugedo, J.J.

    1990-07-01

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  4. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  5. Studies of severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    1987-01-01

    From 10 to 12 November 1986 some 80 delegates met under the auspices of the CEC working group on the safety of light-water reactors. The participants from EC Member States were joined by colleagues from Sweden, Finland and the USA and met to discuss the subject of severe accidents in LWRs. Although this seminar had been planned well before Chernobyl, the ''severe-accident-that-really-happened'' made its mark on the seminar. The four main seminar topics were: (i) high source-term accident sequences identified in PSAs, (ii) containment performance, (iii) mitigation of core melt consequences, (iv) severe accident management in LWRs. In addition to the final panel discussion there was also a separate panel discussion on lessons learned from the Chernobyl accident. These proceedings include the papers presented during the seminar and they are arranged following the seminar programme outline. The presentations and discussions of the two panels are not included in the proceedings. The general conclusions and directions following from these two panels were, however, considered in a seminar review paper which was published in the March 1987 issue of Nuclear Engineering International

  6. Radionuclide distribution in LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Thomas, L.E.; Baldwin, D.L.; Mendel, J.E.

    1990-09-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) provides well-characterized spent fuel from light-water reactors (LWRs) for use in laboratory tests relevant to nuclear waste disposal in the proposed Yucca Mountain repository. Interpretation of results from tests on spent fuel oxidation, dissolution, and cladding degradation requires information on the inventory and distribution of radionuclides in the initial test materials. The MCC is obtaining this information from examinations of Approved Testing Materials (ATMs), which include spent fuel with burnups from 17 to 50 MWd/kgM and fission gas releases (FGR) from 0.2 to 18%. The concentration and distribution of activation products and the release of volatile fission products to the pellet-cladding gap and rod plenum are of particular interest because these characteristics are not well understood. This paper summarizes results that help define the 14 C inventory and distribution in cladding, the ''gap and grain boundary'' inventory of radionuclides in fuels with different FGRs, and the structure and radionuclide inventory of the fuel rim region within a few hundred micrometers from the fuel edge. 6 refs., 5 figs., 1 tab

  7. Controlling radiation fields in siemans designed light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R.; Marchl, T. [Siemens Power Generation Group, Erlangen (Germany)

    1995-03-01

    An essential item for the control of radiation fields is the minimization of the use of satellites in the reactor systems of Light Water Reactors (LWRs). A short description of the qualification of Co-replacement materials will be followed by an illustration of the locations where these materials were implemented in Siemens designed LWRs. Especially experiences in PWRs show the immense influence of reduction of cobalt sources on dose rate buildup. The corrosion and the fatique and wear behavior of the replacement materials has not created concern up to now. A second tool to keep occupational radiation doses at a low level in PWRs is the use of the modified B/Li-chemistry. This is practized in Siemens designed plants by keeping the Li level at a max. value of 2 ppm until it reaches a pH (at 300{degrees}C) of {approximately}7.4. This pH is kept constant until the end of the cycle. The substitution of cobalt base alloys and thus the removal of the Co-59 sources from the system had the largest impact on the radiation levels. Nonetheless, the effectiveness of the coolant chemistry should not be neglected either. Several years of successful operation of PWRs with the replacement materials resulted in an occupational radiation exposure which is below 0.5 man-Sievert/plant and year.

  8. On the path to ordering standardized advanced light water reactors

    International Nuclear Information System (INIS)

    Sliter, G.E.

    1997-01-01

    The international Advanced Light Water Reactor (ALWR) program is specifying, designing, and certifying the next generation of nuclear power plants. Begun in the mid-1980's, the program is on track to permit ordering and construction of families of standardized plants at the start of the twenty-first century. ALWRs will be constructed only if they are economically competitive with alternative forms of electricity generation and are recognized as acceptable and favorable by the public, prospective owners, and investors. This paper first gives an overview of the major building blocks ensuring safe, reliable, and economic designs and the status of those designs. Next it lays out the path the industry has charted toward adopting the ALWR option and indicates the status of three key steps -- design certification, utility requirements, and first-of-a-kind engineering. Lastly, the paper focuses on one of the most important building blocks for ensuring economic viability -- life-cycle standardization. Among the topics are the definition and scope of standardization; its advantages and disadvantages; design team standardization plans that describe the desired or optimum degree of standardization and the processes used to achieve it; and the need for an agreement among all plant owners and operators for implementing and sustaining standardization in families of ALWRs. 10 refs., 5 figs

  9. Light-current-induced acceleration of degradation of methylammonium lead iodide perovskite solar cells

    Science.gov (United States)

    Xiang, Yuren; Zhang, Fan; He, Junjie; Lian, Jiarong; Zeng, Pengju; Song, Jun; Qu, Junle

    2018-04-01

    The photo-conversion efficiency of perovskite solar cells (PSCs) has been improved considerably in recent years, but the poor stability of PSCs still prevents their commercialization. In this report, we use the rate of the integrated short-circuit current change (Drate) to investigate the performance degradation kinetics and identify the degradation of PSCs that is accelerated by the light current. The value of Drate increases by an order of magnitude from about 0.02 to 0.35 mA cm-2·min-1 after light-IV testing. The accelerated degradation progress is proven to be dominated by the hydration process and the migration of the iodine ions of the light current. The migration of the iodine ions enhances the hydration process through a chain reaction, enabling the formation of fast diffusion channels for both H2O and O2, which induce the rapid decomposition of the perovskite film and increase the density of the trap state. The X-ray photoelectron spectroscopy measurement data also indicate that the super oxygen may be formed due to the PCBM damage caused by the migration iodine ions. An understanding of the degradation acceleration mechanism would provide an insight into the effect of ion migration on the stability of PSCs.

  10. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

    2008-07-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

  11. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Bergbauer, Werner; Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold; Benstetter, Guenther

    2008-01-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift

  12. A one-loop study of matching conditions for static-light flavor currents

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Dirk [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Parma Univ. (Italy); Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Collaboration: ALPHA Collaboration

    2012-11-15

    Heavy Quark Effective Theory (HQET) computations of semi-leptonic decays, e.g. B{yields}{pi}l{nu}, require the knowledge of the parameters in the effective theory for all components of the heavy-light flavor currents. So far non-perturbative matching conditions have been employed only for the time component of the axial current. Here we perform a check of matching conditions for the time component of the vector current and the spatial component of the axial vector current up to one-loop order of perturbation theory and to lowest order of the 1/m-expansion. We find that the proposed observables have small higher order terms in the 1/m-series and are thus excellent candidates for a non-perturbative matching procedure.

  13. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    Science.gov (United States)

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  14. COMSORS: A light water reactor chemical core catcher

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.

    1997-01-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate lightwater reactor (LWR) core-melt accidents and ensure containment integrity. A special dissolution glass made of lead oxide (PbO) and boron oxide (B 2 O 3 ) is placed under the reactor vessel. If molten core debris is released onto the glass, the following sequence happens: (1) the glass absorbs decay heat as its temperature increases and the glass softens; (2) the core debris dissolves into the molten glass; (3) molten glass convective currents create a homogeneous high-level waste (HLW) glass; (4) the molten glass spreads into a wider pool, distributing the heat for removal by radiation to the reactor cavity above or transfer to water on top of the molten glass; and (5) the glass solidifies as increased surface cooling area and decreasing radioactive decay heat generation allows heat removal to exceed heat generation

  15. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  16. Thermohydraulics of emergency core cooling in light water reactors

    International Nuclear Information System (INIS)

    1989-10-01

    This report, by a group of experts of the OECD-NEA Committee on the Safety of Nuclear Installations, reviews the current state-of-knowledge in the field of emergency core cooling (ECC) for design-basis, loss-of-coolant accidents (LOCA) and core uncover transients in pressurized- and boiling-water reactors. An overview of the LOCA scenarios and ECC phenomenology is provided for each type of reactor, together with a brief description of their ECC systems. Separate-effects and integral-test facilities, which contribute to understanding and assessing the phenomenology, are reviewed together with similarity and scaling compromises. All relevant LOCA phenomena are then brought together in the form of tables. Each phenomenon is weighted in terms of its importance to the course of a LOCA, and appraised for the adequacy of its data base and analytical modelling. This qualitative procedure focusses attention on the modelling requirements of dominant LOCA phenomena and the current capabilities of the two-fluid models in two-phase flows. This leads into the key issue with ECC: quantitative code assessment and the application of system codes to predict with a well defined uncertainty the behaviour of a nuclear power plant. This issue, the methodologies being developed for code assessment and the question of how good is good enough are discussed in detail. Some general conclusions and recommendations for future research activities are provided

  17. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    Energy Technology Data Exchange (ETDEWEB)

    Hoppes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oster, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased water disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.

  18. Core Designs and Economic Analyses of Homogeneous Thoria-Urania Fuel in Light Water Reactors

    International Nuclear Information System (INIS)

    Saglam, Mehmet; Sapyta, Joe J.; Spetz, Stewart W.; Hassler, Lawrence A.

    2004-01-01

    The objective is to develop equilibrium fuel cycle designs for a typical pressurized water reactor (PWR) loaded with homogeneously mixed uranium-thorium dioxide (ThO 2 -UO 2 ) fuel and compare those designs with more conventional UO 2 designs.The fuel cycle analyses indicate that ThO 2 -UO 2 fuel cycles are technically feasible in modern PWRs. Both power peaking and soluble boron concentrations tend to be lower than in conventional UO 2 fuel cycles, and the burnable poison requirements are less.However, the additional costs associated with the use of homogeneous ThO 2 -UO 2 fuel in a PWR are significant, and extrapolation of the results gives no indication that further increases in burnup will make thoria-urania fuel economically competitive with the current UO 2 fuel used in light water reactors

  19. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  20. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  1. Light Water Reactor Generic Safety Issues Database (LWRGSIDB). User's manual

    International Nuclear Information System (INIS)

    1999-01-01

    resolved in other plants and which can be used in reassessing the safety of individual operating plants. The IAEA-TECDOC-1044, Generic Safety Issues for Nuclear Power Plants with Light Water Reactors and Measures Taken for Their Resolution (September 1998), is a compilation of such safety issues which is based on broad international experience. This compilation is one element within the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. It is a compilation not only of the generic safety issues identified in nuclear power plants but also, in almost all cases, the measures taken to resolve these issues. The safety issues, which are generic in nature with regard to light water reactors (LWRs), and the measures taken for their resolution, are intended for use as a reference in the reassessment of the safety of operating plants.The information contained in the main body of the TECDOC has been used to establish a database. This database has search, query and report functions. This information is thus available in an electronic form which can be selectively queried and with which reports can be produced according to the requirements of the user. The database also enables the IAEA to update the data periodically on the basis of information made available by Member States

  2. Light water reactor safety. Past, present and future

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2009-01-01

    This paper presents a review of the past, present and possible future developments in light water reactor (LWR) safety. The paper divides the past into two periods: the distant past i.e., before the TMI-2 accident when the main concern was with the design basis, the general design criteria, the concept of the defense in depth, the thermal hydraulics of the large loss of coolant accident (LOCA) and the success of the emergency core cooling system (ECCS), and the near past, i.e., after the TMI-2 accident when the main concern was with the physics of the postulated severe accidents: their prevention and mitigation. The present period is chosen as the translation of the research on the design basis and severe accidents into practical designs of Gen III+ with their core catchers and severe accident management (SAM) strategies, which could, in fact, provide ample assurances of public safety even for very severe accidents. The paper attempts to describe the remaining safety issues for both the Gen II and Gen III+ nuclear plants. The more important safety challenges are being posed by the recent moves of (1) extension of the life of the presently installed Gen II LWRs to 60 years (and perhaps to 80 years) and (2) the large uprates in power that are being sought for the Gen II LWRs. Clearly, the safety margins will be tested by these moves of long extended operations with greater power ratings of the Gen II plants. A prognosis of the emerging development trends in the LWR safety has been attempted with some suggestions. (author)

  3. Radiological characterization for small type light water reactor

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi; Ichige, Hideaki; Tanabe, Hidenori

    2011-01-01

    In order to plan a decommissioning, amount investigation of waste materials and residual radioactivity inventory evaluation must be performed at the first stage of preparatory tasks. These tasks are called radiological characterization. Reliable information from radiological characterization is crucial for specification of decommissioning plan. With the information, we can perform radiological safety analysis and optimize decommissioning scenario. Japan Atomic Power Company (JAPC) has already started preparatory tasks for Tsuruga Nuclear Power Plant Unit 1 (TS-1) that is the first commercial Small Type Light Water Reactor in Japan. To obtain reliable information about residual radioactivity inventory, we improved radioactivity inventory evaluation procedure. The procedure consists of neutron flux distribution calculation and radioactivity distribution calculation. We need a better understanding about characteristics of neutron transport phenomena in order to obtain reliable neutron flux distribution. Neutron flux was measured in Primary Containment Vessel (PCV) at 30 locations using activation foils. We chose locations where characteristic phenomena can be observed. Three dimensional (3D) neutron flux calculation was also performed to simulate continuous changes of neutron flux distribution. By assessing both the measured values and 3D calculation results, we could perform the calculation that simulates the phenomena well. We got knowledge about how to perform an appropriate neutron flux distribution calculation and also became able to calculate a reliable neutron flux distribution. Using the neutron flux distribution, we can estimate a reliable radioactivity distribution. We applied network-parallel-computing method to the estimation. And further we developed 'flux level approximation method' which use linear or parabola fitting method to estimation. Using these new methods, radioactivity by neutron irradiation, which is radioisotope formation, was calculated at

  4. Reliability assurance programme guidebook for advanced light water reactors

    International Nuclear Information System (INIS)

    2001-12-01

    To facilitate the implementation of reliability assurance programmes (RAP) within future advanced reactor programmes and to ensure that the next generation of commercial nuclear reactors achieves the very high levels of safety, reliability and economy which are expected of them, in 1996, the International Atomic Energy Agency (IAEA) established a task to develop a guidebook for reliability assurance programmes. The draft RAP guidebook was prepared by an expert consultant and was reviewed/modified at an Advisory Group meeting (7-10 April 1997) and at a consults meeting (7-10 October 1997). The programme for the RAP guidebook was reported to and guided by the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR). This guidebook will demonstrate how the designers and operators of future commercial nuclear plants can exploit the risk, reliability and availability engineering methods and techniques developed over the past two decades to augment existing design and operational nuclear plant decision-making capabilities. This guidebook is intended to provide the necessary understanding, insights and examples of RAP management systems and processes from which a future user can derive his own plant specific reliability assurance programmes. The RAP guidebook is intended to augment, not replace, specific reliability assurance requirements defined by the utility requirements documents and by individual nuclear steam supply system (NSSS) designers. This guidebook draws from utility experience gained during implementation of reliability and availability improvement and risk based management programmes to provide both written and diagrammatic 'how to' guidance which can be followed to assure conformance with the specific requirements outlined by utility requirements documents and in the development of a practical and effective plant specific RAP in any IAEA Member State

  5. Burnable poison management in light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D; Mueller, A

    1970-07-01

    For a better reactivity control and power flattening as well as for an increase in dynamic stability the use of burnable poisons in light water reactors has been considered. The main goals for a burnable poison management and its technological realisation are discussed. The poison is assumed to be in the form of separate poison rods or homogeneous or inhomogeneous poisoning in the fuel rods. A new concept with a central poison rod within the fuel rod is discussed. The balance-equation for the needed concentration of burnable poisons for reactivity central as well as the problems of optimization of lumped poisons are treated in connection with the fuel lattice burnup. A first approximation for the design is found. For the calculation of the microburnup of lumped poison and fuel the special code NEUTRA has been developed. The burnup-equation can be chosen either in a simplified burnup-version with 2 pseudo fission products for each fissionable isotope or with an extended system of burnup equations to be used at sophisticated calculations. These burnup equations are coupled to S{sub N}-routines optionally for cylindrical or x-y-geometry for the proper calculation of the microscopic isotope density-, flux-, and power distributions. The theoretical predictions have been checked by means of special experiments so as to determine the accuracy of the computations. Even for a relatively long burnup of the fuel the predicted values are found to be within the experimental error in the case of lumped rods containing a cadmium-alloy or boron carbide. (auth)

  6. Feasibility study of plutonium recycling in light water reactors

    International Nuclear Information System (INIS)

    Tabuchi, Hideoto

    1979-01-01

    The feasibility of plutonium recycling in light water reactors has been studied by the Agency of Natural Resources and Energy, MITI. As the first step of the feasibility study, it was planned to charge two fuel assemblies, containing uranium-plutonium mixed oxide (MO 2 ), in the core of the Tsuruga nuclear power plant (BWR) for testing. The design of fuel the safety of these fuel and the operating characteristics of these special fuel assemblies were evaluated. The specifications of MO 2 fuel pin and fuel assembly are compared to those of present uranium oxide (UO 2 ) fuel. The weight of fissile plutonium in one MO 2 fuel assembly is 2.22 kg. The characteristics of MO 2 fuel assemblies, such as reactivity, control rod worth and power distribution can be kept similar to UO 2 fuel. The plutonium isotope ratio of the MO 2 fuel is assumed as that obtained in the fuel taken out of the Tokai No. 1 gas cooled reactor. The temperature distribution in the fuel pellets is shown, compared to that of UO 2 fuel. The linear power density is 440 w/cm at the beginning of the fuel life and 360 w/cm after the burn-up of 44,000 Mwd/t. The stress in the cladding tubes of MO 2 fuel is not different from that of UO 2 fuel. The pellet-cladding interaction (PCM1) was analyzed, utilizing the FEM code, FEAST. Concerning the calculation of resonance absorption, the space dependence of thermal neutron spectra and the nuclear behavior of hollow pellets the methods of design calculation were checked up. It was recognized that regarding the nuclear characteristics of MO 2 fuel, no special technical question remains. (Nakai, Y.)

  7. Consideration of important technical issues for advanced light water reactors

    International Nuclear Information System (INIS)

    Thadani, A.C.; Perch, R.L.

    1993-01-01

    Early in the design and review process of the Advanced Light Water Reactors (ALWR), the US Nuclear Regulatory Commission (NRC) in recognition of the importance of defense-in-depth focused its attention on lessons learned from the operating experience, research and other studies as well as addressing the challenges from severe accidents. The Commission issued the Policy Statement on Safety Goals for the Operations of Nuclear Power Plants on August 4, 1986. This policy statement focused on the risks to the public from nuclear power plant operations with the objective of establishing goals that broadly define an acceptable level of radiological risk that might be imposed on the public as a result of nuclear power plant operation. The Commission recognizes the importance of mitigating the consequences of a core-melt accident and continues to emphasize features such as containment and siting in less populated areas as integral parts of the defense-in-depth concept associated with its accident prevention and mitigation philosophy. In its Severe Accident Policy statement, the Commission expressed its expectation that vendors engage in designing new standard plants should address severe accidents during the design stage to take full advantage of insights gained by providing design features to further reduce the likelihood of severe accidents from occurring and, in the unlikely occurrence of a severe accident, mitigating their consequences. Incorporating insights and design features during the design phase can be cost effective when compared to modifications to existing plants. The staff has used this guidance to apply defense-in-depth philosophy in focusing attention on severe accident considerations. This paper discusses some of the key prevention and mitigation issues the NRC has focused its efforts, including emerging technologies being applied to new reactor designs

  8. 77 FR 15812 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Science.gov (United States)

    2012-03-16

    ... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... Feedwater Systems for Light- Water Reactors.'' DG-1265 is proposed revision 2 of Regulatory Guide 1.68.1... Plants,'' dated January 1977. This regulatory guide is being revised to: (1) expand the scope of the...

  9. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  10. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  11. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    Science.gov (United States)

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  12. Current state of research on pressurized water reactor safety

    International Nuclear Information System (INIS)

    Couturier, Jean; Schwarz, Michel; Roubaud, Sebastien; Lavarenne, Caroline; Mattei, Jean-Marie; Rigollet, Laurence; Scotti, Oona; Clement, Christophe; Lancieri, Maria; Gelis, Celine; Jacquemain, Didier; Bentaib, Ahmed; Nahas, Georges; Tarallo, Francois; Guilhem, Gilbert; Cattiaux, Gerard; Durville, Benoit; Mun, Christian; Delaval, Christine; Sollier, Thierry; Stelmaszyk, Jean-Marc; Jeffroy, Francois; Dechy, Nicolas; Chanton, Olivier; Tasset, Daniel; Pichancourt, Isabelle; Barre, Francois; Bruna, Gianni; Evrard, Jean-Michel; Gonzalez, Richard; Loiseau, Olivier; Queniart, Daniel; Vola, Didier; Goue, Georges; Lefevre, Odile

    2018-03-01

    For more than 40 years, IPSN then IRSN has conducted research and development on nuclear safety, specifically concerning pressurized water reactors, which are the reactor type used in France. This publication reports on the progress of this research and development in each area of study - loss-of-coolant accidents, core melt accidents, fires and external hazards, component aging, etc. -, the remaining uncertainties and, in some cases, new measures that should be developed to consolidate the safety of today's reactors and also those of tomorrow. A chapter of this report is also devoted to research into human and organizational factors, and the human and social sciences more generally. All of the work is reviewed in the light of the safety issues raised by feedback from major accidents such as Chernobyl and Fukushima Daiichi, as well as the issues raised by assessments conducted, for example, as part of the ten-year reviews of safety at French nuclear reactors. Finally, through the subjects it discusses, this report illustrates the many partnerships and exchanges forged by IRSN with public, industrial and academic bodies both within Europe and internationally

  13. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    Science.gov (United States)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  14. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  15. Needs of nuclear data for advanced light water reactor

    International Nuclear Information System (INIS)

    Chaki, Masao

    2008-01-01

    Hitachi has been developing medium sized ABWRs as a power source that features flexibility to meet various market needs, such as minimizing capital risks, providing a timely return on capital investments, etc. Basic design concepts of the medium sized ABWRs are 1) using the current ABWR design which has accumulated favorable construction and operation histories as a starting point; 2) utilizing standard BWR fuels which have been fabricated by proven technology; 3) achieving a rationalized design by suitably utilizing key components developed for large sized reactors. Development of the medium sized ABWRs has proceeded in a systematic, stepwise manner. The first step was to design an output scale for the 600MWe class reactor (ABWR-600), and the next step was to develop an uprating concept to extend this output scale to the 900MWe class reactor (ABWR-900) based on the rationalized technology of the ABWR-600 for further cost savings. In addition, Hitachi and MHI developed an ultra small reactor, 'Package-Reactor'. About the nuclear data, for the purpose of verification of the nuclear analysis method of BWR for mixed oxide (MOX) cores, UO 2 and MOX fuel critical experiments EPICURE and MISTRAL were analyzed using nuclear design codes HINES and CERES with ENDF/B nuclear data file. The critical keffs of the absorber worth experiments, the water hole worth experiments and the 2D void worth experiments agreed with those of the reference experiments within about 0.1%Δk. The root mean square differences of radial power distributions between calculation and measurement were almost less than 2.0%. The calculated reactivity worth values of the absorbers, the water hole and the 2D void agreed with the measured values within nearly experimental uncertainties. These results indicate that the nuclear analysis method of BWR in the present paper give the same accuracy for the UO 2 cores and the MOX cores. (author)

  16. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  17. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  18. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Pope, Michael A.; Youinou, Gilles J.

    2010-01-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  19. Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination

    Science.gov (United States)

    Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad

    2018-03-01

    This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.

  20. Theory of Digital Natives in the Light of Current and Future E-Learning Concepts

    Directory of Open Access Journals (Sweden)

    Bodo von der Heiden

    2011-06-01

    Full Text Available The digital generation has many names: Net Generation, Generation@ or Digital Natives. The meaning behind these terms is, that the current generation of students is digitally and media literate, technology-savvy and are able to use other learning approaches than former generations. But these topics are discussed controversial and even the cause-effect-relationship is not as clear as it seems. Did the digital generation really have other learning approaches, or do they have only the possibility to live other learning modes? Against this background this article tries to shed some light on this debate. Therefore we use current and future projects performed at RWTH Aachen University to illustrate the relevance, value and significance due to the theory of the digital natives.

  1. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    International Nuclear Information System (INIS)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-01-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2. (paper)

  2. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    Science.gov (United States)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-04-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.

  3. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  4. Visible Light Responsive Catalyst for Air & Water Purification

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective for this project was to investigate and develop viable approaches to render the normally UV-activated titanium dioxide (TiO2) catalyst visible light...

  5. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  6. Evaluation of the Current State of Integrated Water Quality Modelling

    Science.gov (United States)

    Arhonditsis, G. B.; Wellen, C. C.; Ecological Modelling Laboratory

    2010-12-01

    Environmental policy and management implementation require robust methods for assessing the contribution of various point and non-point pollution sources to water quality problems as well as methods for estimating the expected and achieved compliance with the water quality goals. Water quality models have been widely used for creating the scientific basis for management decisions by providing a predictive link between restoration actions and ecosystem response. Modelling water quality and nutrient transport is challenging due a number of constraints associated with the input data and existing knowledge gaps related to the mathematical description of landscape and in-stream biogeochemical processes. While enormous effort has been invested to make watershed models process-based and spatially-distributed, there has not been a comprehensive meta-analysis of model credibility in watershed modelling literature. In this study, we evaluate the current state of integrated water quality modeling across the range of temporal and spatial scales typically utilized. We address several common modeling questions by providing a quantitative assessment of model performance and by assessing how model performance depends on model development. The data compiled represent a heterogeneous group of modeling studies, especially with respect to complexity, spatial and temporal scales and model development objectives. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modelling, and ending in 2009, we selected over 150 papers fitting a number of criteria. These criteria involved publications that: (i) employed distributed or semi-distributed modelling approaches; (ii) provided predictions on flow and nutrient concentration state variables; and (iii) reported fit to measured data. Model performance was quantified with the Nash-Sutcliffe Efficiency, the relative error, and the coefficient of determination. Further, our

  7. Technologies For Maintaining Animals In Space: Lighting, Air Quality, Noise, Food And Water

    Science.gov (United States)

    Winget, C. M.; Skidmore, M. G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1995-01-01

    In the terrestrial environment multiple time cues exist. Zeitgebers have been identified and studied for their ability to convey temporal information to various physiological systems. In the microgravity experiment it is necessary to define time cues within the flight hardware prior to flight. During flight if changes in the Circadian System (e.g., mean, phase angle, period) occur this would indicate that the gravity vector is important relative to biological timing. This presentation is concerned with the environmental parameter: to support rodent experiments in microgravity. The Animal Enclosure Module (AEM) provides solid food bars and water via lixits and ad libitum. Flight animals (Sprague-Dawley rats, 60 - 300g) when compared to ground controls show similar growth (mean growth per day g, plus or minus SD; flight 5.4 plus or minus 2.0, ground 5.9 plus or minus 2.1). Current AEMs use incandescent lighting (approx. 5 Lux). Light emitting diode (LED) arrays are being developed that provide a similar light environment as cool-white fluorescent sources (40 Lux). In ground based tests (12L:12D), these arrays show normal circadian entrainment (Tau = 24.0) with respect to the behavioral responses, measured (drinking, eating, gross locomotor activity). A newly developed ultra high efficiency filter system can entrap all feces, urine and odors from 6 rats for 24 days. Maximum sound level exposure limits (per octave band 22 Hz - 179 kHz) have been established. The AEM will effectively support animal experiments in microgravity.

  8. Scanning tunnelling microscope light emission: Finite temperature current noise and over cut-off emission.

    Science.gov (United States)

    Kalathingal, Vijith; Dawson, Paul; Mitra, J

    2017-06-14

    The spectral distribution of light emitted from a scanning tunnelling microscope junction not only bears its intrinsic plasmonic signature but is also imprinted with the characteristics of optical frequency fluc- tuations of the tunnel current. Experimental spectra from gold-gold tunnel junctions are presented that show a strong bias (V b ) dependence, curiously with emission at energies higher than the quantum cut-off (eV b ); a component that decays monotonically with increasing bias. The spectral evolution is explained by developing a theoretical model for the power spectral density of tunnel current fluctuations, incorporating finite temperature contribution through consideration of the quantum transport in the system. Notably, the observed decay of the over cut-off emission is found to be critically associated with, and well explained in terms of the variation in junction conductance with V b . The investigation highlights the scope of plasmon-mediated light emission as a unique probe of high frequency fluctuations in electronic systems that are fundamental to the electrical generation and control of plasmons.

  9. Changing the Currents of Water Management | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Avoiding a catastrophic water shortage in the coming decades will require finding ... a water crisis, 40 are in the Middle East, North Africa, or sub-Saharan Africa. ... the availability of water, in dryer regions water conservation has always been a ...

  10. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Greenwood, M.S.; Heasler, P.G.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1993-11-01

    The Evaluation and Improvement of NDE Reliability for Inservice inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs);using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel and other components inspected in accordance with Section XI of the ASME Code. This is a programs report covering the programmatic work from April 1992 through September 1992

  11. Nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1991-08-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section 6 of the ASME Code. This is a progress report covering the pro grammatic work from April 1989 through September 1989. 12 refs., 4 figs. 5 tabs

  12. Sources of neutronics data involving thorium of 233U and light water moderation

    International Nuclear Information System (INIS)

    Davenport, L.C.

    1978-11-01

    A literature search has been conducted to locate sources of neutronics data for light water moderated systems which contain thorium and/or uranium-233. It is concluded that insufficient data is currently available to validate neutronics design methods for licensing the 233 UO 2 -ThO 2 fuel cycle in light water reactors. A summary of the neutronics data sources found is reported in this document. These sources include critical and exponential experiments with lattices of fuel rods containing 233 U + Th or 235 U + Th. A few experiments using homogeneous aqueous solutions of 233 UO 2 (NO 3 ) 2 or 233 UO 2 F 2 are also included. The only critical lattice data using both 233 U and Th came from the LWBR program. All these experiments were zoned radially and in most cases axially also. Geometrically clean lattice critical data were measured for the CETR and TUPE programs. Both series used 235 UO 2 -ThO 2 pellets. A series of 21 exponential experiments using 3% 233 UO 2 - 97% ThO 2 fuel vibratory compacted to 92% of theoretical density in Zircaloy-2 tubing was performed at BNL using both unpoisoned and boric acid poisoned H 2 O moderator. For completeness, homogeneous systems are listed in which basic neutronics data have been measured. However, it is expected that most data concerning homogeneous systems will be applied to criticality safety problems rather than neutronics methods validation

  13. Nondestructive examination (NDE) reliability for inservice inspection of light waters reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1989-11-01

    Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from April 1988 through September 1988. 33 refs., 70 figs., 12 tabs

  14. Evaluation and improvement of nondestructive evaluation reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Bates, D.J.; Deffenbaugh, J.D.; Good, M.S.; Heasler, P.G.; Mart, G.A.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Van Fleet, L.G.

    1987-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection (ISI) of Light Water Reactors (NDE Reliability) Program at Pacific Northwest Laboratory (PNL) was established to determine the reliability of current ISI techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this NRC program are to: determine the reliability of ultrasonic ISI performed on commercial light-water reactor (LWR) primary systems, using probabilistic fracture mechanics analysis, determine the impact of NDE unreliability on system safety and determine the level of inspection reliability required to ensure a suitably low failure probability, evaluate the degree of reliability improvement that could be achieved using improved and advanced NDE techniques, based on material properties, service conditions, and NDE uncertainties, recommend revisions to ASME Code, Section XI, and Regulatory Requirements that will ensure suitably low failure probabilities. The scope of this program is limited to ISI of primary systems; the results and recommendations may also be applicable to Class II piping systems

  15. Nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1989-10-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvement that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements based on material properties, service conditions, and NDE capabilities and uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1987 through March 1988. 21 refs., 28 figs., 2 tabs

  16. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR's); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991

  17. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  18. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.

    1993-09-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from October 1991 through March 1992

  19. Past, current and future water footprints, water scarcity and virtual water flows in China

    NARCIS (Netherlands)

    Zhuo, L.

    2016-01-01

    The increasing water consumption as a result of population growth and economic development, especially in fast growing developing countries, puts an increasing strain on the sustainable use of the globe’s finite freshwater resources and poses a key challenge for the future. The objective of the

  20. Making C4 crops more water efficient under current and future climate: Tradeoffs between carbon gain and water loss

    Science.gov (United States)

    Srinivasan, V.; Pignon, C.

    2017-12-01

    C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their

  1. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  2. Environmentally assisted cracking in light water reactors. Semiannual report, October 1993--March 1994. Volume 18

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.; Erck, R.A.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K.

    1995-03-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1993 to March 1994. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns in operating plants and as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels, (b) EAC of wrought and cast austenitic stainless steels (SSs), and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS after accumulation of relatively high fluence. Fatigue tests have been conducted on A302-Gr B low-alloy steel to verify whether the current predictions of modest decreases of fatigue life in simulated pressurized water reactor water are valid for high-sulfur heats that show environmentally enhanced fatigue crack growth rates. Additional crack growth data were obtained on fracture-mechanics specimens of austenitic SSs to investigate threshold stress intensity factors for EAC in high-purity oxygenated water at 289 degrees C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating boiling water reactors were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements, which are not specified in the ASTM specifications, may contribute to IASCC of solution-annealed materials

  3. Light water reactor severe accident seminar. Seminar presentation manual

    International Nuclear Information System (INIS)

    2004-01-01

    The topics covered in this manual on LWR severe accidents were: Evolution of Source Term Definition and Analysis, Current Position on Severe Accident Phenomena, Current Position on Fission Product Behavior, Overview of Software Models Used in Severe Accident Analysis, Overview of Plant Specific Source Terms and Their Impact on Risk, Current Applications of Severe Accident Analysis, and Future plans

  4. Light water reactor severe accident seminar. Seminar presentation manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The topics covered in this manual on LWR severe accidents were: Evolution of Source Term Definition and Analysis, Current Position on Severe Accident Phenomena, Current Position on Fission Product Behavior, Overview of Software Models Used in Severe Accident Analysis, Overview of Plant Specific Source Terms and Their Impact on Risk, Current Applications of Severe Accident Analysis, and Future plans.

  5. A waveshifter light collector for a water Cherenkov detector

    International Nuclear Information System (INIS)

    Claus, R.; Sulak, L.; Ciocio, A.; Stone, J.L.; Seidel, S.; Casper, D.; Bionta, R.M.; Park, H.S.; Wuest, C.; Blewitt, G.; Bratton, C.B.; Dye, S.T.; Learned, J.G.; Errede, S.; Foster, G.W.; Gajewski, W.; Matthews, J.; Sinclair, D.; Thornton, G.; Van Der Velde, J.C.; Ganezer, K.S.; Haines, T.J.; Kropp, W.R.; Price, L.; Reines, F.; Schultz, J.; Sobel, H.W.; Svoboda, R.; Goldhaber, M.; Jones, T.W.; Kielczewska, D.; Losecco, J.M.; Shumard, E.

    1987-01-01

    A device has been developed which is capable of doubling the light collection capability of a 5 inch hemispherical photomultiplier tube. Known as a 'waveshifter plate', its geometry is adaptable to various applications. Its marginal cost is small with respect to that of a phototube, it is readily removable, and it has minimum effect upon dark noise and timing resolution. (orig.)

  6. Report of analyses for light hydrocarbons in ground water

    International Nuclear Information System (INIS)

    Dromgoole, E.L.

    1982-04-01

    This report contains on microfiche the results of analyses for methane, ethane, propane, and butane in 11,659 ground water samples collected in 47 western and three eastern 1 0 x 2 0 quadrangles of the National Topographic Map Series (Figures 1 and 2), along with a brief description of the analytical technique used and some simple, descriptive statistics. The ground water samples were collected as part of the National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance. Further information on the ground water samples can be obtained by consulting the NURE data reports for the individual quadrangles. This information includes (1) measurements characterizing water samples (pH, conductivity, and alkalinity), (2) physical measurements, where applicable (water temperature, well description, and other measurements), and (3) elemental analyses

  7. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    International Nuclear Information System (INIS)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard; Szilard, Ronaldo

    2016-01-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly ''over-design'' portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as ''safety margin.'' Historically, specific safety margin provisions have been formulated, primarily based on ''engineering judgment.''

  8. Parametric study on thermal-hydraulic characteristics of high conversion light water reactor

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Fujii, Sadao.

    1988-11-01

    To assess the feasibility of high conversion light water reactors (HCLWRs) from the thermal-hydraulic viewpoint, parametric study on thermal-hydraulic characteristics of HCLWR has been carried out by using a unit cell model. It is assumed that a HCLWR core is contained in a current 1000 MWe PWR plant. At the present study, reactor core parameters such as fuel pin diameter, pitch, core height and linear heat rate are widely and parametrically changed to survey the relation between these parameters and the basic thermal-hydraulic characteristics, i.e. maximum fuel temperature, minimum DNBR, reduction of reactor thermal output and so on. The validity of the unit cell model used has been ensured by comparison with the result of a subchannel analysis carried out for a whole core. (author)

  9. Problem statement: international safeguards for a light-water reactor fuels reprocessing plant

    International Nuclear Information System (INIS)

    Shipley, J.P.; Hakkila, E.A.; Dietz, R.J.; Cameron, C.P.; Bleck, M.E.; Darby, J.L.

    1979-03-01

    This report considers the problem of developing international safeguards for a light-water reactor (LWR) fuel reprocessing/conversion facility that combines the Purex process with conversion of plutonium nitrate to the oxide by means of plutonium (III) oxalate precipitation and calcination. Current international safeguards systems are based on the complementary concepts of materials accounting and containment and surveillance, which are designed to detect covert, national diversion of nuclear material. This report discusses the possible diversion threats and some types of countermeasures, and it represents the first stage in providing integrated international safeguards system concepts that make optimum use of available resources. The development of design methodology to address this problem will constitute a significant portion of the subsequent effort. Additionally, future technology development requirements are identified. 8 figures, 1 table

  10. Study of radiation damage of steels for light water pressure vessels at UJV

    International Nuclear Information System (INIS)

    Vacek, N.; Stoces, B.

    1980-01-01

    Preoperational determination of radiation resistance of pressure vessel steels is performed at accelerated neutron exposure in a test or materials research reactor. The results obtained at accelerated and operating exposure are not fully identical and surveillance bodies are therefore used manufactured from the pressure vessel material. Currently, the following steels are used for the manufacture of light water reactor pressure vessels: Mn-Mo-Ni (ASTM-A533-B, ASTM-A508), Cr-Mo-V (15Kh2M1FA). At UJV Rez, for irradiation Chanca-M probes imported from France are used featuring electric temperature control. Almost identical radiation embrittlement was measured for all three steels after irradiation with a neutron fluence of 3x10 23 n.m -2 at a temperature of 290 degC. (H.S.)

  11. Technology, safety and costs of decommissioning reference light water reactors following postulated accidents

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1990-12-01

    The estimated costs for post-accident cleanup at the reference BWR (developed previously in NUREG/CR-2601, Technology, Safety and Costs of Decommissioning Reference Light Water Reactors Following Postulated Accidents) are updated to January 1989 dollars in this report. A simple formula for escalating post-accident cleanup costs is also presented. Accident cleanup following the most severe accident described in NUREG/CR-2601 (i.e., the Scenario 3 accident) is estimated to cost from $1.22 to 1.44 billion, in 1989 dollars, for assumed escalation rates of 4% or 8% in the years following 1989. The time to accomplish cleanup remained unchanged from the 8.3 years originally estimated. No reanalysis of current information on the technical aspects of TMI-2 cleanup has been performed. Only the cost of inflation has been evaluated since the original PNL analysis was completed. 32 refs., 12 tabs

  12. Regulation of nuclear power: the case of the light water reactor

    International Nuclear Information System (INIS)

    Rolph, E.

    1977-06-01

    This report is one of a series of documents that trace the history of the development and commercialization of the light water reactor in the expectation that a better appreciation of the development and commercialization process of this complex technology could be instructive in understanding the regulatory and economic obstacles currently slowing diffusion of that technology and the problems that may be encountered in similar large-scale, high-technology development projects. This regulatory history of the Atomic Energy Commission chronicles the significant events between 1954, when the AEC was given responsibility for regulating nuclear power plants, and 1974, when the AEC was absorbed by the Energy Research and Development Administration and the Nuclear Regulatory Commission. It identifies the origins of regulatory problems that have arisen during the period and describes how the AEC dealt with them. The history is based, for the most part, on primary source documents: hearings, news reports, and AEC documents

  13. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  14. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  15. Sources of radioactive waste from light-water reactors and their physical and chemical properties

    International Nuclear Information System (INIS)

    Bell, M.J.; Collins, J.T.

    1979-01-01

    The general physical and chemical properties of waste streams in light-water reactors (LWRs) are described. The principal mechanisms for release and the release pathways to the environment are discussed. The calculation of liquid and gaseous source terms using one of the available models is presented. These calculated releases are compared with observed releases from operating LWRs. The computerized mathematical model used is the GALE Code which is the Nuclear Regulatory Commission (NRC) staff's model for calculating source terms for effluents from LWRs (USNRC76a, USNRC76b). Programs currently being conducted at operating reactors by the NRC, Electric Power Research Institute, and various utilities to better define the characteristics of waste streams and the performance of radwaste process equipment are described

  16. Injection and detection of a spin-polarized current in a light-emitting diode

    Science.gov (United States)

    Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W.

    1999-12-01

    The field of magnetoelectronics has been growing in practical importance in recent years. For example, devices that harness electronic spin-such as giant-magnetoresistive sensors and magnetoresistive memory cells-are now appearing on the market. In contrast, magnetoelectronic devices based on spin-polarized transport in semiconductors are at a much earlier stage of development, largely because of the lack of an efficient means of injecting spin-polarized charge. Much work has focused on the use of ferromagnetic metallic contacts, but it has proved exceedingly difficult to demonstrate polarized spin injection. More recently, two groups have reported successful spin injection from an NiFe contact, but the observed effects of the spin-polarized transport were quite small (resistance changes of less than 1%). Here we describe a different approach, in which the magnetic semiconductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve injection efficiencies of 90% spin-polarized current into a non-magnetic semiconductor device. The device used in this case is a GaAs/AlGaAs light-emitting diode, and spin polarization is confirmed by the circular polarization state of the emitted light.

  17. More recent developments for the ultrasonic testing of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Seiger, H.; Engl, G.

    1976-01-01

    The development of an ultrasonic testing method for the inspection from the outside of the areas close to the cladding of the spherical fields of holes of light water reactor pressure vessels is described

  18. Catalogue and classification of technical safety rules for light-water reactors and reprocessing plants

    International Nuclear Information System (INIS)

    Bloser, M.; Fichtner, N.; Neider, R.

    1975-08-01

    This report on the cataloguing and classification of technical rules for land-based light-water reactors and reprocessing plants contains a list of classified rules. The reasons for the classification system used are given and discussed

  19. Nuclear calculation methods for light water moderated reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1961-02-01

    This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)

  20. Recent advances in severe accident technology - direct containment heating in advanced light water reactors

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1993-01-01

    The issues affecting high-pressure melt ejection (HPME) and the consequential containment pressurization from direct containment heating (DCH), as they affect advanced light water reactors (ALWRs), specifically advanced pressurized water reactors (APWRs), were reviewed by the U.S. Department of Energy Advanced Reactor Severe Accident Program (ARSAP). Recommendations from ARSAP regarding the design of APWRs to minimize DCH are embodied within the Electric Power Research Institute ALWR Utility Requirements Document, which specifies (a) a large, strong containment; (b) an in-containment refueling water storage tank; (c) a reactor cavity configuration that minimizes energy transport to the containment atmosphere; and (d) a reactor coolant system depressurization system. Experimental and analytical efforts, which have focused on current-generation plants, and analyses for APWRs were reviewed. Although DCH is a subject of continuous research and considerable uncertainties remain, it is the judgment of the ARSAP that reactors complying with the recommended design requirements would have a low probability of early containment failure due to HPME and DCH

  1. Light Refraction by Water as a Rationale for the Poggendorff Illusion

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    2017-01-01

    The Poggendorff illusion in its classical form of parallel lines interrupting a transversal is viewed from the perspective of being related to the everyday experience of observing the light refraction in water. It is argued that if one considers a transversal to be a light ray in air and the para...

  2. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder

  3. 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films

    KAUST Repository

    Shaheen, Basamat

    2016-03-26

    We demonstrate, for the first time, the synthesis of highly ordered niobium oxynitride microcones as an attractive class of materials for visible-light-driven water splitting. As revealed by the ultraviolet photoelectron spectroscopy (UPS), photoelectrochemical and transient photocurrent measurements, the microcones showed enhanced performance (~1000% compared to mesoporous niobium oxide) as photoanodes for water splitting with remarkable stability and visible light activity. © 2016 Elsevier B.V. All rights reserved.

  4. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  5. Environmentally assisted cracking in light water reactors annual report January - December 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

    2007-08-31

    This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data

  6. Materials Degradation in Light Water Reactors: Life After 60,

    International Nuclear Information System (INIS)

    Busby, Jeremy T; Nanstad, Randy K; Stoller, Roger E; Feng, Zhili; Naus, Dan J

    2008-01-01

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the key issue with materials aging and cable/piping as the top concerns for plant reliability. Materials degradation within a nuclear power plant is very complex. There are many different types of materials within the reactor itself: over 25 different metal alloys can be found with can be found within the primary and secondary systems, not to mention the concrete containment vessel, instrumentation and control, and other support facilities. When this diverse set of materials is placed in the complex and harsh environment coupled with load, degradation over an extended life is indeed quite complicated. To address this issue, the USNRC has developed a Progressive Materials Degradation Approach (NUREG/CR-6923). This approach is intended to develop a foundation for appropriate actions to keep materials degradation from adversely impacting component integrity and safety and identify materials and locations where degradation can reasonably be expected in the future. Clearly, materials degradation will impact reactor reliability, availability, and potentially, safe operation. Routine surveillance and component replacement can mitigate these factors, although failures still occur. With reactor life extensions to 60 years or beyond or power uprates, many components must tolerate the reactor environment for even longer times. This may increase

  7. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  8. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    International Nuclear Information System (INIS)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-01-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  9. Semiconductor photocatalysts for water oxidation: current status and challenges.

    Science.gov (United States)

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.

  10. Watch: Current knowledge of the terrestrial Global Water Cycle"

    NARCIS (Netherlands)

    Harding, R.; Best, M.; Hagemann, S.; Kabat, P.; Tallaksen, L.M.; Warnaars, T.; Wiberg, D.; Weedon, G.P.; Lanen, van H.A.J.; Ludwig, F.; Haddeland, I.

    2011-01-01

    Water-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and

  11. Radiative transfer modeling of upwelling light field in coastal waters

    International Nuclear Information System (INIS)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan

    2013-01-01

    Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters. -- Highlights: ► RT model with depth-dependent IOPs and modified bottom boundary conditions provides accurate L u profiles in coastal waters. ► The modified phase function model will be useful for coastal waters. ► An inter-comparison with measured upwelling radiance gives merits of the

  12. Further improvement in the light output power of InGaN-based light emitting diodes by reflective current blocking design

    International Nuclear Information System (INIS)

    Tsai, Chun-Fu; Su, Yan-Kuin; Lin, Chun-Liang

    2011-01-01

    In this study, the fabrication and characterization of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with further improvement by the design of a reflective current blocking layer (CBL) were described, and these are demonstrated to be an inexpensive and feasible way for improving the performance of LEDs. With the reflective CBL, not only was the injected current forced to spread outside instead of flowing directly downward under a p-pad, but the light generated from the active region could also be extracted outside of the LED by reflection under the p-pad. At 20 mA, as compared to the conventional LED, the light output power of the LEDs with the normal and reflective CBL can be increased by 15.7% and 25.8%, respectively. We found that the forward voltages of the LEDs with CBL structure were both about 3.7 V at 20 mA, which was slightly higher than that of the conventional LED (3.6 V). In our experiment, the further increase in the light output power of the reflective CBL LED could be attributed to more current injection into the light-emitting active region outside of the p-pad by the CBL and a reduction in optical absorption at the p-pad with more extraction by the reflective design

  13. Water cooling of high power light emitting diode

    DEFF Research Database (Denmark)

    Sørensen, Henrik

    2012-01-01

    The development in light technologies for entertainment is moving towards LED based solutions. This progress is not without problems, when more than a single LED is used. The amount of generated heat is often in the same order as in a conventional discharge lamp, but the allowable operating...... temperature is much lower. In order to handle the higher specific power (W/m3) inside the LED based lamps cold plates were designed and manufactured. 6 different designs were analyzed through laboratory experiments and their performances were compared. 5 designs cover; traditional straight mini channel, S...

  14. Methodology of fuel rod design for pressurized light water reactors

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  15. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  16. Study of the light emitted in the moderation of a heavy-water pile

    International Nuclear Information System (INIS)

    Breton, D.

    1958-06-01

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10 6 photons/cm 2 of water, when the pile power equals 1 watt. (author) [fr

  17. Accident tolerant high-pressure helium injection system concept for light water reactors

    International Nuclear Information System (INIS)

    Massey, Caleb; Miller, James; Vasudevamurthy, Gokul

    2016-01-01

    Highlights: • Potential helium injection strategy is proposed for LWR accident scenarios. • Multiple injection sites are proposed for current LWR designs. • Proof-of-concept experimentation illustrates potential helium injection benefits. • Computational studies show an increase in pressure vessel blowdown time. • Current LOCA codes have the capability to include helium for feasibility calculations. - Abstract: While the design of advanced accident-tolerant fuels and structural materials continues to remain the primary focus of much research and development pertaining to the integrity of nuclear systems, there is a need for a more immediate, simple, and practical improvement in the severe accident response of current emergency core cooling systems. Current blowdown and reflood methodologies under accident conditions still allow peak cladding temperatures to approach design limits and detrimentally affect the integrity of core components. A high-pressure helium injection concept is presented to enhance accident tolerance by increasing operator response time while maintaining lower peak cladding temperatures under design basis and beyond design basis scenarios. Multiple injection sites are proposed that can be adapted to current light water reactor designs to minimize the need for new infrastructure, and concept feasibility has been investigated through a combination of proof-of-concept experimentation and computational modeling. Proof-of-concept experiments show promising cooling potential using a high-pressure helium injection concept, while the developed choked-flow model shows core depressurization changes with added helium injection. Though the high-pressure helium injection concept shows promise, future research into the evaluation of system feasibility and economics are needed.Classification: L. Safety and risk analysis

  18. Current status of regulatory aspects relating to water chemistry in Japanese NPPs

    International Nuclear Information System (INIS)

    Sato, Masatoshi

    2014-01-01

    In nuclear power plants, water chemistry of cooling water is carefully monitored and controlled to keep integrity of structures, systems and components, and to reduce occupational radiation exposures. As increasing demand for advanced application of light water cooled reactors, water chemistry control plays more important roles on plant reliability. The road maps on R and D for water chemistry of nuclear power systems have been proposed along with promotion of R and D related water chemistry in Japan. In academic and engineering societies, non-governmental standards for water chemistry are going to be established. In the present paper, recent trends of water chemistry in Japan have been surveyed. The effects of water chemistry on plant safety and radiation exposures have been discussed. In addition, possible contributions of regulation regarding water chemistry control have been confirmed. Major water chemistry regulatory aspects relating to reactor safety and radiation safety are also outlined in this paper. (author)

  19. Separation setup for the light water detritiation process in the water-hydrogen system based on the membrane contact devices

    International Nuclear Information System (INIS)

    Rozenkevich, M. B.; Rastunova, I. L.; Prokunin, S. V.

    2008-01-01

    Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafion-type membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm 2 of the membrane and 10 cm 3 of the catalyst. The column is washed by tritium free light water (L H2O ) and the tritium-containing flow (F HTO ) feeds the electrolyser at λ = G H2 /L H2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa. (authors)

  20. Accident Tolerant Fuel Concepts for Light Water Reactors. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-06-01

    Nuclear fuel is a highly complex material that has been subject to continuous development over the past 40 years and has reached a stage where it can be safely and reliably irradiated up to 65 GWd/tU in commercial nuclear reactors. During this time, there have been many improvements to the original designs and materials used. However, the basic design of uranium oxide fuel pellets clad with zirconium alloy tubing has remained the fuel choice for the vast majority of commercial nuclear power plants. Severe accidents, such as those at the Three Mile Island and Fukushima Daiichi have shown that under such extreme conditions, nuclear fuel will fail and the high temperature reactions between zirconoi alloys and water will lead to the generation of hydrogen, with the potential for explosions to occur, daming the plant further. Recognizing that the current fuel designs are vulnerable to severe accident conditions, tehre is renewed interesst in alternative fuel designs that would be more resistant to fuel failure and hydrogen production. Such new fuel designs will need to be compatible with existing fuel and reactor systems if they are to be utilized in the current reactor fleet and in current new build designs, but there is also the possibility of new designs for new reactor systems. This publication provides a record of the Technical Meeting on Accident Tolerant Fuel Concepts for Light Water Reactors, held at Oak Ridge National Laboratories (ORNL), United States of America, 13-16 October 2014, to consider the early stages of research and development into accident tolerant fuel. There were 45 participants from 10 countries taking part in the meeting, with 32 papers organized into 7 sessions, of which 27 are included in this publication. This meeting is part of a wider investigation into such designs, and it is anticipated that further Technical Meetings and research programmes will be undertaken in this field

  1. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    Science.gov (United States)

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  2. Water Recycling via Aquifers for Sustainable Urban Water Quality Management: Current Status, Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Elise Bekele

    2018-04-01

    Full Text Available Managed aquifer recharge (MAR is used worldwide in urban environments to replenish groundwater to provide a secure and sustainable supply of potable and non-potable water. It relies on natural treatment processes within aquifers (i.e., filtration, sorption, and degradation, and in some cases involves infiltration through the unsaturated zone to polish the given source water, e.g., treated wastewater, stormwater, or rainwater, to the desired quality prior to reuse. Whilst MAR in its early forms has occurred for millennia, large-scale schemes to replenish groundwater with advanced treated reclaimed water have come to the fore in cities such as Perth, Western Australia, Monterey, California, and Changwon, South Korea, as water managers consider provision for projected population growth in a drying climate. An additional bonus for implementing MAR in coastal aquifers is assisting in the prevention of seawater intrusion. This review begins with the rationale for large-scale MAR schemes in an Australian urban context, reflecting on the current status; describes the unique benefits of several common MAR types; and provides examples from around the world. It then explores several scientific challenges, ranging from quantifying aquifer removal for various groundwater contaminants to assessing risks to human health and the environment, and avoiding adverse outcomes from biogeochemical changes induced by aquifer storage. Scientific developments in the areas of water quality assessments, which include molecular detection methods for microbial pathogens and high resolution analytical chemistry methods for detecting trace chemicals, give unprecedented insight into the “polishing” offered by natural treatment. This provides opportunities for setting of compliance targets for mitigating risks to human health and maintaining high performance MAR schemes.

  3. Petal abscission in rose flowers: effects of water potential, light intensity and light quality

    NARCIS (Netherlands)

    Doorn, van W.G.; Vojinovic, A.

    1996-01-01

    Petal abscission was studied in roses (Rosa hybrida L.), cvs. Korflapei (trade name Frisco), Sweet Promise (Sonia) and Cara Mia (trade name as officially registered cultivar name). Unlike flowers on plants in greenhouses, cut flowers placed in water in the greenhouse produced visible symptoms of

  4. Dual pressurized light water reactor producing 2000 M We

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The dual unit optimizer 2000 M We (Duo2000) is proposed as a new design concept for large nuclear power plant. Duo is being designed to meet economic and safety challenges facing the 21 century green and sustainable energy industry. Duo2000 has two nuclear steam supply systems (NSSS) of the unit nuclear optimizer (Uno) pressurized water reactor (PWR) in a single containment so as to double the capacity of the plant. Uno is anchored to the optimized power reactor 1000 M We (OPR1000) of the Korea Hydro and Nuclear Power Co., Ltd. The concept of Duo can be extended to any number of PWRs or pressurized heavy water reactors (PHWR s), or even boiling water reactor (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. In particular, since it is required that the small and medium sized reactors (SMRs) be built as units, the concept of Duo2000 will apply to SMRs as well. With its in-vessel retention as severe accident management strategy, Duo can not only put the single most querulous PWR safety issue to end, but also pave ways to most promising large power capacity dispensing with huge redesigning cost for generation III + nuclear systems. The strengths of Duo2000 include reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting NSSS. The technology can further be extended to coupling modular reactors as dual, triple, or quadruple units to increase their economics, thus accelerating the commercialization as well as the customization of SMRs. (Author)

  5. Operational limitations of light water reactors relating to fuel performance

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  6. An optimized power conversion system concept of the integral, inherently-safe light water reactor

    International Nuclear Information System (INIS)

    Memmott, Matthew J.; Wilding, Paul R.; Petrovic, Bojan

    2017-01-01

    Highlights: • Three power conversion systems (PCS) for the I"2S-LWR are presented. • An optimization analyses was performed to evaluate these PCS alternatives. • The ideal PCS consists of 5 turbines, and obtains an overall efficiency of 35.7%. - Abstract: The integral, inherently safe light water reactor (I"2S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I"2S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I"2S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I"2S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.

  7. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  8. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  9. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels.

  10. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    International Nuclear Information System (INIS)

    2002-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels

  11. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  12. Characterization of 14C in Swedish light water reactors.

    Science.gov (United States)

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  13. Aging and life extension of major light water reactor components

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.

    1993-01-01

    An understanding of the aging degradation of the major pressurized and boiling water reactor structures and components is given. The design and fabrication of each structure or component is briefly described followed by information on the associated stressors. Interactions between the design, materials and various stressors that cause aging degradation are reviewed. In many cases, aging degradation problems have occurred, and the plant experience to date is analyzed. The discussion summarize the available aging-related information and are supported with extensive references, including references to US Nuclear Regulatory Commission (USNRC) documents, Electric Power Research Institute reports, US and international conference proceedings and other publications

  14. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the pressurized water reactor (PWR) for use in the naval reactor program and the subsequent construction and operation of the nuclear power plant at Shippingport, Pennsylvania in 1957. The development of the boiling water reactor (BWR) in 1954 and its selection for the plant at Dresden, Illinois in 1959 established this concept as the other major reactor type in the US nuclear power program. The subsequent growth profile is presented, leading to 31 PWR's and 23 BWR's currently in operation as well as to plants in the planning and construction phase. A significant operating record has been accumulated concerning the availability of each of these reactor types as determined by: (1) outage for refueling, (2) component reliability, (3) maintenance requirements, and (4) retrofitting required by government regulation. In addition, the use and performance of BWR's and PWR's in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to assure effective safeguards at nuclear power installations. Safeguards measures currently in place are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring to verify that results are within the limits established in the licensing process. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. The PWR and BWR Fuel Cycle is examined in terms of: (1) fuel burnup experience and prospects for improvement, (2) the status and outlook for natural uranium resources, (3) enrichment capacity, (4) reprocessing and recycle, and the interrelationships among the latter three factors. High level waste management currently involving on-site storage of spent fuel is discussed

  15. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  16. Revised reactor accident source terms in the U.S. and implementation for light water reactors

    International Nuclear Information System (INIS)

    Soffer, L.; Lee, J.Y.

    1992-01-01

    Current NRC reactor accident source terms used for licensing are contained in Regulatory Guides 1.3 and 1.4 and specify that 100 % of the core inventory of noble gases and 25 % of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental (I 2 ) iodine. These assumptions have strongly affected present nuclear plant designs. Severe accident research results have confirmed that although the current source term is very substantial and has resulted in a very high level of plant capability, the present source term is no longer compatible with a realistic understanding of severe accidents. The NRC has issued a proposed revision of the reactor accident source terms as part of several regulatory activities to incorporate severe accident insights for future plants. A revision to 10 CFR 100 is also being proposed to specify site criteria directly and to eliminate source terms and doses for site evaluation. Reactor source terms will continue to be important in evaluating plant designs. Although intended primarily for future plants, existing and evolutionary power plants may voluntarily apply revised accident source term insights as well in licensing. The proposed revised accident source terms are presented in terms of fission product composition, magnitude, timing and iodine chemical form. Some implications for light water reactors are discussed. (author)

  17. An innovative fuel design concept for improved Light Water Reactor performance and safety

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1993-01-01

    The primary goal of this research is to develop a new fuel design which will have improved thermal/mechanical performance characteristics greatly superior to current thermal and mechanical design performance. The mechanical/thermal constraints define the lifetime of the fuel, the maximum power at which the fuel can be operated, the probability of fuel failure over core lifetime, and the integrity of a core during a transient excursion. The thermal/mechanical limits act to degrade fuel integrity when they are violated. The purpose of this project is to investigate a novel design for light water reactor fuel which will extend fuel performance limits and improve reactor safety even further than is currently achieved. This project is investigating liquid metal bonding of LWR fuel in order to radically decrease fuel centerline temperatures which has major performance and safety benefits. The project will verify the compatibility of the liquid metal bond with both the fuel pellets and cladding material, verify the performance enhancement features of the new design over the fuel lifetime, and verify the economic fabricability of the concept and will show how this concept will benefit the LWR nuclear industry

  18. Development of neutron irradiation embrittlement correlation of reactor pressure vessel materials of light water reactors

    International Nuclear Information System (INIS)

    Soneda, Naoki; Dohi, Kenji; Nomoto, Akiyoshi; Nishida, Kenji; Ishino, Shiori

    2007-01-01

    A large amount of surveillance data of the RPV embrittlement of the Japanese light water reactors have been compiled since the current Japanese embrittlement correlation has been issued in 1991. Understanding on the mechanisms of the embrittlement has also been greatly improved based on both experimental and theoretical studies. CRIEPI and the Japanese electric power utilities have started research project to develop a new embrittlement correlation method, where extensive study of the microstructural analyses of the surveillance specimens irradiated in the Japanese commercial reactors has been conducted. The new findings obtained from the experimental study are that the formation of solute-atom clusters with little or no copper is responsible for the embrittlement in low-copper materials, and that the flux effect exists especially in high-copper materials and this is supported by the difference in the microstructure of the high-copper materials irradiated at different fluxes. Based on these new findings, a new embrittlement correlation method is formulated using rate equations. The new methods has higher prediction capability than the current Japanese embrittlement correlation in terms of smaller standard deviation as well as smaller mean value of the prediction error. (author)

  19. Impact of different moderator ratios with light and heavy water cooled reactors in equilibrium states

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2006-01-01

    As an issue of sustainable development in the world, energy sustainability using nuclear energy may be possible using several different ways such as increasing breeding capability of the reactors and optimizing the fuel utilization using spent fuel after reprocessing as well as exploring additional nuclear resources from sea water. In this present study the characteristics of light and heavy water cooled reactors for different moderator ratios in equilibrium states have been investigated. The moderator to fuel ratio (MFR) is varied from 0.1 to 4.0. Four fuel cycle schemes are evaluated in order to investigate the effect of heavy metal (HM) recycling. A calculation method for determining the required uranium enrichment for criticality of the systems has been developed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of SRAC 2000 code using nuclear data library from the JENDL 3.2. The results show a thermal spectrum peak appears for light water coolant and no thermal peak for heavy water coolant along the MFR (0.1 ≤ MFR ≤ 4.0). The plutonium quality can be reduced effectively by increasing the MFR and number of recycled HM. Considering the effect of increasing number of recycled HM; it is also effective to reduce the uranium utilization and to increase the conversion ratio. trans-Plutonium production such as americium (Am) and curium (Cm) productions are smaller for heavy water coolant than light water coolant. The light water coolant shows the feasibility of breeding when HM is recycled with reducing the MFR. Wider feasible area of breeding has been obtained when light water coolant is replaced by heavy water coolant

  20. ANS shielding standards for light-water reactors

    International Nuclear Information System (INIS)

    Trubey, D.K.

    1982-01-01

    The purpose of the American Nuclear Society Standards Subcommittee, ANS-6, Radiation Protection and Shielding, is to develop standards for radiation protection and shield design, to provide shielding information to other standards-writing groups, and to develop standard reference shielding data and test problems. A total of seven published ANS-6 standards are now current. Additional projects of the subcommittee, now composed of nine working groups, include: standard reference data for multigroup cross sections, gamma-ray absorption coefficients and buildup factors, additional benchwork problems for shielding problems and energy spectrum unfolding, power plant zoning design for normal and accident conditions, process radiation monitors, and design for postaccident radiological conditions

  1. Development of safety analysis codes for light water reactor

    International Nuclear Information System (INIS)

    Akimoto, Masayuki

    1985-01-01

    An overview is presented of currently used major codes for the prediction of thermohydraulic transients in nuclear power plants. The overview centers on the two-phase fluid dynamics of the coolant system and the assessment of the codes. Some of two-phase phenomena such as phase separation are not still predicted with engineering accuracy. MINCS-PIPE are briefly introduced. The MINCS-PIPE code is to assess constitutive relations and to aid development of various experimental correlations for 1V1T model to 2V2T model. (author)

  2. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  3. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  4. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  5. Environmentally assisted cracking of light-water reactor materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1996-02-01

    Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used

  6. SARAL/Altika for inland water: current and potential applications

    Science.gov (United States)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  7. Strategic Plan for Light Water Reactor Research and Development

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R and D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R and D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R and D at addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually

  8. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R and D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10-12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I and C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy's Light Water Reactor Sustainability Program. DOE

  9. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  10. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage

    Science.gov (United States)

    Claes, Julien M.; Mallefet, Jérôme

    2010-01-01

    Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment. PMID:20410033

  11. Thorium fuel for light water reactors - reducing proliferation potential of nuclear power fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, A; Radkowski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The proliferation potential of the light water reactor fuel cycle may be significantly reduced by utilization of thorium as a fertile component of the nuclear fuel. The main challenge of Th utilization is to design a core and a fuel cycle, which would be proliferation-resistant and economically feasible. This challenge is met by the Radkowsky Thorium Reactor (RTR) concept. So far the concept has been applied to a Russian design of a 1,000 MWe pressurized water reactor, known as a WWER-1000, and designated as VVERT. The following are the main results of the preliminary reference design: * The amount of Pu contained in the RTR spent fuel stockpile is reduced by 80% in comparison with a VVER of a current design. * The isotopic composition of the RTR-Pu greatly increases the probability of pre-initiation and yield degradation of a nuclear explosion. An extremely large Pu-238 content causes correspondingly large heat emission, which would complicate the design of an explosive device based on RTR-Pu. The economic incentive to reprocess and reuse the fissile component of the RTR spent fuel is decreased. The once-through cycle is economically optimal for the RTR core and cycle. To summarize all the items above: the replacement of a standard (U-based) fuel for nuclear reactors of current generation by the RTR fuel will provide an inherent barrier for nuclear weapon proliferation. This inherent barrier, in combination with existing safeguard measures and procedures is adequate to unambiguously disassociate civilian nuclear power from military nuclear power. * The RTR concept is applied to existing power plants to assure its economic feasibility. Reductions in waste disposal requirements, as well as in natural U and fabrication expenses, as compared to a standard WWER fuel, provide approximately 20% reduction in fuel cycle (authors).

  12. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Petek, M.; Ramey, D.W.; Taylor, R.D.

    1981-01-01

    Using multiple bipolar electrolytic separation of hydrogen isotopes with Pd-25%Ag electrodes, the mathematical feasibility of this method for tritium separation was shown and experimentally verified. Separation factors were measured on single bipolar electrodes and were found to be approximately equivalent to those associated with individual ordinary electrolytic systems. Multibipolar separations were experimentally achieved in single cascaded cells in which each bipolar electrode was of equal area to others in a series arrangement. Factors measured for multibipolar H-D separation were close to the values measured in single-stage cell measurements; for H-T separation, interstage leakage reduced the measured separation factor. However, in both cases separation of sufficient magnitude was achieved to show feasibility for real application to the extraction of tritium from large-volume systems at high current density. (author)

  13. Light water reactors with a denatured thorium fuel cycle

    International Nuclear Information System (INIS)

    1978-05-01

    Discussed in this paper is the performance of denatured thorium fuel cycles in PWR plants of conventional design, such as those currently in operation or under construction. Although some improvement in U 3 O 8 utilization is anticipated in PWRs optimized explicitly for the denatured thorium fuel cycle, this paper is limited to a discussion of the performance of denatured thorium fuels in conventional PWRs and consequently the data presented is representative of the use of thorium fuel in existing PWRs or those presently under construction. In subsequent sections of this paper, the design of the PWR, its performance on the denatured thorium fuel cycle, safety, accident and environmental considerations, and technological status and R and D requirements are discussed

  14. Reliability of leak detection systems in light water reactors

    International Nuclear Information System (INIS)

    Kupperman, D.S.

    1987-01-01

    US Nuclear Regulatory Commission Guide 1.45 recommends the use of at least three different detection methods in reactors to detect leakage. Monitoring of both sump-flow and airborne particulate radioactivity is recommended. A third method can involve either monitoring of condensate flow rate from air coolers or monitoring of airborne gaseous radioactivity. Although the methods currently used for leak detection reflect the state of the art, other techniques may be developed and used. Since the recommendations of Regulatory Guide 1.45 are not mandatory, the technical specifications for 74 operating plants have been reviewed to determine the types of leak detection methods employed. In addition, Licensee Event Report (LER) Compilations from June 1985 to June 1986 have been reviewed to help establish actual capabilities for detecting leaks and determining their source. Work at Argonne National Laboratory has demonstrated that improvements in leak detection, location, and sizing are possible with advanced acoustic leak detection technology

  15. Review of coastal currents in Southern African waters

    CSIR Research Space (South Africa)

    Harris, TFW

    1978-08-01

    Full Text Available unevenly spaced. In regions where such studies were not available, recourse had to be made to ships' drift reports. Because of the nature of the data it was necessary to restrict the review, almost entirely, to surface currents. Where possible, wave...

  16. Shallow-water, nearshore current dynamics in Algoa Bay, South ...

    African Journals Online (AJOL)

    Nearshore currents play a vital role in the transport of eggs and larval stages of fish. However, little is known about their complexity and the implications for dispersal of fish larvae. The study describes the complexity of the shallow nearshore environment in eastern Algoa Bay, on the south-east coast of South Africa, and its ...

  17. Investigation into the use of water based brake fluid for light loads ...

    African Journals Online (AJOL)

    The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus· of University of Uyo and the· braking effiqiency obtained at test to its suitability for light loads. Keywords·: Water-based, Brake fluid properties, Light loads ...

  18. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Science.gov (United States)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  19. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  20. Study of plutonium recycling physics in light water reactors

    International Nuclear Information System (INIS)

    Reuss, Paul

    1979-10-01

    A stock of plutonium from the reprocessing of thermal neutron reactor fuel is likely to appear in the next few years. The use of this plutonium as fuel replacing 235 U in thermal reactors is probably more interesting than simple stock-piling storage: immobilization of a capital which moreover would deteriorate by radioactive decay of isotope 241 also fissile and present to an appreciable extend in plutonium from reprocessing (half-life 15 years); recycling, on the other hand, will supply energy without complete degradation of the stock for fast neutron reactor loads, the burned matter having been partially renewed by conversion; furthermore the use of plutonium will meet the needs created by a temporary pressure on the naturel and/or enriched uranium market. For these two reasons the recycling of plutonium in thermal neutron reactors is being considered seriously today. The present work is confined to neutronic aspects and centres mainly on pressurized water-moderated reactors, the most highly developed at present in France. Four aspects of the problem are examined: 1. the physics of a plutonium-recycling reactor special features of neutronic phenomena with respect to the 'conventional' scheme of the 235 U burning reactor; 2. calculation of a plutonium-recycling reactor: adaptation of standard methods; 3. qualification of these calculations from the viewpoint of both data and inevitable approximations; 4. the fuel cycle and particularly the equivalence of fissile matters [fr

  1. Coastdown in light water reactors as a fuel management strategy

    International Nuclear Information System (INIS)

    Lobo, L.G.

    1980-12-01

    Improved uranium utilization by means of extended burnup via routine end-of-cycle coastdown has been analyzed, with a specific focus on pressurided water reactors. Both computer and simple analytic models have been developed to determine the optimal coastdown length. Coastdown has been compared with the use of higher fuel-enrichment to achieve comparable burnup values. Temperature and Power coastdown modes were analyzed and changes in the plant thermodynamic efficiency determined. Effects on fuel integrity due to coastdown were examined using a fuel reliability code (SPEAR). Finally the effects on coastdown duration of major parameters involved in charaterizing reactor operation and the economic enviroment were examined. It was found that natural uranium savings up to 7% could be achieved in a typical application by the use of routine pre-planned coast down up to the economic optimun. If coastdown is carried out all the way up to the economic breakeven point yellowcake savings sum up to 16%. Coastdown is substantially more effective than increasing enrichment to extend cycle length without coastdown. Thermodynamic efficiency does not change appreciably during coastdown, a circumstance which greatly simplifies modeling. Coastdown was found to have no statistically significant effect on predicted fuel failure rates. Finally, simple back-of-the evenlope analytic models were found to give an excellent estimate of coastdown duration to both the optimum and breakeven points, and to correctly track the functional behavior induced by all major variables

  2. Improvement of failed fuel detection system of light water reactor

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Cho, S.W.; Lee, K.W.

    1981-01-01

    Multi-task DAAS system by utilizing PDP-11/23 computer was assembled and tested for its performances. By connecting four Ge(Li) detectors to this DAAS, test experiments were done to prove system capability for detection and analysis of any fission gases resolved in four independently sampled primary cooling water from a power reactor. Appropriate computer programs were also introduced for this application and satisfactory results were obtained. Further application of this DAAS to the quality test of fuel pins (uniform distribution of enriched uranium in fresh fuel pellets), a prototype fuel scanner system was designed, constructed and tested. Operational principle of this system is based on the determination of 235 U/ 238 U abundance ratio in pellets by precision spectrometry or gamma-rays which are emitted from a portion of fuel pellets. For the uniform scanning, rotational and traverse motions at pre-selected speeds were applied to a fuel pin under tests. A long lens magnetic beta-spectrometer of Argonne National Laboratory was transferred to KAERI and re-installed for future precision beta-gamma spectroscopic research works on short-lived fission products nuclei

  3. Study of Pu consumption in Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    1993-01-01

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE's 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology

  4. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    International Nuclear Information System (INIS)

    Rebak, Raul B.

    2014-01-01

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  5. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  6. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  7. Utilization of light water reactors for plutonium incineration

    International Nuclear Information System (INIS)

    Galperin, A.

    1995-01-01

    In this work a potential of incineration of excess Pu in LWR's is investigated. In order to maintain the economic viability of the Pu incineration option it should be carried out by the existing power plants without additional investment for plant modifications. Design variations are reduced to the fuel cycle optimization, i.e. fuel composition may be varied to achieve optimal Pu destruction. Fuel mixtures considered in this work were based either on uranium or thorium fertile materials and Pu as a fissile component. The slightly enriched U fuel cycle for a typical pressurized water reactor was considered as a reference case. The Pu content of all fuels was adjusted to assure the identical cycle length and discharged burnup values. An equilibrium cycle was simulated by performing cluster burnup calculations. The material composition data for the whole core was estimated based on the core, fuel and cycle parameters. The annual production of Pu of a standard PWR with 1100 MWe output is about 298 kg. The same core completely loaded with the MOX fuel is estimated to consume 474 kg of Pu, mainly fissile isotopes. The MOX-239 fuel type (pure Pu-239) shows a potential toreduce the initial total Pu inventory by 220 kg/year and fissile Pu inventory by 420 kg/year. TMOX and TMOX-239 are based on Th-232 as a fertile component of the fuel, instead of U-238. The amount of Pu destroyed per year for both cases is significantly higher than that of U-based fuels. Especially impressive is the reduction in fissile Pu inventory: more than 900 kg/year. (author)

  8. Status of advanced light water cooled reactor designs 1996

    International Nuclear Information System (INIS)

    1997-09-01

    The present report, which is significantly more comprehensive than the previously one, addresses the rationale and basic motivations that lead to a continuing development of nuclear technology, provides an overview of the world status of current LWRs, describes the present market situations, and identifies desired characteristics for future plants. The report also provides a detailed description of utility requirements that largely govern today's nuclear development efforts, the situation with regard to enhanced safety objectives, a country wise description of the development activities, and a technical description of the various reactor designs in a consistent format. The reactor designs are presented in two categories: (1) evolutionary concepts that are expected to be commercially available soon; and (2) innovative designs. The report addresses the main technical characteristics of each concept without assessing or evaluating them from a particular point of view (e.g. safety or economics). Additionally, the report identifies basic reference documents that can provide further information for detailed evaluations. The report closes with an outlook on future energy policy developments

  9. Status of advanced light water cooled reactor designs 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The present report, which is significantly more comprehensive than the previously one, addresses the rationale and basic motivations that lead to a continuing development of nuclear technology, provides an overview of the world status of current LWRs, describes the present market situations, and identifies desired characteristics for future plants. The report also provides a detailed description of utility requirements that largely govern today`s nuclear development efforts, the situation with regard to enhanced safety objectives, a country wise description of the development activities, and a technical description of the various reactor designs in a consistent format. The reactor designs are presented in two categories: (1) evolutionary concepts that are expected to be commercially available soon; and (2) innovative designs. The report addresses the main technical characteristics of each concept without assessing or evaluating them from a particular point of view (e.g. safety or economics). Additionally, the report identifies basic reference documents that can provide further information for detailed evaluations. The report closes with an outlook on future energy policy developments.

  10. Assessment of the accident response of a light-water-moderated breeder-reactor system: AWBA development program

    International Nuclear Information System (INIS)

    High, H.M.

    1983-05-01

    The predicted accident response for a light water moderated, thorium/U-233 fueled, seed-blanket reactor concept was assessed. The first part of the assessment compared breeder accident response with that of a current commercial pressurized water reactor design for several different types of transients. Based on these comparisons and a review of the various parameter differences between the breeder and a U-235 fueled plant, the second part of the assessment studied the breeder accident behavior in more detail, particularly in areas of potential concern. Based on the two parts of the assessment, it was concluded that the breeder accident response would be very similar to that of present commercial pressurized water reactor plants. The large Doppler and moderator reactivity coefficients of the breeder would significantly reduce the severity of many of the accidents that must be considered. It is expected that the accident response of the breeder can be shown to meet regulatory criteria

  11. Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †

    Science.gov (United States)

    Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf

    2018-01-01

    We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146

  12. Practical considerations in the use of UV light for drinking water disinfection

    International Nuclear Information System (INIS)

    Jeyanayagam, S.; Cotton, C.

    2002-01-01

    Ultraviolet (UV) light was discovered approximately 150 years ago. The first commercial UV lamp was made in the early 1900s soon followed by the manufacture of the quartz sleeve. These technological advances allowed the first application of UV light for water disinfection in 1907 in France. In the mid 1980s, UV disinfection was named as a Best available technology (BAT) for wastewater disinfection in the United States. Fueled by the recent findings that UV disinfection can inactivate key pathogens at cost effective UV doses, the drinking water industry in North America is closely investigating its application in large installations. (author)

  13. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  14. Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1980-03-01

    Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979

  15. Investigation into the Use of Water Based Brake Fluid for Light Loads

    Directory of Open Access Journals (Sweden)

    W. A. Akpan

    2012-12-01

    Full Text Available This paper addresses the possibility of using water based fluid as a brake fluid for light loads. Characterization of both standard and water based braked fluids formulated was carried out. The properties of the latter were compared with that of a standard commercial brake fluid. The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus of University of Uyo and the braking efficiency obtained attest to its suitability for light loads.

  16. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    Energy Technology Data Exchange (ETDEWEB)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  17. Light Water Reactor Sustainability Research and Development Program Plan. Fiscal Year 2009-2013

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R and D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R and D programs. The purpose of the LWRS R and D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R and D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its

  18. PWR and BWR light water reactor systems in the USA and their fuel cycle

    International Nuclear Information System (INIS)

    Crawford, W.D.

    1977-01-01

    Light water reactor operating experience in the USA can be considered to date from the choice of the PWR for use in the naval reactor programme and the subsequent construction and operation of the nuclear power plant at Shippingport in 1957. The development of the BWR in 1954 and its selection for the plant at Dresden in 1959 established this concept as the other major reactor type in the US nuclear power programme. The subsequent growth profile is presented. A significant operating record has been accumulated concerning the availability of each of these reactor types. In addition, the use and performance of BWRs and PWRs in meeting system load requirements is discussed. The growing concern regarding possible terrorist activities and other potential threats has resulted in systems and procedures designed to ensure effective safeguards at nuclear power installations; current measures are described. Environmental effects of operating plants are subject to both radiological and non-radiological monitoring. The operating results achieved and the types of modifications that have been required of operating plants by the Nuclear Regulatory Commission are reviewed. Both fuel cycles are examined in terms of: fuel burnup experience and prospects for improvement; natural uranium resources; enrichment capacity; reprocessing and recycle; and the interrelationships among the latter three factors. High-level waste management currently involving on-site storage of spent fuel is discussed in terms of available capacity and plans for expansion. The US electric utility industry viewpoint regarding an ultimate programme for waste management is outlined. Finally, the current economics and future cost trends of nuclear power plants are evaluated. (author)

  19. Filtered atmospheric venting of light water reactor containments

    International Nuclear Information System (INIS)

    Hedgran, A.; Ahlstroem, P.E.; Nilsson, L.; Persson, Aa.

    1982-11-01

    The aim of filtered venting is to improve the function of the reactor containment in connection with very severe accidents. By equipping the containment with a safety valve for pressure relief and allowing the released gases to pass through an effective filter, it should be possible to achieve a considerable protective effect. The work has involved detailed studies of the core meltdown sequence, how the molten core material runs out of the reactor vessel, what effect it has on concrete and other structures and how final cooling of the molten core material takes place. On the basis of previous Swedish studies, the project has chosen to study a filter concept that consists of a gravel bed of large volume. This filter plant shall not only retain the radioactive particles that escape from the containment through the vent line, but shall also condense the accompanying steam. After the government decided in 1981 that Barsebaeck was to be equipped with filtered venting and issued specifications regarding its performance, the project aimed at obtaining results that could be used to design and verify a plant for filtered venting at the Barsebaeck nuclear power station. As far as the other Swedish nuclear power plants at Oskarshamn, Ringhals and Forsmark are concerned, the results are only applicable to a limited extent. Additional studies are required for these nuclear power plants before the value of filtered venting can be assessed. Based on the results of experiments and analyses, the project has made a safety analysis with Barsebaeck as a reference plant in order to study how the introduction of filtered venting affects the safety level at a station. In summary, the venting function appears to entail a not insignificant reduction of risks for boiling water reactors of the Barsebaeck type. For a number of types of such very severe core accident cases, the filter design studied ensures a substantial reduction of the releases. However it has not been possible within the

  20. Minimisation of liquid radioactive operational wastes from light water reactors

    International Nuclear Information System (INIS)

    Krumpholz, Udo

    2014-01-01

    A system for decontaminating evaporator concentrates has been developed during R and D work at the Gundremmingen (KGG) nuclear power plant, by means of which accumulation of radioactive wastes can be effectively reduced. A cooling crystallization system is involved in this case, which extracts the high percentage of non-radioactive salt components from the brines through these salts being crystallised with a high level of purity and thereby being withdrawn from the nuclear disposal procedure. A method is also available in modified form for decontaminating concentrates containing boron from PWR plants. Use of cooling crystallisation renders superfluous the otherwise usual stages of waste treatment such as for example disposal scheduling, provision of repository casks (e.g. MOSAIK registered ), their transport, packing, compilation of waste package documentation, intermediate storage and final disposal. Disposal of evaporator concentrates has no longer been necessary in KGG since 1998. It has been possible to avoid more than 500 MOSAIK registered type II casks in KGG since the procedure has been employed. Owing to the current price basis, a saving on the order of >30 million Euro has been achieved merely for cask acquisition since the procedure has been used. In addition to these advantages, operation of the cooling crystallisation system (KKA) is also reflected in a considerable dose re-duction for the personnel performing the operations, thereby fulfilling the objective derived from the German radiation protection ordinance (StrlSchV) of dose minimisation (avoidance of unnecessary exposure to radiation and dose reduction, paragraph 6 StrlSchV). Internatonal trade mark rights exist for the cooling crystallisation and boric acid decontamination procedure.

  1. Bigger, Brighter, Bluer-Better?Current light-emitting devices- adverse sleep properties and preventative strategies.

    Directory of Open Access Journals (Sweden)

    Paul eGringras

    2015-10-01

    Full Text Available ObjectiveIn an effort to enhance the efficiency, brightness and contrast of light-emitting (LE devices during the day, displays often generate substantial short-wavelength (blue-enriched light emissions that can adversely affect sleep. We set out to verify the extent of such short-wavelength emissions, produced by a tablet (iPad Air, e-reader (Kindle Paperwhite 1st generation and smartphone (iPhone 5s and to determine the impact of strategies designed to reduce these light emissions. SettingUniversity of Surrey dedicated chronobiology facility.MethodsFirstly, the spectral power of all the light-emitting (LE devices was assessed when displaying identical text. Secondly, we compared the text output with that of ‘Angry Birds’-a popular top 100 ‘App Store’ game. Finally we measured the impact of two strategies that attempt to reduce the output of short-wavelength light emissions. The first strategy employed an inexpensive commercially available pair of orange-tinted ‘blue-blocking’ glasses. The second tested an app designed to be ‘sleep-aware’ whose designers deliberately attempted to reduce blue-enriched light emissions.ResultsAll the LE devices shared very similar enhanced blue-light peaks when displaying text. This included the output from the backlit Kindle Paperwhite device. The spectra when comparing text to the Angry Birds game were also very similar, although the

  2. Flooding of a large, passive, pressure-tube light water reactor

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J.

    1997-01-01

    A reactor concept has been developed which can survive loss of coolant accidents without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tubes. The proposed concept is a pressure tube type reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low pressure gas instead of heavy water moderator, and this normally-voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. This paper describes the thermal hydraulic characteristics of the passively initiated, gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube light water reactor (PTLWR) concept. The flooding of the top row of fuel channels must be accomplished fast enough so that in the total loss of coolant, none of the critical components of the fuel channel, i.e. the pressure tube, the calandria tube, the matrix and the fuel, exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. (orig.)

  3. Rapid water disinfection using vertically aligned MoS_2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS_2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS_2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  4. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS_2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS_2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  5. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  6. Boreal Tree Light- and Water-Use: Asynchronous, Diverging, yet Complementary

    Science.gov (United States)

    Pappas, C.; Baltzer, J. L.; Barr, A.; Black, T. A.; Bohrer, G.; Detto, M.; Maillet, J.; Matheny, A. M.; Roy, A.; Sonnentag, O.; Stephens, J.

    2017-12-01

    Water stress has been suggested as a key mechanism behind the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree light- and water-use strategies as well as their interspecific differences are still lacking. Here, we examine the tree hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js) and concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree light- and water-use strategies. Our analysis reveals an asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring two hours earlier in larch than in black spruce. Structural differences in the crown architecture of larch and black spruce lead to interspecific differences in light harvesting that can explain the observed asynchrony in their hydraulic function. Furthermore, the two species exhibit diverging stomatal regulation strategies with larch employing relatively isohydric whereas black spruce anisohydric behaviour. Such asynchronous and diverging tree-level light- and water-use strategies provide new insights into the ecosystem-level complementarity of tree form and function, with implications for understanding boreal forests' water and carbon dynamics and resilience to environmental stress.

  7. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  8. Current status of surface water pollution in Punjab

    International Nuclear Information System (INIS)

    Bashir, M.T.; Ghauri, Moin-ud-Din

    2001-01-01

    Eleven years investigations (1988-99) on river Ravi revealed that U.C. canal with a capacity of 220 m/sup 3//s at the tail and Q.B. Link canal with capacity of 410 m/sup 3//s are mainly responsible for higher flows during dry season. A decreasing trend has been observed in the DO levels indicating increasing pollution. An increasing trend has been observed in BOD, SS, TDS and Indicators. Even with the discharge of pollution from U.C. canal, Hudiara Nullah and Lahore city BOD at Balkoi was unexpectedly low. Problems confronting environment engineers regarding surface water pollution control has been highlighted and their solutions has been recommended. (author)

  9. Electrochemistry in light water reactors reference electrodes, measurement, corrosion and tribocorrosion issues

    CERN Document Server

    Bosch, R -W; Celis, Jean-Pierre

    2007-01-01

    There has long been a need for effective methods of measuring corrosion within light water nuclear reactors. This important volume discusses key issues surrounding the development of high temperature reference electrodes and other electrochemical techniques. The book is divided into three parts with part one reviewing the latest developments in the use of reference electrode technology in both pressurised water and boiling water reactors. Parts two and three cover different types of corrosion and tribocorrosion and ways they can be measured using such techniques as electrochemical impedance spectroscopy. Topics covered across the book include in-pile testing, modelling techniques and the tribocorrosion behaviour of stainless steel under reactor conditions. Electrochemistry in light water reactors is a valuable reference for all those concerned with corrosion problems in this key technology for the power industry. Discusses key issues surrounding the development of high temperature reference eletrodes A valuab...

  10. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2016-01-01

    This article proposes a fault identification method, based on the complementary analysis of the light and dark current-voltage (I-V) characteristics of the photovoltaic (PV) module, to distinguish between four important degradation modes that lead to power loss in PV modules: (a) degradation of t...

  11. Fault identification in crystalline silicon PV modules by complementary analysis of the light and dark current-voltage characteristics

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Hacke, Peter

    2014-01-01

    Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses and f...

  12. Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2015-10-16

    Light-cone gauge formulation of fields in AdS space and conformal field theory in flat space adapted for the study of AdS/CFT correspondence is developed. Arbitrary spin mixed-symmetry fields in AdS space and arbitrary spin mixed-symmetry currents, shadows, and conformal fields in flat space are considered on an equal footing. For the massless and massive fields in AdS and the conformal fields in flat space, simple light-cone gauge actions leading to decoupled equations of motion are found. For the currents and shadows, simple expressions for all 2-point functions are also found. We demonstrate that representation of conformal algebra generators on space of currents, shadows, and conformal fields can be built in terms of spin operators entering the light-cone gauge formulation of AdS fields. This considerably simplifies the study of AdS/CFT correspondence. Light-cone gauge actions for totally symmetric arbitrary spin long conformal fields in flat space are presented. We apply our approach to the study of totally antisymmetric (one-column) and mixed-symmetry (two-column) fields in AdS space and currents, shadows, and conformal fields in flat space.

  13. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  14. Water hammer caused by rapid gas production in a severe accident in a light water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Aya, Izuo; Nariai, Hideki; Shiozaki, Kohki

    2005-01-01

    We investigated the water hammer caused by striking of water mass pushed up by a rapidly growing bubble and its scale effects using two cylindrical model containment vessels of 1.0 and 0.428 m diameters. We also closely observed the movement of water mass and the growing bubble in the vessels. In these experiments, rapid bubble growth was simulated by injecting high-pressure air into a water pool. It was clarified that the water mass was pushed up without any air penetration until the water level reached a certain elevation. On the basis of all data, experimental correlations for estimating the height and striking velocity of the water mass with coherency were proposed, and the water hammer pressure for exerting large forces on the structures was quantitatively evaluated. (author)

  15. Self-propagating solar light reduction of graphite oxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  16. Dynamic voltage-current characteristics for a water jet plasma arc

    International Nuclear Information System (INIS)

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-01-01

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid

  17. A new device for acquiring ground truth on the absorption of light by turbid waters

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1974-01-01

    The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.

  18. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  19. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  20. Accident source terms for Light-Water Nuclear Power Plants. Final report

    International Nuclear Information System (INIS)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ''Calculation of Distance Factors for Power and Test Reactors'' which specified a release of fission products from the core to the reactor containment for a postulated accident involving ''substantial meltdown of the core''. This ''source term'', tile basis for tile NRC's Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC's reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ''source term'' release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ''source term'' is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it

  1. International light water nuclear fuel fabrication supply. Are fabrication services assured?

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2010-01-01

    This paper examines the cost structure of fabricating light water reactor (LWR) fuel with low-enriched uranium (LEU, with less than 5% enrichment). The LWR-LEU fuel industry is decades old, and (except for the high entry cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added at Nth-of-a-Kind cost to the maximum capacity allowed by a site license. The industry appears to be competitive: nuclear fuel fabrication capacity is assured with many competitors and reasonable prices. However, nuclear fuel assurance has become an important issue for nations now to considering new nuclear power plants. To provide this assurance many proposals equate 'nuclear fuel banks' (which would require fuel for specific reactors) with 'LEU banks' (where LEU could be blended into nuclear fuel with the proper enrichment) with local fuel fabrication. The policy issues (which are presented, but not answered in this paper) become (1) whether the construction of new nuclear fuel fabrication facilities in new nuclear power nations could lead to the proliferation of nuclear weapons, and (2) whether nuclear fuel quality can be guaranteed under current industry arrangements, given that fuel failure at one reactor can lead to forced shutdowns at many others. (author)

  2. Single-earthquake design for piping systems in advanced light water reactors

    International Nuclear Information System (INIS)

    Terao, D.

    1993-01-01

    Appendix A to Part 100 of Title 10 of the Code of Federal Regulations (10 CFR Part 100) requires, in part, that all structures, systems, and components of the nuclear power plant necessary for continued operation without undue risk to the health and safety of the public shall be designed to remain functional and within applicable stress and deformation limits when subject to an operating basis earthquake (OBE). The US Nuclear Regulatory Commission (NRC) is proposing changes to Appendix A to Part 100 to redefine the OBE at a level such that its purpose can be satisfied without the need to perform explicit response analyses. Consequently, only the safe-shutdown earthquake (SSE) would be required for the seismic design of safety-related structures, systems and components. The purpose of this paper is to discuss the proposed changes to existing seismic design criteria that the NRC staff has found acceptable for implementing the proposed rule change in the design of safety-related piping systems in the advanced light water reactor (ALWR) lead plant. These criteria apply only to the ALWR lead plant design and are not intended to replace the seismic design criteria approved by the Commission in the licensing bases of currently operating facilities. Although the guidelines described herein have been proposed for use as a pilot program for implementing the proposed rule change specifically for the ALWR lead plant, the NRC staff expects that these guidelines will also be applied to other ALWRs

  3. Considerations on monitoring needs of advanced, passive safety light water reactors for severe accident management

    International Nuclear Information System (INIS)

    Bava, G.; Zambardi, F.

    1992-01-01

    This paper deals with problems concerning information and related instrumentation needs for Accident Management (AM), with special emphasis on Severe Accidents (SA) in the new advanced, passive safety Light Water Reactors (PLWR), presently in a development stage. The passive safety conception adopted in the plants concerned goes parallel with a deeper consideration of SA, that reflects the need of increasing the plant resistance against conditions going beyond traditional ''design basis accidents''. Further, the role of Accident Management (AM) is still emphasized as last step of the defence in depth concept, in spite of the design efforts aimed to reduce human factor importance; as a consequence, the availability of pertinent information on actual plant conditions remains a necessary premise for performing preplanned actions. This information is essential to assess the evolution of the accident scenarios, to monitor the performances of the safety systems, to evaluate the ultimate challenge to the plant safety, and to implement the emergency operating procedures and the emergency plans. Based on these general purposes, the impact of the new conception on the monitoring structure is discussed, furthermore reference is made to the accident monitoring criteria applied in current plants to evaluate the requirements for possible solutions. (orig.)

  4. New approach for control rod position indication system for light water power reactor

    International Nuclear Information System (INIS)

    Bahuguna, Sushil; Dhage, Sangeeta; Nawaj, S.; Salek, C.; Lahiri, S.K.; Marathe, P.P.; Mukhopadhyay, S.; Taly, Y.K.

    2015-01-01

    Control rod position indication system is an important system in a nuclear power plant to monitor and display control rod position in all regimes of reactor operation. A new approach to design a control rod position indication system for sensing absolute position of control rod in Light Water Power Reactor has been undertaken. The proposed system employs an inductive type, hybrid measurement strategy providing both analog position as well as digital zone indication with built-in temperature compensation. The new design approach meets single failure criterion through redundancy in design without sacrificing measurement resolution. It also provides diversity in measurement technique by indirect position sensing based on analysis of drive coil current signature. Prototype development and qualification at room temperature of the control rod position indication system (CRPIS) has been demonstrated. The article presents the design philosophy of control rod position indication system, the new measurement strategy for sensing absolute position of control rod, position estimation algorithm for both direct and indirect sensing and a brief account associated processing electronics. (author)

  5. Final generic environmental statement on the use of recycle plutonium in mixed oxide fuel in light water cooled reactors. Volume 2

    International Nuclear Information System (INIS)

    1976-08-01

    This environmental statement assesses the impacts of the implementation of plutonium recycle in the LWR industry. It is based on assumptions that are intended to reflect conservatively an acceptable level of the application of current technology. It is not intended to be a representation of the ''as low as reasonably achievable'' (ALARA) philosophy. This generic environmental statement discusses the anticipated effects of recycling plutonium in light water nuclear power reactors. It is based on about 30 years of experience with the element in the context of a projected light water nuclear power industry that is already substantial. A background perspective on plutonium, its safety, and its recycling as a reactor fuel is presented

  6. Current progress and challenges in engineering viable artificial leaf for solar water splitting

    Directory of Open Access Journals (Sweden)

    Phuc D. Nguyen

    2017-12-01

    Full Text Available Large scale production of H2, a clean fuel, can be realized with just water and solar light energy by employing a viable energy conversion device called artificial leaf. In this tutorial review, we discuss on advances achieved recently and technical challenges remained toward the creation of such a leaf. Development of key components like catalysts for water electrolysis process and light harvester for harvesting solar energy as well as strategies being developed for assembling these components to create a complete artificial leaf will be highlighted.

  7. Water hammer caused by rapid steam production in a severe accident in a light water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Murata, Hiroyuki; Aya, Izuo

    2007-01-01

    We conducted the experimental studies on the water hammer caused by striking of a water mass pushed up by a rapidly growing steam bubble, using a cylindrical model containment vessel of 0.4286 m in diameter. In the experiments, a rapid gas growth was simulated by injecting high-pressure steam into a water pool. It was clarified that coherency of the water mass movement and its water hammer caused by the condensable gas production considerably decreased in comparison with the case of the non-condensable gas production because the rising velocity of the water mass was suppressed due to the steam bubble condensation. On the basis of the data, experimental correlations for estimating the water hammer on the structures in the containment vessel were proposed. (author)

  8. Thermal bonding of light water reactor fuel using nonalkaline liquid-metal alloy

    International Nuclear Information System (INIS)

    Wright, R.F.; Tulenko, J.S.; Schoessow, G.J.; Connell, R.G. Jr.; Dubecky, M.A.; Adams, T.

    1996-01-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. A technique is explored that extends fuel performance by thermally bonding LWR fuel with a nonalkaline liquid-metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Because of the low thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high-conductivity liquid metal thermally bonds the fuel to the cladding and eliminates the large temperature change across the gap while preserving the expansion and pellet-loading capabilities. The application of liquid-bonding techniques to LWR fuel is explored to increase LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) is developed to analyze the in-reactor performance of the liquid-metal-bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of liquid-bonded LWR fuel. The results show that liquid-bonded boiling water reactor peak fuel temperatures are 400 F lower at beginning of life and 200 F lower at end of life compared with conventional fuel

  9. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Giovedi, Claudia

    2015-01-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  10. Advanced Light Water Reactor Plants System 80+trademark Design Certification Program

    International Nuclear Information System (INIS)

    1993-01-01

    The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+trademark during the US government's 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW t (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment

  11. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  12. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-10-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule duration, and to simplify design. This document discusses construction approaches. 77 refs., 5 figs., 6 tabs

  13. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1987-12-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses successes and problems in construction. 49 refs., 16 figs., 8 tabs

  14. Inland Waters Night Lighting Configurations: A Navigation Rules Course for Coast Guard Auxiliarists.

    Science.gov (United States)

    Griffiths, Gregory Peter

    A project developed a training program to teach boaters to recognize and interpret properly the lights of other vessels in nighttime or other reduced visibility conditions in the inland waters of the United States. The project followed the Instructional Systems Design model in the development of the course. The target population were members of…

  15. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART I. EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Warzek, F. G.; Johnston, H. F.

    1963-11-15

    The following critical and subcritical measurements were made in the EVESR core: reactivity with no control rods; full core reactivity with control rods; and power distribution in the full core with control rods. The fuel was UO/ sub 2/, and the elements were of the superheating type. The reactor was light- water-cooled and -moderated. (T.F.H.)

  16. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-01-01

    Under Contract No. AC03-86SF16565, Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses design requirements. 36 refs., 57 figs., 56 tabs

  17. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    International Nuclear Information System (INIS)

    Johansen, R.

    2011-01-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  18. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  19. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation

    NARCIS (Netherlands)

    Ludwig, F.; Kroon, de H.; Berendse, F.; Prins, H.H.T.

    2004-01-01

    In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to

  20. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  1. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  2. GENERIC, COMPONENT FAILURE DATA BASE FOR LIGHT WATER AND LIQUID SODIUM REACTOR PRAs

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Eide; S. V. Chmielewski; T. D. Swantz

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs) . The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates . Using this approach, most of the failure rates are based on actual plant data rather than existing estimates .

  3. WATER AND HYGIENE IN THE KHARAA RIVER BASIN, MONGOLIA: CURRENT KNOWLEDGE AND RESEARCH NEEDS

    Directory of Open Access Journals (Sweden)

    D. Karthe

    2017-01-01

    Full Text Available The Kharaa River Basin has some of the highest densities of population, agricultural and industrial activities in Mongolia. This puts the naturally limited water resources under pressure in both a quantitative and qualitative perspective. Besides mining, key sources of surface water contamination include large numbers of livestock in riverine floodplains and the discharge of untreated or poorly treated waste waters, both into rivers and by soil infiltration. Since both shallow groundwater and river water are used by people and for livestock, there are at least theoretical risks related to the transmission of water-borne pathogens. Only a very limited number of studies on water and hygiene have so far been conducted in Mongolia, all indicating (potential risks to water users. However, a lack of current and reliable water microbiology data leads to the need of systematic screening of water hygiene in order to derive conclusions for public health and drinking water management at the local and regional scale.

  4. New Methods for Estimating Water Current Velocity Fields from Autonomous Underwater Vehicles

    Science.gov (United States)

    Kinsey, J. C.; Medagoda, L.

    2016-02-01

    Water current velocities are a crucial component of understanding oceanographic processes and underwater robots, such as autonomous underwater vehicles (AUVs), provide a mobile platform for obtaining these observations. Estimating water current velocities requires both measurements of the water velocity, often obtained with an Acoustic Doppler Current Profiler (ADCP), as well as estimates of the vehicle velocity. Presently, vehicle velocities are supplied on the sea surface with velocity from GPS, or near the seafloor where Doppler Velocity Log (DVL) in bottom-lock is available; however, this capability is unavailable in the mid-water column where DVL bottom-lock and GPS are unavailable. Here we present a method which calculates vehicle velocities using consecutive ADCP measurements in the mid-water using an extended Kalman filter (EKF). The correlation of the spatially changing water current states, along with mass transport and shear constraints on the water current field, is formulated using least square constraints. Results from the Sentry AUV from a mid-water surveying mission at Deepwater Horizon and a small-scale hydrothermal vent flux estimation mission suggest the method is suitable for real-time use. DVL data is denied to simulate mid-water missions and the results compared to ground truth water velocity measurements estimated using DVL velocities. Results show quantifiable uncertainties in the water current velocities, along with similar performance, for the DVL and no-DVL case in the mid-water. This method has the potential to provide geo-referenced water velocity measurements from mobile ocean robots in the absence of GPS and DVL as well as estimate the uncertainty associated with the measurements.

  5. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry.

    Science.gov (United States)

    Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki

    2014-08-11

    The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

  6. Radiological control aspects of the fabrication of the Light Water Breeder Reactor core (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schultz, B.G.

    1979-05-01

    A description is presented of the radiological control aspects of the fabrication of the Light Water Breeder Reactor (LWBR) core. Included are the radiological control criteria applied for the design and use of fabrication facilities, the controls and limits imposed to minimize radiaion exposure to personnel, and an evaluation of the applied radiological program in meeting the program objectives. The goal of the LWBR program is to develop the technology to breed in light water reactors so that nuclear fuel may be used significantly more efficiently in these reactors. This technology is being developed by designing and fabricating a breeder reactor core, utilizing thoria (ThO 2 ) and binary thoria--urania (ThO 2 - 233 UO 2 ) fuel, to be operated in the existing pressurized water reactor plant owned by the Department of Energy at Shippingport, Pennsylvania

  7. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  8. Electrical - light current remote monitoring, control and automation. [Coal mine, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, C H

    1981-06-01

    A brief discussion is given of the application of control monitoring and automation techniques to coal mining in the United Kingdom, especially of the use of microprocessors, for the purpose of enhancing safety and productivity. Lighting systems for the coal mine is similarly discussed.

  9. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  10. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    International Nuclear Information System (INIS)

    Conley, G.H.; Cowell, G.K.; Detrick, C.A.; Kusenko, J.; Johnson, E.G.; Dunyak, J.; Flanery, B.K.; Shinko, M.S.; Giffen, R.H.; Rampolla, D.S.

    1979-12-01

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used

  11. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  12. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters

    Science.gov (United States)

    Ges, Xavier; Bará, Salvador; García-Gil, Manuel; Zamorano, Jaime; Ribas, Salvador J.; Masana, Eduard

    2018-05-01

    Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  14. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  15. Electroluminescence enhancement for near-ultraviolet light emitting diodes with graphene/AZO-based current spreading layers

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Zhu, Xiaolong

    LEDs) have attracted significant research interest due to their intensive applications in various areas where indium tin oxide (ITO) is one of the most widely employed transparent conductive materials for NUV LEDs. Compared to ITO, indium-free aluminum-doped zinc oxide (AZO) has similar electrical......Near-ultraviolet light emitting diodes with different aluminum-doped zinc oxide-based current spreading layers were fabricated and electroluminescence (EL) was compared. A 170% EL enhancement was achieved by using a graphene-based interlayer. GaN-based near-ultraviolet light emitting diodes (NUV...... with a new type of current spreading layer (CSL) which combines AZO and a single-layer graphene (SLG) as an effective transparent CSL [1]. In the present work, LEDs with solo AZO CSL in Fig.1(a) and SLG/Ni/AZO-based CSL in Fig.1(b) were both fabricated for EL comparison. Standard mesa fabrication including...

  16. Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.

    Science.gov (United States)

    Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2017-09-05

    We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.

  17. Weak interactions and exchange currents in light nuclei. Theoretical and experimental aspects

    International Nuclear Information System (INIS)

    Guichon, P.

    1980-01-01

    The influence of meson exchange currents in the nuclear weak interaction is investigated theoretically and experimentally. The hypothesis of current algebra and partial conservation of axial current are used, through Adler-Dothan theorem, to derive the one pion exchange correction to the impulse approximation. Calculations are performed for partial transitions in the 1p-shell nuclei and in 16 O. The corrections are generally small except for the (0 + →0 - ) transition in 16 O where the large correction to the time component of the axial current can show up, due to selection rules. The measurement of the muon capture rate for this transition is described and an interpretation in term of exchange currents is proposed [fr

  18. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  19. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO2 Architectures for Light-Driven Biocatalysis and Light-to-Current Conversion.

    Science.gov (United States)

    Riedel, Marc; Lisdat, Fred

    2018-01-10

    Inspired by natural photosynthesis, coupling of artificial light-sensitive entities with biocatalysts in a biohybrid format can result in advanced photobioelectronic systems. Herein, we report on the integration of sulfonated polyanilines (PMSA1) and PQQ-dependent glucose dehydrogenase (PQQ-GDH) into inverse opal TiO 2 (IO-TiO 2 ) electrodes. While PMSA1 introduces sensitivity for visible light into the biohybrid architecture and ensures the efficient wiring between the IO-TiO 2 electrode and the biocatalytic entity, PQQ-GDH provides the catalytic activity for the glucose oxidation and therefore feeds the light-driven reaction with electrons for an enhanced light-to-current conversion. Here, the IO-TiO 2 electrodes with pores of around 650 nm provide a suitable interface and morphology needed for the stable and functional assembly of polymer and enzyme. The IO-TiO 2 electrodes have been prepared by a template approach applying spin coating, allowing an easy scalability of the electrode height and surface area. The successful integration of the polymer and the enzyme is confirmed by the generation of an anodic photocurrent, showing an enhanced magnitude with increasing glucose concentrations. Compared to flat and nanostructured TiO 2 electrodes, the three-layered IO-TiO 2 electrodes give access to a 24-fold and 29-fold higher glucose-dependent photocurrent due to the higher polymer and enzyme loading in IO films. The three-dimensional IO-TiO 2 |PMSA1|PQQ-GDH architecture reaches maximum photocurrent densities of 44.7 ± 6.5 μA cm -2 at low potentials in the presence of glucose (for a three TiO 2 layer arrangement). The onset potential for the light-driven substrate oxidation is found to be at -0.315 V vs Ag/AgCl (1 M KCl) under illumination with 100 mW cm -2 , which is more negative than the redox potential of the enzyme. The results demonstrate the advantageous properties of IO-TiO 2 |PMSA1|PQQ-GDH biohybrid architectures for the light-driven glucose conversion

  20. Current treatments of acne: Medications, lights, lasers, and a novel 650-μs 1064-nm Nd: YAG laser.

    Science.gov (United States)

    Gold, Michael H; Goldberg, David J; Nestor, Mark S

    2017-09-01

    The treatment of acne, especially severe acne, remains a challenge to dermatologists. Therapies include retinoids, antibiotics, hormones, lights, lasers, and various combinations of these modalities. Acne is currently considered a chronic rather than an adolescent condition. The appropriate treatment depends on the patient and the severity of disease. The purpose of this study was to review current therapies for acne of all severities and to introduce the 650-μs 1064-nm laser for the treatment of acne. © 2017 Wiley Periodicals, Inc.