WorldWideScience

Sample records for current intensity limit

  1. Current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  2. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  3. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  4. Fault current limiter

    Science.gov (United States)

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  5. Superconductive AC current limiter

    International Nuclear Information System (INIS)

    Bekhaled, M.

    1987-01-01

    This patent describes an AC current limiter for a power transport line including a power supply circuit and feeding a load circuit via an overload circuit-breaker member. The limiter comprises a transformer having a primary winding connected in series between the power supply circuit and the load circuit and at least one secondary winding of superconductor material contained in a cryogenic enclosure and short-circuited on itself. The leakage reactance of the transformer as seen from the primary winding is low, and the resistance of the at least one secondary winding when in the non-superconducting state and as seen from the primary is much greater than the nominal impedance of the transformer. The improvement whereby the at least one secondary winding of the transformer comprises an active winding in association with a set of auxiliary windings. The set of auxiliary windings is constituted by an even number of series-connected auxiliary windings wound in opposite directions, with the total number of turns in one direction being equal to the total number of turns in the opposite direction, and with the thermal capacity of the secondary winding as a whole being sufficiently high to limit the expansion thereof to a value which remains small during the time it takes the circuit-breaking member to operate

  6. Beam-intensity limitations in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Recent demand for high-intensity beams of various particles has renewed interest in the investigation of beam current and beam quality limits in linear RF and induction accelerators and beam-transport channels. Previous theoretical work is reviewed, and new work on beam matching and stability is outlined. There is a real need for extending the theory to handle the time evolution of beam emittance; some present work toward this goal is described. The role of physical constraints in channel intensity limitation is emphasized. Work on optimizing channel performance, particularly at low particle velocities, has resulted in major technological advances. The opportunities for combining such channels into arrays are discussed. 50 references

  7. LANSCE Beam Current Limiter (XL)

    International Nuclear Information System (INIS)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device

  8. Passive fault current limiting device

    Science.gov (United States)

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  9. Superconducting dc fault current limiter

    International Nuclear Information System (INIS)

    Cointe, Y.

    2007-12-01

    Within the framework of the electric power market liberalization, DC networks have many interests compared to alternative ones, but their protections need to use new systems. Superconducting fault current limiters enable by an overstepping of the critical current to limit the fault current to a preset value, lower than the theoretical short-circuit current. For these applications, coated conductors offer excellent opportunities. We worked on the implementation of these materials and built a test bench. We carried out limiting experiments to estimate the quench homogeneity at various short-circuit parameters. An important point is the temperature measurement by deposited sensors on the ribbon, results are in good correlation with the theoretical models. Improved quench behaviours for temperatures close to the critical temperature have been confirmed. Our results enable to better understand the limitation mechanisms of coated conductors. (author)

  10. Limiting currents in superconducting composites

    International Nuclear Information System (INIS)

    Keilin, V.E.; Romanovskii, V.R.

    1992-01-01

    In this paper the results of numerical and analytical calculations of the process of current charging into a round superconducting composite with properties homogenized over cross-section are presented. In the numerical solution taken was into account a common proceeding of the thermal and electromagnetic processes. A wire with real volt-ampere characteristics approximated by exponential dependence was considered. The calculations carried out at various rates of current charging, voltampere characteristics, matrix materials, heat transfer coefficients and other parameters showed: the existence of characteristic limiting value of current below which the wire remains in a superconducting state if the current charging ceases and above which changes into a normal state; this current is somewhat less than a quench current; the existence of finite value for limiting current at any low heat transfer from a surface. The analytical solution of the problem is given. It permitted to write the stability criterion from which the dependence of limiting currents on initial parameters follows. The wire nonisothermality, its heat capacity, thermal and electric conductivities are taken into account additionally, as compared to results published earlier

  11. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  12. Frontiers of particle beams: Intensity limitations

    International Nuclear Information System (INIS)

    Dienes, M.; Month, M.; Turner, S.

    1992-01-01

    The present volume is the proceedings of the latest of these joint schools, held on Hilton Head Island, South Carolina, in 1990. This course dealt with intensity limitations and was centered on a series of lectures which could be divided into the following main categories: Self and environmental fields, Coherent instabilities and their simulation, Beam-beam interaction, Other multiparticle effects, Beam source limitations, Engineering limitations. (orig.)

  13. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    International Nuclear Information System (INIS)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.; Xu Jin; Connors, Alanna; Freeman, Peter E.; Zezas, Andreas

    2010-01-01

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error), and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper

  14. Adjustable direct current and pulsed circuit fault current limiter

    Science.gov (United States)

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  15. Intensity limits of the PSI Injector II cyclotron

    Science.gov (United States)

    Kolano, A.; Adelmann, A.; Barlow, R.; Baumgarten, C.

    2018-03-01

    We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ∼ 10% level: the PSI cyclotrons provide relevant experience. As space charge dominates at low beam energy, the injector is critical. Understanding space charge effects and halo formation through detailed numerical modelling gives clues on how to maximise the extracted current. Simulation of a space-charge dominated low energy high intensity (9.5 mA DC) machine, with a complex collimator set up in the central region shaping the bunch, is not trivial. We use the OPAL code, a tool for charged-particle optics calculations in large accelerator structures and beam lines, including 3D space charge. We have a precise model of the present (production) Injector II, operating at 2.2 mA current. A simple model of the proposed future (upgraded) configuration of the cyclotron is also investigated. We estimate intensity limits based on the developed models, supported by fitted scaling laws and measurements. We have been able to perform more detailed analysis of the bunch parameters and halo development than any previous study. Optimisation techniques enable better matching of the simulation set-up with Injector II parameters and measurements. We show that in the production configuration the beam current scales to the power of three with the beam size. However, at higher intensities, 4th power scaling is a better fit, setting the limit of approximately 3 mA. Currents of over 5 mA, higher than have been achieved to date, can be produced if the collimation scheme is adjusted.

  16. Self-triggering superconducting fault current limiter

    Science.gov (United States)

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  17. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  18. Limiting currents of overcompensated electron beams

    International Nuclear Information System (INIS)

    Malafaev, V.A.

    1990-01-01

    A possibility of producing recompensated electron beam and increasing its limiting currents in the magnetic field is experimentally investigated. It is shown that such a possibility is realized when the beam is surrounded by a cylindrical net placed into the tube located under the positive potential relative to the net. In this case an increase of limiting current at the expense of increasing the ion life time, takes place. Current, exceeding the Pierce threshold 1.5 times, is obtained

  19. Fault current limiter using bulk oxides superconductors

    International Nuclear Information System (INIS)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M.; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R.

    1998-01-01

    We study the limitation possibilities of bulk Bi high T c materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.)

  20. Recognizing limitations in eddy current testing

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.

    1981-11-01

    This paper addresses known limitations and constraints in eddy current nondestructive testing. Incomplete appreciation for eddy current limitations is believed to have contributed to both under-utilization and misapplication of the technique. Neither situation need arise if known limitations are recognized. Some, such as the skin depth effect, are inherent to electromagnetic test methods and define the role of eddy current testing. Others can be overcome with available technology such as surface probes to find circumferential cracks in tubes and magnetic saturation of ferromagnetic alloys to eliminate permeability effects. The variables responsible for limitations in eddy current testing are discussed and where alternative approaches exist, these are presented. Areas with potential for further research and development are also identified

  1. Superconducting fault current limiter for railway transport

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M., E-mail: LMFisher@niitfa.ru; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  2. Superconducting fault current limiter for railway transport

    International Nuclear Information System (INIS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-01-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered

  3. Reverse engineering of inductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Pina, J M; Neves, M Ventim; Rodrigues, A L [Centre of Technology and Systems Faculdade de Ciencias e Tecnologia, Nova University of Lisbon Monte de Caparica, 2829-516 Caparica (Portugal); Suarez, P; Alvarez, A, E-mail: jmmp@fct.unl.p [' Benito Mahedero' Group of Electrical Applications of Superconductors Escuela de IngenierIas Industrials, University of Extremadura Avenida de Elvas s/n, 06006 Badajoz (Spain)

    2010-06-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  4. Reverse engineering of inductive fault current limiters

    International Nuclear Information System (INIS)

    Pina, J M; Neves, M Ventim; Rodrigues, A L; Suarez, P; Alvarez, A

    2010-01-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  5. Current limiting capability of diffused resistors

    International Nuclear Information System (INIS)

    Shedd, W.; Cappelli, J.

    1979-01-01

    An experimental evaluation of the current limiting capability of dielectrically isolated diffused resistors at transient ionizing dose rates up to 6*10 12 rads(Si)/sec is presented. Existing theoretical predictions of the transient response of diffused resistors are summarized and compared to the experimentally measured values. The test resistors used allow the effects of sheet resistance and geometry on the transient response to be determined. The experimental results show that typical dielectrically isolated diffused resistors maintain adequate current limiting capability for use in radiation hardened integrated circuits

  6. Current limitation in low pressure mercury arcs

    International Nuclear Information System (INIS)

    Torven, S.; Babic, M.

    1976-06-01

    When the electric current in a low pressure arc with a long positive column is increased sufficiently, an electrostatic instability develops in the plasma which leads to formation of thin space charge layers across the column. The instability is investigated in a mercury plasma column kept axially homogeneous by a special technique. Values of some plasma parameters are measured at the instability threshold. It is found that the plasma is in a weakly ionized state in contrast to predictions by widely accepted current limitation theories. It is concluded that new types of theories are required to explain the observations. (Auth.)

  7. Longer rest periods for intensive rotational grazing limit diet quality ...

    African Journals Online (AJOL)

    Longer rest periods for intensive rotational grazing limit diet quality of sheep without enhancing environmental benefits. ... This experiment was established to compare three intensive rotational grazing strategies (fast rotation [FR], average 57-day rest; slow rotation [SR], average 114-day rest; and flexible grazing [FX], based ...

  8. Limiting velocity of reconnection in a current layer

    International Nuclear Information System (INIS)

    Podgornyj, A.N.; Syrovatskij, S.I.

    1981-01-01

    Formation of a plasma current layer from a strong perturbation wave with the Mach magnetic number Msub(a)=1 is investigated numerically within the framework of magnetic hydrodynamics. It is shown that velocity of plasma flowing into the layer is established as small one as compared with the Alfven velocity. At the current layer boundary the Mach magnetic number Msub(a, c)=0.14-0.2. A great decrease in plasma velocity to the current layer results from the counterpressure of a magnetic field, intensity of which near the layer increases due to the storage of magnetic force lines which do not yet reconnect. Calculational results demonstrate the existence of limiting velocity of magnetic reconnection constituting tenth shares of the Mach magnetic number. Influence of this phenomenon on a character of reconnection in the Earth magnetosphere is discussed

  9. CAS course on Intensity Limitations in Particle Beams at CERN

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Intensity Limitations in Particle Beams, at CERN from 2 to 11 November, 2015.     Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. This course covered the interaction of beams with their surroundings and with other beams, as well as further collective effects. The lectures on the effects and possible mitigations were complemented by tutorials. The course was very successful, with 66 students representing 14 nationalities attending. Most participants came from European counties, but also from Armenia, China and Russia. Feedback from the participants was positive, reflecting the standard of the lectures and teaching. In addition to the academic pro...

  10. Medicare Current Beneficiary Survey - Limited Data Set

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Medicare Current Beneficiary Survey (MCBS) is a continuous, multipurpose survey of a representative national sample of the Medicare population. There are two...

  11. Removing Known SPS Intensity Limitations for High Luminosity LHC Goals

    CERN Document Server

    Shaposhnikova, Elena; Bohl, Thomas; Cruikshank, Paul; Goddard, Brennan; Kaltenbacher, Thomas; Lasheen, Alexandre; Perez Espinos, Jaime; Repond, Joël; Salvant, Benoit; Vollinger, Christine

    2016-01-01

    In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented t...

  12. Problems and limitations of eddy current tube inspection

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Khairul Anuar Mohd Salleh; Mohamed Hairul Hasmoni

    2003-01-01

    Incomplete appreciation of eddy current limitations has contributed to both under-utilization and misapplication of the technique. A brief review on the physical principle of eddy current is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The variables responsible for limitation in eddy current tube inspection are discussed and alternative approaches, where they exist, are suggested. (Author)

  13. Fault current limiter with shield and adjacent cores

    Science.gov (United States)

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  14. Intensity limitations of cooled heavy ion beams in the ESR

    International Nuclear Information System (INIS)

    Hofmann, I.; Meyer-Pruessner, R.

    1985-06-01

    We consider the possibility of achieving maximum intensity and phase space density of heavy ions cooled by electrons in the Experimental Storage Ring to be built at GSI. Intrabeam scattering and the longitudinal microwave instability are found to be important limiting effects particularly at low energies. They are evaluated in diagrams, which can serve as a preliminary orientation for the expected performance of experiments. Examples have been calculated for U 92+ at 50 and 500 MeV/u; in the latter case we find that 9 ions at Δp/p=2x10 -4 and epsilon=0.2π mm mrad are on the safe side for an assumed cooling time of 100 msec. We have also analyzed I 20+ as a candidate for generating high energy density in matter. (orig.)

  15. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  16. Fault-current limiter using a superconducting coil

    International Nuclear Information System (INIS)

    Boenig, H.J.; Paice, D.A.

    1982-01-01

    A novel circuit, consisting of solid-state diodes and a biased superconducting coil, for limiting the fault currents in three-phase ac systems is presented. A modification of the basic circuit results in a solid-state ac breaker with current-limiting features. The operating characteristics of the fault-current limiter and the ac breaker are analyzed. An optimization procedure for sizing the superconducting coil is derived

  17. Eddy current inspection on heat exchanger tubes - problems and limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz; Zainal Abidin Mohamed; Hairul Hasmoni Khairul Anuar; Mohd Salleh; Mahmood Dollah

    2005-01-01

    This paper focus on problems associated to eddy current inspection of heat exchanger tubes. A brief review on heat exchanger design and operation is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The limitation of the eddy current probe and equipment pertinent to the inspection are identified and areas of improvement are discussed. (Author)

  18. Development of an air coil superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Naeckel, Oliver

    2016-07-01

    Electrical power grids are the lifeline of technical infrastructure and fundamental for industry and modern lives. Fault Currents can disrupt the continuous supply of electrical energy, cause instable grid conditions and damage electrical equipment. The Air Coil Superconducting Fault Current Limiter (AC-SFCL) is a measure to effectively limit fault currents. The concept is investigated and proven experimentally by designing, building and successfully testing a 60 kV, 400 V, z=6% demonstrator.

  19. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  20. Potential and limitations of wave intensity analysis in coronary arteries

    NARCIS (Netherlands)

    Siebes, M.; Kolyva, C.; Verhoeff, B.J.; Piek, J.J.; Spaan, J.A.

    2009-01-01

    Wave intensity analysis (WIA) is beginning to be applied to the coronary circulation both to better understand coronary physiology and as a diagnostic tool. Separation of wave intensity (WI) into forward and backward traveling components requires knowledge of pulse wave velocity at the point of

  1. Maximum time-dependent space-charge limited diode currents

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  2. MgB2-based superconductors for fault current limiters

    Science.gov (United States)

    Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.

    2017-02-01

    A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.

  3. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  4. Intensity variation of cosmic rays near the heliospheric current sheet

    International Nuclear Information System (INIS)

    Badruddin, K.S.; Yadav, R.S.; Yadav, N.R.

    1985-01-01

    Cosmic ray intensity variations near the heliospheric current sheet-both above and below it-have been studied during 1964-76. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis data from neutron monitors well distributed in latitude over the Earth's surface is used. First, this study has been made during the two solar activity minimum periods 1964-65 and 1975-76, using the data from Thule (cut-off rigidity O GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. The data is analyzed from Deep River, Rome and Huancayo neutron monitors, for which data is available for the full period (1964-76), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested. (author)

  5. Intensity limits for stationary and interacting multi-soliton complexes

    International Nuclear Information System (INIS)

    Sukhorukov, Andrey A.; Akhmediev, Nail N.

    2002-01-01

    We obtain an accurate estimate for the peak intensities of multi-soliton complexes for a Kerr-type nonlinearity in the (1+1) dimension problem. Using exact analytical solutions of the integrable set of nonlinear Schroedinger equations, we establish a rigorous relationship between the eigenvalues of incoherently-coupled fundamental solitons and the range of admissible intensities. A clear geometrical interpretation of this effect is given

  6. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  7. Study on current limiting characteristics of SFCL with two trigger current levels

    International Nuclear Information System (INIS)

    Lim, S.H.

    2010-01-01

    In this paper, the superconducting fault current limiter (SFCL) with two trigger current levels was suggested and its effectiveness through the analysis on the current limiting characteristics was described. The proposed SFCL, which consists of the triggering and the limiting components, can limit the fault current by generating the limiting impedance through two steps according to the amplitude of the initial fault current. In case that the fault happens, the lower initial fault current causes the only superconducting element of the triggering component to be quenched. On the other hand, the higher initial fault current makes both the superconducting elements comprising the triggering and the limiting components of the SFCL to be quenched, which contributes to the higher impedance of the SFCL. Therefore, the effective fault current limiting operation of the SFCL can be performed by generating the SFCL's impedance in proportion to the amplitude of the initial fault current. To confirm the current limiting operation of the proposed SFCL, the short-circuit tests of the SFCL according to the fault angle were carried out and its effective fault current limiting operations could be discussed.

  8. Resistive current limiter with high-temperature superconductors. Final report

    International Nuclear Information System (INIS)

    Schubert, M.

    1995-12-01

    Fundamental results of the possibility of using high temperature superconductors (HTSC) in resistive fault current limiters are discussed. Measurement of the homogeneity of BSCCO-powder-in-tube materials were made. In addition, investigations of the transition from superconducting to normalconducting state under AC-current conditions were carried out. Based on these results, simulations of HTSC-materials on ceramic substrate were made and recent results are presented. Important results of the investigations are: 1. Current-limiting without external trigger only possible when the critical current density of HTSC exceeds 10 4 A/cm 2 . 2. Inhomogeneities sometimes cause problems with local destruction. This can be solved by parallel-elements or external trigger. 3. Fast current-limiting causes overvoltages which can be reduced by using parallel-elements. (orig.) [de

  9. Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer

    International Nuclear Information System (INIS)

    Im, I.G.; Choi, H.S.; Jung, B.I.

    2013-01-01

    Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types

  10. Limiting characteristics of the superconducting fault current limiter applied to the neutral line of conventional transformer

    Energy Technology Data Exchange (ETDEWEB)

    Im, I.G., E-mail: asiligo@gmail.com; Choi, H.S., E-mail: hyosang@chosun.ac.kr; Jung, B.I.

    2013-11-15

    Highlights: •Fault current limiter was used a high-speed interrupter. •High-speed interrupter was operated to bypass to the current limiter line. •The size of the fault current was limited to about 80% after the fault occurred. •The fault current was limited quickly within a half-cycle after the fault occurred. -- Abstract: The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types.

  11. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  12. Perspectives on setting limits for RF contact currents: a commentary.

    Science.gov (United States)

    Tell, Richard A; Tell, Christopher A

    2018-01-15

    Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the

  13. The limiting current in a one-dimensional situation: Transition from a space charge limited to magnetically limited flow

    International Nuclear Information System (INIS)

    Kumar, Raghwendra; Biswas, Debabrata

    2008-01-01

    For a nonrelativistic electron beam propagating in a cylindrical drift tube, it is shown that the limiting current density does not saturate to the electrostatic one-dimensional (1D) estimate with increasing beam radius. Fully electromagnetic particle-in-cell (PIC) simulation studies show that beyond a critical aspect ratio, the limiting current density is lower than the 1D electrostatic prediction. The lowering in the limiting current density is found to be due to the transition from the space charge limited to magnetically limited flow. An adaptation of Alfven's single particle trajectory method is used to estimate the magnetically limited current as well as the critical radius beyond which the flow is magnetically limited in a drift tube. The predictions are found to be in close agreement with PIC simulations

  14. Characterization of superconducting coil for fault current limitation

    International Nuclear Information System (INIS)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres; Gomes Junior, George; Amorim, Helio Salim

    2010-01-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  15. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  16. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  17. Long wavelength limit of the current convective instability

    International Nuclear Information System (INIS)

    Huba, J.D.

    1984-01-01

    A linear theory is presented of the current convective instability in the long wavelength limit, i.e., kL >ω) and inertial (ν/sub i/n>>ω) limits where ω is the wave frequency and ν/sub i/n is the ion-neutral collision frequency. It is shown that the growth rate scales as k in the collisional limit and as k/sup 2/3/ in the inertial limit. The analytical solutions are compared to exact numerical solutions, and very good agreement is found. Applications to the auroral ionosphere are discussed

  18. Market potential of superconductor current limiters; Marktpotential von supraleitenden Strombegrenzern

    Energy Technology Data Exchange (ETDEWEB)

    Lakner, M.; Braun, D. [ABB Schweiz AG, Corporate Research, Baden-Daettwil (Switzerland); Schnyder, G.; Mauchle, P. [Schnyder Ingenieure AG, Huenenberg (Switzerland)

    2003-07-01

    This final report for the Swiss Federal Office of Energy describes the two concepts - 'resistive' and 'inductive' - used for Superconducting Fault Current Limiters (SCFCL) that utilise the transition from zero to finite resistance to limit short-circuit currents. The main advantages of SCFCL are compared to other current-limiting technologies: They can limit any type of prospective fault current, operate fail-safe, be self-triggered and self-restoring. Their main disadvantage - the cooling effort necessary - is also discussed. The application possibilities of SCFCL were investigated by simulating the impact on utility and industrial grids. Applications of SCFCL such as the coupling of medium-voltage grids and their use in series with a circuit-breaker on the secondary side of a substation transformer are discussed. It is also shown that, by using fault current limiters, considerable cost savings can be made, especially in connection with new installations or the extension of existing plants.

  19. Method and apparatus to trigger superconductors in current limiting devices

    Science.gov (United States)

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  20. Large extents of intensive land use limit community reorganization during climate warming.

    Science.gov (United States)

    Oliver, Tom H; Gillings, Simon; Pearce-Higgins, James W; Brereton, Tom; Crick, Humphrey Q P; Duffield, Simon J; Morecroft, Michael D; Roy, David B

    2017-06-01

    Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation. © 2017 John Wiley & Sons Ltd.

  1. Tolerance limits of X-ray image intensity

    International Nuclear Information System (INIS)

    Stargardt, A.; Juran, R.; Brandt, G.A.

    1985-01-01

    Evaluation of the tolerance limits of X-ray image density accepted by the radiologist shows that for different kinds of examinations, deviations of more than 50% from optimal density lead to images which cannot be used diagnostically. Within this range diagnostic accuracy shows a distinct maximum and diminishes to the limits by 20%. These figures are related to differences in the intensifying factor of screens, sensitivity of films, sensitometric parameters of film processing as well as the doses employed with automatic exposure control devices, measured in clinical conditions. Maximum permissible tolerance limits of the whole imaging system and of its constituents are discussed using the Gaussian law of error addition. (author)

  2. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  3. Resistive Fault Current Limiter Prototypes: Mechanical and Electrical Analyses

    International Nuclear Information System (INIS)

    Martini, L; Arcos, I; Bocchi, M; Brambilla, R; Dalessandro, R; Frigerio, A; Rossi, V

    2006-01-01

    The problem of excessive short-circuit currents has become an important issue for power systems operators and there are clear indications for a growing interest in superconducting fault current limiter devices for MV and HV grids. In this work, we report on both simulation and electrical testing on single-phase SFCL prototypes developed in the framework of an Italian RTD project to be completed with a 3-phase SFCL unit by the end of 2005

  4. Super conducting fault current limiter and inductor design

    International Nuclear Information System (INIS)

    Rogers, J.; Boenig, H.; Chowdhuri, P.; Schermer, R.; Weldon, D.; Wollan, J.

    1983-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components--superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator--included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits

  5. Analysis on current limiting characteristics of a transformer type SFCL with two triggering current levels

    International Nuclear Information System (INIS)

    Lim, Sung-Hun; Ko, Seckcheol; Han, Tae-Hee

    2013-01-01

    Highlights: ► We suggested the transformer type SFCL with two triggering current levels. ► The short-circuit tests for the suggested SFCL was executed. ► The fault angle as the fault conditions to verify its operation was selected. ► The usefulness of the suggested SFCL was confirmed through the short-circuit test. -- Abstract: In this paper, the transformer type superconducting fault current limiter (SFCL) with two triggering current levels was suggested and its current limiting characteristics were analyzed. The structure of the suggested transformer type SFCL with two triggering current levels largely consists of two parts. One is the transformer with two magnetically coupled coils, which correspond to the primary winding and the secondary one connected with one high-T C superconducting (HTSC) element. The other is third coil, or, another secondary winding with one HTSC element, which is wound on the same iron core together with two coils. This suggested transformer type SFCL can limit the fault current by generating its limiting impedance with two different amplitudes, which are dependent on the initial amplitude of the fault current in case of the fault occurrence. To confirm the usefulness of the proposed SFCL, the current limiting tests of the SFCL according to the fault angle, one of the effective fault conditions to affect the amplitude of the initial fault current, were carried out and its effective limiting operations were discussed

  6. Limiting beta of stellarators with no net current

    International Nuclear Information System (INIS)

    Strauss, H.R.; Monticello, D.A.

    1981-01-01

    Using reduced nonlinear MHD equations, we find finite beta, resistive, l = 2 stellarator equilibria with no net current. We then investigate stability to low mode number internal MHD modes, and find beta limits comparable to tokamaks. Low shear equilibria appear to be substantially more stable than high shear

  7. High voltage fault current limiter having immersed phase coils

    Science.gov (United States)

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  8. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  9. Team working in intensive care: current evidence and future endeavors.

    Science.gov (United States)

    Richardson, Joanne; West, Michael A; Cuthbertson, Brian H

    2010-12-01

    It has recently been argued that the future of intensive care medicine will rely on high quality management and teamwork. Therefore, this review takes an organizational psychology perspective to examine the most recent research on the relationship between teamwork, care processes, and patient outcomes in intensive care. Interdisciplinary communication within a team is crucial for the development of negotiated shared treatment goals and short-team patient outcomes. Interventions for maximizing team communication have received substantial interest in recent literature. Intensive care coordination is not a linear process, and intensive care teams often fail to discuss how to implement goals, trigger and align activities, or reflect on their performance. Despite a move toward interdisciplinary team working, clinical decision-making is still problematic and continues to be perceived as a top-down and authoritative process. The topic of team leadership in intensive care is underexplored and requires further research. Based on findings from the most recent research evidence in medicine and management, four principles are identified for improving the effectiveness of team working in intensive care: engender professional efficacy, create stable teams and leaders, develop trust and participative safety, and enable frequent team reflexivity.

  10. Lower limit of intensity for the solar activity in microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P; Iacomo, P Jr; Koppe, E H; dos Santos, P M; Schaal, R E [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica; Blakey, J R [Surrey Univ., Guildford (UK). Dept. of Physics

    1976-01-01

    The active region McMath 10433 has produced various flares and bursts in radio frequency in the beginning of july 1974. This region was scanned countinously in 22.2 GHz with a radio telescope showing a 4 min. arc beam, in various periods of the month. In comparison with the results simultaneously obtained with a normal solar radio telescope, in 7 GHz, it was verified that there is an important explosive activity in lower levels in the limit of detection of an usual patrolling instrument. The morphology of these events, in its progress in the time, is similar to that normaly known, and allowed, the re-interpretation of simple events. A completly new type of event was defined: the fast absorptions. The correlation of events in microwaves with 'SPA' recorded in 'VLF' propagation is also discussed.

  11. Influence of electric current intensity on the performance of electroformed copper liner for shaped charge application

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-12-01

    Full Text Available Electrolytic Copper used in the shaped charge liner manufacturing can be produced from acid solution using electro-deposition technique. The intensity of the applied electric current controls the quality of the produced copper grade. The electric current intensity within the electrolytic acidic solution cell with the minimum oxygen and sulfur elements in the produced copper was optimized and found to be 30–40 A/Ft2. The elemental composition of the obtained electrolytic copper was determined using high-end stationary vacuum spectrometer, while the oxygen was determined precisely using ELTRA ONH-2000 apparatus. Besides, SEM was used to investigate the shape of the copper texture inside the deposited layers and to determine the average grain size. New relations have been obtained between the applied current intensity and both the oxygen and sulfur contents and the average grain size of the produced copper. Experimental result showed that when the applied current density increases to a certain limit, the oxygen and sulfur content in the electrolytic copper decreases. Performance of the produced copper liner was investigated by the static firing of a small caliber shaped charge containing an electro-formed copper liners, where the penetration depth of the optimized electrolytic liner was enhanced by 22.7% compared to that of baseline non-optimized liner.

  12. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Directory of Open Access Journals (Sweden)

    Youri P. A. Tan

    2018-03-01

    Full Text Available Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  13. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    Science.gov (United States)

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  14. [Geriatric intensive care patients : Perspectives and limits of geriatric intensive care medicine].

    Science.gov (United States)

    Müller-Werdan, U; Heppner, H-J; Michels, G

    2018-04-18

    Critically ill geriatric patients are vitally endangered due to the aging processes of organs, the frequently existing multimorbidity with subsequent polypharmacy and the typical geriatric syndrome of functional impairments. Aging processes in organs lower the clinical threshold for organ dysfunction and organ failure. Physiological organ aging processes with practical consequences for intensive care medicine are atypical manifestion of sepsis in immunosenescence, altered pharmacokinetics, reduced tolerance to hypovolemia due to proportionally reduced water compartment of the body in old age, the frequently only apparently normal function of the kidneys and the continuous reduction in pulmonary function in old age. The main reasons for changes in therapeutic targets are the will of the patient and risk-benefit considerations. The guidelines of the ethics section of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI) provide assistance and suggestions for a structured decision-making process.

  15. Beta and current limits in the Doublet III tokamak

    International Nuclear Information System (INIS)

    Strait, E.J.; Chu, M.S.; Jahns, G.L.

    1986-04-01

    Neutral-beam heated discharges in Doublet III exhibit an operational beta limit, β/sub T/(%) less than or equal to 3.5 I(MA)/a(m)B(T), in good agreement with several theoretical predictions for ideal external kink or ballooning modes. These theories predict that the β limit has no explicit dependence on plasma shape (for nominal dee shapes). This aspect of the theory was confirmed in Doublet III by varying the elongation (kappa) from 1.0 to 1.6 and the triangularity (delta) from -0.1 to 0.9 and finding in all cases the same β limit. The maximum achievable beta thus depends on the minimum achievable value of the safety factor q. In Doublet III, the operational current limit is given by q greater than or equal to 1.7 for limiter-defined discharges and q greater than or equal to 2.7 for separatrix-defined discharges. Operation with q approx.2 was achieved for 1.0 less than or equal to kappa less than or equal to 1.6. Both β and q limits are characterized by major disruptions which usually terminate the discharge. In both cases, the disruptions often have a precursor oscillation with toroidal mode number n = 1, poloidal mode number m = 2 or 3, a frequency of zero to a few kHz, and a growth time on the order of a millisecond. These observations suggest that the proximate cause of these disruptions is a kink or tearing mode, pressure-driven in one case and current-driven in the other. Theoretical analyses of discharges at both limits will be compared. Modes with a high toroidal mode number, 3 less than or equal to n less than or equal to 5, and ballooning character have been observed near the β/sub T/ limit. These modes do not appear to be closely connected with the disruptions. Heating efficiency, ΔW/ΔP, remains constant up to the limiting disruption. Fishbone modes appear to be mainly a feature of high β/sub p/ operation and not connected to the β/sub T/ limit

  16. [Opinion of professionals in an intensive care unit on the limitations of therapeutic effort].

    Science.gov (United States)

    González-Castro, A; Azcune, O; Peñasco, Y; Rodríguez, J C; Domínguez, M J; Rojas, R

    2016-01-01

    To determine the opinion held by professionals in an intensive care unit on the limitation of therapeutic effort process at the end-of-life (LTE). To collect this information, and then use it to improve the basic aspects that the LTE have on the quality of care by intensive care unit staff. A prospective descriptive study was carried out in the Intensive Care Unit of a third level public university hospital. A questionnaire was prepared that included questions on their demographic profile and others to provide an ethical valuation profile, as well as to find out the knowledge and information that the professional had on the LTE. Descriptive study of the sample and comparative statistics were performed using the chi-squared statistical test. A total of 65 valid questionnaires were obtained from a convenience sample of 70 professionals. Almost all of them (98%) were in favour of the limitation of therapeutic effort. The LTE was considered as some kind of euthanasia (active or passive) in up to 28% of the replies, valuations by professional categories is shown in. More than three-quarters (77%) had the belief that not to start treatment was not the same as withdrawing an already established treatment. Just over half (52%) of the respondents believe the value that should have more weight when considering LET would be the prognosis of the current illness of the patient, and 46% the future quality of life of the patient. The economic cost of treatment to be applied was not considered in any case. The LTE is approved by the majority of professionals in our Intensive Care Unit. Although a non-negligible percentage understood it as a form of euthanasia. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Design Aspects and Test of an Inductive Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Arsénio Pedro

    2014-05-01

    Full Text Available Magnetic shielding inductive fault current limiters with high temperature superconducting tapes are considered as emerging devices that provide technology for the advent of modern power grids. The development of such limiters requires magnetic iron cores and leads to several design challenges regarding the constitutive parts of the limiter, namely the primary and secondary windings. Preliminary tests in a laboratory scale prototype have been carried out considering an assembly designed for simplicity in which the optimization of the magnetic coupling between the primary and secondary was not the main focus. This work addresses the design configuration of an inductive current limiter prototype regarding the assembly of the primary and secondary windings in the core. The prototype is based on a closed magnetic core wound by a primary, built from a normal electric conductor, and a short-circuited secondary, built from first generation superconducting tape. Four different design configurations are considered. Through experimental tests, the performance of such prototype is discussed and compared, in terms of normal and fault operation regimes. The results show that all the configurations assure effective magnetic shielding at normal operation regime, however, at fault operation regime, there are differences among configurations.

  18. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  19. Space-charge-limited currents in electron-irradiated dielectrics

    International Nuclear Information System (INIS)

    Nunes de Oliveira, L.; Gross, B.

    1975-01-01

    This paper develops the theory of steady-state currents generated in a dielectric placed between positively or negatively biased electrodes and irradiated with a partially penetrating electron beam. The dielectric is divided into an irradiated region (IR), which extends from the electrode of incidence to the extrapolated range of the beam, and a nonirradiated region (NIR). In the IR the primary beam generates an electron-hole plasma. Its end plane acts as a virtual electrode embedded in the dielectric. Currents are space-charge limited in the NIR and Ohmic in the IR which is characterized by a uniform radiation-induced conductivity. Depending on the polarity of the electrode bias, electrons or holes are drawn from the IR into the NIR. The theory correctly predicts an apparent threshold effect for the inset of steady-state currents: the current amplitudes remain small as long as the electron range is smaller than half the sample thickness, and increase strongly only afterwards. Calculated current curves for different beam energies are in satisfactory agreement with experimental results. The role of the electron beam as a virtual electrode is discussed

  20. Current Status and Research into Overcoming Limitations of Capsule Endoscopy

    Directory of Open Access Journals (Sweden)

    Won Gun Kwack

    2016-01-01

    Full Text Available Endoscopic investigation has a critical role in the diagnosis and treatment of gastrointestinal (GI diseases. Since 2001, capsule endoscopy (CE has been available for small-bowel exploration and is under continuous development. During the past decade, CE has achieved impressive improvements in areas such as miniaturization, resolution, and battery life. As a result, CE is currently a first-line tool for the investigation of the small bowel in obscure gastrointestinal bleeding and is a useful alternative to wired enteroscopy. Nevertheless, CE still has several limitations, such as incomplete examination and limited diagnostic and therapeutic capabilities. To resolve these problems, many groups have suggested several models (e.g., controlled CO2 insufflation system, magnetic navigation system, mobile robotic platform, tagging and biopsy equipment, and targeted drug-delivery system, which are in development. In the near future, new technological advances will improve the capabilities of CE and broaden its spectrum of applications not only for the small bowel but also for the colon, stomach, and esophagus. The purpose of this review is to introduce the current status of CE and to review the ongoing development of solutions to address its limitations.

  1. Superconducting fault current limiter using high-resistive YBCO tapes

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan)], E-mail: takashi.yazawa@toshiba.co.jp; Koyanagi, K.; Takahashi, M.; Ono, M.; Toba, K.; Takigami, H.; Urata, M. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Iijima, Y.; Saito, T. [Fujikura Ltd., 1-5-1 Kiba, Koto, Tokyo 135-0042 (Japan); Ameniya, N. [Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto, Tokyo 135-0062 (Japan)

    2008-09-15

    One of the programs in the Ministry of Economy and Trade and Industry (METI) project regarding R and D on YBCO conductor is to evaluate the applicability of the developed conductor toward several applications. This paper focuses on a fault current limiter (FCL) as one of the expected power applications. YBCO tape conductors with ion beam assisted deposition (IBAD) substrate are used in this work. In order to obtain high resistance of the conductor, which is preferable to an FCL, the thickness of the protecting layer made of silver was decreased as possible. Then high-resistive metal stabilizing layer is attached on the silver layer to improve stability. Obtaining the relevant current limiting performance on short sample experiments, model coils were developed to aim the 6.6 kV-class FCL. Short circuit experiments were implemented with a short circuit generator. The coil successfully restricted the short circuit current over 17 kA to about 700 A by the applied voltage of 3.8 kV, which is nominal phase-to-ground voltage. The experimental results show good agreement with computer analyses and show promising toward the application.

  2. Active superconducting DC fault current limiter based on flux compensation

    International Nuclear Information System (INIS)

    Shi Jing; Tang Yuejin; Wang, Chen; Zhou Yusheng; Li Jingdong; Ren Li; Chen Shijie

    2006-01-01

    With the extensive application of DC power systems, suppression of DC fault current is an important subject that guarantees system security. This paper presents an active superconducting DC fault current limiter (DC-SFCL) based on flux compensation. The DC-SFCL is composed of two superconducting windings wound on a single iron core, the primary winding is in series with DC power system, and the second winding is connected with AC power system through a PWM converter. In normal operating state, the flux in the iron core is compensated to zero, and the SFCL has no influence on DC power system. In the case of DC system accident, through regulating the active power exchange between the SFCL's second winding and the AC power system, the current on the DC side can be limited to different level complying with the system demand. Moreover, the PWM converter that interface the DC system and AC system can be controlled as a reactive power source to supply voltage support for the AC side, which has little influence on the performance of SFCL. Using MATLAB SIMULINK, the mathematic model of the DC-SFCL is created, simulation results validate the dynamics of system, and the performance of DC-SFCL is confirmed

  3. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  4. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  5. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  6. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)

    2004-04-01

    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  7. Current indications and new applications of intense pulsed light.

    Science.gov (United States)

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  8. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  9. Dynamics of Intense Currents in the Solar Wind

    Science.gov (United States)

    Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.

    2018-06-01

    Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

  10. CURRENT-VOLTAGE CURVES FOR TREATING EFFLUENT CONTAINING HEDP: DETERMINATION OF THE LIMITING CURRENT

    Directory of Open Access Journals (Sweden)

    T. Scarazzato

    2015-12-01

    Full Text Available Abstract Membrane separation techniques have been explored for treating industrial effluents to allow water reuse and component recovery. In an electrodialysis system, concentration polarization causes undesirable alterations in the ionic transportation mechanism. The graphic construction of the current voltage curve is proposed for establishing the value of the limiting current density applied to the cell. The aim of this work was to determine the limiting current density in an electrodialysis bench stack, the function of which was the treatment of an electroplating effluent containing HEDP. For this, a system with five compartments was used with a working solution simulating the rinse waters of HEDP-based baths. The results demonstrated correlation between the regions defined by theory and the experimental data.

  11. Current status of intensity-modulated radiation therapy (IMRT)

    International Nuclear Information System (INIS)

    Hatano, Kazuo; Araki, Hitoshi; Sakai, Mitsuhiro

    2007-01-01

    External-beam radiation therapy has been one of the treatment options for prostate cancer. The dose response has been observed for a dose range of 64.8-81 Gy. The problem of external-beam radiotherapy (RT) for prostate cancer is that as the dose increases, adverse effects also increase. Three-dimensional conformal radiation therapy (3D-CRT) has enabled us to treat patients with up to 72-76 Gy to the prostate, with a relatively acceptable risk of late rectal bleeding. Recently, intensity-modulated radiation therapy (IMRT) has been shown to deliver a higher dose to the target with acceptable low rates of rectal and bladder complications. The most important things to keep in mind when using an IMRT technique are that there is a significant trade-off between coverage of the target, avoidance of adjacent critical structures, and the inhomogeneity of the dose within the target. Lastly, even with IMRT, it should be kept in mind that a ''perfect'' plan that creates completely homogeneous coverage of the target volume and zero or small dose to the adjacent organs at risk is not always obtained. Participating in many treatment planning sessions and arranging the beams and beam weights create the best approach to the best IMRT plan. (author)

  12. Fault current limitation with HTc superconductors; Limitation de courant a partir de materiaux supraconducteurs HTc

    Energy Technology Data Exchange (ETDEWEB)

    Buzon, D.

    2002-09-15

    This report deals with the possibility of using high critical temperature (HTc) superconductors for current limitation. The transition from a superconductive to a high dissipative state could be used to limit inrush currents. This application of superconductivity is very attractive because it's an innovative device for electrical networks without any conventional equivalence at high voltage. This device would allow to improve the density of connections and the continuity of the electrical distribution. This study can be divided into two fields. The aim of the first one is to analyse the behaviour of different HTc superconductors for current limitation. We carried out experimental measurements to characterise those conductors during a nominal AC rating (measurements of losses) and during a fault setting. Particularly, a description of the transition in bulk textured YBCO samples near Tc was made of inhomogeneous transition of the device and to estimate its losses. Finally, a 1 kV / 100 A demonstrator made of 43 meanders of textured YBCO was tested at 90,5 K. Thermal gradients seem to be responsible of the altering of some of the samples. The other part of this study concerns the dynamic of the transition. Near Tc, our experiments showed that the transition is more homogeneous. Experimental measurements also showed the influence of thermal exchanges with the cryogenic surrounding on the transition. This point can be justified if the dissipated energy is locally concentrated. (author)

  13. Fault current limitation with HTc superconductors; Limitation de courant a partir de materiaux supraconducteurs HTc

    Energy Technology Data Exchange (ETDEWEB)

    Buzon, D

    2002-09-15

    This report deals with the possibility of using high critical temperature (HTc) superconductors for current limitation. The transition from a superconductive to a high dissipative state could be used to limit inrush currents. This application of superconductivity is very attractive because it's an innovative device for electrical networks without any conventional equivalence at high voltage. This device would allow to improve the density of connections and the continuity of the electrical distribution. This study can be divided into two fields. The aim of the first one is to analyse the behaviour of different HTc superconductors for current limitation. We carried out experimental measurements to characterise those conductors during a nominal AC rating (measurements of losses) and during a fault setting. Particularly, a description of the transition in bulk textured YBCO samples near Tc was made of inhomogeneous transition of the device and to estimate its losses. Finally, a 1 kV / 100 A demonstrator made of 43 meanders of textured YBCO was tested at 90,5 K. Thermal gradients seem to be responsible of the altering of some of the samples. The other part of this study concerns the dynamic of the transition. Near Tc, our experiments showed that the transition is more homogeneous. Experimental measurements also showed the influence of thermal exchanges with the cryogenic surrounding on the transition. This point can be justified if the dissipated energy is locally concentrated. (author)

  14. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido; Loddo, Lucy; Pinna, Elisa; Tiddia, Maria V; Mascia, Michele; Palmas, Simonetta; Ruffilli, Roberta; Falqui, Andrea

    2014-01-01

    measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes

  15. Relativistic space-charge-limited current for massive Dirac fermions

    Science.gov (United States)

    Ang, Y. S.; Zubair, M.; Ang, L. K.

    2017-04-01

    A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.

  16. LIFELONG LEARNING THROUGH SECOND LIFE: CURRENT TRENDS, POTENTIALS AND LIMITATIONS

    Directory of Open Access Journals (Sweden)

    Nil GOKSEL-CANBEK

    2011-08-01

    Full Text Available Lifelong Learning (LLL has been a remarkable response to people-centered educational demand of 21st century. In order to provide effective formal, non-formal, and informal learning, immersive educational activities undertaken throughout life should be aimed to create a learning society in which people can experience individual and collective learning with no constrains of time or location. The concept of lifelong learning within the context of distance immersive education encompasses diverse 3D activities. The three dimensional, Web-based structured activities supported by distance learning technologies can be viewed as interactive tools which foster LLL. In this perspective, Second Life (SL can be regarded as one of the learning simulation milieus that allow learners to participate in various educational LLL activities in individual or group forms. The following paper examines how SL, taking advantage of its simulative nature and the possibility for creative interaction among participants, which are also common in games, allows the learners to participate in immersive constructivist learning activities. The article will also touch on the current uses of SL as a tool for LLL, as well as its potentials for further development according to the current trends in adult education. Further, the authors will discuss its limitations and will make suggestions towards a more complete pedagogical use.

  17. Experimental modeling of eddy currents and deflections for tokamak limiters

    International Nuclear Information System (INIS)

    Hua, T.Q.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-01-01

    In this study, experiments were performed to investigate deflection, current, and material stress in cantilever beams with the Fusion ELectromagnetic Induction eXperiment (FELIX) at the Argonne National Laboratory. Since structures near the plasma are typically cantilevered, the beams provide a good model for the limiter blades of a tokamak fusion reactor. The test pieces were copper, aluminum, phosphor bronze, and brass cantilever beams, clamped rigidly at one end with a nonconducting support frame inside the FELIX test volume. The primary data recorded as functions of time were the beam deflection measured with a noncontact electro-optical device, the total eddy current measured with a Rogowski coil and linking through a central hole in the beam, and the material stress extracted from strain gauges. Measurements of stress and deflection were taken at selected positions along the beam. The extent of the coupling effect depends on several factors. These include the size, the electrical and mechanical properties of the beam, segmenting of the beam, the decay rate of the dipole field, and the strength of the solenoid field

  18. [Surgical intensive care medicine. Current therapy concepts for septic diseases].

    Science.gov (United States)

    Niederbichler, A D; Ipaktchi, K; Jokuszies, A; Hirsch, T; Altintas, M A; Handschin, A E; Busch, K H; Gellert, M; Steinau, H-U; Vogt, P M; Steinsträsser, L

    2009-10-01

    The clinical appearance of septic disorders is characterized by an enormous dynamic. The sepsis-induced dysbalance of the immune system necessitates immediate and aggressive therapeutic interventions to prevent further damage progression of the disease to septic shock and multiple organ failure. This includes supportive therapy to normalize and maintain organ and tissue perfusion as well as the identification of the infection focus. In cases where an infectious focus is identified, surgical source control frequently is a key element of the treatment strategy besides pharmacologic and supportive measures. The integrative approach of the management of septic patients requires rapid communication between the involved medical disciplines and the nursing personnel. Therefore, this article outlines current therapeutic concepts of septic diseases as well as central nursing aspects.

  19. The spatial limitations of current neutral models of biodiversity.

    Directory of Open Access Journals (Sweden)

    Rampal S Etienne

    Full Text Available The unified neutral theory of biodiversity and biogeography is increasingly accepted as an informative null model of community composition and dynamics. It has successfully produced macro-ecological patterns such as species-area relationships and species abundance distributions. However, the models employed make many unrealistic auxiliary assumptions. For example, the popular spatially implicit version assumes a local plot exchanging migrants with a large panmictic regional source pool. This simple structure allows rigorous testing of its fit to data. In contrast, spatially explicit models assume that offspring disperse only limited distances from their parents, but one cannot as yet test the significance of their fit to data. Here we compare the spatially explicit and the spatially implicit model, fitting the most-used implicit model (with two levels, local and regional to data simulated by the most-used spatially explicit model (where offspring are distributed about their parent on a grid according to either a radially symmetric Gaussian or a 'fat-tailed' distribution. Based on these fits, we express spatially implicit parameters in terms of spatially explicit parameters. This suggests how we may obtain estimates of spatially explicit parameters from spatially implicit ones. The relationship between these parameters, however, makes no intuitive sense. Furthermore, the spatially implicit model usually fits observed species-abundance distributions better than those calculated from the spatially explicit model's simulated data. Current spatially explicit neutral models therefore have limited descriptive power. However, our results suggest that a fatter tail of the dispersal kernel seems to improve the fit, suggesting that dispersal kernels with even fatter tails should be studied in future. We conclude that more advanced spatially explicit models and tools to analyze them need to be developed.

  20. Current limitations and challenges in nanowaste detection, characterisation and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Part, Florian; Zecha, Gudrun [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria); Causon, Tim [Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna (Austria); Sinner, Eva-Kathrin [Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria)

    2015-09-15

    Highlights: • First review on detection of nanomaterials in complex waste samples. • Focus on nanoparticles in solid, liquid and gaseous waste samples. • Summary of current applicable methods for nanowaste detection and characterisation. • Limitations and challenges of characterisation of nanoparticles in waste. - Abstract: Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while

  1. Current perspectives on indications and limitations of mammography

    International Nuclear Information System (INIS)

    Pope, T.L. Jr.

    1983-01-01

    Women have a 7 percent natural lifetime risk of developing breast cancer, which is the leading cause of death in women aged 40 to 50 years. Most data suggest that the earlier the disease is diagnosed, the better the chance for cure. Women with ''minimal breast cancer'' have an actuarial 20-year survival rate of 93.2 percent. The majority of these breast cancers are diagnosed by mammography. The radiation doses from this technique have been dramatically decreased over the last ten years to about 0.1 to 0.6 rads per study. The two largest breast cancer screening studies, the Health Insurance Plan of Greater New York and the Breast Cancer Detection Demonstration Project, have shown conclusively that women over 50 years old can benefit from annual mammography and that certain groups can benefit from mammography at close intervals before the age of 50 years. This article describes the development of mammography and outlines current perspectives on its indications and limitations

  2. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    Science.gov (United States)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  3. Establishing a pediatric cardiac intensive care unit - Special considerations in a limited resources environment

    Directory of Open Access Journals (Sweden)

    Nair Suresh

    2010-01-01

    Full Text Available Pediatric cardiac intensive care has evolved as a distinct discipline in well-established pediatric cardiac programs in developed nations. With increasing demand for pediatric heart surgery in emerging economies, a number of new programs are being established. The development of robust pediatric cardiac intensive care units (PCICU is critical to the success of these programs. Because of substantial resource limitations existing models of PCICU care cannot be applied in their existing forms and structure. A number of challenges need to be addressed to deliver pediatric cardiac intensive care in the developing world. Limitations in infrastructure, human, and material resources call for a number of innovations and adaptations. Additionally, a variety of strategies are required to minimize costs of care to the individual patient. This review provides a framework for the establishment of a new PCICU program in face of resource limitations typically encountered in the developing world and emerging economies.

  4. CERN Accelerator School: Intensity Limitations in Particle Beams | 2-11 November

    CERN Multimedia

    2015-01-01

    Registration is now open for the CERN Accelerator School’s specialised course on Intensity Limitations in Particle Beams, to be held at CERN between 2 and 11 November 2015.   This course will mainly be of interest to staff in accelerator laboratories, university departments and companies manufacturing accelerator equipment. Many accelerators and storage rings, whether intended for particle physics experiments, synchrotron light sources or industrial applications, require beams of high brightness and the highest possible intensities. A good understanding of the possible limitations is required to achieve the desired performance. The programme for this course will cover the interaction of beams with their surroundings, with other beams and further collective effects. Lectures on the effects and possible mitigations will be complemented by tutorials. Further information can be found at: http://cas.web.cern.ch/cas/Intensity-Limitations-2015/IL-advert.html   http:/...

  5. Limiting stable states of high-Tc superconductors in the alternating current modes

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.

    2014-01-01

    The limiting current-carrying capacity of high-T c superconductor and superconducting tape has been studied in the alternating current states. The features that are responsible for their stable formation have been investigated under the conduction-cooled conditions when the operating peak values of the electric field and the current may essentially exceed the corresponding critical values of superconductor. Besides, it has been proved that these peak values are higher than the values of the electric field and the current, which lead to the thermal runaway phenomenon when the current instability onset occurs in the operating modes with direct current. As a result, the stable extremely high heat generation exists in these operating states, which can be called as overloaded states. The limiting stable peak values of charged currents and stability conditions have been determined taking into account the flux creep states of superconductors. The analysis performed has revealed that there exist characteristic times defining the corresponding time windows in the stable development of overloaded states of the alternating current. In order to explain their existence, the basic thermo-electrodynamics mechanisms have been formulated, which have allowed to explain the high stable values of the temperature and the induced electric field before the onset of alternating current instability. In general, it has been shown that the high-T c superconductors may stably operate in the overloaded alternating current states even under the not intensive cooling conditions at a very high level of heat generation, which is not considered in the existing theory of losses. (authors)

  6. Limit-order book resiliency after effective market orders: spread, depth and intensity

    Science.gov (United States)

    Xu, Hai-Chuan; Chen, Wei; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing; Stanley, H. Eugene

    2017-07-01

    In order-driven markets, limit-order book (LOB) resiliency is an important microscopic indicator of market quality when the order book is hit by a liquidity shock and plays an essential role in the design of optimal submission strategies of large orders. However, the evolutionary behavior of LOB resilience around liquidity shocks is not well understood empirically. Using order flow data sets of Chinese stocks, we quantify and compare the LOB dynamics characterized by the bid-ask spread, the LOB depth and the order intensity surrounding effective market orders with different aggressiveness. We find that traders are more likely to submit effective market orders when the spreads are relatively low, the same-side depth is high, and the opposite-side depth is low. Such phenomenon is especially significant when the initial spread is 1 tick. Although the resiliency patterns show obvious diversity after different types of market orders, the spread and depth can return to the sample average within 20 best limit updates. The price resiliency behavior is dominant following aggressive market buy orders, while the price continuation behavior is dominant following less-aggressive market sell orders. Moreover, the resiliency stimulus of buy-sell shock is asymmetrical. The intensities of limit sell orders after market buy orders’ shock are always higher than the intensities of limit buy orders after market sell orders’ shock. The resiliency behavior of spread and depth is linked to limit order intensity.

  7. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  8. On Dynamic Range Limitations of CMOS Current Conveyors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1999-01-01

    frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range.......This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...

  9. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  10. Limits to intensity of milk production in sandy areas in The Netherlands

    NARCIS (Netherlands)

    Aarts, H.F.M.; Habekotté, B.; Keulen, van H.

    1999-01-01

    Agricultural land in sandy areas is mainly in use by dairy farms. As a result of intensive fertilisation and irrigation, environmental quality is threatened by lost nutrients and lowered groundwater levels. Therefore, Dutch government put decreasing limits to losses of nutrients, with lowest values

  11. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  12. Current limiting experiment with 600 V/100A rectification type superconducting fault current limiter; 600 V-100A kyu seiryugata chodendo genryuki no genryu shiken

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, J.; Tsurunaga, K.; Urata, M. [Toshiba Corp., Tokyo (Japan); Okuma, T.; Sato, Y.; Iwata, Y. [Tokyo Electric Power Co., Inc., Tokyo (Japan)

    1999-06-07

    The rectification type current limiter with the current-limiting system of the new type which combined rectifier circuits with the direct current reactor has been proposed until now, and it has succeeded in the current-limiting test by the normal conduction reactor by the 6.6kV class model vessel. Since the loss of the conductor becomes fundamentally the zero, in the same current limiter, by using superconducting wire rod, because direct current always flows in the reactor, making into low-loss becomes possible. In this report, this paper describes cut-off characteristic of 600V/100A rectification type superconductive current limiter using the metal type superconductive conductor. (NEDO)

  13. The invisible frontier : the current limits of decentralization and ...

    African Journals Online (AJOL)

    South African Journal of Agricultural Extension. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 30 (2001) >. Log in or Register to get access to full text downloads.

  14. Biotechnological uses of Azotobacter vinelandii : Current state, limits ...

    African Journals Online (AJOL)

    African Journal of Biotechnology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 33 (2010) >. Log in or Register to get access to full text downloads.

  15. Injection-limited electron current in a methanofullerene

    NARCIS (Netherlands)

    Duren, J.K.J. van; Mihailetchi, V.D.; Blom, P.W.M.; Woudenbergh, T. van; Hummelen, J.C.; Rispens, M.T.; Janssen, R.A.J.; Wienk, M.M.

    2003-01-01

    The dark current of bulk-heterojunction photodiodes consisting of a blend of a methanofullerene (PCBM) as n-type electron acceptor and a dialkoxy-(p-phenylene vinylene) (OC1C10-PPV) as a p-type electron donor sandwiched between electrodes with different work functions has been investigated. With

  16. Current estimates of radiation risks and implications for dose limits

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1989-01-01

    The publication of the 1988 report of UNSCEAR represents a major step forward in that there is an international consensus on the estimation of risk from exposure to ionising radiation. The estimates of fatal cancers in the UNSCEAR report are up to 4 times the values in the 1977 review. This paper will describe the reasons for the increase, the remaining uncertainties and the implications for dose limits in occupational and public exposure. (author)

  17. Current status of nuclear medicine in chronic airflow limitation

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, S.W.; Agnew, J.E.

    1987-06-01

    Radionuclide imaging, quite apart from its role in the diagnosis of pulmonary embolism, offers information about the distribution of ventilatory and perfusion abnormalities within the lung. The extent of ventilatory abnormality seen can be related to the severity of airways obstruction as assessed spirometrically, whilst abnormalities in the matching of perfusion to ventilation can be related to the severity of hypoxaemia in patients with chronic airflow limitation. Clearance of mucus from the lungs of patients with chronic mucus hypersection may be assessed by following the clearance rate of insoluble radioaerosol particles; by such means the relative contributions of mucociliary transport and of cough to the overall clearance can be observed. Clearance is often severely impaired in patients with airways obstruction; the radioaerosol technique can be used to determine the effects of drug or physiotherapy treatment. Chronic airflow limitation leading to hypoxaemia can be associated with pulmonary artery hypertension and right ventricular hypertrophy - this may be investigated noninvasively by a radionuclide test of right ventricular ejection fraction.

  18. Current status of nuclear medicine in chronic airflow limitation

    International Nuclear Information System (INIS)

    Clarke, S.W.; Agnew, J.E.; Royal Free Hospital, London

    1987-01-01

    Radionuclide imaging, quite apart from its role in the diagnosis of pulmonary embolism, offers information about the distribution of ventilatory and perfusion abnormalities within the lung. The extent of ventilatory abnormality seen can be related to the severity of airways obstruction as assessed spirometrically, whilst abnormalities in the matching of perfusion to ventilation can be related to the severity of hypoxaemia in patients with chronic airflow limitation. Clearance of mucus from the lungs of patients with chronic mucus hypersection may be assessed by following the clearance rate of insoluble radioaerosol particles; by such means the relative contributions of mucociliary transport and of cough to the overall clearance can be observed. Clearance is often severely impaired in patients with airways obstruction; the radioaerosol technique can be used to determine the effects of drug or physiotherapy treatment. Chronic airflow limitation leading to hypoxaemia can be associated with pulmonary artery hypertension and right ventricular hypertrophy - this may be investigated noninvasively by a radionuclide test of right ventricular ejection fraction. (orig.)

  19. Value choices and considerations when limiting intensive care treatment: a qualitative study.

    Science.gov (United States)

    Halvorsen, K; Førde, R; Nortvedt, P

    2009-01-01

    To shed light on the values and considerations that affect the decision-making processes and the decisions to limit intensive care treatment. Qualitative methodology with participant observation and in-depth interviews, with an emphasis on eliciting the underlying rationale of the clinicians' actions and choices when limiting treatment. Informants perceived over-treatment in intensive care medicine as a dilemma. One explanation was that the decision-making base was somewhat uncertain, complex and difficult. The informants claimed that those responsible for taking decisions from the admitting ward prolonged futile treatment because they may bear guilt or responsibility for something that had gone wrong during the course of treatment. The assessments of the patient's situation made by physicians from the admitting ward were often more organ-oriented and the expectations were less realistic than those of clinicians in the intensive care unit who frequently had a more balanced and overall perspective. Aspects such as the personality and the speciality of those involved, the culture of the unit and the degree of interdisciplinary cooperation were important issues in the decision-making processes. Under-communicated considerations jeopardise the principle of equal treatment. If intensive care patients are to be ensured equal treatment, strategies for interdisciplinary, transparent and appropriate decision-making processes must be developed in which open and hidden values are rendered visible, power structures disclosed, employees respected and the various perspectives of the treatment given their legitimate place.

  20. The limits of intensive feeding: maternal foodwork at the intersections of race, class, and gender.

    Science.gov (United States)

    Brenton, Joslyn

    2017-07-01

    Despite experiencing numerous barriers, mothers today confront increasing social pressure to embody perfection through their foodwork. A growing body of social science research identifies how gender and class inequality shape women's perceptions of food and their feeding strategies, but this research is thus far limited in its understanding of the roles that race and ethnic identity play in a mother's food landscape. Drawing on 60 in-depth interviews with a racially and economically diverse group of mothers, this paper examines how feeding young children is intertwined with contemporary ideas about child health as well as women's efforts to negotiate race, class, and gender hierarchies. Extending Hays' concept of intensive mothering, rich descriptions of feeding children reveal how mothers in this study are discursively engaged with what I call an 'intensive feeding ideology' - the widespread belief that good mothering is synonymous with intensive food labour. Drawing on intersectional theory, this article discusses the limits of an intensive feeding ideology, particularly for poor and middle-class mothers of colour. The findings contribute to an understanding of how power relations are embedded within food ideologies and how mothers of young children attempt to negotiate them. © 2017 Foundation for the Sociology of Health & Illness.

  1. [Reimbursement of intensive care services in the German DRG system : Current problems and possible solutions].

    Science.gov (United States)

    Riessen, R; Hermes, C; Bodmann, K-F; Janssens, U; Markewitz, A

    2018-02-01

    The reimbursement of intensive care and nursing services in the German health system is based on the diagnosis-related groups (G-DRG) system. Due to the lack of a central hospital planning, the G‑DRG system has become the most important influence on the development of the German health system. Compared to other countries, intensive care in Germany is characterized by a high number of intensive care beds, a low nurse-to-patient ratio, no official definition of the level of care, and a minimal available data set from intensive care units (ICUs). Under the given circumstances, a shortage of qualified intensive care nurses and physicians is currently the largest threat for intensive care in Germany. To address these deficiencies, we suggest the following measures: (1) Integration of ICUs into the levels of care which are currently developed for emergency centers at hospitals. (2) Mandatory collection of structured data sets from all ICUs including quality criteria. (3) A reform of intensive care and nursing reimbursement under consideration of adequate staffing in the individual ICU. (4) Actions to improve ICU staffing and qualification.

  2. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions.

    Science.gov (United States)

    Ammann, Claudia; Lindquist, Martin A; Celnik, Pablo A

    It is well known that transcranial direct current stimulation (tDCS) is capable of modulating corticomotor excitability. However, a source of growing concern has been the observed inter- and intra-individual variability of tDCS-responses. Recent studies have assessed whether individuals respond in a predictable manner across repeated sessions of anodal tDCS (atDCS). The findings of these investigations have been inconsistent, and their methods have some limitations (i.e. lack of sham condition or testing only one tDCS intensity). To study inter- and intra-individual variability of atDCS effects at two different intensities on primary motor cortex (M1) excitability. Twelve subjects participated in a crossover study testing 7-min atDCS over M1 in three separate conditions (2 mA, 1 mA, sham) each repeated three times separated by 48 h. Motor evoked potentials were recorded before and after stimulation (up to 30min). Time of testing was maintained consistent within participants. To estimate the reliability of tDCS effects across sessions, we calculated the Intra-class Correlation Coefficient (ICC). AtDCS at 2 mA, but not 1 mA, significantly increased cortical excitability at the group level in all sessions. The overall ICC revealed fair to high reliability of tDCS effects for multiple sessions. Given that the distribution of responses showed important variability in the sham condition, we established a Sham Variability-Based Threshold to classify responses and to track individual changes across sessions. Using this threshold an intra-individual consistent response pattern was then observed only for the 2 mA condition. 2 mA anodal tDCS results in consistent intra- and inter-individual increases of M1 excitability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Optimisation of intense X-ray sources of Z-pinch type connected to the high intensity current generator SPHINX

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Grunenwald, J.; Zucchini, F.

    2010-01-01

    A new source of intense X-rays in the spectral range of the keV has been designed in the CEA facilities at Gramat (France). This Z-pinch source is based on the implosion of a cylinder of matter that has been ionized by the Lorentz force generated by the injection in the cylinder of an intense current pulse delivered by a HPP (High Pulsed Powers) generator named SPHINX. The cylinder of matter is made up of a few hundreds of thin metal wires (tungsten or aluminium) whose diameter is less than a few tenths of μm. The SPHINX generator is based on the LTD (Linear Transformer Driver) technology. SPHINX stores an energy of 2.2 MJ and delivers a current of 8 MA over a time of 1 μs. SPHINX does not use any technology of time compression, it is a robust, compact machine with reduced maintenance but the price to pay for this simplification is to maintain a high axial homogeneity of the implosion during the initiation phase, it means the pulse time of 1μs. The preliminary experiments that have been performed give the following results: -) for a tungsten cylinder (X ray 1 keV): 28 kJ, 0.6 TW and 25 ns

  4. PRA: A PERSPECTIVE ON STRENGTHS, CURRENT LIMITATIONS, AND POSSIBLE IMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ALI MOSLEH

    2014-02-01

    Full Text Available Probabilistic risk assessment (PRA has been used in various technological fields to assist regulatory agencies, managerial decision makers, and systems designers in assessing and mitigating the risks inherent in these complex arrangements. Has PRA delivered on its promise? How do we gage PRA performance? Are our expectations about value of PRA realistic? Are there disparities between what we get and what we think we are getting form PRA and its various derivatives? Do current PRAs reflect the knowledge gained from actual events? How do we address potential gaps? These are some of the questions that have been raised over the years since the inception of the field more than forty years ago. This paper offers a brief assessment of PRA as a technical discipline in theory and practice, its key strengths and weaknesses, and suggestions on ways to address real and perceived shortcomings.

  5. PRA: A Perspective on Strengths, Current Limitations, And Possible Improvements

    International Nuclear Information System (INIS)

    Mosleh, Ail

    2014-01-01

    Probabilistic risk assessment (PRA) has been used in various technological fields to assist regulatory agencies, managerial decision makers, and systems designers in assessing and mitigating the risks inherent in these complex arrangements. Has PRA delivered on its promise? How do we gage PRA performance? Are our expectations about value of PRA realistic? Are there disparities between what we get and what we think we are getting form PRA and its various derivatives? Do current PRAs reflect the knowledge gained from actual events? How do we address potential gaps? These are some of the questions that have been raised over the years since the inception of the field more than forty years ago. This paper offers a brief assessment of PRA as a technical discipline in theory and practice, its key strengths and weaknesses, and suggestions on ways to address real and perceived shortcomings

  6. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  7. Treatment for spasmodic dysphonia: limitations of current approaches

    Science.gov (United States)

    Ludlow, Christy L.

    2009-01-01

    Purpose of review Although botulinum toxin injection is the gold standard for treatment of spasmodic dysphonia, surgical approaches aimed at providing long-term symptom control have been advancing over recent years. Recent findings When surgical approaches provide greater long-term benefits to symptom control, they also increase the initial period of side effects of breathiness and swallowing difficulties. However, recent analyses of quality-of-life questionnaires in patients undergoing regular injections of botulinum toxin demonstrate that a large proportion of patients have limited relief for relatively short periods due to early breathiness and loss-of-benefit before reinjection. Summary Most medical and surgical approaches to the treatment of spasmodic dysphonia have been aimed at denervation of the laryngeal muscles to block symptom expression in the voice, and have both adverse effects as well as treatment benefits. Research is needed to identify the central neuropathophysiology responsible for the laryngeal muscle spasms in order target treatment towards the central neurological abnormality responsible for producing symptoms. PMID:19337127

  8. Current limitations and challenges in nanowaste detection, characterisation and monitoring.

    Science.gov (United States)

    Part, Florian; Zecha, Gudrun; Causon, Tim; Sinner, Eva-Kathrin; Huber-Humer, Marion

    2015-09-01

    Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from

  9. Spin currents from Helium in intense-field photo-ionization

    International Nuclear Information System (INIS)

    Bhattacharyya, S; Mukherjee, Mahua; Chakrabarti, J; Faisal, F H M

    2007-01-01

    Spin dynamics is studied by computing spin-dependent ionization current of He in intense laser field in relativistic field theoretic method. Spin-flip and spin-asymmetry in current generation is obtained with circularly polarized light. The spin-flip is a dynamical effect of intense laser field on an ionized spinning electron. Transformation properties of the up and down spin ionization amplitudes show that the sign of spin can be controlled by a change of helicity of the laser photons from outside

  10. [Is there an age limit for cadaveric kidney donors currently?].

    Science.gov (United States)

    Cofán Pujol, F; Oppenheimer Salinas, F; Talbot-Wright, R; Carretero González, P

    1996-12-01

    The insufficient number of kidney transplants has gradually raised the age limit to the cadaver kidney donor. The use of grafts harvested from older donors has been debated due to the existing structural and functional changes that might influence renal function and long-term graft survival. The foregoing aspects are discussed herein. The anatomical, histological and functional changes in the kidney associated with ageing are analyzed. The clinical experience with renal grafts from older donors before and after cyclosporine became available are reviewed. The ethical issues on whether grafts from very old donors should be used and who should receive these grafts are discussed. The use of grafts from donors over 60 years old had no significant short and medium term differences in comparison with younger donors in terms of graft survival, although a higher incidence of acute tubular necrosis and poor renal function have been observed. There are no conclusive studies on the long-term effects on graft survival when kidneys from donors aged over 65 are utilized. In our experience, the results achieved with grafts from donors over 70 has been unsatisfactory. The guidelines utilized in the selection of grafts derived from older donors are presented. Grafts from donors aged 60 to 70 may be utilized in renal transplantation following precise selection criteria. Graft survival has been satisfactory, although a higher incidence of acute tubular necrosis and higher creatinine levels have been observed. We do not advocate the use of grafts from donors over 70, except in very exceptional cases. Long-term multicenter studies on grafts from very old donors and trials using alternative immunosuppressor modalities that might permit optimal use of these grafts are warranted.

  11. The most intense current sheets in the high-speed solar wind near 1 AU

    Science.gov (United States)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1intense current-carrying structures in high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  12. Threshold effect under nonlinear limitation of the intensity of high-power light

    International Nuclear Information System (INIS)

    Tereshchenko, S A; Podgaetskii, V M; Gerasimenko, A Yu; Savel'ev, M S

    2015-01-01

    A model is proposed to describe the properties of limiters of high-power laser radiation, which takes into account the threshold character of nonlinear interaction of radiation with the working medium of the limiter. The generally accepted non-threshold model is a particular case of the threshold model if the threshold radiation intensity is zero. Experimental z-scan data are used to determine the nonlinear optical characteristics of media with carbon nanotubes, polymethine and pyran dyes, zinc selenide, porphyrin-graphene and fullerene-graphene. A threshold effect of nonlinear interaction between laser radiation and some of investigated working media of limiters is revealed. It is shown that the threshold model more adequately describes experimental z-scan data. (nonlinear optical phenomena)

  13. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  14. Determining the anaerobic threshold in postpolio syndrome: comparison with current guidelines for training intensity prescription

    NARCIS (Netherlands)

    Voorn, Eric L.; Gerrits, Karin H.; Koopman, Fieke S.; Nollet, Frans; Beelen, Anita

    2014-01-01

    To determine whether the anaerobic threshold (AT) can be identified in individuals with postpolio syndrome (PPS) using submaximal incremental exercise testing, and to compare current guidelines for intensity prescription in PPS with the AT. Cohort study. Research laboratory. Individuals with PPS

  15. Operation of the DC current transformer intensity monitors at FNAL during run II

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  16. Low blood flow at onset of moderate-intensity exercise does not limit muscle oxygen uptake

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan P; Saltin, Bengt

    2010-01-01

    The effect of low blood flow at onset of moderate-intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5-min one-legged knee-extensor exercise bout (24 +/- 1 W, mean +/- SD) without (Con) and with (double blockade; DB) arterial infusion...... of inhibitors of nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase (indomethacin) to inhibit the synthesis of nitric oxide and prostanoids, respectively. Leg blood flow and leg oxygen delivery throughout exercise was 25-50% lower (P ... +/- 12 vs. 262 +/- 39 ml/min). The present data demonstrate that muscle blood flow and oxygen delivery can be markedly reduced without affecting muscle oxygen uptake in the initial phase of moderate-intensity exercise, suggesting that blood flow does not limit muscle oxygen uptake at the onset...

  17. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  18. Bandwidth Limitations in Characterization of High Intensity Focused Ultrasound Fields in the Presence of Shocks

    Science.gov (United States)

    Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-03-01

    Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.

  19. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    Science.gov (United States)

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid

  20. Electrochemical doping of mesoporous silicon with Er: the effect of the current intensity

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Pinna, Elisa [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d’Armi, 09126 Cagliari (Italy)

    2014-08-30

    Graphical abstract: - Highlights: • A multidisciplinary approach on porous Si electrochemical Er doping is proposed. • The phenomena taking place at the large developed surface of porous silicon are studied. • Electrochemical, optical and structural characterizations are used. • The early stages of doping are studied by electrochemical impedance spectroscopy. • The dependence of the final amount of Er deposited on the current intensity and not only on the transferred charge is shown. - Abstract: There is an ongoing intense research for cost-effective Er-doped Si-based light-emitting devices at the 1.5 μm wavelength. The efficient electrochemical Er-doping of porous silicon for this purpose requires a good understanding of the phenomena involved, since those taking place at the pores inner surface control the doping process. However, almost no attention has been given, to date, to the relevant effects of the current intensity onto the doping results. In this work, the effect of the current intensity on the doping process is explored by means of electrochemical impedance spectroscopy, optical reflectivity and energy dispersive spectrometry via scanning electron microscopy. The combined analysis of all results strongly suggests that the formation of a gel-like Er ethanolate, unaffected by changes in the sample thickness, occurs from the very first stages of the doping process. Moreover, while for constant current doping processes we show that, under any given doping condition, the doping level is proportional to the transferred charge, we demonstrate that performing the doping process using different current intensities may lead to dramatically different results.

  1. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  2. AC over-current test results of YBCO conductor for YBCO power transformer with fault current limiting function

    International Nuclear Information System (INIS)

    Tomioka, A.; Otonari, T.; Ogata, T.; Iwakuma, M.; Okamoto, H.; Hayashi, H.; Iijima, Y.; Saito, T.; Gosho, Y.; Tanabe, K.; Izumi, T.; Shiohara, Y.

    2011-01-01

    The single-layer coils with a diameter of 250 mm and 12 turns were manufactured with YBCO tapes with a CuNi- or Cu-Tape. The AC over-current tests were carried out in subcooled liquid nitrogen at 66 K and 74 K to develop power transformers with current limiting function. The AC over-current was two to seven times larger than the I c of conductor and it was reduced to the same level of I c . The I c of model coils did not degrade. The test results showed the possibility of YBCO superconducting transformers with current limiting function. We are developing elemental technology for 66 kV/6.9 kV 20 MVA-class YBCO power transformer. The YBCO transformer is considered to have a possibility to stabilize the power system by improving function of fault current limiting. Current limiting behavior functions over critical current flows. There is a possibility that superconducting characteristic may be damaged due to increase in temperature of YBCO tapes. Therefore, we have taken a measure to combine YBCO tape with CuNi tape or Cu Tape. We manufactured model coils using these conductors and conducted the AC over-current tests. The test current was two to seven times larger than the I c of conductor and it was damped with time from its maximum value according to the generation of conductor resistance. We verified the effectiveness of current limiting characteristics. In these tests, the I c of model coil did not degrade. We consider this conductor to be able to withstand AC over-current with the function of current limiting.

  3. Management of Pediatric Delirium in Pediatric Cardiac Intensive Care Patients: An International Survey of Current Practices.

    Science.gov (United States)

    Staveski, Sandra L; Pickler, Rita H; Lin, Li; Shaw, Richard J; Meinzen-Derr, Jareen; Redington, Andrew; Curley, Martha A Q

    2018-06-01

    The purpose of this study was to describe how pediatric cardiac intensive care clinicians assess and manage delirium in patients following cardiac surgery. Descriptive self-report survey. A web-based survey of pediatric cardiac intensive care clinicians who are members of the Pediatric Cardiac Intensive Care Society. Pediatric cardiac intensive care clinicians (physicians and nurses). None. One-hundred seventy-three clinicians practicing in 71 different institutions located in 13 countries completed the survey. Respondents described their clinical impression of the occurrence of delirium to be approximately 25%. Most respondents (75%) reported that their ICU does not routinely screen for delirium. Over half of the respondents (61%) have never attended a lecture on delirium. The majority of respondents (86%) were not satisfied with current delirium screening, diagnosis, and management practices. Promotion of day/night cycle, exposure to natural light, deintensification of care, sleep hygiene, and reorientation to prevent or manage delirium were among nonpharmacologic interventions reported along with the use of anxiolytic, antipsychotic, and medications for insomnia. Clinicians responding to the survey reported a range of delirium assessment and management practices in postoperative pediatric cardiac surgery patients. Study results highlight the need for improvement in delirium education for pediatric cardiac intensive care clinicians as well as the need for systematic evaluation of current delirium assessment and management practices.

  4. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido

    2014-07-04

    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process.

  5. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  6. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    Science.gov (United States)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  7. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  8. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  9. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs

  10. Upper limit on the inner radiation belt MeV electron intensity

    Science.gov (United States)

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  11. Low-frequency-high-intensity limit of the Keldysh-Faisal-Reiss theory

    International Nuclear Information System (INIS)

    Bauer, Jaroslaw

    2006-01-01

    When a frequency of the circularly polarized laser field approaches zero the above threshold ionization rate should approach the well-known static-field limit of tunneling ionization. In the high-intensity limit of the laser field the Keldysh-Faisal-Reiss (KFR) theory is expected to be valid. For the ground state of a hydrogen atom we study various forms of the KFR theory when both conditions: ω<<1 a.u. and γ<<1 (ω is the frequency and γ the Keldysh parameter) are satisfied. For the circularly polarized laser field ionization rate in the Keldysh theory [which utilizes the length gauge (d(vector sign)·E(vector sign)) form of the matrix element] is calculated analytically. We show numerically that if the WKB Coulomb correction in the final state of the ionized electron is included, the Keldysh theory gives the correct result in the tunneling domain. In the barrier-suppression regime the Keldysh theory without this correction gives ionization rates close to the exact static-field results. The Reiss theory [which utilizes the velocity gauge (p(vector sign)·A(vector sign)) form of the matrix element] leads to too small ionization rates in the limit ω→0, γ→0

  12. [Perspective of intensive care nursing staff on the limitation of life support treatment].

    Science.gov (United States)

    Vallès-Fructuoso, O; Ruiz-de Pablo, B; Fernández-Plaza, M; Fuentes-Milà, V; Vallès-Fructuoso, O; Martínez-Estalella, G

    To determine the perspective of intensive care nursing staff on the limitation of life support treatment (LLST) in the Intensive Care Units. An exploratory qualitative study was carried out by applying the theory of Strauss and Corbin as the analysis tool. Constructivist paradigm. Nursing staff from three Intensive Care Units of Hospital Universitari de Bellvitge. Convenience sampling to reach theoretical saturation of data. Data collection through semi-structured interview recorded prior to informed consent. Rigor and quality criteria (reliability, credibility, transferability), and authenticity criteria: reflexivity. Demographic data was analysed using Excel. A total of 28 interviews were conducted. The mean age of the nurses was 35.6 years, with a mean seniority of 11.46 years of working in ICU. A minority of nurses (21.46%) had received basic training in bioethics. The large majority (85.7%) believe that LLST is not a common practice due to therapeutic cruelty and poor management with it. There is a correlation with the technical concepts; but among the main ethical problems is the decision to apply LLST. Nurses recognise that the decision on applying LLST depends on medical consensus with relatives, and they believe that their opinion is not considered. Their objective is trying to avoid suffering, and assist in providing a dignified death and support to relatives. There is still a paternalistic pattern between the doctor and patient relationship, where the doctor makes the decision and then agrees with the relatives to apply LLST. Organ failure and poor prognosis are the most important criteria for applying LLST. It is necessary to develop a guide for applying LLST, emphasising the involvement of nurses, patients, and their relatives. Copyright © 2016 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  13. Network coupling via a current-limiting throttle with a high-Tc superconductor core

    International Nuclear Information System (INIS)

    Bochenek, E.; Fischer, R.; Lampen, U.; Voigt, H.

    1989-01-01

    A current-limiting concept is tested by means of a choke with a current-responsive inductivity for linking three-phase current supplies. The choke has a core of a material with a high transition point T c . In the case of nominal current, the core is superconductive and keeps the resulting inductance of the choke low by shield currents. In the case of overload, the core passes into the normal conductive state due to the increased magnetic field of the winding. The resulting inductance of the choke rises and, in doing so, effects current limitation. (orig.) [de

  14. Are Participants Aware of the Type and Intensity of Transcranial Direct Current Stimulation?

    Directory of Open Access Journals (Sweden)

    Matthew F Tang

    Full Text Available Transcranial direct current stimulation (tDCS is commonly used to alter cortical excitability but no experimental study has yet determined whether human participants are able to distinguish between the different types (anodal, cathodal, and sham of stimulation. If they can then they are not blind to experimental conditions. We determined whether participants could identify different types of stimulation (anodal, cathodal, and sham and current strengths after experiencing the sensations of stimulation during current onset and offset (which are associated with the most intense sensations in Experiment 1 and also with a prolonged period of stimulation in Experiment 2. We first familiarized participants with anodal, cathodal, and sham stimulation at both 1 and 2 mA over either primary motor or visual cortex while their sensitivity to small changes in visual stimuli was assessed. The different stimulation types were then applied for a short (Experiment 1 or extended (Experiment 2 period with participants indicating the type and strength of the stimulation on the basis of the evoked sensations. Participants were able to identify the intensity of stimulation with shorter, but not longer periods, of stimulation at better than chance levels but identification of the different stimulation types was at chance levels. This result suggests that even after exposing participants to stimulation, and ensuring they are fully aware of the existence of a sham condition, they are unable to identify the type of stimulation from transient changes in stimulation intensity or from more prolonged stimulation. Thus participants are able to identify intensity of stimulation but not the type of stimulation.

  15. Training of nurses on Foley catheter insertion in intensive care unit patients: limits and possibilities

    Directory of Open Access Journals (Sweden)

    Magno Conceição Merces

    2013-04-01

    Full Text Available Backgound and Objectives: Nursing has an important role in urinary tract infection prevention and control. Urinary catheters insertion represents the local topography with the highest rate of hospital infection. Foley catheter placement is performed solely by the nurse and requires aseptic techniques during its performance, thus preventing risks to the patients. The study aimed to evaluate the training of nurses on Foley catheter insertion and point out limits and possibilities of this practice in patients at the Intensive Care Unit (ICU of Hospital Geral do Interior da Bahia (HGIB. Methods: This was a qualitative, exploratory and descriptive study. Data collection was carried out through semi-structured interviews. After data analysis, two categories were evaluated, namely: the training of nurses on Foley catheter insertion in ICU patients and the limits and possibilities of Foley catheter insertion practice by nurses in ICU patients. Bardin analysis was used for data analysis. Results: The study shows that the nurse’s practice on Foley catheter insertion in ICU patients is based on the use of aseptic techniques for urinary tract infection prevention, theoretical and practical knowledge on Foley catheter insertion in ICU patients, knowledge on urinary tract infections and associations with catheter insertion, whereas the limits and possibilities of Foley catheter insertion practice by nurses are understood through measures to minimize the risk of hospital infection caused by long-term catheter use in the ICU. Nurses point out that the risks of hospital infection are inherent to long-term catheter use. This is an important fact, as the knowledge or its absence may constitute a limit or possibility for Foley catheter insertion practice by the nurse in ICU patients. Conclusion: Nurses must seek the systematization of knowledge, which warrants support for the team, as well as information, safety and prompt care, allowing the reduction of urinary

  16. Influence of laboratory annealing on tensile properties and design stress intensity limits for Type 304 stainless steel

    International Nuclear Information System (INIS)

    Sikka, V.K.; Booker, M.K.

    1977-01-01

    The influence of reannealing (laboratory annealing) on yield and ultimate tensile strength values of 19 heats of type 304 stainless steel was determined. Most heats were reannealed at 1065 0 C for 0.5 hr. The reannealed properties were used to determine the influence of reannealing on time-independent design stress intensity limits (S/sub m/). The major findings are as follows: 1. Reannealing lowered the 0.2 percent yield strength versus temperature curve by approximately 42 MPa over the range from room temperature to 649 0 C. 2. The estimated S/sub m/ values for reannealed material were 24 to 28 MPa lower than the current code values. 3. Reannealing appears to influence the S/sub m/ value sufficiently to warrant the consideration of separate values of S/sub m/ in Sect. III of the Boiler and Pressure Vessel Code and Code Case 1592 for ''as-received'' and reannealed material

  17. Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development

    DEFF Research Database (Denmark)

    Hostrup, Morten; Bangsbo, Jens

    2017-01-01

    Mechanisms underlying fatigue development and limitations for performance during intense exercise have been intensively studied during the past couple of decades. Fatigue development may involve several interacting factors and depends on type of exercise undertaken and training level of the indiv...

  18. Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising.

    Science.gov (United States)

    Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George

    2009-08-01

    We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.

  19. Comparison of neighborhood-scale residential wood smoke emissions inventories using limited and intensive survey data

    International Nuclear Information System (INIS)

    Baxter, T.E.

    1998-01-01

    Emission inventory based estimations of pollutants resulting from residential combustion of wood are typically determined by collecting survey data that represent a single but relatively large area. While the pollutants in wood smoke emissions may represent a relatively low fraction (<10%) of an area's total annual emissions mass inventory, they can concentrate within the specific neighborhood areas where emitted. Thus, while the representativeness of a large-area survey approach is valid and useful, its application for estimating wood smoke pollutant levels within any particular neighborhood may be limited. The ability to obtain a better estimation of pollutant levels for evaluating potential health-related impacts within neighborhoods where wood smoke pollutants can concentrate requires survey data more representative of the particular area. This study compares residential wood combustion survey data collected from six residential neighborhoods in the metropolitan area of Flagstaff, Arizona. The primary purpose of this study is to determine the ability of data collected from a limited neighborhood-scale survey effort to represent that neighborhood's wood fuel consumption characteristics and wood smoke emissions. In addition, the variation that occurs between different neighborhoods regarding residential consumption of wood is also evaluated. Residential wood combustion survey data were collected compare wood burning device distribution, wood types and quantities burned, and emission rates. One neighborhood was surveyed once at approximately a 10% distribution rate and again at a 100% distribution rate providing data for evaluating the ability of a limited-effort survey to represent a more intensive survey. Survey methodology, results and recommendations are presented

  20. Agora: A proposal to overcome the limitations of the current knowledge creation process

    OpenAIRE

    ScientistFive

    2015-01-01

    Agora: A proposal to overcome the limitations of the current knowledge creation process ======================================================================================= By Scientistsfive () Abstract: The knowledge creation process is broken and can be improved by a combination of currently emerging tools. The rationale for this proposal is the notion that the current scientific process is not optimal: * Artificially staged competitions (g...

  1. Experimental study of the transport limits of intense heavy ion beams in the HCX

    International Nuclear Information System (INIS)

    Prost, L.R.; Bieniosek, F.M.; Celata, C.M.; Dugan, C.C.; Faltens, A.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik, A.W.; Haber, I.

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density up to ∼ 0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. The experiment also contributes to the practical baseline knowledge of intense beam manipulations necessary for the design, construction and operation of a heavy ion driver for inertial fusion. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We first present the results for a coasting 1 MeV K + ion beam transported through the first ten electrostatic transport quadrupoles, measured with optical beam-imaging and double-slit phase-space diagnostics. This includes studies at two different radial fill factors (60% and 80%), for which the beam transverse distribution was characterized in detail. Additionally, beam energy measurements will be shown. We then discuss the first results of beam transport through four pulsed room-temperature magnetic quadrupoles (located downstream of the electrostatic quadrupoles), where the beam dynamics become more sensitive to the presence of secondary electrons

  2. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  3. VME computer monitoring system of KEK-PS fast pulsed magnet currents and beam intensities

    International Nuclear Information System (INIS)

    Kawakubo, T.; Akiyama, A.; Kadokura, E.; Ishida, T.

    1992-01-01

    For beam transfer from the KEK-PS Linac to the Booster synchrotron ring and from the Booster to the Main ring, many pulse magnets have been installed. It is very important for the machine operation to monitor the firing time, rising time and peak value of the pulsed magnet currents. It is also very important for magnet tuning to obtain good injection efficiency of the Booster and the Main ring, and to observe the last circulating bunched beam in the Booster as well as the first circulating in the Main. These magnet currents and beam intensity signals are digitized by a digital oscilloscope with signal multiplexers, and then shown on a graphic display screen of the console via a VME computer. (author)

  4. A micro-power LDO with piecewise voltage foldback current limit protection

    International Nuclear Information System (INIS)

    Wei Hailong; Liu Youbao; Guo Zhongjie; Liao Xue

    2012-01-01

    To achieve a constant current limit, low power consumption and high driving capability, a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented. The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA. To increase the loop stability of the proposed LDO, a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole, and a zero is designed for the purpose of the second pole phase compensation. The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA, the constant limit current under a high drop-out voltage is 440 mA, and the maximum load current under a low drop-out voltage is up to 800 mA. In addition, the quiescent current of the LDO is only 7 μA, the load regulation is about 0.56% on full scale, the line regulation is about 0.012%/V, the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA. (semiconductor integrated circuits)

  5. Interaction of ultra-high intensity laser pulse with a mass limited targets

    International Nuclear Information System (INIS)

    Andreev, A.A.; Platonov, K.Yu.; Limpouch, J.; Psikal, J.; Kawata, S.

    2006-01-01

    Complete test of publication follows. Ultra-high intensity laser pulses may be produced now via CPA scheme by using very short laser pulses of a relatively low energy. Interaction of such pulses with massive target is not very efficient as the energy delivered to charged particles spreads out quickly over large distances and it is redistributed between many secondary particles. One possibility to limit this undesirable energy spread is to use mass limited targets (MLT), for example droplets, big clusters or small foil sections. This is an intermediate regime in target dimensions between bulk solid and nanometer-size atomic cluster targets. A few experimental and theoretical studies have been carried out on laser absorption, fast particle generation and induced nuclear fusion reactions in the interaction of ultrashort laser pulses with MLT plasma. We investigate here laser interactions with MLT via 2D3V relativistic electromagnetic PIC simulations. We assume spherical droplet as a typical MLT. However, the sphere is represented in 2D simulations by an infinite cylinder irradiated uniformly along its length. We assume that MLT is fully ionized before main pulse interaction either due to insufficient laser contrast or due to a prepulse. For simplicity, we assume homogeneous plasma of high initial temperature. We analyze the interaction of relativistic laser pulses of various polarizations with targets of different shapes, such as a foil, quadrant and sphere. The mechanisms of laser absorption, electron and ion acceleration are clarified for different laser and target parameters. When laser interacts with the target front side, kinetic energy of electrons rises rapidly with fast oscillations in the kinetic and field energy, caused by electron oscillations in the laser field. Small energy oscillations, observed later, are caused by the electron motion back and forth through the droplet. Approximately 40% of laser energy is transferred to the kinetic energy of electrons

  6. Self-Guiding of Ultrashort Relativistically Intense Laser Pulses to the Limit of Nonlinear Pump Depletion

    International Nuclear Information System (INIS)

    Ralph, J. E.; Marsh, K. A.; Pak, A. E.; Lu, W.; Clayton, C. E.; Fang, F.; Joshi, C.; Tsung, F. S.; Mori, W. B.

    2009-01-01

    A study of self-guiding of ultra short, relativistically intense laser pulses is presented. Here, the laser pulse length is on the order of the nonlinear plasma wavelength and the normalized vector potential is greater than one. Self-guiding of ultrashort laser pulses over tens of Rayliegh lengths is possible when driving a highly nonlinear wake. In this case, self-guiding is limited by nonlinear pump depletion. Erosion of the pulse due to diffraction at the head of the laser pulse is minimized for spot sizes close to the blow-out radius. This is due to the slowing of the group velocity of the photons at the head of the laser pulse. Using an approximately 10 TW Ti:Sapphire laser with a pulse length of approximately 50 fs, experimental results are presented showing self-guiding over lengths exceeding 30 Rayliegh lengths in various length Helium gas jets. Fully explicit 3D PIC simulations supporting the experimental results are also presented.

  7. Pushing the Limits: Cognitive, Affective, & Neural Plasticity Revealed by an Intensive Multifaceted Intervention

    Directory of Open Access Journals (Sweden)

    Michael David Mrazek

    2016-03-01

    Full Text Available Scientific understanding of how much the adult brain can be shaped by experience requires examination of how multiple influences combine to elicit cognitive, affective, and neural plasticity. Using an intensive multifaceted intervention, we discovered that substantial and enduring improvements can occur in parallel across multiple cognitive and neuroimaging measures in healthy young adults. The intervention elicited substantial improvements in physical health, working memory, standardized test performance, mood, self-esteem, self-efficacy, mindfulness, and life satisfaction. Improvements in mindfulness were associated with increased degree centrality of the insula, greater functional connectivity between insula and somatosensory cortex, and reduced functional connectivity between posterior cingulate cortex and somatosensory cortex. Improvements in working memory and reading comprehension were associated with increased degree centrality of a region within the middle temporal gyrus that was extensively and predominately integrated with the executive control network. The scope and magnitude of the observed improvements represent the most extensive demonstration to date of the considerable human capacity for change. These findings point to higher limits for rapid and concurrent cognitive, affective, and neural plasticity than is widely assumed.

  8. Non-intercepting beam intensity measurements towards pico-ampere. Cryogenic current comparators for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, Febin [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Goethe University, Frankfurt am Main (Germany); Helmholtz Institute Jena (Germany); Schwickert, Marcus; Sieber, Thomas; Kowina, Piotr; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Geithner, Rene; Neubert, Ralf; Seidel, Paul; Golm, Jessica [Friedrich-Schiller-Universitaet Jena (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Helmholtz Institute Jena (Germany); Friedrich-Schiller-Universitaet Jena (Germany)

    2016-07-01

    To satisfy the requirement of non-interceptive measurement of beam intensity down to nA range foreseen in the upcoming FAIR accelerator facility, several Cryogenic Current Comparator (CCC) systems are planned to be installed in its beam transfer lines and storage rings. As a test bench for the development of advanced CCC systems for these installations, the existing CCC system at GSI has been recommissioned and upgraded with advanced sensor components. Successful beam intensity measurements using this upgraded CCC system will be reported in this contribution. Apart from the beam measurements, several operational aspects of the CCC system were investigated, such as the baseline drifts and various noise influences. Combining the operational experiences and boundary conditions given at various installation locations in the FAIR facility, an advanced CCC system is currently under development and is planned to be installed at the Cryring facility at GSI for test measurements. Details on the development of this advanced CCC system will also be presented in this contribution.

  9. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)], E-mail: heydari@iust.ac.ir, E-mail: faramarz_faghihi@ee.iust.ac.ir, E-mail: reza_sharifi@ee.iust.ac.ir, E-mail: amirhosseinp@ee.iust.ac.ir

    2008-09-15

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  10. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  11. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    International Nuclear Information System (INIS)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-01-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT

  12. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  13. Fast current amplifier for background-limited operation of photovoltaic InSb detectors

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, J; Koehler, S; Lahmann, W

    1981-01-01

    A fast current amplifier for use with photovoltaic indium antimonide detectors is described which was designed for detection of lidar return signals. Near background-limited operation was possible for bandwidths up to 0.8 MHz.

  14. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  15. Rated-voltage enhancement by fast-breaking of the fault current for a resistive superconducting fault current limiter component

    International Nuclear Information System (INIS)

    Park, C.-R.; Kim, M.-J.; Yu, S.-D.; Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.

    2010-01-01

    Performance of a resistive superconducting fault current limiter (SFCL) component is usually limited by temperature rise associated with energy input by fault current application during a fault. Therefore, it is expected that short application of the fault current may enhance the power ratings of the component. This can be accomplished by a combination of a HTS component and a mechanical switch. The fast switch (FS) developed recently enables the fault duration to be as short as 1/2 cycle after a fault. Various second-generation (2G) high temperature superconductors (HTS) and YBCO thin films have been tested. The relation between the rated voltage V and the fault duration time t was found to be V 2 ∼ t -1 . Based upon the relation, we predict that when the FS break the fault current within 1/2 cycle after a fault, the amount of HTS components required to build an SFCL can be reduced by as much as about 60%, of that when breaking the fault current at three cycles.

  16. Limit on flavor-changing neutral currents from a measurement of neutrino-electron elastic scattering

    International Nuclear Information System (INIS)

    Krakauer, D.A.; Talaga, R.L.; Allen, R.C.; Chen, H.H.; Hausammann, R.; Lee, W.P.; Lu, X.; Mahler, H.J.; Wang, K.C.; Bowles, T.J.; Burman, R.L.; Carlini, R.D.; Cochran, D.R.F.; Doe, P.J.; Frank, J.S.; Potter, M.E.; Sandberg, V.D.; Piasetzky, E.

    1992-01-01

    From a measurement of the absolute cross section in ν ee - elastic scattering we have set a limit on flavor-changing neutral currents in the neutrino sector. We find that an off-diagonal, flavor-changing coupling is limited to 1-f ee <0.35 (90% C.L.)

  17. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  18. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  19. Reversible thermal fusing model of carbon black current-limiting thermistors

    International Nuclear Information System (INIS)

    Martin, James E.; Heaney, Michael B.

    2000-01-01

    Composites of carbon black particles in polyethylene exhibit an unusually rapid increase in resistivity as the applied electric field is increased, making this material commercially useful as current-limiting thermistors, also known as automatically resettable fuses. In this application the composite is in series with the circuit it is protecting: at low applied voltages the circuit is the load, but at high applied voltages the composite becomes the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network of nonlinear resistors. Each resistor has a resistance that depends explicitly and reversibly on its instantaneous power dissipation. This model predicts that in the soft fusing, or current-limiting, regime, where the current through the composite decreases with increasing voltage, a platelike dissipation instability develops normal to the applied field, in agreement with experimental observations, which is solely due to fluctuations in the microstructure

  20. A superconducting direct-current limiter with a power of up to 8 MVA

    Science.gov (United States)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2016-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  1. A superconducting direct-current limiter with a power of up to 8 MVA

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M.; Alferov, D. F., E-mail: DFAlferov@niitfa.ru; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2016-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel–series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.

  2. Limiting currents of an unneutralized magnetized electron beam in a cylindrical drift tube

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sloan, M.L.

    1978-01-01

    Results of an investigation of the steady state injection of a uniform unneutralized, magnetized, relativistic electron beam into a cylindrical drift tube are presented. The space-charge-limited current and the asymptotic kinetic energy of electrons on axis is determined both numerically and analytically as a function of the input kinetic energy (γ 0 -1) mc 2 and of the ratio of beam-to-wall radii. A previously cited ''interpolation formula'' is obtained in the pencil beam limit, but more accurate limiting current expressions are developed for other cases (such as the fat beam limit) where the interpolation formula is as much as 20% in error. The corresponding axial electron energy is also found to be significantly smaller than the previously cited value of (γ/sup 1/3/ 0 -1) mc 2 except in the strong pencil beam limit

  3. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  4. First experimental results with the Current Limit Avoidance System at the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Galeani, S. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Jachmich, S. [Association EURATOM-Belgian State, Koninklijke Militaire School - Ecole Royale Militaire, B-1000 Brussels (Belgium); Joffrin, E. [IRFM-CEA, Centre de Cadarache, 13108 Saint-paul-lez-Durance (France); Lennholm, M. [EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); European Commission, B-1049 Brussels (Belgium); Lomas, P.J. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A.C. [Associazione EURATOM-IST, Instituto de Plasmas e Fusao Nuclear, IST, 1049-001 Lisboa (Portugal); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Sips, A.C.C. [European Commission, B-1049 Brussels (Belgium); Varano, G.; Vitelli, R. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Zaccarian, L. [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse (France); Universitè de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-06-15

    The Current Limit Avoidance System (CLA) has been recently deployed at the JET tokamak to avoid current saturations in the poloidal field (PF) coils when the eXtreme Shape Controller is used to control the plasma shape. In order to cope with the current saturation limits, the CLA exploits the redundancy of the PF coils system to automatically obtain almost the same plasma shape using a different combination of currents in the PF coils. In the presence of disturbances it tries to avoid the current saturations by relaxing the constraints on the plasma shape control. The CLA system has been successfully implemented on the JET tokamak and fully commissioned in 2011. This paper presents the first experimental results achieved in 2011–2012 during the restart and the ITER-like wall campaigns at JET.

  5. A 1.8 V LDO voltage regulator with foldback current limit and thermal protection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhiming; Fu Zhongqian; Huang Lu; Xi Tianzuo, E-mail: zml1985@mail.ustc.edu.c [Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027 (China)

    2009-08-15

    This paper introduces the design of a l.8 V low dropout voltage regulator (LDO) and a foldback current limit circuit which limits the output current to 3 mA when load over-current occurs. The LDO was implemented in a 0.18 {mu}m CMOS technology. The measured result reveals that the LDO's power supply rejection (PSR) is about -58 dB and -54 dB at 20 Hz and 1 kHz respectively, the response time is 4 {mu}s and the quiescent current is 20 {mu}A. The designed LDO regulator can work with a supply voltage down to 2.0 V with a drop-out voltage of 200 mV at a maximum load current of 240 mA. (semiconductor integrated circuits)

  6. A 1.8 V LDO voltage regulator with foldback current limit and thermal protection

    International Nuclear Information System (INIS)

    Liu Zhiming; Fu Zhongqian; Huang Lu; Xi Tianzuo

    2009-01-01

    This paper introduces the design of a l.8 V low dropout voltage regulator (LDO) and a foldback current limit circuit which limits the output current to 3 mA when load over-current occurs. The LDO was implemented in a 0.18 μm CMOS technology. The measured result reveals that the LDO's power supply rejection (PSR) is about -58 dB and -54 dB at 20 Hz and 1 kHz respectively, the response time is 4 μs and the quiescent current is 20 μA. The designed LDO regulator can work with a supply voltage down to 2.0 V with a drop-out voltage of 200 mV at a maximum load current of 240 mA. (semiconductor integrated circuits)

  7. Hybrid superconducting a.c. current limiter extrapolation 63 kV-1 250 A

    Science.gov (United States)

    Tixador, P.; Levêque, J.; Brunet, Y.; Pham, V. D.

    1994-04-01

    Following the developement of a.c. superconducting wires a.c. current superconducting limiters have emerged. These limiters limit the fault currents nearly instantaneously, without detection nor order giver and may be suitable for high voltages. They are based on the natural transition from the superconducting state to the normal resistive state by overstepping the critical current of a superconducting coil which limits or triggers the limitation. Our limiter device consists essentially of two copper windings coupled through a saturable magnetic circuit and of a non inductively wound superconducting coil with a reduced current compared to the line current. This design allows a simple superconducting cable and reduced cryogenic losses but the dielectric stresses are high during faults. A small model (150 V/50 A) has experimentally validated our design. An industrial scale current limiter is designed and the comparisons between this design and other superconducting current limiters are given. Les courants de court-circuit sur les grands réseaux électriques ne cessent d'augmenter. Dans ce contexte sont apparus les limiteurs supraconducteurs de courant suite au développement des brins supraconducteurs alternatifs. Ces limiteurs peuvent limiter les courants de défaut presque instantanément, sans détection de défaut ni donneur d'ordre et ils sont extrapolables aux hautes tensions. Ils sont fondés sur la transition naturelle de l'état supraconducteur à l'état normal très résistif par dépassement du courant critique d'un enroulement supraconducteur qui limite ou déclenche la limitation. Notre limiteur est composé de deux enroulements en cuivre couplés par un circuit magnétique saturable et d'une bobine supraconductrice à courant réduit par rapport au courant de la ligne. Cette conception permet un câble supraconducteur simple et des pertes cryogéniques réduites mais les contraintes diélectriques en régime de défaut sont importantes. Une maquette

  8. Determining the anaerobic threshold in post-polio syndrome: comparison with current guidelines for training intensity prescription.

    NARCIS (Netherlands)

    Voorn, E.L.; Gerrits, K.H.L.; Koopman, F.S.; Nollet, F.; Beelen, A.

    2014-01-01

    Objectives To determine whether the anaerobic threshold (AT) can be identified in individuals with postpolio syndrome (PPS) using submaximal incremental exercise testing, and to compare current guidelines for intensity prescription in PPS with the AT. Design Cohort study. Setting Research

  9. Investigation via numerical simulation of limiting currents in the presence of dielectric loads

    International Nuclear Information System (INIS)

    Baedke, W. C.

    2009-01-01

    An investigation of the space-charge-limited currents for unneutralized relativistic particle beams drifting through a dielectrically loaded cylindrical conductor is presented. The first limiting current expression investigated assumes a uniform axial velocity profile, is commonly found in the literature, and has been applied to solid and annular beams with and without a dielectric present. The second limiting current expression investigated is self-consistent and is developed for annular beams in the presence of a dielectric load provided that the beams' inner and outer radii are less than the dielectric inner radius. Comparing both of these expressions to particle-in-cell simulations shows that the first expression under predicts the limiting current by no more than 20% and no less than 10% for all geometries and relativistic mass factors considered. It is also shown that the second expression over predicts the limiting current for all scenarios investigated by as much as 20% and in certain cases only a few percent. In addition, estimates for the accumulated charge densities at the vacuum-dielectric interface are presented and the possibility of breakdown within the dielectric is addressed.

  10. Effect of bootstrap current on MHD equilibrium beta limit in heliotron plasmas

    International Nuclear Information System (INIS)

    Watanabe, K.Y.

    2001-01-01

    The effect of bootstrap current on the beta limit of MHD equilibria is studied systematically by an iterative calculation of MHD equilibrium and the consistent bootstrap current in high beta heliotron plasmas. The LHD machine is treated as a standard configuration heliotron with an L=2 planar axis. The effects of vacuum magnetic configurations, pressure profiles and the vertical field control method are studied. The equilibrium beta limit with consistent bootstrap current is quite sensitive to the magnetic axis location for finite beta, compared with the currentless cases. For a vacuum configuration with the magnetic axis shifted inwards in the torus, even in the high beta regimes, the bootstrap current flows to increase the rotational transform, leading to an increase in the equilibrium beta limit. On the contrary, for a vacuum configuration with the magnetic axis shifted outwards in the torus, even in the low beta regimes, the bootstrap current flows so as to reduce the rotational transform; therefore, there is an acceleration of the Shafranov shift increase as beta increases, leading to a decrease in the equilibrium beta limit. The pressure profiles and vertical field control methods influence the equilibrium beta limit through the location of the magnetic axis for finite beta. These characteristics are independent of both device parameters, such as magnetic field strength, and device size in the low collisional regime. (author)

  11. Effect of accelerating field third harmonic on microtron steady-state conditions and limiting current

    International Nuclear Information System (INIS)

    Kol'tsov, A.V.; Serov, A.V.

    1992-01-01

    Setting the acceleration regime in a microtron with the resonator in which the third accelerating field harmonic is excited by accelerated clusters is considered. It is shown that excitation of the accelerating field third harmonic in the microtron resonator (E 011 mode) causes a 1.5 time increase of the range of field intensity values under which resonance particle acceleration is possible. Under moderate energies and accelerated currents (10-15 MeV, 50-80 mA) this leads to a reduction of requirements to the stability of power coming to the resonator and cathode temperature. Under accelerated currents of > 100 mA the third harmonic complicates the microtron transition to acceleration regime. The microtron transfers to stable autooscillation regime, but the current achieved in a single short pulse is increased. By varying the value of the resonator quality factor on the third harmonic one can change the current pulse duration and autooscillation period

  12. Intensity, Duration, and Location of High-Definition Transcranial Direct Current Stimulation for Tinnitus Relief.

    Science.gov (United States)

    Shekhawat, Giriraj Singh; Sundram, Frederick; Bikson, Marom; Truong, Dennis; De Ridder, Dirk; Stinear, Cathy M; Welch, David; Searchfield, Grant D

    2016-05-01

    Tinnitus is the perception of a phantom sound. The aim of this study was to compare current intensity (center anode 1 mA and 2 mA), duration (10 minutes and 20 minutes), and location (left temporoparietal area [LTA] and dorsolateral prefrontal cortex [DLPFC]) using 4 × 1 high-definition transcranial direct current stimulation (HD-tDCS) for tinnitus reduction. Twenty-seven participants with chronic tinnitus (>2 years) and mean age of 53.5 years underwent 2 sessions of HD-tDCS of the LTA and DLPFC in a randomized order with a 1 week gap between site of stimulation. During each session, a combination of 4 different settings were used in increasing dose (1 mA, 10 minutes; 1 mA, 20 minutes; 2 mA, 10 minutes; and 2 mA, 20 minutes). The impact of different settings on tinnitus loudness and annoyance was documented. Twenty-one participants (77.78%) reported a minimum of 1 point reduction on tinnitus loudness or annoyance scales. There were significant changes in loudness and annoyance for duration of stimulation,F(1, 26) = 10.08,Ptinnitus relief. The stimulation of the LTA and DLPFC were equally effective for suppressing tinnitus loudness and annoyance. © The Author(s) 2015.

  13. Being Subject to Restrictions, Limitations and Disciplining: A Thematic Analysis of Individuals' Experiences in Psychiatric Intensive Care.

    Science.gov (United States)

    Salzmann-Erikson, Martin; Söderqvist, Cecilia

    2017-07-01

    The aim of this study was to describe individuals' experiences of being hospitalized in psychiatric intensive care units (PICUs). Four participants who had previously been admitted in a PICU were interviewed using open-ended questions. The data were analyzed using thematic analysis. Analysis resulted in a synthesis of the various ways patients experienced limitations: (1) Descriptions of Being Limited in the Environment, (2) Descriptions of being Limited in Interactions with Staff, (3) Descriptions of Being Limited in terms of Access to Information, and (4) Descriptions of Having Limited Freedom and Autonomy. Hospitalization is experienced as a life-changing event that shows a kaleidoscopic view of limitation. We stress that the conceptualization of limitation must be considered due to its historical origins, sociopolitical aspirations, and philosophy of care. Thus, nurse practitioners and nursing leaders are advised to put the patient's experience at the center of care, and to involve and integrate patients throughout the recovery process.

  14. Effects of Birkeland current limitation on high-latitude convection patterns

    International Nuclear Information System (INIS)

    Marklund, G.T.; Raadu, M.A.; Lindqvist, P.-A.

    1984-12-01

    It is shown how the high-latitude convection pattern may be mo- dified by substorm-enhanced polarization electric fields. These are generated whenever the flow of those Birkeland currents which are associated with ionospheric conductivity gradients is limited. Such Birkeland currents are fed mainly by the enhanced Pedersen current in the evening and morning sectors of the auro- ral oval and by the enhanced Hall current around local midnight. As the current limitation increases, the ionospheric potential, represented here by a symmetric two-cell pattern, will rotate clockwise and deform, just as the associated Birkeland current distribution. The resulting patterns are shown to agree well with observations. A pronounced westward intrusion of the equi- potential contours occurs in the auroral oval, and may be asso- ciated with the Westward Travelling Surge. This feature does not however require any assumed longitudinal conductivity gradi- ents. Rather it falls out naturally when the limitation of the enhanced Pedersen current is taken into account. (Author)

  15. Thermal studies of a superconducting current limiter using Monte-Carlo method

    International Nuclear Information System (INIS)

    Leveque, J.; Rezzoug, A.

    1999-01-01

    Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones. (orig.)

  16. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity

  17. Evaluation on current-limiting performance of the YBCO thin-film wire considering electric coupling condition

    International Nuclear Information System (INIS)

    Du, H.-I.; Han, B.-S.; Kim, Y.-J.; Lee, D.-H.; Song, S.-S.; Han, T.-H.; Han, S.-C.

    2011-01-01

    The basic way to improve the performance of a superconducting current limiter is to apply and evaluate a superconducting device that is appropriate to the superconducting current limiter. Among the many types of superconducting devices, the YBCO thin film wire has excellent current-limiting performance that is appropriate for actual system application. For the application of the YBCO thin film wire to superconducting current limiters, its current-limiting performance as a unit device must be accurately evaluated, and measures to improve its current-limiting performance must be sought. Accordingly, to evaluate the current-limiting performance of the YBCO thin film wire, this study was conducted to evaluate its resistance-increasing trend, V max , T r , I max , I qt , and current-limiting rate as a unit device, after which the electric coupling condition that consists of a core and windings was used to evaluate the current-limiting performance of the YBCO thin film wire.

  18. Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    Directory of Open Access Journals (Sweden)

    H. Wang

    2006-03-01

    Full Text Available This study concentrates on the characteristics of field-aligned currents (FACs in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer than in the Northern (winter Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1 the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2 The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3 The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude.

  19. Vehicle-use intensity in China: Current status and future trend

    International Nuclear Information System (INIS)

    Huo Hong; Zhang Qiang; He Kebin; Yao Zhiliang; Wang, Michael

    2012-01-01

    Vehicle-use intensity (kilometers traveled per vehicle per year or VKT) is important because it directly affects simulation results for vehicle fuel use and emissions, but the poor understanding of VKT in China could significantly affect the accuracy of estimation of total fuel use and CO 2 emissions, and thus impair precise evaluation of the effects of associated energy and environmental policies. As an important component of our work on the Fuel Economy and Environmental Impacts (FEEI) model, we collected VKT survey data in China from available sources and conducted additional surveys during 2004 and 2010, from which we derived VKT values and VKT-age functions by vehicle type for China. We also projected the future VKT for China by examining the relationship of vehicle use to per-capita GDP in 20 other countries worldwide. The purpose of this work is to achieve a better understanding of vehicle-use intensity in China and to generate reliable VKT input (current and future VKT levels) for the FEEI model. The VKT results obtained from this work could also benefit other work in the field associated with vehicle energy use and emissions. - Highlights: ► VKT is key in estimating fuel use and emissions, but its knowledge is poor in China. ► We determined VKT in China from available survey data and the surveys we conducted. ► VKT-age functions by vehicle type were derived from the surveys we conducted. ► Future VKT was projected based on vehicle use to per-capita GDP in 20 countries.

  20. Effect of current profile evolution on plasma-limiter interaction and the energy confinement time

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Bol, K.; Bretz, N.

    1979-04-01

    Experiments conducted on the PLT tokamak have shown that both plasma-limiter interaction and the gross energy confinement time are functions of the gas influx during the discharge. By suitably controlling the gas influx, it is possible to contract the current channel, decrease impurity radiation from the core of the discharge, and increase the gross energy confinement time, whether the aperture limiters were of tungsten, stainless steel or carbon

  1. A Current Limiting Strategy to Improve Fault Ride-Through of Inverter Interfaced Autonomous Microgrids

    DEFF Research Database (Denmark)

    Sadeghkhani, Iman; Esmail Hamedani Golshan, Mohamad; Guerrero, Josep M.

    2017-01-01

    With high penetration of distributed energy resources (DER), fault management strategy is of great importance for the distribution network operation. The objective of this paper is to propose a current and voltage limiting strategy to enhance fault ride-through (FRT) capability of inverter...... for both four- and three-wire configurations. The proposed strategy provides high voltage and current quality during overcurrent conditions, which is necessary for sensitive loads. Several time-domain simulation studies are conducted to investigate the FRT capability of the proposed strategy against both...... asymmetrical and symmetrical faults. Moreover, the proposed method is tested on the CIGRE benchmark microgrid to demonstrate the effectiveness of the proposed limiting strategy....

  2. Test results of fault current limiter using YBCO tapes with shunt protection

    Energy Technology Data Exchange (ETDEWEB)

    Baldan, Carlos A; Lamas, Jerika S; Shigue, Carlos Y [Escola de Engenharia de Lorena, EEL USP, Lorena - SP (Brazil); Filho, Ernesto Ruppert, E-mail: cabaldan@gmail.co [Faculdade de Engenharia Eletrica, FEEC Unicamp, Campinas - SP (Brazil)

    2010-06-01

    A Fault Current Limiter (FCL) based on high temperature superconducting elements with four tapes in parallel were designed and tested in 220 V line for a fault current peak between 1 kA to 4 kA. The elements employed second generation (2G) HTS tapes of YBCO coated conductor with stainless steel reinforcement. The tapes were electrically connected in parallel with effective length of 0.4 m per element (16 elements connected in series) constituting a single-phase unit. The FCL performance was evaluated through over-current tests and its recovery characteristics under load current were analyzed using optimized value of the shunt protection. The projected limiting ratio achieved a factor higher than 4 during fault of 5 cycles without degradation. Construction details and further test results will be shown in the paper.

  3. Regge limit of R-current correlators in AdS supergravity

    International Nuclear Information System (INIS)

    Bartels, J.; Kotanski, J.; Mischler, A.M.; Schomerus, V.

    2009-08-01

    Four-point functions of R-currents are discussed within Anti-de Sitter supergravity. In particular, we compute Witten diagrams with graviton and gauge boson exchange in the high energy Regge limit. Assuming validity of the AdS/CFT correspondence, our results apply to R-current four-point functions of N=4 super Yang-Mills theory at strong coupling. (orig.)

  4. Lower hybrid current drive experiments with graphite limiters in the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Liu, J.; Gao, X.; Hu, L.Q.; Asif, M.; Chen, Z.Y.; Ding, B.J.; Zhou, Q.; Liu, H.Q.; Jie, Y.X.; Kong, W.; Lin, S.Y.; Ding, Y.H.; Gao, L.; Xu, Q.

    2006-01-01

    Recent progress of lower hybrid (LH) experiments with new graphite limiters configuration in the HT-7 tokamak is presented. The lower hybrid current drive (LHCD) efficiency can be determined by fitting based on experimental data. Improved particle confinement was observed via LHCD (P LHW >300 kW) characterized by the particle confinement time τ p increased about 1.56 times. It is found that runaways are suppressed during loop voltage is decreasing at the flat-top phase of LH discharges. The main limitations of pulse length are presented in long-pulse experiments with new limiter configuration

  5. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  6. Current Practice "Constraints" in the Uptake and Use of Intensive Upper Extremity Training: A Canadian Perspective.

    Science.gov (United States)

    Shikako-Thomas, Keiko; Fehlings, Darcy; Germain, Manon; Gordon, Andrew M; Maynard, Doug; Majnemer, Annette

    2018-05-01

    Intensive upper extremity training (IUET) has demonstrated efficacy in clinical and functioning outcomes in children with hemiplegia. However, implementation in the clinical context requires novel service models and knowledge translation. To map implementation of IUET in Canada, to identify factors associated with the implementation and best practices for implementation. Mixed-methods design; descriptive statistics, chi-square tests. Individual phone interviews and focus groups with purposeful sampling. Thematic analysis; telephone surveys with managers of 31 pediatric rehabilitation centers across Canada. Four focus groups across Canada and one in the Netherlands. Implementation of IUET group interventions is limited in Canada (7/31). Barriers included beliefs and values related to evidence-based practice, opportunities for continuing education, researchers-clinicians partnerships, access to scientific literature, and the presence of a champion. Pressure from parents and media presenting IUET as a novel and effective therapy, support and flexibility of families, having the critical mass of clients and a managerial willingness to accommodate new ideas and restructure service provision were some facilitators. Uptake of the evidence requires many steps described in the knowledge translation cycle. Factors identified in the study could be considered in most clinical settings to facilitate the uptake of research evidence for IUET.

  7. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  8. Current-limiting and ultrafast system for the characterization of resistive random access memories.

    Science.gov (United States)

    Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X

    2016-06-01

    A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.

  9. Implementation of superconducting fault current limiter for flexible operation in the power substation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong Suk, E-mail: chong_suk@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Lee, Hansang [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Cho, Yoon-sung [Department of Electric and Energy Engineering, Catholic University of Daegu, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-702 (Korea, Republic of); Suh, Jaewan [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam dong, Seonbukgu, Seoul 136-713 (Korea, Republic of)

    2014-09-15

    Highlights: • The power load concentrated in load centers results in high levels of fault current. • This paper introduces a fault current reduction scheme using SFCLs in substations. • The SFCL is connected in parallel to the bus tie between the two busbars. • The fault current mitigation using SFCLs is verified through PSS/e simulations. - Abstract: The concentration of large-scale power loads located in the metropolitan areas have resulted in high fault current levels during a fault thereby requiring the substation to operate in the double busbar configuration mode. However, the double busbar configuration mode results in deterioration of power system reliability and unbalanced power flow in the adjacent transmission lines which may result in issues such as overloading of lines. This paper proposes the implementation of the superconducting fault current limiter (SFCL) to be installed between the two substation busbars for a more efficient and flexible operation of the substation enabling both single and double busbar configurations depending on the system conditions for guaranteeing power system reliability as well as fault current limitations. Case studies are being performed for the effectiveness of the SFCL installation and results are compared for the cases where the substation is operating in single and double busbar mode and with and without the installation of the SFCL for fault current mitigation.

  10. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Science.gov (United States)

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pcarbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. THE MATHEMATIC MODEL OF POTENTIAL RELAXATION IN COULOSTATIC CONDITIONS FOR LIMITING DIFFUSION CURRENT CASE

    Directory of Open Access Journals (Sweden)

    O. H. Kapitonov

    2010-05-01

    Full Text Available A mathematical model of coulostatic relaxation of the potential for solid metallic electrode was presented. The solution in the case of limiting diffusion current was obtained. On the basis of this model the technique of concentration measurements for heavy metal ions in diluted solutions was suggested. The model adequacy was proved by experimental data.

  12. Application of the (Hg,Re)-1223 ceramic on superconducting fault current limiter

    International Nuclear Information System (INIS)

    Passos, C.A.C.; Passamai, J.L.; Orlando, M.T.D.; Medeiros, E.F.; Sampaio, R.V.; Oliveira, F.D.C.; Fardin, J.F.; Simonetti, D.S.L.

    2007-01-01

    We have investigated a small resistive SFCL device based on Hg 0.8 Re 0.2 Ba 2 Ca 2 Cu 3 O 8+δ , (Hg,Re)-1223, ceramic in order to obtain in the future a SFCL prototype for protecting a low impedance and high current system. Our initial study has shown that a fault current of 1.55 x 10 2 A peak /cm 2 at 60 Hz was reduced to 0.82 x 10 2 A peak /cm 2 , that is, the device limited the current at 59% without any damage on the (Hg,Re)-1223 superconductor in this range of current. It was observed that the device immediately recovered the initial conditions after that the fault current event is finished without any damage

  13. Removing the current-limit of vertical organic field effect transistors

    Science.gov (United States)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  14. Limiting Current of Oxygen Reduction on Gas-Diffusion Electrodes for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Gang, Xiao; Hjuler, Hans Aage

    1994-01-01

    on polytetrafluorine-ethyl bonded gas-diffusion electordes in phosphoric acid with and without fluorinated additives. This provides an alternative to estimate the film thickness by combining it with the acid-adsorption measurements and the porosity analysis of the catalyst layer. It was noticed that the limiting......Various models have been devoted to the operation mechanism of porous diffusion electrodes. They are, however, suffering from the lack of accuracy concerning the acid-film thickness on which they are based. In the present paper the limiting current density has been measured for oxygen reduction...... current density can be accomplished either by gas-phase diffusion or liquid-phase diffusion, and it is the latter that can be used in the film-thickness estimation. It is also important to mention that at such a limiting condition, both the thin-film model and the filmed agglomerate model reach the same...

  15. Theory of space charge limited currents in films and nanowires with dopants

    Science.gov (United States)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  16. Flux-lock type of superconducting fault current limiters: A comprehensive review

    Science.gov (United States)

    Badakhshan, M.; Mousavi G., S. M.

    2018-04-01

    Power systems must be developed and extended to supply the continuous enhancement of demands for electrical energy. This development of systems in addition to the integration of distributed generation (DG) units to the power systems results higher capacity of system. Hence, short circuit current of network is confronted with persistent increasing. Since exploration of high temperature superconducting (HTS) materials, superconducting fault current limiters (SFCLs) have attracted a lot of attention all over the world. There are different types of SFCLs. Flux-lock type of SFCL because of its characteristics in fault current limitation is an important category of SFCLs. This paper aims to present a comprehensive review of research activities and applications of Flux-lock type of SFCLs in power systems.

  17. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury.

    Science.gov (United States)

    Murray, Lynda M; Edwards, Dylan J; Ruffini, Giulio; Labar, Douglas; Stampas, Argyrios; Pascual-Leone, Alvaro; Cortes, Mar

    2015-04-01

    To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) intensity on corticospinal excitability and affected muscle activation in individuals with chronic spinal cord injury (SCI). Single-blind, randomized, sham-controlled, crossover study. Medical research institute and rehabilitation hospital. Volunteers (N = 9) with chronic SCI and motor dysfunction in wrist extensor muscles. Three single session exposures to 20 minutes of a-tDCS (anode over the extensor carpi radialis [ECR] muscle representation on the left primary motor cortex, cathode over the right supraorbital area) using 1 mA, 2 mA, or sham stimulation, delivered at rest, with at least 1 week between sessions. Corticospinal excitability was assessed with motor-evoked potentials (MEPs) from the ECR muscle using surface electromyography after transcranial magnetic stimulation. Changes in spinal excitability, sensory threshold, and muscle strength were also investigated. Mean MEP amplitude significantly increased by approximately 40% immediately after 2mA a-tDCS (pre: 0.36 ± 0.1 mV; post: 0.47 ± 0.11 mV; P = .001), but not with 1 mA or sham. Maximal voluntary contraction measures remained unaltered across all conditions. Sensory threshold significantly decreased over time after 1mA (P = .002) and 2mA (P = .039) a-tDCS and did not change with sham. F-wave persistence showed a nonsignificant trend for increase (pre: 32% ± 12%; post: 41% ± 10%; follow-up: 46% ± 12%) after 2 mA stimulation. No adverse effects were reported with any of the experimental conditions. The a-tDCS can transiently raise corticospinal excitability to affected muscles in patients with chronic SCI after 2 mA stimulation. Sensory perception can improve with both 1 and 2 mA stimulation. This study gives support to the safe and effective use of a-tDCS using small electrodes in patients with SCI and highlights the importance of stimulation intensity. Copyright © 2015 American Congress of Rehabilitation

  18. Adaptation of superconducting fault current limiter to high-speed reclosing

    International Nuclear Information System (INIS)

    Koyama, T.; Yanabu, S.

    2009-01-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  19. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  20. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  1. Current limitation and formation of plasma double layers in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Plamondon, R.; Teichmann, J.; Torven, S.

    1986-07-01

    Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)

  2. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  3. Gravel sediment routing from widespread, low-intensity landscape disturbance, Current River basin, Missouri

    Science.gov (United States)

    Jacobson, Robert B.; Gran, K.B.

    1999-01-01

    During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches.

  4. Inductive fault current limiter based on multiple superconducting rings of small diameter

    International Nuclear Information System (INIS)

    Osorio, M R; Cabo, L; Veira, J A; Vidal, F

    2004-01-01

    We present a fault current limiter prototype based on the use of a secondary comprised of an array of magnetic cores of small sections, each one of them with several superconducting rings. The main advantage of this configuration is that it is easier to make small diameter superconducting rings which, in addition, are more homogeneous and allow better refrigeration. We then present detailed measurements that show that, in addition to these advantages, this prototype offers the same limitation performances than when using a unique core and a superconducting ring with an equivalent area as the array of small section cores

  5. Impact and Limitations Deriving from Basel II within the Context of the Current Financial Crisis

    Directory of Open Access Journals (Sweden)

    Oana Miruna DĂNILĂ

    2012-06-01

    Full Text Available The Banking sector risk management framework, geared towards maintaining a solid capital adequacy level, has witnessed a permanent evolution, determined by the global economic and financial reality.Basel II has brought an improvement of the risk management framework by adding minimum capital levels corresponding to market and operational risk and by the introduction of internal rating models. However the current crisis has brought forward some adverse effects as well as limitations.This paper analyses the evolution of prudential rules and regulations introduced by Basel II and their impact on the banking system together with outlining certain limitations.

  6. Voluntary limit setting and player choice in most intense online gamblers: an empirical study of gambling behaviour.

    Science.gov (United States)

    Auer, Michael; Griffiths, Mark D

    2013-12-01

    Social responsibility in gambling has become a major issue for the gaming industry. The possibility for online gamblers to set voluntary time and money limits are a social responsibility practice that is now widespread among online gaming operators. The main issue concerns whether the voluntary setting of such limits has any positive impact on subsequent gambling behaviour and whether such measures are of help to problem gamblers. In this paper, this issue is examined through data collected from a representative random sample of 100,000 players who gambled on the win2day gambling website. When opening an account at the win2day site, there is a mandatory requirement for all players to set time and cash-in limits (that cannot exceed 800 per week). During a 3-month period, all voluntary time and/or money limit setting behaviour by a subsample of online gamblers (n = 5,000) within this mandatory framework was tracked and recorded for subsequent data analysis. From the 5,000 gamblers, the 10 % most intense players (as measured by theoretical loss) were further investigated. Voluntary spending limits had the highest significant effect on subsequent monetary spending among casino and lottery gamblers. Monetary spending among poker players significantly decreased after setting a voluntary time limit. The highest significant decrease in playing duration was among poker players after setting a voluntary playing duration limit. The results of the study demonstrated that voluntary limit setting had a specific and significant effect on the studied gamblers. Therefore, voluntary limits appear to show an appropriate effect in the desired target group (i.e., the most gaming intense players).

  7. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  8. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    Science.gov (United States)

    Chung, D. C.; Choi, H. S.; Lee, N. Y.; Nam, G. Y.; Cho, Y. S.; Sung, T. H.; Han, Y. H.; Kim, B. S.; Lim, S. H.

    2007-10-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 × 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 × 2 MFCL module and a 3 × 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m × n MFCL.

  9. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    International Nuclear Information System (INIS)

    Chung, D.C.; Choi, H.S.; Lee, N.Y.; Nam, G.Y.; Cho, Y.S.; Sung, T.H.; Han, Y.H.; Kim, B.S.; Lim, S.H.

    2007-01-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 x 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 x 2 MFCL module and a 3 x 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m x n MFCL

  10. Experiment study on an inductive superconducting fault current limiter using no-insulation coils

    Science.gov (United States)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.

    2018-03-01

    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  11. Predicting the behavioural impact of transcranial direct current stimulation: issues and limitations

    Directory of Open Access Journals (Sweden)

    Archy Otto De Berker

    2013-10-01

    Full Text Available The transcranial application of weak currents to the human brain has enjoyed a decade of success, providing a simple and powerful tool for non-invasively altering human brain function. However, our understanding of current delivery and its impact upon neural circuitry leaves much to be desired. We argue that the credibility of conclusions drawn with tDCS is contingent upon realistic explanations of how tDCS works, and that our present understanding of tDCS limits the technique’s use to localize function in the human brain. We outline two central issues where progress is required: the localization of currents, and predicting their functional consequence. We encourage experimenters to eschew simplistic explanations of mechanisms of transcranial current stimulation. We suggest the use of individualized current modelling, together with computational neurostimulation to inform mechanistic frameworks in which to interpret the physiological impact of tDCS. We hope that through mechanistically richer descriptions of current flow and action, insight into the biological processes by which transcranial currents influence behaviour can be gained, leading to more effective stimulation protocols and empowering conclusions drawn with tDCS.

  12. Low blood flow at onset of moderate intensity exercise does not limit muscle oxygen uptake

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Saltin, Bengt

    2010-01-01

    The effect of low blood flow at onset of moderate intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5 minute one-legged knee-extensor exercise bout (24+/-1 (+/-S.D.) W) without (CON) and with (double blockade; DB) arterial infusion of i....... Additionally, prostanoids and/or NO appear to play important roles in elevating skeletal muscle blood flow in the initial phase of exercise. Key words: Oxygen delivery, oxygen extraction, nitric oxide, prostanoids.......The effect of low blood flow at onset of moderate intensity exercise on the rate of rise in muscle oxygen uptake was examined. Seven male subjects performed a 3.5 minute one-legged knee-extensor exercise bout (24+/-1 (+/-S.D.) W) without (CON) and with (double blockade; DB) arterial infusion...... of inhibitors of nitric oxide synthase (NOS; L-NMMA) and cyclooxygenase (COX; indomethacin) in order to inhibit the synthesis of nitric oxide (NO) and prostanoids, respectively.. Leg blood flow and leg oxygen delivery throughout exercise was 25-50 % lower (P

  13. Intensity ramp-up: 2011 experience - Limitations, mitigation, risks, strategy, pushing it in 2012, 1380 in 3 weeks?

    CERN Document Server

    Zerlauth, M; Wenninger, J

    2012-01-01

    This paper will discuss the experience with ramping up the beam intensities in the early days of the 2011 run and after the subsequent technical stops. Weak points and limitations are being identified and their possible mitigations evaluated. In view of the risks and drawbacks of a too aggressive approach, possible improvements of the applied strategy whilst maintaining the required validation points for the various equipment and machine protection systems (MPS) are being discussed.

  14. Paediatric cardiac intensive care unit: current setting and organization in 2010.

    Science.gov (United States)

    Fraisse, Alain; Le Bel, Stéphane; Mas, Bertrand; Macrae, Duncan

    2010-10-01

    Over recent decades, specialized paediatric cardiac intensive care has emerged as a central component in the management of critically ill, neonatal, paediatric and adult patients with congenital and acquired heart disease. The majority of high-volume centres (dealing with over 300 surgical cases per year) have dedicated paediatric cardiac intensive care units, with the smallest programmes more likely to care for paediatric cardiac patients in mixed paediatric or adult intensive care units. Specialized nursing staff are also a crucial presence at the patient's bedside for quality of care. A paediatric cardiac intensive care programme should have patients (preoperative and postoperative) grouped together geographically, and should provide proximity to the operating theatre, catheterization laboratory and radiology department, as well as to the regular ward. Age-appropriate medical equipment must be provided. An optimal strategy for running a paediatric cardiac intensive care programme should include: multidisciplinary collaboration and involvement with paediatric cardiology, anaesthesia, cardiac surgery and many other subspecialties; a risk-stratification strategy for quantifying perioperative risk; a personalized patient approach; and anticipatory care. Finally, progressive withdrawal from heavy paediatric cardiac intensive care management should be institutionalized. Although the countries of the European Union do not share any common legislation on the structure and organization of paediatric intensive care or paediatric cardiac intensive care, any paediatric cardiac surgery programme in France that is agreed by the French Health Ministry must perform at least '150 major procedures per year in children' and must provide a 'specialized paediatric intensive care unit'. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. A dulal-functional medium voltage level DVR to limit downstream fault currents

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Li, Yun Wei; Vilathgamuwa, D. Mahinda

    2007-01-01

    on the other parallel feeders connected to PCC. Furthermore, if not controlled properly, the DVR might also contribute to this PCC voltage sag in the process of compensating the missing voltage, thus further worsening the fault situation. To limit the flow of large line currents, and therefore restore the PCC...... situations. Controlling the DVR as a virtual inductor would also ensure zero real power absorption during the DVR compensation and thus minimize the stress in the dc link. Finally, the proposed fault current limiting algorithm has been tested in Matlab/Simulink simulation and experimentally on a medium......The dynamic voltage restorer (DVR) is a modern custom power device used in power distribution networks to protect consumers from sudden sags (and swells) in grid voltage. Implemented at medium voltage level, the DVR can be used to protect a group of medium voltage or low voltage consumers. However...

  16. Transport properties of triarylamine based dendrimers studied by space charge limited current transients

    Science.gov (United States)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-08-01

    We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.

  17. Plasma self-oscillations in the temperature-limited current regime of a hot cathode discharge

    International Nuclear Information System (INIS)

    Arnas Capeau, C.; Bachet, G.; Doveil, F.

    1995-01-01

    Experimental observations of self-oscillations occurring in the so-called ''temperature-limited current regime'' of a hot cathode discharge are presented. Their frequency and amplitude are strongly dependent on the discharge parameters. The scaling laws of their variation and an example of a period-doubling route to chaos are reported. A two probe experiment showing that the plasma behavior is closely related to the hot cathode sheath stability is also reported. copyright 1995 American Institute of Physics

  18. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  19. Type and intensity of activity and risk of mobility limitation: the mediating role of muscle parameters

    NARCIS (Netherlands)

    Visser, M.; Simonsick, E.M.; Colbert, L.H.; Brach, J.S.; Rubin, S.M.; Kritchevsky, S.B.; Newman, A.B.; Harris, T.B.

    2005-01-01

    2,719 kcal/wk of total physical activity). The study outcome, incident mobility limitation, was defined as two consecutive, semiannual self-reports of any difficulty walking one quarter of a mile or climbing 10 steps. Thigh muscle area, thigh muscle attenuation (a marker of fat infiltration in

  20. Type and intensity of activity and risk of mobility limitation : the mediating role of muscle parameters

    NARCIS (Netherlands)

    Visser, M.; Simonsick, E.M.; Rubin, S; Newman, A.B.; Kritchevsky, S.B.; Harris, T.B.

    2005-01-01

    OBJECTIVES: To investigate the association between different types of physical activity behavior and incident mobility limitation in older men and women and to examine whether muscle parameters mediate these associations. DESIGN: Cohort study with 4.5-year follow-up. SETTING: Metropolitan areas

  1. Recovery characteristics of flux-lock type superconducting fault current limiter

    International Nuclear Information System (INIS)

    Han, T.H.; Choi, H.S.; Lim, S.H.; Lee, N.Y.

    2007-01-01

    The flux-lock type superconducting fault current limiter (SFCL) has attractive characteristics that the current limiting level can be adjusted by a winding direction and the inductance ratio between two coils. We changed the winding direction and the number of coils to compare the resistive type SFCL with the flux-lock type SFCL. The initial limiting current (I ini ) and quench characteristic were dependent on the winding direction and the inductance ratio of two coils. As a winding number was increased from 21 to 42, I ini and quench characteristic were proportionally increased. In additive polarity winding, I ini was 10.2 A and the quench time (T q ) was 0.53 ms, which was faster than that of a subtractive polarity winding. The consumed energy and recovery characteristics in a superconducting element showed the same tendency. Recovery characteristics in the flux-lock type SFCL were dependent on the consumed energy of a superconducting element. The recovery time was related to a heat energy and it was represented as the consuming time of the heat energy. As the heat energy was shown in H 0.24I 2 Rt, the recovery time was shortened in the following order: a subtractive polarity winding, a resistive type and an additive polarity winding. It was known that the recovery time was proportional to a consumed energy of a superconducting element

  2. Limiting diffusion current at rotating disk electrode with dense particle layer.

    Science.gov (United States)

    Weroński, P; Nosek, M; Batys, P

    2013-09-28

    Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.

  3. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  4. Mass current in 3He - A: Some exact representations and their London limit near zero temperature

    International Nuclear Information System (INIS)

    Malyshev, C.

    1995-09-01

    New representations for normal Green's function of the superfluid A-phase of helium-3 are obtained by an exact solution of the Dyson-Gor'kov equation. These representations result in new formulae for the mass current j-vector near zero temperature. Specific limiting cases for j-vector such ast the limit of lowest order in gradients, following the limit of zero temperature, and vice versa, are investigated. It is shown that the mass current previously known as j-vector = j-vector 0 , where j-vector 0 is an expression of first order in gradients, should be treated as a ''quasiclassical'' object in view of the approximations chosen. The parameter 1/χ implying the ''quasiclassics'', is a small quantity, as the London limit condition holds. Expansion of j-vector in powers of 1/χ is considered and first corrections to j-vector 0 are obtained at zero temperature, for two gauges of the order parameter. (author). 26 refs

  5. Current components data from current meters from the NE Pacific (limit-180) from 1954-06-01 to 1970-06-01 (NODC Accession 7601441)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components data were collected from current meters in the NE Pacific (limit-180). Data were collected by the Japanese Hydrographic Office from 01 June 1954...

  6. Induced critical current density limit of Ag sheathed Bi-2223 tape conductor

    International Nuclear Information System (INIS)

    Ogiwara, H.; Satou, M.; Yamada, Y.; Kitamura, T.; Hasegawa, T.

    1994-01-01

    The authors have already reported the best critical current density of 66,000 A/cm 2 with an Ag sheathed Bi-2223 tape conductor. The Brick-wall model is for explaining the current transport mechanism of this conductor. The model has its roots in the fact that the Bi-2223 tape core is a complicated stack of crystals which have a mica-flake structure. The orientation of the crystals which have a mica-flake structure. The orientation of the crystals seriously affects the current transport capability. Moreover, the contacts between the stacking crystals are very important. The transport current flows dividing into many branch paths. Under high magnetic field, the different paths experienced different electromagnetic forces. Differences between the electromagnetic forces on the different crystals can affect the contacts so as to increase resistivity and decrease overall critical current density of the tape. This effect can foretell the limit of the critical current density obtainable with these kinds of conductors

  7. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit

    Directory of Open Access Journals (Sweden)

    Flávio Oliveira

    2015-12-01

    Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.

  8. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  9. Linear surface photoelectric effect of gold in intense laser field as a possible high-current electron source

    International Nuclear Information System (INIS)

    Farkas, G.; Horvath, Z.G.; Toth, C.; Fotakis, C.; Hontzopoulos, E.

    1987-01-01

    Investigations were conducted on radiation-induced electron emission processes on a gold target surface with a high-intensity (2 MW/cm 2 ) KrF laser (λ = 248 nm). The single photon surface photoelectric emission obtained can be used for high-current density electron sources. The measured polarization dependence of electron current shows the dominance of the surface-type effect over that of the volume type, thereby making it possible to optimize the short, high-density electron current creation conditions. The advantage of the grazing light incidence and the multiphoton photoeffect giving rise to a 500 A/cm 2 electron current has been demonstrated

  10. The counter-current flooding limit in vertical tubes with and without orifices

    International Nuclear Information System (INIS)

    Tye, P.; Davidson, M.; Teyssedou, A.; Tapucu, A.; Matuszkiewicz, A.; Midvidy, W.

    1993-01-01

    For hypothetical loss of coolant accidents in nuclear reactors, rapid reflooding of the core is desirable. In CANDU reactors the cooling water is injected into the headers which are connected to the fuel channels by the feeder pipes. These pipes consist of vertical and horizontal runs; in some feeders, orifices and/or venturi flow meters are installed for flow adjustments and measurements respectively. For certain postulated accident scenarios, steam coming from the fuel channels and/or generated in the hot feeders may flow in the direction opposite to that of the cooling water thereby, creating a vertical or horizontal counter-current two-phase flow. Under these conditions, the rate at which cooling water can enter the fuel channels may be limited by the flooding phenomena. This phenomena is greatly affected by the geometry of the feeder pips, shape and number of fittings, and the flow area restrictions located in the feeders. In this paper the influence that orifice type flow area restrictions have on the counter-current flooding limit (CCFL) in a vertical tube is examined. air and water at close to atmospheric conditions are used as the working fluids. The data collected on the counter-current flooding limit in a vertical tube both with and without flow area restrictions is compared against some of the most commonly used correlations that are available in the open literature. Data on the two-phase counter-current pressure drop below the flooding point are also presented. 12 refs., 10 figs., 1 tab

  11. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    Science.gov (United States)

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. © 2016 The Author(s).

  12. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac - testing IMRT to the limit?

    International Nuclear Information System (INIS)

    Webb, S.

    1999-01-01

    In this paper it is proposed that intensity-modulated radiotherapy (IMRT) could be delivered optimally by a short-length linac mounted on a robotic arm. The robot would allow the linac to 'plant' narrow pencils of photon radiation with any orientation (excluding zones within which the linac and couch might collide) relative to the planning target volume (PTV). The treatment is specified by the trajectory of the robot and by the number of monitor units (MUs) delivered at each robotic orientation. An inverse-planning method to determine the optimum robotic trajectory is presented. It is shown that for complex PTVs, specifically those with concavities in their outline, the conformality of the treatment is improved by the use of a complex trajectory in comparison with a less complex constrained trajectory and this improvement is quantified. It is concluded that robotic linac delivery would lead to a great flexibility in those IMRT treatments requiring very complicated dose distributions with complex 3D shapes. However, even using very fast computers, the goal of determining whether robotic linac delivery is the ultimate IMRT cannot be conclusively reached at present. (author)

  13. Dependence of current density and intensity of electric field on pulsation of thermodynamic parameters of plasma in the MHD generator

    International Nuclear Information System (INIS)

    Kapron, H.

    1976-01-01

    The investigations of pulsation in the MHD generators are described. The influence of termodynamic parameters pulsation on electric parameters of the MHD generator is presented using the method of little disturbances. The results of this investigation are formulas for momentary and average values of: electrical conductivity, the Hall parameter, current density and intensity of electrical field. Analitical investigations were verified by the experiments. (author)

  14. A Study of Second-Year Engineering Students' Alternative Conceptions about Electric Potential, Current Intensity and Ohm's Law

    Science.gov (United States)

    Periago, M. Cristina; Bohigas, Xavier

    2005-01-01

    The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…

  15. Effectiveness of direct-current cardioversion for treatment of supraventricular tachyarrhythmias, in particular atrial fibrillation, in surgical intensive care patients.

    Science.gov (United States)

    Mayr, Andreas; Ritsch, Nicole; Knotzer, Hans; Dünser, Martin; Schobersberger, Wolfgang; Ulmer, Hanno; Mutz, Norbert; Hasibeder, Walter

    2003-02-01

    To evaluate primary success rate and effectiveness of direct-current cardioversion in postoperative critically ill patients with new-onset supraventricular tachyarrhythmias. Prospective intervention study. Twelve-bed surgical intensive care unit in a university teaching hospital. Thirty-seven consecutive, adult surgical intensive care unit patients with new-onset supraventricular tachyarrhythmias without previous history of tachyarrhythmias. Direct-current cardioversion using a monophasic, damped sinus-wave defibrillator. Energy levels used were 50, 100, 200, and 300 J for regular supraventricular tachyarrhythmias (n = 6) and 100, 200, and 360 J for irregular supraventricular tachyarrhythmias (n = 31). None of the patients was hypoxic, hypokalemic, or hypomagnesemic at onset of supraventricular tachyarrhythmia. Direct-current cardioversion restored sinus rhythm in 13 of 37 patients (35% primary responders). Most patients responded to the first or second direct-current cardioversion shock. Only one of 25 patients requiring more than two direct-current cardioversion shocks converted into sinus rhythm. Primary responders were significantly younger and demonstrated significant differences in arterial Po2 values at onset of supraventricular tachyarrhythmias compared with nonresponders. At 24 and 48 hrs, only six (16%) and five (13.5%) patients remained in sinus rhythm, respectively. In contrast to recent literature, direct-current cardioversion proved to be an ineffective method for treatment of new-onset supraventricular tachyarrhythmias and, in particular, atrial fibrillation with a rapid ventricular response in surgical intensive care unit patients.

  16. Usefulness of creep work-time relation for determining stress intensity limit of high-temperature components

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Kyung Yong

    2003-01-01

    In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W c t p = B (where W c = σ ε is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this purpose, the creep tests for generating 1.0% strain for commercial type 316 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593 .deg. C. The plots of log W c - log t showed a good linear relation up to 10 5 hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of Isochronous Stress-Strain Curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials

  17. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    Science.gov (United States)

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  18. Survey of neonatologists' attitudes toward limiting life-sustaining treatments in the neonatal intensive care unit.

    Science.gov (United States)

    Feltman, D M; Du, H; Leuthner, S R

    2012-11-01

    To understand neonatologists' attitudes toward end-of-life (EOL) management in clinical scenarios, EOL ethical concepts and resource utilization. American Academy of Pediatrics (AAP) Perinatal section members completed an anonymous online survey. Respondents indicated preferences in limiting life-sustaining treatments in four clinical scenarios, ranked agreement with EOL-care ethics statements, indicated outside resources previously used and provided demographic information. In all, 451 surveys were analyzed. Across clinical scenarios and as general ethical concepts, withdrawal of mechanical ventilation in severely affected patients was most accepted by respondents; withdrawal of artificial nutrition and hydration was least accepted. One-third of neonatologists did not agree that non-initiation of treatment is ethically equivalent to withdrawal. Around 20% of neonatologists would not defer care if uncomfortable with a parent's request. Respondents' resources included ethics committees, AAP guidelines and legal counsel/courts. Challenges to providing just, unified EOL care strategies are discussed, including deferring care, limiting artificial nutrition/hydration and conditions surrounding ventilator withdrawal.

  19. Thermal studies of a superconducting current limiter using Monte-Carlo method

    Science.gov (United States)

    Lévêque, J.; Rezzoug, A.

    1999-07-01

    Considering the increase of the fault current level in electrical network, the current limiters become very interesting. The superconducting limiters are based on the quasi-instantaneous intrinsic transition from superconducting state to normal resistive one. Without detection of default or given order, they reduce the constraints supported by electrical installations above the fault. To avoid the destruction of the superconducting coil, the temperature must not exceed a certain value. Therefore the design of a superconducting coil needs the simultaneous resolution of an electrical equation and a thermal one. This papers deals with a resolution of this coupled problem by the method of Monte-Carlo. This method allows us to calculate the evolution of the resistance of the coil as well as the current of limitation. Experimental results are compared with theoretical ones. L'augmentation des courants de défaut dans les grands réseaux électriques ravive l'intérêt pour les limiteurs de courant. Les limiteurs supraconducteurs de courants peuvent limiter quasi-instantanément, sans donneur d'ordre ni détection de défaut, les courants de court-circuit réduisant ainsi les contraintes supportées par les installations électriques situées en amont du défaut. La limitation s'accompagne nécessairement de la transition du supraconducteur par dépassement de son courant critique. Pour éviter la destruction de la bobine supraconductrice la température ne doit pas excéder une certaine valeur. La conception d'une bobine supraconductrice exige donc la résolution simultanée d'une équation électrique et d'une équation thermique. Nous présentons une résolution de ce problème electrothermique par la méthode de Monte-Carlo. Cette méthode nous permet de calculer l'évolution de la résistance de la bobine et du courant de limitation. Des résultats expérimentaux sont comparés avec les résultats théoriques.

  20. Limited benefit of inversely optimised intensity modulation in breast conserving radiotherapy with simultaneously integrated boost

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V.; Schilstra, Cornelis; Korevaar, Erik W.; Bock, Geertruida H. de; Maduro, John H.; Langendijk, Johannes A.

    2010-01-01

    Background and purpose: To examine whether in breast-conserving radiotherapy (RT) with simultaneously integrated boost (SIB), application of inversely planned intensity-modulated radiotherapy (IMRT-SIB) instead of three-dimensional RT (3D-CRT-SIB) has benefits that justify the additional costs, and to evaluate whether a potential benefit of IMRT-SIB depends on specific patient characteristics. Material and methods: 3D-CRT-SIB and various IMRT-SIB treatment plans were constructed and optimised for 30 patients with early stage left-sided breast cancer. Coverage of planning target volumes (PTVs) and dose delivered to organs at risk (OARs) were determined for each plan. Overlap between heart and breast PTV (OHB), size of breast and boost PTVs and boost location were examined in their ability to identify patients that might benefit from IMRT-SIB. Results: All plans had adequate PTV coverage. IMRT-SIB generally reduced dose levels delivered to heart, lungs, and normal breast tissue relative to 3D-CRT-SIB. However, IMRT-SIB benefit differed per patient. For many patients, comparable results were obtained with 3D-CRT-SIB, while patients with OHB > 1.4 cm and a relatively large boost PTV volume (>125 cm 3 ) gained most from the use of IMRT-SIB. Conclusions: In breast-conserving RT, results obtained with 3D-CRT-SIB and IMRT-SIB are generally comparable. Patient characteristics could be used to identify patients that are most likely to benefit from IMRT-SIB.

  1. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    International Nuclear Information System (INIS)

    Maguire, J.F.; Yuan, J.

    2009-01-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  2. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.F., E-mail: jmaguire@amsc.co [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States); Yuan, J. [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States)

    2009-10-15

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  3. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Science.gov (United States)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  4. Characteristic Of Induction Magnetic Field On The Laboratory Scale Superconducting Fault Current Limiter Circuit

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, E.; Didin, S.W.; Yustinus, P.M.; Siregar, Riswal H.

    2004-01-01

    Model construction of the laboratory scale superconducting fault current limiter circuit (SFCL) has been performed. The SFCL is fault current limiter and used as electric network security. It mainly consists of a copper coil, a superconducting ring and an iron core that are concentrically arranged. The SFCL circuit is essentially a transformer where the secondary windings are being replaced by the ring of YBa 2 Cu 3 O 7-x superconductor (HTS). The ring has critical transition temperature Tc = 92 K and critical current Ic = 3.61 A. Characterization of the SFCL circuit is simulated by ANSYS version 5.4 software. The SFCL circuit consists of load and transformer impedances. The results show that the inductions of magnet field flux in the iron core of primer windings and ring disappear to one other before fault state. It means that impedance of the transformer is zero. After the condition a superconductivity behavior of the ring is disappear so that the impedance of the transformer becomes very high. From this experiment, we concluded that the SFCL circuit could work normally if the resultant of induction magnetic in the iron core (transformer) is zero

  5. Comparative study on current limiting characteristics of flux-lock type SFCL with series or parallel connection of two coils

    International Nuclear Information System (INIS)

    Lim, S.H.

    2008-01-01

    We investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) with series or parallel connection of two coils. These two flux-lock type SFCLs with magnetically coupled two coils have the same operational principle that the fault current can be limited by the magnetic flux generated between two coils of the SFCL when a fault happens. In addition, the inductance ratio and the winding direction of two coils in both the SFCLs are the major design parameters that affect the fault current limiting characteristics of the SFCL. On the other hand, the operational current and the limiting impedance of both the SFCLs under the same design condition have the different tendency, which results from the different winding methods of two coils on an iron core. Therefore, the comparative study for both the SFCLs from the current limiting performance of the SFCL point of view is needed. To compare the current limiting characteristics of both the SFCLs, the operational current and the limiting impedance of the SFCL, which describes the performance of the SFCL, were derived from each SFCL's electrical equivalent circuit. Through the analysis for the fault current limiting experiments of both the SFCLs, the different current limiting characteristics of both the SFCLs were discussed

  6. The quest for μ → eγ and its experimental limiting factors at future high intensity muon beams

    Energy Technology Data Exchange (ETDEWEB)

    Cavoto, G. [' ' Sapienza' ' Univ., Roma (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Papa, A. [Paul Scherrer Institut, Villigen (Switzerland); Renga, F.; Voena, C. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ripiccini, E. [Geneve Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    2018-01-15

    The search for the lepton flavor violating decay μ{sup +} → e{sup +}γ will reach an unprecedented level of sensitivity within the next five years thanks to the MEG-II experiment. This experiment will take data at the Paul Scherrer Institut where continuous muon beams are delivered at a rate of about 10{sup 8} muons per second. On the same time scale, accelerator upgrades are expected in various facilities, making it feasible to have continuous beams with an intensity of 10{sup 9} or even 10{sup 10} muons per second. We investigate the experimental limiting factors that will define the ultimate performances, and hence the sensitivity, in the search for μ{sup +} → e{sup +}γ with a continuous beam at these extremely high rates. We then consider some conceptual detector designs and evaluate the corresponding sensitivity as a function of the beam intensity. (orig.)

  7. Immediacy Bias in Emotion Perception: Current Emotions Seem More Intense than Previous Emotions

    Science.gov (United States)

    Van Boven, Leaf; White, Katherine; Huber, Michaela

    2009-01-01

    People tend to perceive immediate emotions as more intense than previous emotions. This "immediacy bias" in emotion perception occurred for exposure to emotional but not neutral stimuli (Study 1), when emotional stimuli were separated by both shorter (2 s; Studies 1 and 2) and longer (20 min; Studies 3, 4, and 5) delays, and for emotional…

  8. The Anatomy of Directed Motivational Currents: Exploring Intense and Enduring Periods of L2 Motivation

    Science.gov (United States)

    Henry, Alastair; Dornyei, Zoltan; Davydenko, Sofia

    2015-01-01

    In a series of articles Dörnyei and his colleagues (Dörnyei, Ibrahim, & Muir, 2015; Dörnyei, Muir, & Ibrahim, 2014; Muir & Dörnyei, 2013) describe the phenomenon of a period of intense and enduring motivation in pursuit of a highly desired personal goal or vision. These surges of motivational energy, which they call "Directed…

  9. Studies of the disruption prevention by ECRH at plasma current rise stage in limiter discharges

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Borshegovskij, A.A.; Chistyakov, V.V.

    1999-01-01

    Studies of disruption prevention by means of ECRH in T-10 at the plasma current rise phase in limiter discharges with circular plasma cross-section were performed. Reliable disruption prevention by ECRH at HF power (P HF ) min level equal to 20% of ohmic heating power P OH was demonstrated. m/n=2/1 mode MHD-activity developed before disruption (with characteristic time ∼120 ms) can be considered as disruption precursor and can be used in a feedback system. (author)

  10. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    International Nuclear Information System (INIS)

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator

  11. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    Science.gov (United States)

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  12. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  13. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  14. High-temperature superconducting fault-current limiter - optimisation of superconducting elements

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the findings of a study initiated to continue the work of a DTI-LINK Collaborative Research Programme 'Enhancing the Properties of Bulk High Temperature Superconductors and their Potential Application as Fault Current Limiters (FCL). Details are given of computer modelling of the quenching process involving the transition from superconducting to normal conducting states undergone by the material when large currents are present. The design of compound elements, and a multi-element model are described along with FCL design covering distribution bus-coupler, embedded generator connection, larger generator connection, hazardous area safety, and interconnection to fault-prone network. The evaluation of thermal loss, test equipment and schedule, the optimised element, installed cost data, and the UK market are considered

  15. DC current in the collisionless limit induced by a travelling wave

    International Nuclear Information System (INIS)

    Midzuno, Yukio; Fukuda, Masaji.

    1977-03-01

    The DC current induced by a Travelling Wave is calculated on the basis of the assumption that the distribution function of electrons in the collisionless limit should be determined by a condition derived from the nature of the collision operator, as in the case of the calculation of the neoclassical transport in a torus. The resultant net current is found to have the same parameter dependence as the one derived in a previous analysis, in which we assumed the initial distribution of electrons to be uniform and isotropic Maxwellian. The numerical coefficient is found, however, to be a little different from the previous one. The importance of the accurate matching of the distribution function of untrapped particles to the Maxwellian one for large velocity is demonstrated. (auth.)

  16. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  17. Assessment of the impact of HTSCs on superconducting fault-current limiters

    International Nuclear Information System (INIS)

    Giese, R.F.; Runde, M.

    1992-01-01

    The possible impact of nitrogen-cooled superconductors on the design and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantage of operating superconducting at 77 K is that the refrigeration operating cost is reduced by a factor of up to 25, and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity at 77 K is several orders of magnitude larger than at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to normal state slow and difficult. Therefore, a high critical current density, probably at least 10 5 A/cm 2 , is required

  18. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  19. [Selective digestive tract decontamination in intensive care medicine. Fundamentals and current evaluation].

    Science.gov (United States)

    Krueger, W A; Heininger, A; Unertl, K E

    2003-02-01

    Selective digestive tract decontamination (SDD) is a method where topical non-absorbable antibiotics are applied to the oropharynx and stomach which primarily is aimed at the prevention of ventilator-associated pneumonia. The rationale for SDD is that ventilator associated pneumonia usually originates from the patients'own oropharyngeal microflora. SDD is also used for the prevention of gut-derived infections in acute necrotizing pancreatitis and in liver transplantation. Despite numerous clinical trials and several meta-analyses, SDD is still a controversial topic. It is now commonly accepted that the incidence of pneumonia is reduced,however, the concept of using topical antibiotics has its inherent limitations and the best results have been obtained by combination with a short course of intravenous antibiotics. Several issues surrounding the notorious difficulties in establishing the diagnosis of ventilator-associated pneumonia especially in the presence of antibiotics are an on-going matter of debate.Furthermore, pneumonia is the leading cause of death from nosocomial infections and its prevention was not adequately followed by reduced mortality in most individual trials, however, a benefit was suggested by recalculation of data in meta-analyses. Patients are not well defined by their need for ICU admission and mechanical ventilation and the attributable mortality of infections depends more on the type and severity of the underlying diseases. Recently published trials substantially improved our understanding as to which patients may derive most benefit from SDD.Currently, it seems that an improved survival can be achieved in surgical and trauma patients with severe but salvageable diseases, which might be classified e.g.by calculation of APACHE-II scores on admission.However, the most important drawback of SDD is the development of resistance and an increased selection pressure towards Gram-positive pathogens, especially in institutions with endemic multi

  20. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  1. LIPID PRODUCTION BY DUNALIELLA SALINA IN BATCH CULTURE: EFFECTS OF NITROGEN LIMITATION AND LIGHT INTENSITY

    Energy Technology Data Exchange (ETDEWEB)

    Weldy, C.S.; Huesemann, M.

    2007-01-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing and may cause unknown deleterious environmental effects if left unchecked. The Intergovernmental Panel on Climate Change (IPCC) has predicted in its latest report a 2°C to 4°C increase in global temperatures even with the strictest CO2 mitigation practices. Global warming can be attributed in large part to the burning of carbon-based fossil fuels, as the concentration of atmospheric CO2 is directly related to the burning of fossil fuels. Biofuels which do not add CO2 to the atmosphere are presently generated primarily from terrestrial plants, i.e., ethanol from corn grain and biodiesel from soybean oil. The production of biofuels from terrestrial plants is severely limited by the availability of fertile land. Lipid production from microalgae and its corresponding biodiesel production have been studied since the late 1970s but large scale production has remained economically infeasible due to the large costs of sterile growing conditions required for many algal species. This study focuses on the potential of the halophilic microalgae species Dunaliella salina as a source of lipids and subsequent biodiesel production. The lipid production rates under high light and low light as well as nitrogen suffi cient and nitrogen defi cient culture conditions were compared for D. salina cultured in replicate photobioreactors. The results show (a) cellular lipid content ranging from 16 to 44% (wt), (b) a maximum culture lipid concentration of 450mg lipid/L, and (c) a maximum integrated lipid production rate of 46mg lipid/L culture*day. The high amount of lipids produced suggests that D. salina, which can be mass-cultured in non-sterile outdoor ponds, has strong potential to be an economically valuable source for renewable oil and biodiesel production.

  2. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects

    Science.gov (United States)

    Hamada, Nobuyuki; Fujimichi, Yuki

    2014-01-01

    Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798

  3. Hard X-ray intensity reduction during lower hybrid current drive experiments

    International Nuclear Information System (INIS)

    Mlynar, J.; Stoeckel, J.; Magula, P.

    1993-01-01

    A strong hard X-ray intensity reduction during a standard LHCD at the CASTOR tokamak was studied. From discussion it followed that the magnetic fluctuations level decrease is likely to be responsible for this effect beside the loop voltage decrease. To verify this idea, the connection between the magnetic fluctuation level and the hard X-ray intensity was studied in a nonstandard LHCD regime with a zero loop voltage reduction. These measurements strongly supported the concept that magnetic fluctuations level substantially influences the runaway electrons cross-field transport. Though, more data and a good code for modelling the anomalous transport and hard X-rays production would be of high value. Similar measurements especially for higher RF power should be carried out soon. Besides, the reduction of hard X-rays was observed in the experiments with edge plasma polarization lately; therefore, the magnetic fluctuations level in these experiments should be studied soon. (author) 6 figs., 6 refs

  4. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    International Nuclear Information System (INIS)

    Cheng, Vincent Y. T.

    2017-01-01

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition

  5. Current status of high-intensity focused ultrasound for the management of uterine adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Vincent Y. T. [Dept. of Obstetrics and Gynaecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong (China)

    2017-04-15

    While high-intensity focused ultrasound has been used for some time in the management of uterine fibroids, its effectiveness and safety in managing adenomyosis is less well established. A literature review was performed of all eligible reports using this modality as a treatment for adenomyosis. Relevant publications were obtained from the PubMed electronic database from inception through March 2016. Eleven articles, including information from 1,150 treatments and follow-up data from 990 patients, were reviewed. High-intensity focused ultrasound appears to be effective and safe in the management of symptomatic adenomyosis, and can be considered as an alternative uterine-sparing option for women with this condition.

  6. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.

    Science.gov (United States)

    Verberk, Wilco C E P; Overgaard, Johannes; Ern, Rasmus; Bayley, Mark; Wang, Tobias; Boardman, Leigh; Terblanche, John S

    2016-02-01

    Over the last decade, numerous studies have investigated the role of oxygen in setting thermal tolerance in aquatic animals, and there has been particular focus on arthropods. Arthropods comprise one of the most species-rich taxonomic groups on Earth, and display great diversity in the modes of ventilation, circulation, blood oxygen transport, with representatives living both in water (mainly crustaceans) and on land (mainly insects). The oxygen and capacity limitation of thermal tolerance (OCLTT) hypothesis proposes that the temperature dependent performance curve of animals is shaped by the capacity for oxygen delivery in relation to oxygen demand. If correct, oxygen limitation could provide a mechanistic framework to understand and predict both current and future impacts of rapidly changing climate. In arthropods, most studies testing the OCLTT hypothesis have considered tolerance to thermal extremes. These studies likely operate from the philosophical viewpoint that if the model can predict these critical thermal limits, then it is more likely to also explain loss of performance at less extreme, non-lethal temperatures, for which much less data is available. Nevertheless, the extent to which lethal temperatures are influenced by limitations in oxygen supply remains unresolved. Here we critically evaluate the support and universal applicability for oxygen limitation being involved in lethal temperatures in crustaceans and insects. The relatively few studies investigating the OCLTT hypothesis at low temperature do not support a universal role for oxygen in setting the lower thermal limits in arthropods. With respect to upper thermal limits, the evidence supporting OCLTT is stronger for species relying on underwater gas exchange, while the support for OCLTT in air-breathers is weak. Overall, strongest support was found for increased anaerobic metabolism close to thermal maxima. In contrast, there was only mixed support for the prediction that aerobic scope

  7. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-01-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  8. A review of mild traumatic brain injury diagnostics: current perspectives, limitations, and emerging technology.

    Science.gov (United States)

    Cook, Glen A; Hawley, Jason S

    2014-10-01

    Mild traumatic brain injury (mTBI) or concussion is a common battlefield and in-garrison injury caused by transmission of mechanical forces to the head. The energy transferred in such events can cause structural and/or functional changes in the brain that manifest as focal neurological, cognitive, or behavioral dysfunction. Current diagnostic criteria for mTBI are highly limited, variable, and based on subjective self-report. The subjective nature of the symptoms, both in quantity and quality, together with their large overlap in other physical and behavioral maladies, limit the clinician's ability to accurately diagnose, treat, and make prognostic decisions after such injuries. These diagnostic challenges are magnified in an operational environment as well. The Department of Defense has invested significant resources into improving the diagnostic tools and accuracy for mTBI. This focus has been to supplement the clinician's examination with technology that is better able to objectify brain dysfunction after mTBI. Through this review, we discuss the current state of three promising technologies--soluble protein biomarkers, advanced neuroimaging, and quantitative electroencephalography--that are of particular interest within military medicine. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  9. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  10. Superconducting fault current limiter. Fifth quarterly technical progress report, August 8, 1978-November 7, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Progress in the development of fault current limiters for superconducting power transmission systems is reported. The analysis and design of a magnetically switched resistive device and the experimental program were emphasized and reported. A transient heat transfer model was developed which indicates the parameters which are important in determining the thermal heating and recovery of the superconduting film. Designs for the switching coil and the S/C element were also carried out and are reported. A four-pole magnetic coil is recommended; this generates a magnetic field which is nearly perpendicular to spiral or helical S/C film geometrics. A spirally-designed, 3000 ohm limiter is shown to be able to fit within a .5 to 1m inner radius, .05 to .03 m wide, 1.3 to 3.9 m long annualr region. The experimental program has included work on materials development and on prepartion of the switching and thermal recovery experimental facility. The material development program has uncovered several serious short-comings of NbN as the S/C film material. Macroscopic holes and surface debris, and microscopic imperfections reduce the critical current density below the expected value and, in addition, cause nonuniform switching. Reasons for these effects are postulated, and a continuing, vigorous materials program is suggested in hopes of alleviating these problems. Virtually all of the experimental equipment had been installed, and so the magnetic switching and thermal recovery experiments can begin and progress during the next quarter. (LCL)

  11. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2016-11-15

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  12. Mitigation of commutation failures in LCC-HVDC systems based on superconducting fault current limiters

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-11-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  13. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations

    International Nuclear Information System (INIS)

    Merschel, F.; Noe, M.; Stemmle, M.; Hobl, A.; Sauerbach, O.

    2013-01-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  14. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  15. Optimal design of superconducting fault detector for superconductor triggered fault current limiters

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.; Park, K.B.; Lee, B.W.

    2008-01-01

    We have designed and tested a superconducting fault detector (SFD) for a 22.9 kV superconductor triggered fault current limiters (STFCLs) using Au/YBCO thin films. The SFD is to detect a fault and commutate the current from the primary path to the secondary path of the STFCL. First, quench characteristics of the Au/YBCO thin films were investigated for various faults having different fault duration. The rated voltage of the Au/YBCO thin films was determined from the results, considering the stability of the Au/YBCO elements. Second, the recovery time to superconductivity after quench was measured in each fault case. In addition, the dependence of the recovery characteristics on numbers and dimension of Au/YBCO elements were investigated. Based on the results, a SFD was designed, fabricated and tested. The SFD successfully detected a fault current and carried out the line commutation. Its recovery time was confirmed to be less than 0.5 s, satisfying the reclosing scheme in the Korea Electric Power Corporation (KEPCO)'s power grid

  16. Intense lower-hybrid wave penetration and current drive in reactor-grade plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D; Bonoli, P.T.; Porkolab, M.

    1990-01-01

    Apply lower-hybrid power in short, intense pulses can overcome Landau damping, allowing penetration into the core of reactor-grade plasmas. We present a theoretical description of the absorption and parametric stability of the pulses, and show results of ray-tracing calculations which include the absorption calculation. Consideration of the absorption and potential source availability lead to the consideration of 5--10 GW peak power, 30--100 μs pulses for ITER, and ∼ 2 MW, 20 μs pulses for a proof-of-principle experiment in the Microwave Tokamak Experiment (MTX)

  17. Intense lower-hybrid wave penetration and current drive in reactor-grade plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.H.; Rognlien, T.D (Lawrence Livermore National Lab., CA (USA)); Bonoli, P.T.; Porkolab, M. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Plasma Fusion Center)

    1990-01-01

    Apply lower-hybrid power in short, intense pulses can overcome Landau damping, allowing penetration into the core of reactor-grade plasmas. We present a theoretical description of the absorption and parametric stability of the pulses, and show results of ray-tracing calculations which include the absorption calculation. Consideration of the absorption and potential source availability lead to the consideration of 5--10 GW peak power, 30--100 {mu}s pulses for ITER, and {approximately} 2 MW, 20 {mu}s pulses for a proof-of-principle experiment in the Microwave Tokamak Experiment (MTX).

  18. Lipid emulsions in parenteral nutrition of intensive care patients: current thinking and future directions

    Science.gov (United States)

    Jensen, Gordon L.; Koletzko, Berthold V.; Singer, Pierre; Wanten, Geert J. A.

    2010-01-01

    Background Energy deficit is a common and serious problem in intensive care units and is associated with increased rates of complications, length of stay, and mortality. Parenteral nutrition (PN), either alone or in combination with enteral nutrition, can improve nutrient delivery to critically ill patients. Lipids provide a key source of calories within PN formulations, preventing or correcting energy deficits and improving outcomes. Discussion In this article, we review the role of parenteral lipid emulsions (LEs) in the management of critically ill patients and highlight important biologic activities associated with lipids. Soybean-oil-based LEs with high contents of polyunsaturated fatty acids (PUFA) were the first widely used formulations in the intensive care setting. However, they may be associated with increased rates of infection and lipid peroxidation, which can exacerbate oxidative stress. More recently developed parenteral LEs employ partial substitution of soybean oil with oils providing medium-chain triglycerides, ω-9 monounsaturated fatty acids or ω-3 PUFA. Many of these LEs have demonstrated reduced effects on oxidative stress, immune responses, and inflammation. However, the effects of these LEs on clinical outcomes have not been extensively evaluated. Conclusions Ongoing research using adequately designed and well-controlled studies that characterize the biologic properties of LEs should assist clinicians in selecting LEs within the critical care setting. Prescription of PN containing LEs should be based on available clinical data, while considering the individual patient’s physiologic profile and therapeutic requirements. PMID:20072779

  19. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology

    Directory of Open Access Journals (Sweden)

    Annie-Louise Robson

    2018-02-01

    Full Text Available There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

  20. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  1. Development and Testing of a Transmission Voltage SuperLimiter™ Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Romanosky, Walter [American Superconductor Corporation, Devens, MA (United States)

    2012-09-01

    This report summarizes work by American Superconductor (AMSC), Los Alamos National Laboratory (LANL), Nexans, Siemens and Southern California Edison on a 138kV resistive type high temperature superconductor (HTS) fault current limiter (FCL) under a cooperative agreement with the U.S. Department of Energy (DOE). Phase 1A encompassed core technology development and system design and was previously reported (see summary that follows in Section 1.1 of the Introduction). This report primarily discusses work performed during Phase 1B, and addresses the fabrication and test of a single-phase prototype FCL. The results are presented along with a discussion of requirements/specifications and lessons learned to aid future development and product commercialization.

  2. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    Science.gov (United States)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  3. Space charge limitation of the current in implanted SiO2 layers

    International Nuclear Information System (INIS)

    Szydlo, N.; Poirier, R.

    1974-01-01

    Metal-oxide-semiconductor capacitors were studied where the metal is a semitransparent gold layer of 5mm diameter, the oxide is thermal silica whose, thickness depends on the nature of the implant, and the semiconductor is N-type silicon of 5 ohms/cm. The SiO 2 thickness was chosen in such a way that the maximum of the profile of the implanted substance is in the medium of the oxide layer. In the case of virgin silica, the oscillations in the photocurrent versus energy and exponential variations versus the applied voltage show that the photoconduction obeys the model of injection limited current. In the case of the oxide after ion bombardment, the photocurrent similarity, independent of the direction of the electric field in silica, shows that volume transport phenomena become preponderent [fr

  4. Refractive error assessment: influence of different optical elements and current limits of biometric techniques.

    Science.gov (United States)

    Ribeiro, Filomena; Castanheira-Dinis, Antonio; Dias, Joao Mendanha

    2013-03-01

    To identify and quantify sources of error on refractive assessment using exact ray tracing. The Liou-Brennan eye model was used as a starting point and its parameters were varied individually within a physiological range. The contribution of each parameter to refractive error was assessed using linear regression curve fits and Gaussian error propagation analysis. A MonteCarlo analysis quantified the limits of refractive assessment given by current biometric measurements. Vitreous and aqueous refractive indices are the elements that influence refractive error the most, with a 1% change of each parameter contributing to a refractive error variation of +1.60 and -1.30 diopters (D), respectively. In the phakic eye, axial length measurements taken by ultrasound (vitreous chamber depth, lens thickness, and anterior chamber depth [ACD]) were the most sensitive to biometric errors, with a contribution to the refractive error of 62.7%, 14.2%, and 10.7%, respectively. In the pseudophakic eye, vitreous chamber depth showed the highest contribution at 53.7%, followed by postoperative ACD at 35.7%. When optic measurements were considered, postoperative ACD was the most important contributor, followed by anterior corneal surface and its asphericity. A MonteCarlo simulation showed that current limits of refractive assessment are 0.26 and 0.28 D for the phakic and pseudophakic eye, respectively. The most relevant optical elements either do not have available measurement instruments or the existing instruments still need to improve their accuracy. Ray tracing can be used as an optical assessment technique, and may be the correct path for future personalized refractive assessment. Copyright 2013, SLACK Incorporated.

  5. First detection of global dawn-dusk ionospheric current intensities using Ampere's integral law on Orsted orbits

    DEFF Research Database (Denmark)

    Stauning, P.; Primdahl, Fritz

    2000-01-01

    -to-dusk ionospheric current is found to be proportional to the gee-effective solar wind electric field and is around 1 million ampere for a typical solar wind electric field of 2 mV/m. Dividing the Ampere integral into semi-orbit parts has enabled us to show that the hemispherical total current intensities depend......The magnetic measurements by the Orsted satellite in noon-midnight orbits have enabled the derivation of the global dawn-dusk oriented ionospheric currents from an Ampere's law closed loop line integral of the geomagnetic vector field along the satellite track. The globally integrated dawn...... on the respective polar cap conductivities, which relate to the daily and seasonally varying solar illumination. The more illuminated hemisphere conveys up to three times more current from dawn to dusk than does the less illuminated....

  6. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  7. Dependence of the DIII-D beta limit on the current profile

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E.J.; Chu, M.S.; Ferron, J.R.; Lao, L.L.; Osborne, T.H.; Taylor, T.S.; Turnbull, A.D. (General Atomics, San Diego, CA (United States)); Lazarus, E.A. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The maximum beta values achieved in DIII-D are not fully described by the simple scaling law [beta][sub max][proportional to]I/aB. There is, in addition, a dependence on the form of the current profile as parameterized by the safety factor q and internal inductance l[sub i]. The maximum experimentally achieved value of normalized beta [beta][sub N] = [beta]/(I/aB) varies from 3.5 at low safety factor q (q[sub 95]<3) to 5 at higher values of q. At low q, discharges are terminated by disruptions at high [beta][sub N] and at both the low and high l[sub i] boundaries of the stable range. These disruptions are attributed to external and global kink modes. At higher q, such disruptions are much less frequent, and beta is limited by slowly growing resistive modes, fishbones, and possibly by ballooning modes. At each value of q, the maximum beta tends to increase with internal inductance l[sub i]. A numerical study of kink mode stability has shown a similar trend for optimized pressure profiles. These observations have suggested a new scaling law for the operational beta limit: [beta][sub max]=4l[sub i](I/aB), which fits the DIII-D data well. (author) 13 refs., 4 figs.

  8. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    International Nuclear Information System (INIS)

    Velichko, A V; Coombs, T A

    2006-01-01

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10 -3 -10 3 of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%

  9. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A V; Coombs, T A [Electrical Engineering Division, University of Cambridge (United Kingdom)

    2006-06-15

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10{sup -3}-10{sup 3} of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%.

  10. Millennial-scale ocean current intensity changes off southernmost Chile and implications for Drake Passage throughflow

    Science.gov (United States)

    Lamy, F.; Arz, H. W.; Kilian, R.; Baeza Urrea, O.; Caniupan, M.; Kissel, C.; Lange, C.

    2012-04-01

    The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today a large volume of ACC water passes through the Drake Passage, a major geographic constrain for the circumpolar flow. Satellite tracked surface drifters have shown that Subantarctic Surface water of the ACC is transported northeastward across the Southeast Pacific from ~53°S/100°W towards the Chilean coast at ~40°S/75°W where surface waters bifurcate and flow northward into the Peru Chile Current (PCC) finally reaching the Eastern Tropical Pacific, and southwards into the Cape Horn Current (CHC). The CHC thus transports a significant amount of northern ACC water towards the Drake Passage and reaches surface current velocities of up to 35 cm/s within a narrow belt of ~100-150 km width off the coast. Also at deeper water levels, an accelerated southward flow occurs along the continental slope off southernmost South America that likewise substantially contributes to the Drake Passage throughflow. Here we report on high resolution geochemical and grain-size records from core MD07-3128 (53°S; 1032 m water depth) which has been retrieved from the upper continental slope off the Pacific entrance of the Magellan Strait beneath the CHC. Magnetic grain-sizes and grain-size distributions of the terrigenous fraction reveal large amplitude changes between the Holocene and the last glacial, as well as millennial-scale variability (most pronounced during Marine Isotope Stage). Magnetic grain-sizes, silt/clay ratios, fine sand contents, sortable silt contents, and sortable silt mean grain-sizes are substantially higher during the Holocene suggesting strongly enhanced current activity. The high absolute values imply flow speeds larger than 25 cm/s as currently observed in the CHC surface current. Furthermore, winnowing processes through bottom current activity and changes in the availability of terrigenous material (ice-sheet extension and related supply of

  11. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  12. Effect of solvent composition on the limiting current of anodic dissolution of tungsten in aqueous-ethanol solutions of alkali

    International Nuclear Information System (INIS)

    Konoplyantseva, N.A.; L'vova, L.A.; Davydov, A.D.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1987-01-01

    The effect of quantitative composition of solvent on tungsten anodic dissolution in aqueous-ethanol solutions of KOH is studied. It is shown that with an increase in ethanol content in aqueous-ethanol solutions of alkali the limiting current of tungsten anodic dissolution decreases. An increase in KOH concentration in certain limits (in ethanol solutions it is the range between 0.75 and 1.0 M KOH) results in the increase of the limiting current; with further increase in solution concentration the limiting current decreases, which can be related to the change of the limiting stage. An assumption is made that total reaction of tungsten anodic dissolution and the main reasons for the limiting current appearance do not change from aqueous to aqueous-ethanol and ethanol solutions of alkali

  13. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2014-09-15

    Highlights: • The role of SFCLs in VSC-HVDC systems was evaluated. • Simulation model based on Korea Jeju-Haenam HVDC power system was designed. • An effect and the feasible locations of resistive SFCLs were evaluated. • DC line-to-line, DC line-to-ground and 3 phase AC faults were imposed and analyzed. - Abstract: Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  14. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-01-01

    Highlights: • The role of SFCLs in VSC-HVDC systems was evaluated. • Simulation model based on Korea Jeju-Haenam HVDC power system was designed. • An effect and the feasible locations of resistive SFCLs were evaluated. • DC line-to-line, DC line-to-ground and 3 phase AC faults were imposed and analyzed. - Abstract: Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results

  15. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  16. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    Full Text Available Neuroimaging studies have shown neuromuscular electrical stimulation (NMES-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC, premotor cortex (PMC, supplementary motor area (SMA, and secondary somatosensory area (S2, as well as regions of the prefrontal cortex (PFC known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI, and with reference to voluntary (VOL wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb and deoxygenated (HHb hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2. However, the level and area of contralateral sensorimotor network (including PFC activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  17. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro

    2015-01-01

    Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  18. Performance of current intensive care unit ventilators during pressure and volume ventilation.

    Science.gov (United States)

    Marchese, Andrew D; Sulemanji, Demet; Chipman, Daniel; Villar, Jesús; Kacmarek, Robert M

    2011-07-01

    Intensive-care mechanical ventilators regularly enter the market, but the gas-delivery capabilities of many have never been assessed. We evaluated 6 intensive-care ventilators in the pressure support (PS), pressure assist/control (PA/C), and volume assist/control (VA/C) modes, with lung-model mechanics combinations of compliance and resistance of 60 mL/cm H(2)O and 10 cm H(2)O/L/s, 60 mL/cm H(2)O and 5 cm H(2)O/L/s, and 30 mL/cm H(2)O and 10 cm H(2)O/L/s, and inspiratory muscle effort of 5 and 10 cm H(2)O. PS and PA/C were set to 15 cm H(2)O, and PEEP to 5 and 15 cm H(2)O in all modes. During VA/C, tidal volume was set at 500 mL and inspiratory time was set at 0.8 second. Rise time and termination criteria were set at the manufacturers' defaults, and to an optimal level during PS and PA/C. There were marked differences in ventilator performance in all 3 modes. VA/C had the greatest difficulty meeting lung model demand and the greatest variability across all tested scenarios and ventilators. From high to low inspiratory muscle effort, pressure-to-trigger, time for pressure to return to baseline, and triggering pressure-time product decreased in all modes. With increasing resistance and decreasing compliance, tidal volume, pressure-to-trigger, time-to-trigger, time for pressure to return to baseline, time to 90% of peak pressure, and pressure-time product decreased. There were large differences between the default and optimal settings for all the variables in PS and PA/C. Performance was not affected by PEEP. Most of the tested ventilators performed at an acceptable level during the majority of evaluations, but some ventilators performed inadequately during specific settings. Bedside clinical evaluation is needed.

  19. Numerical simulation and experiment of high-intensity current pulsed impact on the structure body

    International Nuclear Information System (INIS)

    Li Mintang; Yan Ping; Yuan Weiqun; Sun Yaohong; Sun Lianhua; Zhou Yuan; Liu Chuanpu

    2010-01-01

    To better understand the characteristics of the impulse force formed by pulse current of electromagnetic rail propulsion system, and to explore effective ways to improve the support structure of rails, a set of impulse force test system was designed, and the work-related test situation was numerically simulated. Several impulse force waveforms formed by different pulse current waveforms were achieved by using an armature as a source of impulse force in this test system, and two curves of waveform were comparatively analyzed. The armature existing in the environment of coupling fields including electric field and magnetic field and force field was carried out numerical calculation by using the software of ANSYS, and the coupling force field was emphatically analyzed to calculate the electromagnetic driving force and the electromagnetic clamping force acting on the armature, and the structure stress and deformation was also analyzed. The results showed that the curves of electromagnetic driving force computed by numerical simulation and the curves of impulse force obtained by experiment were basically the same, and the value of peak points' error was increasing along with the increase of pulse current, but the curves still showed some common characteristics. This verified that the test method we used in this paper was proper to capture the impulse force, and the method of calculation was also feasible and effective. (authors)

  20. Determination of death after circulatory arrest by intensive care physicians: A survey of current practice in the Netherlands.

    Science.gov (United States)

    Wind, Jentina; van Mook, Walther N K A; Dhanani, Sonny; van Heurn, Ernest W L

    2016-02-01

    Determination of death is an essential part of donation after circulatory death (DCD). We studied the current practices of determination of death after circulatory arrest by intensive care physicians in the Netherlands, the availability of guidelines, and the occurrence of the phenomenon of autoresuscitation. The Determination of Cardiac Death Practices in Intensive Care Survey was sent to all intensive care physicians. Fifty-five percent of 568 Dutch intensive care physicians responded. Most respondents learned death determination from clinical practice. The most commonly used tests for death determination were flat arterial line tracing, flat electrocardiogram (standard 3-lead electrocardiogram), and fixed and dilated pupils. Rarely used tests were absence pulse by echo Doppler, absent blood pressure by noninvasive monitoring, and unresponsiveness to painful stimulus. No diagnostic test or procedure was uniformly performed, but 80% of respondents perceived a need for standardization of death determination. Autoresuscitation was witnessed by 37%, after withdrawal of treatment or after unsuccessful resuscitation. Extensive variability in the practice of determining death after circulatory arrest exists, and a need for guidelines and standardization, especially if organ donation follows death, is reported. Autoresuscitation is reported; this observation requires attention in further prospective observational studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Breast milk banking: current opinion and practice in Australian neonatal intensive care units.

    Science.gov (United States)

    Lam, Eva Y; Kecskés, Zsuzsoka; Abdel-Latif, Mohamed E

    2012-09-01

    To find out the knowledge and attitudes of health-care professionals (HCPs) in Australian neonatal intensive care units (NICUs) towards breast milk banking (BMBg) and pasteurised donated breast milk (PDBM). Cross-sectional structured survey of HCPs in all 25 NICUs in Australia. Response rate was 43.4% (n= 358 of 825). Participants included nurses and midwives (291, 81.3%) and the remainder were neonatologists and neonatal trainees (67, 18.7%). A variable number of HCPs agreed that PDBM would decrease the risk of necrotising enterocolitis (81%) and allergies (48.9%), 8.4% thought PDBM will carry risk of infections and 78.8% agreed that PDBM is preferable over formula, but only 67.5% thought that establishing breast milk banks (BMBs) are justifiable. Significant differences were found between doctors and nurses/midwives, with 19.4% of doctors compared with 5.8% of nurses/midwives agreed that PDBM carried an increased risk of infection. Although, over 90% of nurses/midwives and 70% of doctors agreed that the donation of breast milk is important, only 71% of nurses/midwives and 52.2% of doctors thought that setting up a BMB was justifiable. The opinions about BMBg differ widely between HCPs; however, the majority support the practice. HCPs had different knowledge gaps in regard to BMBg. Nurses/midwives positively view the practice of BMBg more strongly compared with neonatologists. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  2. Current Treatments for Surgically Resectable, Limited-Stage, and Extensive-Stage Small Cell Lung Cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2017-12-01

    The prevalence of small cell lung cancer (SCLC) has declined in the U.S. as the prevalence of tobacco use has declined. However, a significant number of people in the U.S. are current or former smokers and are at risk of developing SCLC. Routine histological or cytological evaluation can reliably make the diagnosis of SCLC, and immunohistochemistry stains (thyroid transcription factor-1, chromogranin, synaptophysin, and CD56) can be used if there is uncertainty about the diagnosis. Rarely do patients present with SCLC amendable to surgical resection, and evaluation requires a meticulous workup for extra-thoracic metastases and invasive staging of the mediastinum. Resected patients require adjuvant chemotherapy and/or thoracic radiation therapy (TRT), and prophylactic cranial radiation (PCI) should be considered depending on the stage. For limited-stage disease, concurrent platinum-etoposide and TRT followed by PCI is the standard. Thoracic radiation therapy should be started early in treatment, and can be given twice daily to 45 Gy or once daily to 60-70 Gy. For extensive-stage disease, platinum-etoposide remains the standard first-line therapy, and the standard second-line therapy is topotecan. Preliminary studies have demonstrated the activity of immunotherapy, and the response rate is approximately 10-30% with some durable responses observed. Rovalpituzumab tesirine, an antibody drug conjugate, has shown promising activity in patients with high delta-like protein 3 tumor expression (approximately 70% of patients with SCLC). The emergence of these and other promising agents has rekindled interest in drug development in SCLC. Several ongoing trials are investigating novel agents in the first-line, maintenance, and second-line settings. This review will provide an update on the standard therapies for surgically resected limited-stage small cell lung cancer and extensive-stage small cell lung cancer that have been investigated in recent clinical trials. © Alpha

  3. Axial p-n junction and space charge limited current in single GaN nanowire

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 1017 at cm-3 assuming a donor level N d of 2-3 × 1018 at cm-3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  4. Axial p-n junction and space charge limited current in single GaN nanowire.

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-05

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 10 17 at cm -3 assuming a donor level N d of 2-3 × 10 18 at cm -3 . The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  5. Feedback control modeling of plasma position and current during intense heating in ISX-B

    International Nuclear Information System (INIS)

    Charlton, L.A.; Swain, D.W.; Neilson, G.H.

    1979-08-01

    The ISX-B Tokamak at ORNL is designed to have 1.8 MW (and eventually 3 MW) of neutral beam power injected to heat the plasma. This power may raise the anti β of the plasma to over 5% in less than 50 msec if the plasma is MHD stable. The results of a numerical simulation of the feedback control system and poloidal coil power supplies necessary to control the resulting noncircular (D-shaped or elliptical) plasma are presented. The resulting feedback control system is shown to be straightforward, although nonlinear voltage-current dependence is assumed in the power supplies. The required power supplied to the poloidal coils in order to contain the plasma under the high heating rates is estimated

  6. Combining Pharmacological and Psychological Treatments for Binge Eating Disorder: Current Status, Limitations, and Future Directions.

    Science.gov (United States)

    Grilo, Carlos M; Reas, Deborah L; Mitchell, James E

    2016-06-01

    Binge eating disorder (BED) is characterized by recurrent binge eating and marked distress about binge eating without the extreme compensatory behaviors for weight control that characterize other eating disorders. BED is prevalent, associated strongly with obesity, and is associated with heightened levels of psychological, psychiatric, and medical concerns. This article provides an overview of randomized controlled treatments for combined psychological and pharmacological treatment of BED to inform current clinical practice and future treatment research. In contrast to the prevalence and significance of BED, to date, limited research has been performed on combining psychological and pharmacological treatments for BED to enhance outcomes. Our review here found that combining certain medications with cognitive behavioral therapy (CBT) or behavioral weight loss (BWL) interventions produces superior outcomes to pharmacotherapy only but does not substantially improve outcomes achieved with CBT/BWL only. One medication (orlistat) has improved weight losses with CBT/BWL albeit minimally, and only one medication (topiramate) has enhanced reductions achieved with CBT in both binge eating and weight. Implications for future research are discussed.

  7. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  8. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  9. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    Science.gov (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  10. Clinical Uses of Botulinum Neurotoxins: Current Indications, Limitations and Future Developments

    Directory of Open Access Journals (Sweden)

    Sheng Chen

    2012-10-01

    Full Text Available Botulinum neurotoxins (BoNTs cause flaccid paralysis by interfering with vesicle fusion and neurotransmitter release in the neuronal cells. BoNTs are the most widely used therapeutic proteins. BoNT/A was approved by the U.S. FDA to treat strabismus, blepharospam, and hemificial spasm as early as 1989 and then for treatment of cervical dystonia, glabellar facial lines, axillary hyperhidrosis, chronic migraine and for cosmetic use. Due to its high efficacy, longevity of action and satisfactory safety profile, it has been used empirically in a variety of ophthalmological, gastrointestinal, urological, orthopedic, dermatological, secretory, and painful disorders. Currently available BoNT therapies are limited to neuronal indications with the requirement of periodic injections resulting in immune-resistance for some indications. Recent understanding of the structure-function relationship of BoNTs prompted the engineering of novel BoNTs to extend therapeutic interventions in non-neuronal systems and to overcome the immune-resistance issue. Much research still needs to be done to improve and extend the medical uses of BoNTs.

  11. Modeling interfacial glass-water reactions: recent advances and current limitations

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-01-01

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries-pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and timescales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the mesoscale changes that occur as the system evolves. These modeling approaches include geochemical simulations (i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer simulations), Monte Carlo simulations, and molecular dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers. New results are presented as examples of each approach. (authors)

  12. Determination of mycotoxins in foods: current state of analytical methods and limitations.

    Science.gov (United States)

    Köppen, Robert; Koch, Matthias; Siegel, David; Merkel, Stefan; Maul, Ronald; Nehls, Irene

    2010-05-01

    Mycotoxins are natural contaminants produced by a range of fungal species. Their common occurrence in food and feed poses a threat to the health of humans and animals. This threat is caused either by the direct contamination of agricultural commodities or by a "carry-over" of mycotoxins and their metabolites into animal tissues, milk, and eggs after feeding of contaminated hay or corn. As a consequence of their diverse chemical structures and varying physical properties, mycotoxins exhibit a wide range of biological effects. Individual mycotoxins can be genotoxic, mutagenic, carcinogenic, teratogenic, and oestrogenic. To protect consumer health and to reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities and researchers worldwide. However, the variety of chemical structures makes it impossible to use one single technique for mycotoxin analysis. Hence, a vast number of analytical methods has been developed and validated. The heterogeneity of food matrices combined with the demand for a fast, simultaneous and accurate determination of multiple mycotoxins creates enormous challenges for routine analysis. The most crucial issues will be discussed in this review. These are (1) the collection of representative samples, (2) the performance of classical and emerging analytical methods based on chromatographic or immunochemical techniques, (3) the validation of official methods for enforcement, and (4) the limitations and future prospects of the current methods.

  13. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    Science.gov (United States)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  14. Development of a prototype solid state fault current limiting and interrupting device for low voltage distribution networks.

    OpenAIRE

    Ahmed, M.; Putrus, G. A.; Ran, L.; Penlington, R.

    2006-01-01

    This paper describes the development of a solid-state Fault Current Limiting and Interrupting Device (FCLID) suitable for low voltage distribution networks. The main components of the FCLID are a bidirectional semiconductor switch that can disrupt the short-circuit current, and a voltage clamping element that helps in controlling the current and absorbing the inductive energy stored in the network during current interruption. Using a hysteresis type control algorithm, the short-circuit curren...

  15. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions.

    Science.gov (United States)

    Ho, Kerrie-Anne; Taylor, Janet L; Chew, Taariq; Gálvez, Verònica; Alonzo, Angelo; Bai, Siwei; Dokos, Socrates; Loo, Colleen K

    2016-01-01

    Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. This study examined the effect of current intensity (1 mA, 2 mA) and electrode size (16 cm(2), 35 cm(2)) on motor cortical excitability over single and repeated tDCS sessions. Data from seven studies in 89 healthy participants were pooled for analysis. Single-session data were analyzed using mixed effects models and repeated-session data were analyzed using mixed design analyses of variance. Computational modeling was used to examine the electric field generated. The magnitude of increases in excitability after anodal tDCS was modest. For single-session tDCS, the 35 cm(2) electrodes produced greater increases in cortical excitability compared to the 16 cm(2) electrodes. There were no differences in the magnitude of cortical excitation produced by 1 mA and 2 mA tDCS. The repeated-sessions data also showed that there were greater increases in excitability with the 35 cm(2) electrodes. Further, repeated sessions of tDCS with the 35 cm(2) electrodes resulted in a cumulative increase in cortical excitability. Computational modeling predicted higher electric field at the motor hotspot for the 35 cm(2) electrodes. 2 mA tDCS does not necessarily produce larger effects than 1 mA tDCS in healthy participants. Careful consideration should be given to the exact positioning, size and orientation of tDCS electrodes relative to cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Persistence of Prior Concepts about Electric Potential, Current Intensity and Ohm’s Law in Students of Engineering

    Directory of Open Access Journals (Sweden)

    María Cristina Periago

    2005-11-01

    Full Text Available The aim of this research was to evaluate and analyze second-year industrial-engineering and chemical-engineering students’ prior knowledge of conceptual aspects of circuit theory. Specifically, we have focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between these as expressed by Ohm’s Law. In order to find out what the students’ prior concepts were, we applied a survey containing nine questions dealing with the most basic concepts of circuit theory. Let us emphasize that there was little information available about the prior concepts of the population type (university students investigated in this research.

  17. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    International Nuclear Information System (INIS)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    Highlights: ► A line-commutation type hybrid FCL was modified for 1st peak current limitation. ► A superconducting module of current limitation and fault detection was fabricated. ► The superconducting module was applied to a hybrid FCL system and tested. ► 7.4 kA p fault current was limited to 4.3 kA p at the first-half cycle by the FCL. -- Abstract: A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage

  18. Children with life-limiting conditions in paediatric intensive care units: a national cohort, data linkage study.

    Science.gov (United States)

    Fraser, Lorna K; Parslow, Roger

    2017-07-13

    To determine how many children are admitted to paediatric intensive care unit (PICU) with life-limiting conditions (LLCs) and their outcomes. National cohort, data-linkage study. PICUs in England. Children admitted to a UK PICU (1 January 2004 and 31 March 2015) were identified in the Paediatric Intensive Care Audit Network dataset. Linkage to hospital episodes statistics enabled identification of children with a LLC using an International Classification of Diseases (ICD10) code list. Random-effects logistic regression was undertaken to assess risk of death in PICU. Flexible parametric survival modelling was used to assess survival in the year after discharge. Overall, 57.6% (n=89 127) of PICU admissions and 72.90% (n=4821) of deaths in PICU were for an individual with a LLC.The crude mortality rate in PICU was 5.4% for those with a LLC and 2.7% of those without a LLC. In the fully adjusted model, children with a LLC were 75% more likely than those without a LLC to die in PICU (OR 1.75 (95% CI 1.64 to 1.87)).Although overall survival to 1 year postdischarge was 96%, children with a LLC were 2.5 times more likely to die in that year than children without a LLC (OR 2.59 (95% CI 2.47 to 2.71)). Children with a LLC accounted for a large proportion of the PICU population. There is an opportunity to integrate specialist paediatric palliative care services with paediatric critical care to enable choice around place of care for these children and families. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Alterations in Aspergillus brasiliensis (niger) ATCC 9642 membranes associated to metabolism modifications during application of low-intensity electric current.

    Science.gov (United States)

    Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio

    2017-12-01

    The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm -2 was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.

  20. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuñ a, Javier; Xie, Wei; Salleo, Alberto

    2012-01-01

    bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact

  1. Space-charge-limited-current diode model for amorphous silicon solar cell degradation

    International Nuclear Information System (INIS)

    Partain, L.D.

    1987-01-01

    A space-charge-limited-current (SCLI) diode model for trap controlled rectification in the dark is extended to a continuous trap distribution for p-i-n a-Si:H solar cells in the light. Light degradation, thermal annealing recovery, and 10% efficient device data are quantitatively fit with i layer, conduction electron concentrations between 1.95 (10 11 ) and 1.90 (10 12 ) cm -3 and band gap trap concentration densities between 7.66 (10 14 ) and 1.14 (10 18 ) cm -3 ev -1 for 0.2 to 0.5 eV below the conduction band edge (E/sub c/). Light exposure increased the trap density at 0.4 eV below E/sub c/ by a factor of 7. Annealing decreased the distance of the peak trap density from E/sub c/ by 0.2 eV. These results agree with trap distributions measured with field effect, DLTS, and ICTS and with theoretical models based on dangling bonds or on defect rearrangements. The model indicates that a minimum peak amplitude of 10 17 cm -3 eV -1 of trapping states is required at about 0.5 eV below E/sub c/ for high fill factors (FF) and open circuit voltages (V/sub oc/). Improved FF values of 0.76 are predicted for trap densities below 10 15 cm -3 eV -1 at 0.2 to 0.4 eV below E/sub c/. Increased V/sub oc/ values of 0.99 V are predicted for a peak trap density of 3.5 (10 17 ) cm -3 eV -1 at 0.5 eV below E/sub c/

  2. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    Science.gov (United States)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TRstudied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  3. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    Directory of Open Access Journals (Sweden)

    Roland N Boubela

    2014-02-01

    Full Text Available Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to true neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.. From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  4. Influence of current limitation on voltage stability with voltage sourced converter HVDC

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Jóhannsson, Hjörtur; Hansen, Anca Daniela

    2013-01-01

    A first study of voltage stability with relevant amount of Voltage Sourced Converter based High Voltage Direct Current (VSC-HVDC) transmission is presented, with particular focus on the converters’ behaviour when reaching their rated current. The detrimental effect of entering the current...

  5. Generalized Veneziano model for pion scattering off isovector currents and the scaling limit

    CERN Document Server

    Rothe, H J; Rolhe, K D

    1972-01-01

    Starting from a local one-particle approximation scheme for the commutator of two conserved currents, the authors construct a generalized Veneziano model for pion scattering off neutral and charged isovector currents, satisfying the constraints of current conservation and current algebra. The model factorizes correctly on the leading Regge trajectories and incorporates the proper Regge behaviour for strong amplitudes. Fixed poles are found to be present in the s and t channels of the one- and two-current amplitudes. Furthermore, the model makes definite predictions about the structure of Schwinger terms and of the 'seagull' terms in the retarded commutator. (13 refs).

  6. Experimental studies of 2.45 GHz ECR ion sources for the production of high intensity currents

    International Nuclear Information System (INIS)

    Coly, A.

    2010-12-01

    This thesis is the result of a collaboration between the Pantechnik company and the LPSC (Laboratory of subatomic physics and cosmology of Grenoble). It consisted in the development of a new test bench dedicated to the characterization of a 2.45 GHz ECR ion sources with the aim of the production of high currents beams for industrial purposes. Two ECR ions sources with different magnetic structures have been tested around the same RF injection system. A new 2.45 GHz ECRIS, named SPEED, featuring a dipolar magnetic field at the extraction has been designed and tested. A study of the beam extraction in the dipolar magnetic field is proposed. First tests have shown a total ionic current density of about 10 mA/cm 2 with a 900 W RF power. Tests with hydrogen plasma have shown a maximum of current on the H 2 + species. Recommendations are given to modify the magnetic structure to improve the H + production yield. The MONO1000 ion source has been tested at high RF power with a wave guide type injection system. Intense total ionic current densities have been measured up to about 95 mA/cm 2 with a diode extraction system. First results using an improved 5 electrode extraction system are presented. (author)

  7. Fault Ride Though Control of Photovoltaic Grid-connected Inverter with Current-limited Capability under Offshore Unbalanced Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Wenzhao; Guo, Xiaoqiang; Savaghebi, Mehdi

    2016-01-01

    The photovoltaic (PV) inverter installed on board experiences the excessive current stress in case of the offshore unbalanced voltage fault ride through (FRT), which significantly affects the operation reliability of the power supply system. In order to solve the problem, the inherent mechanism...... of the excessive current phenomenon with the conventional fault ride through control is discussed. The quantitative analysis of the current peak value is conducted and a new current-limiting control strategy is proposed to achieve the flexible power control and successful fault ride through in a safe current...

  8. Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Lu, Zhigang

    2017-01-01

    The grid-connected inverters may experience excessive current stress in case of unbalanced grid voltage Fault Ride Through (FRT), which significantly affects the reliability of the power supply system. In order to solve the problem, the inherent mechanisms of the excessive current phenomenon...... with the conventional FRT solutions are discussed. The quantitative analysis of three phase current peak values are conducted and a novel current-limited control strategy is proposed to achieve the flexible active and reactive power regulation and successful FRT in a safe current operation area with the aim...

  9. Investigation of the Stress Intensity Limits of ASME Section III Div.5 for Structure Design Criteria of SFR Fuel Assembly

    International Nuclear Information System (INIS)

    Choo, Jin-Yup; Kim, Hyung-Kyu; Cheon, Jin-Sik

    2017-01-01

    In this paper, the stress intensity limits, Sm and St of HT-9 were built for the structural criteria of an SFR fuel assembly. Sm is obtained from the ultimate strength. As for St, it is more complicated because of its dependency of time duration in addition to temperature. Following the definition of Smt, the method in the ASME Sec. III Div. 1, Subsec. NH was consulted. We found that the Sm is adopted as Smt under the temperature about 470 .deg. C which is relatively low temperature range and over 470 .deg. C with relatively short time duration as 1000 hours. And the St is adopted as Smt at over 470 .deg. C and long time duration over 34800 hours, and over 520 .deg. C and 104 hours too. And at over 570 .deg. C and 1000 hours, and at over 630 .deg. C and 100 hours, St is also adopted for Smt. To use the present result as design criteria, a stringent examination needs to be carried out, because those are calculated from the formulae of HT-9 without an experimental validation. Therefore, an experimental work on the mechanical properties of HT-9 will be necessary.

  10. Reproductive parameters in the critically endangered Blue-throated Macaw: limits to the recovery of a parrot under intensive management.

    Directory of Open Access Journals (Sweden)

    Igor Berkunsky

    Full Text Available Rediscovered in the wild twenty years ago, the breeding biology of wild Blue-throated Macaws remains largely unexplored, yet is essential to its effective conservation and recovery. Here, we analyse reproductive parameters in an intensively managed wild population of Blue-throated Macaws, providing the first data on the breeding biology of this critically endangered species. During the six-year study period, 2007-2012, the number of active breeding pairs either remained constant or decreased, depending on the site, and no new breeding pairs were discovered despite extensive searching. We documented nesting attempts in natural cavities in dead palms or live hardwoods, and artificial nest boxes. Egg-laying was concentrated during the end of dry season and the beginning of the wet season, August through December. Hatching failure was the greatest cause of egg losses. Half of the breeding attempts of Blue-throated Macaws produced at least one fledging, on average two, after a 85 days nestling period. An average of 4.3 nestlings per year fledged from all known wild nests combined. Each pair lost roughly 65% of its initial reproductive investment at each nesting attempt. In most successful nesting attempts of individualized pairs, a new nesting attempt was not detected the following year. All monitored breeding pairs showed high nest site fidelity, reusing hardwood-tree cavities and nest boxes. Our findings will aid conservation efforts by refining current actions and prompting new approaches towards the conservation and recovery of the Blue-throated Macaw.

  11. Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1979-01-01

    The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base

  12. Monitoring the deep western boundary current in the western North Pacific by echo intensity measured with lowered acoustic Doppler current profiler

    Science.gov (United States)

    Komaki, Kanae; Nagano, Akira

    2018-05-01

    Oxidation of iron and manganese ions is predominant in the oxygen-rich deep western boundary current (DWBC) within the Pacific Ocean. By the faster removal of particulate iron hydroxide and manganese oxide, densities of the particulate matters are considered to be lower in the DWBC than the interior region. To detect the density variation of suspended particles between the DWBC and interior regions, we analyzed echo intensity (EI) measured in the western North Pacific by hydrographic casts with a 300 kHz lowered acoustic Doppler current profiler (LADCP) in a whole water column. At depths greater than 3000 m ( 3000 dbar), EI is almost uniformly low between 12°N and 30°N but peaks sharply from 30°N to 35°N to a maximum north of 35°N. EI is found to be anomalously low in the DWBC compared to the background distribution. The DWBC pathways are identifiable by the low EI and high dissolved oxygen concentration. EI data by LADCPs and other acoustic instruments may be used to observe the temporal variations of the DWBC pathways.

  13. Improvement of Protection Coordination for a Distribution System Connected to a Microgrid using Unidirectional Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Mazen Abdel-Salam

    2017-09-01

    Full Text Available The presence of distributed generation (DG units in distribution systems increases the fault current level, which disrupts the existing coordination time interval of the protective overcurrent relays. One of the ways for decreasing DG effects on the coordination of protective devices is re-coordination of the relays by installing unidirectional fault current limiter (UFCL between the main grid (upstream network and the microgrid (downstream network. The UFCL does not limit fault current contribution of the upstream network when fault occurs in downstream but limits fault current contribution of the downstream network when fault occurs in the upstream. Moreover, it preserves the coordination between all of the relays. Several case studies are carried out for illustrating the performance of the UFCL in maintaining the relay coordination.

  14. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    Science.gov (United States)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.

  15. A novel concept of fault current limiter based on saturable core in high voltage DC transmission system

    Science.gov (United States)

    Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.

  16. Currently used dosage regimens of vancomycin fail to achieve therapeutic levels in approximately 40% of intensive care unit patients.

    Science.gov (United States)

    Obara, Vitor Yuzo; Zacas, Carolina Petrus; Carrilho, Claudia Maria Dantas de Maio; Delfino, Vinicius Daher Alvares

    2016-01-01

    This study aimed to assess whether currently used dosages of vancomycin for treatment of serious gram-positive bacterial infections in intensive care unit patients provided initial therapeutic vancomycin trough levels and to examine possible factors associated with the presence of adequate initial vancomycin trough levels in these patients. A prospective descriptive study with convenience sampling was performed. Nursing note and medical record data were collected from September 2013 to July 2014 for patients who met inclusion criteria. Eighty-three patients were included. Initial vancomycin trough levels were obtained immediately before vancomycin fourth dose. Acute kidney injury was defined as an increase of at least 0.3mg/dL in serum creatinine within 48 hours. Considering vancomycin trough levels recommended for serious gram-positive infection treatment (15 - 20µg/mL), patients were categorized as presenting with low, adequate, and high vancomycin trough levels (35 [42.2%], 18 [21.7%], and 30 [36.1%] patients, respectively). Acute kidney injury patients had significantly greater vancomycin trough levels (p = 0.0055, with significance for a trend, p = 0.0023). Surprisingly, more than 40% of the patients did not reach an effective initial vancomycin trough level. Studies on pharmacokinetic and dosage regimens of vancomycin in intensive care unit patients are necessary to circumvent this high proportion of failures to obtain adequate initial vancomycin trough levels. Vancomycin use without trough serum level monitoring in critically ill patients should be discouraged.

  17. Force-Deformation Response of a SMA-Based Actuator Considering the Electric Current Intensity as Step-Input

    Directory of Open Access Journals (Sweden)

    Ion-Cornel Mituletu

    2015-06-01

    Full Text Available The goal of the paper is to accomplish the response regarding the force-displacement characteristic evolution, of a Shape Memory Alloy (SMA actuator element. This reveals the first research stage in controlling the SMA behavior, providing important information about the heating-cooling time intervals. Step excitation of the SMA is performed by few values of electric current intensity, which produces the heating of SMA element up to 90-95 oC. To meet the testing requirements, an adequate test stand has been set up, consisting of sensors for force, displacement and temperature. The analog values provided by sensors were acquired and afterwards analyzed. The values of temperature, displacement and force were achieved, and their characteristic evolution has been performed. Thus, the time intervals are resulted and some other important aspects have been observed, regarding the delay between parameters and the temperature overshoot

  18. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  19. Analysis on fault current limiting and recovery characteristics of a flux-lock type SFCL with an isolated transformer

    International Nuclear Information System (INIS)

    Ko, Seckcheol; Lim, Sung-Hun; Han, Tae-Hee

    2013-01-01

    Highlights: ► Countermeasure to reduce the power burden of HTSC element consisting of the flux-lock type SFCL was studied. ► The power burden of HTSC element could be decreased by using the isolated transformer. ► The SFCL designed with the additive polarity winding could be confirmed to cause less power burden of the HTSC element. -- Abstract: The flux-lock type superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes. However, the superconducting element comprising the flux-lock type SFCL can be destructed when the high fault current passes through the SFCL. Therefore, the countermeasure to control the fault current and protect the superconducting element is required. In this paper, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, was proposed and the short-circuit experimental device to analyze the fault current limiting and the recovery characteristics of the flux-lock type SFCL with the isolated transformer were constructed. Through the short-circuit tests, the flux-lock type SFCL with the isolated transformer was confirmed to perform more effective fault current limiting and recovery operation compared to the flux-lock type SFCL without the isolated transformer from the viewpoint of the quench occurrence and the recovery time of the SFCL

  20. Observation of a current-limited double layer in a linear turbulent-heating device

    International Nuclear Information System (INIS)

    Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.

    1985-01-01

    Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL

  1. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  2. Preferences of Current and Potential Patients and Family Members Regarding Implementation of Electronic Communication Portals in Intensive Care Units.

    Science.gov (United States)

    Brown, Samuel M; Bell, Sigall K; Roche, Stephanie D; Dente, Erica; Mueller, Ariel; Kim, Tae-Eun; O'Reilly, Kristin; Lee, Barbara Sarnoff; Sands, Ken; Talmor, Daniel

    2016-03-01

    The quality of communication with patients and family members in intensive care units (ICUs) is a focus of current interest for clinical care improvement. Electronic communication portals are commonly used in other healthcare settings to improve communication. We do not know whether patients and family members desire such portals in ICUs, and if so, what functionality they should provide. To define interest in and desired elements of an electronic communication portal among current and potential ICU patients and their family members. We surveyed, via an Internet panel, 1,050 English-speaking adults residing in the United States with a personal or family history of an ICU admission within 10 years (cohort A) and 1,050 individuals without a history of such admission (cohort B). We also administered a survey instrument in person to 105 family members of patients currently admitted to ICUs at an academic medical center in Boston (cohort C). Respondents, especially current ICU family members, supported an electronic communication portal, including access via an electronic tablet. They wanted at least daily updates, one-paragraph summaries of family meetings including a list of key decisions made, and knowledge of the role and experience of treating clinicians. Overall, they preferred detailed rather than "big picture" information. Respondents were generally comfortable sharing information with their family members. Preferences regarding a communication portal varied significantly by age, sex, ethnicity, and prior experience with ICU hospitalization. Electronic communication portals appear welcome in contemporary ICUs. Frequent updates, knowledge about the professional qualifications of clinicians, detailed medical information, and documentation of family meetings are particularly desired.

  3. A novel method of flat YBCO rings development for shield-type superconducting fault current limiters fabrication

    International Nuclear Information System (INIS)

    Hekmati, Arsalan; Hosseini, Mehdi; Vakilian, Mehdi; Fardmanesh, Mehdi

    2012-01-01

    A method has been proposed for flat YBCO ring Fabrication. A prototype SFCL with proposed design has been fabricated using the rings. J c characteristics of the rings are measured using an innovative method. The application of flat superconductor rings has been investigated in the structure of inductive shield-type high temperature superconducting fault current limiters, HT c -SFCL. A laboratory scale inductive shield-type HT c -SFCL has been designed and fabricated using flat superconductor rings. The fabrication process has been fully presented. YBCO powder has been used for the fabrication of superconductor rings. This fabrication process, being quite innovative, is introduced completely. The method of the trapped field measurement has been used for the critical current density measurement of the fabricated superconductor rings. The device with nominal current of 2 A was tested in a 30 V circuit. The SFCL successfully limited the fault currents of up to 10 times the nominal current to an approximately fixed value of 3 A. The voltage-current characteristic of the fabricated prototype has also been obtained and has shown compatibility with the fault current limitation results.

  4. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire

    International Nuclear Information System (INIS)

    Smith, A C; Pei, X; Oliver, A; Husband, M; Rindfleisch, M

    2012-01-01

    A prototype resistive superconducting fault current limiter (SFCL) was developed using single-strand round magnesium diboride (MgB 2 ) wire. The MgB 2 wire was wound with an interleaved arrangement to minimize coil inductance and provide adequate inter-turn voltage withstand capability. The temperature profile from 30 to 40 K and frequency profile from 10 to 100 Hz at 25 K were tested and reported. The quench properties of the prototype coil were tested using a high current test circuit. The fault current was limited by the prototype coil within the first quarter-cycle. The prototype coil demonstrated reliable and repeatable current limiting properties and was able to withstand a potential peak current of 372 A for one second without any degradation of performance. A three-strand SFCL coil was investigated and demonstrated scaled-up current capacity. An analytical model to predict the behaviour of the prototype single-strand SFCL coil was developed using an adiabatic boundary condition on the outer surface of the wire. The predicted fault current using the analytical model showed very good correlation with the experimental test results. The analytical model and a finite element thermal model were used to predict the temperature rise of the wire during a fault. (paper)

  5. The Effect of Current-Limiting Reactors on the Tripping of Short Circuits in High-Voltage Electrical Equipment

    International Nuclear Information System (INIS)

    Volkov, M. S.; Gusev, Yu. P.; Monakov, Yu. V.; Cho, Gvan Chun

    2016-01-01

    The insertion of current-limiting reactors into electrical equipment operating at a voltage of 110 and 220 kV produces a change in the parameters of the transient recovery voltages at the contacts of the circuit breakers for disconnecting short circuits, which could be the reason for the increase in the duration of the short circuit, damage to the electrical equipment and losses in the power system. The results of mathematical modeling of the transients, caused by tripping of the short circuit in a reactive electric power transmission line are presented, and data are given on the negative effect of a current-limiting resistor on the rate of increase and peak value of the transient recovery voltages. Methods of ensuring the standard requirements imposed on the parameters of the transient recovery voltages when using current-limiting reactors in the high-voltage electrical equipment of power plants and substations are proposed and analyzed

  6. Current limitations in super-resolution fluorescence microscopy for biological specimens: How deep can we go from the cover glass?

    Science.gov (United States)

    Okada, Yasushi

    2017-04-01

    Diffraction limit of resolution has been one of the biggest limitations in the optical microscopy. Super-resolution fluorescence microscopy has enabled us to break this limit. However, for the observations of real biological specimens, especially for the imaging of tissues or whole body, the target structures of interest are often embedded deep inside the specimen. Here, we would present our results to extend the target of the super-resolution microscopy deeper into the cells. Confocal microscope optics work effectively to minimize the effect by the aberrations by the cellular components, but at the expense of the signal intensities. Spherical aberrations by the refractive index mismatch between the cellular environment and the immersion liquid can be much larger, but can be reduced by adjusting the correction collar at the objective lens.

  7. On the stability limits of the Pinch-conductor current ratio in Extrap

    International Nuclear Information System (INIS)

    Lehnert, B.

    1987-12-01

    A first attempt is made to take the special stability features of the Extrap confinement scheme into account, thereby including kinetic large Larmor radius (LLR) effects. This approach predicts Extrap to be unstable outside a domain defined by a lower and an upper ratio a - /a x is related to the ratio J p /J v between the pinch current J p and the conductor current J v . Stability within the predicted domain seems to agree with so far performed linear and toroidal experiments, and can explain the observed increase in J p /J v and in the plasma temperature, in terms of an increased ratio a - /a x . According to present analysis, an optimum value of the conductor current J v should further exist with respect to pinch equilibrium and stability, as given by the condition a - approx = a x . (author)

  8. Climate Analogues Suggest Limited Potential for Intensification of Production on Current Croplands Under Climate Change

    Science.gov (United States)

    Pugh, T. A. M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  9. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    Science.gov (United States)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  10. Control Strategy for Three-Phase Grid-Connected PV Inverters Enabling Current Limitation Under Unbalanced Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Rahimi, Ramin

    2017-01-01

    Power quality and voltage control are among the most important aspects of the grid-connected power converter operation under faults. Non-sinusoidal current is injected during unbalanced voltage sag and active or/and reactive power includes double frequency content. This paper introduces a novel...... control strategy to mitigate the double grid frequency oscillations in the active power and dc-link voltage of the two-stage three-phase grid-connected Photovoltaic (PV) inverters during unbalanced faults. With the proposed control method, PV inverter injects sinusoidal currents under unbalanced grid...... faults. In addition, an efficient and easy-to-implement current limitation method is introduced, which can effectively limit the injected currents to the rated value during faults. In this case, the fault-ride-through operation is ensured and it will not trigger the overcurrent protection. A non...

  11. Current strategies for improving access and adherence to antiretroviral therapies in resource-limited settings

    Directory of Open Access Journals (Sweden)

    Scanlon ML

    2013-01-01

    Full Text Available Michael L Scanlon,1,2 Rachel C Vreeman1,21Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; 2USAID, Academic Model Providing Access to Healthcare (AMPATH Partnership, Eldoret, KenyaAbstract: The rollout of antiretroviral therapy (ART significantly reduced human immunodeficiency virus (HIV-related morbidity and mortality, but good clinical outcomes depend on access and adherence to treatment. In resource-limited settings, where over 90% of the world’s HIV-infected population resides, data on barriers to treatment are emerging that contribute to low rates of uptake in HIV testing, linkage to and retention in HIV care systems, and suboptimal adherence rates to therapy. A review of the literature reveals limited evidence to inform strategies to improve access and adherence with the majority of studies from sub-Saharan Africa. Data from observational studies and randomized controlled trials support home-based, mobile and antenatal care HIV testing, task-shifting from doctor-based to nurse-based and lower level provider care, and adherence support through education, counseling and mobile phone messaging services. Strategies with more limited evidence include targeted HIV testing for couples and family members of ART patients, decentralization of HIV care, including through home- and community-based ART programs, and adherence promotion through peer health workers, treatment supporters, and directly observed therapy. There is little evidence for improving access and adherence among vulnerable groups such as women, children and adolescents, and other high-risk populations and for addressing major barriers. Overall, studies are few in number and suffer from methodological issues. Recommendations for further research include health information technology, social-level factors like HIV stigma, and new research directions in cost-effectiveness, operations, and implementation. Findings from this review make a

  12. Rapid Detection Strategies for the Global Threat of Zika Virus: Current State, New Hypotheses and Limitations

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2016-10-01

    Full Text Available The current scenario regarding the widespread Zika virus (ZIKV has resulted in numerous diagnostic studies, specifically in South America and in locations where there is frequent entry of travelers returning from ZIKV-affected areas, including pregnant women with or without clinical symptoms of ZIKV infection. The World Health Organization, WHO, announced that millions of cases of ZIKV are likely to occur in the United States of America in the near future. This situation has created an alarming public health emergency of international concern requiring the detection of this life-threatening viral candidate due to increased cases of newborn microcephaly associated with ZIKV infection. Hence, this review reports possible methods and strategies for the fast and reliable detection of ZIKV with particular emphasis on current updates, knowledge and new hypotheses that might be helpful for medical professionals in poor and developing countries that urgently need to address this problem. In particular, we emphasize liposome-based biosensors. Although these biosensors are currently among the less popular tools for human disease detection, they have become useful tools for the screening and detection of pathogenic bacteria, fungi and viruses because of their versatile advantageous features compared to other sensing devices. This review summarizes the currently available methods employed for the rapid detection of ZIKV and suggests an innovative approach involving the application of a liposome-based hypothesis for the development of new strategies for ZIKV detection and their use as effective biomedicinal tools.

  13. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  14. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  15. A numerical study on the feasibility evaluation of a hybrid type superconducting fault current limiter applying thyristors

    International Nuclear Information System (INIS)

    Nam, Seok Ho; Lee, Woo Seung; Lee, Ji Ho; Hwang, Young Jin; Ko, Tae Kuk

    2013-01-01

    Smart fault current controller (SFCC) proposed in our previous work consists of a power converter, a high temperature superconducting (HTS) DC reactor, thyristors, and a control unit [1]. SFCC can limit and control the current by adjusting firing angles of thyristors when a fault occurs. SFCC has complex structure because the HTS DC reactor generates the loss under AC. To use the DC reactor under AC, rectifier that consists of four thyristors is needed and it increases internal resistance of SFCC. For this reason, authors propose a hybrid type superconducting fault current limiter (SFCL). The hybrid type SFCL proposed in this paper consists of a non-inductive superconducting coil and two thyristors. To verify the feasibility of the proposed hybrid type SFCL, simulations about the interaction of the superconducting coil and thyristors are conducted when fault current flows in the superconducting coil. Authors expect that the hybrid type SFCL can control the magnitude of the fault current by adjusting the firing angles of thyristors after the superconducting coil limits the fault current at first peak.

  16. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  17. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1986-02-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integrity is a significant economic consideration since the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant

  18. Investigation of the Stress Intensity Limits of ASME Section III Div.5 for Structure Design Criteria of SFR Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jin-Yup; Kim, Hyung-Kyu; Cheon, Jin-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These affect the mechanical design of the fuel assembly components. And thus, appropriate structural design criteria should also be chosen to incorporate the specific design conditions of the SFR fuel assemblies. Among them, the temperature is one of the most crucial conditions to be concerned because the sodium coolant temperature is normally more than 500ºC which is much higher than that of the LWR (< 350ºC). This implies that a thermal creep should be significantly considered in the SFR fuel assembly mechanical design. In addition to the high temperature condition, an irradiation swelling is also an important behavior that the SFR fuel assembly material should accommodate. To incorporate the temperature and irradiation impacts, the material of the fuel assembly components is presently determined to be made of HT-9, the ferriticmartensitic steel. In this paper, the ASME Sec. III Div. 5 (referred to as ‘Div. 5’ hereinafter), which was developed for a ‘high temperature reactor’, is considered as one of the structural design criteria for the mechanical design of SFR fuel assemblies. In this paper, the stress intensity limits, S{sub m} and S{sub t} of HT-9 were built for the structural criteria of an SFR fuel assembly. S{sub m} is obtained from the ultimate strength. As for S{sub t}, it is more complicated because of its dependency of time duration in addition to temperature. Following the definition of S{sub mt}, the method in the ASME Sec. III Div. 1, Subsec. NH was consulted. We found that the Sm is adopted as S{sub mt} under the temperature about 470ºC which is relatively low temperature range and over 470ºC with relatively short time duration as 1000 hours. And the S{sub t} is adopted as Smt at over 470ºC and long time duration over 34800 hours, and over 520ºC and 10{sup 4} hours too. And at over 570ºC and 1000 hours, and at over 630ºC and 100 hours, S{sub t} is also adopted for S{sub mt}.

  19. Current Limitations and Recommendations to Improve Testing for the Environmental Assessment of Endocrine Active Substances

    DEFF Research Database (Denmark)

    Coady, Katherine K; Biever, Ronald C; Denslow, Nancy D

    2017-01-01

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically...... evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect...... methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen and thyroid signaling. This article is protected by copyright. All rights reserved....

  20. Limitations on current ripple of the power supplies for the SSC bending magnets

    International Nuclear Information System (INIS)

    Lebedev, V.A.

    1993-01-01

    Noise and ripple in the bending magnets of large proton collider cause the beam emittance growth and the luminosity degradation. The emittance growth due to voltage ripple of the bending magnets power supplies is studied. The role of the collider transverse feedback system is shown to be very important to facilitate the requirements to value of ripple. The longitudinal emittance growth due to slow variations of power supply current is studied as well. 9 refs.; 15 figs

  1. Minimum current principle and variational method in theory of space charge limited flow

    Energy Technology Data Exchange (ETDEWEB)

    Rokhlenko, A. [Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)

    2015-10-21

    In spirit of the principle of least action, which means that when a perturbation is applied to a physical system, its reaction is such that it modifies its state to “agree” with the perturbation by “minimal” change of its initial state. In particular, the electron field emission should produce the minimum current consistent with boundary conditions. It can be found theoretically by solving corresponding equations using different techniques. We apply here the variational method for the current calculation, which can be quite effective even when involving a short set of trial functions. The approach to a better result can be monitored by the total current that should decrease when we on the right track. Here, we present only an illustration for simple geometries of devices with the electron flow. The development of these methods can be useful when the emitter and/or anode shapes make difficult the use of standard approaches. Though direct numerical calculations including particle-in-cell technique are very effective, but theoretical calculations can provide an important insight for understanding general features of flow formation and even sometimes be realized by simpler routines.

  2. A Secondary-Control Based Fault Current Limiter for Four-Wire Three Phase Inverter-Interfaced DGs

    DEFF Research Database (Denmark)

    Beheshtaein, Siavash; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    Fault current limiters (FCLs) are one class of solutions to cope with the upcoming challenges in microgrid protection. Considering high penetration of distributed generations (DGs) in microgrids, the necessity of designing cheap and effective FCL is getting higher. This paper attempts to fill thi...

  3. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    Science.gov (United States)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  4. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    Science.gov (United States)

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  5. Current Enhancement with Contact-Area-Limited Doping for Bottom-Gate, Bottom-Contact Organic Thin-Film Transistors

    Science.gov (United States)

    Noda, Kei; Wakatsuki, Yusuke; Yamagishi, Yuji; Wada, Yasuo; Toyabe, Toru; Matsushige, Kazumi

    2013-02-01

    The current enhancement mechanism in contact-area-limited doping for bottom-gate, bottom-contact (BGBC) p-channel organic thin-film transistors (OTFTs) was investigated both by simulation and experiment. Simulation results suggest that carrier shortage and large potential drop occur in the source-electrode/channel interface region in a conventional BGBC OTFT during operation, which results in a decrease in the effective field-effect mobility. These phenomena are attributed to the low carrier concentration of active semiconductor layers in OTFTs and can be alleviated by contact-area-limited doping, where highly doped layers are prepared over source-drain electrodes. According to two-dimensional current distribution obtained from the device simulation, a current flow from the source electrode to the channel region via highly doped layers is generated in addition to the direct carrier injection from the source electrode to the channel, leading to the enhancement of the drain current and effective field-effect mobility. The expected current enhancement mechanism in contact-area-limited doping was experimentally confirmed in typical α-sexithiophene (α-6T) BGBC thin-film transistors.

  6. Approach to high stability beta limit and its control by fast wave current drive in reversed field pinch plasma

    International Nuclear Information System (INIS)

    Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.

    2001-01-01

    Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)

  7. BK Virus-Associated Nephropathy: Current Situation in a Resource-Limited Country.

    Science.gov (United States)

    Yooprasert, P; Rotjanapan, P

    Data on BK virus-associated nephropathy (BKVAN) and treatment strategy in a resource-limited country are scarce. This study aimed to evaluate epidemiology of BKVAN and its situation in Thailand. A retrospective analysis was conducted among adult kidney transplant recipients at Ramathibodi Hospital from October 2011 to September 2016. Patients' demographic data, information on kidney transplantation, immunosuppressive therapy, cytomegalovirus and BK virus infections, and allograft outcomes were retrieved and analyzed. This study included 623 kidney transplant recipients. Only 327 patients (52.49%) received BK virus infection screening, and 176 of 327 patients had allograft dysfunction as a trigger for screening. BKVAN was identified in 39 of 327 patients (11.93%). Deceased donor transplantation and cytomegalovirus infection were associated with a higher risk of BKVAN (odds ratio = 2.2, P = .024, 95% confidence intervals [1.1, 4.43], and odds ratio = 2.6, P = .006, 95% confidence intervals [1.29, 5.26], respectively). BKVAN patients were at significantly higher risk for allograft rejection (P < .001) and allograft failure (P = .036). At the end of the study, 4 graft losses were documented (12.12%). BKVAN was associated with high rate of allograft rejection and failure. However, surveillance of its complications has been underperformed at our facility. Implementing a formal practice guideline may improve allograft outcome in resource-limited countries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Photosensitive space charge limited current in screen printed CdTe thin films

    Science.gov (United States)

    Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2018-05-01

    Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.

  9. Limiting the costs of renewable portfolio standards: A review and critique of current methods

    International Nuclear Information System (INIS)

    Stockmayer, Gabriella; Finch, Vanessa; Komor, Paul; Mignogna, Rich

    2012-01-01

    Over half of U.S. states have renewable portfolio standards (RPSs) mandating that a minimum percentage of electricity sold derives from renewable sources. State RPSs vary widely in how they attempt to control or limit the costs of these RPSs. Approaches utilized include alternative compliance payments, direct rate caps, and cost caps on resource acquisitions, while some states employ no specific limitation at all. This paper describes how states attempt to control RPS costs and discusses the strengths and weaknesses of these various cost controls. There is no one best method; however the experience to date suggests that the most important factors in implementing an effective mechanism to curtail costs are clarity of the rule, consistency in application, and transparency for customers. - Highlights: ▶ We review states' RPS statutes and regulations for mechanisms that attempt to control overall compliance costs. ▶ We categorize the major cost curtailment mechanisms. ▶ For each mechanism, we describe policy designs that are or could be implemented by states. ▶ We identify strengths and weaknesses of the various designs for consideration by policymakers.

  10. Current densities in a space-time-dependent and CP-violating Higgs background in the adiabatic limit

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    1996-01-01

    Motivated by cosmological applications such as electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time-dependent and CP-violating Higgs background in the adiabatic limit. We consider the standard model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields describing the profile of the bubble wall. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. copyright 1996 The American Physical Society

  11. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  12. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  13. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  14. The influence of the current intensity on the damping characteristics for a magneto-rheological damper of passenger car

    Science.gov (United States)

    Dobre, A.; Andreescu, C. N.; Stan, C.

    2016-08-01

    Due to their simplicity and controllability, adaptive dampers became very popular in automotive engineering industry, especially in the passenger cars industry, in spite of technological obstacles inherent and the high cost of the magnetic fluid. “MagneRide” is the first technology which uses smart fluids in the shock absorbers of the vehicles adaptive suspensions. Since the discovery of the magneto-rheological effect there is a consistent progress regarding the control algorithms and hardware part itself. These magneto-rheological devices have a major potential which can be explored in various fields of applications. At present many companies make researches for the improvement of the response time and for obtaining a better response at low frequency and amplitude of the body car oscillations. The main objective of this paper is to determine the damping characteristic of a magnetorheological shock absorber of a passenger car. The authors aim to observe how to modify the damping characteristic by changing the intensity of the electric current. The experimental researches have being carried out on a complex and modern test bench especially built for testing shock absorbers, in order to compare the damping characteristic of the classical damper with the magneto-rheological damper.

  15. Principal component analysis of the main factors of line intensity enhancements observed in oscillating direct current plasma

    International Nuclear Information System (INIS)

    Stoiljkovic, Milovan M.; Pasti, Igor A.; Momcilovic, Milos D.; Savovic, Jelena J.; Pavlovic, Mirjana S.

    2010-01-01

    Enhancement of emission line intensities by induced oscillations of direct current (DC) arc plasma with continuous aerosol sample supply was investigated using multivariate statistics. Principal component analysis (PCA) was employed to evaluate enhancements of 34 atomic spectral lines belonging to 33 elements and 35 ionic spectral lines belonging to 23 elements. Correlation and classification of the elements were done not only by a single property such as the first ionization energy, but also by considering other relevant parameters. Special attention was paid to the influence of the oxide bond strength in an attempt to clarify/predict the enhancement effect. Energies of vaporization, atomization, and excitation were also considered in the analysis. In the case of atomic lines, the best correlation between the enhancements and first ionization energies was obtained as a negative correlation, with weak consistency in grouping of elements in score plots. Conversely, in the case of ionic lines, the best correlation of the enhancements with the sum of the first ionization energies and oxide bond energies was obtained as a positive correlation, with four distinctive groups of elements. The role of the gas-phase atom-oxide bond energy in the entire enhancement effect is underlined.

  16. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  17. Invited review current progress and limitations of spider silk for biomedical applications.

    Science.gov (United States)

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.

  18. Current status and technology development of Reprocessing Plant in Japan Nuclear Fuel Limited

    International Nuclear Information System (INIS)

    Ochi, Eiji

    2013-01-01

    It is a problem that the vitrified waste could not be produced at the down nozzle in glass furnace by accumulation of platinum group metals contented in high-level radioactive waste. This article describes our efforts to solve the problem. The glass furnace, glassification process, development of glassification technology in Japan, structure of glass furnace, improvement of glass furnace now in use, improvement of glassification technology, and development of new glass furnace and new glass materials are explained. Configuration drawing of glass furnace, heating method, glass flow from the down nozzle, existing state of platinum group metals in glass, comparison between the current glass furnace and advance furnace, analysis result of inner part of furnace, and measurement result of density, viscosity and heat capacity of molten glass are illustrated. (S.Y.)

  19. Development of an instrument for direct ozone production rate measurements: measurement reliability and current limitations

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip S.; Wood, Ezra; Kundu, Shuvashish; Dusanter, Sébastien

    2018-02-01

    . This type of investigations allows checking whether our understanding of the turnover point between NOx-limited and NOx-saturated regimes of ozone production is well understood and does not require measuring ambient OPR but instead only probing the change in ozone production when NO is added. During IRRONIC, changes in ozone production rates ranging from the limit of detection (3σ) of 6.2 ppbv h-1 up to 20 ppbv h-1 were observed when 6 ppbv of NO was added into the flow tubes.

  20. Fault Ride Through Capability Enhancement of a Large-Scale PMSG Wind System with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    ALAM, M. S.

    2018-02-01

    Full Text Available In this paper, bridge type fault current limiter (BFCL is proposed as a potential solution to the fault problems of permanent magnet synchronous generator (PMSG based large-scale wind energy system. As PMSG wind system is more vulnerable to disturbances, it is essential to guarantee the stability during severe disturbances by enhancing the fault ride through capability. BFCL controller has been designed to insert resistance and inductance during the inception of system disturbances in order to limit fault current. Constant capacitor voltage has been maintained by the grid voltage source converter (GVSC controller while current extraction or injection has been achieved by machine VSC (MVSC controller. Symmetrical and unsymmetrical faults have been applied in the system to show the effectiveness of the proposed BFCL solution. PMSG wind system, BFCL and their controllers have been implemented by real time hardware in loop (RTHIL setup with real time digital simulator (RTDS and dSPACE. Another significant feature of this work is that the performance of the proposed BFCL is compared with that of series dynamic braking resistor (SDBR. Comparative RTHIL implementation results show that the proposed BFCL is very efficient in improving system fault ride through capability by limiting the fault current and outperforms SDBR.

  1. Treatment Options for Severe Obesity in the Pediatric Population: Current Limitations and Future Opportunities.

    Science.gov (United States)

    Ryder, Justin R; Fox, Claudia K; Kelly, Aaron S

    2018-06-01

    Severe obesity is the only obesity classification increasing in prevalence among children and adolescents. Treatment options that produce meaningful and sustained weight loss and comorbidity resolution are urgently needed. The purpose of this review is to provide a brief overview of the current treatment options for pediatric severe obesity and offer suggestions regarding future opportunities for accelerating the development and evaluation of innovative treatment strategies. At present, there are three treatment options for youth with severe obesity: lifestyle modification therapy, pharmacotherapy, and bariatric surgery. Lifestyle modification therapy can be useful for improving many chronic disease risk factors and comorbid conditions but often fails to achieve clinically meaningful and sustainable weight loss. Pharmacotherapy holds promise as an effective adjunctive treatment but remains in the primordial stages of development in the pediatric population. Bariatric surgery provides robust weight loss and risk factor/comorbidity improvements but is accompanied by higher risks and lower uptake compared to lifestyle modification therapy and pharmacotherapy. New areas worth pursuing include combination pharmacotherapy, device therapy, identification of predictors of response aimed at precision treatment, and interventions in the postbariatric surgical setting to improve long-term outcomes. Treating pediatric severe obesity effectively and safely is extremely challenging. Some progress has been made, but substantially more effort and innovation are needed in the future to combat this serious and ongoing medical and public health issue. © 2018 The Obesity Society.

  2. Incorporating cumulative effects into environmental assessments of mariculture: Limitations and failures of current siting methods

    International Nuclear Information System (INIS)

    King, Sarah C.; Pushchak, Ronald

    2008-01-01

    Assessing and evaluating the cumulative impacts of multiple marine aquaculture facilities has proved difficult in environmental assessment. A retrospective review of 23 existing mariculture farms in southwestern New Brunswick was conducted to determine whether cumulative interactions would have justified site approvals. Based on current scientific evidence of cumulative effects, six new criteria were added to a set of far-field impacts and other existing criteria were expanded to include regional and cumulative environmental impacts in Hargrave's [Hargrave BT. A traffic light decision system for marine finfish aquaculture siting. Ocean Coast Manag 2002; 45:215-35.] Traffic Light Decision Support System (DSS) presently used in Canadian aquaculture environmental assessments. Before mitigation, 19 of the 23 sites failed the amended set of criteria and after considering mitigation, 8 sites failed. Site and ecosystem indices yielded varying site acceptability scores; however, many sites would not have been approved if siting decisions had been made within a regional management framework and cumulative impact criteria were considered in the site evaluation process

  3. Photocatalytic NO{sub x} abatement. Theory, applications, current research, and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Bloh, Jonathan Z. [DECHEMA Research Institute, Frankfurt am Main (Germany)

    2017-01-15

    Nitrogen oxides are one of the major air pollutants that threaten our air quality and health. As a consequence, increasingly stricter regulations are in place forcing action to reduce the concentration of these dangerous compounds. Conventional methods of reducing the NO{sub x} pollution level are reducing the emission directly at the source or restrictive measures such as low emission zones. However, there are recent reports questioning the efficacy of the strategy to reduce ambient NO{sub x} levels solely by reducing their emissions and existing threshold values are still frequently exceeded in many European cities. Semiconductor photocatalysis presents an appealing alternative capable of removing NO{sub x} and other air pollutants from the air once they have already been released and dispersed. Recent field tests have shown that a reduction of a few percent in NO{sub x} values is possible with available photocatalysts. Current research focuses on further increasing the catalysts' efficacy as well as their selectivity to suppress the formation of undesired by-products. Especially using these improved materials, photocatalytic NO{sub x} abatement could prove a very valuable contributor to better air quality.

  4. Photocatalytic NO_x abatement. Theory, applications, current research, and limitations

    International Nuclear Information System (INIS)

    Bloh, Jonathan Z.

    2017-01-01

    Nitrogen oxides are one of the major air pollutants that threaten our air quality and health. As a consequence, increasingly stricter regulations are in place forcing action to reduce the concentration of these dangerous compounds. Conventional methods of reducing the NO_x pollution level are reducing the emission directly at the source or restrictive measures such as low emission zones. However, there are recent reports questioning the efficacy of the strategy to reduce ambient NO_x levels solely by reducing their emissions and existing threshold values are still frequently exceeded in many European cities. Semiconductor photocatalysis presents an appealing alternative capable of removing NO_x and other air pollutants from the air once they have already been released and dispersed. Recent field tests have shown that a reduction of a few percent in NO_x values is possible with available photocatalysts. Current research focuses on further increasing the catalysts' efficacy as well as their selectivity to suppress the formation of undesired by-products. Especially using these improved materials, photocatalytic NO_x abatement could prove a very valuable contributor to better air quality.

  5. Regenerating the human heart: direct reprogramming strategies and their current limitations.

    Science.gov (United States)

    Ghiroldi, Andrea; Piccoli, Marco; Ciconte, Giuseppe; Pappone, Carlo; Anastasia, Luigi

    2017-10-27

    Cardiovascular diseases are the leading cause of death in the Western world. Unfortunately, current therapies are often only palliative, consequently essentially making heart transplantation necessary for many patients. However, several novel therapeutic approaches in the past two decades have yielded quite encouraging results. The generation of induced pluripotent stem cells, through the forced expression of stem cell-specific transcription factors, has inspired the most promising strategies for heart regeneration by direct reprogramming of cardiac fibroblasts into functional cardiomyocytes. Initial attempts at this reprogramming were conducted using a similar approach to the one used with transcription factors, but during years, novel strategies have been tested, e.g., miRNAs, recombinant proteins and chemical molecules. Although preliminary results on animal models are promising, the low reprogramming efficiency, as well as the incomplete maturation of the cardiomyocytes, still represents important obstacles. This review covers direct transdifferentiation strategies that have been proposed and developed and illustrates the pros and cons of each approach. Indeed, as described in the manuscript, there are still many unanswered questions and drawbacks that require a better understanding of the basic signaling pathways and transcription factor networks before functional cells, suitable for cardiac regeneration and safe for the patients, can be generated and used for human therapies.

  6. Space charge limited current conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Sathyamoorthy, R.; Dheepa, J.; Velumani, S.

    2007-01-01

    Bi 2 Te 3 is known for its large thermoelectric coefficients and is widely used as a material for Peltier devices. Bi 2 Te 3 thin films with thicknesses in the range 125-300 A have been prepared by Flash Evaporation at a pressure of 10 -5 m bar on clean glass substrates at room temperature. An Al-Bi 2 Te 3 -Al sandwich structure has been used for electrical conduction properties in the temperature range 303 to 483 K. I-V characteristics showed Ohmic conduction in the low voltage region. In the higher voltage region, a Space Charge Limited Conduction (SCLC) takes place due to the presence of the trapping level. The transition voltage (V t ), between the Ohmic and the SCLC condition was proportional to the square of thickness. Further evidence for this conduction process was provided by the linear dependence of V t on t 2 and log J on log t. The hole concentration in the films were found to be n 0 = 1.65 * 10 10 m -3 . The carrier mobility increases with increasing temperature whereas the density of trapped charges decreases with increasing temperature. The barrier height decreases with an increase in temperature. The increase in the trapping concentration V t is correlated with ascending the degree of preferred orientation of the highest atomic density plane. The activation energy was estimated and the values found to decrease with increasing applied voltage. The zero field value of the activation energy is found to be 0.4 eV

  7. Limited-stage small cell lung cancer: current chemoradiotherapy treatment paradigms.

    Science.gov (United States)

    Stinchcombe, Thomas E; Gore, Elizabeth M

    2010-01-01

    In the U.S., the prevalence of small cell lung cancer (SCLC) is declining, probably reflecting the decreasing prevalence of tobacco use. However, a significant number of patients will receive a diagnosis of SCLC, and approximately 40% of patients with SCLC will have limited-stage (LS) disease, which is potentially curable with the combination of chemotherapy and radiation therapy. The standard therapy for LS-SCLC is concurrent chemoradiotherapy, and the 5-year survival rate observed in clinical trials is approximately 25%. The standard chemotherapy remains cisplatin and etoposide, but carboplatin is frequently used in patients who cannot tolerate or have a contraindication to cisplatin. Substantial improvements in survival have been made through improvements in radiation therapy. Concurrent chemoradiotherapy is the preferred therapy for patients who are appropriate candidates. The optimal timing of concurrent chemoradiotherapy is during the first or second cycle, based on data from meta-analyses. The optimal radiation schedule and dose remain topics of debate, but 1.5 Gy twice daily to a total of 45 Gy and 1.8-2.0 Gy daily to a total dose of 60-70 Gy are commonly used treatments. For patients who obtain a near complete or complete response, prophylactic cranial radiation reduces the incidence of brain metastases and improves overall survival. The ongoing Radiation Therapy Oncology Group and Cancer and Leukemia Group B and the European and Canadian phase III trials will investigate different radiation treatment paradigms for patients with LS-SCLC, and completion of these trials is critical.

  8. Understanding the cancer cell phenotype beyond the limitations of current omics analyses.

    Science.gov (United States)

    Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara

    2016-01-01

    Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may

  9. Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T., E-mail: takashi.yazawa@toshiba.co.j [Toshiba Corporation, Power Systems Company (Japan); Koyanagi, K.; Takahashi, M.; Toba, K.; Takigami, H.; Urata, M. [Toshiba Corporation, Power Systems Company (Japan); Iijima, Y.; Saitoh, T. [Fujikura Ltd. (Japan); Amemiya, N. [Superconductivity Research Laboratory, ISTEC (Japan); Shiohara, Y. [Department of Electrical Engineering, Kyoto University (Japan); Ito, T. [Tokyo Gas Co., Ltd. (Japan)

    2009-10-15

    As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R and D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.

  10. Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-04-15

    We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)

  11. Cosmology on ultralarge scales with intensity mapping of the neutral hydrogen 21 cm emission: limits on primordial non-Gaussianity.

    Science.gov (United States)

    Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís

    2013-10-25

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.

  12. Fault ride-through enhancement of fixed speed wind turbine using bridge-type fault current limiter

    Directory of Open Access Journals (Sweden)

    Mostafa I. Marei

    2016-05-01

    Full Text Available The interaction between wind energy turbines and the grid results in two main problems, increasing the short-circuit level and reducing the Fault Ride-Through (FRT capability during faults. The objective of this paper is to solve these problems, for fixed speed Wind Energy Systems (WECS, utilizing the bridge-type Fault Current Limiter (FCL with a discharging resistor. A simple cascaded control system is proposed for the FCL to regulate the terminal voltage of the generator and limit the current. The system is simulated on PSCAD/EMTDC software to evaluate the dynamic performance of the proposed WECS compensated by FCL. The simulation results show the potentials of the FCL as a simple and effective method for solving grid interconnection problems of WECS.

  13. Parameter design and performance simulation of a 10 kV voltage compensation type active superconducting fault current limiter

    International Nuclear Information System (INIS)

    Chen, L.; Tang, Y.J.; Song, M.; Shi, J.; Ren, L.

    2013-01-01

    Highlights: •For a practical 10 kV system, the 10 kV active SFCL’s basic parameters are designed. •Under different fault conditions, the 10 kV active SFCL’s performances are simulated. •The designed 10 kV active SFCL’s engineering feasibility is discussed preliminarily. -- Abstract: Since the introduction of superconducting fault current limiter (SFCL) into electrical distribution system may be a good choice with economy and practicability, the parameter design and current-limiting characteristics of a 10 kV voltage compensation type active SFCL are studied in this paper. Firstly, the SFCL’s circuit structure and operation principle are presented. Then, taking a practical 10 kV distribution system as its application object, the SFCL’s basic parameters are designed to meet the system requirements. Further, using MATLAB, the detailed current-limiting performances of the 10 kV active SFCL are simulated under different fault conditions. The simulation results show that the active SFCL can deal well with the faults, and the parameter design’s suitability can be testified. At the end, in view of the engineering feasibility of the 10 kV active SFCL, some preliminary discussions are carried out

  14. Experimental studies of the quench behaviour of MgB{sub 2} superconducting wires for fault current limiter applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye Lin [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Majoros, M [Laboratories for Applied Superconductivity and Magnetism, Ohio State University, Columbus, OH 43210 (United States); Campbell, A M [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Coombs, T [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Astill, D [Interdisciplinary Research Center (IRC) in Superconductivity, Cavendish Laboratory/Department of Engineering, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Harrison, S [Scientific Magnetics, Culham Science Centre, Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Husband, M [Strategic Research Center (SRC)-Electrical Engineering, Rolls-Royce plc, Derby DE24 8BJ (United Kingdom); Rindfleisch, M [Hyper Tech Research Inc., Columbus, OH 43212 (United States); Tomsic, M [Hyper Tech Research Inc., Columbus, OH 43212 (United States)

    2007-07-15

    Various MgB{sub 2} wires with different sheath materials provided by Hyper Tech Research Inc., have been tested in the superconducting fault current limiter (SFCL) desktop tester at 24-26 K in a self-field. Samples 1 and 2 are similarly fabricated monofilamentary MgB{sub 2} wires with a sheath of CuNi, except that sample 2 is doped with SiC and Mg addition. Sample 3 is a CuNi sheathed multifilamentary wire with Cu stabilization and Mg addition. All the samples with Nb barriers have the same diameter of 0.83 mm and superconducting fractions ranging from 15% to 27% of the total cross section. They were heat-treated at temperatures of 700 deg. C for a hold time of 20-40 min. Current limiting properties of MgB{sub 2} wires subjected to pulse overcurrents have been experimentally investigated in an AC environment in the self-field at 50 Hz. The quench currents extracted from the pulse measurements were in a range of 200-328 A for different samples, corresponding to an average engineering critical current density (J{sub e}) of around 4.8 x 10{sup 4} A cm{sup -2} at 25 K in the self-field, based on the 1 {mu}V cm{sup -1} criterion. This work is intended to compare the quench behaviour in the Nb-barrier monofilamentary and multifilamentary MgB{sub 2} wires with CuNi and Cu/CuNi sheaths. The experimental results can be applied to the design of fault current limiter applications based on MgB{sub 2} wires.

  15. Development of a safety case for the use of current limiting devices to manage short circuit currents on electrical distribution networks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The original objective of this study was to review the safety issues associated with the use of current limiting devices and to write a risk assessment in accordance with good practice. But, when legislative procedures became apparent, the scope was changed to include involvement with the HSE, the DTI and Ofgem. It turned out that it would have been very difficult to write a safety case that would satisfy all of the agencies, or a risk assessment that would cover all applications. The scope of the study was therefore changed to focus on how the existing barriers should be tackled and the implications of the existing legislation. The approach to the study is described; it included reviews of background information and literature, questionnaires to manufacturers, a review of the reliability and hazards of the devices, and a review of UK safety legislation. The Final Report describes all this and includes discussion on the consequences of failure of fault current limiting devices, control measures which could be used to minimise risk, and recommendations for a way forward.

  16. Size of the virtual source behind a convex spherical surface emitting a space charge limited ion current

    International Nuclear Information System (INIS)

    Chavet, I.

    1987-01-01

    A plasma source fitted with a circular orifice and emitting a space charge limited ion current can be made to operate with a convex spherical plasma boundary (meniscus) by appropriately adjusting its extraction parameters. In this case, the diameter of the virtual source behind the meniscus is much smaller than the orifice diameter. The effective value of this virtual source diameter depends significantly on various practical factors that are more or less controllable. Its lower ideal limit, however, depends only on the radio δ of the interelectrode distance to the meniscus curvature radius and on the ratio ω of the initial to final ion energy. This ideal limit is given for the ranges 0.1 ≤ δ ≤ 10 and 10 -7 ≤ ω ≤ 10 -3 . Preliminary experimental results are reported. (orig.)

  17. Current-limiting mechanisms in YBa2Cu3O7-δ thin layers and quasi-multilayers

    International Nuclear Information System (INIS)

    Haenisch, J.

    2004-01-01

    In this work, electrical transport properties and the maximum current carrying capability of YBa 2 Cu 3 O 7 -[δ] thin films and so called quasi-multilayers are investigated. These samples are prepared with pulsed laser deposition on single-crystalline substrates (SrTiO 3 ) as well as on biaxially textured Ni tapes. The critical current density of coated conductors is limited by small-angle grain boundaries in low magnetic fields, but by the intra-grain pinning properties in higher magnetic fields. Accordingly, these investigations are divided into two parts: In the first part, the limitation of the critical current density by grain-boundaries and grain boundary networks is investigated with the main focus on the influence of geometrical factors such as the conductor width or the grain aspect ratio. In the second part, a possible enhancement of the critical current density due to different doping types (atomar doping using Zn and precipitate doping using BaMO 3 where M is a transition metal) will be discussed. Here, not only the irreversibility field but also the pinning behaviour in very low magnetic fields is of interest to better understand the pinning mechanism of thin films. (Orig.)

  18. Prolonging life and delaying death: The role of physicians in the context of limited intensive care resources

    Directory of Open Access Journals (Sweden)

    Bagshaw Sean M

    2009-02-01

    Full Text Available Abstract Critical care is in an emerging crisis of conflict between what individuals expect and the economic burden society and government are prepared to provide. The goal of critical care support is to prevent suffering and premature death by intensive therapy of reversible illnesses within a reasonable timeframe. Recently, it has become apparent that early support in an intensive care environment can improve patient outcomes. However, life support technology has advanced, allowing physicians to prolong life (and postpone death in circumstances that were not possible in the recent past. This has been recognized by not only the medical community, but also by society at large. One corollary may be that expectations for recovery from critical illness have also become extremely high. In addition, greater numbers of patients are dying in intensive care units after having receiving prolonged durations of life-sustaining therapy. Herein lies the emerging crisis – critical care therapy must be available in a timely fashion for those who require it urgently, yet its provision is largely dependent on a finite availability of both capital and human resources. Physicians are often placed in a troubling conflict of interest by pressures to use health resources prudently while also promoting the equitable and timely access to critical care therapy. In this commentary, these issues are broadly discussed from the perspective of the individual clinician as well as that of society as a whole. The intent is to generate dialogue on the dynamic between individual clinicians navigating the complexities of how and when to use critical care support in the context of end-of-life issues, the increasing demands placed on finite critical care capacity, and the reasonable expectations of society.

  19. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2015-11-15

    Highlights: • The role of SFCL in types of HVDC system was evaluated. • A simulation model based on Korea Jeju–Haenam HVDC power system was designed in Matlab/Simulink. • Utilizing the designed both HVDC power system models, the efficiency of DC-SFCL was relatively low, compared to AC-SFCL. • It was deduced that the AC-SFCL was more effective in LCC-HVDC system than VSC-HVDC system. - Abstract: High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  20. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-01-01

    Highlights: • The role of SFCL in types of HVDC system was evaluated. • A simulation model based on Korea Jeju–Haenam HVDC power system was designed in Matlab/Simulink. • Utilizing the designed both HVDC power system models, the efficiency of DC-SFCL was relatively low, compared to AC-SFCL. • It was deduced that the AC-SFCL was more effective in LCC-HVDC system than VSC-HVDC system. - Abstract: High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  1. Impact of resident duty hour limits on safety in the intensive care unit: a national survey of pediatric and neonatal intensivists.

    Science.gov (United States)

    Typpo, Katri V; Tcharmtchi, M Hossein; Thomas, Eric J; Kelly, P Adam; Castillo, Leticia D; Singh, Hardeep

    2012-09-01

    Resident duty-hour regulations potentially shift the workload from resident to attending physicians. We sought to understand how current or future regulatory changes might impact safety in academic pediatric and neonatal intensive care units. Web-based survey. U.S. academic pediatric and neonatal intensive care units. Attending pediatric and neonatal intensivists. We evaluated perceptions on four intensive care unit safety-related risk measures potentially affected by current duty-hour regulations: 1) attending physician and resident fatigue; 2) attending physician workload; 3) errors (self-reported rates by attending physicians or perceived resident error rates); and 4) safety culture. We also evaluated perceptions of how these risks would change with further duty-hour restrictions. We administered our survey between February and April 2010 to 688 eligible physicians, of whom 360 (52.3%) responded. Most believed that resident error rates were unchanged or worse (91.9%) and safety culture was unchanged or worse (84.4%) with current duty-hour regulations. Of respondents, 61.9% believed their own work-hours providing direct patient care increased and 55.8% believed they were more fatigued while providing direct patient care. Most (85.3%) perceived no increase in their own error rates currently, but in the scenario of further reduction in resident duty-hours, over half (53.3%) believed that safety culture would worsen and a significant proportion (40.3%) believed that their own error rates would increase. Pediatric intensivists do not perceive improved patient safety from current resident duty-hour restrictions. Policies to further restrict resident duty-hours should consider unintended consequences of worsening certain aspects of intensive care unit safety.

  2. State of the art of superconducting fault current limiters and their application to the electric power system

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2013-01-01

    Highlights: ► The state of the art of superconducting fault current limiters is reviewed. ► An innovative concept of FCL is discussed and the potential of MgB 2 is outlined. ► The use of FCL to allow more interconnection of MV bus-bar is discussed. ► The use of FCL to increase the immunity from voltage dips is discussed. ► The use of FCL to integrate more distributed generation is pointed out. -- Abstract: Modern electric power systems are becoming more and more complex in order to meet new needs. Nowadays a high power quality is mandatory and there is the need to integrate increasing amounts of on-site generation. All this translates in more sophisticated electric network with intrinsically high short circuit rate. This network is vulnerable in case of fault and special protection apparatus and procedures needs to be developed in order to avoid costly or even irreversible damage. A superconducting fault current limiter (SFCL) is a device with a negligible impedance in normal operating conditions that reliably switches to a high impedance state in case of extra-current. Such a device is able to increase the short circuit power of an electric network and to contemporarily eliminate the hazard during the fault. It can be regarded as a key component for future electric power systems. In this paper the state of the art of superconducting fault current limiters mature for applications is briefly resumed and the potential impact of this device on the paradigm of design and operation of power systems is analyzed. In particular the use of the FCL as a mean to allow more interconnection of MV bus-bars as well an increased immunity with respect to the voltage disturbances induced by critical customer is discussed. The possibility to integrate more distributed generation in the distribution grid is also considered

  3. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system—current state of the art and future perspectives

    Science.gov (United States)

    Diana, Michele; Schiraldi, Luigi; Liu, Yu-Yin; Memeo, Riccardo; Mutter, Didier; Pessaux, Patrick

    2016-01-01

    Background High intensity focused ultrasound (HIFU) is emerging as a valid minimally-invasive image-guided treatment of malignancies. We aimed to review to current state of the art of HIFU therapy applied to the digestive system and discuss some promising avenues of the technology. Methods Pertinent studies were identified through PubMed and Embase search engines using the following keywords, combined in different ways: HIFU, esophagus, stomach, liver, pancreas, gallbladder, colon, rectum, and cancer. Experimental proof of the concept of endoluminal HIFU mucosa/submucosa ablation using a custom-made transducer has been obtained in vivo in the porcine model. Results Forty-four studies reported on the clinical use of HIFU to treat liver lesions, while 19 series were found on HIFU treatment of pancreatic cancers and four studies included patients suffering from both liver and pancreatic cancers, reporting on a total of 1,682 and 823 cases for liver and pancreas, respectively. Only very limited comparative prospective studies have been reported. Conclusions Digestive system clinical applications of HIFU are limited to pancreatic and liver cancer. It is safe and well tolerated. The exact place in the hepatocellular carcinoma (HCC) management algorithm remains to be defined. HIFU seems to add clear survival advantages over trans arterial chemo embolization (TACE) alone and similar results when compared to radio frequency (RF). For pancreatic cancer, HIFU achieves consistent cancer-related pain relief. Further research is warranted to improve targeting accuracy and efficacy monitoring. Furthermore, additional work is required to transfer this technology on appealing treatments such as endoscopic HIFU-based therapies. PMID:27500145

  4. Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit

    DEFF Research Database (Denmark)

    Henningsen, Louise; Haase, Nicolai; Pedersen, Ulf Gøttrup

    2015-01-01

    the proportion of intensive care unit (ICU) patients with shock who at the time of resuscitation fulfilled the prerequisites for using the arterial waveform-derived variables. METHODS: This was a prospective cohort study performed at six ICUs. The study included consecutive adult patients with shock (20 patients...... per ICU) who received fluid resuscitation on the first day of shock. The fulfilment or not of the prerequisites (sedation, sinus rhythm and controlled ventilation with tidal volumes > 7 ml/kg) was registered at the time of the first fluid resuscitation episode and at fluid resuscitation episodes......% CI: 46-65) were on controlled ventilation and 50% (95% CI: 39-61) received tidal volumes of more than 7 ml/kg. Only 23% (95% CI: 14-33) of the patients fulfilled all four prerequisites. CONCLUSIONS: Less than a quarter of the ICU patients with shock fulfilled all the prerequisites for the use...

  5. Response to 'Comment on 'Pinch current limitation effect in plasma focus'' [Appl. Phys. Lett. 94, 076101 (2009)

    International Nuclear Information System (INIS)

    Lee, S.; Saw, S. H.

    2009-01-01

    The main point of the comment [Appl. Phys. Lett. 94, 076101 (2009)] is that Eq. (2) and consequentially Eq. (3) of the commented paper [Appl. Phys. Lett. 92, 021503 (2008)] require correction. The alternative equation suggested in the comment is derived using Kirchhoff's voltage rule. The comment consider only the energy distribution in the inductive components and the resultant equation confirms a progressive lowering of the I pinch /I peak ratio as the static inductance L 0 is reduced, lowering from 0.87 to 0.31 as L 0 is reduced from 100 to 5 nH according to the revised formula corresponding to Eq. (3), compared to 0.63-0.25 according to Eq. (3). This progressive lowering of the ratio I pinch /I peak due to the inductive energy distribution is one of two factors responsible for the pinch current limitation. The other factor is the progressive reduction in the L-C interaction time compared to the current dip duration denoted by δ cap in Eq. (2). The comment does not deal with δ cap at all; hence, its conclusion based on inductive energy distribution only is not useful, since in the low L 0 region when pinch current limitation begins to manifest, δ cap becomes more and more the dominant factor. In any case, the results of the paper do not depend on Eqs. (2) and (3), which are used in the paper only for illustrative purposes

  6. Opportunities and limiting factors of intensive vegetable farming in malaria endemic Côte d'Ivoire.

    Science.gov (United States)

    Girardin, Olivier; Dao, Daouda; Koudou, Benjamin G; Essé, Clémence; Cissé, Guéladio; Yao, Tano; N'Goran, Eliézer K; Tschannen, Andreas B; Bordmann, Gérard; Lehmann, Bernard; Nsabimana, Christian; Keiser, Jennifer; Killeen, Gerry F; Singer, Burton H; Tanner, Marcel; Utzinger, Jürg

    2004-01-01

    Poverty reduction policies guide development strategies. In economies that depend heavily on agriculture, in the face of rapid population growth, innovative approaches are required to satisfy food needs, increase household welfare and alleviate poverty. Irrigated agriculture is an important strategy to enhance crop production, but it must be well tailored to specific socio-ecological settings, as otherwise, it might increase the burden of water-related parasitic diseases and delay economic advance. The purpose of this study is to assess and quantify the effect of ill health, particularly malaria, on the performance of farm activity, with an emphasis on drip-irrigated vegetable farming in rural Côte d'Ivoire. Vegetable yields and revenues were monitored among 12 farmers and linked with longitudinal medical and entomological surveys. Over the course of 10 months, farmers were classified as sick, on average, for 14-15 days, with malaria accounting for 8-9 days (58%), confirming that malaria is the most important disease in this setting. There was a large heterogeneity among farmers, with malaria-related work losses ranging between 0 and 26 days. Work absenteeism correlated with overall yields and revenues. During a single cabbage production cycle, those farmers who were prescribed sick because of malaria for more than 2 days (mean: 4.2 days) had 47% lower yields and 53% lower revenues than farmers who missed a maximum of 2 days (mean: 0.3 days). This is consequential in an intensive cropping system, where substitutes for qualified workers are not readily available. We conclude that mitigating the burden of malaria is an important step towards reducing the vulnerability of people engaged in intensive agricultural production. This calls for targeted interventions to facilitate agriculture-based rural development that might spur social and economic development and reduce inequities in sub-Saharan Africa.

  7. Prediction of Counter-Current Flow Limitation at Hot Leg Pipe During a Small-Break Loca

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.Y. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    The possibility of hot leg flooding during reflux condensation cooling after a small-break loss-of-coolant accident in a nuclear power plant is evaluated. The vapor and liquid velocities in hot leg and steam generator tubes are calculated during reflux condensation cooling with the accident scenarios of three typical break sizes, 0.13 %, 1.02 % and 10.19 % cold leg break. The effect of initial water level to counter-current flow limitation is taken into account. It is predicted that the hot leg flooding is precluded when all steam generators are available for heat removal. It is also shown the both hot leg flooding and SG flooding are possible under the operation of one steam generators. Therefore, it can be said that the occurrence of hot leg flooding under reflux condensation cooling is possible when the number of steam generators available for heat removal is limited. (author). 15 refs., 15 figs., 3 tabs.

  8. Arterial waveform-analysis is of limited value in daily clinical practice in the intensive care unit

    DEFF Research Database (Denmark)

    Hennings, Louise Inkeri; Haase, Nicolai; Pedersen, Ulf Gøttrup

    2015-01-01

    INTRODUCTION: It is difficult to identify the patients who will respond to fluid therapy, but the arterial waveform-derived variables have reasonably predictive values for fluid responsiveness. However, the patient must fulfil a number of prerequisites for these variables to be valid. We assessed...... of arterial waveform-derived variables to predict fluid responsiveness. Thus, these variables may be of limited use during resuscitation in the ICU. FUNDING: none. TRIAL REGISTRATION: not relevant....

  9. Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one

    Science.gov (United States)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2011-03-01

    Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Experimental study of flux pinning in NbN films and multilayers: Ultimate limits on critical currents in superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kampwirth, R.T.; Capone, D.W. II; Murduck, J.M.

    1988-08-01

    A flux pinning model is presented which predicts the maximum critical current density attainable in superconductors. That such a limit must exist comes from the realization that flux pinning is strongest in regions of weak superconductivity, but these regions cannot carry a large supercurrent. Since the same regions within the superconductor cannot be used for both pinning and supercurrent conductions, there must be an optimum mix, leading to a maximum J/sub c/. Measurements on films and multilayers of NbN have verified many details of the model including anisotropy effects and a strong reduction in J/sub c/ for defect spacings smaller than the flux core diameter. In an optimized multilayer the pinning force reached /approximately/22% of the theoretical maximum. The implications of these results on the practical applications of NbN films and on the maximum critical current density in the new high temperature superconductors are also discussed. 24 refs., 4 figs

  11. Upper Extremity Injured Workers Stratified by Current Work Status: An Examination of Health Characteristics, Work Limitations and Work Instability

    Directory of Open Access Journals (Sweden)

    D Pichora

    2010-06-01

    Full Text Available Background: Upper extremity injured workers are an under-studied population. A descriptive comparison of workers with shoulder, elbow and hand injuries reporting to a Canadian Workplace Safety and Insurance Board (WSIB clinic was undertaken. Objective: To determine if differences existed between injury groups stratified by current work status. Methods: All WSIB claimants reporting to our upper extremity clinic between 2003 and 2008 were approached to participate in this descriptive study. 314 working and 146 non-working WSIB claimants completed the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH; Short Form health survey (SF36; Worker’s Limitations Questionnaire and the Work Instability Scale. Various parametric and non-parametric analyses were used to assess significant differences between groups on demographic, work and health related variables. Results: Hand, followed by the shoulder and elbow were the most common site of injury. Most non-workers listed their current injury as the reason for being off work, and attempted to return to work once since their injury occurrence. Non-workers and a subset of workers at high risk for work loss showed significantly worse mental functioning. Workers identified physical demands as the most frequent injury-related on the job limitation. 60% of current workers were listed as low risk for work loss on the Work Instability Scale. Conclusions: Poorer mental functioning, being female and sustaining a shoulder injury were risk factors for work instability. Our cohort of injured non-workers were unable to return to work due to their current injury, reinforcing the need to advocate for modified duties, shorter hours and a work environment where stress and injury recurrence is reduced. Future studies examining pre-injury depression as a risk factor for prolonged work absences are warranted.

  12. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    International Nuclear Information System (INIS)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-01-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35 o /couch, 312 o . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  13. Limited advantages of intensity-modulated radiotherapy over 3D conformal radiation therapy in the adjuvant management of gastric cancer.

    Science.gov (United States)

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W

    2009-06-01

    Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 degrees , 53 degrees , 107 degrees , 158 degrees , 204 degrees , 255 degrees , and 306 degrees . Beam arrangement 2 consisted of gantry angles of 30 degrees , 90 degrees , 315 degrees , and 345 degrees ; a gantry angle of 320 degrees /couch, 30 degrees ; and a gantry angle of 35 degrees /couch, 312 degrees . Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  14. Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship Discoverer and other platforms from the NE Pacific (limit-180) from 1994-04-22 to 1995-08-20 (NODC Accession 9500150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship DISCOVERER and other platforms from the NE Pacific (limit-180)....

  15. Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship Discoverer and other platforms from the NE Pacific (limit-180) from 1993-08-18 to 1994-09-28 (NODC Accession 9500006)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, and other data from moored current meters and CTD casts from NOAA Ship DISCOVERER and other platforms from the NE Pacific (limit-180)....

  16. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    Science.gov (United States)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  17. Flavin as an Indicator of the Rate-Limiting Factor for Microbial Current Production in Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Saito, Junki; Hashimoto, Kazuhito; Okamoto, Akihiro

    2016-01-01

    Microbial electrode catalysis such as microbial fuel cells or electrosynthesis involves electron exchange with the electrodes located at the cell exterior; i.e., extracellular electron transport (EET). Despite the vast amount of research on the kinetics of EET to optimize the catalysis rate, the relevance of other factors, including upstream metabolic reactions, has scarcely been investigated. Herein, we report an in vivo electrochemical assay to confirm whether EET limits anodic current production (j) for the lactate oxidation of Shewanella oneidensis MR-1. Addition of riboflavin, which specifically enhances the EET rate, increased j only in the early phase before j saturation. In contrast, when we removed a trace metal ion necessary for upstream reactions from the electrolyte, a significant decrease in j and the lactate consumption rate was observed only after j saturation. These data suggest that the limiting factor for j shifted from EET to upstream reactions, highlighting the general importance of enhancing, for example, microbial metabolism, especially for long-standing practical applications. Our concept to specifically control the rate of EET could be applicable to other bioelectrode catalysis systems as a strategy to monitor their rate-limiting factors.

  18. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei, E-mail: stclchen1982@163.com [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zhu, Lin [Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville 37996 (United States); Guo, Fang [Department of Substation, Guang Dong Electric Power Design Institute, Guangzhou 510663 (China)

    2015-11-15

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  19. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    International Nuclear Information System (INIS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-01-01

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  20. An empirical model for salt removal percentage in water under the effect of different current intensities of current carrying coil at different flow rates

    Directory of Open Access Journals (Sweden)

    Rameen S. AbdelHady

    2011-10-01

    Full Text Available The magnetic treatment of hard water is an alternative, simple approach by which the hard water that needs to be treated flows through a magnetic field. This field is created by inducing current in a coil wrapped around a pipe. Consequently some of its properties, such as total dissolved salts (TDS, conductivity (Ec and PH change. The primary purpose of hard water treatment is to decrease TDS in the incoming liquid stream. Using performance data from the application of different magnetic field densities on the different flow levels of water, empirical mathematical models were developed relating the salt removal percentage (SRP to operating flow rate and current of the coil. The obtained experimental results showed that the SRP increased with increasing the current at low flow rates (up to 0.75 ml/s.

  1. Comment on 'Relation between space charge limited current and power loss in open drift tubes' [Phys. Plasmas 13, 073101 (2006)

    International Nuclear Information System (INIS)

    Swanekamp, S. B.; Schumer, J. W.

    2007-01-01

    In Phys Plasmas 13, 073101 (2006), the drop in the space-charge-limited (SCL) current for a beam injected into a space with an open boundary is analyzed with an electromagnetic particle-in-cell code. The authors explained the power loss observed at the open boundary as the loss of electromagnetic radiation created from the deceleration of electrons in the gap, and they developed an effective voltage theory to predict the drop in the SCL current observed in the simulations. In this Comment, we show that, provided the current remains below the SCL value, the electric and magnetic fields are constant in time so that power loss from the open boundary is a dc phenomenon with no rf power leaving through the boundary. We show that the electric and magnetic fields are static in time and static fields DO NOT RADIATE. Instead, the electron beam charges the collector plate, which causes a real electrostatic electric field to develop. The electron energy loss is not due to radiation but rather to the work done by this electrostatic field on the electrons as they move across the gap. This is precisely the energy dissipated in the matched resistance across the open boundary, which is a consequence of the boundary condition. Furthermore, since a real electrostatic potential develops, the voltage drop is real and there is no need to call the voltage drop an effective voltage

  2. Eddy current imaging. Limits of the born approximation and advantages of an exact solution to the inverse problem

    International Nuclear Information System (INIS)

    Hamman, E.; Zorgati, R.

    1995-01-01

    Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an 'optimization' type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append

  3. Influence of Disease Severity and Exercise Limitation on Exercise Training Intensity and Load and Health Benefits From Pulmonary Rehabilitation in Patients with COPD: AN EXPLORATORY STUDY.

    Science.gov (United States)

    Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K

    2018-04-11

    Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.

  4. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be

  5. Mast fruiting of large ectomycorrhizal African rain forest trees: importance of dry season intensity, and the resource-limitation hypothesis.

    Science.gov (United States)

    Newbery, David M; Chuyong, George B; Zimmermann, Lukas

    2006-01-01

    Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.

  6. Conditions for the occurrence of intense turbidity currents in the benthic boundary layer over a sloping bottom

    NARCIS (Netherlands)

    Zhmur, VV

    2003-01-01

    The evolution of density currents over the continental slope of the ocean is investigated with allowance for the entrainment of the bottom sediments and background liquid in motion. A simple criterion is proposed for determining the possibility of evolving initially weak density currents into bottom

  7. Pediatric Early Warning Systems aid in triage to intermediate versus intensive care for pediatric oncology patients in resource-limited hospitals.

    Science.gov (United States)

    Agulnik, Asya; Nadkarni, Anisha; Mora Robles, Lupe Nataly; Soberanis Vasquez, Dora Judith; Mack, Ricardo; Antillon-Klussmann, Federico; Rodriguez-Galindo, Carlos

    2018-04-10

    Pediatric oncology patients hospitalized in resource-limited settings are at high risk for clinical deterioration resulting in mortality. Intermediate care units (IMCUs) provide a cost-effective alternative to pediatric intensive care units (PICUs). Inappropriate IMCU triage, however, can lead to poor outcomes and suboptimal resource utilization. In this study, we sought to characterize patients with clinical deterioration requiring unplanned transfer to the IMCU in a resource-limited pediatric oncology hospital. Patients requiring subsequent early PICU transfer had longer PICU length of stay. PEWS results prior to IMCU transfer were higher in patients requiring early PICU transfer, suggesting PEWS can aid in triage between IMCU and PICU care. © 2018 Wiley Periodicals, Inc.

  8. Development of high-current-density LAB6 thermionic emitters for a space-charge-limited electron gun

    International Nuclear Information System (INIS)

    Herniter, M.E.; Getty, W.D.

    1987-01-01

    An electron gun has been developed for investigation of high current density, space charge limited operation of a lenthanum hexaboride (LaB 6 ) thermionic cathode. The 2.8 cm 2 cathode disk is heated by electron bombardment from a tungsten filament. For LaB 6 cathode temperatures greater than 1600 0 C it has been found that evaporation from the LaB 6 causes an increase in the tungsten filament emission, leading to an instability in the bombardment heating system. This instability has been investigated and eliminated by using a graphite disk in place of the LaB 6 cathode or by shielding the filament from the LaB 6 cathode by placing the LaB 6 in a graphite cup and bombarding the cup. The graphite disk has been heated to 1755 0 C with 755 W of heating power, and the shielded LaB 6 cathode has been heated to 1695 0 C. This temperature range is required for emission current densities in the 30 Acm 2 range. It is believed that the evaporation of lanthanum lowers the tungsten work function. In electron-gun use, the LaB 6 cathode has been operated up to 6.7 Acm 2 at 36 kV. A 120 kV Marx generator has been built to allow operation up to 40 Acm 2

  9. Eddy-current inversion in the thin-skin limit: Determination of depth and opening for a long crack

    Science.gov (United States)

    Burke, S. K.

    1994-09-01

    A method for crack size determination using eddy-current nondestructive evaluation is presented for the case of a plate containing an infinitely long crack of uniform depth and uniform crack opening. The approach is based on the approximate solution to Maxwell's equations for nonmagnetic conductors in the limit of small skin depth and relies on least-squares polynomial fits to a normalized coil impedance function as a function of skin depth. The method is straightforward to implement and is relatively insensitive to both systematic and random errors. The procedure requires the computation of two functions: a normalizing function, which depends both on the coil parameters and the skin depth, and a crack-depth function which depends only on the coil parameters in addition to the crack depth. The practical perfomance of the method was tested using a set of simulated cracks in the form of electro-discharge machined slots in aluminum alloy plates. The crack depths and crack opening deduced from the eddy-current measurements agree with the actual crack dimensions to within 10% or better. Recommendations concerning the optimum conditions for crack sizing are also made.

  10. Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering

    Science.gov (United States)

    Fernández-Robredo, P.; Sancho, A.; Johnen, S.; Recalde, S.; Gama, N.; Thumann, G.; Groll, J.; García-Layana, A.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein. PMID:24672707

  11. Feasibility and preliminary results of intensive chemotherapy and extensive irradiation in selected patients with limited small-cell lung carcinoma--results of three consecutive phase II programs

    International Nuclear Information System (INIS)

    Tourani, J.M.; Jaillon-Abraham, C.; Coscas, Y.; Dabouis, G.; Andrieu, J.M.

    2000-01-01

    We report the results of three consecutive programs combining initial intensive chemotherapy and radiotherapy in the treatment of patients with limited small-cell lung cancer (SCLC). The objective was to test the feasibility and the effect of high-dose chemotherapy and three thoracic irradiation programs on survival and patterns of relapse. Forty-two patients with limited SCLC were enrolled. All patients received high-dose chemotherapy (vindesine, etoposide, doxorubicin, cisplatin and cyclophosphamide or ifosfamide). In the SC 84 program, chest and brain radiotherapy was delivered during each course of chemotherapy, with a complementary irradiation after chemotherapy. In the SC 86 and SC 92 programs, patients received chemotherapy followed by thoracic irradiation and prophylactic brain and spinal axis radiotherapy. At the end of treatment, 40 patients (95%) were in complete response. During chemotherapy, high levels of toxicity were noted. All patients had grade IV hematological toxicities. The extra-hematological toxicities were digestive (grade III: 21%; grade IV: 7%) and hepatic (grades III and IV: 14%). During irradiation, patients presented digestive, pulmonary and hematological toxicities. Five patients developed late toxicities and a second malignancy was observed in 4 patients. The 2- and 5-year survival rates for all patients were 51% and 27%, respectively. Despite the marked toxicity of the initial intensive chemotherapy, the treatments are tolerable and effective in the control of extra-thoracic micrometastases, whereas they are less effective for thoracic primary tumor

  12. Two-stream Stability Properties of the Return-Current Layer for Intense Ion Beam Propagation Through Background Plasma

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail

    2009-01-01

    When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance Δx perpendicular ∼ (delta) pe , where (delta) pe = c/ω pe is the collisionless skin depth, and ω pe is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability

  13. Experimental behaviour of a argon plasma, which is passed by a high current intensity, with different magnetic field configurations

    International Nuclear Information System (INIS)

    Lozano, J.

    1964-01-01

    In a lineal discharge, the longitudinal and azimuthal magnetic fields produced by the current through the tube and the returning conductors, which have 4 different forms, are determined with a magnetic probe, which has a radial and longitudinal displacement. The plasma is produced discharging a 135μF and 9 KV capacitor bank through Argon at 10 - 1 Torr. (Author) 5 refs

  14. Current Guidelines Have Limited Applicability to Patients with Comorbid Conditions: A Systematic Analysis of Evidence-Based Guidelines

    Science.gov (United States)

    Lugtenberg, Marjolein; Burgers, Jako S.; Clancy, Carolyn; Westert, Gert P.; Schneider, Eric C.

    2011-01-01

    Background Guidelines traditionally focus on the diagnosis and treatment of single diseases. As almost half of the patients with a chronic disease have more than one disease, the applicability of guidelines may be limited. The aim of this study was to assess the extent that guidelines address comorbidity and to assess the supporting evidence of recommendations related to comorbidity. Methodology/Principal Findings We conducted a systematic analysis of evidence-based guidelines focusing on four highly prevalent chronic conditions with a high impact on quality of life: chronic obstructive pulmonary disease, depressive disorder, diabetes mellitus type 2, and osteoarthritis. Data were abstracted from each guideline on the extent that comorbidity was addressed (general comments, specific recommendations), the type of comorbidity discussed (concordant, discordant), and the supporting evidence of the comorbidity-related recommendations (level of evidence, translation of evidence). Of the 20 guidelines, 17 (85%) addressed the issue of comorbidity and 14 (70%) provided specific recommendations on comorbidity. In general, the guidelines included few recommendations on patients with comorbidity (mean 3 recommendations per guideline, range 0 to 26). Of the 59 comorbidity-related recommendations provided, 46 (78%) addressed concordant comorbidities, 8 (14%) discordant comorbidities, and for 5 (8%) the type of comorbidity was not specified. The strength of the supporting evidence was moderate for 25% (15/59) and low for 37% (22/59) of the recommendations. In addition, for 73% (43/59) of the recommendations the evidence was not adequately translated into the guidelines. Conclusions/Significance Our study showed that the applicability of current evidence-based guidelines to patients with comorbid conditions is limited. Most guidelines do not provide explicit guidance on treatment of patients with comorbidity, particularly for discordant combinations. Guidelines should be more

  15. The Importance and Current Limitations of Planetary Boundary Layer (PBL) Retrieval from Space for Land-Atmosphere Coupling Studies

    Science.gov (United States)

    Santanello, J. A., Jr.; Schaefer, A.

    2016-12-01

    There is an established need for improved PBL remote sounding over land for hydrology, land-atmosphere (L-A), PBL, cloud/convection, pollution/chemistry studies and associated model evaluation and development. Most notably, the connection of surface hydrology (through soil moisture) to clouds and precipitation relies on proper quantification of water's transport through the coupled system, which is modulated strongly by PBL structure, growth, and feedback processes such as entrainment. In-situ (ground-based or radiosonde) measurements will be spatially limited to small field campaigns for the foreseeable future, so satellite data is a must in order to understand these processes globally. The scales of these applications require diurnal resolution (e.g. 3-hourly or finer) at land-PBL coupling and water and energy cycles at their native scales. Today's satellite sensors (e.g. advanced IR, GEO, lidar, GPS-RO) do not reach close to these targets in terms of accuracy or resolution, and each of these sensors has some advantages but even more limitations that make them impractical for PBL and L-A studies. Unfortunately, there is very little attention or planning (short or long-term) in place for improving lower tropospheric sounding over land, and as a result PBL and L-A interactions have been identified as `gaps' in current programmatic focal areas. It is therefore timely to assess how these technologies can be leveraged, combined, or evolved in order to form a dedicated mission or sub-mission to routinely monitor the PBL on diurnal timescales. In addition, improved PBL monitoring from space needs to be addressed in the next Decadal Survey. In this talk, the importance of PBL information (structure, evolution) for L-A coupling diagnostics and model development will be summarized. The current array of PBL retrieval methods and products from space will then be assessed in terms of meeting the needs of these models, diagnostics, and scales, with a look forward as to how

  16. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    Energy Technology Data Exchange (ETDEWEB)

    Mahdad, Belkacem, E-mail: bemahdad@mselab.org; Srairi, K.

    2013-12-15

    Highlights: •A simple interactive model SFCL–STATCOM Controller is proposed to enhance the transient stability. •The STATCOM controller is integrated in coordination with the SFCL to support the excessive reactive power during fault. •Voltage stability index based continuation power flow is used to locate the STATCOM and the SFCL. •The clearing time improved compared to other cases (with only SFCL, with only STATCOM). •The choice of the STATCOM parameters is very important to exploit efficiently the integration of STATCOM Controller. -- Abstract: Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  17. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    Science.gov (United States)

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Imaging of Myocardial Fibrosis in Patients with End-Stage Renal Disease: Current Limitations and Future Possibilities

    Directory of Open Access Journals (Sweden)

    M. P. M. Graham-Brown

    2017-01-01

    Full Text Available Cardiovascular disease in patients with end-stage renal disease (ESRD is driven by a different set of processes than in the general population. These processes lead to pathological changes in cardiac structure and function that include the development of left ventricular hypertrophy and left ventricular dilatation and the development of myocardial fibrosis. Reduction in left ventricular hypertrophy has been the established goal of many interventional trials in patients with chronic kidney disease, but a recent systematic review has questioned whether reduction of left ventricular hypertrophy improves cardiovascular mortality as previously thought. The development of novel imaging biomarkers that link to cardiovascular outcomes and that are specific to the disease processes in ESRD is therefore required. Postmortem studies of patients with ESRD on hemodialysis have shown that the extent of myocardial fibrosis is strongly linked to cardiovascular death and accurate imaging of myocardial fibrosis would be an attractive target as an imaging biomarker. In this article we will discuss the current imaging methods available to measure myocardial fibrosis in patients with ESRD, the reliability of the techniques, specific challenges and important limitations in patients with ESRD, and how to further develop the techniques we have so they are sufficiently robust for use in future clinical trials.

  19. Optimal Placement and Sizing of Fault Current Limiters in Distributed Generation Systems Using a Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    N. Bayati

    2017-02-01

    Full Text Available Distributed Generation (DG connection in a power system tends to increase the short circuit level in the entire system which, in turn, could eliminate the protection coordination between the existing relays. Fault Current Limiters (FCLs are often used to reduce the short-circuit level of the network to a desirable level, provided that they are dully placed and appropriately sized. In this paper, a method is proposed for optimal placement of FCLs and optimal determination of their impedance values by which the relay operation time, the number and size of the FCL are minimized while maintaining the relay coordination before and after DG connection. The proposed method adopts the removal of low-impact FCLs and uses a hybrid Genetic Algorithm (GA optimization scheme to determine the optimal placement of FCLs and the values of their impedances. The suitability of the proposed method is demonstrated by examining the results of relay coordination in a typical DG network before and after DG connection.

  20. Design and Characteristics Analysis of a Rod Type High-Tc Superconducting Fault Current Limiter through Electromagnetic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, O.B. [Korea Electric Power Research Institute, Taejeon (Korea); Lee, C.J.; Lee, S.J.; Ko, T.K. [Yonsei University, Seoul (Korea)

    2001-07-01

    The existence of a large air gaps between a High-Tc Superconducting (HTS) tube and an iron core, or between a primary winding and a HTS tube possibly causes magnetic flux leaks, resulting in undesirable voltage drops under normal operation. For this reason optimization of air gaps is essential in designing a high-Tc superconducting fault current limiter (SFCL). In this paper we performed the electromagnetic analysis for the optimization. The inductance L decreases by 20% as the hight of the winding increases from 50 to 200 mm. But, L increases from 5.6 mH to 10.5 mH as the hight of the rod changes from 150 to 400 mm. L is found to be almost constant for the air gap between 5 to 10 mm, but L decreases by 20% as the gap increases from 10 to 20 mm. The computational and experimental results will bo compared. (author). 7 refs., 8 figs., 1 tab.

  1. Study of recovery characteristics of 2nd generation HTS tapes with different stabilizers for resistive type superconducting fault current limiters

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Ma, Jun; Yao, Zhihao; Li, Zhuyong; Jin, Zhijian; Hong, Zhiyong

    2016-01-01

    Highlights: • Three methods of measuring the recovery time of HTS tapes are compared. • Four tapes with different stabilizers were tested to compare their recovery characteristics. • The HTS tapes with thinner stabilizers have better recovery characteristics. • Encapsulation makes the recovery characteristics of HTS tapes worse. • The results can be reference of the re-reclosed operation time interval. - Abstract: The resistive type superconducting fault current limiter (SFCL) is one of the most important superconducting power applications nowadays. As known, this type of SFCL is settled directly in the power transmission line. When a short fault happens, the temperature of the superconductors in the SFCL will increase sharply due to the huge generated heat. This means the superconductors need time to recover the superconducting properties and be ready for the next short fault. So the recovery characteristics become one of the most crucial features of the resistive type SFCL. In this paper, several different kinds of measuring methods are presented to calculate the recovery time of the HTS tapes, and comparison of these methods is also carried out by a standard test. On basis of this, samples with different kinds of stabilizers are used to explore the influence of stabilizer on their recovery characteristics. In addition, the influence of the encapsulation technology is also discussed in this paper.

  2. Fifty Years of Technological Innovation: Potential and Limitations of Current Technologies in Abdominal Magnetic Resonance Imaging and Computed Tomography.

    Science.gov (United States)

    Attenberger, Ulrike I; Morelli, John; Budjan, Johannes; Henzler, Thomas; Sourbron, Steven; Bock, Michael; Riffel, Philipp; Hernando, Diego; Ong, Melissa M; Schoenberg, Stefan O

    2015-09-01

    Magnetic resonance imaging (MRI) has become an important modality for the diagnosis of intra-abdominal pathology. Hardware and pulse sequence developments have made it possible to derive not only morphologic but also functional information related to organ perfusion (dynamic contrast-enhanced MRI), oxygen saturation (blood oxygen level dependent), tissue cellularity (diffusion-weighted imaging), and tissue composition (spectroscopy). These techniques enable a more specific assessment of pathologic lesions and organ functionality. Magnetic resonance imaging has thus transitioned from a purely morphologic examination to a modality from which image-based disease biomarkers can be derived. This fits well with several emerging trends in radiology, such as the need to accurately assess response to costly treatment strategies and the need to improve lesion characterization to potentially avoid biopsy. Meanwhile, the cost-effectiveness, availability, and robustness of computed tomography (CT) ensure its place as the current workhorse for clinical imaging. Although the lower soft tissue contrast of CT relative to MRI is a long-standing limitation, other disadvantages such as ionizing radiation exposure have become a matter of public concern. Nevertheless, recent technical developments such as dual-energy CT or dynamic volume perfusion CT also provide more functional imaging beyond morphology.The aim of this article was to review and discuss the most important recent technical developments in abdominal MRI and state-of-the-art CT, with an eye toward the future, providing examples of their clinical utility for the evaluation of hepatic and renal pathologies.

  3. The first Italian superconducting fault current limiter: Results of the field testing experience after one year operation

    International Nuclear Information System (INIS)

    Martini, L; Bocchi, M; Ascade, M; Valzasina, A; Rossi, V; Angeli, G; Ravetta, C

    2014-01-01

    Ricerca sul Sistema Energetico S.p.A. (RSE) has been gaining a relevant experience in the simulation, design and installation of resistive-type Superconducting Fault Current Limiter (SFCL) devices for more than five years in the framework of a R and D national project funded by the Ricerca di Sistema (RdS). The most recent outcome of this research activity is the installation of a resistive-type BSCCO-based 9 kV / 3.4 MVA SFCL device in a single feeder branch of the Medium Voltage (MV) distribution network managed by A2A Reti Elettriche S.p.A (A2A) in the Milano area. This installation represents the first SFCL successfully installed in Italy. In this paper, we report on the main outcomes after a more than 1-year long steady-state field testing activity. The design of an upgraded device to be installed in the same substation has already been initiated: the new SFCL will allow to protect four different feeders, therefore implying a device upgrade up to 15.6 MVA.

  4. Pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic classes conducted in pools heated up to 33 degrees Celsius: an observational study.

    Science.gov (United States)

    Brearley, Amanda L; Sherburn, Margaret; Galea, Mary P; Clarke, Sandy J

    2015-10-01

    What is the body temperature response of healthy pregnant women exercising at moderate intensity in an aqua-aerobics class where the water temperature is in the range of 28 to 33 degrees Celsius, as typically found in community swimming pools? An observational study. One hundred and nine women in the second and third trimester of pregnancy who were enrolled in a standardised aqua-aerobics class. Tympanic temperature was measured at rest pre-immersion (T1), after 35minutes of moderate-intensity aqua-aerobic exercise (T2), after a further 10minutes of light exercise while still in the water (T3) and finally on departure from the facility (T4). The range of water temperatures in seven indoor community pools was 28.8 to 33.4 degrees Celsius. Body temperature increased by a mean of 0.16 degrees Celsius (SD 0.35, ptemperature response was not related to the water temperature (T2 r = -0.01, p = 0.9; T3 r = -0.02, p=0.9; T4 r=0.03, p=0.8). Analysis of variance demonstrated no difference in body temperature response between participants when grouped in the cooler, medium and warmer water temperatures (T2 F=0.94, p=0.40; T3 F=0.93, p=0.40; T4 F=0.70, p=0.50). Healthy pregnant women maintain body temperatures within safe limits during moderate-intensity aqua-aerobic exercise conducted in pools heated up to 33 degrees Celsius. The study provides evidence to inform guidelines for safe water temperatures for aqua-aerobic exercise during pregnancy. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  5. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    International Nuclear Information System (INIS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-01-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  6. Role of the lifetime of ring current particles on the solar wind-magnetosphere power transfer during the intense geomagnetic storm of 28 August 1978

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Lee, L.C.

    1990-01-01

    For the intense magnetic storms of 28 August 1978 it is shown that the power transfer from the solar wind to the magnetosphere is well represented by the expression obtained by Vasyliunas et al. (1982, Planet. Space Sci. 30, 359) from dimensional analysis, but this representation becomes improved when such an expression is modified by a factor due to an influence of the lifetime of ring current particles as suggested by Lee and Akasofu (1984, Planet. Space Sci. 32, 1423). During a steady state regime of the ring current evolution of this storm, our study suggests that the power transfer depends on the solar wind density, the transverse component of the IMF (Interplanetary magnetic field) (with respect to the Sun-Earth line) and also, explicitly, on the time constant for ring current energy decay, but not on the solar wind speed. (author)

  7. Errors and limits in the determination of plasma electron density by measuring the absolute values of the emitted continuum radiation intensity

    International Nuclear Information System (INIS)

    Bilbao, L.; Bruzzone, H.; Grondona, D.

    1994-01-01

    The reliable determination of a plasma electron structure requires a good knowledge of the errors affecting the employed technique. A technique based on the measurements of the absolute light intensity emitted by travelling plasma structures in plasma focus devices has been used, but it can be easily modified to other geometries and even to stationary plasma structures with time-varying plasma densities. The purpose of this work is to discuss in some detail the errors and limits of this technique. Three separate errors are shown: the minimum size of the density structure that can be resolved, an overall error in the measurements themselves, and an uncertainty in the shape of the density profile. (author)

  8. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons

    Science.gov (United States)

    Zhao, Huiping; Steiger, Amanda; Nohner, Mitch; Ye, Hui

    2015-01-01

    Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure. PMID:26068466

  9. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Inoue, Tatsuya; Widder, Joachim; Dijk, Lisanne V. van; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I.; Sasai, Keisuke; Veld, Aart A. van't; Langendijk, Johannes A.; Korevaar, Erik W.

    2016-01-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D_2 − D_9_8, where D_2 and D_9_8 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to 98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and

  10. Dynamic habitat corridors for marine predators; intensive use of a coastal channel by harbour seals is modulated by tidal currents.

    Science.gov (United States)

    Hastie, Gordon D; Russell, Deborah J F; Benjamins, Steven; Moss, Simon; Wilson, Ben; Thompson, Dave

    2016-01-01

    narrow coastal channel subject to strong tidal currents; results showed that seals spent the majority of their time at the narrowest point of the channel foraging during peak tidal currents. This highlights the importance of narrow channels for marine predators and suggests that this usually wide-ranging predator may restrict its geographic range to forage in the channel as a result of increased prey availability and/or foraging efficiency driven by water movements through the narrow corridor.

  11. Note: Measuring breakdown characteristics during the hot re-ignition of high intensity discharge lamps using high frequency alternating current voltage.

    Science.gov (United States)

    van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W

    2013-04-01

    To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented.

  12. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  13. Comparison of standardized uptake values measured on 18F-NaF PET/CT scans using three different tube current intensities

    OpenAIRE

    Agnes Araujo Valadares; Paulo Schiavom Duarte; Eduardo Bechtloff Woellner; George Barberio Coura-Filho; Marcelo Tatit Sapienza; Carlos Alberto Buchpiguel

    2015-01-01

    Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses ...

  14. Direct observation of electrothermal instability structures on intensely Ohmically heated aluminum with current flowing in a surface skin layer

    Science.gov (United States)

    Awe, Thomas

    2017-10-01

    Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.

  15. Signatures of moderate (M-class) and low (C and B class) intensity solar flares on the equatorial electrojet current: Case studies

    Science.gov (United States)

    Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.

    2013-12-01

    The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.

  16. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy

    Science.gov (United States)

    Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.

    2011-01-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018

  17. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺ current in miniature swine with LV hypertrophy.

    Science.gov (United States)

    Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K

    2011-10-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.

  18. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  19. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  20. Investigations of current limiting properties of the MgB{sub 2} wires subjected to pulse overcurrents in the benchtop tester

    Energy Technology Data Exchange (ETDEWEB)

    Ye Lin [Interdisciplinary Research Center (IRC) in Superconductivity, Department of Engineering, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Majoros, M [Laboratories for Applied Superconductivity and Magnetism, Ohio State University, Columbus, OH 43210 (United States); Campbell, A M [Interdisciplinary Research Center (IRC) in Superconductivity, Department of Engineering, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T [Interdisciplinary Research Center (IRC) in Superconductivity, Department of Engineering, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Harrison, S [Scientific Magnetics, Culham Science Centre, Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Sargent, P [Diboride Conductors Ltd, Cambridge CB1 3QJ (United Kingdom); Haslett, M [Diboride Conductors Ltd, Cambridge CB1 3QJ (United Kingdom); Husband, M [Strategic Research Center (SRC)-Electrical Engineering, Rolls-Royce Plc., Derby DE24 8BJ (United Kingdom)

    2007-04-15

    A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB{sub 2} wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB{sub 2} samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB{sub 2} for future superconducting fault current limiter (SFCL) applications.

  1. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity.

    Science.gov (United States)

    Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus

    2014-08-13

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Limited Impact of Setup and Range Uncertainties, Breathing Motion, and Interplay Effects in Robustly Optimized Intensity Modulated Proton Therapy for Stage III Non-small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tatsuya [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Widder, Joachim; Dijk, Lisanne V. van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Takegawa, Hideki [Department of Radiation Oncology, Kansai Medical University Hirakata Hospital, Osaka (Japan); Koizumi, Masahiko; Takashina, Masaaki [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Saito, Anneyuko I. [Department of Radiology, Juntendo University Urayasu Hospital, Chiba (Japan); Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Sasai, Keisuke [Department of Radiation Oncology, Juntendo University Graduate School of Medicine, Tokyo (Japan); Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Korevaar, Erik W., E-mail: e.w.korevaar@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-11-01

    Purpose: To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Methods and Materials: Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D{sub 2} − D{sub 98}, where D{sub 2} and D{sub 98} are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. Results: The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. Conclusions: In robustly optimized IMPT for stage III NSCLC, the setup and range

  3. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  4. Electron mean free path dependence of the critical currents and the pair-breaking limit in superconducting films

    International Nuclear Information System (INIS)

    Fedorov, N.; Rinderer, L.

    1977-01-01

    We have studied the current-induced breakdown of superconductivity in wide (100--980 μm) and thin (0.25--0.98 μm) films of tin. It is shown that the current at which the resistance of the sample begins to rise rapidly in the process of the destruction of superconductivity by a current can be fairly well associated with the theoretical value of the pair-breaking current in the Ginzburg-Landau phenomenological approach (I/sub c//sup G L/). This effect is observed over a rather wide temperature region (up to ΔTapprox.0.7 K), depending on the electron mean free path in the films. The values of the critical currents outside the above-mentioned region correlate qualitatively with those determined by inhomogeneities of the films as proposed by Larkin and Ovchinnikov

  5. An improved low-voltage ride-through performance of DFIG based wind plant using stator dynamic composite fault current limiter.

    Science.gov (United States)

    Gayen, P K; Chatterjee, D; Goswami, S K

    2016-05-01

    In this paper, an enhanced low-voltage ride-through (LVRT) performance of a grid connected doubly fed induction generator (DFIG) has been presented with the usage of stator dynamic composite fault current limiter (SDCFCL). This protection circuit comprises of a suitable series resistor-inductor combination and parallel bidirectional semiconductor switch. The SDCFCL facilitates double benefits such as reduction of rotor induced open circuit voltage due to increased value of stator total inductance and concurrent increase of rotor impedance. Both effects will limit rotor circuit over current and over voltage situation more secured way in comparison to the conventional scheme like the dynamic rotor current limiter (RCL) during any type of fault situation. The proposed concept is validated through the simulation study of the grid integrated 2.0MW DFIG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Application of low current intensity electrolytic treatment for the chlorides extraction in underwater archaeological objects of iron. Observation of the mineralogical phases evolution through XRD-Rietveld

    International Nuclear Information System (INIS)

    Bethencourt, M.; Gil, M. L. A.; Fernandez-Lorenzo, C.; Santos, A.

    2004-01-01

    With the purpose of optimising a suitable methodology for the conservation of an archaeological object of iron, a low current intensities electrolytic treatment has been applied, to a piece of cast iron, proving to be effective in the extraction of chloride ions from the structure of akaganeite, principal corrosion product of iron in the marine medium. The monitoring of the electrolytic treatment has been proven by applying the Rietveld method to the patterns XRD of samples extracted from the corroded surface before and after the treatment. This method has permitted the unequivocal determination of the akaganeite and its chemical composition. This identification has been corroborated by means of SEM and EDS. After the electrolytic treatment, akaganeite was not present in the sample. (Author) 9 refs

  7. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  8. Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents

    Energy Technology Data Exchange (ETDEWEB)

    Mintairov, M. A., E-mail: mamint@mail.ioffe.ru; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Timoshina, N. Kh.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2015-05-15

    A method is proposed for estimating the potential efficiency which can be achieved in an initially unbalanced multijunction solar cell by the mutual convergence of photogenerated currents: to extract this current from a relatively narrow band-gap cell and to add it to a relatively wide-gap cell. It is already known that the properties facilitating relative convergence are inherent to such objects as bound excitons, quantum dots, donor-acceptor pairs, and others located in relatively wide-gap cells. In fact, the proposed method is reduced to the problem of obtaining such a required light current-voltage (I–V) characteristic which corresponds to the equality of all photogenerated short-circuit currents. Two methods for obtaining the required light I–V characteristic are used. The first one is selection of the spectral composition of the radiation incident on the multijunction solar cell from an illuminator. The second method is a double shift of the dark I–V characteristic: a current shift J{sub g} (common set photogenerated current) and a voltage shift (−J{sub g}R{sub s}), where R{sub s} is the series resistance. For the light and dark I–V characteristics, a general analytical expression is derived, which considers the effect of so-called luminescence coupling in multijunction solar cells. The experimental I–V characteristics are compared with the calculated ones for a three-junction InGaP/GaAs/Ge solar cell with R{sub s} = 0.019 Ω cm{sup 2} and a maximum factual efficiency of 36.9%. Its maximum potential efficiency is estimated as 41.2%.

  9. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle

  10. buffer Layer Growth, the Thickness Dependence of Jc in Coated Conductors, Local Identification of Current Limiting Mechanisms and Participation in the Wire Development Group

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David; Hellstron, Eric; Abraimov, Dmytro

    2011-12-17

    The primary thrusts of our work were to provide critical understanding of how best to enhance the current-carrying capacity of coated conductors. These include the deconstruction of Jc as a function of fim thickness, the growth of in situ films incorporating strong pinning centers and the use of a suite of position-sensitive tools that enable location and analysis of key areas where current-limiting occurs.

  11. Development of a post-intensive care unit storytelling intervention for surrogates involved in decisions to limit life-sustaining treatment.

    Science.gov (United States)

    Schenker, Yael; Dew, Mary Amanda; Reynolds, Charles F; Arnold, Robert M; Tiver, Greer A; Barnato, Amber E

    2015-06-01

    Surrogates involved in decisions to limit life-sustaining treatment for a loved one in the intensive care unit (ICU) are at increased risk for adverse psychological outcomes that can last for months to years after the ICU experience. Post-ICU interventions to reduce surrogate distress have not yet been developed. We sought to (1) describe a conceptual framework underlying the beneficial mental health effects of storytelling, and (2) present formative work developing a storytelling intervention to reduce distress for recently bereaved surrogates. An interdisciplinary team conceived the idea for a storytelling intervention based on evidence from narrative theory that storytelling reduces distress from traumatic events through emotional disclosure, cognitive processing, and social connection. We developed an initial storytelling guide based on this theory and the clinical perspectives of team members. We then conducted a case series with recently bereaved surrogates to iteratively test and modify the guide. The storytelling guide covered three key domains of the surrogate's experience of the patient's illness and death: antecedents, ICU experience, and aftermath. The facilitator focused on the parts of a story that appeared to generate strong emotions and used nonjudgmental statements to attend to these emotions. Between September 2012 and May 2013, we identified 28 eligible surrogates from a medical ICU and consented 20 for medical record review and recontact; 10 became eligible, of whom 6 consented and completed the storytelling intervention. The single-session storytelling intervention lasted from 40 to 92 minutes. All storytelling participants endorsed the intervention as acceptable, and five of six reported it as helpful. Surrogate storytelling is an innovative and acceptable post-ICU intervention for recently bereaved surrogates and should be evaluated further.

  12. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  13. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose-Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A. [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States); Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, Pritzker School of Medicine, University of Chicago, Chicago, IL (United States)

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose-volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V{sub 70}), 65 Gy (V{sub 65}), and 40 Gy (V{sub 40}). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up of 41 months, the 4-year freedom from maximal Grade 2+ late toxicity was 81% and 91% for GU and GI systems, respectively, and by last follow-up, the rates of Grade 2+ GU and GI toxicity were 9% and 5%, respectively. On multivariate analysis, whole-pelvic IMRT was associated with Grade 2+ GU toxicity and age was associated with Grade 2+ GI toxicity. Freedom from Grade 2+ GI toxicity at 4 years was 100% for men with rectal V{sub 70} {<=}10%, V{sub 65} {<=}20%, and V{sub 40} {<=}40%; 92% for men with rectal V{sub 70} {<=}20%, V{sub 65} {<=}40%, and V{sub 40} {<=}80%; and 85% for men exceeding these criteria (p = 0.13). These criteria were more highly associated with GI toxicity in men aged {>=}70 years (p = 0.07). No bladder dose-volume relationships were associated with the risk of GU toxicity. Conclusions: IMRT is associated with low rates of severe GU or GI toxicity after treatment for prostate cancer. Rectal dose constraints

  14. Feasibility of omitting clinical target volume for limited-disease small cell lung cancer treated with chemotherapy and intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Cai, Shuhua; Shi, Anhui; Yu, Rong; Zhu, Guangying

    2014-01-01

    To analyze the feasibility of omitting clinical target volume (CTV) for limited small cell lung cancer treated with chemotherapy and intensity modulated radiotherapy. 89 patients were treated from January 1, 2008 to August 31, 2011, 54 cases were irradiated with target volume without CTV, and 35 cases were irradiated with CTV. Both arms were irradiated post chemotherapy tumor extent and omitted elective nodal irradiation; dose prescription was 95% PTV56-63 Gy/28-35 F/5.6-7 weeks. In the arm without CTV and arm with CTV, the local relapse rates were 16.7% and 17.1% (p = 0.586) respectively. In the arm without CTV, of the 9 patients with local relapse, 6 recurred in-field, 2 recurred in margin, 1 recurred out of field. In the arm with CTV, of the 6 patients with local relapse, 4 recurred in-field, 1 recurred in margin, 1 recurred out of field. The distant metastases rates were 42.6% and 51.4% (p = 0.274) respectively. Grade 3-4 hematological toxicity and radiation esophagitis had no statistically significant, but grade 3-4 radiation pneumonia was observed in only 7.4% in the arm without CTV, compared 22.9% in the arm with CTV (p = 0.040). The median survival in the arm without CTV had not reached, compared with 38 months in the with CTV arm. The l- years, 2- years, 3- years survival rates of the arm without CTV and the arm with CTV were 81.0%, 66.2%, 61.5% and 88.6%, 61.7%, 56.6% (p = 0.517). The multivariate analysis indicated that the distant metastases (p = 0.000) and PCI factor (p = 0.004) were significantly related to overall survival. Target delineation omitting CTV for limited-disease small cell lung cancer received IMRT was feasible. The distant metastases and PCI factor were significantly related to overall survival

  15. Late Toxicity After Intensity-Modulated Radiation Therapy for Localized Prostate Cancer: An Exploration of Dose–Volume Histogram Parameters to Limit Genitourinary and Gastrointestinal Toxicity

    International Nuclear Information System (INIS)

    Pederson, Aaron W.; Fricano, Janine; Correa, David; Pelizzari, Charles A.; Liauw, Stanley L.

    2012-01-01

    Purpose: To characterize the late genitourinary (GU) and gastrointestinal (GI) toxicity for prostate cancer patients treated with intensity-modulated radiation therapy (IMRT) and propose dose–volume histogram (DVH) guidelines to limit late treatment-related toxicity. Methods and Materials: In this study 296 consecutive men were treated with IMRT for adenocarcinoma of the prostate. Most patients received treatment to the prostate with or without proximal seminal vesicles (90%), to a median dose of 76 Gy. Concurrent androgen deprivation therapy was given to 150 men (51%) for a median of 4 months. Late toxicity was defined by Common Toxicity Criteria version 3.0 as greater than 3 months after radiation therapy completion. Four groupings of DVH parameters were defined, based on the percentage of rectal or bladder tissue receiving 70 Gy (V 70 ), 65 Gy (V 65 ), and 40 Gy (V 40 ). These DVH groupings, as well as clinical and treatment characteristics, were correlated to maximal Grade 2+ GU and GI toxicity. Results: With a median follow-up o