WorldWideScience

Sample records for current inhibitor ivabradine

  1. Ivabradine: Current and Future Treatment of Heart Failure.

    Science.gov (United States)

    Thorup, Lene; Simonsen, Ulf; Grimm, Daniela; Hedegaard, Elise R

    2017-08-01

    In heart failure (HF), the heart cannot pump blood efficiently and is therefore unable to meet the body's demands of oxygen, and/or there is increased end-diastolic pressure. Current treatments for HF with reduced ejection fraction (HFrEF) include angiotensin-converting enzyme (ACE) inhibitors, angiotension receptor type 1 (AT 1 ) antagonists, β-adrenoceptor antagonists, aldosterone receptor antagonists, diuretics, digoxin and a combination drug with AT 1 receptor antagonist and neprilysin inhibitor. In HF, the risk of readmission for hospital and mortality is markedly higher with a heart rate (HR) above 70 bpm. Here, we review the evidence regarding the use of ivabradine for lowering HR in HF. Ivabradine is a blocker of an I funny current (I(f)) channel and causes rate-dependent inhibition of the pacemaker activity in the sinoatrial node. In clinical trials of HFrEF, treatment with ivabradine seems to improve clinical outcome, for example improved ejection fraction (EF) and less readmission for hospital, but the effect appears most pronounced in patients with HRs above 70 bpm, while the effect on cardiovascular death appears less consistent. The adverse effects of ivabradine include bradycardia, atrial fibrillation and visual disturbances, but ivabradine avoids the negative inotrope effects observed with β-adrenoceptor antagonists. In conclusion, in patients with stable HFrEF with EF<35% and HR above 70 bpm, ivabradine improves the outcome and might be a first choice of therapy, if beta-adrenoceptor antagonists are not tolerated. Further studies must show whether that can be extended to HF patients with preserved EF. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. I(f) current inhibitor ivabradine in patients with idiopathic dilated cardiomyopathy: Impact on the exercise tolerance and quality of life.

    Science.gov (United States)

    Abdel-Salam, Zainab; Rayan, Mona; Saleh, Ayman; Abdel-Barr, Mohamed G; Hussain, Mohamed; Nammas, Wail

    2015-01-01

    Evidence supported a beneficial effect of ivabradine on clinical outcome of patients with systolic heart failure, and a sinus heart rate (HR) ≥ 70 bpm. We explored the effect of ivabradine, vs. placebo, added to evidence-based treatment on exercise tolerance and quality of life in patients with idiopathic dilated cardiomyopathy. We enrolled 43 consecutive patients with dilated cardiomyopathy of no apparent cause, a left ventricular ejection fraction (LVEF) 0.05 for all). At 3 months, mean dose of ivabradine was 6.8 mg bid. Ivabradine-treated patients had a lower HR, and improved left ventricular dimensions and systolic function, versus placebo-treated ones (p < 0.05 for all). HR dropped by a mean of 14 bpm in the ivabradine group, corrected for placebo. Both exercise tolerance, and Minnesota questionnaire score were better in the ivabradine group (p < 0.05 both). Ivabradine was well-tolerated. In symptomatic patients with idiopathic dilated cardiomyopathy, the addition of ivabradine, vs. placebo, to evidence-based treatment, reduced HR, and improved functional capacity, at short-term follow-up.

  3. Quality of Life With Ivabradine in Patients With Angina Pectoris: The Study Assessing the Morbidity-Mortality Benefits of the If Inhibitor Ivabradine in Patients With Coronary Artery Disease Quality of Life Substudy.

    Science.gov (United States)

    Tendera, Michal; Chassany, Olivier; Ferrari, Roberto; Ford, Ian; Steg, Philippe Gabriel; Tardif, Jean-Claude; Fox, Kim

    2016-01-01

    To explore the effect of ivabradine on angina-related quality of life (QoL) in patients participating in the Study Assessing the Morbidity-Mortality Benefits of the If Inhibitor Ivabradine in Patients with Coronary Artery Disease (SIGNIFY) QoL substudy. QoL was evaluated in a prespecified subgroup of SIGNIFY patients with angina (Canadian Cardiovascular Society class score, ≥ 2 at baseline) using the Seattle Angina Questionnaire and a generic visual analogue scale on health status. Data were available for 4187 patients (2084 ivabradine and 2103 placebo). There were improvements in QoL in both treatment groups. The primary outcome of change in physical limitation score at 12 months was 4.56 points for ivabradine versus 3.40 points for placebo (E, 0.96; 95% confidence interval, -0.14 to 2.05; P=0.085). The ivabradine-placebo difference in physical limitation score was significant at 6 months (P=0.048). At 12 months, the visual analogue scale and the other Seattle Angina Questionnaire dimensions were higher among ivabradine-treated patients, notably angina frequency (Pangina frequency (P=0.034). The effect on QoL was maintained over the study duration, and ivabradine patients had better scores on angina frequency at every visit to 36 months. Treatment with ivabradine did not affect the primary outcome of change in physical limitation score at 12 months. It did produce consistent improvements in other self-reported QoL parameters related to angina pectoris, notably in terms of angina frequency and disease perception. URL: http://www.isrctn.com. Unique identifier: ISRCTN61576291. © 2015 American Heart Association, Inc.

  4. Role of ivabradine in management of stable angina in patients with different clinical profiles

    Science.gov (United States)

    Kaski, Juan Carlos; Gloekler, Steffen; Ferrari, Roberto; Fox, Kim; Lévy, Bernard I; Komajda, Michel; Vardas, Panos; Camici, Paolo G

    2018-01-01

    In chronic stable angina, elevated heart rate contributes to the development of symptoms and signs of myocardial ischaemia by increasing myocardial oxygen demand and reducing diastolic perfusion time. Accordingly, heart rate reduction is a well-known strategy for improving both symptoms of myocardial ischaemia and quality of life (QOL). The heart rate-reducing agent ivabradine, a direct and selective inhibitor of the I f current, decreases myocardial oxygen consumption while increasing diastolic time, without affecting myocardial contractility or coronary vasomotor tone. Ivabradine is indicated for treatment of stable angina and chronic heart failure (HF). This review examines available evidence regarding the efficacy and safety of ivabradine in stable angina, when used as monotherapy or in combination with beta-blockers, in particular angina subgroups and in patients with stable angina with left ventricular systolic dysfunction (LVSD) or HF. Trials involving more than 45 000 patients receiving treatment with ivabradine have shown that this agent has antianginal and anti-ischaemic effects, regardless of age, sex, severity of angina, revascularisation status or comorbidities. This heart rate-lowering agent might also improve prognosis, reduce hospitalisation rates and improve QOL in angina patients with chronic HF and LVSD. PMID:29632676

  5. Real-life indications to ivabradine treatment for heart rate optimization in patients with chronic systolic heart failure.

    Science.gov (United States)

    Tondi, Lara; Fragasso, Gabriele; Spoladore, Roberto; Pinto, Giuseppe; Gemma, Marco; Slavich, Massimo; Godino, Cosmo; Salerno, Anna; Montanaro, Claudia; Margonato, Alberto

    2018-05-11

    : Ivabradine is a selective and specific inhibitor of If current. With its pure negative chronotropic action, it is recommended by European Society of Cardiology and American College of Cardiology/American Heart Association guidelines in symptomatic heart failure patients (NYHA ≥ 2) with ejection fraction 35% or less, sinus rhythm and heart rate (HR) at least 70 bpm, despite maximally titrated β-blocker therapy. Data supporting this indication mainly derive from the SHIFT study, in which ivabradine reduced the combined endpoint of mortality and hospitalization, despite the fact that only 26% of patients enrolled were on optimal β-blocker doses. The aim of the present analysis is to establish the real-life eligibility for ivabradine in a population of patients with systolic heart failure, regularly attending a single heart failure clinic and treated according to guideline-directed medical therapy (GDMT). The clinical cards of 308 patients with heart failure with reduced ejection fraction (HFrEF) through a 68-month period of observation were retrospectively analyzed. GDMT, including β-blocker up-titration to maximal tolerated dose, was implemented during consecutive visits at variable intervals. Demographic, clinical and echocardiographic data were collected at each visit, together with 12-leads ECG and N-terminal pro-B-type natriuretic peptide levels. Out of 308 analyzed HFrEF patients, 220 (71%) were on effective β-blocker therapy, up-titrated to effective/maximal tolerated dose (55 ± 28% of maximal dose) (HR 67 ± 10 bpm). Among the remaining 88 patients, 10 (3.2%) were on maximally tolerated β blocker and ivabradine; 21 patients (6.8%), despite being on maximal tolerated β-blocker dose, had still HR ≥70 bpm, ejection fraction 35% or less and were symptomatic NYHA ≥2, being therefore eligible for ivabradine treatment. The remaining 57 (18%) patients were not on β blocker due to either intolerance or major contraindications. Among

  6. Advances in the management of heart failure: the role of ivabradine

    Directory of Open Access Journals (Sweden)

    Müller-Werdan U

    2016-11-01

    . In this review, we discuss the proven role of ivabradine in the validated indication “HF with reduced EF” together with interesting preliminary findings, and the potential role of ivabradine in further, specific forms of HF. Keywords: heart failure, endotoxin, If inhibitor, ivabradine, pacemaker current inhibitor, heart rate, heart rate variability

  7. Ivabradine in acute coronary syndromes: Protection beyond heart rate lowering.

    Science.gov (United States)

    Niccoli, Giampaolo; Borovac, Josip Anđelo; Vetrugno, Vincenzo; Camici, Paolo G; Crea, Filippo

    2017-06-01

    Ivabradine is a heart rate reducing agent that exhibits anti-ischemic effects through the inhibition of funny electrical current in the sinus node resulting in heart rate reduction, thus enabling longer diastolic perfusion time, and reduced myocardial oxygen consumption without detrimental changes in arterial blood pressure, coronary vasomotion, and ventricular contractility. The current guideline-based clinical use of Ivabradine is reserved for patients with stable angina pectoris who cannot tolerate or whose symptoms are inadequately controlled with beta blockers. In patients with chronic heart failure and reduced ejection fraction, Ivabradine has demonstrated beneficial effects in improving clinical outcomes when added to conventional therapy. However, the role of Ivabradine in acute coronary syndromes has not been established. Based on the results from some relevant preclinical studies and a limited amount of clinical data that were reported recently, the role of Ivabradine in acute ischemic events warrants further investigation. The aim of this review is to provide an overview of the available literature on the potential role of Ivabradine in the clinical context of acute coronary syndromes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ivabradine in combination with beta-blocker therapy for the treatment of stable angina pectoris in every day clinical practice.

    Science.gov (United States)

    Koester, Ralf; Kaehler, Jan; Ebelt, Henning; Soeffker, Gerold; Werdan, Karl; Meinertz, Thomas

    2010-10-01

    The anti-anginal efficacy of the selective I(f) inhibitor ivabradine has been demonstrated in controlled clinical trials. However, there is limited information about the safety and efficacy of a combined treatment of ivabradine with beta-blockers, particularly outside of clinical trials in every day practice. This analysis from the REDUCTION study evaluated the safety and efficacy of a combined therapy of beta-blockers and ivabradine in every day practice. In this multi-center study 4,954 patients with stable angina pectoris were treated with ivabradine in every day routine practice and underwent a clinical follow-up for 4 months. 344 of these patients received a co-medication with beta-blockers. Heart rate (HR), angina pectoris episodes, nitrate consumption, overall efficacy and tolerance were analyzed. After 4 months of treatment with ivabradine HR was reduced by 12.4 ± 11.6 bpm from 84.3 ± 14.6 to 72.0 ± 9.9 bpm, p every day practice.

  9. Effectiveness of Ivabradine in Treating Stable Angina Pectoris.

    Science.gov (United States)

    Ye, Liwen; Ke, Dazhi; Chen, Qingwei; Li, Guiqiong; Deng, Wei; Wu, Zhiqin

    2016-04-01

    Many studies show that ivabradine is effective for stable angina.This meta-analysis was performed to determine the effect of treatment duration and control group type on ivabradine efficacy in stable angina pectoris.Relevant articles in the English language in the PUBMED and EMBASE databases and related websites were identified by using the search terms "ivabradine," "angina," "randomized controlled trials," and "Iva." The final search date was November 2, 2015.Articles were included if they were published randomized controlled trials that related to ivabradine treatment of stable angina pectoris.Patients with stable angina pectoris were included.The patients were classified according to treatment duration (Angina outcomes were heart rate at rest or peak, exercise duration, and time to angina onset.Seven articles were selected. There were 3747 patients: 2100 and 1647 were in the ivabradine and control groups, respectively. The ivabradine group had significantly longer exercise duration when they had been treated for at least 3 months, but not when treatment time was less than 3 months. Ivabradine significantly improved time to angina onset regardless of treatment duration. Control group type did not influence the effect of exercise duration (significant) or time to angina onset (significant).Compared with beta-blocker and placebo, ivabradine improved exercise duration and time to onset of angina in patients with stable angina. However, its ability to improve exercise duration only became significant after at least 3 months of treatment.

  10. Efficacy of ivabradine in idiopathic dilated cardiomyopathy patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Sherief Mansour

    2011-06-01

    Conclusion: Adding ivabradine to optimal medical treatment in HF patients improved symptoms, quality of life, effort tolerance, and echocardiographic parameters, and reduced hospitalization. This beneficial ivabradine effect is probably due to its heart rate–reducing properties.

  11. Ivabradine: An Intelligent Drug for the Treatment of Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Graziano Riccioni

    2012-11-01

    Full Text Available Heart rate (HR is a precisely regulated variable, which plays a critical role in health and disease. Elevated resting HR is a significant predictor of all-cause and cardiovascular mortality in the general population and patients with cardiovascular disease (CVD. β-blocking drugs exert negative effects on regional myocardial blood flow and function when HR reduction is eliminated by atrial pacing; calcium channel antagonists (CCAs functionally antagonize coronary vasoconstriction mediated through α-adreno-receptors and are thus devoid of this undesired effect, but the compounds are nevertheless negative inotropes. From these observations derives the necessity to find alternative, more selective drugs to reduce HR through inhibition of specific electrical current (If. Ivabradine (IVA is a novel specific HR-lowering agent that acts in sinus atrial node (SAN cells by selectively inhibiting the pacemaker If current in a dose-dependent manner by slowing the diastolic depolarization slope of SAN cells, and by reducing HR at rest during exercise in humans. Coronary artery diseases (CAD represent the most common cause of death in middle–aged and older adults in European Countries. Most ischemic episodes are triggered by an increase in HR, that induces an imbalance between myocardial oxygen delivery and consumption. IVA, a selective and specific inhibitor of the If current which reduced HR without adverse hemodynamic effects, has clearly and unequivocally demonstrated its efficacy in the treatment of chronic stable angina pectoris (CSAP and myocardial ischemia with optimal tolerability profile due to selective interaction with If channels. The aim of this review is to point out the usefulness of IVA in the treatment of ischemic heart disease.

  12. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  13. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2013-01-01

    Full Text Available Currently, hepatitis C virus (HCV infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin. The new therapy has significantly improved sustained virologic response (SVR; however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors.

  14. TNF-alpha inhibitors: Current indications

    OpenAIRE

    Sharma Rashmi; Sharma Chaman

    2007-01-01

    Advances in the DNA hybrid technology led to the development of various biologicals that specifically target TNF-α. There are currently three anti- TNF- α drugs available- etanercept, infliximab and adalimumab. Etanercept is approved by FDA for rheumatoid arthritis (RA) in 2000 followed by its approval for ankylosing spondylitis, psoriasis and psoriatic arthritis. Infliximab and adalimumab are approved by FDA in 2002 for RA. Infliximab is also approved for ankylosing spondylitis, ps...

  15. Ivabradine in stable coronary artery disease without clinical heart failure

    DEFF Research Database (Denmark)

    Fox, Kim; Ford, Ian; Steg, Philippe Gabriel

    2014-01-01

    minute or more. METHODS: We conducted a randomized, double-blind, placebo-controlled trial of ivabradine, added to standard background therapy, in 19,102 patients who had both stable coronary artery disease without clinical heart failure and a heart rate of 70 beats per minute or more (including 12......,049 patients with activity-limiting angina [class ≥II on the Canadian Cardiovascular Society scale, which ranges from I to IV, with higher classes indicating greater limitations on physical activity owing to angina]). We randomly assigned patients to placebo or ivabradine, at a dose of up to 10 mg twice daily......, with the dose adjusted to achieve a target heart rate of 55 to 60 beats per minute. The primary end point was a composite of death from cardiovascular causes or nonfatal myocardial infarction. RESULTS: At 3 months, the mean (±SD) heart rate of the patients was 60.7±9.0 beats per minute in the ivabradine group...

  16. Current treatment of dyslipidaemia: PCSK9 inhibitors and statin intolerance.

    Science.gov (United States)

    Koskinas, Konstantinos; Wilhelm, Matthias; Windecker, Stephan

    2016-01-01

    Statins are the cornerstone of the management of dyslipidaemias and prevention of cardiovascular disease. Although statins are, overall, safe and well tolerated, adverse events can occur and constitute an important barrier to maintaining long-term adherence to statin treatment. In patients who cannot tolerate statins, alternative treatments include switch to another statin, intermittent-dosage regimens and non-statin lipid-lowering medications. Nonetheless, a high proportion of statin-intolerant patients are unable to achieve recommended low-density lipoprotein (LDL) cholesterol goals, thereby resulting in substantial residual cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease implicated in LDL receptor degradation and plays a central role in cholesterol metabolism. In recent studies, PCSK9 inhibition by means of monoclonal antibodies achieved LDL cholesterol reductions of 50% to 70% across various patient populations and background lipid-lowering therapies, while maintaining a favourable safety profile. The efficacy and safety of the monoclonal antibodies alirocumab and evolocumab were confirmed in statin-intolerant patients, indicating that PCSK9 inhibitors represent an attractive treatment option in this challenging clinical setting. PCSK9 inhibitors recently received regulatory approval for clinical use and may be considered in properly selected patients according to current consensus documents, including patients with statin intolerance. In this review we summarise current evidence regarding diagnostic evaluation of statin-related adverse events, particularly statin-associated muscle symptoms, and we discuss current recommendations on the management of statin-intolerant patients. In view of emerging evidence of the efficacy and safety of PCSK9 inhibitors, we further discuss the role of monoclonal PCSK9 antibodies in the management of statin-intolerant hypercholesterolaemic patients.

  17. Is There a Role for Ivabradine in the Contemporary Management of Patients with Chronic Heart Failure in Academic and Community Heart Failure Clinics in Canada?

    Science.gov (United States)

    Roth, Sherryn; Fernando, Carlos; Azeem, Sadia; Moe, Gordon W

    2017-06-01

    In patients with heart failure (HF) and reduced ejection fraction, increased heart rate (HR) is an independent risk factor for adverse outcomes. In systolic HF treatment with the If inhibitor ivabradine trial (SHIFT), Ivabradine improved survival when added to conventional treatment including β-blockers. However, the extent of benefit in the real world is unclear. We examined the characteristics of patients on guideline-directed therapy and determined who had SHIFT-like characteristics. A total of 1096 patients with chronic HF were reviewed from June 2014 to April 2015 in two HF clinics in Toronto: an academic institution (AI), and a community hospital (CH) clinic. SHIFT-like characteristics [left ventricular ejection fraction (LVEF) ≤35%; sinus rhythm; and HR ≥ 70 bpm] were described. For all patients, mean age was 75 ± 13 years, overall LVEF was 44 ± 15%, AI less than CH (41.9 ± 14.0% vs. 45.7 ± 15.0%; p < 0.0001). More than two-thirds of patients in both groups were on β-blockers; with less than one-third at target dose. The proportion of patients with SHIFT-like characteristics was 8.4% AI and 11.7% CH, respectively (p = 0.0658). In HF clinics from both academic and community hospitals in Toronto, up-titration in the dose of β-blockers and other guideline therapy can be improved on. A small proportion of patients with HF and SHIFT-like characteristics may potentially benefit from the addition of Ivabradine, just approved in Canada; this number will be further reduced if target dosage for β-blockers is achieved. Servier Inc.

  18. PCSK9 inhibitors in the current management of atherosclerosis.

    Science.gov (United States)

    Whayne, Thomas F

    The history of proprotein convertase subtilisin/kexin type 9 (PCSK9) in medical science is fascinating and the evolution of knowledge of its function has resulted in new medications of major importance for the cardiovascular (CV) patient. PCSK9 functions as a negative control or feedback for the cell surface receptors for low-density lipoprotein including its component of cholesterol (LDL-C). The initial and key findings were that different abnormalities of PCSK9 can result in an increase or a decrease of LDL-C because of more or less suppression of cell surface receptors. These observations gave hints and awoke interest that it might be possible to prepare monoclonal antibodies to PCSK9 and decrease its activity, after which there should be more active LDL-C cell receptors. The rest is a fascinating story that currently has resulted in two PCSK9 inhibitors, alirocumab and evolocumab, which, on average, decrease LDL-C approximately 50%. Nevertheless, if there are no contraindications, statins remain the standard of prevention for the high-risk CV patient and this includes both secondary and primary prevention. The new inhibitors are for the patient that does not attain the desired target for LDL-C reduction while taking a maximum statin dose or who does not tolerate any statin dose whatsoever. Atherosclerosis can be considered a metabolic disease and the clinician needs to realize this and think more and more of CV prevention. These inhibitors can contribute to both the stabilization and regression of atherosclerotic plaques and thereby avoid or delay major adverse cardiac events. (United States). Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  19. Pre-treatment with a sinus node blockade, ivabradine, before coronary CT angiography

    DEFF Research Database (Denmark)

    Lambrechtsen, J; Egstrup, K

    2013-01-01

    To evaluate whether a simple pre-treatment regimen of sinus node inhibition by ivabradine taken at home for only 1 day resulted in a lower pre-scanning heart rate (HR) and reduced the need for intravenous beta-blockers (BB) prior to coronary computed tomography angiography (CTA)....

  20. Potential Additive Effects of Ticagrelor, Ivabradine, and Carvedilol on Sinus Node

    Directory of Open Access Journals (Sweden)

    Luigi Di Serafino

    2014-01-01

    Full Text Available A 51-year-old male patient presented to the emergency room with an anterior ST-elevation myocardial infarction. After a loading dose of both ticagrelor and aspirin, the patient underwent primary-PCI on the left anterior descending coronary artery with stent implantation. After successful revascularization, medical therapy included beta-blockers, statins, and angiotensin II receptor antagonists. Two days later, ivabradine was also administered in order to reduce heart rate at target, but the patient developed a severe symptomatic bradycardia and sinus arrest, even requiring administration of both atropine and adrenaline. Ivabradine and ticagrelor have been then suspended and this latter changed with prasugrel. Any other similar event was not reported during the following days. This clinical case raised concerns about the safety of the combination of beta-blockers and ivabradine in patients treated with ticagrelor, particularly during the acute phase of an acute coronary syndrome. These two latter drugs, in particular, might interact with the same receptor. In fact, ivabradine directly modulates the If-channel which is also modulated by the cyclic adenosine monophosphate levels. These latter have been shown to increase after ticagrelor assumption via inhibition of adenosine uptake by erythrocytes. Further studies are warrant to better clarify the safety of this association.

  1. Ivabradine Improves Heart Rate Variability in Patients with Nonischemic Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ertugrul Kurtoglu

    2014-10-01

    Full Text Available Background: Ivabradine is a novel specific heart rate (HR-lowering agent that improves event-free survival in patients with heart failure (HF. Objectives: We aimed to evaluate the effect of ivabradine on time domain indices of heart rate variability (HRV in patients with HF. Methods: Forty-eight patients with compensated HF of nonischemic origin were included. Ivabradine treatment was initiated according to the latest HF guidelines. For HRV analysis, 24-h Holter recording was obtained from each patient before and after 8 weeks of treatment with ivabradine. Results: The mean RR interval, standard deviation of all normal to normal RR intervals (SDNN, the standard deviation of 5-min mean RR intervals (SDANN, the mean of the standard deviation of all normal-to-normal RR intervals for all 5-min segments (SDNN index, the percentage of successive normal RR intervals exceeding 50 ms (pNN50, and the square root of the mean of the squares of the differences between successive normal to normal RR intervals (RMSSD were low at baseline before treatment with ivabradine. After 8 weeks of treatment with ivabradine, the mean HR (83.6 ± 8.0 and 64.6 ± 5.8, p < 0.0001, mean RR interval (713 ± 74 and 943 ± 101 ms, p < 0.0001, SDNN (56.2 ± 15.7 and 87.9 ± 19.4 ms, p < 0.0001, SDANN (49.5 ± 14.7 and 76.4 ± 19.5 ms, p < 0.0001, SDNN index (24.7 ± 8.8 and 38.3 ± 13.1 ms, p < 0.0001, pNN50 (2.4 ± 1.6 and 3.2 ± 2.2 %, p < 0.0001, and RMSSD (13.5 ± 4.6 and 17.8 ± 5.4 ms, p < 0.0001 substantially improved, which sustained during both when awake and while asleep. Conclusion: Our findings suggest that treatment with ivabradine improves HRV in nonischemic patients with HF.

  2. IVABRADINE LOADED SOLID LIPID MICROPARTICLES: FORMULATION, CHARACTERIZATION AND OPTIMIZATION BY CENTRAL COMPOSITE ROTATABLE DESIGN.

    Science.gov (United States)

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Sher, Muhammad

    2017-01-01

    The current research focused on improvement of oral bioavailability and decrease in dosing frequency of ivabradine (Iva) in order to enhance patient compliance by formulating novel sustained release Iva loaded solid lipid microparticles (SLMs) with the help of melt emulsification technique. SLMs formulations were designed with the help of three level central composite rotatable design (CCRD) to study the impact of independent variables like lipid concentration, surfactant concentration and stirring speed on responses - percentage yield (Y,) and entrapment efficiency (Y2). Compatibility between the drug and bees wax (BW) was checked by conducting Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). SLMs were further evaluated for rheological behavior, zeta potential, particle size and for morphology by scanning'electron microscope (SEM). The release of drug from SLMs was conducted by USP type-Il apparatus at pH 1.2, pH 6.8 and data were analyzed by different kinetic models like zero order, first order, Higuchi model, Korsmeyer-Peppas and Hixon-Crowell models. The rheo- logical studies approved the good flow behavior of SLMs and spherical smooth surface of SLMs was observed from SEM. DSC, FTIR and XRD studies concluded the lack of any possible interaction between formulation components. The size-of SLMs ranged from 300 to 500 pm and zeta potential study showed the presence of higher negative charge (-30 to -52 mV). Response Y, varied from 53 to 90% and response Y2 ranged from 29 to 78% indicating the effect of formulation variables. The obtained outcomes were analyzed by second order polynomial equation and suggested quadratic model was also validated. SLMs released Iva from 54 to 90% at pH 6.8 and was significantly (p 0.05) affected by BW concentration. The release mechanism followed the zero order and Korsmeyer-Peppas (n 0.85) kinetic models suggesting slow erosion along with diffusion

  3. Novel Bruton's tyrosine kinase inhibitors currently in development

    Directory of Open Access Journals (Sweden)

    D'Cruz OJ

    2013-03-01

    Full Text Available Osmond J D'Cruz,1 Fatih M Uckun1,21Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Department of Pediatrics, University of Southern California, Los Angeles, CA, USAAbstract: Bruton's tyrosine kinase (Btk is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.Keywords: tyrosine kinase, personalized therapy, kinase inhibitors, Btk, leukemia, lymphoma

  4. CSF-1R Inhibitor Development: Current Clinical Status.

    Science.gov (United States)

    Peyraud, Florent; Cousin, Sophie; Italiano, Antoine

    2017-09-05

    Colony-stimulating factor 1 receptor (CSF-1R) and its ligands, CSF-1 and interleukin 34 (IL-34), regulate the function and survival of tumor-associated macrophages, which are involved in tumorigenesis and in the suppression of antitumor immunity. Moreover, the CSF-1R/CSF-1 axis has been implicated in the pathogenesis of pigmented villonodular synovitis (PVNS), a benign tumor of the synovium. As advanced or metastatic malignant solid tumors and relapsed/refractory PVNS remain unresolved therapeutic problems, new approaches are needed to improve the outcome of patients with these conditions. In solid tumors, targeting CSF-1R via either small molecules or antibodies has shown interesting results in vitro but limited antitumor activity in vivo. Concerning PVNS, clinical trials assessing CSF-1R inhibitors have revealed promising initial outcomes. Blocking CSF-1/CSF-1R signaling represents a promising immunotherapy approach and several new potential combination therapies for future clinical testing.

  5. Monamine oxidase inhibitors: current and emerging agents for Parkinson disease.

    Science.gov (United States)

    Fernandez, Hubert H; Chen, Jack J

    2007-01-01

    Monoamine oxidase type B (MAO-B) is the predominant isoform responsible for the metabolic breakdown of dopamine in the brain. Selective inhibition of brain MAO-B results in elevation of synaptosomal dopamine concentrations. Data have been reported regarding the selective MAO-B inhibitors, rasagiline and selegiline, for the symptomatic treatment of Parkinson disease (PD). Selegiline has demonstrated efficacy as monotherapy in patients with early PD (Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism study), but evidence of selegiline efficacy as adjunctive treatment in levodopa-treated PD patients with motor fluctuations is equivocal. A new formulation of selegiline (Zydis selegiline) has been evaluated in 2 small, placebo-controlled studies as adjunctive therapy to levodopa. The Zydis formulation allows pregastric absorption of selegiline, minimizing first-pass metabolism, and thereby increasing selegiline bioavailability and reducing the concentration of amphetamine metabolites. Rasagiline is a selective, second-generation, irreversible MAO-B inhibitor, with at least 5 times the potency of selegiline in vitro and in animal models. Rasagiline has demonstrated efficacy in 1 large, randomized, double-blind, placebo-controlled trial (TVP-1012 in Early Monotherapy for Parkinson's Disease Outpatients) as initial monotherapy in patients with early PD, and in 2 large, controlled trials (Parkinson's Rasagiline: Efficacy and Safety in the Treatment of "Off," Lasting Effect in Adjunct Therapy With Rasagiline Given Once Daily) as adjunctive treatment in levodopa-treated PD patients with motor fluctuations. Unlike selegiline, rasagiline is an aminoindan derivative with no amphetamine metabolites. A randomized clinical trial is underway to confirm preclinical and preliminary clinical data suggesting rasagiline has disease-modifying effects.

  6. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  7. Acute effect of ivabradine on heart rate and myocardial oxygen consumption in dogs with asymptomatic mitral valve degeneration.

    Science.gov (United States)

    Pirintr, Prapawadee; Limprasutr, Vudhiporn; Saengklub, Nakkawee; Pavinadol, Parnpradub; Yapao, Napat; Limvanicharat, Natthakarn; Kuecharoen, Hathaisiri; Kijtawornrat, Anusak

    2018-05-14

    Degenerative mitral valve disease (DMVD) is a common cardiac disease in geriatric dogs characterized by the degeneration of the mitral valve, leading to decreased cardiac output and activation of the sympathetic and renin-angiotensin-aldosterone system. This disease results in an increased resting heart rate (HR) and myocardial oxygen consumption (MVO 2 ). A recent publication demonstrated that dogs with asymptomatic DMVD had a significantly higher HR and systemic blood pressure (BP) than age-matched control dogs. This higher HR will eventually contribute to increased MVO 2 . This study aimed to determine the effects of a single oral dose of ivabradine on the HR, MVO 2 as assessed by the rate-pressure product, and BP in dogs with asymptomatic DMVD. Seven beagles with naturally occurring DMVD were instrumented by the Holter recorder and an oscillometric device to measure electrocardiogram and BP for 24 and 12 h, respectively. Each dog was randomly subjected to receive either placebo or ivabradine (0.5, 1.0 and 2.0 mg/kg). The results revealed that oral administration of ivabradine significantly decreased the HR and rate-pressure product in a dose-dependent manner without adverse effects. The highest dose of 2.0 mg/kg significantly reduced systolic and mean BP. Therefore, the findings imply that a single oral ivabradine administration at a dose of 1.0 mg/kg is suitable for dogs with asymptomatic DMVD to reduce the HR and MVO 2 without marked effects on BP. This may potentially make ivabradine promising for management of an elevated HR in DMVD dogs.

  8. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial

    DEFF Research Database (Denmark)

    Fox, Kim; Ford, Ian; Steg, P Gabriel

    2008-01-01

    .9) beats per minute (bpm). Median follow-up was 19 months (IQR 16-24). Ivabradine reduced heart rate by 6 bpm (SE 0.2) at 12 months, corrected for placebo. Most (87%) patients were receiving beta blockers in addition to study drugs, and no safety concerns were identified. Ivabradine did not affect...... the primary composite endpoint (hazard ratio 1.00, 95% CI 0.91-1.1, p=0.94). 1233 (22.5%) patients in the ivabradine group had serious adverse events, compared with 1239 (22.8%) controls (p=0.70). In a prespecified subgroup of patients with heart rate of 70 bpm or greater, ivabradine treatment did not affect...... disease outcomes in a subgroup of patients who have heart rates of 70 bpm or greater....

  9. IVABRADINE AND QUALITY OF BIOFEEDBACK IN THE LOOP OF PACED BREATHING UNDER THE CONTROL OF HEART RATE VARIABILITY PARAMETERS IN HEALTHY VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2013-06-01

    Full Text Available On 15 healthy volunteers aged from 18 to 22 years the effect of ivabradine on the quality of biofeedback in the loop of paced breathing under the control of heart rate variability parameters were estimated. It was found that ivabradine contributes to an earlier onset and more significant optimization of regulatory systems in systematic sessions of biofeedback that allows to expand the indications for its clinical use.

  10. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    Science.gov (United States)

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nemaline myopathy and heart failure: role of ivabradine; a case report.

    Science.gov (United States)

    Sarullo, Filippo M; Vitale, Giuseppe; Di Franco, Antonino; Sarullo, Silvia; Salerno, Ylenia; Vassallo, Laura; Baviera, Emanuela Petrona; Marazia, Stefania; Mandalà, Giorgio; Lanza, Gaetano A

    2015-01-19

    Nemaline myopathy (NM) is a rare congenital myopathy characterized by muscle weakness, hypotonia and the presence in muscle fibers of inclusions known as nemaline bodies and a wide spectrum of clinical phenotypes, ranging from severe forms with neonatal onset to asymptomatic forms. The adult-onset form is heterogeneous in terms of clinical presentation and disease progression. Cardiac involvement occurs in the minority of cases and little is known about medical management in this subgroup of NM patients. We report a rare case of heart failure (HF) in a patient with adult-onset NM in whom ivabradine proved to be able to dramatically improve the clinical picture. We report a case of a 37-year-old man with adult-onset NM, presenting with weakness and hypotonia of the proximal limb muscles and shoulder girdle, severely limiting daily activities. He developed progressive HF over a period of 6 months while attending a rehabilitation program, with reduced left ventricular ejection fraction (LVEF = 20%), manifested by dyspnea and signs of systemic congestion. The patient was started HF therapy with enalapril, carvedilol, spironolactone and loop diuretics. Target HF doses of these drugs (including carvedilol) were not reached because of symptomatic hypotension causing a high resting heart rate (HR) ≥70 beats per minute (bpm). Further deterioration of the clinical picture occurred with several life-threatening arrhythmic episodes requiring external defibrillation. An implantable cardioverter defibrillator (ICD) was then implanted. Persistent high resting HR was successfully treated with ivabradine with HR lowering from 90 bpm to 55 bpm at 1 month follow up, LVEF rising to 50% at 3 month follow up and to 54% at 2,5 year follow up. To date no more hospitalizations for heart failure occurred. A single hospitalization due to aspiration pneumonia required insertion of a tracheostomy tube to protect airways from further aspiration. At present, the patient is attending

  12. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    Science.gov (United States)

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  13. Ivabradine, a novel heart rate slower: is it a sword of double blades in patients with idiopathic dilated cardiomyopathy?

    Science.gov (United States)

    Rayan, Mona; Tawfik, Mazen; Alabd, Ali; Gamal, Amr

    2011-08-01

    To prospectively assess the safety and efficacy of ivabradine in patients with idiopathic dilated cardiomyopathy. We included 35 patients with idiopathic dilated cardiomyopathy with an ejection fraction (EF) 70 beats/min despite optimal medical therapy, according to the international guidelines in this prospective, non-randomized, single-arm, open-label safety study. Ivabradine was used as an add-on therapy to the maximally tolerated b-blocker in an increasing titrated dose till a target dose of 15 mg/day or resting heart rate of 60 beats/min for 3 months. During follow-up period the safety, patient tolerance and efficacy of this drug were assessed. All patients underwent 12-lead resting electrocardiography and Holter monitoring at inclusion and after 3 months. Statistical analysis was accomplished using paired t-test and Pearson correlation analysis. We found a significant reduction in the resting heart rate by a mean of 25.9 ± 9.4%, without a significant change of blood pressure. There was no prolongation of PR, QTc or QRS durations. Ventricular ectopic activity showed significant reduction (p<0.001). There was a significant correlation between the resting heart rate, NYHA and left ventricular ejection fraction (p<0.001 for both). One patient developed photopsia and decompensation was observed in another patient. Ivabradine is a safe and effective drug in reducing resting heart rate, improving NYHA functional class without undesirable effects on conduction parameters or ectopic activity.

  14. Angiotensin converting enzyme (ACE) inhibitors and renal function. A review of the current status

    DEFF Research Database (Denmark)

    Kamper, A L

    1991-01-01

    studies have been published to date. In chronic renal failure, ACE inhibitors may worsen anaemia and hyperkalaemia. Renovascular hypertension can be treated with ACE inhibitors, but the treatment may lead to a compromised renal function. The dosage of these drugs should be reduced in renal failure...

  15. ASSESSMENT OF THE CHANGES IN BLOOD PRESSURE CIRCADIAN PROFILE AND VARIABILITY IN PATIENTS WITH CHRONIC HEART FAILURE AND ARTERIAL HYPERTENSION DURING COMBINED THERAPY INCLUDING IVABRADINE

    Directory of Open Access Journals (Sweden)

    M. V. Surovtseva

    2012-01-01

    Full Text Available Aim. To assess the changes in blood pressure (BP circadian profile and variability in patients with chronic heart failure (CHF of ischemic etiology and arterial hypertension (HT due to the complex therapy including ivabradine. Material and methods. Patients (n=90 with CHF class II–III NYHA associated with stable angina II-III class and HT were examined. The patients were randomized into 3 groups depending on received drugs: perindopril and ivabradine - group 1; perindopril, bisoprolol and ivabradine - group 2; perindopril and bisoprolol - group 3. The duration of therapy was 6 months. Ambulatory BP monitoring (ABPM was assessed at baseline and after treatment. Results. More significant reduction in average 24-hours systolic BP was found in groups 1 and 2 compared to group 3 (Δ%: -19.4±0,4; -21.1±0.4 and -11.8±0.6, respectively as well as diastolic BP (Δ%: -10.6±0.6; -12.9±0.4 and -4,3±0.3, respectively and other ABPM indicators. Improvement of BP circadian rhythm was found due to increase in the number of «Dipper» patients (p=0.016. More significant reduction in average daily and night systolic and diastolic BP (p=0.001, as well as daily and night BP variability (p=0.001 was also found in patients of group 2 compared to these of group 1. Conclusion. Moderate antihypertensive effect (in respect of both diastolic and systolic BP was shown when ivabradine was included into the complex therapy of patients with ischemic CHF and HT. The effect was more pronounced when ivabradine was combined with perindopril and bisoprolol. This was accompanied by reduction in high BP daily variability and improvement of the BP circadian rhythm. 

  16. ASSESSMENT OF THE CHANGES IN BLOOD PRESSURE CIRCADIAN PROFILE AND VARIABILITY IN PATIENTS WITH CHRONIC HEART FAILURE AND ARTERIAL HYPERTENSION DURING COMBINED THERAPY INCLUDING IVABRADINE

    Directory of Open Access Journals (Sweden)

    M. V. Surovtseva

    2015-12-01

    Full Text Available Aim. To assess the changes in blood pressure (BP circadian profile and variability in patients with chronic heart failure (CHF of ischemic etiology and arterial hypertension (HT due to the complex therapy including ivabradine. Material and methods. Patients (n=90 with CHF class II–III NYHA associated with stable angina II-III class and HT were examined. The patients were randomized into 3 groups depending on received drugs: perindopril and ivabradine - group 1; perindopril, bisoprolol and ivabradine - group 2; perindopril and bisoprolol - group 3. The duration of therapy was 6 months. Ambulatory BP monitoring (ABPM was assessed at baseline and after treatment. Results. More significant reduction in average 24-hours systolic BP was found in groups 1 and 2 compared to group 3 (Δ%: -19.4±0,4; -21.1±0.4 and -11.8±0.6, respectively as well as diastolic BP (Δ%: -10.6±0.6; -12.9±0.4 and -4,3±0.3, respectively and other ABPM indicators. Improvement of BP circadian rhythm was found due to increase in the number of «Dipper» patients (p=0.016. More significant reduction in average daily and night systolic and diastolic BP (p=0.001, as well as daily and night BP variability (p=0.001 was also found in patients of group 2 compared to these of group 1. Conclusion. Moderate antihypertensive effect (in respect of both diastolic and systolic BP was shown when ivabradine was included into the complex therapy of patients with ischemic CHF and HT. The effect was more pronounced when ivabradine was combined with perindopril and bisoprolol. This was accompanied by reduction in high BP daily variability and improvement of the BP circadian rhythm. 

  17. Review of current classification, molecular alterations, and tyrosine kinase inhibitor therapies in myeloproliferative disorders with hypereosinophilia

    Directory of Open Access Journals (Sweden)

    Havelange V

    2013-08-01

    Full Text Available Violaine Havelange,1,2 Jean-Baptiste Demoulin1 1de Duve Institute, Université catholique de Louvain, Brussels, Belgium; 2Department of Hematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium Abstract: Recent advances in our understanding of the molecular mechanisms underlying hypereosinophilia have led to the development of a 'molecular' classification of myeloproliferative disorders with eosinophilia. The revised 2008 World Health Organization classification of myeloid neoplasms included a new category called “myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1.” Despite the molecular heterogeneity of PDGFR (platelet-derived growth factor receptor rearrangements, tyrosine kinase inhibitors at low dose induce rapid and complete hematological remission in the majority of these patients. Other kinase inhibitors are promising. Further discoveries of new molecular alterations will direct the development of new specific inhibitors. In this review, an update of the classifications of myeloproliferative disorders associated with hypereosinophilia is discussed together with open and controversial questions. Molecular mechanisms and promising results of tyrosine kinase inhibitor treatments are reviewed. Keywords: hypereosinophilia, classification, myeloproliferative disorders, molecular alterations, tyrosine kinase inhibitor

  18. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ali Kamal Attia

    2017-04-01

    Full Text Available Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0 using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10-6-3.475 x 10-5 mol L-1. The limits of detection and quantification were found to be 5.160 x 10-7 and 1.720 x 10-6 mol L-1, respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  19. Voltammetric Determination of Ivabradine Hydrochloride Using Multiwalled Carbon Nanotubes Modified Electrode in Presence of Sodium Dodecyl Sulfate.

    Science.gov (United States)

    Attia, Ali Kamal; Abo-Talib, Nisreen Farouk; Tammam, Marwa Hosny

    2017-04-01

    Purpose: A new sensitive sensor was fabricated for the determination of ivabradine hydrochloride (IH) based on modification with multiwalled carbon nanotubes using sodium dodecyl sulfate as micellar medium to increase the sensitivity. Methods: The electrochemical behavior of IH was studied in Britton-Robinson buffer (pH: 2.0-11.0) using cyclic and differential pulse voltammetry. Results: The voltammetric response was linear over the range of 3.984 x 10 -6 -3.475 x 10 -5 mol L -1 . The limits of detection and quantification were found to be 5.160 x 10 -7 and 1.720 x 10-6 mol L -1 , respectively. Conclusion: This method is suitable for determination of IH in tablets and plasma.

  20. Current Advances in Developing Inhibitors of Bacterial Multidrug 
Efflux Pumps

    Science.gov (United States)

    Mahmood, Hannah Y.; Jamshidi, Shirin; Sutton, J. Mark; Rahman, Khondaker M.

    2016-01-01

    Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria. PMID:26947776

  1. Isolation of xanthyletin, an inhibitor of ants' symbiotic fungus, by high-speed counter-current chromatography.

    Science.gov (United States)

    Cazal, Cristiane de Melo; Domingues, Vanessa de Cássia; Batalhão, Jaqueline Raquel; Bueno, Odair Corrêa; Filho, Edson Rodrigues; da Silva, Maria Fátima G Fernandes; Vieira, Paulo Cezar; Fernandes, João Batista

    2009-05-08

    Xanthyletin, an inhibitor of symbiotic fungus (Leucoagaricus gongylophorus) of leaf-cutting ant (Atta sexdens rubropilosa), as well as suberosin, seselin and xanthoxyletin were isolated from Citrus sinensis grafted on Citrus limonia. A two-phase solvent system composed of hexane/ethanol/acetonitrile/water (10:8:1:1, v/v) was used for the high-speed counter-current chromatographic isolation of xanthyletin with high yield and over 99% purity as determined by liquid and gas chromatography with mass spectrometry detection. Identifications were performed by UV spectra, IR spectra, (1)H NMR and (13)C NMR.

  2. Matrix Metalloproteinase Inhibitors (MMPIs from Marine Natural Products: the Current Situation and Future Prospects

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2009-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.

  3. Death and dependence: current controversies over the selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Nutt, David J

    2003-12-01

    Recent years have seen a considerable media interest in the adverse effects of the selective serotonin reuptake inhibitors (SSRIs). This has led to claims that these antidepressants may lead to suicide and homicide and that they cause dependence or even addiction. Such claims have caused great concerns to many patients and have confused doctors in both primary care and psychiatric practice. In this article I review the basis of these claims and show that many seem to emerge from the misinterpretation of evidence and the use of imprecise definitions. Although the SSRIs are not free of problems they compare very favourably with other antidepressants and other classes of psychotropic drugs. There is no evidence they are addictive in the formal sense of leading to a drug dependence syndrome. Some suggestions on the way these issues can be more precisely defined and studied in future are given.

  4. Current drug therapy of patients with BPH-LUTS with the special emphasis on PDE5 inhibitors.

    Science.gov (United States)

    Kolontarev, Konstantin; Govorov, Alexander; Kasyan, George; Priymak, Diana; Pushkar, Dmitry

    2016-01-01

    Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptom (LUTS) development in men [1]. The intensity of the symptoms may vary from mild to severe, significantly affecting the quality of life. Erectile dysfunction (ED) is one of the most challenging issues in modern urology that significantly influences the quality of life in men worldwide. The objective of this literature review was to analyze the current drug therapies of patients with BPH-LUTS, with the special emphasis on PDE5 inhibitors. The authors searched the literature for the period from 2000 until 2015 in MEDLINE and PubMed. Twenty-three articles were selected based on their reliability. A detailed analysis of the selected papers was performed. Primary attention was given to articles describing the use of PDE5. Works describing the use of different groups of drugs in patients with BPH-LUTS were also selected. The current literature analysis suggests that the introduction of PDE5 inhibitors in clinical practice for the treatment of patients with BPH-LUTS will allow for significant expansion of the therapeutic options for the treatment of this disease.

  5. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  6. Sodium-glucose cotransporter 2 inhibitors combined with dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes: a review of current clinical evidence and rationale

    Directory of Open Access Journals (Sweden)

    Yassin SA

    2017-03-01

    Full Text Available Sayf A Yassin,1 Vanita R Aroda2 1MedStar Union Memorial Hospital, Baltimore, 2MedStar Health Research Institute, Hyattsville, MD, USA Abstract: Type 2 diabetes mellitus (T2DM is a progressive and multifactorial cardiometabolic disorder. Almost half of adults with diabetes fail to achieve their recommended glucose control target. This has prompted some clinicians to advocate the use of more intensive initial therapy, including the use of combination therapy to target multiple physiologic defects in diabetes with the goal of achieving and sustaining glucose control. Numerous options exist for combining the various classes of glucose-lowering agents in the treatment of T2DM. This report reviews the mechanism, rationale, and evidence from clinical trials for combining two of the newer drug classes, namely, dipeptidyl peptidase-4 inhibitors and sodium-glucose cotransporter 2 inhibitors, and considers the possible role of such dual therapy in the management of T2DM. Keywords: sodium-glucose cotransporter 2 inhibitors, dipeptidyl peptidase-4 inhibitors, type 2 diabetes mellitus, combination therapy

  7. Current Diagnosis and Management of Immune Related Adverse Events (irAEs Induced by Immune Checkpoint Inhibitor Therapy

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2017-02-01

    Full Text Available The indications of immune checkpoint inhibitors (ICIs are set to rise further with the approval of newer agent like atezolimumab for use in patients with advanced stage urothelial carcinoma. More frequent use of ICIs has improved our understanding of their unique side effects, which are known as immune-related adverse events (irAEs. The spectrum of irAEs has expanded beyond more common manifestations such as dermatological, gastrointestinal and endocrine effects to rarer presentations involving nervous, hematopoietic and urinary systems. There are new safety data accumulating on ICIs in patients with previously diagnosed autoimmune conditions. It is challenging for clinicians to continuously update their working knowledge to diagnose and manage these events successfully. If diagnosed timely, the majority of events are completely reversible, and temporary immunosuppression with glucocorticoids, infliximab or other agents is warranted only in the most severe grade illnesses. The same principles of management will possibly apply as newer anti- cytotoxic T lymphocytes-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1/PD-L1 antibodies are introduced. The current focus of research is for prophylaxis and for biomarkers to predict the onset of these toxicities. In this review we summarize the irAEs of ICIs and emphasize their growing spectrum and their management algorithms, to update oncology practitioners.

  8. The inward rectifier current inhibitor PA-6 terminates atrial fibrillation and does not cause ventricular arrhythmias in goat and dog models

    NARCIS (Netherlands)

    Ji, Yuan; Varkevisser, Rosanne; Opacic, Dragan; Bossu, Alexandre; Kuiper, Marion; Beekman, Jet D.M.; Yang, Sihyung; Khan, Azinwi Phina; Dobrev, Dobromir; Voigt, Niels; Wang, Michael Zhuo; Verheule, Sander; Vos, Marc A.; van der Heyden, Marcel A.G.

    2017-01-01

    Background and Purpose: The density of the inward rectifier current (IK1) increases in atrial fibrillation (AF), shortening effective refractory period and thus promoting atrial re-entry. The synthetic compound pentamidine analogue 6 (PA-6) is a selective and potent IK1 inhibitor. We tested PA-6 for

  9. [Prospect and Current Situation of Immune Checkpoint Inhibitors 
in First-line Treatment in Advanced Non-small Cell Lung Cancer Patients].

    Science.gov (United States)

    Wang, Haiyang; Yu, Xiaoqing; Fan, Yun

    2017-06-20

    With the breakthroughs achieved of programmed death-1 (PD-1)/PD-L1 inhibitors monotherapy as first-line and second-line treatment in advanced non-small cell lung cancer (NSCLC), the treatment strategy is gradually evolving and optimizing. Immune combination therapy expands the benefit population and improves the curative effect. A series of randomized phase III trials are ongoing. In this review, we discuss the prospect and current situation of immune checkpoint inhibitors in first-line treatment in advanced NSCLC patients.

  10. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amanda J. Watson

    2016-05-01

    Full Text Available RET (REarranged during Transfection is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent.   At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR, lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments.   In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series.  Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.

  11. Comparative efficacy of amiodarone with ivabradin combination or amiodarone with bisoprolol combination in the prevention of atrial fibrillation recurrence in pa- tients with left ventricular diastolic dysfunction

    Directory of Open Access Journals (Sweden)

    K. G. Adamyan

    2015-01-01

    Full Text Available Aim. To study the efficacy of use of amiodarone with ivabradine combination or amiodarone with bisoprolol combination in the prevention of atrial fibrillation (AF recurrence in patients (pts with left ventricular diastolic dysfunction (LVDD after conversion to sinus rhythm. Material and methods. 65 patients (40 males, 25 females aged 53±8 years with persistent AF and LVDD were included into the study and randomized into 3 groups to receive ivabradine and amiodarone (22 pts, bisoprolol and amiodarone (22 pts or amiodarone alone (21 pts. Left atrium (LA volume indices, LA longitudinal strain rate (LASR in systole, LV mass index, mean heart rate (HR, 24-hour HR variability and the incidence of AF by 96 h ECG monitoring were measured after the titration period, and after 3 and 6 months of follow-up. Results. After 6 months of follow-up group 1 revealed significantly lower maximum LA volume index (21.3±2.4 vs 25.2±3.0 and 28.7±3.6 ml/m2 in the 2nd and control groups, respectively, P-wave LA volume index (15.3±3.5 versus 18.1±3.8 and 20.4±4.0 ml/m2 in the 2nd and control groups, respectively, and LA systolic volume index (7.3±1.2 versus 9.4±1.6 and 9.6±1.7 ml/m2 in 2nd and control groups, respectively. The incidence of side effects in group 1 was significantly less than that in group 2 and was not different compared with control group. Conclusion. Ivabradine and amiodarone combination provides better prevention of AF recurrence and less side-effects in pts with LVDD and persistent AF after sinus rhythm restoration as compared with bisoprolol and amiodarone combination, it also reduces LA maximum, conduit and systolic volumes, and increases LASR.

  12. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF): A randomised study.

    Science.gov (United States)

    Hidalgo, Francisco J; Anguita, Manuel; Castillo, Juan C; Rodríguez, Sara; Pardo, Laura; Durán, Enrique; Sánchez, José J; Ferreiro, Carlos; Pan, Manuel; Mesa, Dolores; Delgado, Mónica; Ruiz, Martín

    2016-08-15

    To analyse the effect of the early coadministration of ivabradine and beta-blockers (intervention group) versus beta-blockers alone (control group) in patients hospitalised with heart failure and reduced left ventricular ejection fraction (HFrEF). A comparative, randomised study was performed to compare the treatment strategies of beta-blockers alone versus ivabradine and beta-blockers starting 24hours after hospital admission, for acute HF in patients with an left ventricular ejection fraction (EF)70bpm. A total of 71 patients were examined, 33 in the intervention group and 38 in the control group. No differences were observed with respect to their baseline characteristics or standard treatment at discharge. HR at 28days (64.3±7.5 vs. 70.3±9.3bpm, p=0.01) and at 4months (60.6±7.5 vs. 67.8±8bpm, p=0.004) after discharge were significantly lower in the intervention group. Significant differences were found with respect to the EF and brain natriuretic peptide levels at 4months. No differences in clinical events (rehospitalisation/death) were reported at 4months. No severe side effects attributable to the early administration of ivabradine were observed. The early coadministration of ivabradine and beta-blockers during hospital admission for acute HFrEF is feasible and safe, and it produces a significant decrease in HR at 28days and at 4months after hospital discharge. It also seemed to improve systolic function and functional and clinical parameters of HF patients at short-term. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Current concepts in combination therapy for the treatment of hypertension: combined calcium channel blockers and RAAS inhibitors

    Directory of Open Access Journals (Sweden)

    Alberto F Rubio-Guerra

    2009-11-01

    Full Text Available Alberto F Rubio-Guerra1, David Castro-Serna2, Cesar I Elizalde Barrera2, Luz M Ramos-Brizuela21Metabolic and Research Clinic, 2Internal Medicine Department, Hospital General de Ticomán SS DF, MéxicoAbstract: Recent guidelines for the management of hypertension recommend target blood pressures <140/90 mmHg in hypertensive patients, or <130/80 mmHg in subjects with diabetes, chronic kidney disease, or coronary artery disease. Despite the availability and efficacy of antihypertensive drugs, most hypertensive patients do not reach the recommended treatment targets with monotherapy, making combination therapy necessary to achieve the therapeutic goal. Combination therapy with 2 or more agents is the most effective method for achieving strict blood pressure goals. Fixed-dose combination simplifies treatment, reduces costs, and improves adherence. There are many drug choices for combination therapy, but few data are available about the efficacy and safety of some specific combinations. Combination therapy of calcium antagonists and inhibitors of the renin-angiotensin-aldosterone system (RAAS are efficacious and safe, and have been considered rational by both the JNC 7 and the 2007 European Society of Hypertension – European Society of Cardiology guidelines for the management of arterial hypertension. The aim of this review is to discuss some relevant issues about the use of combinations with calcium channel blockers and RAAS inhibitors in the treatment of hypertension.Keywords: hypertension, calcium channel blockers, renin-angiotensin-aldosterone system inhibitors, fixed-dose combination, adherence

  14. Novel Therapeutic Targets for Phosphodiesterase 5 Inhibitors: current state-of-the-art on systemic arterial hypertension and atherosclerosis.

    Science.gov (United States)

    Vasquez, Elisardo C; Gava, Agata L; Graceli, Jones B; Balarini, Camille M; Campagnaro, Bianca P; Pereira, Thiago Melo C; Meyrelles, Silvana S

    2016-01-01

    The usefulness of selective inhibitors of phosphodiesterase 5 (PDE5) is well known, first for the treatment of male erectile dysfunction and more recently for pulmonary hypertension. The discovery that PDE5 is present in the systemic artery endothelium and smooth muscle cells led investigators to test the extra sexual effects of sildenafil, the first and most investigated PDE5 inhibitor, in diseases affecting the systemic arteries. Cumulative data from experimental and clinical studies have revealed beneficial effects of sildenafil on systemic arterial hypertension and its target organs, such as the heart, kidneys and vasculature. An important effect of sildenafil is reduction of hypertension and improvement of endothelial function in experimental models of hypertension and hypertensive subjects. Interestingly, in angiotensin-dependent hypertension, its beneficial effects on endothelial and kidney dysfunctions seem to at least in part be caused by its ability to decrease the levels of angiotensin II and increase angiotensin 1-7, in addition to improving nitric oxide bioavailability and diminishing reactive oxygen species. Another remarkable finding on the effects of sildenafil comes from studies in apolipoprotein E knockout mice, a model of atherosclerosis that closely resembles human atherosclerotic disease. In this review, we focus on the promising beneficial effects of sildenafil for treating systemic high blood pressure, especially resistant hypertension, and the endothelial dysfunction that is present in hypertension and atherosclerosis.

  15. An overview of ivabradine

    African Journals Online (AJOL)

    Angina pectoris. According to Fihn et al.,⁷ angina pectoris is a pain or discomfort in the chest that is due to coronary heart disease that occurs when the heart is deprived of blood. This might be due to blockages or narrowing of the arteries. Although oxygen demand is in close relation to the oxygen consumption of an organ, ...

  16. An overview of ivabradine

    African Journals Online (AJOL)

    in developing countries.1,2 Optimal medical therapy is actively encouraged and includes ... requirement of the heart muscle or myocardium (refer to Table 1). By way of comparison, Table 2 .... College of Cardiology Foundation. JACC. 2012 ...

  17. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents

    Directory of Open Access Journals (Sweden)

    Tucci S

    2010-05-01

    Full Text Available Sonia A Tucci, Emma J Boyland, Jason CG HalfordKissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool, UKAbstract: Obesity is a global epidemic associated with significant morbidity and mortality in adults and ill health in children. A proven successful approach in weight management has been the disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing drugs. This success had driven investigation into new generation nutraceuticals, supplements and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for macronutrient digestion. Except for some synthetic products, the majority of agents reviewed are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors are under development to improve glycemic control and these may also induce some weight loss. However, colonic fermentation induced side effects, such as excess gas production, remain an issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor phaseolamine, have been used in humans with some promising results relating to weight loss. Nonetheless, few of these agents have made it into clinical studies and without any clinical proof of concept or proven efficacy it is unlikely any will enter the market soon.Keywords: lipase, amylase, saccharidases, overweight, orlistat, Alli®, digestion, body weight

  18. A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer.

    Science.gov (United States)

    Bilgin, Burak; Sendur, Mehmet A N; Şener Dede, Didem; Akıncı, Muhammed Bülent; Yalçın, Bülent

    2017-09-01

    Resistance to endocrine treatment generally occurs over time, especially in the metastatic stage. In this paper, we aimed to review the mechanisms of cyclin-dependent kinase (CDK) 4/6 inhibition and clinical usage of new agents in the light of recent literature updates. A literature search was carried out using PubMed, Medline and ASCO and ESMO annual-meeting abstracts by using the following search keywords; "palbociclib", "abemaciclib", "ribociclib", "cyclin-dependent kinase inhibitors" and "CDK 4/6" in metastatic breast cancer (MBC). The last search was on 10 June 2017. CDKs and cyclins are two molecules that have a key role in cell cycle progression. Today, there are three highly selective CDK4/6 inhibitors in clinical development - palbociclib, ribociclib and abemaciclib. Palbociclib and ribociclib were recently approved by the US FDA in combination with letrozole for the treatment of MBC in a first-line setting, as well as palbociclib in combination with fulvestrant for hormone-receptor (HR)-positive MBC that had progressed while on previous endocrine therapy according to the PALOMA-1, MONALEESA-2 and PALOMA-3 trials, respectively. In the recently published randomized phase III MONARCH 2 trial, abemaciclib plus letrozole had longer progression-free survival and higher objective response rates with less serious adverse events in advanced HR-positive breast cancer previously treated with hormonal treatment. CDK4/6 inhibition is a new and promising target for patients with hormone-receptor-positive MBC. Both palbociclib and ribociclib showed significant additive benefit for patients receiving first-line treatment for HR-positive, epidermal growth factor receptor-2-negative advanced breast cancer. Palbociclib and abemaciclib also had significant activity in combination with fulvestrant for patients with MBC that progressed on previous endocrine therapy.

  19. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  20. Syk inhibitors.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  1. Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal.

    Science.gov (United States)

    Fedigan, Stephen; Bradley, Eamonn; Webb, Timothy; Large, Roddy J; Hollywood, Mark A; Thornbury, Keith D; McHale, Noel G; Sergeant, Gerard P

    2017-11-01

    Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit Ca 2+ -activated Cl - currents (I ClCa ) that are important for the development of urethral tone. Here, we examined if TMEM16A (ANO1) contributed to this activity by examining the effect of "new-generation" TMEM16A inhibitors, CACC inh -A01 and T16A inh -A01, on I ClCa recorded from freshly isolated rabbit urethral ICC (RUICC) and on contractions of intact strips of rabbit urethra smooth muscle. Real-time quantitative PCR experiments demonstrated that TMEM16A was highly expressed in rabbit urethra smooth muscle, in comparison to TMEM16B and TMEM16F. Single-cell RT-PCR experiments revealed that only TMEM16A was expressed in freshly isolated RUICC. Depolarization-evoked I ClCa in isolated RUICC, recorded using voltage clamp, were inhibited by CACC inh -A01 and T16A inh -A01 with IC 50 values of 1.2 and 3.4 μM, respectively. Similarly, spontaneous transient inward currents (STICs) recorded from RUICC voltage clamped at -60 mV and spontaneous transient depolarizations (STDs), recorded in current clamp, were also inhibited by CACC inh -A01 and T16A inh -A01. In contrast, spontaneous Ca 2+ waves in isolated RUICC were only partially reduced by CACC inh -A01 and T16A inh -A01. Finally, neurogenic contractions of strips of rabbit urethra smooth muscle (RUSM), evoked by electric field stimulation (EFS), were also significantly reduced by CACC inh -A01 and T16A inh -A01. These data are consistent with the idea that TMEM16A is involved with CACCs in RUICC and in contraction of rabbit urethral smooth muscle.

  2. Study on the Efficacy of Some Current Herbicides for Control of Resistant and Susceptible Canarygrass (Phalaris spp. Biotypes to Acetyl CoA Carboxylase (ACCase Inhibitors

    Directory of Open Access Journals (Sweden)

    e Zand

    2011-02-01

    Full Text Available Abstract Two separate greenhouse experiments were conducted in the greenhouse facilities of the Iranian Plant Protection Research Institute, Tehran, to study the efficacy of some herbicides to control of resistant and susceptible P. minor and P. paradoxa biotypes. In each experiment, resistant and susceptible biotypes were treated separately by 19 herbicide treatments. Treatments included 10 ACCase inhibitors, 6 Acetolactate Synthase (ALS inhibitors, prosulfocarb, flamprop-M-isopropyl, isoproturon plus diflufenican and a non-sprayed control. To evaluate the effects of treatments, different characteristics including percent damage based on EWRC scores at 15 and 30 days after spraying, percentage of survived plants after spraying relative to before spraying, and percentage of dry weight and wet weight of individual plants relative to control were studied. Results showed that the susceptible biotypes of P. minor were best controlled by clodinafop propargyl and pinoxaden at 450 ml/ha while pinoxaden at 450 ml/ha and cycloxydim were best options for control of the resistant biotype. Among ALS inhibitors, iodosulfuron plus mesosulfuron could control susceptible and resistant biotypes of P. minor very effectively and semi-satisfactory, respectively. Iodosulfuron plus mesosulfuron and sulfosulfuron plus metsulfuron could remarkably reduce the wet weight of individual plants compared to control so that the plants were not damaging any more. Among other herbicides, isoproturon plus diflufenican could control the susceptible and resistant biotypes semi-satisfactory and very effectively, respectively. Keywords: Herbicide resistance, ACCase inhibitors, ALS inhibitors

  3. Proton pump inhibitors for the treatment of patients with erosive esophagitis and gastroesophageal reflux disease: current evidence and safety of dexlansoprazole

    Directory of Open Access Journals (Sweden)

    Mermelstein J

    2016-07-01

    Full Text Available Joseph Mermelstein,1 Alanna Chait Mermelstein,2 Maxwell M Chait,3 1Department of Medicine, Mount Sinai Beth Israel/Icahn School of Medicine, 2Department of Psychiatry, New York Presbyterian Hospital/Weill Cornell Medicine, 3Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA Abstract: Gastroesophageal reflux disease is the most common upper gastroenterology disorder in the US. It is associated with a variety of complications and significantly impacts quality of life. Proton pump inhibitors are the most effective treatment. Dexlansoprazole modified release (MR is a proton pump inhibitor that employs a novel release formulation that prolongs its absorption and allows for more flexibility in dosing. Dexlansoprazole MR can be dosed without regard to food intake or time of day, and once-daily dosing may replace twice-daily dosing of other agents. Dexlansoprazole MR is effective for healing and maintenance of erosive esophagitis, and for the treatment of nonerosive disease, including nocturnal gastroesophageal reflux disease. Dexlansoprazole MR is safe and well tolerated, and can improve quality of life. Keywords: dexlansoprazole, proton pump inhibitors, gastroesophageal reflux disease, erosive esophagitis

  4. 4-Aminopyridine: a pan voltage-gated potassium channel inhibitor that enhances K7.4 currents and inhibits noradrenaline-mediated contraction of rat mesenteric small arteries

    DEFF Research Database (Denmark)

    Khammy, Makhala M; Kim, Sukhan; Bentzen, Bo H

    2018-01-01

    has not been systematically studied. The aim of this study was to investigate the pharmacological activity of 4-AP on Kv7.4 and Kv7.5 channels and characterize the effect of 4-AP on rat resistance arteries. EXPERIMENTAL APPROACH: Voltage clamp experiments were performed on Xenopus laevis oocytes......BACKGROUND AND PURPOSE: Kv7.4 and Kv7.5 channels are regulators of vascular tone. 4-Aminopyridine (4-AP) is considered a broad inhibitor of voltage-gated potassium (KV) channels, with little inhibitory effect on Kv7 family members at mmol concentrations. However, the effect of 4-AP on Kv7 channels...

  5. Treatment options in HR⁺/HER2⁻ advanced breast cancer patients pretreated with nonsteroidal aromatase inhibitors: what does current evidence tell us?

    Science.gov (United States)

    De Placido, Sabino; Pronzato, Paolo

    2015-01-01

    Many postmenopausal women with advanced or metastatic breast cancer (BC) receive nonsteroidal aromatase inhibitors (NSAIs). Virtually all of them experience progression, but may still gain benefit from a different endocrine or targeted agent. We indirectly compare the results of trials on endocrine or targeted treatment in HR(+)/HER2(-) mBC patients who progressed after a prior NSAI therapy. Although with the limitations of any indirect comparison, evidence suggests that only the combination of everolimus and exemestane is associated with a prolonged progression-free survival and a more evident clinical benefit than its comparators. We speculate that prior NSAI therapy can 'per se' individuate patients eligible to everolimus. More robust data from head-to-head trials will provide more grounded evidence on this issue.

  6. Aromatase inhibitors in pediatrics.

    Science.gov (United States)

    Wit, Jan M; Hero, Matti; Nunez, Susan B

    2011-10-25

    Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole--currently approved as adjuvant therapy for breast cancer--have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz-Jeghers syndrome, McCune-Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz-Jeghers and McCune-Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

  7. The actions of mdivi-1, an inhibitor of mitochondrial fission, on rapidly activating delayed-rectifier K⁺ current and membrane potential in HL-1 murine atrial cardiomyocytes.

    Science.gov (United States)

    So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan

    2012-05-15

    Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Acute Respiratory Distress due to Thymoma in a Patient Treated with TK Inhibitor: A Case Report and Review of the Current Treatment Options

    Directory of Open Access Journals (Sweden)

    P. Zarogoulidis

    2011-03-01

    Full Text Available Thymic malignancies are rare intrathoracic tumors that may be aggressive and difficult to treat in advanced stage. Surgery is the cornerstone of the management of thymomas: it is significant for the definite histopathological diagnosis and staging, and in most cases, it constitutes the first step of the treatment strategy. For patients with primary unresectable thymomas, the multimodal treatment schedule nowadays includes neoadjuvant chemotherapy, extensive surgery, adjuvant radiotherapy, and in some cases, adjuvant chemotherapy. A patient with a history of stage III COPD and an undiagnosed thoracic mass was admitted to the intensive care unit with acute respiratory distress. A radiologic evaluation by CT scan revealed a mass of 13 cm in diameter at the mediastinum. Fine needle aspiration was performed and revealed a thymoma. Due to poor performance status, the patient was not able to undergo surgery. He refused to be treated with neither chemotherapy nor radiotherapy, but due to EGFR overexpression, treatment with TK inhibitor was suggested. Fine needle aspiration biopsy is commonly used to identify metastasis to the mediastinum. However, it is less often employed as a primary diagnostic tool for tumors, particularly thymic neoplasms. The use of targeted therapies for the treatment of thymic malignancies has been described in the literature. Over the past years, significant efforts have been made to dissect the molecular pathways involved in the carcinogenesis of these tumors. Insights have been obtained following anecdotal clinical responses to targeted therapies, and large-scale genomic analyses have been conducted.

  9. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  10. Multiple Actions of Rotenone, an Inhibitor of Mitochondrial Respiratory Chain, on Ionic Currents and Miniature End-Plate Potential in Mouse Hippocampal (mHippoE-14 Neurons

    Directory of Open Access Journals (Sweden)

    Chin-Wei Huang

    2018-05-01

    Full Text Available Background/Aims: Rotenone (Rot is known to suppress the activity of complex I in the mitochondrial chain reaction; however, whether this compound has effects on ion currents in neurons remains largely unexplored. Methods: With the aid of patch-clamp technology and simulation modeling, the effects of Rot on membrane ion currents present in mHippoE-14 cells were investigated. Results: Addition of Rot produced an inhibitory action on the peak amplitude of INa with an IC50 value of 39.3 µM; however, neither activation nor inactivation kinetics of INa was changed during cell exposure to this compound. Addition of Rot produced little or no modifications in the steady-state inactivation curve of INa. Rot increased the amplitude of Ca2+-activated Cl- current in response to membrane depolarization with an EC50 value of 35.4 µM; further addition of niflumic acid reversed Rot-mediated stimulation of this current. Moreover, when these cells were exposed to 10 µM Rot, a specific population of ATP-sensitive K+ channels with a single-channel conductance of 18.1 pS was measured, despite its inability to alter single-channel conductance. Under current clamp condition, the frequency of miniature end-plate potentials in mHippoE-14 cells was significantly raised in the presence of Rot (10 µM with no changes in their amplitude and time course of rise and decay. In simulated model of hippocampal neurons incorporated with chemical autaptic connection, increased autaptic strength to mimic the action of Rot was noted to change the bursting pattern with emergence of subthreshold potentials. Conclusions: The Rot effects presented herein might exert a significant action on functional activities of hippocampal neurons occurring in vivo.

  11. Survival significance of epidermal growth factor receptor tyrosine kinase inhibitors and current staging system for survival after recurrence in patients with completely resected lung adenocarcinoma

    Science.gov (United States)

    Saji, Hisashi; Sakai, Hiroki; Kimura, Hiroyuki; Miyazawa, Tomoyuki; Marushima, Hideki; Nakamura, Haruhiko

    2017-01-01

    Objective We previously reported that the staging system and epidermal growth factor receptor (EGFR) mutation status are key factors for treatment strategy and predicting survival. However, the significance of these factors as predictors of overall survival (OS) and postoperative recurrence survival (PRS) has not been sufficiently elucidated. The objective here was to investigate EGFR mutation status and p-stage, which affect PRS and OS in patients with completely resected lung adenocarcinoma, using a different database. Patients and methods We retrospectively reviewed 56 consecutive lung adenocarcinoma patients with disease recurrence in St. Marianna University Hospital between January 2010 and December 2014. Results EGFR mutants (M) were detected in 16/56 patients (29%). The patients with EGFR M had a better OS than those with EGFR wild-type (WT) status (5-year survival: 50.3% vs 43.1, P=0.133). There was no significant difference in the 3-year recurrence-free survival rate between patients with M and WT (6.3% vs 7.7%, P=0.656), and the patients with EGFR M had a significantly better 3-year PRS than those with WT (77.4% vs 51.7%, P=0.033). The 3-year PRS rate for patients with M/pathologic stage (p-stage) I–II (87.5%) was better than that for patients with M/p-stage III (60.0%), WT/p-stage I–II (52.7%), and WT/p-stage III (43.8%). There was a significant difference between patients with M/p-stage I and WT/p-stage I–II or WT/p-stage III (P=0.021 and 0.030, respectively). During the study period, of the 16 patients with mutants, 12 patients (75%) received EGFR-tyrosine kinase inhibitor (TKI) therapy and among the 40 patients with WT, no patient received EGFR-TKI therapy. Multivariate survival analysis showed that patients with EGFR-TKI therapy had a statistically significant association with favorable PRS (hazard ratio 0.271; 95% confidence interval 0.074–1.000; P=0.050). Conclusion EGFR status and p-stage were found to be essential prognostic factors for

  12. Survival significance of epidermal growth factor receptor tyrosine kinase inhibitors and current staging system for survival after recurrence in patients with completely resected lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Saji H

    2017-08-01

    Full Text Available Hisashi Saji,1,2 Hiroki Sakai,1 Hiroyuki Kimura,1 Tomoyuki Miyazawa,1 Hideki Marushima,1 Haruhiko Nakamura1 1Department of Chest Surgery, St Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa, Japan; 2Department of Thoracic Surgery, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan Objective: We previously reported that the staging system and epidermal growth factor receptor (EGFR mutation status are key factors for treatment strategy and predicting survival. However, the significance of these factors as predictors of overall survival (OS and postoperative recurrence survival (PRS has not been sufficiently elucidated. The objective here was to investigate EGFR mutation status and p-stage, which affect PRS and OS in patients with completely resected lung adenocarcinoma, using a different database.Patients and methods: We retrospectively reviewed 56 consecutive lung adenocarcinoma patients with disease recurrence in St. Marianna University Hospital between January 2010 and December 2014.Results: EGFR mutants (M were detected in 16/56 patients (29%. The patients with EGFR M had a better OS than those with EGFR wild-type (WT status (5-year survival: 50.3% vs 43.1, P=0.133. There was no significant difference in the 3-year recurrence-free survival rate between patients with M and WT (6.3% vs 7.7%, P=0.656, and the patients with EGFR M had a significantly better 3-year PRS than those with WT (77.4% vs 51.7%, P=0.033. The 3-year PRS rate for patients with M/pathologic stage (p-stage I–II (87.5% was better than that for patients with M/p-stage III (60.0%, WT/p-stage I–II (52.7%, and WT/p-stage III (43.8%. There was a significant difference between patients with M/p-stage I and WT/p-stage I–II or WT/p-stage III (P=0.021 and 0.030, respectively. During the study period, of the 16 patients with mutants, 12 patients (75% received EGFR-tyrosine kinase inhibitor (TKI therapy and among the 40 patients with WT, no patient received

  13. Different sensitivity of miniature endplate currents in rat external and internal intercostal muscles to the acetylcholinesterase inhibitor C-547 as compared with diaphragm and extensor digitorum Pontus

    Czech Academy of Sciences Publication Activity Database

    Petrov, K.; Kovyazina, I.; Zobov, V.; Bukharaeva, E.; Nikolsky, E. E.; Vyskočil, František

    2009-01-01

    Roč. 58, č. 1 (2009), s. 149-153 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA5011411; GA AV ČR(CZ) IAA100110501; GA MŠk(CZ) LC554 Grant - others:Russian Foundation for Basic Research(RU) 07-04-01137; Russian Foundation for Basic Research(RU) 07-04-12097 Institutional research plan: CEZ:AV0Z50110509 Keywords : endpalte current * acetylchcholinesterase Subject RIV: ED - Physiology Impact factor: 1.430, year: 2009

  14. Cost Effectiveness of the Angiotensin Receptor Neprilysin Inhibitor Sacubitril/Valsartan for Patients with Chronic Heart Failure and Reduced Ejection Fraction in the Netherlands: A Country Adaptation Analysis Under the Former and Current Dutch Pharmacoeconomic Guidelines.

    Science.gov (United States)

    Ramos, Isaac Corro; Versteegh, Matthijs M; de Boer, Rudolf A; Koenders, Jolanda M A; Linssen, Gerard C M; Meeder, Joan G; Rutten-van Mölken, Maureen P M H

    2017-12-01

    To describe the adaptation of a global health economic model to determine whether treatment with the angiotensin receptor neprilysin inhibitor LCZ696 is cost effective compared with the angiotensin-converting enzyme inhibitor enalapril in adult patients with chronic heart failure with reduced left ventricular ejection fraction in the Netherlands; and to explore the effect of performing the cost-effectiveness analyses according to the new pharmacoeconomic Dutch guidelines (updated during the submission process of LCZ696), which require a value-of-information analysis and the inclusion of indirect medical costs of life-years gained. We adapted a UK model to reflect the societal perspective in the Netherlands by including travel expenses, productivity loss, informal care costs, and indirect medical costs during the life-years gained and performed a preliminary value-of-information analysis. The incremental cost-effectiveness ratio obtained was €17,600 per quality-adjusted life-year (QALY) gained. This was robust to changes in most structural assumptions and across different subgroups of patients. Probability sensitivity analysis results showed that the probability that LCZ696 is cost-effective at a €50,000 per QALY threshold is 99.8%, with a population expected value of perfect information of €297,128. On including indirect medical costs of life-years gained, the incremental cost-effectiveness ratio was €26,491 per QALY gained, and LCZ696 was 99.46% cost effective at €50,000 per QALY, with a population expected value of perfect information of €2,849,647. LCZ696 is cost effective compared with enalapril under the former and current Dutch guidelines. However, the (monetary) consequences of making a wrong decision were considerably different in both scenarios. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Cav1.2 channel current block by the PKA inhibitor H-89 in rat tail artery myocytes via a PKA-independent mechanism: Electrophysiological, functional, and molecular docking studies.

    Science.gov (United States)

    Fusi, Fabio; Trezza, Alfonso; Spiga, Ottavia; Sgaragli, Giampietro; Bova, Sergio

    2017-09-15

    To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca 2+ current through Ca v 1.2 channels [I Ca1.2 ], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the I Ca1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both I Ca1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited I Ca1.2 with a pIC 50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of I Ca1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Ca v 1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α 1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K + - and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular I Ca1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  17. Ivabradine, heart failure and chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Luca Di Lullo

    2015-12-01

    Full Text Available The incidence and prevalence of congestive heart failure are actually increasing worldwide, especially in Western countries. In Europe and the United States, congestive heart failure represents a disabling clinical disease, accountable for increased hospitalization and health care costs. European guidelines have underlined the importance of pharmacological treatment to improve both patients’ outcomes and quality of life. The latest clinical trials to evaluate ivabradine’s efficacy have underlined its usefulness as a stand-alone medication and in combination with conventional congestive heart failure therapy, including in chronic kidney disease patients.

  18. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  19. Plant Protein Inhibitors of Enzymes: Their Role in Animal Nutrition and Plant Defence.

    Science.gov (United States)

    Richardson, Michael

    1981-01-01

    Current information and research related to plant protein inhibitors of enzymes are reviewed, including potential uses of the inhibitors for medical treatment and for breeding plant varieties with greater resistance to insects. (DC)

  20. Monoamine Oxidase Inhibitors (MAOIs)

    Science.gov (United States)

    ... health-medications/index.shtml. Accessed May 16, 2016. Hirsch M, et al. Monoamine oxidase inhibitors (MAOIs) for ... www.uptodate.com/home. Accessed May 16, 2016. Hirsch M, et al. Discontinuing antidepressant medications in adults. ...

  1. New Medications for Heart Failure

    Science.gov (United States)

    Gordin, Jonathan S.; Fonarow, Gregg C.

    2016-01-01

    Heart failure is common and results in substantial morbidity and mortality. Current guideline-based therapies for heart failure with reduced ejection fraction, including beta-blockers, angiotensin converting enzyme (ACE) inhibitors, and aldosterone antagonists aim to interrupt deleterious neurohormonal pathways and have shown significant success in reducing morbidity and mortality associated with heart failure. Continued efforts to further improve outcomes in patients with heart failure with reduced ejection fraction have led to the first new-in-class medications approved for heart failure since 2005, ivabradine and sacubitril/valsartan. Ivabradine targets the If channels in the sinoatrial node of the heart, decreasing heart rate. Sacubitril/valsartan combines a neprilysin inhibitor that increases levels of beneficial vasodilatory peptides with an angiotensin receptor antagonist. On a background of previously approved, guideline-directed medical therapies for heart failure, these medications have shown improved clinical outcomes ranging from decreased hospitalizations in a select group of patients to a reduction in all-cause mortality across all pre-specified subgroups. In this review, we will discuss the previously established guideline-directed medical therapies for heart failure with reduced ejection fraction, the translational research that led to the development of these new therapies, and the results from the major clinical trials of ivabradine and sacubitril/valsartan. PMID:27038558

  2. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2006-01-01

    ... nucleotide exchange factors (RhoGEFs). We have developed a high throughput screening strategy identify novel inhibitors of Rho activation are currently following up on several compounds which appear to selectively inhibit Rho activation. These compounds may form the basis of future drug development strategies for the treatment of metastatic breast cancer.

  3. Rational Design of Rho Protein Inhibitors

    National Research Council Canada - National Science Library

    Rojas, Rafael J

    2005-01-01

    ... nucleotide exchange factors (RhoGEFs). We have developed a high throughput screening strategy identify novel inhibitors of Rho activation are currently following up on several compounds which appear to selectively inhibit Rho activation. These compounds may form the basis of future drug development strategies for the treatment of metastatic breast cancer.

  4. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  6. JAK inhibitors in autoinflammation.

    Science.gov (United States)

    Hoffman, Hal M; Broderick, Lori

    2018-06-11

    Interferonopathies are a subset of autoinflammatory disorders with a prominent type I IFN gene signature. Treatment of these patients has been challenging, given the lack of response to common autoinflammatory therapeutics including IL-1 and TNF blockade. JAK inhibitors (Jakinibs) are a family of small-molecule inhibitors that target the JAK/STAT signaling pathway and have shown clinical efficacy, with FDA and European Medicines Agency (EMA) approval for arthritic and myeloproliferative syndromes. Sanchez and colleagues repurposed baricitinib to establish a significant role for JAK inhibition as a novel therapy for patients with interferonopathies, demonstrating the power of translational rare disease research with lifesaving effects.

  7. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  8. Potent Inhibitors against Newcastle Disease Virus Hemagglutinin-Neuraminidase.

    Science.gov (United States)

    Rota, Paola; La Rocca, Paolo; Piccoli, Marco; Montefiori, Marco; Cirillo, Federica; Olsen, Lars; Orioli, Marica; Allevi, Pietro; Anastasia, Luigi

    2018-02-06

    Neuraminidase activity is essential for the infection and propagation of paramyxoviruses, including human parainfluenza viruses (hPIVs) and the Newcastle disease virus (NDV). Thus, many inhibitors have been developed based on the 2-deoxy-2,3-didehydro-d-N-acetylneuraminic acid inhibitor (DANA) backbone. Along this line, herein we report a series of neuraminidase inhibitors, having C4 (p-toluenesulfonamido and azido substituents) and C5 (N-perfluorinated chains) modifications to the DANA backbone, resulting in compounds with 5- to 15-fold greater potency than the currently most active compound, the N-trifluoroacetyl derivative of DANA (FANA), toward the NDV hemagglutinin-neuraminidase (NDV-HN). Remarkably, these inhibitors were found to be essentially inactive against the human sialidase NEU3, which is present on the outer layer of the cell membrane and is highly affected by the current NDV inhibitor FANA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bioactive Natural Product and Superacid Chemistry for Lead Compound Identification: A Case Study of Selective hCA III and L-Type Ca2+ Current Inhibitors for Hypotensive Agent Discovery

    Directory of Open Access Journals (Sweden)

    Hélène Carreyre

    2017-05-01

    Full Text Available Dodoneine (Ddn is one of the active compounds identified from Agelanthus dodoneifolius, which is a medicinal plant used in African pharmacopeia and traditional medicine for the treatment of hypertension. In the context of a scientific program aiming at discovering new hypotensive agents through the original combination of natural product discovery and superacid chemistry diversification, and after evidencing dodoneine’s vasorelaxant effect on rat aorta, superacid modifications allowed us to generate original analogues which showed selective human carbonic anhydrase III (hCA III and L-type Ca2+ current inhibition. These derivatives can now be considered as new lead compounds for vasorelaxant therapeutics targeting these two proteins.

  10. PARP Inhibitors in Ovarian Cancer.

    Science.gov (United States)

    Mittica, Gloria; Ghisoni, Eleonora; Giannone, Gaia; Genta, Sofia; Aglietta, Massimo; Sapino, Anna; Valabrega, Giorgio

    2018-03-05

    Treatment of Epithelial Ovarian Cancer (EOC), historically based on surgery and platinum doublet chemotherapy, is associated with high risk of relapse and poor prognosis for recurrent disease. In this landscape, the innovative treatment with PARP inhibitors (PARPis) demonstrated an outstanding activity in EOC, and is currently changing clinical practice in BRCA mutant patients. To highlight the mechanism of action, pharmacokinetics, clinical activity, indications and current strategies of development of Olaparib, Niraparib, Rucaparib, Talazoparib and Veliparib, the 5 most relevant PARPis. We performed a review on Pubmed using 'ovarian cancer' and the name of each PARPi (PARP inhibitor) discussed in the review as Medical Subject Headings (MeSH) keywords. The same search was performed on "clinicaltrial.gov" to identify ongoing clinical trials and on "google.com/patents" and "uspto.gov" for recent patents exploring PARPIs in ovarian cancer. Olaparib, Niraparib and Rucaparib are already approved for treatment of recurrent EOC and their indications are partially overlapping. Talazoparib and Veliparib are promising PARPis, but currently under investigation in early phase trials. Several studies are evaluating PARPis in monotherapy or in associations, in a wide range of settings (i.e. first line, neoadjuvant, platinum-sensitive and resistant disease). PARPis are valuable options in patients with recurrent ovarian cancer with promising activity in different stages of this disease. Further studies are required to better define optimal clinical settings, predictors of response beyond BRCA mutations and strategies to overcome secondary resistance of PARPis therapy in EOC. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  12. Transglutaminase inhibitor from milk

    NARCIS (Netherlands)

    Jong, G.A.H. de; Wijngaards, G.; Koppelman, S.J.

    2003-01-01

    Cross-linking experiments of skimmed bovine milk with bacterial transglutaminase isolated from Streptoverticillium mobaraense showed only some degree of formation of high-molecular-weight casein polymers. Studies on the nature of this phenomenon revealed that bovine milk contains an inhibitor of

  13. Inhibitors of histone demethylases

    DEFF Research Database (Denmark)

    Lohse, Brian; Kristensen, Jesper L; Kristensen, Line H

    2011-01-01

    Methylated lysines are important epigenetic marks. The enzymes involved in demethylation have recently been discovered and found to be involved in cancer development and progression. Despite the relative recent discovery of these enzymes a number of inhibitors have already appeared. Most of the i...

  14. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  15. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  16. Acid corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N G

    1964-04-28

    An acid corrosion inhibitor is prepared by a 2-stage vacuum evaporation of effluents obtained from the ammonia columns of the coking oven plant. The effluent, leaving a scrubber in which the phenols are removed at a temperature of 98$C, passes through a quartz filter and flows into a heated chamber in which it is used for preheating a solution circulating through a vacuum unit, maintaining the temperature of the solution at 55$ to 60$C. The effluent enters a large tank in which it is boiled at 55$ to 60$C under 635 to 640 mm Hg pressure. Double evaporation of this solution yields a very effective acid corrosion inhibitor. Its corrosion-preventing effect is 97.9% compared with 90.1% for thiourea and 88.5% for urotropin under identical conditions.

  17. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  18. Peptide inhibitors of botulinum neurotoxin by mRNA display

    International Nuclear Information System (INIS)

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs

  19. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  20. Immune checkpoint inhibitors for metastatic bladder cancer.

    Science.gov (United States)

    Massari, Francesco; Di Nunno, Vincenzo; Cubelli, Marta; Santoni, Matteo; Fiorentino, Michelangelo; Montironi, Rodolfo; Cheng, Liang; Lopez-Beltran, Anto; Battelli, Nicola; Ardizzoni, Andrea

    2018-03-01

    Chemotherapy has represented the standard therapy for unresectable or metastatic urothelial carcinoma for more than 20 years. The growing knowledge of the interaction between tumour and immune system has led to the advent of new classes of drugs, the immune-checkpoints inhibitors, which are intended to change the current scenario. To date, immunotherapy is able to improve the overall responses and survival. Moreover, thanks to its safety profile immune-checkpoint inhibitors could be proposed also to patients unfit for standard chemotherapy. No doubts that these agents have started a revolution expected for years, but despite this encouraging results it appears clear that not all subjects respond to these agents and requiring the development of reliable predictive response factors able to isolate patients who can more benefit from these treatments as well as new strategies aimed to improve immunotherapy clinical outcome. In this review we describe the active or ongoing clinical trials involving Programmed Death Ligand 1 (PD-L1), Programmed Death receptor 1 (PD-1) and Cytotoxic-T Lymphocyte Antigen 4 (CTLA 4) inhibitors in urothelial carcinoma focusing our attention on the developing new immune-agents and combination strategies with immune-checkpoint inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  2. DGAT inhibitors for obesity.

    Science.gov (United States)

    Matsuda, Daisuke; Tomoda, Hiroshi

    2007-10-01

    Obesity is characterized by the accumulation of triacylglycerol in adipocytes. Diacylglycerol acyltransferase (DGAT) catalyzes the final reaction of triacylgycerol synthesis. Two isozymes of DGAT, DGAT1 and DGAT2, have been reported. Increased DGAT2 activity has a role in steatosis, while DGAT1 plays a role in very (V)LDL synthesis; increased plasma VLDL concentrations may promote obesity and thus DGAT1 is considered a potential therapeutic target of inhibition for obesity control. Several DGAT inhibitors of natural and synthetic origin have been reported, and their future prospect as anti-obesity drugs is discussed in this review.

  3. Proton pump inhibitors and gastroenteritis

    International Nuclear Information System (INIS)

    Hassing, Robert-Jan; Verbon, Annelies; Visser, Herman de; Hofman, Albert; Stricker, Bruno H.

    2016-01-01

    An association between proton pump inhibitor (PPI) therapy and bacterial gastroenteritis has been suggested as well as contradicted. The aim of this study was to examine the association between the use of PPIs and occurrence of bacterial gastroenteritis in the prospective Rotterdam Study. The Rotterdam Study is a population-based cohort study among 14,926 subjects aged 45 years and older with up to 24 years of follow-up. Analyses were performed with a generalized estimating equations method in participants who handed-in a diagnostic stool sample. Furthermore, a nested case–control analysis was performed using the total cohort as a reference group. A bacterial microorganism was isolated in 125 samples, whereas 1174 samples were culture negative. In the generalized estimating equations analysis, we found that participants with a bacterial gastroenteritis were more likely than controls to be current users of PPIs (adjusted OR 1.94; 95 % CI 1.15–3.25). Different sensitivity analyses did not change this result. A considerably higher effect was observed (adjusted OR 6.14; 95 % CI 3.81–9.91), using the total cohort as a reference in a nested case–control analysis. Current PPI therapy is associated with an increased risk of bacterial gastroenteritis. However, by reducing the risk of selection and information bias in our study design, we demonstrated that the effect is lower than previously assumed.

  4. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  5. Investigation of long-term retention of unchanged (-)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide, a novel "funny" If current channel inhibitor, and its metabolites in the eyeball and thoracic aorta of rats.

    Science.gov (United States)

    Umehara, Ken-ichi; Nakada, Naoyuki; Noguchi, Kiyoshi; Iwatsubo, Takafumi; Usui, Takashi; Kamimura, Hidetaka

    2009-11-01

    (-)-N-{2-[(R)-3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a novel "funny" If current channel inhibitor, was being developed as a treatment for stable angina and atrial fibrillation. After a single oral administration of (14)C-YM758, extensive accumulation and long-term retention of radioactivity were observed in the eyeballs of nonalbino rats and in the thoracic aorta of albino/nonalbino rats. Radioluminograms of the eyeballs of nonalbino rats indicated that the radioactivity was localized to the uveal tract, which suggests that the radioactivity may be positively charged and bound mainly to the melanins. Treatment with a mixture of 2 mol/l hydrochloric acid and methanol (5:95, v/v) allowed for the recovery of the major portion of radioactivity from the eyeball, which suggests reversible binding. The radioactive constituents in eyeballs consisted of the unchanged drug (YM758) and three metabolites [mainly 6,7-dimethoxy-2-[(3R)-piperidin-3-ylcarbonyl]-1,2,3,4-tetrahydroisoquinoline (YM-252124)]. Using the organic solvent mixture described above, almost all of the radioactivity was not collected from the thoracic aorta, and approximately 90% was recovered by treatment with elastase, which suggests that some metabolites covalently bind to the elastin fiber localized in the tunica media.

  6. Pulmonary Toxicity of Cholinesterase Inhibitors

    National Research Council Canada - National Science Library

    Hilmas, Corey; Adler, Michael; Baskin, Steven I; Gupta, Ramesh C

    2006-01-01

    .... Whereas nerve agents were produced primarily for military deployment, other cholinesterase inhibitors were used for treating conditions such as myasthenia gravis and as pretreaunents for nerve agent exposure...

  7. Cost of care of haemophilia with inhibitors.

    Science.gov (United States)

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  8. Biological abatement of cellulase inhibitors

    Science.gov (United States)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  9. Proteinaceous alpha-araylase inhibitors

    DEFF Research Database (Denmark)

    Svensson, Birte; Fukuda, Kenji; Nielsen, P.K.

    2004-01-01

    -amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha...

  10. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  11. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?

    Science.gov (United States)

    Lovshin, J A; Gilbert, R E

    2015-06-01

    By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.

  12. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  14. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  15. Janus Associated Kinases Inhibitors in the Pharmacological Thera

    Directory of Open Access Journals (Sweden)

    Daniela Santos1

    2017-01-01

    Full Text Available Janus associated kinases inhibitors are a new strategy for the treatment of different clinical conditions like immunologic, inflammatory and oncology disorders. The aim of this study was to perform a review of all Janus associated kinases inhibitors available in national and international pharmaceutical market, their therapeutic indications and adverse effects, and the potential indications for investigation of those already available in the pharmaceutical market. It was also performed a review of the main new Janus associated kinases inhibitors that are still in clinical research. A literature review was conducted by consulting the summary of product characteristics of Janus associated kinases inhibitors available in the pharmaceutical market and a research in the bibliographic database PubMed using the terms «JAK inhibitors», «Janus associated kinases inhibitors» and «Janus kinases inhibitors». Ninety-five publications were included in the present review, published from January 2014 to January 2015. Drug databases of the European Medicines Agency and United States Food and Drug Administration were also consulted to search for Janus associated kinases inhibitors authorized in clinical practice. Currently, ruxolitinib and tofacitinib are available in the pharmaceutical market and oclatinib is approved as a veterinary medicinal product. Both drugs approved for human use have major adverse effects at hematological and immunological levels, which enhance the importance of the pharmacist’s role in the monitoring of patients involved in these treatments. However, several molecules are in pre-clinical and clinical studies trying to prove its potential in the treatment of several immunologic, inflammatory and oncology disorders. Thus, it is still necessary to deepen the knowledge in this area in order to overcome the risks of therapy with these agents. These risks weighed against the benefits of its clinical use have compromised the progress of

  16. Inhibitors of polyamine metabolism: review article.

    Science.gov (United States)

    Wallace, H M; Fraser, A V

    2004-07-01

    The identification of increased polyamine concentrations in a variety of diseases from cancer and psoriasis to parasitic infections has led to the hypothesis that manipulation of polyamine metabolism is a realistic target for therapeutic or preventative intervention in the treatment of certain diseases. The early development of polyamine biosynthetic single enzyme inhibitors such as alpha-difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) showed some interesting early promise as anticancer drugs, but ultimately failed in vivo. Despite this, DFMO is currently in use as an effective anti-parasitic agent and has recently also been shown to have further potential as a chemopreventative agent in colorectal cancer. The initial promise in vitro led to the development and testing of other potential inhibitors of the pathway namely the polyamine analogues. The analogues have met with greater success than the single enzyme inhibitors possibly due to their multiple targets. These include down regulation of polyamine biosynthesis through inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase and decreased polyamine uptake. This coupled with increased activity of the catabolic enzymes, polyamine oxidase and spermidine/spermine N1-acetyltransferase, and increased polyamine export has made the analogues more effective in depleting polyamine pools. Recently, the identification of a new oxidase (PAO-h1/SMO) in polyamine catabolism and evidence of induction of both PAO and PAO-h1/SMO in response to polyamine analogue treatment, suggests the analogues may become an important part of future chemotherapeutic and/or chemopreventative regimens.

  17. Recent advances in botulinum neurotoxin inhibitor development.

    Science.gov (United States)

    Kiris, Erkan; Burnett, James C; Kane, Christopher D; Bavari, Sina

    2014-01-01

    Botulinum neurotoxins (BoNTs) are endopeptidases that target motor neurons and block acetylcholine neurotransmitter release. This action results in the muscle paralysis that defines the disease botulism. To date, there are no FDA-approved therapeutics to treat BoNT-mediated paralysis after intoxication of the motor neuron. Importantly, the rationale for pursuing treatments to counter these toxins is driven by their potential misuse. Current drug discovery efforts have mainly focused on small molecules, peptides, and peptidomimetics that can directly and competitively inhibit BoNT light chain proteolytic activity. Although this is a rational approach, direct inhibition of the Zn(2+) metalloprotease activity has been elusive as demonstrated by the dearth of candidates undergoing clinical evaluation. Therefore, broadening the scope of viable targets beyond that of active site protease inhibitors represents an additional strategy that could move the field closer to the clinic. Here we review the rationale, and discuss the outcomes of earlier approaches and highlight potential new targets for BoNT inhibition. These include BoNT uptake and processing inhibitors, enzymatic inhibitors, and modulators of neuronal processes associated with toxin clearance, neurotransmitter potentiation, and other pathways geared towards neuronal recovery and repair.

  18. [Cholinesterase inhibitors for treating dementia. Review].

    Science.gov (United States)

    Kremer, Janus

    2010-01-01

    Alzheimer's disease is the most common form of dementia seen in the clinical practice. The principal risk factor is aging. There is not currently any available curative medication. However, there a family of drugs call the cholinesterase inhibitors (donepezile, galantamine and rivastigmine) the enhances cholinergic activity in the CNS. Also, memantine is available is a NMDA receptor modulator. A new transdermal way of administration is available now for rivastigmine. The rivastigmines patches are now a rational alternative focusing in getting more tolerance, better blood levels of the drug and compliance to treatment in Alzheimer's disease patients.

  19. [ACE inhibitors and the kidney].

    Science.gov (United States)

    Hörl, W H

    1996-01-01

    Treatment with ACE inhibitors results in kidney protection due to reduction of systemic blood pressure, intraglomerular pressure, an antiproliferative effect, reduction of proteinuria and a lipid-lowering effect in proteinuric patients (secondary due to reduction of protein excretion). Elderly patients with diabetes melitus, coronary heart disease or peripheral vascular occlusion are at risk for deterioration of kidney function due to a high frequency of renal artery stenosis in these patients. In patients with renal insufficiency dose reduction of ACE inhibitors is necessary (exception: fosinopril) but more important is the risk for development of hyperkalemia. Patients at risk for renal artery stenosis and patients pretreated with diuretics should receive a low ACE inhibitor dosage initially ("start low - go slow"). For compliance reasons once daily ACE inhibitor dosage is recommended.

  20. SGLT2 inhibitors: their potential reduction in blood pressure.

    Science.gov (United States)

    Maliha, George; Townsend, Raymond R

    2015-01-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitors represent a promising treatment option for diabetes and its common comorbidity, hypertension. Emerging data suggests that the SGLT2 inhibitors provide a meaningful reduction in blood pressure, although the precise mechanism of the blood pressure drop remains incompletely elucidated. Based on current data, the blood pressure reduction is partially due to a combination of diuresis, nephron remodeling, reduction in arterial stiffness, and weight loss. While current trials are underway focusing on cardiovascular endpoints, the SGLT2 inhibitors present a novel treatment modality for diabetes and its associated hypertension as well as an opportunity to elucidate the pathophysiology of hypertension in diabetes. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.

    Science.gov (United States)

    Ndikuryayo, Ferdinand; Moosavi, Behrooz; Yang, Wen-Chao; Yang, Guang-Fu

    2017-10-04

    The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.

  2. Kinase inhibitors: a new class of antirheumatic drugs

    Directory of Open Access Journals (Sweden)

    Kyttaris VC

    2012-09-01

    Full Text Available Vasileios C KyttarisDivision of Rheumatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USAAbstract: The outlook for patients with rheumatoid arthritis has improved significantly over the last three decades with the use of disease-modifying antirheumatic drugs. However, despite the use of methotrexate, cytokine inhibitors, and molecules targeting T and B cells, a percentage of patients do not respond or lose their response over time. The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. In the past decade, small molecules targeting several kinases, such as p38 MAPK, Syk, and JAK have been developed. Several p38 MAPK inhibitors proved ineffective in treating rheumatoid arthritis. The Syk inhibitor, fostamatinib, proved superior to placebo in Phase II trials and is currently under Phase III investigation. Tofacitinib, a JAK1/3 inhibitor, was shown to be efficacious in two Phase III trials, while VX-509, a JAK3 inhibitor, showed promising results in a Phase II trial. Fostamatinib and tofacitinib were associated with increased rates of infection, elevation of liver enzymes, and neutropenia. Moreover, fostamatinib caused elevations of blood pressure and diarrhea, while tofacitinib was associated with an increase in creatinine and elevation of lipid levels.Keywords: rheumatoid arthritis, kinase inhibitors, mitogen-activated phosphokinase p38, spleen tyrosine kinase, Janus kinases

  3. FAITH – Fast Assembly Inhibitor Test for HIV

    Energy Technology Data Exchange (ETDEWEB)

    Hadravová, Romana [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Rumlová, Michaela, E-mail: michaela.rumlova@vscht.cz [Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague (Czech Republic); Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague (Czech Republic); Ruml, Tomáš, E-mail: tomas.ruml@vscht.cz [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague (Czech Republic)

    2015-12-15

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  4. FAITH – Fast Assembly Inhibitor Test for HIV

    International Nuclear Information System (INIS)

    Hadravová, Romana; Rumlová, Michaela; Ruml, Tomáš

    2015-01-01

    Due to the high number of drug-resistant HIV-1 mutants generated by highly active antiretroviral therapy (HAART), there is continuing demand for new types of inhibitors. Both the assembly of the Gag polyprotein into immature and mature HIV-1 particles are attractive candidates for the blocking of the retroviral life cycle. Currently, no therapeutically-used assembly inhibitor is available. One possible explanation is the lack of a reliable and simple assembly inhibitor screening method. To identify compounds potentially inhibiting the formation of both types of HIV-1 particles, we developed a new fluorescent high-throughput screening assay. This assay is based on the quantification of the assembly efficiency in vitro in a 96-well plate format. The key components of the assay are HIV-1 Gag-derived proteins and a dual-labelled oligonucleotide, which emits fluorescence only when the assembly of retroviral particles is inhibited. The method was validated using three (CAI, BM2, PF74) reported assembly inhibitors. - Highlights: • Allows screening of assembly inhibitors of both mature and immature HIV-1 particles. • Based on Gag-derived proteins with CA in mature or immature conformation. • Simple and sensitive method suitable for high-throughput screening of inhibitors. • Unlike in other HIV assembly methods, works under physiological conditions. • No washing steps are necessary.

  5. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

    Directory of Open Access Journals (Sweden)

    Hsueh Chung-Tsen

    2011-04-01

    Full Text Available Abstract We reviewed preclinical data and clinical development of MDM2 (murine double minute 2, ALK (anaplastic lymphoma kinase and PARP (poly [ADP-ribose] polymerase inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC. Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.

  6. Current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  7. Cholinesterase inhibitors for patients with Alzheimer's disease: systematic review of randomised clinical trials

    OpenAIRE

    Kaduszkiewicz, Hanna; Zimmermann, Thomas; Beck-Bornholdt, Hans-Peter; van den Bussche, Hendrik

    2005-01-01

    Objectives Pharmacological treatment of Alzheimer's disease focuses on correcting the cholinergic deficiency in the central nervous system with cholinesterase inhibitors. Three cholinesterase inhibitors are currently recommended: donepezil, rivastigmine, and galantamine. This review assessed the scientific evidence for the recommendation of these agents.

  8. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  9. Molecular Dynamics simulations of Inhibitor of Apoptosis Proteins and identification of potential small molecule inhibitors.

    Science.gov (United States)

    Jayakumar, Jayanthi; Anishetty, Sharmila

    2014-05-01

    Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. FDA-approved small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E.; Clausen, Mads Hartvig

    2015-01-01

    Kinases have emerged as one of the most intensivelypursued targets in current pharmacological research,especially for cancer, due to their critical roles in cellularsignaling. To date, the US FDA has approved 28 smallmoleculekinase inhibitors, half of which were approvedin the past 3 years. While...

  11. Variability in bioavailability of small molecular tyrosine kinase inhibitors

    NARCIS (Netherlands)

    Herbrink, Maikel; Nuijen, Bastiaan; Schellens, Jan H M; Beijnen, Jos H.

    2015-01-01

    Small molecular tyrosine kinase inhibitors (smTKIs) are in the centre of the very quickly expanding area of personalized chemotherapy and oral applicability thereof. The number of drugs in this class is rapidly growing, with twenty current approvals by both the European Medicines Agency (EMA) and

  12. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    Directory of Open Access Journals (Sweden)

    Fangyuan Cao

    2018-03-01

    Full Text Available Histone deacetylases (HDACs are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Several studies have shown that HDAC3, in particular, plays an important role in inflammation and degenerative neurological diseases, but the development of selective HDAC3 inhibitors has been challenging. This review provides an up-to-date overview of selective HDAC3 inhibitors, and aims to support the development of novel HDAC3 inhibitors in the future.

  13. Metal corrosion inhibitors and ecology

    International Nuclear Information System (INIS)

    Krasts, H.; Svarce, J.; Berge, B.

    1999-01-01

    The use of metal corrosion inhibitors in water is one of the cheapest method to protect metals against corrosion. However, the used inhibitors can come to surface water in the course of time and can become as source of environmental pollution. It is important to co-ordinate amount of substances in the elaborated inhibitors not only with demands for metal protection, but also with demands for quality of surface water and drinking water according to normative statements: 3.5 mg/l (as PO 4 ) for hexametaphosphate, tripolyphosphate and phosphonate; 40 mg/l (as SiO 2 for silicate, up to 1 mg/l for CU 2+ ; up to 5 mg/l for Zn 2+ ; up to 1 mg/l for B; up to 0.5 mg/l for Mo 2+ . The examples of the elaborated inhibitors are given. Many organic substances can be used as corrosion inhibitors, but there is shortage of standard methods for their analysis in water in Latvia. Removing of salt's deposits from boilers needs elaboration of a separate normative statement for dispersing waste water which content chloride at high concentration and heavy metals. (authors)

  14. Neutral currents

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1977-01-01

    It is stated that over the past few years considerable progress has been made in the field of weak interactions. The existence of neutral currents involving leptons and hadrons has been established and some of the questions concerning their detailed structure have been answered. This imposes constraints on the gauge theories and has eliminated large classes of models. New questions have also been raised, one of which concerns the conservation laws obeyed by neutral currents. The wide range of investigations is impressive and is expected to continue with new results from particle, nuclear, and atomic physics. Headings include - various aspects of a gauge theory (choice of group, the symmetry breaking scheme, representation assignments for fermion fields); space-time structure; isospin structure; leptonic neutral currents; and atomic experiments. (U.K.)

  15. Neutral currents

    International Nuclear Information System (INIS)

    Aubert, B.

    1994-11-01

    The evidence for the existence of weak neutral current has been a very controverted topics in the early 1970's, as well as the muon did in the 1930's. The history is very rich considering the evolution of the experimental techniques in high energy particle physics. The history of the discovery and the study of weak neutral current is reviewed. Later the quest of the intermediate vector boson continues with the decision of the community to build a large proton antiproton collider. (K.A.). 14 refs., 1 fig

  16. Clopidogrel Resistance: Current Issues

    Directory of Open Access Journals (Sweden)

    NS Neki

    2016-05-01

    Full Text Available Antiplatelet agents are mainly used in the prevention and management of atherothrombotic complications. Dual antiplatelet therapy, combining aspirin and clopidogrel, is the standard care for patients having acute coronary syndromes or undergoing percutaneous coronary intervention according to the current ACC/AHA and ESC guidelines. But in spite of administration of dual antiplatelet therapy, some patients develop recurrent cardiovascular ischemic events especially stent thrombosis which is a serious clinical problem. Antiplatelet response to clopidogrel varies widely among patients based on ex vivo platelet function measurements. Clopidogrel is an effective inhibitor of platelet activation and aggregation due to its selective and irreversible blockade of the P2Y12 receptor. Patients who display little attenuation of platelet reactivity with clopidogrel therapy are labeled as low or nonresponders or clopidogrel resistant. The mechanism of clopidogrel resistance remains incompletely defined but there are certain clinical, cellular and genetic factors including polymorphisms responsible for therapeutic failure. Currently there is no standardized or widely accepted definition of clopidogrel resistance. The future may soon be realised in the routine measurement of platelet activity in the same way that blood pressure, cholesterol and blood sugar are followed to help guide the therapy, thus improving the care for millions of people. This review focuses on the methods used to identify patients with clopidogrel resistance, the underlying mechanisms, metabolism, clinical significance and current therapeutic strategies to overcome clopidogrel resistance. J Enam Med Col 2016; 6(1: 38-46

  17. Efficacy of ATR inhibitors as single agents in Ewing sarcoma

    DEFF Research Database (Denmark)

    Nieto-Soler, Maria; Morgado-Palacin, Isabel; Lafarga, Vanesa

    2016-01-01

    Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source...... efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas....

  18. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes

    DEFF Research Database (Denmark)

    Maolanon, Alex; Kristensen, Helle; Leman, Luke

    2017-01-01

    Inhibition of histone deacetylase (HDAC) enzymes has emerged as a target for development of cancer chemotherapy. Four compounds have gained approval for clinical use by the Food and Drug Administration (FDA) in the US, and several are currently in clinical trials. However, none of these compounds...... HDAC enzymes may hold an advantage over traditional hydroxamic acid-containing inhibitors, which rely on chelation to the conserved active site zinc ion. Here, we review the literature on macrocyclic HDAC inhibitors obtained from natural sources and structure-activity relationship studies inspired...

  19. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  20. ROCK inhibitors in ocular disease

    Directory of Open Access Journals (Sweden)

    Eva Halasz

    2016-12-01

    Full Text Available Rho kinases (ROCKs have a crucial role in actin-cytoskeletal reorganization and thus are involved in broad aspects of cell motility, from smooth muscle contraction to neurite outgrowth. The first marketed ROCK inhibitor, called fasudil, has been used safely for treatment of cerebral vasospasm since 1995 in Japan. During the succeeding decades ROCK inhibitors have been applied in many pathological conditions from central nervous system disorders to cardiovascular disease as potential therapeutic agents or experimental tools to help understand the underlying (pathomechanisms. In 2014, a fasudil derivate named ripasudil was accepted for clinical use in glaucoma and ocular hypertension. Since ROCK kinases are widely expressed in ocular tissues, they have been implicated in the pathology of many ocular conditions such as corneal dysfunction, glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, and retinal detachment. This paper aims to provide an overview of the most recent status/application of ROCK inhibitors in the field of eye disease.

  1. Current algebra

    International Nuclear Information System (INIS)

    Jacob, M.

    1967-01-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  2. Current Titles

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  3. Current scenario

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Current scenario. India , like other parts of the world, is also facing the problem of increase in the incidence of drug resistance in tuberculosis. Multi-drug resistance (MDR, resistance to RIF & INH) and extensively drug resistant strains (X-DR, resistance to RIF, INH, FQs ...

  4. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2006-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 along with the activation of TGFb signaling pathway with the restoration of TGFb receptor II...

  5. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2005-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 a with the activation of TGFb signaling pathway with the restoration of TGFbeta receptor II...

  6. Sifuvirtide, a potent HIV fusion inhibitor peptide

    International Nuclear Information System (INIS)

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-01-01

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC 50 ), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC 50 ) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1 IIIB were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  7. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  8. Health economics of treating haemophilia A with inhibitors.

    Science.gov (United States)

    Knight, C

    2005-11-01

    Haemophilia is a rare, inherited blood disorder in which blood clotting is impaired such that patients suffer from excessive internal and external bleeding. At present there is no cure for haemophilia A and patients require expensive, life-long treatment involving clotting factor replacement therapy. Treatment costs are perceived to be higher for patients who have developed inhibitory antibodies to factor VIII, the standard therapy for haemophilia A. However, initial cost analyses suggest that clotting factor therapy with alternative haemostatic agents, such as recombinant activated factor VII or activated prothrombin complex concentrate, is no more expensive for the majority of haemophilia A patients with inhibitors than for those without inhibitors. With the availability of effective alternative haemostatic agents, orthopaedic surgery for haemophilia A patients with inhibitors is now a clinical option, and initial cost analyses suggest this may be a cost-effective treatment strategy for patients with inhibitors whose quality of life (QoL) is severely impaired by joint arthropathy. In an era of finite healthcare resourcing it is important to determine whether new treatments justify higher unit costs compared with standard therapies and whether such higher costs are justified from an individual perspective in terms of improved QoL, and from a societal perspective in terms of improved productivity and reduced overall healthcare costs. This paper examines current data on the health economics of treating haemophilia A patients with inhibitors, focusing on the overall costs of clotting factor replacement therapy and the cost consequences of joint replacement.

  9. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    Science.gov (United States)

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  10. [Pharmacogenic osteoporosis beyond cortisone. Proton pump inhibitors, glitazones and diuretics].

    Science.gov (United States)

    Kann, P H; Hadji, P; Bergmann, R S

    2014-05-01

    [corrected] There are many drugs which can cause osteoporosis or at least favor its initiation. The effect of hormones and drugs with antihormonal activity, such as glucocorticoids and aromatase inhibitors, on initiation of osteoporosis is well known. In addition, proton pump inhibitors, glitazones and diuretics also influence the formation of osteoporosis. The results of currently available studies on the correlation between proton pump inhibitors, glitazones and diuretics on formation of osteoporosis were evaluated and summarized. Proton pump inhibitors and glitazones increase the risk for osteoporotic fractures. Loop diuretics may slightly increase fracture risk, whereas thiazides were shown to be osteoprotective by reducing fracture probability on a relevant scale. Proton pump inhibitors should not be prescribed without serious consideration and then only as long as necessary. Alternatively, the administration of the less effective H2 antagonists should be considered when possible due to the reduction of acid secretion. Because the long-term intake of thiazides is associated with a clinically relevant reduction in the risk of fractures and they are economic and well-tolerated, prescription can be thoroughly recommended within the framework of differential diagnostic considerations in an appropriate clinical context. The briefly increased risk of falling immediately after starting diuretic therapy is the only point which needs to be considered.

  11. Clinical trials for BET inhibitors run ahead of the science.

    Science.gov (United States)

    Andrieu, Guillaume; Belkina, Anna C; Denis, Gerald V

    2016-03-01

    Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4. Each BET protein controls distinct transcriptional pathways that are important for functions beyond cancer cell proliferation, including insulin production, cytokine gene transcription, T cell differentiation, adipogenesis and most seriously, active repression of dangerous latent viruses like HIV. BET inhibitors have been shown to reactivate HIV in human cells. Failure to appreciate that at concentrations used, no available BET inhibitor is member-selective, or to develop a sound biological basis to understand the diverse functions of BET proteins before undertaking for these clinical trials is reckless and likely to lead to adverse events. More mechanistic information from new basic science studies should enable proper focus on the most relevant cancers and define the expected side effect profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors.

    Science.gov (United States)

    Thomas, Ajit G; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B; Auld, Douglas S; Ferraris, Dana V; Tsukamoto, Takashi; Slusher, Barbara S

    2013-08-23

    Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Azidoblebbistatin, a photoreactive myosin inhibitor

    Science.gov (United States)

    Képiró, Miklós; Várkuti, Boglárka H.; Bodor, Andrea; Hegyi, György; Drahos, László; Kovács, Mihály; Málnási-Csizmadia, András

    2012-01-01

    Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions. PMID:22647605

  14. Biological abatement of cellulase inhibitors.

    Science.gov (United States)

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Phosphodiesterase inhibitors in clinical urology.

    Science.gov (United States)

    Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias

    2013-05-01

    To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.

  16. Inhibitors of mTOR

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Beijnen, Jos H.; Gurney, Howard; Schellens, Jan H. M.

    2010-01-01

    Inhibitors of mammalian target of rapamycin (mTOR) have been approved for the treatment of renal cell carcinoma and appear to have a role in the treatment of other malignancies. The primary objective of this drug review is to provide pharmacokinetic and dynamic properties of the commonly used drugs

  17. Retroviral proteinases and their inhibitors

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Juraj

    2000-01-01

    Roč. 3, 3,4 (2000), s. 23-24 [ Proteolytic enzymes and their inhibitors in physiology and pathogenesis. 14.09.2000, Plzen] Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  18. PD-1 Checkpoint Inhibitor Associated Autoimmune Encephalitis

    Directory of Open Access Journals (Sweden)

    Stephanie Schneider

    2017-05-01

    Full Text Available Objective: To report first-hand narrative experience of autoimmune encephalitis and to briefly review currently available evidence of autoimmune encephalitis in cancer patients treated with immune checkpoint inhibitors. Setting: A case study is presented on the management of a patient who developed autoimmune encephalitis during nivolumab monotherapy occurring after 28 weeks on anti-PD-1 monotherapy (nivolumab 3 mg/kg every 2 weeks for non-small cell lung cancer. Results: No substantial improvement was observed by antiepileptic treatment. After administration of 80 mg methylprednisolone, neurologic symptoms disappeared within 24 h and the patient fully recovered. Conclusions: Immune checkpoint inhibitor treatment can lead to autoimmune encephalitis. Clinical trial data indicate a frequency of autoimmune encephalitis of ≥0.1 to <1% with a higher probability during combined or sequential anti-CTLA-4/anti-PD-1 therapy than during anti-PD-1 or anti-PD-L1 monotherapy. Further collection of evidence and translational research is warranted.

  19. Replication and Inhibitors of Enteroviruses and Parechoviruses

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-08-01

    Full Text Available The Enterovirus (EV and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV. They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  20. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  1. Current awareness.

    Science.gov (United States)

    Compagno, C; Brambilla, L; Capitanio, D; Boschi, F; Ranzi, B M; Porro, D

    2001-05-01

    In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals - search completed 7th Mar. 2001)

  2. Current titles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Gretchen Hermes at (510) 486-5006 or address below for a User`s Guide. Copies of available papers can be ordered from: Theda Crawford National Center for Electron Microscopy, Lawrence Berkeley Laboratory, One Cyclotron Rd., MS72, Berkeley, California, USA 94720.

  3. Current ornithology

    CERN Document Server

    1983-01-01

    The appearance of the first volume of a projected series is the occasion for comment on scope, aims, and genesis of the work. The scope of Current Ornithology is all of the biology of birds. Ornithology, as a whole-organism science, is concerned with birds at every level of bi­ ological organization, from the molecular to the community, at least from the Jurassic to the present time, and over every scholarly discipline in which bird biology is done; to say this is merely to expand a dic­ tionary definition of "ornithology. " The aim of the work, to be realized over several volumes, is to present reviews or position statements con­ cerning the active fields of ornithological research. The reviews will be relatively short, and often will be done from the viewpoint of a readily­ identified group or school. Such a work could have come into being at any time within the past fifty years, but that Current Ornithology appears now is a result of events that are only seven to eight years old. One important event wa...

  4. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis.

    Science.gov (United States)

    Min, Se Hee; Yoon, Jeong-Hwa; Hahn, Seokyung; Cho, Young Min

    2017-01-01

    therapy. Without increasing hypoglycaemia, SGLT2 inhibitors showed better glycaemic control and greater weight reduction than DPP4 inhibitors in patients with T2DM inadequately controlled with insulin. The results of the current study could serve as the best available evidence in selecting oral agents to improve glycaemic control in insulin-treated T2DM patients. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Serotonin and Norepinephrine Reuptake Inhibitors (SNRIs)

    Science.gov (United States)

    Serotonin and norepinephrine reuptake inhibitors (SNRIs) Antidepressant SNRIs help relieve depression symptoms, such as irritability and sadness, ... effects they may cause. By Mayo Clinic Staff Serotonin and norepinephrine reuptake inhibitors (SNRIs) are a class ...

  6. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  7. Reduction rules for reset/inhibitor nets

    NARCIS (Netherlands)

    Verbeek, H.M.W.; Wynn, M.T.; Aalst, van der W.M.P.; Hofstede, ter A.H.M.

    2010-01-01

    Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being

  8. Stabilization versus inhibition of TAFIa by competitive inhibitors in vitro

    NARCIS (Netherlands)

    Walker, J.B.; Hughes, B.; James, I.; Haddock, P.; Kluft, C.; Bajzar, L.

    2003-01-01

    Two competitive inhibitors of TAFIa (activated thrombin-activable fibrinolysis inhibitor), 2-guanidinoethyl-mercaptosuccinic acid and potato tuber carboxypeptidase inhibitor, variably affect fibrinolysis of clotted human plasma. Depending on their concentration, the inhibitors shortened, prolonged,

  9. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ajit G.; Rojas, Camilo [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S. [National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850 (United States); Ferraris, Dana V. [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tsukamoto, Takashi [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Slusher, Barbara S., E-mail: bslusher@jhmi.edu [Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2013-08-23

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC{sup 1280})) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.

  10. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors

    International Nuclear Information System (INIS)

    Thomas, Ajit G.; Rojas, Camilo; Tanega, Cordelle; Shen, Min; Simeonov, Anton; Boxer, Matthew B.; Auld, Douglas S.; Ferraris, Dana V.; Tsukamoto, Takashi; Slusher, Barbara S.

    2013-01-01

    Highlights: •Ebselen, chelerythrine and apomorphine were identified as glutaminase inhibitors. •These had greater affinities and efficiency of inhibition than known prototypes. •Their previously reported biological activity could be due to glutaminase inhibition. -- Abstract: Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC 1280 )) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease

  11. Resistance Patterns Associated with HCV NS5A Inhibitors Provide Limited Insight into Drug Binding

    Directory of Open Access Journals (Sweden)

    Moheshwarnath Issur

    2014-11-01

    Full Text Available Direct-acting antivirals (DAAs have significantly improved the treatment of infection with the hepatitis C virus. A promising class of novel antiviral agents targets the HCV NS5A protein. The high potency and broad genotypic coverage are favorable properties. NS5A inhibitors are currently assessed in advanced clinical trials in combination with viral polymerase inhibitors and/or viral protease inhibitors. However, the clinical use of NS5A inhibitors is also associated with new challenges. HCV variants with decreased susceptibility to these drugs can emerge and compromise therapy. In this review, we discuss resistance patterns in NS5A with focus prevalence and implications for inhibitor binding.

  12. PD-1/PD-L1 Inhibitors for Immuno-oncology: From Antibodies to Small Molecules.

    Science.gov (United States)

    Geng, Qiaohong; Jiao, Peifu; Jin, Peng; Su, Gaoxing; Dong, Jinlong; Yan, Bing

    2018-02-12

    The recent regulatory approvals of immune checkpoint protein inhibitors, such as ipilimumab, pembrolizumab, nivolumab, atezolizumab, durvalumab, and avelumab ushered a new era in cancer therapy. These inhibitors do not attack tumor cells directly but instead mobilize the immune system to re-recognize and eradicate tumors, which endows them with unique advantages including durable clinical responses and substantial clinical benefits. PD-1/PD-L1 inhibitors, a pillar of immune checkpoint protein inhibitors, have demonstrated unprecedented clinical efficacy in more than 20 cancer types. Besides monoclonal antibodies, diverse PD- 1/PD-L1 inhibiting candidates, such as peptides, small molecules have formed a powerful collection of weapons to fight cancer. The goal of this review is to summarize and discuss the current PD-1/PD-L1 inhibitors including candidates under clinical development, their molecular interactions with PD-1 or PD-L1, the disclosed structureactivity relationships of peptides and small molecules as inhibitors. Current PD-1/PD-L1 inhibitors under clinical development are exclusively dominated by antibodies. The molecular interactions of therapeutic antibodies with PD-1 or PD-L1 have been gradually elucidated for the design of novel inhibitors. Various peptides and traditional small molecules have been investigated in preclinical model to discover novel PD-1/PD-L1 inhibitors. Peptides and small molecules may play an important role in immuno-oncology because they may bind to multiple immune checkpoint proteins via rational design, opening opportunity for a new generation of novel PD-1/PD-L1 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Smoothened inhibitors in the treatment of advanced basal cell carcinomas.

    Science.gov (United States)

    Kunstfeld, Rainer

    2014-03-01

    The Hedgehog pathway has been identified as a key element in the development of many forms of cancer. Smoothened (Smo) inhibitors are known to beneficially interfere with the Hedgehog pathway and are currently under investigation as anticancer drugs for many tumor entities. Reviewed here are the most recent developments in clinical research on Smo inhibitors for the treatment of advanced basal cell carcinoma (BCC). When reviewing the literature of the past 12 months, it is striking to see the rapid evolution of the field. Compounds that have been presented as powerful new drug candidates 12 months ago have now been discontinued, whereas new ones have emerged. Reports on 13 drug candidates have been identified: one marketed, vismodegib, eight currently under development (phase I-II) and four for which clinical investigation for BCC is currently not being pursued. Smo inhibitors are a promising drug class for the treatment of BCC. To date, most candidates are in early stage development and are expected to enter the market in approximately 5-8 years, if successful.

  14. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  15. Clinical use of PI3K inhibitors in B-cell lymphoid malignancies: today and tomorrow.

    Science.gov (United States)

    Greenwell, I B; Flowers, C R; Blum, K A; Cohen, J B

    2017-03-01

    PI3K inhibitors are an important new therapeutic option for the treatment of relapsed and refractory B-cell lymphoid malignancies. Idelalisib is a PI3Kδ inhibitor that has been approved for the treatment of lymphoma and chronic lymphocytic leukemia in the relapsed/refractory setting, and several other PI3K inhibitors are being developed targeting other isoforms of the PI3K enzyme, which results in distinct toxicities and variable efficacy in the clinical setting. Areas covered: We provide a general overview of PI3K inhibitors, recommended applications, and the mechanism and management of toxicities. We further review trials, ongoing and completed, leading to the approval of idelalisib as well other PI3K inhibitors currently in development. Articles were obtained from PubMed, and abstracts were searched for the past 5 years from the websites for ASCO, ASH, EHA, and ICML/Lugano. Expert commentary: PI3K inhibitors provide an important and powerful pharmacologic tool in the armamentarium against hematologic malignancies, especially for relapsed/refractory B-cell lymphoid malignancies. Unique toxicities are associated with inhibition of different isoforms of the PI3K enzyme, as demonstrated with the infectious and autoimmune toxicities associated with the PI3Kδ inhibitor, idelalisib. Due to these unique toxicities, PI3K inhibitors should only be used in formally approved combinations and settings.

  16. Efficacy of c-Met inhibitor for advanced prostate cancer

    International Nuclear Information System (INIS)

    Tu, William H; Zhu, Chunfang; Clark, Curtis; Christensen, James G; Sun, Zijie

    2010-01-01

    Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer. We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression. We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration. The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer

  17. Calcineurin-inhibitor pain syndrome.

    Science.gov (United States)

    Prommer, Eric

    2012-07-01

    There has been increased recognition of calcineurin, a phosphoprotein serine/threonine phosphatase enzyme, in the regulation of many physiologic systems. Calcineurin mediates activation of lymphocytes, which play a role in immune response. Widely distributed in the central nervous system, calcinuerin also plays an important role in sensory neural function, via its role in the regulation of newly discovered 2-pore potassium channels, which greatly influence neuronal resting membrane potentials. Calcinuerin inhibition is the mechanism of action of immunomodulatory drugs such as cyclosporine and tacrolimus, which are widely used in transplantation medicine to prevent rejection. While important for immunosuppression, the use of calcineurin inhibitors has been associated with the development of a new pain syndrome called the calcineurin pain syndrome, which appears to be an untoward complication of the interruption of the physiologic function of calcineurin. This is a narrative review focusing on the epidemiology, pathophysiology, characterization of a newly recognized pain syndrome associated with the use of calcineurin inhibitors. The use of immunosuppressants however is associated with several well-known toxicities to which the calcineurin pain syndrome can be added. The development of this syndrome most likely involves altered nociceptive processing due to the effect of calcineurin inhibition on neuronal firing, as well as effects of calcineurin on vascular tone. The most striking aspect of the treatment of this syndrome is the response to calcium channel blockers, which suggest that the effects of calcineurin inhibition on vascular tone play an important role in the development of the calcineurin pain syndrome. The calcineurin syndrome is a newly recognized complication associated with the use of calcineurin inhibitors. There is no standard therapy at this time but anecdotal reports suggest the effectiveness of calcium channel blockers.

  18. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Bønsager, Birgit Christine; Fukuda, Kenji

    2004-01-01

    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz...... Ca2+-modulated kinetics of the AMY2/BASl interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors....

  19. A historical sketch of the discovery and development of HIV-1 integrase inhibitors.

    Science.gov (United States)

    Savarino, Andrea

    2006-12-01

    The long process of HIV-1 integrase inhibitor discovery and development can be attributed to both the complexity of HIV-1 integration and poor 'integration' of these researches into mainstream investigations on antiretroviral therapy in the mid-1990s. Of note, some fungal extracts investigated during this period contain the beta-hydroxyketo group, later recognised to be a key structural requirement for keto-enol acids (also referred to as diketo acids) and other integrase inhibitors. This review reconstructs (in the general context of the history of AIDS research) the principal steps that led to the integrase inhibitors currently in clinical trials, and discusses possible future directions.

  20. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  1. Inhibitors of plant hormone transport

    Czech Academy of Sciences Publication Activity Database

    Klíma, Petr; Laňková, Martina; Zažímalová, Eva

    2016-01-01

    Roč. 253, č. 6 (2016), s. 1391-1404 ISSN 0033-183X R&D Projects: GA MŠk(CZ) LD15088 Institutional support: RVO:61389030 Keywords : polar auxin transport * acid-binding protein * gnom arf-gef * equilibrative nucleoside transporter * efflux carrier polarity * plasma-membrane-protein * cultured tobacco cells * arabidopsis-thaliana * gravitropic response * brefeldin-a * Plant hormones * Transport * Inhibitors * Auxin * Cytokinins * Strigolactones * Abscisic acid * Cell biology Subject RIV: ED - Physiology Impact factor: 2.870, year: 2016

  2. Clinically Applicable Inhibitors Impacting Genome Stability.

    Science.gov (United States)

    Prakash, Anu; Garcia-Moreno, Juan F; Brown, James A L; Bourke, Emer

    2018-05-13

    Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.

  3. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  4. Effect of Inhibitors on Weld Corrosion under Sweet Conditions Using Flow Channel

    OpenAIRE

    Khaled Alawadhi; Abdulkareem Aloraier; Suraj Joshi; Jalal Alsarraf

    2014-01-01

    The aim of this paper is to compare the effectiveness and electrochemical behavior of typical oilfield corrosion inhibitors with previous oilfield corrosion inhibitors under the same electrochemical techniques to control preferential weld corrosion of X65 pipeline steel in artificial seawater saturated with carbon dioxide at a pressure of one bar. A secondary aim is to investigate the conditions under which current reversal takes place. A flow channel apparatus was used in the laboratory to s...

  5. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  6. Proton pump inhibitors and osteoporosis

    DEFF Research Database (Denmark)

    Andersen, Bjarne Nesgaard; Johansen, Per Birger; Abrahamsen, Bo

    2016-01-01

    PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months and a di......PURPOSE OF REVIEW: The purpose of the review is to provide an update on recent advances in the evidence based on proton pump inhibitors (PPI) as a possible cause of osteoporosis and osteoporotic fractures. This review focuses, in particular, on new studies published in the last 18 months...... and a discussion of these findings and how this has influenced our understanding of this association, the clinical impact and the underlying pathophysiology. RECENT FINDINGS: New studies have further strengthened existing evidence linking use of PPIs to osteoporosis. Short-term use does not appear to pose a lower...... risk than long-term use. There is a continued lack of conclusive studies identifying the pathogenesis. Direct effects on calcium absorption or on osteoblast or osteoclast action cannot at present plausibly explain the mechanism. SUMMARY: The use of PPIs is a risk factor for development of osteoporosis...

  7. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Science.gov (United States)

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T; Mundell, Stuart J; Coxon, Carmen H

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  8. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation.

    Directory of Open Access Journals (Sweden)

    Clive Metcalfe

    Full Text Available Thioredoxin (Trx is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12 to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase. In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb. This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.

  9. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    Science.gov (United States)

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  10. Do non-nucleoside reverse transcriptase inhibitors contribute to lipodystrophy?

    Science.gov (United States)

    Nolan, David

    2005-01-01

    Lipodystrophy complications, including lipoatrophy (pathological fat loss) and metabolic complications, have emerged as important long-term toxicities associated with antiretroviral therapy in the current era. The wealth of data that has accumulated over the past 6 years has now clarified the contribution of specific antiretroviral drugs to the risk of these clinical endpoints, with evidence that lipoatrophy is strongly associated with the choice of nucleoside reverse transcriptase inhibitor therapy (specifically, stavudine and to a lesser extent zidovudine). The aetiological basis of metabolic complications of antiretroviral therapy has proven to be complex, in that the risk appears to be modulated by a number of lifestyle factors that have made the metabolic syndrome highly prevalent in the general population, with additional contributions from HIV disease status itself, as well as from individual drugs within the HIV protease inhibitor class. The currently licensed non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs, efavirenz and nevirapine, have been proven to have a favourable safety profile in terms of lipodystrophy complications. However, it must be noted that NNRTI drugs also have individual toxicity profiles that must be accounted for when considering and/or monitoring their use in the treatment of HIV infection.

  11. Corrosion Inhibitor of Carbon Steel from Onion Peel Extract

    Directory of Open Access Journals (Sweden)

    Muhammad Samsudin Asep

    2018-01-01

    Full Text Available Carbon steels composed by two main elements, they are iron (Fe and carbon (C elements which widely used in industrial because of its resistance and more affordable than stainless steel, but their weakness is they have low corrosion resistance. One way to modify carbon steel is by coating them with antioxidant compounds that can delay, slow down, and prevent lipid oxidation process, which obtained from onion peel extract. Several studies on corrosion inhibitors have been performed. However, the efficiency was not reach the optimum. This study aims to examine the effect of onion peel extract concentration on the efficiency of corrosion inhibitor and characterization of the green corrosion inhibitor from onion peel extract. This research method begins by extracting onion peel to 200 ml solvent which we use aquadest and methanol and mixed with 5 grams of crushed onion peel, then let them be extracted for 60 minutes with room temperature. Once it was filtered and the solution obtained, followed by evaporating process with rotary evaporator to decrease the content of solvent. The product is ready to be used as a green corrosion inhibitor of carbon steel in 1 mol/L HCl. While the analysis used is HPLC qualitative analysis, and electroplatting process. The impedance is measured at a frequency of 100 kHz to 4 mHz with an AC current of 10mV. Inhibitor concentrations are vary between 2 ml and 4 ml of onion peel extract. Electroplatting is done within 30 minutes with 10 minutes each checking time. Furthermore, quantitative analysis was done for the analysis of corrosion rate and weight loss. Based on HPLC analysis, it is known that the extract of onion peel contains 1mg/L of quercetin, which is belong to flavonoid group as green inhibitor. While electroplatting process, aquadest solvent having average efficiency of 99,57% for 2 ml of extract, and 99,60% for 4 ml of extract. Methanol solvent having average efficiency of 99,52% for 2 ml of extract and 99

  12. Updates on the role of adrenal steroidogenesis inhibitors in Cushing's syndrome: a focus on novel therapies.

    Science.gov (United States)

    Fleseriu, Maria; Castinetti, Frederic

    2016-12-01

    Endogenous Cushing's syndrome (CS) is a rare disease that results from exposure to high levels of cortisol; Cushing's disease (CD) is the most frequent form of CS. Patients with CS suffer from a variety of comorbidities that increase the risk of mortality. Surgical resection of the disease-causing lesion is generally the first-line treatment of CS. However, some patients may not be eligible for surgery due to comorbidities, and approximately 25 % of patients, especially those with CD, have recurrent disease. For these patients, adrenal steroidogenesis inhibitors may control cortisol elevation and subsequent symptomatology. CS is rare overall, and clinical studies of adrenal steroidogenesis inhibitors are often small and, in many cases, data are limited regarding the efficacy and safety of these treatments. Our aim was to better characterize the profiles of efficacy and safety of currently available adrenal steroidogenesis inhibitors, including drugs currently in development. We performed a systematic review of the literature regarding adrenal steroidogenesis inhibitors, focusing on novel drugs. Currently available adrenal steroidogenesis inhibitors, including ketoconazole, metyrapone, etomidate, and mitotane, have variable efficacy and significant side effects, and none are approved by the US Food and Drug Administration for CS. Therefore, there is a clear need for novel, prospectively studied agents that have greater efficacy and a low rate of adverse side effects. Efficacy and safety data of current and emerging adrenal steroidogenesis inhibitors, including osilodrostat (LCI699) and levoketoconazole (COR-003), show promising results that will have to be confirmed in larger-scale phase 3 studies (currently ongoing). The management of CS, and particularly CD, remains challenging. Adrenal steroidogenesis inhibitors can be of major interest to control the hypercortisolism at any time point, either before or after surgery, as discussed in this review.

  13. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIβ

    NARCIS (Netherlands)

    van der Schaar, H.M.; Leyssen, Pieter; Thibaut, H.J.; de Palma, Armando; van der Linden, Lonneke; Lanke, Kjerstin H.W.; Lacroix, Céline; Verbeken, Erik; Conrath, Katja; Macleod, Angus M; Mitchell, Dale R; Palmer, Nicholas J; van de Poël, Hervé; Andrews, Martin; Neyts, Johan; van Kuppeveld, F.J.M.

    2013-01-01

    Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1,

  14. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.

    Science.gov (United States)

    Hailu, Gebremedhin S; Robaa, Dina; Forgione, Mariantonietta; Sippl, Wolfgang; Rotili, Dante; Mai, Antonello

    2017-06-22

    Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn 2+ - and NAD + -dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.

  15. TYROSINE KINASE INHIBITORS AND PREGNANCY

    Directory of Open Access Journals (Sweden)

    Elisabetta Abruzzese

    2014-04-01

    Full Text Available The management of patients with chronic myeloid leukemia (CML during pregnancy has became recently a matter of continuous debate.  The introduction of the Tyrosine Kinase Inhibitors (TKIs in clinical practice has dramatically changed the prognosis of CML patients.  Patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy.  This fact has come the necessity to address issues relating to fertility and pregnancy. Physicians are not infrequently being asked for advice regarding the need for, and or the appropriateness of, stopping treatment in order to conceive. In this report we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for all the approved TKIs, as well as suggest how to manage a planned and/or unplanned pregnancy.

  16. Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging

    Directory of Open Access Journals (Sweden)

    Vadim Bernard-Gauthier

    2015-12-01

    Full Text Available Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.

  17. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology

    Directory of Open Access Journals (Sweden)

    John Paul Maurice Finberg

    2016-10-01

    Full Text Available Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines (cheese effect. A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson’s disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme’s binding site structure should lead to future developments with these drugs.

  18. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology.

    Science.gov (United States)

    Finberg, John P M; Rabey, Jose M

    2016-01-01

    Inhibitors of MAO-A and MAO-B are in clinical use for the treatment of psychiatric and neurological disorders respectively. Elucidation of the molecular structure of the active sites of the enzymes has enabled a precise determination of the way in which substrates and inhibitor molecules are metabolized, or inhibit metabolism of substrates, respectively. Despite the knowledge of the strong antidepressant efficacy of irreversible MAO inhibitors, their clinical use has been limited by their side effect of potentiation of the cardiovascular effects of dietary amines ("cheese effect"). A number of reversible MAO-A inhibitors which are devoid of cheese effect have been described in the literature, but only one, moclobemide, is currently in clinical use. The irreversible inhibitors of MAO-B, selegiline and rasagiline, are used clinically in treatment of Parkinson's disease, and a recently introduced reversible MAO-B inhibitor, safinamide, has also been found efficacious. Modification of the pharmacokinetic characteristics of selegiline by transdermal administration has led to the development of a new drug form for treatment of depression. The clinical potential of MAO inhibitors together with detailed knowledge of the enzyme's binding site structure should lead to future developments with these drugs.

  19. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes.

    Science.gov (United States)

    Nauck, Michael A

    2014-01-01

    The importance of the kidney's role in glucose homeostasis has gained wider understanding in recent years. Consequently, the development of a new pharmacological class of anti-diabetes agents targeting the kidney has provided new treatment options for the management of type 2 diabetes mellitus (T2DM). Sodium glucose co-transporter type 2 (SGLT2) inhibitors, such as dapagliflozin, canagliflozin, and empagliflozin, decrease renal glucose reabsorption, which results in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations. Modest reductions in body weight and blood pressure have also been observed following treatment with SGLT2 inhibitors. SGLT2 inhibitors appear to be generally well tolerated, and have been used safely when given as monotherapy or in combination with other oral anti-diabetes agents and insulin. The risk of hypoglycemia is low with SGLT2 inhibitors. Typical adverse events appear to be related to the presence of glucose in the urine, namely genital mycotic infection and lower urinary tract infection, and are more often observed in women than in men. Data from long-term safety studies with SGLT2 inhibitors and from head-to-head SGLT2 inhibitor comparator studies are needed to fully determine their benefit-risk profile, and to identify any differences between individual agents. However, given current safety and efficacy data, SGLT2 inhibitors may present an attractive option for T2DM patients who are failing with metformin monotherapy, especially if weight is part of the underlying treatment consideration.

  20. Interaction of HIV-1 reverse transcriptase ribonuclease H with an acylhydrazone inhibitor.

    Science.gov (United States)

    Gong, Qingguo; Menon, Lakshmi; Ilina, Tatiana; Miller, Lena G; Ahn, Jinwoo; Parniak, Michael A; Ishima, Rieko

    2011-01-01

    HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development. Several drug-like small molecule inhibitors of reverse transcriptase ribonuclease H have been described, but little structural information is available about the interactions between reverse transcriptase ribonuclease H and inhibitors that exhibit antiviral activity. In this report, we describe NMR studies of the interaction of a new ribonuclease H inhibitor, BHMP07, with a catalytically active HIV-1 reverse transcriptase ribonuclease H domain fragment. We carried out solution NMR experiments to identify the interaction interface of BHMP07 with the ribonuclease H domain fragment. Chemical shift changes of backbone amide signals at different BHMP07 concentrations clearly demonstrate that BHMP07 mainly recognizes the substrate handle region in the ribonuclease H fragment. Using ribonuclease H inhibition assays and reverse transcriptase mutants, the binding specificity of BHMP07 was compared with another inhibitor, dihydroxy benzoyl naphthyl hydrazone. Our results provide a structural characterization of the ribonuclease H inhibitor interaction and are likely to be useful for further improvements of the inhibitors. © 2010 John Wiley & Sons A/S.

  1. Approved and Experimental Small-Molecule Oncology Kinase Inhibitor Drugs: A Mid-2016 Overview.

    Science.gov (United States)

    Fischer, Peter M

    2017-03-01

    Kinase inhibitor research is a comparatively recent branch of medicinal chemistry and pharmacology and the first small-molecule kinase inhibitor, imatinib, was approved for clinical use only 15 years ago. Since then, 33 more kinase inhibitor drugs have received regulatory approval for the treatment of a variety of cancers and the volume of reports on the discovery and development of kinase inhibitors has increased to an extent where it is now difficult-even for those working in the field-easily to keep an overview of the compounds that are being developed, as currently there are 231 such compounds, targeting 38 different protein and lipid kinases (not counting isoforms), in clinical use or under clinical investigation. The purpose of this review is thus to provide an overview of the biomedical rationales for the kinases being targeted on the one hand, and the design principles, as well as chemical, pharmacological, pharmaceutical, and toxicological kinase inhibitor properties, on the other hand. Two issues that are especially important in kinase inhibitor research, target selectivity and drug resistance, as well as the underlying structural concepts, are discussed in general terms and in the context of relevant kinases and their inhibitors. © 2016 Wiley Periodicals, Inc.

  2. Discovery and SAR of hydantoin TACE inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G. (Merck)

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  3. Does plasminogen activator inhibitor-1 drive lymphangiogenesis?

    DEFF Research Database (Denmark)

    Bruyère, Françoise; Melen-Lamalle, Laurence; Blacher, Silvia

    2010-01-01

    The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and...

  4. Electrochemical Behaviour of Environmentally Friendly Inhibitor of ...

    African Journals Online (AJOL)

    Electrochemical Behaviour of Environmentally Friendly Inhibitor of Aloe Secundiflora Extract in Corrosion Control of Carbon Steel in Soft Water Media. ... The investigation was performed at different inhibitor concentrations under static and dynamic conditions using a Rotating Disk Electrode (RDE). The impedance and ...

  5. Aromatase inhibitors in stimulated IVF cycles

    Directory of Open Access Journals (Sweden)

    Tournaye Herman

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors have been introduced as a new treatment modality that could challenge clomiphene citrate as an ovulation induction regiment in patients with PCOS. Although several randomized trials have been conducted regarding their use as ovulation induction agents, only few trials are available regarding their efficacy in IVF stimulated cycles. Current available evidence support that letrozole may have a promising role in stimulated IVF cycles, either when administered during the follicular phase for ovarian stimulation. Especially for women with poor ovarian response, letrozole appears to have the potential to increase clinical pregnancy rates when combined with gonadotropins, whereas at the same time reduces the total gonadotropin dose required for ovarian stimulation. However, given that in all of the trials letrozole has been administered in GnRH antagonist cycles, it is intriguing to test in the future how it may perform when used in GnRH agonist cycles. Finally administration of letrozole during luteal phase in IVF cycles offers another treatment modality for patients at high risk for OHSS taking into account that it drastically reduces estradiol levels

  6. Immunomodulatory effects of histone deacetylase inhibitors.

    Science.gov (United States)

    Licciardi, P V; Ververis, K; Tang, M L; El-Osta, A; Karagiannis, T C

    2013-05-01

    Histone deacetylase inhibitors (HDACi) have emerged as a new generation of anticancer therapeutics. The classical broad-spectrum HDACi typically alter the cell cycle distribution and induce cell death, apoptosis and differentiation in malignant and transformed cells. This provides the basis for the clinical potential of HDACi in cancer therapy. Currently two compounds, suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved for by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Apart from clinical application in oncology, HDACi have also been investigated as potential therapeutics for various pathologies including those of the central nervous system (such as Huntington's disease and multiple sclerosis), cardiac conditions (particularly hypertrophy), arthritis and malaria. Further, evidence is accumulating for potent immunomodulatory effects of classical HDACi which is the focus of this review. We review the antiinflammatory effects of HDACi and in particular findings implicating regulation of the innate and adaptive immune systems by HDAC enzymes. The recent findings highlighting the immunomodulatory function of HDAC11 which relates to balancing immune activation versus tolerance are also discussed.

  7. SGLT2 Inhibitors in Diabetes Mellitus Treatment.

    Science.gov (United States)

    Rosas-Guzman, Juan; Rosas-Saucedo, Juan; Romero-Garcia, Alma R J

    2017-01-01

    Type 2 Diabetes Mellitus (T2DM) is a chronic illness with high prevalence in Mexico, Latin- America, and the world and is associated to high morbidity, disability, and mortality rate, especially in developing countries. T2DM physiopathology is very complex; insulin resistance in the muscle, liver, and adipose tissue, a reduction in the production of incretins (mainly GLP-1) in the intestine, increased glucagon synthesis, an insufficient response of insulin generation, and increased glucose reabsorption in the kidney lead all together to an hyperglycemic state, which has been closely associated with the development of micro and macrovascular complications. Sodium Glucose Linked Transporter 2 inhibitors (SGLT2i) are the most recent therapeutic class available for treating T2DM. SGLT2i central effect is a glycosuric action, and they can reverse the deleterious effect of tubular reabsorption of glucose in the diabetic patient resulting in greater hyperglycemia. Because their mechanism of action is completely different to current drugs, they can be considered as monotherapy or in combination with any other oral or parenteral medication, including different types of insulin or its analogues. This therapeutic synergy accomplishes a greater percentage of patients achieving glycemic control goals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Potential physiological role of plant glycosidase inhibitors

    DEFF Research Database (Denmark)

    Bellincampi, D.; Carmadella, L.; Delcour, J.A.

    2004-01-01

    Carbohydrate-active enzymes including glycosidases, transglycosidases, glycosyltransferases, polysaccharide lyases and carbohydrate esterases are responsible for the enzymatic processing of carbohydrates in plants. A number of carbohydrate-active enzymes are produced by microbial pathogens...... and insects responsible of severe crop losses. Plants have evolved proteinaceous inhibitors to modulate the activity of several of these enzymes. The continuing discovery of new inhibitors indicates that this research area is still unexplored and may lead to new exciting developments. To date, the role...... of the inhibitors is not completely understood. Here we review recent results obtained on the best characterised inhibitors, pointing to their possible biological role in vivo. Results recently obtained with plant transformation technology indicate that this class of inhibitors has potential biotechnological...

  9. Consensus model for identification of novel PI3K inhibitors in large chemical library

    Science.gov (United States)

    Liew, Chin Yee; Ma, Xiao Hua; Yap, Chun Wei

    2010-02-01

    Phosphoinositide 3-kinases (PI3Ks) inhibitors have treatment potential for cancer, diabetes, cardiovascular disease, chronic inflammation and asthma. A consensus model consisting of three base classifiers (AODE, kNN, and SVM) trained with 1,283 positive compounds (PI3K inhibitors), 16 negative compounds (PI3K non-inhibitors) and 64,078 generated putative negatives was developed for predicting compounds with PI3K inhibitory activity of IC50 ≤ 10 μM. The consensus model has an estimated false positive rate of 0.75%. Nine novel potential inhibitors were identified using the consensus model and several of these contain structural features that are consistent with those found to be important for PI3K inhibitory activities. An advantage of the current model is that it does not require knowledge of 3D structural information of the various PI3K isoforms, which is not readily available for all isoforms.

  10. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence.

    Science.gov (United States)

    Ranasinghe, Shiwanthi L; McManus, Donald P

    2017-05-01

    Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Immune-checkpoint inhibitors in the era of precision medicine: What radiologists should know

    Energy Technology Data Exchange (ETDEWEB)

    Braschi-Amirfarzan, Marta; Tirumani, Sree Harsha; Hodi, Frank Stephan Jr; Nishno, Mizuki [Dept. of Radiology, Brigham and Women' s Hospital and Dana Farber Cancer Institute, Boston (United States)

    2017-01-15

    Over the past five years immune-checkpoint inhibitors have dramatically changed the therapeutic landscape of advanced solid and hematologic malignancies. The currently approved immune-checkpoint inhibitors include antibodies to cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1 and PD-L2). Response to immune-checkpoint inhibitors is evaluated on imaging using the immune-related response criteria. Activation of immune system results in a unique toxicity profile termed immune-related adverse events. This article will review the molecular mechanism, clinical applications, imaging of immune-related response patterns and adverse events associated with immune-checkpoint inhibitors.

  12. Hemodialysis in a patient with severe hemophilia A and factor VIII inhibitor.

    Science.gov (United States)

    Gopalakrishnan, Natarajan; Usha, Thiruvengadam; Thopalan, Balasubramaniyan; Dhanapriya, Jeyachandran; Dineshkumar, Thanigachalam; Thirumalvalavan, Kaliaperumal; Sakthirajan, Ramanathan

    2016-10-01

    Hemophilia A is a hereditary X-linked recessive disease caused by mutations in the gene encoding factor VIII (FVIII), occurring in 1 out of 10,000 persons. Life expectancy and quality of life have dramatically improved recently in patients with hemophilia. Chronic kidney disease and need for renal replacement therapy in these patients are rare. The development of inhibitors to FVIII is the most serious complication of hemophilia and makes treatment of bleeds very challenging. We describe here a 28-year-old male patient with severe hemophilia A with presence of factor VIII inhibitor, who had end stage renal disease. Central venous access device was inserted along with infusion of factor eight inhibitor bypass activity before and after the procedure. He is currently on thrice weekly hemodialysis and doing well for 6 months without bleeding episodes. To our knowledge, hemophilia A with factor VIII inhibitor managed with hemodialysis has not been reported so far. © 2016 International Society for Hemodialysis.

  13. Immune-checkpoint inhibitors in the era of precision medicine: What radiologists should know

    International Nuclear Information System (INIS)

    Braschi-Amirfarzan, Marta; Tirumani, Sree Harsha; Hodi, Frank Stephan Jr; Nishno, Mizuki

    2017-01-01

    Over the past five years immune-checkpoint inhibitors have dramatically changed the therapeutic landscape of advanced solid and hematologic malignancies. The currently approved immune-checkpoint inhibitors include antibodies to cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1 and PD-L2). Response to immune-checkpoint inhibitors is evaluated on imaging using the immune-related response criteria. Activation of immune system results in a unique toxicity profile termed immune-related adverse events. This article will review the molecular mechanism, clinical applications, imaging of immune-related response patterns and adverse events associated with immune-checkpoint inhibitors

  14. Antiinflamatórios não esteróides inibidores da ciclooxigenase-2 (COX-2: aspectos atuais Antiinflamatorios no esteróides inhibidores de la ciclooxigenasa-2 (COX-2: aspectos actuales Cycloxygenase-2 inhibitors nonsteroid anti-inflammatory drugs: current issues

    Directory of Open Access Journals (Sweden)

    Carmen Luize Kummer

    2002-07-01

    raising the question of how really safe are specific inhibitors of such enzyme. This review aimed to report new clinical and experimental evidences involving COX-2 and its specific inhibitors. CONTENTS: New concepts on structural differences between COX-1 and COX-2, the existence of these isoforms in different organic tissues, and animal and human experiments are reported, in addition to clinical observations of specific COX-2 inhibitors (coxibs. Potential new therapeutic indications of NSAIDS, mainly coxibs, for Alzheimer’s disease and cancer are emphasized. CONCLUSIONS: Coxibs are an important pharmacological advance for anti-inflammatory treatment, decreasing the incidence of gastrointestinal adverse effects and probably playing a role in the prevention of cancer and neurological diseases. However, similar side-effects from conventional NSAIDs still exist, and also, coxibs are high-cost drugs. Like any new medication, further evaluations are needed to determine the actual safety profile of such compounds.

  15. The Wonders of Phosphodiesterase‑5 Inhibitors: A Majestic History

    African Journals Online (AJOL)

    A milestone in drug discovery was the selective inhibitors of. PDE‑5 that ... the pharmacotherapeutics of PDE‑5 inhibitors and the majestic history that led to their discovery. ..... including HIV protease inhibitors, ketoconazole, itraconazole,.

  16. [Memantine as add-on medication to acetylcholinesterase inhibitor therapy for Alzheimer dementia].

    Science.gov (United States)

    Haussmann, R; Donix, M

    2017-01-01

    Currently available data indicate superior therapeutic effects of combination treatment for Alzheimer dementia with memantine and acetylcholine esterase inhibitors in certain clinical contexts. Out of five randomized, placebo-controlled, double-blind trials two showed superior therapeutic effects in comparison to monotherapy with acetylcholinesterase inhibitors regarding various domains. Recently published meta-analyses and cost-benefit analyses also showed positive results. Recently published German guidelines for dementia treatment also take these new data into account and recommend combination treatment in patients with severe dementia on stable donepezil medication. This article gives an overview of current evidence for combination therapy.

  17. Additives as corrosion inhibitors in reinforced concrete

    International Nuclear Information System (INIS)

    Venegas, Ricardo; Vera, Rosa; Carvajal, Ana Maria; Villarroel, Maria; Vera, Enrique; Ortiz, Cesar

    2008-01-01

    This work studies the behavior of two additives as inhibitors of corrosion in reinforced concrete. The presence of Microsilica, a physical inhibitor, in the mixture decreases pore size in structures and improves compression. Calcium Nitrite, a chemical inhibitor, is an oxidizing agent and allows a more homogenous film to form over the steel that becomes more resistant to attacks from aggressive ions like anion chloride and others. Three pairs of concrete test pieces were used without additives and with additives with a/c ration of 0.55. The samples were exposed to an accelerated attack of chlorides, submerging them in a 4.27 M solution of NaCl for 24 hours and then drying them at room temperature for another 24 hours, completing a cycle every 48 hours. The tests were carried out at 1 cycle and 5 cycles of partial moistening and drying. The steel corrosion was evaluated with corrosion potential measurements. Conductivity, pH, chlorides and sulfate profiles were defined depending on the depth of the concrete. The composition of the corrosion products was determined using X-ray diffraction and the morphology of the film by scanning electron microscopy. The results show that for 1 test cycle, the corrosion potential of the steel in the sample with calcium nitrite was -54mV, which was a higher value than that measured in the sample with microsilica (-217.3mV) and without an additive (-159.1mV), corroborating its inhibitory power. The content of the free chlorides in the sample with micros ice allows greater capillary suction by adding high amounts of chloride to the structure (2.6% on the outside up to 2.20% near the steel); while the test pieces with calcium nitrite and without an additive had concentrations lower than 2% in all the evaluated points. After five cycles of exposing the samples to the saline solution the behavior is inverted. The measures of conductivity agreed with the previous results. Meanwhile, the pH of the solutions obtained from the powder from the

  18. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  19. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  20. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  1. Homologous Recombination in Protozoan Parasites and Recombinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Andrew A. Kelso

    2017-09-01

    Full Text Available Homologous recombination (HR is a DNA double-strand break (DSB repair pathway that utilizes a homologous template to fully repair the damaged DNA. HR is critical to maintain genome stability and to ensure genetic diversity during meiosis. A specialized class of enzymes known as recombinases facilitate the exchange of genetic information between sister chromatids or homologous chromosomes with the help of numerous protein accessory factors. The majority of the HR machinery is highly conserved among eukaryotes. In many protozoan parasites, HR is an essential DSB repair pathway that allows these organisms to adapt to environmental conditions and evade host immune systems through genetic recombination. Therefore, small molecule inhibitors, capable of disrupting HR in protozoan parasites, represent potential therapeutic options. A number of small molecule inhibitors were identified that disrupt the activities of the human recombinase RAD51. Recent studies have examined the effect of two of these molecules on the Entamoeba recombinases. Here, we discuss the current understandings of HR in the protozoan parasites Trypanosoma, Leishmania, Plasmodium, and Entamoeba, and we review the small molecule inhibitors known to disrupt human RAD51 activity.

  2. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression

    Science.gov (United States)

    Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L.; Olenyuk, Bogdan Z.; Chen, Thomas C.; Hofman, Florence M.; Shih, Jean C.

    2016-01-01

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis. PMID:26871599

  3. Research progress of hydroxychloroquine and autophagy inhibitors on cancer.

    Science.gov (United States)

    Shi, Ting-Ting; Yu, Xiao-Xu; Yan, Li-Jun; Xiao, Hong-Tao

    2017-02-01

    Hydroxychloroquine (HCQ), the analog of chloroquine, augments the effect of chemotherapies and radiotherapy on various tumors identified in the current clinical trials. Meanwhile, the toxicity of HCQ retinopathy raises concern worldwide. Thus, the potent autophagy inhibitors are urgently needed. A systematic review was related to 'hydroxychloroquine' or 'chloroquine' with 'clinical trials,' 'retinopathy' and 'new autophagy inhibitors.' This led to many cross-references involving HCQ, and these data have been incorporated into the following study. Many preclinical studies indicate that the combination of HCQ with chemotherapies or radiotherapies may enhance the effect of anticancer, providing base for launching cancer clinical trials involving HCQ. The new and more sensitive diagnostic techniques report a prevalence of HCQ retinopathy up to 7.5%. Lys05, SAR405, verteporfin, VATG-027, mefloquine and spautin-1 may be potent autophagy inhibitors. Additional mechanistic studies of HCQ in preclinical models are still required in order to answer these questions whether HCQ actually inhibits autophagy in non-selective tumors and whether the extent of inhibition would be sufficient to alter chemotherapy or radiotherapy sensitivity.

  4. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    International Nuclear Information System (INIS)

    Ram Kumar, Ram Mohan; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome

  5. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  6. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Science.gov (United States)

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  7. Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies

    International Nuclear Information System (INIS)

    Viloria-Petit, Alicia M.; Kerbel, Robert S.

    2004-01-01

    Potent and specific, or relatively specific, inhibitors of epidermal growth factor receptor (EGFR) signaling, including monoclonal antibodies and small molecular weight compounds, have been successfully developed. Both types of agent have been found to have significant antitumor activity, especially when used in combination with radio- hormone- and chemotherapy in preclinical studies. Because of the potentiation of the conventional drug activity in these combination settings, inhibitors of EGFR signaling have often been referred to as sensitizers for chemotherapy or radiation, as well as drug resistance reversal agents. Phase II clinical trials in head-and-neck as well as lung cancer suggested this concept of chemosensitization might translate into the clinic, but this remains to be definitively proven in randomized, double-blind Phase III trials. Given the extensive preclinical literature on EGFR blocking drugs and the advanced clinical development of such agents, it is surprising that the possibility of development of acquired resistance to the EGFR inhibitors themselves, a common clinical problem with virtually all other currently used anticancer drugs, remains a largely unexplored subject of investigation. Here we summarize some of the possible mechanisms that can result in acquired resistance to EGFR-targeting drugs. Alternative combination therapies to circumvent and delay this problem are suggested

  8. Research progress on criteria for discontinuation of EGFR inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Zhuang HQ

    2012-10-01

    Full Text Available Hong-qing Zhuang, Zhi-yong Yuan, Jun Wang, Ping Wang, Lu-jun Zhao, Bai-lin ZhangDepartment of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, People's Republic of ChinaAbstract: The clinical success of the epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI as therapeutic agents has prompted great interest in their further development and clinical testing for a wide variety of malignancies. However, most studies have focused on the efficacy of TKI, and few studies have been done on the criteria for their discontinuation. The current standard for drug discontinuation is “until progression”, based on change in tumor size. However, tumor size is not related to the gene expression which determines the efficacy of TKI in the final analysis, and it is also difficult to make a thorough and correct prediction based on tumor size when the TKI is discontinued. Nevertheless, clinical evaluation of the criteria for TKI discontinuation is still in its early days. Some promising findings have started to emerge. With the improving knowledge of EGFR and its inhibitors, it is expected that the criteria for discontinuation of EGFR inhibitor therapy will become clearer.Keywords: epidermal growth factor receptor, drug discontinuation, acquired drug-resistance

  9. Role of mTOR Inhibitors in Kidney Disease

    Directory of Open Access Journals (Sweden)

    Moto Kajiwara

    2016-06-01

    Full Text Available The first compound that inhibited the mammalian target of rapamycin (mTOR, sirolimus (rapamycin was discovered in the 1970s as a soil bacterium metabolite collected on Easter Island (Rapa Nui. Because sirolimus showed antiproliferative activity, researchers investigated its molecular target and identified the TOR1 and TOR2. The mTOR consists of mTOR complex 1 (mTORC1 and mTORC2. Rapalogues including sirolimus, everolimus, and temsirolimus exert their effect mainly on mTORC1, whereas their inhibitory effect on mTORC2 is mild. To obtain compounds with more potent antiproliferative effects, ATP-competitive inhibitors of mTOR targeting both mTORC1 and mTORC2 have been developed and tested in clinical trials as anticancer drugs. Currently, mTOR inhibitors are used as anticancer drugs against several solid tumors, and immunosuppressive agents for transplantation of various organs. This review discusses the role of mTOR inhibitors in renal disease with a particular focus on renal cancer, diabetic nephropathy, and kidney transplantation.

  10. Reverse transcriptase inhibitors as microbicides.

    Science.gov (United States)

    Lewi, Paul; Heeres, Jan; Ariën, Kevin; Venkatraj, Muthusamy; Joossens, Jurgen; Van der Veken, Pieter; Augustyns, Koen; Vanham, Guido

    2012-01-01

    The CAPRISA 004 study in South Africa has accelerated the development of vaginal and rectal microbicides containing antiretrovirals that target specific enzymes in the reproduction cycle of HIV, especially reverse transcriptase inhibitors (RTI). In this review we discuss the potential relevance of HIV-1 RTIs as microbicides, focusing in the nucleotide RTI tenofovir and six classes of nonnucleoside RTIs (including dapivirine, UC781, urea and thiourea PETTs, DABOs and a pyrimidinedione). Although tenofovir and dapivirine appear to be most advanced in clinical trials as potential microbicides, several issues remain unresolved, e.g., the importance of nonhuman primates as a "gatekeeper" for clinical trials, the emergence and spread of drug-resistant mutants, the combination of microbicides that target different phases of viral reproduction and the accessibility to microbicides in low-income countries. Thus, here we discuss the latest research on RTI as microbicides in the light of the continuing spread of the HIV pandemic from the point of view of medicinal chemistry, virological, and pharmaceutical studies.

  11. AZT as a telomerase inhibitor

    International Nuclear Information System (INIS)

    Gomez, Daniel E.; Armando, Romina G.; Alonso, Daniel F.

    2012-01-01

    Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.

  12. ALK inhibitors, a pharmaceutical perspective

    Directory of Open Access Journals (Sweden)

    Arturo eGalvani

    2012-02-01

    Full Text Available In 2007, the ALK tyrosine kinase, already known to be translocated and activated in Anaplastic Large Cell Lymphoma, and a few other rare cancers, was described as a potential therapeutic target for a subset of non small-cell lung cancer (NSCLC patients. Clinical proof of concept, culminating in the recent approval by the FDA of the Pfizer drug Xalkori (crizotinib, formerly known as PF-02341066 followed in record time. The drug was approved together with a companion diagnostic, the Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Inc. for detection of eligible patients. This remarkable example of the coming of age of personalized medicine in cancer therapy is hopefully only an auspice of things to come in this rapidly developing field. Perhaps unsurprisingly, however, the appearance of clinical acquired resistance to crizotinib has already been observed early on in clinical testing, with the identification of several ALK secondary point mutations which diminish drug efficacy, and which open the way for development of second-generation inhibitors. It is also emerging that acquired resistance to crizotinib may also occur through ALK-independent mechanisms, which still need to be elucidated in detail.

  13. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    Science.gov (United States)

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  14. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  15. An Updated Review of Tyrosinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Te-Sheng Chang

    2009-05-01

    Full Text Available Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed.

  16. PCSK9 Inhibitors Show Value for Patients and the US Health Care System.

    Science.gov (United States)

    Cheng, Wei-Han; Gaudette, Étienne; Goldman, Dana P

    2017-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors were approved by the US Food and Drug Administration (FDA) as cholesterol-lowering therapies for patients with familial hypercholesterolemia or atherosclerotic cardiovascular disease. To estimate the long-term health and economic value of PCSK9 inhibitors for Americans (51 years and older). We conducted simulations using the Future Elderly Model, an established dynamic microsimulation model to project the lifetime outcomes for the US population aged 51 years and older. Health effects estimates and confidence intervals from published meta-analysis studies were used to project changes in life expectancy, quality-adjusted life-years, and lifetime medical spending resulting from the use of PCSK9 inhibitors. We considered two treatment scenarios: 1) current FDA eligibility and 2) an extended eligibility scenario that includes patients with no pre-existing cardiovascular disease but at high risk. We assumed that the price of PCSK9 inhibitors was discounted by 35% in the first 12 years and by 57% thereafter, with gradual uptake of the drug in eligible populations. Use of PCSK9 inhibitors by individuals covered by current FDA approval would extend life expectancy at the age of 51 years by an estimated 1.1 years and would yield a lifetime net value of $5800 per person. If use was extended to those at high risk for cardiovascular disease, PCSK9 inhibitors would generate a lifetime net benefit of $14,100 per person. Expanded access to PCSK9 inhibitors would offer positive long-term net value for patients and the US health care system at the current discounted prices. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  17. Diarylthiophenes as inhibitors of the pore-forming protein perforin

    OpenAIRE

    Miller, Christian K.; Huttunen, Kristiina M.; Denny, William A.; Jaiswal, Jagdish K.; Ciccone, Annette; Browne, Kylie A.; Trapani, Joseph A.; Spicer, Julie A.

    2016-01-01

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure?activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a t...

  18. GDC-0449-a potent inhibitor of the hedgehog pathway.

    Science.gov (United States)

    Robarge, Kirk D; Brunton, Shirley A; Castanedo, Georgette M; Cui, Yong; Dina, Michael S; Goldsmith, Richard; Gould, Stephen E; Guichert, Oivin; Gunzner, Janet L; Halladay, Jason; Jia, Wei; Khojasteh, Cyrus; Koehler, Michael F T; Kotkow, Karen; La, Hank; Lalonde, Rebecca L; Lau, Kevin; Lee, Leslie; Marshall, Derek; Marsters, James C; Murray, Lesley J; Qian, Changgeng; Rubin, Lee L; Salphati, Laurent; Stanley, Mark S; Stibbard, John H A; Sutherlin, Daniel P; Ubhayaker, Savita; Wang, Shumei; Wong, Susan; Xie, Minli

    2009-10-01

    SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.

  19. Toxicity management of angiogenesis inhibitors: resolution of expert panel

    Directory of Open Access Journals (Sweden)

    Pavel O. Rumiantsev

    2017-12-01

    Full Text Available On 22 June 2017 in St. Petersburg the expert panel was held on the topic “Management of toxicity of angiogenesis inhibitors”, which discussed current issues of systemic therapy of advanced differentiated thyroid cancer resistant to radioactive iodine therapy, advanced kidney cancer and questions of efficacy and safety of new target drugs in the treatment of these diseases. The reports and discussions of experts raised the following questions: 1. Own experience of using lenvatinib in patients with differentiated thyroid cancer refractory to therapy with radioactive iodine and kidney cancer. 2. Profile of efficacy and safety of modern targeted therapy with multikinase inhibitors. 3. Prophylaxis and management of predictable toxicity.

  20. HIV-protease inhibitors for the treatment of cancer

    DEFF Research Database (Denmark)

    Maksimovic-Ivanic, Danijela; Fagone, Paolo; McCubrey, James

    2017-01-01

    The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic...... and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer....

  1. Alzheimer’s Disease: Background, Current and Future Treatments

    OpenAIRE

    Evelyn Chou

    2014-01-01

    Alzheimer’s disease is a currently incurable neurodegenerative disorder, and its treatment has posed a big challenge. Proposed causes of Alzheimer’s disease include the cholinergic, amyloid and tau hypothesis. Current therapeutic treatments have been aimed at dealing with neurotransmitter imbalance. These include cholinesterase inhibitors and N-methyl D-aspartate receptor antagonists. However, current therapeutics have been unable to halt its progression. The future of Alzheimer’s disease tre...

  2. Strategies for discontinuation of proton pump inhibitors

    DEFF Research Database (Denmark)

    Haastrup, Peter; Paulsen, Maja S; Begtrup, Luise M

    2014-01-01

    PURPOSE: Proton pump inhibitors (PPIs) are considered to be overprescribed. Consensus on how to attempt discontinuation is, however, lacking. We therefore conducted a systematic review of clinical studies on discontinuation of PPIs. METHODS: Systematic review based on clinical studies investigating...

  3. Predicting the Performance of Organic Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2017-12-01

    Full Text Available The withdrawal of effective but toxic corrosion inhibitors has provided an impetus for the discovery of new, benign organic compounds to fill that role. Concurrently, developments in the high-throughput synthesis of organic compounds, the establishment of large libraries of available chemicals, accelerated corrosion inhibition testing technologies, and the increased capability of machine learning methods have made discovery of new corrosion inhibitors much faster and cheaper than it used to be. We summarize these technical developments in the corrosion inhibition field and describe how data-driven machine learning methods can generate models linking molecular properties to corrosion inhibition that can be used to predict the performance of materials not yet synthesized or tested. We briefly summarize the literature on quantitative structure–property relationships models of small organic molecule corrosion inhibitors. The success of these models provides a paradigm for rapid discovery of novel, effective corrosion inhibitors for a range of metals and alloys in diverse environments.

  4. Novel diamide-based inhibitors of IMPDH.

    Science.gov (United States)

    Gu, Henry H; Iwanowicz, Edwin J; Guo, Junqing; Watterson, Scott H; Shen, Zhongqi; Pitts, William J; Dhar, T G Murali; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Witmer, Mark; Tredup, Jeffrey; Hollenbaugh, Diane

    2002-05-06

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase is described. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are presented.

  5. Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer.

    Science.gov (United States)

    Weber, Helga; Valbuena, José R; Barbhuiya, Mustafa A; Stein, Stefan; Kunkel, Hana; García, Patricia; Bizama, Carolina; Riquelme, Ismael; Espinoza, Jaime A; Kurtz, Stephen E; Tyner, Jeffrey W; Calderon, Juan Francisco; Corvalán, Alejandro H; Grez, Manuel; Pandey, Akhilesh; Leal-Rojas, Pamela; Roa, Juan C

    2017-04-18

    Gallbladder cancer (GBC) is a lethal cancer with poor prognosis associated with high invasiveness and poor response to chemotherapy and radiotherapy. New therapeutic approaches are urgently needed in order to improve survival and response rates of GBC patients. We screened 130 small molecule inhibitors on a panel of seven GBC cell lines and identified the HSP90 inhibitor 17-AAG as one of the most potent inhibitory drugs across the different lines. We tested the antitumor efficacy of 17-AAG and geldanamycin (GA) in vitro and in a subcutaneous preclinical tumor model NOD-SCID mice. We also evaluated the expression of HSP90 by immunohistochemistry in human GBC tumors.In vitro assays showed that 17-AAG and GA significantly reduced the expression of HSP90 target proteins, including EGFR, AKT, phospho-AKT, Cyclin B1, phospho-ERK and Cyclin D1. These molecular changes were consistent with reduced cell viability and cell migration and promotion of G2/M cell cycle arrest and apoptosis observed in our in vitro studies.In vivo, 17-AAG showed efficacy in reducing subcutaneous tumors size, exhibiting a 69.6% reduction in tumor size in the treatment group compared to control mice (p < 0.05).The HSP90 immunohistochemical staining was seen in 182/209 cases of GBC (87%) and it was strongly expressed in 70 cases (33%), moderately in 58 cases (28%), and weakly in 54 cases (26%).Our pre-clinical observations strongly suggest that the inhibition of HSP90 function by HSP90 inhibitors is a promising therapeutic strategy for gallbladder cancer that may benefit from new HSP90 inhibitors currently in development.

  6. Role of Factor Xa Inhibitors in Cancer-Associated Thrombosis: Any New Data?

    Directory of Open Access Journals (Sweden)

    Ali Zalpour

    2011-01-01

    Full Text Available The association between cancer and venous thromboembolism (VTE has been well documented in the literature. Prevention and treatment of VTE in cancer patients is imperative. Typically, the mainstay regimen for VTE prevention and treatment has been anticoagulation therapy, unless contraindicated. This therapy consists of unfractionated heparin (UFH, low-molecular-weight heparin (LMWH, factor Xa inhibitor, or vitamin K antagonist (VKA. Current guidelines recommend LMWH over VKA for the treatment of VTE in cancer patients. Factor-specific anticoagulants have been proven safe and effective, and recently factor Xa inhibitors have emerged as a treatment alternative to heparins and VKA. Currently, three factor Xa inhibitors have been identified: fondaparinux (the only one approved so far by the US Food and Drug Administration, idraparinux (in clinical trials, and idrabiotaparinux (in clinical trials. This paper will examine the role of these agents, focusing on fondaparinux, for the prevention and treatment of VTE in cancer patients.

  7. Monoamine Oxidase B Inhibitors in Parkinson's Disease.

    Science.gov (United States)

    Dezsi, Livia; Vecsei, Laszlo

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with a prevalence increasing with age. Oxidative stress and glutamate toxicity are involved in its pathomechanism. There are still many unmet needs of PD patients, including the alleviation of motor fluctuations and dyskinesias, and the development of therapies with neuroprotective potential. To give an overview of the pharmacological properties, the efficacy and safety of the monoamine oxidase B (MAO-B) inhibitors in the treatment of PD, with special focus on the results of randomized clinical trials. A literature search was conducted in PubMed for 'PD treatment', 'MAO-B inhibitors', 'selegiline', 'rasagiline', 'safinamide' and 'clinical trials' with 'MAO-B inhibitors' in 'Parkinson' disease'. MAO-B inhibitors have a favorable pharmacokinetic profile, improve the dopamine deficient state and may have neuroprotective properties. Safinamide exhibits an anti-glutamatergic effect as well. When applied as monotherapy, MAO-B inhibitors provide a modest, but significant improvement of motor function and delay the need for levodopa. Rasagiline and safinamide were proven safe and effective when added to a dopamine agonist in early PD. As add-on to levodopa, MAO-B inhibitors significantly reduced off-time and were comparable in efficacy to COMT inhibitors. Improvements were achieved as regards certain non-motor symptoms as well. Due to the efficacy shown in clinical trials and their favorable side-effect profile, MAO-B inhibitors are valuable drugs in the treatment of PD. They are recommended as monotherapy in the early stages of the disease and as add-on therapy to levodopa in advanced PD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  9. Pharmacotherapy of erectile dysfunction: Current standards

    Directory of Open Access Journals (Sweden)

    Kew-Kim Chew

    2006-01-01

    Full Text Available Pharmacotherapy is currently the therapeutic option of choice for erectile dysfunction. Comprising mainly intracavernosal injection therapy using alprostadil or alprostadil combined with phentolamine and/or papaverine and oral phosphodiesterase-5 inhibitors, it is safe and effective if appropriately prescribed and administered. The medications in current use produce satisfactory erectile responses by enhancing cavernosal vasodilatation mainly through their ability to promote relaxation of the smooth muscle cells in the corpora cavernosa involving the synthesis and activity of nitric oxide via the cyclic guanosine monophosphate and cyclic adenosine monophosphate biochemical pathways. The main side-effects and complications of intracavernosal injections are postinjection pain, prolonged erections, priapism and penile fibrosis. There may be a variety of side-effects with phosphodiesterase-5 inhibition but these are usually inconsequential. Recent serious ill health and the need for ongoing long-acting nitrate therapy or frequent use of short-acting nitrates for angina are absolute contraindications to the use of phosphodiesterase-5 inhibitors. Caution has to be exercised in prescribing phosphodiesterase-5 inhibitors for patients with impaired renal or hepatic functions or receiving multi-drug therapy for any systemic disease. All patients presenting with erectile dysfunction should be investigated and treated for cardiovascular risk factors. They should also be counseled regarding lifestyle factors particularly healthy balanced diet, regular physical exercise and inappropriate social habits.

  10. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  11. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  12. Emerging Corrosion Inhibitors for Interfacial Coating

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2017-12-01

    Full Text Available Corrosion is a deterioration of a metal due to reaction with environment. The use of corrosion inhibitors is one of the most effective ways of protecting metal surfaces against corrosion. Their effectiveness is related to the chemical composition, their molecular structures and affinities for adsorption on the metal surface. This review focuses on the potential of ionic liquid, polyionic liquid (PIL and graphene as promising corrosion inhibitors in emerging coatings due to their remarkable properties and various embedment or fabrication strategies. The review begins with a precise description of the synthesis, characterization and structure-property-performance relationship of such inhibitors for anti-corrosion coatings. It establishes a platform for the formation of new generation of PIL based coatings and shows that PIL corrosion inhibitors with various heteroatoms in different form can be employed for corrosion protection with higher barrier properties and protection of metal surface. However, such study is still in its infancy and there is significant scope to further develop new structures of PIL based corrosion inhibitors and coatings and study their behaviour in protection of metals. Besides, it is identified that the combination of ionic liquid, PIL and graphene could possibly contribute to the development of the ultimate corrosion inhibitor based coating.

  13. [Immunotherapy for renal cell carcinoma - current status].

    Science.gov (United States)

    Grimm, Marc-Oliver; Foller, Susan

    2018-04-01

    Systemic treatment of metastatic renal cell carcinoma (mRCC) has substantially changed during the last 2 years due to approval of the immune-checkpoint inhibitor Nivolumab (Opdivo ® ) and new multikinase inhibitors (Cabozantinib, Lenvatinib, Tivozanib). The german kidney tumor guideline strongly recommends Nivolumab and Cabozantinib as 2nd line treatments after prior VEGF targeted therapy. CheckMate 025, the prospective randomized trial which led to approval of Nivolumab demonstrated improved overall survival (26 month vs. 19.7 month; hazard ratio 0.73; p = 0.0006) and response rate (26 % vs. 5 %) as well as a favorable toxicity profile compared with Everolimus. Currently, numerous combinations with PD-1/PD-L1 inhibitors are compared to Sunitinib as first line treatment of mRCC. Out of these CheckMate 214, a randomized phase-3 trial is the first to demonstrate a significant higher objective response rate (42 % vs. 27 %, p < 0.0001) and overall survival (Sunitinib 26.0 month, median for Nivo + Ipi has been not yet reached (28.2 - NR); Hazard ratio 0.63) for the combination of Nivolumab and the CTLA-4 antibody Ipilimumab in IMDC intermediate and high risk patients. Furthermore, CheckMate 214 shows better side effect profile and quality of life in patients receiving Nivolumab and Ipilimumab compared with Sunitinib. However, a considerable increase of immune related adverse events is associated with the immune combination therapy. Another randomized trial demonstrates improved progression-free survival for the combination of the PD-L1 inhibitor Atezolizumab and the VEGF antibody Bevacizumab in patients with PD-L1 positive tumors; this was found in all IMDC risk groups. Further phase-3 trials with "new" VEGFR-TKIs (Axitinib, Cabozantinib, Lenvatinib) and PD-1/PD-L1 inhibitor combinations are ongoing.In conclusion, the PD-1 immune checkpoint inhibitor Nivolumab will remain a standard treatment for patients with metastatic renal cell carcinoma

  14. Discovery of natural mouse serum derived HIV-1 entry inhibitor(s).

    Science.gov (United States)

    Wei, M; Chen, Y; Xi, J; Ru, S; Ji, M; Zhang, D; Fang, Q; Tang, B

    Among rationally designed human immunodeficiency virus 1 (HIV-1) inhibitors, diverse natural factors have showed as potent anti-HIV activity in human blood. We have discovered that the boiled supernatant of healthy mouse serum could suppress HIV-1 entry, and exhibited reduced inhibitory activity after trypsin digestion. Further analysis demonstrated that only the fraction containing 10-25 K proteins could inhibit HIV-1 mediated cell-cell fusion. These results suggest that the 10-25 K protein(s) is novel natural HIV-1 entry inhibitor(s). Our findings provide important information about novel natural HIV entry inhibitors in mouse serum.

  15. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    L. Zanoli

    2015-01-01

    Full Text Available SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  16. SGLT2 inhibitors in the pipeline for the treatment of diabetes mellitus in Japan.

    Science.gov (United States)

    Ito, Hiroyuki; Shinozaki, Masahiro; Nishio, Shinya; Abe, Mariko

    2016-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been available for the treatment of type 2 diabetes (T2DM) in Japan since April 2014. The prescription rate in Japan is low in comparison to Western countries. We summarize the results obtained from the phase 3 clinical trials and clinical studies involving Japanese T2DM patients. We also discuss the current situation and the future prospects of SGLT2 inhibitors in Japan. Unexpected adverse events, such as cerebral infarction and diabetic ketoacidosis have been reported from clinics shortly after the initiation of SGLT2 inhibitor treatment. However, the reductions in blood glucose levels and body weight have been demonstrated in phase 3 trials using 6 types of SGLT2 inhibitors, while observational studies of Japanese T2DM patients, which were performed in the clinical setting, showed that the incidence of adverse drug reactions, such as severe hypoglycemia, was low. SGLT2 inhibitors are also considered to be effective for treating Japanese patients with T2DM. When prescribing SGLT2 inhibitors, it is necessary to ensure that they are used appropriately because the Japanese T2DM patient population has a high proportion of elderly individuals and a high incidence of cerebrovascular disease.

  17. ACE Inhibitor-Induced Angioedema of the Intestine: Case Report, Incidence, Pathophysiology, Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Gavin Oudit

    2001-01-01

    Full Text Available A case report of fosinopril-induced angioedema of the intestine with a chronic course accompanied by multiple acute exacerbations is described. Angiotensin-converting enzyme (ACE inhibitor-induced angioedema of the intestine (AIAI occurs in a minority of patients taking an ACE inhibitor. The clinical presentation encompasses acute abdominal symptoms, pronounced bowel edema and ascites with occasional facial and/or oropharyngeal swelling. AIAI is diagnosed based on the temporal relationship between the symptomatic presentation and drug use, absence of alternative diagnoses including other causes of angioedema, and the prompt resolution of symptoms upon discontinuation of the ACE inhibitor. Prompt radiological investigation (abdominal computerized tomography and/or ultrasound is critical in making an early diagnosis and in preventing unnecessary surgical intervention. There is a female predominance of AIAI, which may reflect the interaction of estradiol with the various pathways involved in the pathophysiology of AIAI. Management of AIAI consists mainly of conservative measures and discontinuation of the ACE inhibitor. Angiotensin II receptor antagonists should not be considered as appropriate alternatives. Awareness and knowledge of AIAI are important because of the increasing use of ACE inhibitors, current delays in making the diagnosis, obvious management strategies once the diagnosis is made and the dysutility of alternative diagnoses, which may lead to considerable morbidity. AIAI must be considered in patients taking ACE inhibitors who develop gastrointestinal complaints irrespective of the duration of the therapy.

  18. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Benjamin J. [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Rojas, Itzel Y. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Murray, Iain A. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Seokwon; Hazlett, Haley F. [Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Perdew, Gary H. [Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Tomlinson, Craig R., E-mail: Craig.R.Tomlinson@Dartmouth.edu [Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756 (United States)

    2017-05-15

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  19. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Moyer, Benjamin J.; Rojas, Itzel Y.; Murray, Iain A.; Lee, Seokwon; Hazlett, Haley F.; Perdew, Gary H.; Tomlinson, Craig R.

    2017-01-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase gene reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.

  20. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    Science.gov (United States)

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.

  1. Current Therapies That Modify Glucagon Secretion

    DEFF Research Database (Denmark)

    Grøndahl, Magnus F.; Keating, Damien J.; Vilsbøll, Tina

    2017-01-01

    and provide insights into how antidiabetic drugs influence glucagon secretion as well as a perspective on the future of glucagon-targeting drugs. Recent Findings: Several older as well as recent investigations have evaluated the effect of antidiabetic agents on glucagon secretion to understand how glucagon...... may be involved in the drugs’ efficacy and safety profiles. Based on these findings, modulation of glucagon secretion seems to play a hitherto underestimated role in the efficacy and safety of several glucose-lowering drugs. Summary: Numerous drugs currently available to diabetologists are capable...... of altering glucagon secretion: metformin, sulfonylurea compounds, insulin, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter 2 inhibitors and amylin mimetics. Their diverse effects on glucagon secretion are of importance for their individual efficacy...

  2. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Nauck MA

    2014-09-01

    Full Text Available Michael A Nauck Department of Internal Medicine, Diabeteszentrum Bad Lauterberg, Bad Lauterberg im Harz, Germany Abstract: The importance of the kidney's role in glucose homeostasis has gained wider understanding in recent years. Consequently, the development of a new pharmacological class of anti-diabetes agents targeting the kidney has provided new treatment options for the management of type 2 diabetes mellitus (T2DM. Sodium glucose co-transporter type 2 (SGLT2 inhibitors, such as dapagliflozin, canagliflozin, and empagliflozin, decrease renal glucose reabsorption, which results in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations. Modest reductions in body weight and blood pressure have also been observed following treatment with SGLT2 inhibitors. SGLT2 inhibitors appear to be generally well tolerated, and have been used safely when given as monotherapy or in combination with other oral anti-diabetes agents and insulin. The risk of hypoglycemia is low with SGLT2 inhibitors. Typical adverse events appear to be related to the presence of glucose in the urine, namely genital mycotic infection and lower urinary tract infection, and are more often observed in women than in men. Data from long-term safety studies with SGLT2 inhibitors and from head-to-head SGLT2 inhibitor comparator studies are needed to fully determine their benefit–risk profile, and to identify any differences between individual agents. However, given current safety and efficacy data, SGLT2 inhibitors may present an attractive option for T2DM patients who are failing with metformin monotherapy, especially if weight is part of the underlying treatment consideration. Keywords: anti-diabetes agents, efficacy, hyperglycemia, safety, sodium glucose co-transporter type 2 inhibitors, type 2 diabetes mellitus

  3. Inactivation of proteinaceous protease inhibitors of soybeans by isolated fungi

    NARCIS (Netherlands)

    Meijer, M.M.T.; Spekking, W.T.J.; Sijtsma, L.; Bont, de J.A.M.

    1995-01-01

    Proteinaceous protease inhibitors, Kunitz Soybean Trypsin Inhibitor (KSTI) and Bowman Birk Inhibitor (BBI), in legume seeds reduce the digestibility of proteins in feed of monogastric animals. Enzymatic inactivation of these inhibitors will increase the nutritional value of the feed. The aim of this

  4. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  5. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  6. Calcineurin inhibitor sparing with mycophenolate in kidney transplantation: a systematic review and meta-analysis.

    LENUS (Irish Health Repository)

    Moore, Jason

    2009-02-27

    Limiting the exposure of kidney transplant recipients to calcineurin inhibitors (CNIs) has potential merit, but there is no clear consensus on the utility of current strategies. In an attempt to aid clarification, we conducted a systematic review and meta-analysis of randomized trials that assessed CNI sparing (minimization or elimination) with mycophenolate as sole adjunctive immunosuppression.

  7. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    NARCIS (Netherlands)

    Cao, Fangyuan; Zwinderman, Martijn R H; Dekker, Frank J

    2018-01-01

    Histone deacetylases (HDACs) are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for

  8. Evaluation of HIV protease inhibitor use and the risk of sudden death or nonhemorrhagic stroke

    DEFF Research Database (Denmark)

    Worm, S W; Kamara, D A; Reiss, P

    2012-01-01

    Concerns have arisen about possible effects of protease inhibitors (PIs) on cardiac conductivity. We found no significant association between current or recent PI exposure and sudden death or nonhemorrhagic stroke (adjusted rate ratio, 1.22; 95% confidence interval, .95-1.57), whereas cumulative...

  9. Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes

    NARCIS (Netherlands)

    Berger, Alicia B.; Witte, Martin D.; Denault, Jean-Bernard; Sadaghiani, Amir Masoud; Sexton, Kelly M.B.; Salvesen, Guy S.; Bogyo, Matthew

    2006-01-01

    Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active

  10. Checkpoint inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Polk, Anne; Svane, Inge-Marie; Andersson, Michael

    2018-01-01

    INTRODUCTION: An increasing number of compounds directed against immune checkpoints are currently under clinical development. In this review we summarize current research in breast cancer. MATERIAL AND METHODS: A computer-based literature search was carried out using PubMed and EMBASE; data...... reported at international meetings and clinicaltrials.gov were included as well. RESULTS: The obtained overall response rate of PD-1/PD-L1 monotherapy varied from 5 to 30% in heavily pretreated triple negative breast cancer (TNBC). The median duration of progression free survival and overall survival were...... and induce long standing anti-tumor immunity in a subgroup of breast cancer patients. However, the identification of predictive biomarkers is crucial for further development of this treatment modality....

  11. The development and performance testing of a biodegradable scale inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Julie; Fidoe, Steve; Jones, Chris

    2006-03-15

    The oil industry is currently facing severe restrictions concerning the discharge of oil field chemicals into the environment. Many commonly used materials in both topside and downhole applications are phased for substitution for use in the North Sea, and more will be identified. The development of biodegradable and low toxicity chemicals, which afford equal or improved efficacy, compared to conventional technology, available at a competitive price, is a current industry challenge. A range of biodegradable materials are increasingly available, however their limited performance can result in a restricted range of applications. This paper discusses the development and commercialization of a readily biodegradable scale inhibitor, ideal for use in topside applications. This material offers a broad spectrum of activity, notably efficiency against barium sulphate, calcium sulphate and calcium carbonate scales, in a range of water chemistries. A range of performance testing, compatibility, stability and OCNS dataset will be presented. Comparisons with commonly used chemicals have been made to identify the superior performance of this phosphate ester. This paper will discuss a scale inhibitor suitable for use in a variety of conditions which offers enhanced performance combined with a favourable biodegradation profile. This material is of great benefit to the industry, particularly in North Sea applications. (author) (tk)

  12. Therapeutic applications of histone deacetylase inhibitors in sarcoma.

    Science.gov (United States)

    Tang, Fan; Choy, Edwin; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-09-01

    Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. SGLT2 Inhibitors and the Diabetic Kidney.

    Science.gov (United States)

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  14. Tissue inhibitor of metalloproteinases-1 in breast cancer

    DEFF Research Database (Denmark)

    Würtz, Sidse Ørnbjerg; Rasmussen, Anne-Sofie Schrohl; Sørensen, Nanna Møller

    2005-01-01

    Whether patients diagnosed with primary breast cancer are offered adjuvant systemic therapy following surgical removal of the tumor is based on prognosis. Prognosis is estimated in every patient using established prognostic variables. Unfortunately, when using the currently available prognostic...... parameters a significant proportion of patients are over-treated. Thus, in order to improve stratification of breast cancer patients, additional prognostic factors need to be identified. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is one of the promising candidates for new prognostic markers in breast...... cancer, as a number of studies have demonstrated an association between high tumor-tissue levels of TIMP-1 mRNA as well as TIMP-1 protein and a poor prognosis of breast cancer patients. TIMP-1 is a member of the TIMP family, currently comprising four members (TIMP-1-4), and its main function...

  15. Inhibitor chymotrypsynowy nasion wiechliny łąkowej (Poa pratensis [Chymotrypsin inhibitor from Poa pratensis seeds

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available A chymotrypsin inhibitor was isolated from Poa pratensis seeds. The inhibitor showed also antytriptic activity. It is a termostable protein, soluble in water, sodium chloride, but insoluble in 5% trichloracetic acid and 0.15 M sulphosalicylic acid.

  16. Holographic heat current as Noether current

    Science.gov (United States)

    Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2017-09-01

    We employ the Noether procedure to derive a general formula for the radially conserved heat current in AdS planar black holes with certain transverse and traceless perturbations, for a general class of gravity theories. For Einstein gravity, the general higher-order Lovelock gravities and also a class of Horndeski gravities, we derive the boundary stress tensor and show that the resulting boundary heat current matches precisely the bulk Noether current.

  17. SGLT2 inhibitors: are they safe?

    Science.gov (United States)

    Filippas-Ntekouan, Sebastian; Filippatos, Theodosios D; Elisaf, Moses S

    2018-01-01

    Sodium-glucose linked transporter type 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs with positive cardiovascular and kidney effects. The aim of this review is to present the safety issues associated with SGLT2 inhibitors. Urogenital infections are the most frequently encountered adverse events, although tend to be mild to moderate and are easily manageable with standard treatment. Although no increased acute kidney injury risk was evident in the major trials, the mechanism of action of these drugs requires caution when they are administered in patients with extracellular volume depletion or with drugs affecting renal hemodynamics. Canagliflozin raised the risk of amputations and the rate of fractures in the CANVAS trial, although more data are necessary before drawing definite conclusions. The risk of euglycemic diabetic ketoacidosis seems to be minimal when the drugs are prescribed properly. Regarding other adverse events, SGLT2 inhibitors do not increase the risk of hypoglycemia even when co-administered with insulin, but a decrease in the dose of sulphonylureas may be needed. The available data do not point to a causative role of SGLT2 inhibitors on malignancy risk, however, these drugs should be used with caution in patients with known hematuria or history of bladder cancer. SGLT2 inhibitors seem to be safe and effective in the treatment of diabetes but more studies are required to assess their long-term safety.

  18. Aromatase inhibitors and breast cancer prevention.

    Science.gov (United States)

    Litton, Jennifer Keating; Arun, Banu K; Brown, Powel H; Hortobagyi, Gabriel N

    2012-02-01

    Endocrine therapy with selective estrogen receptor modulators (SERMs) has been the mainstay of breast cancer prevention trials to date. The aromatase inhibitors, which inhibit the final chemical conversion of androgens to estrogens, have shown increased disease-free survival benefit over tamoxifen in patients with primary hormone receptor-positive breast cancer, as well as reducing the risk of developing contralateral breast cancers. The aromatase inhibitors are being actively evaluated as prevention agents for women with a history of ductal carcinoma in situ as well as for women who are considered to be at high risk for developing primary invasive breast cancer. This review evaluates the available prevention data, as evidenced by the decrease in contralateral breast cancers, when aromatase inhibitors are used in the adjuvant setting, as well as the emerging data of the aromatase inhibitors specifically tested in the prevention setting for women at high risk. Exemestane is a viable option for breast cancer prevention. We continue to await further follow-up on exemestane as well as other aromatase inhibitors in the prevention setting for women at high risk of developing breast cancer or with a history of ductal carcinoma in situ.

  19. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H2O mixture

    International Nuclear Information System (INIS)

    Samiento-Bustos, E.; Rodriguez, J.G. Gonzalez; Uruchurtu, J.; Dominguez-Patino, G.; Salinas-Bravo, V.M.

    2008-01-01

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H 2 O at room temperature has been evaluated. Used inhibitors included LiNO 3 (Lithium Nitrate), Li 2 MoO 4 (Lithium Molybdate) and Li 2 CrO 4 (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li 2 CrO 4, where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li 2 CrO 4 , and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control

  20. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H{sub 2}O mixture

    Energy Technology Data Exchange (ETDEWEB)

    Samiento-Bustos, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Rodriguez, J.G. Gonzalez [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico)], E-mail: ggonzalez@uaem.mx; Uruchurtu, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); U.A.E.M. Facultad de Ciencias Quimicas e Ingenieria, Av. Universidad 1001, 62209, Cuernavaca, Morelos (Mexico); Salinas-Bravo, V.M. [Instituto de Investigaciones Electricas, Gerencia de Materiales y Proceso Quimicos, Av. Reforma 113, Col. Palmira, CP 62490, Cuernavaca, Morelos (Mexico)

    2008-08-15

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H{sub 2}O at room temperature has been evaluated. Used inhibitors included LiNO{sub 3} (Lithium Nitrate), Li{sub 2}MoO{sub 4} (Lithium Molybdate) and Li{sub 2}CrO{sub 4} (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li{sub 2}CrO{sub 4,} where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li{sub 2}CrO{sub 4}, and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control.

  1. Continuous infusion in haemophilia: current practice in Europe

    NARCIS (Netherlands)

    Batorova, A.; Holme, P.; Gringeri, A.; Richards, M.; Hermans, C.; Altisent, C.; Lopez-Fernández, M.; Fijnvandraat, K.

    2012-01-01

    . Continuous infusion (CI) of factor VIII (FVIII) is an effective method for replacement therapy in haemophilia. Recently, concerns have been raised regarding association of CI with the development of inhibitors. The aim of this study was to gain information on the current practices in Europe

  2. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    Science.gov (United States)

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  3. Biophysical Insights into the Inhibitory Mechanism of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nicolas Sluis-Cremer

    2013-11-01

    Full Text Available HIV-1 reverse transcriptase (RT plays a central role in HIV infection. Current United States Federal Drug Administration (USFDA-approved antiretroviral therapies can include one of five approved non-nucleoside RT inhibitors (NNRTIs, which are potent inhibitors of RT activity. Despite their crucial clinical role in treating and preventing HIV-1 infection, their mechanism of action remains elusive. In this review, we introduce RT and highlight major advances from experimental and computational biophysical experiments toward an understanding of RT function and the inhibitory mechanism(s of NNRTIs.

  4. A cell-based fluorescent glucose transporter assay for SGLT2 inhibitor discovery

    Directory of Open Access Journals (Sweden)

    Yi Huan

    2013-04-01

    Full Text Available The sodium/glucose cotransporter 2 (SGLT2 is responsible for the majority of glucose reabsorption in the kidney, and currently, SGLT2 inhibitors are considered as promising hypoglycemic agents for the treatment of type 2 diabetes mellitus. By constructing CHO cell lines that stably express the human SGLT2 transmembrane protein, along with a fluorescent glucose transporter assay that uses 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino]2-deoxyglucose (2-NBDG as a glucose analog, we have developed a nonradioactive, cell-based assay for the discovery and characterization of SGLT2 inhibitors.

  5. [Proton pump inhibitors in gastro-oesophageal reflux disease: what is the further step?].

    Science.gov (United States)

    Simon, Mireille; Zerbib, Frank

    2013-01-01

    Optimisation of proton pump inhibitors use may improve reflux symptoms in 20-25% of the patients. Pathological gastro-oesophageal reflux should be documented in a patient with refractory reflux symptoms using upper endoscopy and/or pH testing. While on proton pump inhibitors twice daily, persistent symptoms are not related to gastro-oesophageal refluxdisease(GERD) in 50% of the patients. The new anti-reflux compounds have yet a limited efficacy and side effects that currently limit their development. Copyright © 2012. Published by Elsevier Masson SAS.

  6. Studies on plant extracts as corrosion inhibitors for mild steel in air saturated water

    International Nuclear Information System (INIS)

    Mohamad Daud; Abdul Razak Daud; Zainal Abidin Sidi

    1988-01-01

    The effectiveness in inhibiting corrosion by garlic, soya bean, and tobacco extracts and their combinations in air saturated water at ambient temperature were studied by using electrochemical corrosion test. The range of inhibitor concentration studied was from 0.1 to 1.0 g/l. The variations of corrosion potential and corrosion current density was recorded and the results showed that the extracts have inhibitive properties in the corrosion of mild stee. The effectiveness of the inhibitors is in the following order: extract mixture > tobacco > garlic > soya bean extracts. (author)

  7. Evaluating the efficacy of subcutaneous C1-esterase inhibitor administration for use in rat models of inflammatory diseases

    NARCIS (Netherlands)

    Emmens, Reindert W.; Naaijkens, Benno A.; Roem, Dorina; Kramer, Klaas; Wouters, Diana; Zeerleder, Sacha; van Ham, Marieke S.; Niessen, Hans W.; Krijnen, Paul A.

    2014-01-01

    Context: C1-esterase inhibitor (C1-inh) therapy is currently administered to patients with C1-inh deficiency through intravenous injections. The possibility of subcutaneous administration is currently being explored since this would alleviate need for hospitalization and increase mobility and

  8. Current lead thermal analysis code 'CURRENT'

    International Nuclear Information System (INIS)

    Yamaguchi, Masahito; Tada, Eisuke; Shimamoto, Susumu; Hata, Kenichiro.

    1985-08-01

    Large gas-cooled current lead with the capacity more than 30 kA and 22 kV is required for superconducting toroidal and poloidal coils for fusion application. The current lead is used to carry electrical current from the power supply system at room temperature to the superconducting coil at 4 K. Accordingly, the thermal performance of the current lead is significantly important to determine the heat load requirements of the coil system at 4 K. Japan Atomic Energy Research Institute (JAERI) has being developed the large gas-cooled current leads with the optimum condition in which the heat load is around 1 W per 1 kA at 4 K. In order to design the current lead with the optimum thermal performances, JAERI developed thermal analysis code named as ''CURRENT'' which can theoretically calculate the optimum geometric shape and cooling conditions of the current lead. The basic equations and the instruction manual of the analysis code are described in this report. (author)

  9. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  10. SGLT-2 Inhibitors and Cardiovascular Risk

    DEFF Research Database (Denmark)

    Cavender, Matthew A; Norhammar, Anna; Birkeland, Kåre I

    2018-01-01

    BACKGROUND: Prior studies found patients treated with sodium-glucose co-transporter-2 inhibitors (SGLT-2i) had lower rates of death and heart failure (HF). Whether the benefits of SGLT-2i vary based upon the presence of cardiovascular disease (CVD) is unknown. OBJECTIVES: This study sought...... to determine the association between initiation of SGLT-2i therapy and HF or death in patients with and without CVD. METHODS: The CVD-REAL (Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors) study was a multinational, observational study in which adults with type 2 diabetes...... evidence regarding the benefit of SGLT-2i in patients without established CVD. (Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors [CVD-REAL]; NCT02993614)....

  11. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.

    Science.gov (United States)

    Lather, Amit; Sharma, Sunil; Khatkar, Anurag

    2018-01-01

    Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding

  12. New halogenated phenylcoumarins as tyrosinase inhibitors.

    Science.gov (United States)

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Green inhibitors. Rare Earth based systems

    International Nuclear Information System (INIS)

    Aballe, A.; Bethencourt, M.; Botana, F.J.; Perez, J.; Rodriguez, M.A.; Marcos, M.

    1997-01-01

    Lanthanum, Cerium and Samarium chlorides have been investigated as uniform and pitting corrosion inhibitors of AISI 434 and AISI 304 stainless steels and AA 5083 Al-Mg alloy in 3.5% Na Cl aerated aqueous solutions. Their inhibitor power was evaluated by using electrochemical techniques such as Linear and Cyclic Polarisation. In each case, the highest protection degree was found in the solution dropped with 500 ppm of CeCl 3 . Similar results were obtained for additions of 500 ppm of LaCl 3 . Scanning Electron Microscopy and Energy Dispersive Spectroscopy allowed us to confirm the cathodic nature of the inhibition process. (Author) 27 refs

  14. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    Science.gov (United States)

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  15. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  16. Checkpoint inhibitors in advanced melanoma: effect on the field of immunotherapy.

    Science.gov (United States)

    O'reilly, Aine; Larkin, James

    2017-07-01

    The success of the immune checkpoint inhibitors in melanoma has reinvigorated the field of immunotherapy. Immune checkpoint inhibitors are now the standard of care in multiple cancer types including lung cancer, head and neck cancer, urothelial cancer and renal cell cancer. The field of immunotherapy is currently expanding rapidly and will be a focus of research and development for decades to come. Areas covered: This review covers the early development of immune checkpoint inhibitors and the changes that occurred in the drug development paradigm to facilitate the development of immunotherapy. The review will summarise the areas into which immune checkpoint inhibitors have been adopted and will review the data that supported this. Furthermore, we will discuss future developments in immunotherapy and the current landscape regarding maximising the potential of immunotherapy in clinical practice. Expert commentary: In the author's opinion, the potential of immunotherapy is vast. To date immune checkpoint inhibition has already delivered durable responses in a proportion of patients with cancer types which were previously universally lethal. The future of immunotherapy will rely upon the intelligent application of translational research to clinical practice, such that immunotherapy can be effective for a wider population and maintain its current growth.

  17. Development of novel arginase inhibitors for therapy of endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Jochen eSteppan

    2013-09-01

    Full Text Available Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO bioavailability, impaired NO signaling and an increase in the amount of reactive oxygen species (ROS. In the endothelium NO is produced by eNOS (endothelial nitric oxide synthase, for which L-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes L-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-L-arginine, and boronic acid derivatives, such as, 2(S-amino-6-boronohexanoic acid, and S-(2-boronoethyl-L-cysteine (BEC, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors (such as (R-2-amino-6-borono-2-(2-(piperidin-1-ylethylhexanoic acid, that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-D-glucopyranoside (PG. All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

  18. CMOS current controlled fully balanced current conveyor

    International Nuclear Information System (INIS)

    Wang Chunhua; Zhang Qiujing; Liu Haiguang

    2009-01-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  19. Current evidence supporting "letrozole" for ovulation induction

    Directory of Open Access Journals (Sweden)

    Sujata Kar

    2013-01-01

    Full Text Available Aromatase inhibitor "letrozole" was first introduced as a potential ovulation induction (OI drug almost a decade back. Large number of studies has been published using letrozole for OI: In polycystic ovary syndrome (PCOS women, clomiphene citrate (CC resistant women, for intrauterine insemination and also in various protocols of mild stimulation for in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI. Letrozole appears to be a good option, with its oral route of administration, cost, shorter half-life and negligible side effects. However, the verdict on efficacy and safety of letrozole is still uncertain. This review explores the current scientific data supporting letrozole for OI.

  20. Drugs against avian influenza a virus: design of novel sulfonate inhibitors of neuraminidase N1.

    Science.gov (United States)

    Udommaneethanakit, Thanyarat; Rungrotmongkol, Thanyada; Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav; Bren, Urban

    2014-01-01

    The outbreak of avian influenza A (H5N1) virus has raised a global concern for both the animal as well as human health. Besides vaccination, that may not achieve full protection in certain groups of patients, inhibiting neuraminidase or the transmembrane protein M2 represents the main measure of controlling the disease. Due to alarming emergence of influenza virus strains resistant to the currently available drugs, development of new neuraminidase N1 inhibitors is of utmost importance. The present paper provides an overview of the recent advances in the design of new antiviral drugs against avian influenza. It also reports findings in binding free energy calculations for nine neuraminidase N1 inhibitors (oseltamivir, zanamivir, and peramivir -carboxylate, -phosphonate, and -sulfonate) using the Linear Interaction Energy method. Molecular dynamics simulations of these inhibitors were performed in a free and two bound states - the so called open and closed conformations of neuraminidase N1. Obtained results successfully reproduce the experimental binding affinities of the already known neuraminidase N1 inhibitors, i.e. peramivir being a stronger binder than zanamivir that is in turn stronger binder than oseltamivir, or phosphonate inhibitors being stronger binders than their carboxylate analogues. In addition, the newly proposed sulfonate inhibitors are predicted to be the strongest binders - a fact to be confirmed by their chemical synthesis and a subsequent test of their biological activity. Finally, contributions of individual inhibitor moieties to the overall binding affinity are explicitly evaluated to assist further drug development towards inhibition of the H5N1 avian influenza A virus.

  1. β-secretase inhibitor; a promising novel therapeutic drug in AD

    Directory of Open Access Journals (Sweden)

    Kelly Willemijn Menting

    2014-07-01

    Full Text Available Alzheimer’s disease (AD and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO, a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ CSF levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, BACE1 inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.

  2. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design

    Directory of Open Access Journals (Sweden)

    Massacesi C

    2016-01-01

    Full Text Available Cristian Massacesi,1 Emmanuelle Di Tomaso,2 Patrick Urban,3 Caroline Germa,4 Cornelia Quadt,5 Lucia Trandafir,1 Paola Aimone,3 Nathalie Fretault,1 Bharani Dharan,4 Ranjana Tavorath,4 Samit Hirawat4 1Novartis Oncology, Paris, France; 2Novartis Institutes for BioMedical Research Inc, Cambridge, MA, USA; 3Novartis Pharma AG, Basel, Switzerland; 4Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 5Novartis Pharmaceuticals KK, Tokyo, Japan Abstract: The PI3K–AKT–mTOR pathway is frequently activated in cancer. PI3K inhibitors, including the pan-PI3K inhibitor buparlisib (BKM120 and the PI3Kα-selective inhibitor alpelisib (BYL719, currently in clinical development by Novartis Oncology, may therefore be effective as anticancer agents. Early clinical studies with PI3K inhibitors have demonstrated preliminary antitumor activity and acceptable safety profiles. However, a number of unanswered questions regarding PI3K inhibition in cancer remain, including: what is the best approach for different tumor types, and which biomarkers will accurately identify the patient populations most likely to benefit from specific PI3K inhibitors? This review summarizes the strategies being employed by Novartis Oncology to help maximize the benefits of clinical studies with buparlisib and alpelisib, including stratification according to PI3K pathway activation status, selective enrollment/target enrichment (where patients with PI3K pathway-activated tumors are specifically recruited, nonselective enrollment with mandatory tissue collection, and enrollment of patients who have progressed on previous targeted agents, such as mTOR inhibitors or endocrine therapy. An overview of Novartis-sponsored and Novartis-supported trials that are utilizing these approaches in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme, is also described. Keywords: PI3K

  3. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  4. Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation.

    Science.gov (United States)

    Devendra, Leena P; Pandey, Ashok

    2017-11-01

    Acid pretreatment is the most common method employed in the lignocellulosic biorefinery leading to the separation of pentose and hexose sugar. The liquor obtained after pretreatment (acid pretreatment liquor or APL) needs to be detoxified prior to fermentation. The aim of this study was to design functional groups on a polymer matrix which are selective in their interaction to inhibitors with little or no specificity to sugars. Molecular modeling was used as a tool to design a suitable adsorbent for selective adsorption of inhibitors from a complex mixture of APL. Phenyl glycine-p-sulfonic acid loaded on chloromethylated polystyrene polymer was designed as an adsorbent for selective interaction with inhibitors. Experimental verification of the selectivity was successfully achieved. The current study provides insights on the adsorptive separation processes at the molecular level by design of specific adsorbent which can be tailor made for the better selectivity of the desired component.

  5. Medicinal chemistry insights in the discovery of novel LSD1 inhibitors.

    Science.gov (United States)

    Wang, Xueshun; Huang, Boshi; Suzuki, Takayoshi; Liu, Xinyong; Zhan, Peng

    2015-01-01

    LSD1 is an epigenetic modulator associated with transcriptional regulation of genes involved in a broad spectrum of key cellular processes, and its activity is often altered under pathological conditions. LSD1 inhibitors are considered to be candidates for therapy of cancer, viral diseases and neurodegeneration. Many LSD1 inhibitors with various scaffolds have been disclosed, and a few potent molecules are in different stages of clinical development. In this review, we summarize recent biological findings on the roles of LSD1 and the current understanding of the clinical significance of LSD1, and focus on the medicinal chemistry strategies used in the design and development of LSD1 inhibitors as drug-like epigenetic modulators since 2012, including a brief consideration of structure-activity relationships.

  6. Alpha 1-blockers vs 5 alpha-reductase inhibitors in benign prostatic hyperplasia. A comparative review

    DEFF Research Database (Denmark)

    Andersen, J T

    1995-01-01

    During recent years, pharmacological treatment of symptomatic benign prostatic hyperplasia (BPH) has become the primary treatment choice for an increasing number of patients. The 2 principal drug classes employed are alpha 1-blockers and 5 alpha-reductase inhibitors. Current information from...... of patients who will respond well to alpha 1-blockers have yet to be identified, and data concerning the long term effects of these drugs are not yet available. 5 alpha-Reductase inhibitors have a slow onset of effect, but treatment leads to improvement in symptoms, reduction of the size of the prostate gland...... and improvement in objective parameters for bladder outflow obstruction. Approximately 30 to 50% of patients will respond to treatment with 5 alpha-reductase inhibitors. The definitive role of pharmacological treatment in symptomatic BPH remains to be established, although it seems that patients unfit...

  7. Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Yu

    Full Text Available Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear.To test the hypothesis that apamin does not inhibit any major cardiac ion currents.We studied human embryonic kidney (HEK 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration.Ca2+ currents (CACNA1c+CACNB2b were not affected by apamin (500 nM (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS, but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008. Na+ currents (SCN5A were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS, but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018. None of the major K+ currents (IKs, IKr, IK1 and Ito were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]. Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both.Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

  8. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Gadgeel, Shirish M; Wozniak, Antoinette

    2013-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) are frequently observed in non-small-cell lung cancer (NSCLC), occurring in about 40% to 60% of never-smokers and in about 17% of patients with adenocarcinomas. EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, have transformed therapy for patients with EGFR-mutant NSCLC and have proved superior to chemotherapy as first-line treatment for this patient group. Despite these benefits, there are currently 2 key challenges associated with EGFR inhibitor therapy for patients with NSCLC. First, only 85% to 90% of patients with the EGFR mutation derive clinical benefit from EGFR TKIs, with the remainder demonstrating innate resistance to therapy. Second, acquired resistance to EGFR TKIs inevitably occurs in patients who initially respond to therapy, with a median duration of response of about 10 months. Mutant EGFR activates various subcellular signaling cascades, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which demonstrates maintained activity in a variety of TKI-resistant cancers. Given the fundamental role of the PI3K/Akt/mTOR pathway in tumor oncogenesis, proliferation, and survival, PI3K pathway inhibitors have emerged as a possible solution to the problem of EGFR TKI resistance. However resistance to EGFR TKIs is associated with considerable heterogeneity and complexity. Preclinical experiments investigating these phenomena suggest that in some patients, PI3K inhibitors will have to be paired with other targeted agents if they are to be effective. This review discusses the preclinical data supporting PI3K/Akt/mTOR pathway inhibitor combinations in EGFR TKI-resistant NSCLC from the perspective of the various agents currently being investigated in clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy.

    Science.gov (United States)

    Nio, Yasunori; Tanaka, Masayuki; Hirozane, Yoshihiko; Muraki, Yo; Okawara, Mitsugi; Hazama, Masatoshi; Matsuo, Takanori

    2017-12-01

    Duchenne muscular dystrophy (DMD) is the most common inherited muscular dystrophy. Patients experience DMD in their 20s from cardiac or respiratory failure related to progressive muscle wasting. Currently, the only treatments for the symptoms of DMD are available. Muscle fibrosis, a DMD feature, leads to reduced muscle function and muscle mass, and hampers pharmaceutical therapeutic efficacy. Although antifibrotic agents may be useful, none is currently approved. Phosphodiesterase 4 (PDE4) inhibitors have exhibited antifibrotic effects in human and animal models. In this study, we showed beneficial effects of the PDE4 inhibitor piclamilast in the DMD mdx mouse. Piclamilast reduced the mRNA level of profibrotic genes, including collagen 1A1, in the gastrocnemius and diaphragm, in the mdx mouse, and significantly reduced the Sirius red staining area. The PDE5 inhibitors sildenafil and tadalafil ameliorated functional muscle ischemia in boys with DMD, and sildenafil reversed cardiac dysfunction in the mdx mouse. Single-treatment piclamilast or sildenafil showed similar antifibrotic effects on the gastrocnemius; combination therapy showed a potent antifibrotic effect, and piclamilast and combination therapy increased peroxisome proliferator-activated receptor γ coactivator-1α mRNA in mouse gastrocnemius. In summary, we confirmed that piclamilast has significant antifibrotic effects in mdx mouse muscle and is a potential treatment for muscle fibrosis in DMD.-Nio, Y., Tanaka, M., Hirozane, Y., Muraki, Y., Okawara, M., Hazama, M., Matsuo, T. Phosphodiesterase 4 inhibitor and phosphodiesterase 5 inhibitor combination therapy has antifibrotic and anti-inflammatory effects in mdx mice with Duchenne muscular dystrophy. © FASEB.

  10. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  11. Proarrhythmic and antiarrhythmic effects of multiple ion channel inhibitors modulated by the late sodium current%多离子通道阻滞剂抗心律失常与致心律失常机制中晚钠电流的作用

    Institute of Scientific and Technical Information of China (English)

    任璐; 褚延鹏; 于善栋; 吴林

    2016-01-01

    目的 观察具有多离子通道抑制作用的胺碘酮、决奈达隆和雷诺嗪对正常及晚钠电流增大心脏心电生理指标与心律失常发生率的双相性影响.方法 采用Langendorff经主动脉逆向灌流新西兰白兔离体心脏,用加热法消融房室交界造成房室阻滞,高位室间隔区进行1 Hz起搏.对正常对照组和特异性晚钠电流增强剂海葵毒素(ATX)-Ⅱ(1~3 nmol/L)处理组的整体心脏,分别给予胺碘酮(1 nmol/L~10 μmol/L)、决奈达隆(1 nmol/L~10 μmol/L)和雷诺嗪(0.1~ 100.0 μmol/L),记录左心室心外膜单相动作电位时限(MAPD90)的变化和尖端扭转型室性心动过速(TdP)的发生率.结果 在对照组(未经ATX-Ⅱ处理)心脏,决奈达隆和雷诺嗪呈浓度依赖性延长MAPD90(n=8和10,P<0.05).胺碘酮(0.01 μmol/L)延长MAPD90,10 μmol/L胺碘酮则缩短MAPD90(n=10,P<0.05).在3 nmol/LATX-Ⅱ处理的心脏,决奈达隆和胺碘酮对MAPD90有显著的双相性作用,低浓度(0.1μmol/L和0.03 μmol/L)延长MAPD90(n=4和12,P<0.05),并在75.0%和83.3%的心脏诱发TdP,高浓度胺碘酮和决奈达隆则缩短MAPD90并消除心律失常(P<0.05).在1nmol/L ATX-Ⅱ处理心脏,雷诺嗪(100μmol/L)延长MAPD90[(48± 16) ms,P<0.05],显著低于单独使用雷诺嗪时MAPD90的延长幅度(n=6,P<0.05);在3 nmol/L ATX-Ⅱ处理心脏,雷诺嗪(100 μmol/L)则显著缩短MAPD90(n=11,P<0.05),雷诺嗪在各浓度下均不引起心律失常.结论 心肌细胞INaL的幅度对药物的致心律失常作用起有调控作用,多离子通道阻滞剂作用于IKr和INaL相对浓度的大小与药物致心律失常作用的大小有关,相差大的药物致心律失常作用较强.%Objective The purpose of this study was to observe the biphasic effects of multichannel blocking drugs on electrophysiological parameters and the incidence of arrhythmias in normal hearts and in hearts with augmented late sodium current (INaL).Methods New-Zealand White

  12. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    Science.gov (United States)

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  13. The renal effects of SGLT2 inhibitors and a mini-review of the literature.

    Science.gov (United States)

    Andrianesis, Vasileios; Glykofridi, Spyridoula; Doupis, John

    2016-12-01

    Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new and promising class of antidiabetic agents which target renal tubular glucose reabsorption. Their action is based on the blockage of SGLT2 sodium-glucose cotransporters that are located at the luminal membrane of tubular cells of the proximal convoluted tubule, inducing glucosuria. It has been proven that they significantly reduce glycated hemoglobin (HbA1c), along with fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus (T2DM). The glucosuria-induced caloric loss as well as the osmotic diuresis significantly decrease body weight and blood pressure, respectively. Given that SGLT2 inhibitors do not interfere with insulin action and secretion, their efficacy is sustained despite the progressive β-cell failure in T2DM. They are well tolerated, with a low risk of hypoglycemia. Their most frequent adverse events are minor: genital and urinal tract infections. Recently, it was demonstrated that empagliflozin presents a significant cardioprotective effect. Although the SGLT2 inhibitors' efficacy is affected by renal function, new data have been presented that some SGLT2 inhibitors, even in mild and moderate renal impairment, induce significant HbA1c reduction. Moreover, recent data indicate that SGLT2 inhibition has a beneficial renoprotective effect. The role of this review paper is to explore the current evidence on the renal effects of SGLT2 inhibitors.

  14. SGLT2 inhibitors: a promising new therapeutic option for treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Misra, Monika

    2013-03-01

    Hyperglycemia is an important pathogenic component in the development of microvascular and macrovascular complications in type 2 diabetes mellitus. Inhibition of renal tubular glucose reabsorption that leads to glycosuria has been proposed as a new mechanism to attain normoglycemia and thus prevent and diminish these complications. Sodium glucose cotransporter 2 (SGLT2) has a key role in reabsorption of glucose in kidney. Competitive inhibitors of SGLT2 have been discovered and a few of them have also been advanced in clinical trials for the treatment of diabetes. To discuss the therapeutic potential of SGLT2 inhibitors currently in clinical development. A number of preclinical and clinical studies of SGLT2 inhibitors have demonstrated a good safety profile and beneficial effects in lowering plasma glucose levels, diminishing glucotoxicity, improving glycemic control and reducing weight in diabetes. Of all the SGLT2 inhibitors, dapagliflozin is a relatively advanced compound with regards to clinical development. SGLT2 inhibitors are emerging as a promising therapeutic option for the treatment of diabetes. Their unique mechanism of action offers them the potential to be used in combination with other oral anti-diabetic drugs as well as with insulin. © 2012 The Author. JPP © 2012 Royal Pharmaceutical Society.

  15. Perioceutics: Matrix metalloproteinase inhibitors as an adjunctive therapy for inflammatory periodontal disease

    Directory of Open Access Journals (Sweden)

    Esther Nalini Honibald

    2012-01-01

    Full Text Available Matrix metalloproteinases (MMPs form a group of more than 20 zinc-dependent enzymes that are crucial in the degradation of the main components in the extracellular matrix, and thereby play important roles in cell migration, wound healing, and tissue remodeling. MMPs have outgrown the field of extracellular matrix biology and have progressed toward being important regulatory molecules in inflammation, and hence are key components in the pathogenesis of periodontitis. This rise in status has led to the development of MMP inhibitors which can act as switches or delicate tuners in acute and chronic inflammation and the regenerative phase after inflammation. The new challenge in MMP research is to better understand the complex role these enzymes play in periodontal disease and to design inhibitors that are successful in the clinic. Perioceutics or the use of the pharmacological agents specifically developed to manage periodontitis is an interesting and emerging aid in the management of periodontal diseases along with mechanical debridement. The purpose of this review is to provide an introduction to MMPs and their inhibitors, the pathologic effects of a disturbance in the functions of enzyme cascades in balance with natural inhibitors, and highlight on the adjunctive use of MMP inhibitors in periodontal therapy and some of the current challenges with an overview of what has been achieved till date.

  16. JAK Inhibitors: Treatment Efficacy and Safety Profile in Patients with Psoriasis

    Directory of Open Access Journals (Sweden)

    Leeyen Hsu

    2014-01-01

    Full Text Available Janus kinase (JAK pathways are key mediators in the immunopathogenesis of psoriasis. Psoriasis treatment has evolved with the advent of targeted therapies, which inhibit specific components of the psoriasis proinflammatory cascade. JAK inhibitors have been studied in early phase trials for psoriasis patients, and the data are promising for these agents as potential treatment options. Tofacitinib, an oral or topically administered JAK1 and JAK3 inhibitor, and ruxolitinib, a topical JAK1 and JAK2 inhibitor, have been most extensively studied in psoriasis, and both improved clinical symptoms of psoriasis. Additional JAK1 or JAK3 inhibitors are being studied in clinical trials. In phase III trials for rheumatoid arthritis, tofacitinib was efficacious in patients with inadequate responses to tumor necrosis factor inhibitors, methotrexate monotherapy, or disease-modifying antirheumatic drugs. The results of phase III trials are pending for these therapies in psoriasis, and these agents may represent important alternatives for patients with inadequate responses to currently available agents. Further investigations with long-term clinical trials are necessary to verify their utility in psoriasis treatment and assess their safety in this patient population.

  17. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies

    Directory of Open Access Journals (Sweden)

    Sato A

    2015-04-01

    Full Text Available Akinori Sato Department of Urology, National Defense Medical College, Tokorozawa, Japan Abstract: The human immunodeficiency virus protease inhibitor ritonavir has recently been shown to have antineoplastic activity, and its use in urological malignancies is under investigation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibiting their degradation and efflux from cancer cells and thereby enhancing their antineoplastic activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, due to their novel mechanisms of action, are expected to be effective against malignancies that are refractory to current treatment strategies. Further investigations using ritonavir are expected to find new uses for clinically available drugs in the treatment of urological malignancies as well as many other types of cancer. Keywords: drug repositioning, novel treatment

  18. Identification and development of novel indazole derivatives as potent bacterial peptidoglycan synthesis inhibitors

    Directory of Open Access Journals (Sweden)

    Prasanthi Malapati

    2018-01-01

    Full Text Available Background: Tuberculosis is well-known airborne disease caused by Mycobacterium tuberculosis. Available treatment regimen was unsuccessful in eradicating the deaths caused by the disease worldwide. Owing to the drawbacks such as prolonged treatment period, side effects, and drug tolerance, there resulted in patient noncompliance. In the current study, we attempted to develop inhibitors against unexplored key target glutamate racemase. Methods: Lead identification was done using thermal shift assay from in-house library; inhibitors were developed by lead derivatization technique and evaluated using various biological assays. Results: In indazole series, compounds 11 (6.32 ± 0.35 μM and 22 (6.11 ± 0.51 μM were found to be most promising potent inhibitors among all. These compounds also showed their inhibition on replicating and nonreplicating bacteria. Conclusion: We have developed the novel inhibitors against M. tuberculosis capable of inhibiting active and dormant bacteria, further optimization of inhibitor derivatives can results in better compounds for eradicating tuberculosis.

  19. Structural Characterization of LRRK2 Inhibitors

    NARCIS (Netherlands)

    Gilsbach, Bernd K; Messias, Ana C; Ito, Genta; Sattler, Michael; Alessi, Dario R; Wittinghofer, Alfred; Kortholt, Arjan

    2015-01-01

    Kinase inhibition is considered to be an important therapeutic target for LRRK2 mediated Parkinson's disease (PD). Many LRRK2 kinase inhibitors have been reported but have yet to be optimized in order to qualify as drug candidates for the treatment of the disease. In order to start a

  20. [Mechanisms and efficacy of SGLT2 inhibitors].

    Science.gov (United States)

    Shiba, Teruo

    2015-03-01

    SGLT2 is a low affinity, high capacity glucose co-transporter, almost exclusively expressed in the kidney cortex. Inhibition of SGLT2 has been shown to increase the daily 50g or more urinary glucose excretion, as compared to placebo, leading to a reduction in blood glucose levels and indicated only for the treatment of type 2 diabetes. In Japan 6 species of SGLT2 inhibitors have already been sold and reported to results in a decrease of FPG by 14.4 to 45.8 (mg/dL), in a reduction of HbA1c by 0.35 to 1.24% and in loss of body weight by 1.29 to 2.50(kg). There is less effect of the SGLT2 inhibitor in diabetic subjects with renal impairment and the reduction in HbA1c and FPG will be approximately half of the average in those with 30 ≤ eGFR ≤ 59. The position of SGLT2 inhibitors would be considered as the drug administered in combination or add-on therapy when the young obese type 2 diabetics without renal impairment has not yet reached to the glycemic target with other drugs although in AACE consensus statement of 2013, it has been shelved for inexperienced use with respect to the positioning of the SGLT2 inhibitors.

  1. Th17 Inhibitors in Active Psoriatic Arthritis

    DEFF Research Database (Denmark)

    Naik, Girish S; Ming, Wai K; Magodoro, Itai M

    2018-01-01

    BACKGROUND: Several biologics targeting the Th17 pathway have been developed for the treatment of psoriatic arthritis (PsA), a disabling disease with moderate response and an increased incidence of serious infections to first-line biologics (TNF-α antagonists). Th17 inhibitors could replace TNF-α...

  2. Vildagliptin: the first innovative DDP-4 inhibitor

    Directory of Open Access Journals (Sweden)

    Edvin Villkhauer

    2010-09-01

    Full Text Available A review of the main stages of investigation undertaken by Novartis Pharmaceuticals in search of a new molecule for the treatment of type 2 diabetesmellitus, dipeptidyl peptidase-4 (DPP-4 inhibitor (Vildaglyptin. The data on specificity and selectivity of the action of this molecule are presentedalong with the results of its comparison with another agent of this group (sitagliptin.

  3. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  4. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, van M.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp)3 scarcely dissolves

  5. SEARCH OF NEW SYNTHETIC INHIBITORS OF TYROSINASE

    Directory of Open Access Journals (Sweden)

    Yu. Shesterenko

    2017-11-01

    Full Text Available Melanin pigmentation of skin plays the most important role in the protection of organism against UV-irradiation, but the excessive accumulation of melanin brings to toxic melanodermia, melasma, lentigo and other skin lesions. Tyrosinase is the key enzyme of skin melanin pigment biosynthesis. In spite of certain progress in investigation of natural and synthetic tyrosinase inhibitors, actuality of such studies is of a high level, because the existing inhibitors are in some cases unstable, expensive, toxic, requires complex methods of synthesis or isolation from natural sources. The aim of the work is screening of new tyrosinase inhibitors, using the enzyme, isolated from Agaricus bisporus. Tyrosinase was isolated from Agaricus bisporus mushrooms by a modified method. It was found, that the introduction of polyethylene glycol 4000 in the extraction process promotes 3-fold reduction of polyphenol content, which leads to increase purity of enzyme with an increase in its activity by 25%. A search for new tyrosinase inhibitors among a wide range of compounds, including derivatives of 3-chloro-1,4-naphthoquinone, isatin, 3-hydroxy-2-naphthoic acid, etc was conducted. The studied substances did not displayed inhibitory effect at concentration of 0,1-0,5 mmol/dm3.

  6. Peptide aldehyde inhibitors of bacterial peptide deformylases.

    Science.gov (United States)

    Durand, D J; Gordon Green, B; O'Connell, J F; Grant, S K

    1999-07-15

    Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity. Copyright 1999 Academic Press.

  7. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Feenstra, Ettje T.; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  8. Pharmacological caspase inhibitors: Research towards therapeutic perspectives

    Czech Academy of Sciences Publication Activity Database

    Kudělová, J.; Fleischmannová, J.; Adamová, E.; Matalová, Eva

    2015-01-01

    Roč. 66, č. 4 (2015), s. 473-482 ISSN 0867-5910 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : caspase * caspase inhibitor * apoptosis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.804, year: 2015

  9. Pharmacological caspase inhibitors: Research towards therapeutic perspectives

    Czech Academy of Sciences Publication Activity Database

    Kudělová, J.; Fleischmannová, Jana; Adamová, Eva; Matalová, Eva

    2015-01-01

    Roč. 66, č. 4 (2015), s. 473-482 ISSN 0867-5910 R&D Projects: GA ČR GB14-37368G Institutional support: RVO:67985904 Keywords : caspase * caspase inhibitor * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.804, year: 2015

  10. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based drug discovery approach, we have identified small-molecule histidine-kinase

  11. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  12. Oestrogen, testosterone, cytotoxin and cholinesterase inhibitor ...

    African Journals Online (AJOL)

    Oestrogen, testosterone, cytotoxin and cholinesterase inhibitor removal during reclamation of sewage to drinking water. ... Risks associated with sewage effluent and reclaimed sewage should be closely monitored; therefore water at the Gammams Sewage Treatment Plant (GSTP) inlet and outlet, as well as reclaimed water ...

  13. Safety of Resuming Tumor Necrosis Factor Inhibitors in Ankylosing Spondylitis Patients Concomitant with the Treatment of Active Tuberculosis: A Retrospective Nationwide Registry of the Korean Society of Spondyloarthritis Research

    Science.gov (United States)

    Kim, Hye Won; Kwon, Seong Ryul; Jung, Kyong-Hee; Kim, Seong-Kyu; Baek, Han Joo; Seo, Mi Ryung; Bang, So-Young; Lee, Hye-Soon; Suh, Chang-Hee; Jung, Ju Yang; Son, Chang-Nam; Shim, Seung Cheol; Lee, Sang-Hoon; Lee, Seung-Geun; Lee, Yeon-Ah; Lee, Eun Young; Kim, Tae-Hwan

    2016-01-01

    Backgrounds Patients who develop an active tuberculosis infection during tumor necrosis factor (TNF) inhibitor treatment typically discontinue TNF inhibitor and receive standard anti-tuberculosis treatment. However, there is currently insufficient information on patient outcomes following resumption of TNF inhibitor treatment during ongoing anti- tuberculosis treatment. Our study was designed to investigate the safety of resuming TNF inhibitors in ankylosing spondylitis (AS) patients who developed tuberculosis as a complication of the use of TNF inhibitors. Methods Through the nationwide registry of the Korean Society of Spondyloarthritis Research, 3929 AS patients who were prescribed TNF inhibitors were recruited between June 2003 and June 2014 at fourteen referral hospitals. Clinical information was analyzed about the patients who experienced tuberculosis after exposure to TNF inhibitors. The clinical features of resumers and non-resumers of TNF inhibitors were compared and the outcomes of tuberculosis were surveyed individually. Findings Fifty-six AS patients were treated for tuberculosis associated with TNF inhibitors. Among them, 23 patients resumed TNF inhibitors, and these patients were found to be exposed to TNF inhibitors for a longer period of time and experienced more frequent disease flare-up after discontinuation of TNF inhibitors compared with those who did not resume. Fifteen patients resumed TNF inhibitors during anti-tuberculosis treatment (early resumers) and 8 after completion of anti-tuberculosis treatment (late resumers). Median time to resuming TNF inhibitor from tuberculosis was 3.3 and 9.0 months in the early and late resumers, respectively. Tuberculosis was treated successfully in all resumers and did not relapse in any of them during follow-up (median 33.8 [IQR; 20.8–66.7] months). Conclusions Instances of tuberculosis were treated successfully in our AS patients, even when given concomitantly with TNF inhibitors. We suggest that early

  14. Naturally occurring Vpr inhibitors from medicinal plants of Myanmar.

    Science.gov (United States)

    Win, Nwet Nwet; Ngwe, Hla; Abe, Ikuro; Morita, Hiroyuki

    2017-10-01

    Human immunodeficiency virus type-1 (HIV-1) is a lentiviral family member that encodes the retroviral Gag, Pol, and Env proteins, along with six additional accessory proteins, Tat, Rev, Vpu, Vif, Nef, and Vpr. The currently approved anti-HIV drugs target the Pol and Env encoded proteins. However, these drugs are only effective in reducing viral replication. Furthermore, the drugs' toxicities and the emergence of drug-resistant strains have become serious worldwide problems. Resistance eventually arises to all of the approved anti-HIV drugs, including the newly approved drugs that target HIV integrase (IN). Drug resistance likely emerges because of spontaneous mutations that occur during viral replication. Therefore, new drugs that effectively block other viral components must be developed to reduce the rate of resistance and suppress viral replication with little or no long-term toxicity. The accessory proteins may expand treatment options. Viral protein R (Vpr) is one of the promising drug targets among the HIV accessory proteins. However, the search for inhibitors continues in anti-HIV drug discovery. In this review, we summarize the naturally occurring compounds discovered from two Myanmar medicinal plants as well as their structure-activity relationships. A total of 49 secondary metabolites were isolated from Kaempferia pulchra rhizomes and Picrasama javanica bark, and the types of compounds were identified as isopimarane diterpenoids and picrasane quassinoids, respectively. Among the isolates, 7 diterpenoids and 15 quassinoids were found to be Vpr inhibitors lacking detectable toxicity, and their potencies varied according to their respective functionalities.

  15. Cyclooxygenase-2 inhibitors in colorectal cancer prevention: point.

    Science.gov (United States)

    Arber, Nadir

    2008-08-01

    The limited success of current treatments for most advanced common malignancies highlights the importance of cancer prevention. Clinical trials on cyclooxygenase (COX) inhibitor drugs showed the potential of chemoprevention as a strategy for reducing cancer incidence, although not without associated side effects. The attractiveness of these drugs partly stems from an ability to engage multiple mechanisms of action by their potential to influence multiple components of the carcinogenesis pathway, from initiation to progression. There are two isoforms of the COX enzymes. COX-1 is constitutively expressed in normal tissues and serves as a "housekeeper" of mucosal integrity, whereas COX-2 is an immediate early response gene that is highly inducible by neoplastic and inflammatory stimuli. COX-2 is significantly overexpressed in colorectal neoplasms, making it an attractive therapeutic target. The drug market has been revolutionized by the development of preparations targeted selectively against COX-2, and a proof of concept has been achieved. Chemoprevention of colorectal cancer is already possible with celecoxib, but it is still not the ultimate drug of choice especially because of the cardiovascular risk associated with COX-2 inhibitors. Better patient selection and more effective and safer drugs are needed. Celecoxib is probably best used in a subset of individuals at moderate to high colorectal cancer risk and low risk of cardiovascular disease.

  16. Language impairment in Alzheimer's disease and benefits of acetylcholinesterase inhibitors

    Directory of Open Access Journals (Sweden)

    Ferris SH

    2013-08-01

    Full Text Available Steven H Ferris,1 Martin Farlow21Alzheimer's Disease Center, Comprehensive Center on Brain Aging, New York University Langone Medical Center, New York, NY, 2Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Alzheimer's disease is characterized by progressively worsening deficits in several cognitive domains, including language. Language impairment in Alzheimer's disease primarily occurs because of decline in semantic and pragmatic levels of language processing. Given the centrality of language to cognitive function, a number of language-specific scales have been developed to assess language deficits throughout progression of the disease and to evaluate the effects of pharmacotherapy on language function. Trials of acetylcholinesterase inhibitors, used for the treatment of clinical symptoms of Alzheimer's disease, have generally focused on overall cognitive effects. However, in the current report, we review data indicating specific beneficial effects of acetylcholinesterase inhibitors on language abilities in patients with Alzheimer’s disease, with a particular focus on outcomes among patients in the moderate and severe disease stages, during which communication is at risk and preservation is particularly important.Keywords: Alzheimer's disease, donepezil, cognition, language, communication, clinical trials

  17. Benzotriazole as an inhibitor of brass corrosion in chloride solution

    International Nuclear Information System (INIS)

    Kosec, Tadeja; Milosev, Ingrid; Pihlar, Boris

    2007-01-01

    The current research explores the formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys in chloride solution containing benzotriazole (BTAH), by use of electrochemical techniques, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Electrochemical reactions and surface products formed at the open circuit potential and as a function of the potential range are discussed. The addition of benzotriazole to aerated, near neutral 0.5 M NaCl solution affects the dissolution of copper, zinc, Cu-10Zn and Cu-40Zn alloys. The research also compares the inhibition efficiency and Gibbs adsorption energies of the investigated process. Benzotriazole, generally known as an inhibitor of copper corrosion is also shown to be an efficient inhibitor for copper-zinc alloys and zinc metal. The surface layer formed on alloys in BTAH-inhibited solution comprised both oxide and polymer components, namely Cu 2 O and ZnO oxides, and Cu(I)-BTA and Zn(II)-BTA polymers. The formation of this mixed copper-zinc oxide polymer surface film provides an effective barrier against corrosion of both metal components in chloride solution

  18. p38 MAPK inhibitors: a patent review (2012 - 2013).

    Science.gov (United States)

    Bühler, Stefanie; Laufer, Stefan A

    2014-05-01

    The p38 MAPK is a ubiquitous target in the research-based pharmaceutical industry. It plays a decisive role in the regulation of the production of proinflammatory cytokines. Since novel biological therapies have revolutionized the treatment of chronic inflammatory diseases, an intensive global search is underway for small molecules for the same application. Herein, the patents and the corresponding publications of international companies, which focus on the development and identification of a new generation of small-molecule p38 inhibitors, are summarized. The most promising approach is the development of linear binders, which induce a glycine flip at Gly110 of the kinase hinge region by a carbonyl oxygen atom of the respective ligand. The major focus of the patent works was the application of molecules in new indications. Previous applications were in the treatment of rheumatoid arthritis; currently, there are several new applications, including pulmonary diseases, cancer and Alzheimer's disease. Targeting p38 upstream kinases and downstream effectors has also proved to be a very promising step in the development of more effective inhibitors. A further trend is drug combination, applied to a wide range of indications, such as chronic obstructive pulmonary disease and cancer.

  19. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents. © 2014 Wiley Periodicals, Inc.

  20. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  1. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    Science.gov (United States)

    Negmeldin, Ahmed Thabet

    inhibitors can be used as lead compounds and as a chemical tool to study HDAC related cancer biology. The observed enhancement of selectivity upon modifying the linker region of the non-selective inhibitor SAHA shows that modifying current drugs, like SAHA, could lead to substantial improvement in its pharmacodynamic properties.

  2. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  3. In silico panning for a non-competitive peptide inhibitor

    Directory of Open Access Journals (Sweden)

    Ikebukuro Kazunori

    2007-01-01

    Full Text Available Abstract Background Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs. In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH. Results The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs, which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 μM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD value was calculated as 60 μM by surface plasmon resonance (SPR analysis. Conclusion We demonstrate an effective methodology of in silico panning for the selection of a non

  4. Dry eye syndrome in aromatase inhibitor users.

    Science.gov (United States)

    Turaka, Kiran; Nottage, Jennifer M; Hammersmith, Kristin M; Nagra, Parveen K; Rapuano, Christopher J

    2013-04-01

    Aromatase inhibitors are frequently used as an adjuvant therapy in the treatment of breast cancer. We observed that several patients taking aromatase inhibitors presented with severe dry eye symptoms, and we investigated whether there is a relationship between aromatase inhibitors and dry eyes in these patients. Retrospective chart review. Forty-one women. A computerized search of health records was performed to identify patients using anastrazole, letrozole and exemestane seen by the Cornea Service from August 2008 to March 2011. The results were compared with age-matched controls. Ocular surface changes among aromatase inhibitors users. Of the 41 women, 39 were Caucasians. Thirty-nine patients had breast cancer (95%), one patient had ovarian cancer (2.5%) and one had an unknown primary cancer. Mean age was 68 ± 11.3 years (range 47-95). Most common presenting symptoms were blurred vision in 28 (68%) patients, irritation/foreign body sensation in 12 (29%) patients, redness in 9 (22%) patients, tearing in 6 (22%) patients and photosensitivity in 2 (5%) patients. Mean Schirmer's test measurement was 11 ± 5.8 mm (range 0.5-20 mm). Blepharitis was noted in 68 of 82 eyes (73%), decreased or poor tear function in 24 eyes (29%), conjunctival injection in 18 eyes (22%) and superficial punctate keratitis in 12 eyes (29%). Among an age-matched population (45-95 years), dry eye syndrome was found in only 9.5% of patients. Because the prevalence of ocular surface disease signs and symptoms appears to be higher in study group than control patients, aromatase inhibitors might be a contributing factor to the dry eye symptoms. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  5. RENAL SAFETY OF PROTON PUMP INHIBITORS

    Directory of Open Access Journals (Sweden)

    A. I. Dyadyk

    2017-01-01

    Full Text Available Proton pump inhibitors are a widely used in clinical practice, and are taken by millions of patients around the world for a long time. While proton pump inhibitors are well-tolerated class of drugs, the number of publications has been raised about adverse renal effects, specially their association with acute tubulointerstitial nephritis. It is one of the leading causes of acute renal injury and have catastrophic long-term consequences called chronic kidney disease. In this review, we consider epidemiology, pathogenesis, diagnostic criteria (including biopsy and morphological pattern, clinical manifestations and treatment of proton pump inhibitors-induced acute tubulointerstitial nephritis. A subclinical course without classical manifestations of a cell-mediated hypersensitivity reaction (fever, skin rash, eosinophilia, arthralgia is characteristic of acute tubulointerstitial nephritis. Increased serum creatinine, decreased glomerular filtration rate, electrolyte disorders, pathological changes in urine tests are not highly specific indicators, but allow to suspect the development of acute tubulointerstitial nephritis. The “gold” standard of diagnosis is the intravital morphological examination of the kidney tissue. Timely diagnosis and immediate discontinuation of the potentially causative drug is the mainstay of therapy and the first necessary step in the early management of suspected or biopsy-proven drug-induced acute tubulointerstitial nephritis. The usage of proton pump inhibitors should be performed only on strict indications with optimal duration of treatment and careful monitoring of kidney function. Multiple comorbidities (older age, heart failure, diabetes, cirrhosis, chronic kidney disease, hypovolemia increase potential nephrotoxicity. Awareness of this iatrogenic complication will improve diagnosis of proton pump inhibitors-induced acute tubulointerstitial nephritis by multidisciplinary specialists and increase the possibility

  6. Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Schroeder

    2014-09-01

    Full Text Available The human epidermal growth factor receptor 2 (HER2 is a member of the erbB class of tyrosine kinase receptors. These proteins are normally expressed at the surface of healthy cells and play critical roles in the signal transduction cascade in a myriad of biochemical pathways responsible for cell growth and differentiation. However, it is widely known that amplification and subsequent overexpression of the HER2 encoding oncogene results in unregulated cell proliferation in an aggressive form of breast cancer known as HER2-positive breast cancer. Existing therapies such as trastuzumab (Herceptin® and lapatinib (Tyverb/Tykerb®, a monoclonal antibody inhibitor and a dual EGFR/HER2 kinase inhibitor, respectively, are currently used in the treatment of HER2-positive cancers, although issues with high recurrence and acquired resistance still remain. Small molecule tyrosine kinase inhibitors provide attractive therapeutic targets, as they are able to block cell signaling associated with many of the proposed mechanisms for HER2 resistance. In this regard we aim to present a review on the available HER2 tyrosine kinase inhibitors, as well as those currently in development. The use of tyrosine kinase inhibitors as sequential or combinatorial therapeutic strategies with other HER family inhibitors is also discussed.

  7. Current views on the pharmacotherapy of psoriatic arthritis

    Directory of Open Access Journals (Sweden)

    G. G. Taradin

    2015-01-01

    Full Text Available The review deals with current pharmacological approaches to treating psoriatic arthritis (PsA. It gives data on the prevalence of psoriasis and psoriatic joint injury that is a common cause of early patient disability. Approaches to evaluating the efficacy of drugs are given on the basis of developed and used criteria with regard to the standardized assessment of the dynamics of joint injury in rheumatic diseases and PSA in particular. The review gives brief information on the mechanism of drug actions and the results of clinical trials evaluating the efficacy and safety of different medicaments in PsA. It also covers the experience in using nonsteroidal antiinflammatory drugs, glucocorticoids, synthetic diseasemodifying antirheumatic drugs (methotrexate, cyclosporine, leflunomide, sulfasalazine, and also a promising group of biologicals. Particular emphasis is placed on the results of using tumor necrosis factor inhibitors (etanercept, infliximab, golimumab, certolizumab pegol, adalimumab, interleukin inhibitors (ustekinumab, brodalumab, and phosphodiesterase 4 inhibitors (apremilast.

  8. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    Science.gov (United States)

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  10. Cytogenetic study of Ascaris trypsin inhibitor in cultured human ...

    Indian Academy of Sciences (India)

    2009-04-01

    Apr 1, 2009 ... Although the physical and chemical properties of Ascaris trypsin inhibitors ... male of Ascaris suum according to the method of Pudles and. Rola (1967). ..... inhibitor isolated from Ascaris resulted in the appearance of dominant ...

  11. SGLT2 inhibitors: molecular design and potential differences in effect.

    Science.gov (United States)

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  12. Environmental life cycle analysis of potato sprout inhibitors

    NARCIS (Netherlands)

    Kerstholt, R.P.V.; Ree, C.M.; Moll, H.C.

    Potato sprout inhibitors are generally applied to suppress sprouting during winter storage. This study presents the compared environmental profiles of the two sprout inhibitors available on the Dutch market: A traditional chemical product with isopropyl-3-chlorophenylcarbamate (CIPC) and

  13. [Inhibitors of proteolytic enzymes under abiotic stresses in plants (review)].

    Science.gov (United States)

    Mosolov, V V; Valueva, T A

    2011-01-01

    Data on the role of proteolytic enzyme inhibitors in plant adaptation to various unfavorable environmental abiotic factors--water deficiency, salinization of soil, extreme temperatures, etc.--and also probable functions of proteinases inhibitors in natural plant senescense are considered.

  14. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  15. Structural Analysis of DFG-in and DFG-out Dual Src-Abl Inhibitors Sharing a Common Vinyl Purine Template

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Sawyer, Tomi K.; Shakespeare, William C.; Clackson, Tim; Zhu, Xiaotian; Dalgarno, David C. (ARIAD)

    2010-09-30

    Bcr-Abl is the oncogenic protein tyrosine kinase responsible for chronic myeloid leukemia (CML). Treatment of the disease with imatinib (Gleevec) often results in drug resistance via kinase mutations at the advanced phases of the disease, which has necessitated the development of new mutation-resistant inhibitors, notably against the T315I gatekeeper mutation. As part of our efforts to discover such mutation resistant Abl inhibitors, we have focused on optimizing purine template kinase inhibitors, leading to the discovery of potent DFG-in and DFG-out series of Abl inhibitors that are also potent Src inhibitors. Here we present crystal structures of Abl bound by two such inhibitors, based on a common N9-arenyl purine, and that represent both DFG-in and -out binding modes. In each structure the purine template is bound deeply in the adenine pocket and the novel vinyl linker forms a non-classical hydrogen bond to the gatekeeper residue, Thr315. Specific template substitutions promote either a DFG-in or -out binding mode, with the kinase binding site adjusting to optimize molecular recognition. Bcr-Abl T315I mutant kinase is resistant to all currently marketed Abl inhibitors, and is the focus of intense drug discovery efforts. Notably, our DFG-out inhibitor, AP24163, exhibits modest activity against this mutant, illustrating that this kinase mutant can be inhibited by DFG-out class inhibitors. Furthermore our DFG-out inhibitor exhibits dual Src-Abl activity, absent from the prototypical DFG-out inhibitor, imatinib as well as its analog, nilotinib. The data presented here provides structural guidance for the further design of novel potent DFG-out class inhibitors against Src, Abl and Abl T315I mutant kinases.

  16. Diarylthiophenes as inhibitors of the pore-forming protein perforin.

    Science.gov (United States)

    Miller, Christian K; Huttunen, Kristiina M; Denny, William A; Jaiswal, Jagdish K; Ciccone, Annette; Browne, Kylie A; Trapani, Joseph A; Spicer, Julie A

    2016-01-15

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure-activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Mitochondrial Membrane Permeability Inhibitors in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Cory Trankle, MD

    2016-10-01

    Full Text Available Despite therapeutic advances, acute myocardial infarction (AMI remains a leading cause of morbidity and mortality worldwide. One potential limitation of the current treatment paradigm is the lack of effective therapies to optimize reperfusion after ischemia and prevent reperfusion-mediated injury. Experimental studies indicate that this process accounts for up to 50% of the final infarct size, lending it importance as a potential target for cardioprotection. However, multiple therapeutic approaches have shown potential in pre-clinical and early phase trials but a paucity of clear clinical benefit when expanded to larger studies. Here we explore this history of trials and errors of the studies of cyclosporine A and other mitochondrial membrane permeability inhibitors, agents that appeared to have a promising pre-clinical record yet provided disappointing results in phase III clinical trials.

  18. Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors.

    Science.gov (United States)

    Smith, Jason R; Jamie, Joanne F; Guillemin, Gilles J

    2016-02-01

    Kynurenine monooxygenase (KMO) is an enzyme of the kynurenine (Kyn) pathway (KP), which is the major catabolic route of tryptophan. Kyn represents a branch point of the KP, being converted into the neurotoxin 3-hydroxykynurenine via KMO, neuroprotectant kynurenic acid, and anthranilic acid. As a result of this branch point, KMO is an attractive drug target for several neurodegenerative and/or neuroinflammatory diseases, especially Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases. Although a neurological target, administration of KMO inhibitors in the periphery has demonstrated promising pharmacological results. In light of a recent crystal structure release and reports of preclinical candidates, here we provide a concise yet comprehensive update on the current state of research into the enzymology of KMO and related drug discovery efforts, highlighting areas where further work is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The appropriateness of a proton pump inhibitor prescription.

    LENUS (Irish Health Repository)

    Moran, N

    2014-11-01

    Proton pump inhibitors (PPIs) are one of the most commonly prescribed groups of drug in Ireland, at great expense to the Irish healthcare executive. This study aims to evaluate the appropriateness of PPI prescriptions on admission and discharge in a tertiary referral hospital. All non-elective admissions in the Emergency Department in one week were included in the study. 102 patients in total were included, with 36 (35.4%) treated with a PPI on admission. Of these, only 3 (8.3%) had a clear indication noted as per current NICE guidelines. 18 new in-hospital PPI prescriptions were documented. 11 (61%) of which were present on discharge prescriptions. Continuing PPI prescription on discharge into the community may be inappropriate, costly and potentially harmful. Brief interventions aimed at reducing inappropriate PPI prescriptions have been shown to be effective at reducing the cost and potential harm of unnecessary treatment.

  20. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  1. Dengue Virus and Its Inhibitors: A Brief Review.

    Science.gov (United States)

    Tian, Yu-Shi; Zhou, Yi; Takagi, Tatsuya; Kameoka, Masanori; Kawashita, Norihito

    2018-01-01

    The global occurrence of viral infectious diseases poses a significant threat to human health. Dengue virus (DENV) infection is one of the most noteworthy of these infections. According to a WHO survey, approximately 400 million people are infected annually; symptoms deteriorate in approximately one percent of cases. Numerous foundational and clinical investigations on viral epidemiology, structure and function analysis, infection source and route, therapeutic targets, vaccines, and therapeutic drugs have been conducted by both academic and industrial researchers. At present, CYD-TDV or Dengvaxia ® is the only approved vaccine, but potent inhibitors are currently under development. In this review, an overview of the viral life circle and the history of DENVs is presented, and the most recently reported antiviral candidates and newly discovered promising targets are focused and summarized. We believe that these successes and failures have enabled progress in anti-DENV drug discovery and hope that our review will stimulate further innovation in this area.

  2. Current and Emerging Therapeutics for Cutaneous T-Cell Lymphoma: Histone Deacetylase Inhibitors

    OpenAIRE

    Annabelle L. Rodd; Katherine Ververis; Tom C. Karagiannis

    2012-01-01

    Cutaneous T-cell lymphoma is a term that encompasses a spectrum of non-Hodgkin’s T-cell lymphomas with primary manifestations in the skin. It describes a heterogeneous group of neoplasms that are characterised by an accumulation of malignant T cells of the CD4 phenotype that have the propensity to home and accumulate in the skin, lymph nodes, and peripheral blood. The two most common variants of cutaneous T-cell lymphoma include mycosis fungoides and the leukemic variant, the Sézary syndrome....

  3. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives.

    Science.gov (United States)

    Taieb, Julien; Moehler, Markus; Boku, Narikazu; Ajani, Jaffer A; Yañez Ruiz, Eduardo; Ryu, Min-Hee; Guenther, Silke; Chand, Vikram; Bang, Yung-Jue

    2018-05-01

    Standard treatment options for patients with advanced gastric or gastroesophageal junction cancer (GC/GEJC) are associated with limited efficacy and some toxicity. Recently, immunotherapy with antibodies that inhibit the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) interaction has emerged as a new treatment option. This manuscript reviews early-phase and late-phase trials of immunotherapy in advanced GC/GEJC. Searches for studies of immunotherapy in GC/GEJC were performed using PubMed, ClinicalTrials.gov, and abstract databases for select annual congresses. Findings were interpreted based on expert opinion. Monotherapy with anti-PD-1/PD-L1 antibodies, including pembrolizumab, nivolumab, avelumab, durvalumab, and atezolizumab, has shown interesting objective response rates (ORRs; 7-26%) across varying GC/GEJC populations, with ORRs potentially higher in PD-L1 + vs PD-L1 - tumors. Safety profiles compare favorably with chemotherapy, with grade ≥3 treatment-related adverse events occurring in 5-17%. Based on a large phase 2 study, pembrolizumab was approved in the United States for third-line treatment of patients with PD-L1 + GC/GEJC. In a phase 3 trial, third-line or later nivolumab increased overall survival vs placebo in an Asian population, leading to regulatory approval in Japan, although other completed phase 3 trials did not show superiority for pembrolizumab or avelumab monotherapy vs chemotherapy. Other trials in advanced GC/GEJC are assessing various anti-PD-1/PD-L1-based strategies, including administration in first-line and later-line settings and as combination (with chemotherapy or agents targeting other immune checkpoint proteins, eg, CTLA-4, LAG-3, and IDO) or switch-maintenance regimens. Anti-PD-1/PD-L1 antibodies have shown encouraging clinical activity in advanced GC/GEJC. Results from ongoing phase 3 trials are needed to further evaluate the potential roles of these agents within the continuum of care. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Superconformal current multiplet

    International Nuclear Information System (INIS)

    Smailagic, A.

    1982-12-01

    We consider a derivation of a superconformal current multiplet based directly on superconformal algebra. This gives usual multiplet of currents without anomalies, directly in terms of ''improved'' quantities and without reference to a particular Lagrangian model. (author)

  5. Current Research Studies

    Science.gov (United States)

    ... Success Home > Explore Research > Current Research Studies Current Research Studies Email Print + Share The Crohn’s & Colitis Foundation ... conducted online. Learn more about IBD Partners. Clinical Research Alliance The Clinical Research Alliance is a network ...

  6. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  7. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    Science.gov (United States)

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  8. Currents on Grassmann algebras

    International Nuclear Information System (INIS)

    Coquereaux, R.; Ragoucy, E.

    1993-09-01

    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  9. Eddy current seminar

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1988-11-01

    The paper presents the fifth symposium in the series of Eddy Current Seminars, held in Abingdon, 1988. The meeting included a discussion on three-dimensional eddy current formulations, as well as thirteen contributed papers on computational electromagnetics. Of the thirteen papers, two papers on eddy currents in tokamaks were selected for INIS and indexed separately. (U.K.)

  10. SGLT2 Inhibitors: Benefit/Risk Balance.

    Science.gov (United States)

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  11. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  12. Secreted and Transmembrane Wnt Inhibitors and Activators

    Science.gov (United States)

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-01-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  13. Raltegravir: first in class HIV integrase inhibitor

    Directory of Open Access Journals (Sweden)

    Zelalem Temesgen

    2008-06-01

    Full Text Available Zelalem Temesgen1, Dawd S Siraj21Mayo Clinic, Rochester, MN, USA; 2East Carolina University Greenville, NC, USAAbstract: On October 16, 2007, the US Food and Drug Administration (FDA approved raltegravir for treatment of human immunodeficiency virus (HIV-1 infection in combination with other antiretroviral agents in treatment-experienced adult patients who have evidence of viral replication and HIV-1 strains resistant to multiple antiretroviral agents. Raltegravir is first in a novel class of antiretroviral drugs known as integrase inhibitors. It has demonstrated potent anti HIV activity in both antiretroviral treatment-naïve and experienced patients. The most common adverse events reported with raltegravir during phase 2 and 3 clinical trials were diarrhea, nausea, and headache. Laboratory abnormalities include mild elevations in liver transaminases and creatine phosphokinase.Keywords: raltegravir, HIV, antiretroviral agents, integrase inhibitors

  14. Small molecule inhibitors of anthrax edema factor.

    Science.gov (United States)

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; O'Malley, Sean; Leppla, Stephen H; Johnson, Alan T

    2018-01-15

    Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Novel nonpeptidic inhibitors of peptide deformylase.

    Science.gov (United States)

    Jayasekera, M M; Kendall, A; Shammas, R; Dermyer, M; Tomala, M; Shapiro, M A; Holler, T P

    2000-09-15

    A novel series of nonpeptidic compounds structurally related to the known anticholesteremic thyropropic acid were found to inhibit Escherichia coli peptide deformylase (PDF), with IC50 values in the low-micromolar range. Kinetic analysis of [4-(4-hydroxyphenoxy)-3,5-diiodophenyl]acetic acid reveals competitive inhibition, with a Ki value of 0.66 +/- 0.007 microM. A structure-activity relationship study demonstrates that the carboxylate is required for activity, while the distal phenolic function can be methylated without significant effect. Either decreasing the number of iodine atoms on the molecule to one or increasing the number of iodine atoms to four results in the loss of an order of magnitude in potency. These compounds are the first nonpeptidic inhibitors disclosed and represent a template from which better inhibitors might be designed.

  16. Potent peptidic fusion inhibitors of influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Rameshwar U.; Juraszek, Jarek; Brandenburg, Boerries; Buyck, Christophe; Schepens, Wim B. G.; Kesteleyn, Bart; Stoops, Bart; Vreeken, Rob J.; Vermond, Jan; Goutier, Wouter; Tang, Chan; Vogels, Ronald; Friesen, Robert H. E.; Goudsmit, Jaap; van Dongen, Maria J. P.; Wilson, Ian A.

    2017-09-28

    Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH–induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule– and peptide-based therapeutics against influenza virus.

  17. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  18. Economic Evaluation of PCSK9 Inhibitors in Reducing Cardiovascular Risk from Health System and Private Payer Perspectives.

    Directory of Open Access Journals (Sweden)

    Alejandro Arrieta

    Full Text Available The introduction of Proprotein covertase subtilisin/kexin type 9 (PCSK9 inhibitors has been heralded as a major advancement in reducing low-density lipoprotein cholesterol levels by nearly 50%. However, concerns have been raised on the added value to the health care system in terms of their costs and benefits. We assess the cost-effectiveness of PCSK9 inhibitors based on a decision-analytic model with existing clinical evidence. The model compares a lipid-lowering therapy based on statin plus PCSK9 inhibitor treatment with statin treatment only (standard therapy. From health system perspective, incremental cost per quality adjusted life years (QALYs gained are presented. From a private payer perspective, return-on-investment and net present values over patient lifespan are presented. At the current annual cost of $14,000 to $15,000, PCSK9 inhibitors are not cost-effective at an incremental cost of about $350,000 per QALY. Moreover, for every dollar invested in PCSK9 inhibitors, the private payer loses $1.98. Our study suggests that the annual treatment price should be set at $4,250 at a societal willingness-to-pay of $100,000 per QALY. However, we estimate the breakeven price for private payer is only $600 per annual treatment. At current prices, our study suggests that PCSK9 inhibitors do not add value to the U.S. health system and their provision is not profitable for private payers. To be the breakthrough drug in the fight against cardiovascular disease, the current price of PCSK9 inhibitors must be reduced by more than 70%.

  19. Corrosion protection with eco-friendly inhibitors

    Science.gov (United States)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  20. Acrosin inhibitor detecting along the boar epididymis

    Czech Academy of Sciences Publication Activity Database

    Maňásková-Postlerová, Pavla; Cozlová, Nina; Dorosh, Andriy; Šulc, Miroslav; Guyonet, B.; Jonáková, Věra

    2016-01-01

    Roč. 82, Jan 2016 (2016), s. 733-739 ISSN 0141-8130 R&D Projects: GA ČR(CZ) GAP503/12/1834; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GA14-05547S Institutional support: RVO:86652036 ; RVO:61388971 Keywords : Acrosin inhibitor * Boar epididymis * Spermatozoa Subject RIV: CE - Biochemistry Impact factor: 3.671, year: 2016

  1. Cyclooxygenase-2 inhibitors and knee prosthesis surgery

    OpenAIRE

    Meunier, Andreas

    2008-01-01

    Adverse effects of cyclooxygenase (COX) inhibitors on bone healing have previously been demonstrated in diaphyseal fracture models in animals. In spite of that, they are widely used as postoperative analgesics in orthopaedic surgery. After joint replacement, a bone repair process starts at the interface between bone and cement. If this process is disturbed, the prosthesis may never become rigidly fixed to the bone, leading to migration and with time loosening. This thesis investigates the eff...

  2. Aurora kinase inhibitors: Progress towards the clinic

    Czech Academy of Sciences Publication Activity Database

    Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, Pathik; Lepšík, Martin; Hajduch, M.

    2012-01-01

    Roč. 30, č. 6 (2012), s. 2411-2432 ISSN 0167-6997 Grant - others:GA ČR(CZ) GA301/08/1649; GA ČR(CZ) GD303/09/H048 Program:GA; GD Institutional research plan: CEZ:AV0Z40550506 Keywords : Aurora kinases * cancer * inhibitors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  3. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  4. FAITH - Fast Assembly Inhibitor Test for HIV

    Czech Academy of Sciences Publication Activity Database

    Hadravová, Romana; Rumlová, Michaela; Ruml, T.

    2015-01-01

    Roč. 486, Dec (2015), s. 78-87 ISSN 0042-6822 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 Keywords : retrovirus * HIV * assembly * assay * inhibitor Subject RIV: EE - Microbiology, Virology Impact factor: 3.200, year: 2015 http://www.sciencedirect.com/science/article/pii/S0042682215003864

  5. Monoamine oxidase inhibitors from Gentiana lutea.

    Science.gov (United States)

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  6. Trial Watch: Proteasomal inhibitors for anticancer therapy.

    Science.gov (United States)

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.

  7. Adverse Effects of COX-2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Jagdish N. Sharma

    2005-01-01

    Full Text Available Cyclooxygenase-2 selective inhibitors (COXIBs were developed with the prime object of minimizing gastrointestinal adverse effects, which are seen with the use of traditional nonsteroidal anti-inflammatory drugs (NSAIDs. Their long-term use is limited by the development of hypertension, edema, and congestive heart failure in a significant proportion of patients. NSAIDs block the activity of both COX isozymes, COX-1 and COX-2, which mediate the enzymatic conversion of arachidonate to prostaglandin H2 (PGH2 and other prostaglandin (PG metabolites. It is well established that the cardiovascular profile of COX-2 inhibitors can be accounted for by inhibition of COX-dependent PG synthesis. Following the COX-mediated synthesis of PGH2 from arachidonate, PGH2 is metabolized to one of at least five bioactive PGs, including PGE2, PGI2, PGF2, PGD2, or thromboxane A2 (TXA2. These prostanoids have pleiotropic cardiovascular effects, altering platelet function and renal function, and they are acting either as vasodilators or vasoconstrictors. Although COX-1 and COX-2 exhibit similar biochemical activity in converting arachidonate to PGH2in vitro, the ultimate prostanoids they produce in vivo may be different due to differential regulation of COX-1 and COX-2, tissue distribution, and availability of the prostanoid synthases. PGs have been established as being critically involved in mitigating hypertension, helping to maintain medullary blood flow (MBF, promoting urinary salt excretion, and preserving the normal homeostasis of thrombosis, and the researchers found that the use of COX-2 inhibitors caused many serious complications in altering the normal body homeostasis. The purpose of the present research is to explain briefly the side effects of COX-2 inhibitors on the renal and cardiovascular system.

  8. Rust Inhibitor And Fungicide For Cooling Systems

    Science.gov (United States)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  9. Luminometric method for screening retroviral protease inhibitors

    Czech Academy of Sciences Publication Activity Database

    Horáková, D.; Rumlová, Michaela; Pichová, Iva; Ruml, Tomáš

    2005-01-01

    Roč. 345, č. 1 (2005), s. 96-101 ISSN 0003-2697 R&D Projects: GA AV ČR(CZ) IAA4055304; GA MŠk(CZ) 1M0508; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : retroviral protease * inhibitors * luminescent assay Subject RIV: CE - Biochemistry Impact factor: 2.670, year: 2005

  10. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra

    2000-01-01

    Roč. 3, 3,4 (2000), s. 23 [ Proteolytic enzymes and their inhibitors in physiology and pathogenesis. 14.09.2000, Plzen] R&D Projects: GA ČR GV524/96/K162; GA ČR GA303/99/0357; GA MŠk VS96141 Grant - others:GA UK(CZ) 12/1998 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology

  11. Current and Current Fluctuations in Quantum Shuttles

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Flindt, Christian; Novotny, Tomas

    2005-01-01

    theoretical tools needed for the analysis, e.g., generalized master equations and Wigner functions, and we outline the methods how the resulting large numerical problems can be handled. Illustrative results are given for current, noise, and full counting statistics for a number of model systems. Throughout...... the review we focus on the physics behind the various approximations, and some simple examples are given to illustrate the theoretical concepts. We also comment on the experimental situation. ©2005 American Institute of Physics...

  12. Modelling of potentially promising SARS protease inhibitors

    International Nuclear Information System (INIS)

    Plewczynski, Dariusz; Hoffmann, Marcin; Grotthuss, Marcin von; Knizewski, Lukasz; Rychewski, Leszek; Eitner, Krystian; Ginalski, Krzysztof

    2007-01-01

    In many cases, at the beginning of a high throughput screening experiment some information about active molecules is already available. Active compounds (such as substrate analogues, natural products and inhibitors of related proteins) are often identified in low throughput validation studies on a biochemical target. Sometimes the additional structural information is also available from crystallographic studies on protein and ligand complexes. In addition, the structural or sequence similarity of various protein targets yields a novel possibility for drug discovery. Co-crystallized compounds from homologous proteins can be used to design leads for a new target without co-crystallized ligands. In this paper we evaluate how far such an approach can be used in a real drug campaign, with severe acute respiratory syndrome (SARS) coronavirus providing an example. Our method is able to construct small molecules as plausible inhibitors solely on the basis of the set of ligands from crystallized complexes of a protein target, and other proteins from its structurally homologous family. The accuracy and sensitivity of the method are estimated here by the subsequent use of an electronic high throughput screening flexible docking algorithm. The best performing ligands are then used for a very restrictive similarity search for potential inhibitors of the SARS protease within the million compounds from the Ligand.Info small molecule meta-database. The selected molecules can be passed on for further experimental validation

  13. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase.

    Directory of Open Access Journals (Sweden)

    Kenneth W Yip

    Full Text Available Uroporphyrinogen decarboxylase (UROD catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16, was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM, but did not affect porphobilinogen deaminase (at 62.5 µM, thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1. This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.

  14. Emicizumab Prophylaxis in Hemophilia A with Inhibitors.

    Science.gov (United States)

    Oldenburg, Johannes; Mahlangu, Johnny N; Kim, Benjamin; Schmitt, Christophe; Callaghan, Michael U; Young, Guy; Santagostino, Elena; Kruse-Jarres, Rebecca; Negrier, Claude; Kessler, Craig; Valente, Nancy; Asikanius, Elina; Levy, Gallia G; Windyga, Jerzy; Shima, Midori

    2017-08-31

    Emicizumab (ACE910) bridges activated factor IX and factor X to restore the function of activated factor VIII, which is deficient in persons with hemophilia A. This phase 3, multicenter trial assessed once-weekly subcutaneous emicizumab prophylaxis in persons with hemophilia A with factor VIII inhibitors. We enrolled participants who were 12 years of age or older. Those who had previously received episodic treatment with bypassing agents were randomly assigned in a 2:1 ratio to emicizumab prophylaxis (group A) or no prophylaxis (group B). The primary end point was the difference in bleeding rates between group A and group B. Participants who had previously received prophylactic treatment with bypassing agents received emicizumab prophylaxis in group C. A total of 109 male participants with hemophilia A with inhibitors were enrolled. The annualized bleeding rate was 2.9 events (95% confidence interval [CI], 1.7 to 5.0) among participants who were randomly assigned to emicizumab prophylaxis (group A, 35 participants) versus 23.3 events (95% CI, 12.3 to 43.9) among those assigned to no prophylaxis (group B, 18 participants), representing a significant difference of 87% in favor of emicizumab prophylaxis (Phemophilia A with inhibitors. (Funded by F. Hoffmann-La Roche and Chugai Pharmaceutical; HAVEN 1 ClinicalTrials.gov number, NCT02622321 .).

  15. Modelling of potentially promising SARS protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Plewczynski, Dariusz [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland); Hoffmann, Marcin [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Grotthuss, Marcin von [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Knizewski, Lukasz [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland); Rychewski, Leszek [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Eitner, Krystian [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Ginalski, Krzysztof [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland)

    2007-07-18

    In many cases, at the beginning of a high throughput screening experiment some information about active molecules is already available. Active compounds (such as substrate analogues, natural products and inhibitors of related proteins) are often identified in low throughput validation studies on a biochemical target. Sometimes the additional structural information is also available from crystallographic studies on protein and ligand complexes. In addition, the structural or sequence similarity of various protein targets yields a novel possibility for drug discovery. Co-crystallized compounds from homologous proteins can be used to design leads for a new target without co-crystallized ligands. In this paper we evaluate how far such an approach can be used in a real drug campaign, with severe acute respiratory syndrome (SARS) coronavirus providing an example. Our method is able to construct small molecules as plausible inhibitors solely on the basis of the set of ligands from crystallized complexes of a protein target, and other proteins from its structurally homologous family. The accuracy and sensitivity of the method are estimated here by the subsequent use of an electronic high throughput screening flexible docking algorithm. The best performing ligands are then used for a very restrictive similarity search for potential inhibitors of the SARS protease within the million compounds from the Ligand.Info small molecule meta-database. The selected molecules can be passed on for further experimental validation.

  16. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  17. The roles of endogenous CaMKII inhibitors in learning and memory.

    Directory of Open Access Journals (Sweden)

    Fabio Antonio Borges Vigil

    2014-03-01

    Full Text Available Calcium/ Calmodulin-dependent kinase 2 (CaMK2 is a serine/threonine kinase with a wide range of substrates. In the dendrites this kinase is the major post-synaptic density protein. A number of studies have established that CaMK2 is a fundamentally important for various learning and memory processes. Given this importance the activity of CaMK2 must be tightly regulated. Recently two endogenous inhibitor proteins of CaMK2, CaMK2N1 and CaMK2N2, have been identified. During contextual fear memory formation CaMK2N1 and CaMK2N2 increase in brain regions that are related to the task. However, the functions of CaMK2Ns are still unknown. Our aim was to study the physiological roles of these inhibitors in memory and learning process. For that purpose we used adeno-associated virus vector to either knockdown or overexpress one of the inhibitors. Animals were trained in contextual fear conditioning and their memory of the context was tested in two different time points. Treatment knocking down one of the inhibitors had no effect on memory formation but it inhibits memory maintenance. Overexpression of the other inhibitor prior to training blocked memory formation. On the other hand, overexpression of the same inhibitor after training had no effect on learning or memory of the task. We are currently studying the molecular effects of both treatments. We expect to be able to present data obtain with these experiments at the DENDRITES 2014.

  18. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    . This insight could have profound implications for SRM and flexible inhibitor designs for current and future launch vehicles including SLS.

  19. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhay Kumar [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA; Pantouris, Georgios [Department of Pharmacology, Yale University School of Medicine, New Haven CT USA; Borosch, Sebastian [Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen Germany; Rojanasthien, Siripong [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA; Cho, Thomas Yoonsang [Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis MO USA

    2016-09-13

    Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structural changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.

  20. Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding.

    Science.gov (United States)

    Skagseth, Susann; Christopeit, Tony; Akhter, Sundus; Bayer, Annette; Samuelsen, Ørjan; Leiros, Hanna-Kirsti S

    2017-08-01

    Metallo-β-lactamases (MBLs) threaten the effectiveness of β-lactam antibiotics, including carbapenems, and are a concern for global public health. β-Lactam/β-lactamase inhibitor combinations active against class A and class D carbapenemases are used, but no clinically useful MBL inhibitor is currently available. Tripoli metallo-β-lactamase-1 (TMB-1) and TMB-2 are members of MBL subclass B1a, where TMB-2 is an S228P variant of TMB-1. The role of S228P was studied by comparisons of TMB-1 and TMB-2, and E119 was investigated through the construction of site-directed mutants of TMB-1, E119Q, E119S, and E119A (E119Q/S/A). All TMB variants were characterized through enzyme kinetic studies. Thermostability and crystallization analyses of TMB-1 were performed. Thiol-based inhibitors were investigated by determining the 50% inhibitory concentrations (IC 50 ) and binding using surface plasmon resonance (SPR) for analysis of TMB-1. Thermostability measurements found TMB-1 to be stabilized by high NaCl concentrations. Steady-state enzyme kinetics analyses found substitutions of E119, in particular, substitutions associated with the penicillins, to affect hydrolysis to some extent. TMB-2 with S228P showed slightly reduced catalytic efficiency compared to TMB-1. The IC 50 levels of the new thiol-based inhibitors were 0.66 μM (inhibitor 2a) and 0.62 μM (inhibitor 2b), and the equilibrium dissociation constant ( K D ) of inhibitor 2a was 1.6 μM; thus, both were more potent inhibitors than l-captopril (IC 50 = 47 μM; K D = 25 μM). The crystal structure of TMB-1 was resolved to 1.75 Å. Modeling of inhibitor 2b in the TMB-1 active site suggested that the presence of the W64 residue results in T-shaped π-π stacking and R224 cation-π interactions with the phenyl ring of the inhibitor. In sum, the results suggest that residues 119 and 228 affect the catalytic efficiency of TMB-1 and that inhibitors 2a and 2b are more potent inhibitors for TMB-1 than l-captopril. Copyright

  1. Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors

    Science.gov (United States)

    Ketas, Thomas J.; Holuigue, Sophie; Matthews, Katie; Moore, John P.

    2011-01-01

    We measured the inhibition of infectivity of HIV-1 isolates and derivative clones by combinations of neutralizing antibodies (NAbs) and other entry inhibitors in a single-cycle-replication assay. Synergy was analyzed both by the current linear and a new nonlinear method. The new method reduced spurious indications of synergy and antagonism. Synergy between NAbs was overall weaker than between other entry inhibitors, and no stronger where one ligand is known to enhance the binding of another. However, synergy was stronger for a genetically heterogeneous HIV-1 R5 isolate than for its derivative clones. Enhanced cooperativity in inhibition by combinations, compared with individual inhibitors, correlated with increased synergy at higher levels of inhibition, while being less variable. Again, cooperativity enhancement was stronger for isolates than clones. We hypothesize that genetic, post-translational or conformational heterogeneity of the Env protein and of other targets for inhibitors can yield apparent synergy and increased cooperativity between inhibitors. PMID:22018634

  2. ELISA analysis of soybean trypsin inhibitors in processed foods.

    Science.gov (United States)

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  3. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  4. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  6. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  7. Highly predictive support vector machine (SVM) models for anthrax toxin lethal factor (LF) inhibitors.

    Science.gov (United States)

    Zhang, Xia; Amin, Elizabeth Ambrose

    2016-01-01

    Anthrax is a highly lethal, acute infectious disease caused by the rod-shaped, Gram-positive bacterium Bacillus anthracis. The anthrax toxin lethal factor (LF), a zinc metalloprotease secreted by the bacilli, plays a key role in anthrax pathogenesis and is chiefly responsible for anthrax-related toxemia and host death, partly via inactivation of mitogen-activated protein kinase kinase (MAPKK) enzymes and consequent disruption of key cellular signaling pathways. Antibiotics such as fluoroquinolones are capable of clearing the bacilli but have no effect on LF-mediated toxemia; LF itself therefore remains the preferred target for toxin inactivation. However, currently no LF inhibitor is available on the market as a therapeutic, partly due to the insufficiency of existing LF inhibitor scaffolds in terms of efficacy, selectivity, and toxicity. In the current work, we present novel support vector machine (SVM) models with high prediction accuracy that are designed to rapidly identify potential novel, structurally diverse LF inhibitor chemical matter from compound libraries. These SVM models were trained and validated using 508 compounds with published LF biological activity data and 847 inactive compounds deposited in the Pub Chem BioAssay database. One model, M1, demonstrated particularly favorable selectivity toward highly active compounds by correctly predicting 39 (95.12%) out of 41 nanomolar-level LF inhibitors, 46 (93.88%) out of 49 inactives, and 844 (99.65%) out of 847 Pub Chem inactives in external, unbiased test sets. These models are expected to facilitate the prediction of LF inhibitory activity for existing molecules, as well as identification of novel potential LF inhibitors from large datasets. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.; Qiu, Wei; Montgomery, Debra; Digiammarino, Enrico L.; Hansen, T. Matt; Risi, Roberto M.; Frey, Robin; Manaves, Vlasios; Shaw, Bailin; Algire, Mikkel; Hessler, Paul; Lam, Lloyd T.; Uziel, Tamar; Faivre, Emily; Ferguson, Debra; Buchanan, Fritz G.; Martin, Ruth L.; Torrent, Maricel; Chiang, Gary G.; Karukurichi, Kannan; Langston, J. William; Weinert, Brian T.; Choudhary, Chunaram; de Vries, Peter; Van Drie, John H.; McElligott, David; Kesicki, Ed; Marmorstein, Ronen; Sun, Chaohong; Cole, Philip A.; Rosenberg, Saul H.; Michaelides, Michael R.; Lai, Albert; Bromberg, Kenneth D. (AbbVie); (UCopenhagen); (Petra Pharma); (UPENN); (JHU); (Van Drie); (Faraday)

    2017-09-27

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4, bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.

  9. JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease.

    Science.gov (United States)

    Howell, Michael D; Fitzsimons, Carolyn; Smith, Paul A

    2018-04-01

    To provide an overview of janus kinase (JAK), chemoattractant receptor homologous molecule expressed on T H 2 cells (CRTH2), and phosphodiesterase 4 (PDE4) inhibitors in allergic disorders. PubMed literature review. Articles included in this review discuss the emerging mechanism of action of small molecule inhibitors and their use in the treatment of atopic dermatitis (AD), asthma, and allergic rhinitis (AR). Allergic diseases represent a spectrum of diseases, including AD, asthma, and AR. For decades, these diseases have been primarily characterized by increased T H 2 signaling and downstream inflammation. In recent years, additional research has identified disease phenotypes and subsets of patients with non-Th2 mediated inflammation. The increasing heterogeneity of disease has prompted investigators to move away from wide-ranging treatment approaches with immunosuppressive agents, such as corticosteroids, to consider more targeted immunomodulatory approaches focused on specific pathways. In the past decade, inhibitors that target JAK signaling, PDE4, and CRTH2 have been explored for their potential activity in models of allergic disease and therapeutic benefit in clinical trials. Interestingly, although JAK inhibitors provide an opportunity to interfere with cytokine signaling and could be beneficial in a broad range of allergic diseases, current clinical trials are focused on the treatment of AD. Conversely, both PDE4 and CRTH2 inhibitors have been evaluated in a spectrum of allergic diseases. This review summarizes the varying degrees of success that these small molecules have demonstrated across allergic diseases. Emerging therapies currently in development may provide more consistent benefit to patients with allergic diseases by specifically targeting inflammatory pathways important for disease pathogenesis. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Purely leptonic currents

    International Nuclear Information System (INIS)

    Gourdin, M.

    1976-01-01

    In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de

  11. Modulated Current Drive Measurements

    International Nuclear Information System (INIS)

    Petty, C.C.; Lohr, J.; Luce, T.C.; Prater, R.; Cox, W.A.; Forest, C.B.; Jayakumar, R.J.; Makowski, M.A.

    2005-01-01

    A new measurement approach is presented which directly determines the noninductive current profile from the periodic response of the motional Stark effect (MSE) signals to the slow modulation of the external current drive source. A Fourier transform of the poloidal magnetic flux diffusion equation is used to analyze the MSE data. An example of this measurement technique is shown using modulated electron cyclotron current drive (ECCD) discharges from the DIII-D tokamak

  12. Are Selective Serotonin Reuptake Inhibitors Safe for Drivers? What is the Evidence?

    OpenAIRE

    Ravera, Silvia; Ramaekers, Johannes G.; de Jong-van den Berg, Lolkje T. W.; de Gier, Johan J.; de Jong-van den Berg, [No Value

    2012-01-01

    Background: Selective serotonin reuptake inhibitors (SSRIs) are widely used medications to treat several psychiatric diseases and, above all, depression. They seem to be as effective as older antidepressants but have a different adverse effect profile. Despite their favorable safety profile, little is known about their influence on traffic safety. Objective: To conduct a literature review to summarize the current evidence on the role of SSRIs in traffic safety, particularly concerning undesir...

  13. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines

    DEFF Research Database (Denmark)

    Mohammed, M Z; Vyjayanti, V N; Laughton, C A

    2011-01-01

    Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the....... In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy....

  14. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  15. Quantization of interface currents

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  16. Classification of exchange currents

    International Nuclear Information System (INIS)

    Friar, J.L.

    1983-01-01

    After expansion of the vector and axial vector currents in powers of (v/c), a heretofore unremarked regularity results. Meson exchange currents can be classified into types I and II, according to the way they satisfy the constraints of special relativity. The archetypes of these two categories are the impulse approximation to the vector and axial vector currents. After a brief discussion of these constraints, the (rhoπγ) and (ωsigmaγ) exchange currents are constructed and classified, and used to illustrate a number of important points which are often overlooked

  17. Current Energy Patents

    International Nuclear Information System (INIS)

    Kelly, R.C.

    1982-01-01

    Current Energy Patents (CEP) provides abstracting and indexing coverage of the international patent literature, including patent applications, that concerns any aspect of energy production, conservation, and utilization

  18. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  19. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Laird, J S; Bardos, R A; Legge, G J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T; Sekiguchi, H [Electrotechnical Laboratory, Tsukuba (Japan).

    1994-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  20. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  1. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  2. Discovery of DNA Topoisomerase I Inhibitors with Low-Cytotoxicity Based on Virtual Screening from Natural Products

    Directory of Open Access Journals (Sweden)

    Lan-Ting Xin

    2017-07-01

    Full Text Available Currently, DNA topoisomerase I (Topo I inhibitors constitute a family of antitumor agents with demonstrated clinical effects on human malignancies. However, the clinical uses of these agents have been greatly limited due to their severe toxic effects. Therefore, it is urgent to find and develop novel low toxic Topo I inhibitors. In recent years, during our ongoing research on natural antitumor products, a collection of low cytotoxic or non-cytotoxic compounds with various structures were identified from marine invertebrates, plants, and their symbiotic microorganisms. In the present study, new Topo I inhibitors were discovered from low cytotoxic and non-cytotoxic natural products by virtual screening with docking simulations in combination with bioassay test. In total, eight potent Topo I inhibitors were found from 138 low cytotoxic or non-cytotoxic compounds from coral-derived fungi and plants. All of these Topo I inhibitors demonstrated activities against Topo I-mediated relaxation of supercoiled DNA at the concentrations of 5–100 µM. Notably, the flavonoids showed higher Topo I inhibitory activities than other compounds. These newly discovered Topo I inhibitors exhibited structurally diverse and could be considered as a good starting point for the development of new antitumor lead compounds.

  3. SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.

    Science.gov (United States)

    Jabbour, Serge A

    2014-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent mechanism of action. The SGLT2 is a transporter found in the proximal tubule of the kidney and is responsible for approximately 90% of renal glucose reabsorption. The SGLT2 inhibitors reduce reabsorption of glucose in the kidney, resulting in glucose excretion in the urine (50-90 g of ~180 g filtered by the kidneys daily), which in turn lowers plasma glucose levels in people with diabetes. The insulin-independent mechanism of action of SGLT2 inhibitors dictates that they are associated with a very low risk of hypoglycemia and can be used in patients with any degree of β-cell function or insulin sensitivity. Clinical trials have shown that SGLT2 inhibitors are effective at reducing blood glucose levels, body weight, and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus. Treatment with SGLT2 inhibitors is generally well tolerated, although these agents have been associated with an increased incidence of genital infections. The SGLT2 inhibitors have become a valuable addition to the armory of drugs used to treat patients with type 2 diabetes mellitus, and several agents within the class are currently under investigation in phase III clinical trials.

  4. Patient preference and satisfaction in erectile dysfunction therapy: a comparison of the three phosphodiesterase-5 inhibitors sildenafil, vardenafil and tadalafil

    Directory of Open Access Journals (Sweden)

    Amr Abdel Raheem

    2009-04-01

    Full Text Available Amr Abdel Raheem1, Philip Kell21St. Peter’s Andrology Department, The Institute of Urology, London, and Cairo University, Egypt; 2St. Peter’s Andrology Department, The Institute of Urology, London, UKAbstract: Erectile dysfunction (ED is a problem that may affect up to 52% of men between the ages of 40 and 70. It can be distressing because of its negative effect on self-esteem, quality of life, and interpersonal relationships. Oral phosphodiesterase-5 inhibitors (PDE5 inhibitors are now the first choice of treatment in ED. The availability of three (sildenafil citrate, tadalafil, and vardenafil well tolerated and effective oral PDE5 inhibitors gives treatment options for men with ED. Although the mechanism of action is the same for the three drugs, they differ in their pharmacokinetics. Several preference studies were conducted between the three PDE5 inhibitors but they were not free from bias. Because of the lack of overwhelming reliable data showing that one PDE5 inhibitor is superior to another, current opinion is that the individual patient should have the opportunity to test all three drugs and then select the one that best suits him and his partner.Keywords: erectile dysfunction, PDE5 inhibitors, patient preference

  5. Current management of obsessive and phobic states

    Directory of Open Access Journals (Sweden)

    Goljevscek S

    2011-09-01

    Full Text Available Serena Goljevscek1, Livia A Carvalho21Psychiatric Clinic, University of Udine, Udine, Italy; 2Health Science Research Centre, Department of Life Sciences, Roehampton University, London, UKAbstract: Obsessional states show an average point prevalence of 1%–3% and a lifetime prevalence of 2%–2.5%. Most treatment-seeking patients with obsessions continue to experience significant symptoms after 2 years of prospective follow-up. A significant burden of impairment, distress, and comorbidity characterize the course of the illness, leading to an increased need for a better understanding of the nature and management of this condition. This review aims to give a representation of the current pharmacological and psychotherapeutic strategies used in the treatment of obsessive-compulsive disorder. Antidepressants (clomipramine and selective serotonin reuptake inhibitors are generally the first-line choice used to handle obsessional states, showing good response rates and long-term positive outcomes. About 40% of patients fail to respond to selective serotonin reuptake inhibitors. So far, additional pharmacological treatment strategies have been shown to be effective, ie, administration of high doses of selective serotonin reuptake inhibitors, as well as combinations of different drugs, such as dopamine antagonists, are considered efficacious and well tolerated strategies in terms of symptom remission and side effects. Psychotherapy also plays an important role in the management of obsessive-compulsive disorder, being effective for a wide range of symptoms, and many studies have assessed its long-term efficacy, especially when added to appropriate pharmacotherapy. In this paper, we also give a description of the clinical and psychological features likely to characterize patients refractory to treatment for this illness, with the aim of highlighting the need for greater attention to more patient-oriented management of the disease.Keywords: obsessive

  6. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  7. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    Science.gov (United States)

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  8. A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design.

    Science.gov (United States)

    Akhter, Sundus; Lund, Bjarte Aarmo; Ismael, Aya; Langer, Manuel; Isaksson, Johan; Christopeit, Tony; Leiros, Hanna-Kirsti S; Bayer, Annette

    2018-02-10

    β-Lactam antibiotics are of utmost importance when treating bacterial infections in the medical community. However, currently their utility is threatened by the emergence and spread of β-lactam resistance. The most prevalent resistance mechanism to β-lactam antibiotics is expression of β-lactamase enzymes. One way to overcome resistance caused by β-lactamases, is the development of β-lactamase inhibitors and today several β-lactamase inhibitors e.g. avibactam, are approved in the clinic. Our focus is the oxacillinase-48 (OXA-48), an enzyme reported to spread rapidly across the world and commonly identified in Escherichia coli and Klebsiella pneumoniae. To guide inhibitor design, we used diversely substituted 3-aryl and 3-heteroaryl benzoic acids to probe the active site of OXA-48 for useful enzyme-inhibitor interactions. In the presented study, a focused fragment library containing 49 3-substituted benzoic acid derivatives were synthesised and biochemically characterized. Based on crystallographic data from 33 fragment-enzyme complexes, the fragments could be classified into R 1 or R 2 binders by their overall binding conformation in relation to the binding of the R 1 and R 2 side groups of imipenem. Moreover, binding interactions attractive for future inhibitor design were found and their usefulness explored by the rational design and evaluation of merged inhibitors from orthogonally binding fragments. The best inhibitors among the resulting 3,5-disubstituted benzoic acids showed inhibitory potential in the low micromolar range (IC 50  = 2.9 μM). For these inhibitors, the complex X-ray structures revealed non-covalent binding to Arg250, Arg214 and Tyr211 in the active site and the interactions observed with the mono-substituted fragments were also identified in the merged structures. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells.

    Science.gov (United States)

    Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon

    2017-02-04

    Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel

  10. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  11. Turbidity Current Bedforms

    NARCIS (Netherlands)

    Cartigny, Matthieu; Postma, G.

    2017-01-01

    Turbidity currents in the submarine seascape are what river flows are in terrestrial landscapes. While rivers transport sediment from the mountains through valleys towards the sea, turbidity currents transport sediment from the shallow marine realms through canyons towards the deeper abyssal plains.

  12. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  13. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  14. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors during Ramadan Fasting: Evidence, Perceptions and Guidelines

    Directory of Open Access Journals (Sweden)

    Salem A. Beshyah

    2016-06-01

    Full Text Available Sodium-glucose co-transporter 2 (SGLT2 inhibitors are a new glucose-lowering therapy for T2DM with documented benefits on blood glucose, hypertension, weight reduction and long term cardiovascular benefit. They have an inherent osmotic diuretic effect and lead to some volume loss and possible dehydration. There is some concern about the safety of using SGLT2 inhibitors in Muslim type 2 diabetes mellitus (T2DM patients during the fast during Ramadan. Currently, there is a dearth of research data to help guide physicians and reassure patients.  One study confirmed good glycemic control with less risk of hypoglycemia and no marked volume depletion. Data in the elderly and in combination with diuretics are reassuring of their safe to use in Ramadan in general. SGLT2 inhibitor-related diabetic ketoacidosis has not been reported during Ramadan and is unlikely to be relevant. Survey of physicians revealed that the majority felt that SGLT2 inhibitors are generally safe in T2DM patients during Ramadan fasting but should be discontinued in certain high risk patients. Some professional groups with interest in diabetes and Ramadan fasting included SGLT2 inhibitors in their guidelines on management of diabetes during Ramadan. They acknowledged the lack of trial data, recommended caution in high risk groups, advised regular monitoring and emphasized pre-Ramadan patients’ education. In conclusion, currently, knowledge, data and experience with SGLT2 inhibitors in Ramadan are limited. Nonetheless, stable patients with normal kidney function and low risk of dehydration may safely use the SGLT2 inhibitors therapy. Higher risk patients should be observed carefully and managed on individual basis.

  15. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor

    Directory of Open Access Journals (Sweden)

    Valdecir F. Ximenes

    2013-03-01

    Full Text Available Apocynin is the most employed inhibitor of NADPH oxidase (NOX, a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V, the hydrophobicity index was calculated (logP = 0.83 and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M−1 cm−1. Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA with a binding affinity of 2.19 × 104 M−1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.

  16. [Pleural procedures in patients treated by platelet aggregation inhibitors: An opinion survey].

    Science.gov (United States)

    Dangers, L; Similowski, T; Chenivesse, C

    2016-01-01

    When pleural procedures (thoracocentesis, blind pleural biopsies and chest tube insertion) are required in patients taking long-term platelet aggregation inhibitors, the risk of bleeding must be balanced against the risk of arterial thrombosis. Currently, the bleeding risk of pleural procedures is poorly understood. The objective of the survey was to gather the opinion of respiratory physicians regarding the bleeding risk of pleural procedures in patients taking platelet aggregation inhibitors. We emailed a standardized questionnaire designed by the French National Authority for Health to 2697 French respiratory physicians. One hundred and eighty-eight of the 2697 questionnaires were returned (response rate: 7 %). The respiratory physicians declared that they performed an average of 8 pleural procedures per month. One hundred and seventy-five responders (95 %) practised pleural procedures in patients receiving platelet aggregation inhibitors; 68 of them (39 %) reported experiencing haemorrhagic complications. The bleeding risk associated with thoracentesis and chest tube insertion was considered minor by 97.8 and 65 % of responders respectively, whereas it was considered major for blind pleural biopsies by 73.4 %. Respiratory physicians were more reticent about performing pleural procedures in patients treated with clopidogrel than in those taking aspirin. This study provides an overview of how respiratory physicians perceive the bleeding risk associated with pleural procedures in patients taking platelet aggregation inhibitors. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  17. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations.

    Science.gov (United States)

    Scheen, André J

    2014-05-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2), which increase urinary glucose excretion independently of insulin, are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). An extensive literature search was performed to analyze the pharmacokinetic characteristics, toxicological issues and safety concerns of SGLT2 inhibitors in humans. This review focuses on three compounds (dapagliflozin, canagliflozin, empagliflozin) with results obtained in healthy volunteers (including drug-drug interactions), patients with T2DM (single dose and multiple doses) and special populations (those with renal or hepatic impairment). The three pharmacological agents share an excellent oral bioavailability, long half-life allowing once-daily administration, low accumulation index and renal clearance, the absence of active metabolites and a limited propensity to drug-drug interactions. No clinically relevant changes in pharmacokinetic parameters were observed in T2DM patients or in patients with mild/moderate renal or hepatic impairment. Adverse events are a slightly increased incidence of mycotic genital and rare benign urinary infections. SGLT2 inhibitors have the potential to reduce several cardiovascular risk factors, and cardiovascular outcome trials are currently ongoing. The best positioning of SGLT2 inhibitors in the armamentarium for treating T2DM is still a matter of debate.

  18. Use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Leyna Leite Santos

    Full Text Available Summary Introduction: Diabetes mellitus is one of the most common chronic diseases in the world, with high morbidity and mortality rates, resulting in a greatly negative socioeconomic impact. Although there are several classes of oral antidiabetic agents, most of the patients are outside the therapeutic goal range. Objective: To review the use of SGLT-2 inhibitors in the treatment of type 2 diabetes mellitus, focusing on their favorable and unfavorable effects, as well as on cardiovascular profile. Method: A literature search on Pubmed database was performed using the following keywords: "SGLT-2 inhibitors," "dapagliflozin," "empagliflozin," "canagliflozin." Results: SGLT-2 inhibitors are a class of oral antidiabetic drugs directed to the kidney. Their mechanism of action is to reduce blood glucose by inducing glycosuria. Extra-glycemic benefits have been described, such as weight loss, decline in blood pressure and levels of triglycerides and uric acid, and they can slow the progression of kidney disease. Genitourinary infections are the main side effects. There is a low risk of hypotension and hypoglycemia. Diabetic ketoacidosis is a serious adverse effect, although rare. Empagliflozin has already had its cardiovascular benefit demonstrated and studies with other drugs are currently being performed. Conclusion: SGLT-2 inhibitors are a new treatment option for type 2 diabetes mellitus, acting independently of insulin. They have potential benefits other than the reduction of blood glucose, but also carry a risk for adverse effects.

  19. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    Science.gov (United States)

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  20. FoxM1 is a general target for proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Uppoor G Bhat

    2009-08-01

    Full Text Available Proteasome inhibitors are currently in the clinic or in clinical trials, but the mechanism of their anticancer activity is not completely understood. The oncogenic transcription factor FoxM1 is one of the most overexpressed genes in human tumors, while its expression is usually halted in normal non-proliferating cells. Previously, we established that thiazole antibiotics Siomycin A and thiostrepton inhibit FoxM1 and induce apoptosis in human cancer cells. Here, we report that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro. More importantly, we also found that well-known proteasome inhibitors such as MG115, MG132 and bortezomib inhibit FoxM1 transcriptional activity and FoxM1 expression. In addition, overexpression of FoxM1 specifically protects against bortezomib-, but not doxorubicin-induced apoptosis. These data suggest that negative regulation of FoxM1 by proteasome inhibitors is a general feature of these drugs and it may contribute to their anticancer properties.

  1. Vascular endothelial growth factor inhibitors: investigational therapies for the treatment of psoriasis.

    Science.gov (United States)

    Weidemann, Anja K; Crawshaw, Ania A; Byrne, Emily; Young, Helen S

    2013-09-26

    Psoriasis is a common inflammatory autoimmune condition in which environmental factors and genetic predisposition contribute to the development of disease in susceptible individuals. Angiogenesis is known to be a key pathogenic feature of psoriasis. Local and systemic elevation of vascular endothelial growth factor (VEGF)-A has been demonstrated in the skin and plasma of patients with psoriasis and is known to correlate with improvement following some traditional psoriasis treatments. A number of VEGF inhibitors are licensed for the treatment of malignancies and eye disease and isolated case reports suggest that some individuals with psoriasis may improve when exposed to these agents. The small number of cases and lack of unified reporting measures makes it difficult to draw generalizations and underline the heterogeneity of psoriasis as a disease entity. Though not yet licensed for the treatment of psoriasis in humans, experimental data supports the potential of VEGF inhibitors to influence relevant aspects of human cell biology (such as endothelial cell differentiation) and to improve animal models of skin disease. Given the multi-factorial nature of psoriasis it is unlikely that VEGF inhibitors will be effective in all patients, however they have the potential to be a valuable addition to the therapeutic arsenal in selected cases. Current VEGF inhibitors in clinical use are associated with a number of potentially serious side effects including hypertension, left ventricular dysfunction, and gastrointestinal perforation. Such risks require careful consideration in psoriasis populations particularly in light of growing concerns linking psoriasis to increased cardiovascular risk.

  2. SVMDLF: A novel R-based Web application for prediction of dipeptidyl peptidase 4 inhibitors.

    Science.gov (United States)

    Chandra, Sharat; Pandey, Jyotsana; Tamrakar, Akhilesh K; Siddiqi, Mohammad Imran

    2017-12-01

    Dipeptidyl peptidase 4 (DPP4) is a well-known target for the antidiabetic drugs. However, currently available DPP4 inhibitor screening assays are costly and labor-intensive. It is important to create a robust in silico method to predict the activity of DPP4 inhibitor for the new lead finding. Here, we introduce an R-based Web application SVMDLF (SVM-based DPP4 Lead Finder) to predict the inhibitor of DPP4, based on support vector machine (SVM) model, predictions of which are confirmed by in vitro biological evaluation. The best model generated by MACCS structure fingerprint gave the Matthews correlation coefficient of 0.87 for the test set and 0.883 for the external test set. We screened Maybridge database consisting approximately 53,000 compounds. For further bioactivity assay, six compounds were shortlisted, and of six hits, three compounds showed significant DPP4 inhibitory activities with IC 50 values ranging from 8.01 to 10.73 μm. This application is an OpenCPU server app which is a novel single-page R-based Web application for the DPP4 inhibitor prediction. The SVMDLF is freely available and open to all users at http://svmdlf.net/ocpu/library/dlfsvm/www/ and http://www.cdri.res.in/svmdlf/. © 2017 John Wiley & Sons A/S.

  3. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors.

    Science.gov (United States)

    Botić, Tanja; Defant, Andrea; Zanini, Pietro; Žužek, Monika Cecilija; Frangež, Robert; Janussen, Dorte; Kersken, Daniel; Knez, Željko; Mancini, Ines; Sepčić, Kristina

    2017-08-18

    The brominated pyrroloiminoquinone alkaloids discorhabdins B, L and G and 3-dihydro-7,8- dehydrodiscorhabdin C, isolated from methanol extracts of two specimens of Latrunculia sp. sponges collected near the Antarctic Peninsula, are here demonstrated for the first time to be reversible competitive inhibitors of cholinesterases. They showed K i for electric eel acetylcholinesterase of 1.6-15.0 μM, for recombinant human acetylcholinesterase of 22.8-98.0 μM, and for horse serum butyrylcholinesterase of 5.0-76.0 μM. These values are promising when compared to the current cholinesterase inhibitors used for treatment of patients with Alzheimer's disease, to counteract the acetylcholine deficiency in the brain. Good correlation was obtained between IC 50 data and results by molecular docking calculation on the binding interactions within the acetylcholinesterase active site, which also indicated the moieties in discorhabdin structures involved. To avoid unwanted peripheral side effects that can appear in patients using some acetylcholinesterase inhibitors, electrophysiological experiments were carried out on one of the most active of these compounds, discorhabdin G, which confirmed that it had no detectable undesirable effects on neuromuscular transmission and skeletal muscle function. These findings are promising for development of cholinesterase inhibitors based on the scaffold of discorhabdins, as potential new agents for treatment of patients with Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development.

    Science.gov (United States)

    Chen, P R; Lee, K

    2016-08-01

    With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.

  5. Chemical Space of FLT3 Inhibitors as Potential Anti-AML Drugs.

    Science.gov (United States)

    Lan, Qing-Yuan; Zhi, Yan-Le; Heng, Hao; Tian, Jie-Yi; Guo, Xiao-Xing; Liu, Hai-Chun; Chen, Ya-Dong; Lu, Tao; Lu, Shuai

    2017-11-20

    FLT3 is a member of receptor tyrosine kinase III family, mainly expressed in hematopoietic cells. The aberrant expression and function of FLT3 are strongly related to leukemia, especially acute myeloid leukemia. Its varieties of amino-acid residues mutations, such as FLT3-ITDs and -TKDs, can induce constant proliferation of hematological tumor cells with poor prognosis. Hence FLT3 serves as a promising target in AML chemotherapy. This review focused on the progress of FLT3 inhibitors study including those that have entered clinical trials or were reported in numerous patents all over the world. Thus, we provided a useful reference for the development of new anti-leukemia drugs. Through a comprehensive retrospective study, FLT3 inhibitors in several patent applications were identified and classified into five categories, including quinolone-related, indole-related, ureas, pyrimidines and other compounds. For each category of compounds, the structural feature, SAR, biological activity and current research status were thoroughly reviewed and analyzed. Although some of those compounds expressed potent bioactivities and have reached the advanced clinical trials for the treatment of leukemia, there are still several problems need to be faced before they enter the market eventually, especially the drug resistance issue. The improvement of therapeutic potency for FLT3 inhibitors might depend on the useful combination therapy and further refinement of the intrinsic properties of FLT3 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. [Cardiovascular repercussion of lodenafil carbonate, a new PDE5 inhibitor, with and without alcohol consumption].

    Science.gov (United States)

    Silva, Adauto Carvalho; Toffoletto, Odaly; Lucio, Luiz Antonio Galvão; Santos, Paula Ferreira Dos; Afiune, Jorge Barros; Massud Filho, João; Tufik, Sergio

    2010-02-01

    Millions of men around the world suffer from erectile dysfunction, for which phosphodiesterase 5 inhibitors (PDE-5 inhibitors) are currently the first treatment option. Sexual activity and alcohol consumption are closely related, and the simultaneous use of alcohol and PDE-5 inhibitors can happen. Lodenafil carbonate is a new PDE-5 inhibitor, developed by a Brazilian pharmaceutical company. This work aimed at evaluating the cardiovascular safety of lodenafil carbonate, with and without simultaneous alcohol consumption. Fifteen male volunteers received 160 mg lodenafil carbonate (LC), in three different moments. Participants were assigned to three groups, treated with LC in fasting condition, with alcohol or receiving only placebo. The volunteers were continuously monitored during 24 hours for physical impairment, blood pressure, heart rate, QT interval and lodenafil's pharmacokinetic parameters. Lodenafil carbonate alone or with alcohol did not induce clinically relevant modifications in arterial blood pressure or heart rate. A statistically significant decrease in blood pressure was seen four hours after LC and alcohol intake, and an increase in heart rate six hours after intake of lodenafil carbonate alone. The QTc interval was not significantly modified. Lodenafil carbonate bioavailability was increased in 74% when drug intake was associated with alcohol. These results show that the use of lodenafil carbonate did not have clinically relevant effects on blood pressure or heart rate, and was not associated with QT interval prolongation. The association of lodenafil carbonate and alcohol affected its pharmacokinetic properties, increasing the bioavailability of the drug.

  7. Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site.

    Science.gov (United States)

    Bause, E; Wesemann, M; Bartoschek, A; Breuer, W

    1997-02-15

    Pig liver oligosaccharyltransferase (OST) is inactivated irreversibly by a hexapeptide in which threonine has been substituted by epoxyethylglycine in the Asn-Xaa-Thr glycosylation triplet. Incubation of the enzyme in the presence of Dol-PP-linked [14C]oligosaccharides and the N-3,5-dinitrobenzoylated epoxy derivative leads to the double-labelling of two subunits (48 and 66 kDa) of the oligomeric OST complex, both of which are involved in the catalytic activity. Labelling of both subunits was blocked competitively by the acceptor peptide N-benzoyl-Asu-Gly-Thr-NHCH3 and by the OST inhibitor N-benzoyl-alpha,gamma-diaminobutyric acid-Gly-Thr-NHCH3, but not by an analogue derived from the epoxy-inhibitor by replacing asparagine with glutamine. Our data clearly show that double-labelling is an active-site-directed modification, involving inhibitor glycosylation at asparagine and covalent attachment of the glycosylated inhibitor, via the epoxy group, to the enzyme. Double-labelling of OST can occur as the result of either a consecutive or a syn-catalytic reaction sequence. The latter mechanism, during the course of which OST catalyses its own 'suicide' inactivation, is more likely, as suggested by indirect experimental evidence. The syn-catalytic mechanism corresponds with our current view of the functional role of the acceptor site Thr/Ser acting as a hydrogen-bond acceptor, not a donor, during transglycosylation.

  8. Discovery of Monoamine Oxidase A Inhibitors Derived from in silico Docking

    International Nuclear Information System (INIS)

    Jo, Geunhyeong; Sung, Suhyun; Lee, Younggiu; Kim, Bonggyu; Yoon, Junwie; Lee, Hyeok; Ahn, Joonghoon; Lim, Yoongho; Ji, Sangyun; Koh, Dongsoo

    2012-01-01

    MAOA inhibitors (MAOAIs) have been used as antidepressants for over forty years. Iproniazid was introduced in 1957, but it was withdrawn because of hepatotoxicity. Tranylcypromine was developed in the mid-1960s, withdrawn from the market because of problems related to hypertension, then reintroduced for limited usage. Many MAOAIs have been developed and used for treating atypical depression after the failure of other classes of antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressants. While iproniazid and tranylcypromine were nonselective MAOAIs, a selective MAOAI, clorgyline, was introduced in the latter half of the 1960s. Recently, more selective and safe MAOAIs, namely moclobemide, toloxatone, and tetrindol, were launched. However, their side effects and activities need further improvement. Therefore, we have made efforts to discover new MAOAIs. In conclusion, even though the number of compounds tested here is not enough for evaluation, the current result demonstrates that phenylpyrazole moiety is not necessary for showing good inhibitory effects. Because benzoflavanones have not previously been reported to act on MAOA as inhibitors, and the inhibitory effect of one of benzo-flavones, 3-(4-methoxyphenyl)-2,3-dihydro-1H-benzo[ f ] chromen-1-one used in this study is comparable to that of clorgyline which is known as MAOA inhibitor,31 our findings are meaningful

  9. Discovery of Monoamine Oxidase A Inhibitors Derived from in silico Docking

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Geunhyeong; Sung, Suhyun; Lee, Younggiu; Kim, Bonggyu; Yoon, Junwie; Lee, Hyeok; Ahn, Joonghoon; Lim, Yoongho [Konkuk Univ., Seoul (Korea, Republic of); Ji, Sangyun [Rural Development Administration, Suwon (Korea, Republic of); Koh, Dongsoo [Dongduk Women' s Univ., Seoul (Korea, Republic of)

    2012-11-15

    MAOA inhibitors (MAOAIs) have been used as antidepressants for over forty years. Iproniazid was introduced in 1957, but it was withdrawn because of hepatotoxicity. Tranylcypromine was developed in the mid-1960s, withdrawn from the market because of problems related to hypertension, then reintroduced for limited usage. Many MAOAIs have been developed and used for treating atypical depression after the failure of other classes of antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressants. While iproniazid and tranylcypromine were nonselective MAOAIs, a selective MAOAI, clorgyline, was introduced in the latter half of the 1960s. Recently, more selective and safe MAOAIs, namely moclobemide, toloxatone, and tetrindol, were launched. However, their side effects and activities need further improvement. Therefore, we have made efforts to discover new MAOAIs. In conclusion, even though the number of compounds tested here is not enough for evaluation, the current result demonstrates that phenylpyrazole moiety is not necessary for showing good inhibitory effects. Because benzoflavanones have not previously been reported to act on MAOA as inhibitors, and the inhibitory effect of one of benzo-flavones, 3-(4-methoxyphenyl)-2,3-dihydro-1H-benzo[ f ] chromen-1-one used in this study is comparable to that of clorgyline which is known as MAOA inhibitor,31 our findings are meaningful.

  10. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections.

    Science.gov (United States)

    Deore, R R; Chern, J-W

    2010-01-01

    Hepatitis C virus (HCV), a causative agent for non-A and non-B hepatitis, has infected approximately 3% of world's population. The current treatment option of ribavirin in combination with pegylated interferon possesses lower sustained virological response rates, and has serious disadvantages. Unfortunately, no prophylactic vaccine has been approved yet. Therefore, there is an unmet clinical need for more effective and safe anti-HCV drugs. HCV NS5B RNA dependent RNA polymerase is currently pursued as the most popular target to develop safe anti-HCV agents, as it is not expressed in uninfected cells. More than 25 pharmaceutical companies and some research groups have developed ≈50 structurally diverse scaffolds to inhibit NS5B. Here we provide comprehensive account of the drug development process of these scaffolds. NS5B polymerase inhibitors have been broadly classified in nucleoside and non nucleoside inhibitors and are sub classified according to their mechanism of action and structural diversities. With some additional considerations about the inhibitor bound NS5B enzyme X-ray crystal structure information and pharmacological aspects of the inhibitors, this review summarizes the lead identification, structure activity relationship (SAR) studies leading to the most potent NS5B inhibitors with subgenomic replicon activity.

  11. ACE inhibitors and the risk of acute pancreatitis-a population-based case-control study.

    Science.gov (United States)

    Kuoppala, Jaana; Enlund, Hannes; Pulkkinen, Jukka; Kastarinen, Helena; Jyrkkä, Johanna; Happonen, Pertti; Paajanen, Hannu

    2017-07-01

    The aim of this study was to examine the association between angiotensin converting enzyme (ACE) inhibitor use and the risk of acute pancreatitis. Information on all 4966 cases hospitalized in 2008-2010 for acute pancreatitis was retrieved from the Finnish national registers on hospital discharges and prescriptions. A total of 24 788 age and sex-matched population-based controls were randomly selected using density sampling. ACE inhibitor use between 1 January 2003 and the index date were determined by the date of hospitalization for acute pancreatitis among the cases. The incidence rate ratios of acute pancreatitis not diagnosed as biliary or alcohol-induced were modeled by conditional logistic regression and adjusted for comorbidities. A total of 1276 (26%) cases and 3946 (16%) controls had been exposed to ACE inhibitors. The use of ACE inhibitors was associated with an increased incidence rate of acute pancreatitis (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.59-1.95). The increase was slightly higher among current new users (OR 1.86, 95%CI 1.65-2.09) and somewhat lower among current prevalent (OR 1.54, 95%CI 1.35-1.75) and former users (OR 1.51, 95%CI 1.31-1.74). Angiotensin converting enzyme inhibitor use seems to be associated with a moderately increased risk of acute pancreatitis. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, B., E-mail: zaidbachir@yahoo.com [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Maddache, N.; Saidi, D. [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Souami, N. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Bacha, N. [Département de Mécanique, Université SAAD Dahleb, Blida (Algeria); Si Ahmed, A. [Im2np, UMR 7334 CNRS, Aix-Marseille Université, 13397 Marseille Cedex 20 (France)

    2015-04-25

    Highlights: • Sodium metabisulfite acts as cathodic-type inhibitor. • The polarization resistance increases with the inhibitor concentration. • The pit nucleation rate decreases with increasing inhibitor concentration. • The current rise linked to pit propagation drops as inhibitor content increases. • The reactions involved in the inhibition actions are pointed out. - Abstract: Inhibition properties of sodium metabisulfite (Na{sub 2}S{sub 2}O{sub 5}) on pitting corrosion of 6061 aluminum alloy, in 5 × 10{sup −2} M NaCl solution of pH near 7.2 at 298 K, are characterized using open circuit potential, polarization resistance, cyclic and chrono-amperometric polarization measurements. In addition, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray photoelectrons are employed. Sodium metabisulfite, which is well compatible with environmental requirements, seems to act as a cathodic-type corrosion inhibitor. The passivation range and the polarization resistance increase with Na{sub 2}S{sub 2}O{sub 5} concentration. The inhibition effects are also reflected through the substantial reduction of both the rate of pit nucleation and the current rise characterizing the pit propagation progress. The SEM–EDS and XPS analyses reveal the formation of a passive film, which contains sulfur atoms.

  13. Renin-angiotensin system inhibitors, angiotensin I-converting enzyme gene insertion/deletion polymorphism, and cancer: The Rotterdam study

    NARCIS (Netherlands)

    R. van der Knaap (Ronald); C. Siemes (Claire); J.W.W. Coebergh (Jan Willem); P. Tikka-Kleemola (Päivi); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2008-01-01

    textabstractBACKGROUND. Angiotensin I-converting enzyme (ACE) inhibitors, angiotensin II antagonists, and the ACE insertion/deletion (I/D) gene polymorphism all influence serum angiotensin II action. Because angiotensin II levels have been associated with cancer, the objective of the current

  14. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibito...

  15. A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Blomen, Vincent A.; Bisteau, Xavier; Degener, Fabian; Matsushita, Felipe Yu; Kaldis, Philipp; Foijer, Floris; van Vugt, Marcel A. T. M.

    2015-01-01

    The Wee1 cell cycle checkpoint kinase prevents premature mitotic entry by inhibiting cyclin-dependent kinases. Chemical inhibitors of Wee1 are currently being tested clinically as targeted anticancer drugs. Wee1 inhibition is thought to be preferentially cytotoxic in p53-defective cancer cells.

  16. Current status and prospects of HIV treatment.

    Science.gov (United States)

    Cihlar, Tomas; Fordyce, Marshall

    2016-06-01

    Current antiviral treatments can reduce HIV-associated morbidity, prolong survival, and prevent HIV transmission. Combination antiretroviral therapy (cART) containing preferably three active drugs from two or more classes is required for durable virologic suppression. Regimen selection is based on virologic efficacy, potential for adverse effects, pill burden and dosing frequency, drug-drug interaction potential, resistance test results, comorbid conditions, social status, and cost. With prolonged virologic suppression, improved clinical outcomes, and longer survival, patients will be exposed to antiretroviral agents for decades. Therefore, maximizing the safety and tolerability of cART is a high priority. Emergence of resistance and/or lack of tolerability in individual patients require availability of a range of treatment options. Development of new drugs is focused on improving safety (e.g. tenofovir alafenamide) and/or resistance profile (e.g. doravirine) within the existing drug classes, combination therapies with improved adherence (e.g. single-tablet regimens), novel mechanisms of action (e.g. attachment inhibitors, maturation inhibitors, broadly neutralizing antibodies), and treatment simplification with infrequent dosing (e.g. long-acting injectables). In parallel with cART innovations, research and development efforts focused on agents that target persistent HIV reservoirs may lead to prolonged drug-free remission and HIV cure. Copyright © 2016 Gilead Sciences, Inc. Published by Elsevier B.V. All rights reserved.

  17. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Jelínková-Slavíčková, Petra

    2004-01-01

    Roč. 8, 3,4 (2004), s. 108-110 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /5./. Praha, 01.10.2004-03.10.2004] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA ČR GP303/04/P070; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : serine proteinase * proteinase inhibitors * fertilization Subject RIV: CE - Biochemistry

  18. A New Urease Inhibitor from Viola betonicifolia

    Directory of Open Access Journals (Sweden)

    Naveed Muhammad

    2014-10-01

    Full Text Available Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  19. Tetomilast: new promise for phosphodiesterase-4 inhibitors?

    Science.gov (United States)

    Bickston, Stephen J; Snider, Kenneth R; Kappus, Matthew R

    2012-12-01

    Tetomilast is a novel thiazole phosphodiesterase-4 (PDE-4) inhibitor, which may prove useful in both the treatment of inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD). Here, the authors review the pharmacology of the drug, and offer critical review of the available data for use of tetomilast in the treatment of IBD. Peer-reviewed publications, including Phase I and II clinical trials, all other formats included. Tetomilast may be beneficial in IBD. Small differences in molecules and in recombinant proteins can translate into substantial differences in clinical effects and toxicity in IBD. This is a reasonable approach when exploring new options like tetomilast.

  20. Potential mechanisms of resistance to microtubule inhibitors.

    Science.gov (United States)

    Kavallaris, Maria; Annereau, Jean-Philippe; Barret, Jean-Marc

    2008-06-01

    Antimitotic drugs targeting the microtubules, such as the taxanes and vinca alkaloids, are widely used in the treatment of neoplastic diseases. Development of drug resistance over time, however, limits the efficacy of these agents and poses a clinical challenge to long-term improvement of patient outcomes. Understanding the mechanism(s) of drug resistance becomes paramount to allowing for alternative, if not improved, therapeutic options that might circumvent this challenge. Vinflunine, a novel microtubule inhibitor, has shown superior preclinical antitumor activity, and displays a different pattern of resistance, compared with other agents in the vinca alkaloid class.

  1. Larvicides and acetylcholinesterase inhibitors from Kalanchoe species

    International Nuclear Information System (INIS)

    Trevisan, Maria Teresa Salles; Bezerra, Maria Zeneide Barbosa; Santiago, Gilvandete Maria Pinheiro; Feitosa, Chistiane Mendes; Verpoorte, Robert; Gorlaeus Laboratories, Leiden; Braz Filho, Raimundo

    2006-01-01

    Acetylcholine esterase inhibitors are successfully used to treat the symptoms of Alzheimer's disease. Extracts of three Kalanchoe species (K. brasiliensis, K. pinnata and K. gastonis-bornieri) showed acetylcholine esterase inhibitory effects and a toxic effect on Aedes aegypti larvae. Here we describe the bioassay guided fractionation of extracts of the most active extracts (K. brasiliensis) which resulted in the isolation of an active mixture of three flavonoids: 8-methoxyquercetin, 3,7-di-O-rhamnopyranoside and 8-methoxykaempferol-3,7-di-O-rhamnopyranoside. On TLC these flavonoids showed an acetylcholine esterase inhibitory effect. (author)

  2. Current Challenges in Cancer Treatment.

    Science.gov (United States)

    Zugazagoitia, Jon; Guedes, Cristiano; Ponce, Santiago; Ferrer, Irene; Molina-Pinelo, Sonia; Paz-Ares, Luis

    2016-07-01

    In this review, we highlight the current concepts and discuss some of the current challenges and future prospects in cancer therapy. We frequently use the example of lung cancer. We conducted a nonsystematic PubMed search, selecting the most comprehensive and relevant research articles, clinical trials, translational papers, and review articles on precision oncology and immuno-oncology. Papers were prioritized and selected based on their originality and potential clinical applicability. Two major revolutions have changed cancer treatment paradigms in the past few years: targeting actionable alterations in oncogene-driven cancers and immuno-oncology. Important challenges are still ongoing in both fields of cancer therapy. On the one hand, druggable genomic alterations are diverse and represent only small subsets of patients in certain tumor types, which limits testing their clinical impact in biomarker-driven clinical trials. Next-generation sequencing technologies are increasingly being implemented for molecular prescreening in clinical research, but issues regarding clinical interpretation of large genomic data make their wide clinical use difficult. Further, dealing with tumor heterogeneity and acquired resistance is probably the main limitation for the success of precision oncology. On the other hand, long-term survival benefits with immune checkpoint inhibitors (anti-programmed death cell protein-1/programmed death cell ligand-1[PD-1/L1] and anti-cytotoxic T lymphocyte antigen-4 monoclonal antibodies) are restricted to a minority of patients, and no predictive markers are yet robustly validated that could help us recognize these subsets and optimize treatment delivery and selection. To achieve long-term survival benefits, drug combinations targeting several molecular alterations or cancer hallmarks might be needed. This will probably be one of the most challenging but promising precision cancer treatment strategies in the future. Targeting single molecular

  3. ANGIOGENESIS INHIBITORS FOR THE TREATMENT OF HEPATOCELLULAR CARCINOMA

    Directory of Open Access Journals (Sweden)

    Massimiliano Berretta

    2016-11-01

    Full Text Available Background: Angiogenesis inhibitors have become an important therapeutic approach in the treatment of hepatocellular carcinoma (HCC patients. The achievement of Sorafenib in prolonging overall survival of patients with HCC makes therapeutic inhibition of angiogenesis a fundamental element of the treatment of HCC. Considering the heterogeneous aspects of HCC and to enhance therapeutic efficacy, overcome drug resistance and reduce toxicity, the combination of antiangiogenic drugs with antiblastic chemotherapy (AC, radiotherapy or other targeted drugs have been evaluated. The issue is further complicated by the combination of antiangiogenesis with other AC or biologic drugs. To date, there is no planned approach to determine which patients are more responsive to a given type of antiangiogenic treatment. Conclusion: Large investments in the clinical research are essential to improve treatment response and minimize toxicities for patients with HCC. Future investigations will need to focus on utilizing patterns of genetic information to classify HCC into groups that display similar prognosis and treatment sensitivity, and combining targeted therapies with AC producing enhanced anti-tumor effect. In this review the current panel of available antiangiogenic therapies for the treatment of HCC have been analyzed. In addition current clinical trials are also reported herein.

  4. The safety of phosphodiesterase type 5 inhibitors for erectile dysfunction.

    Science.gov (United States)

    Ventimiglia, Eugenio; Capogrosso, Paolo; Montorsi, Francesco; Salonia, Andrea

    2016-01-01

    Phosphodiesterase type 5 inhibitors (PDE5Is) are the leading drugs for the treatment of erectile dysfunction (ED), being recommended as a first line treatment by both the European and US urological guidelines. PDE5Is are highly effective as compared to placebo, well tolerated and have a very low, though not negligible, rate of severe treatment-related adverse events. This paper reviews the safety profile of currently available PDE5Is, comparing them in a broad spectrum ED population and outlining a number of real-life aspects of importance in the real-life everyday clinical setting. Guidelines unanimously agree in considering PDE5Is as first line treatments for ED when well-tolerated and not contraindicated. Despite the fact that no high-grade evidence comparing the efficacy and the safety for PDE5Is is currently available, published data seem to suggest that there are no major differences in their safety profiles. Moreover, although oral PDE5Is were shown to cause more AEs than placebo, they were generally mild and well tolerated.

  5. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  6. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  7. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  8. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  9. Opinions on Current Reading.

    Science.gov (United States)

    Journal of Blacks in Higher Education, 1997

    1997-01-01

    Presents eight reviews of current books, covering issues of particular interest to black educators and historians. Topics considered include slavery, college admissions and affirmative action, the marginalization of black scientists, black politics, bigotry, and higher education. (SLD)

  10. CURRENT TRANSFER SYSTEMS

    Science.gov (United States)

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  11. Current Resource Imagery Projects

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Map showing coverage of current Resource imagery projects. High resolution/large scale Resource imagery is typically acquired for the U.S. Forest Service and other...

  12. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  13. Medicare Current Beneficiary Survey

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Characteristics and Perceptions of the Medicare Population Data from the 2010 Medicare Current Beneficiary Survey is a series of source books based on the...

  14. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  15. Eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)

    2004-02-15

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.

  16. Eddy current testing

    International Nuclear Information System (INIS)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan; Shin, Young Kil

    2004-02-01

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants

  17. Current Issues in Tourism

    OpenAIRE

    Xu, Shi; Martinez, Larry R.; Hubert, Van Hoof; Tews, Michael; Torres, Leonardo; Farfán, Karina

    2015-01-01

    Ram (2015 Ram, Y. (2015). Hostility or hospitality? A review on violence, bullying and sexual harassment in the tourism and hospitality industry. Current Issues in Tourism. doi:10.1080/13683500.2015.1064364 [Taylor & Francis Online], [Google Scholar] . Hostility or hospitality? A review on violence, bullying and sexual harassment in the tourism and hospitality industry. Current Issues in Tourism. doi:10.1080/13683500.2015.1064364) posits that violence and harassment are areas of concern...

  18. Simple WZW currents

    International Nuclear Information System (INIS)

    Fuchs, J.

    1990-08-01

    A complete classification of simple currents of WZW theory is obtained. The proof is based on an analysis of the quantum dimensions of the primary fields. Simple currents are precisely the primaries with unit quantum dimension; for WZW theories explicit formulae for the quantum dimensions can be derived so that an identification of the fields with unit quantum dimension is possible. (author). 19 refs.; 2 tabs

  19. Current level detector

    International Nuclear Information System (INIS)

    Kerns, C.R.

    1977-01-01

    A device is provided for detecting the current level of a dc signal. It includes an even harmonic modulator to which a reference ac signal is applied. The unknown dc signal acts on the reference ac signal so that the output of the modulator includes an even harmonic whose amplitude is proportional to the unknown dc current. The device may be used to provide overcurrent protection for proportional wire chambers

  20. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  1. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  2. Lonafarnib is a potential inhibitor for neovascularization.

    Directory of Open Access Journals (Sweden)

    Linlin Sun

    Full Text Available Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization.

  3. Proton Pump Inhibitors and Risk of Rhabdomyolysis.

    Science.gov (United States)

    Duncan, Scott J; Howden, Colin W

    2017-01-01

    Proton pump inhibitors (PPIs) have been associated with a variety of adverse events, although the level of evidence for many of these is weak at best. Recently, one national regulatory authority has mandated a change to the labeling of one PPI based on reports of possible associated rhabdomyolysis. Thus, in this review we summarize the available evidence linking PPI use with rhabdomyolysis. The level of evidence is insufficient to establish a causal relationship and is largely based on sporadic case reports. In general, patients with suspected PPI-associated rhabdomyolysis have not been re-challenged with a PPI after recovery. The mechanism whereby PPIs might have been associated with rhabdomyolysis is unclear but possibly related to interaction with concomitantly administered drugs such as HMG-CoA reductase inhibitors (statins). For patients with rhabdomyolysis, a careful search must be made for possible etiological factors. In patients who recover from an episode of possible PPI-related rhabdomyolysis but do not have a genuine requirement for PPI treatment, the PPI should not be re-introduced. For those with a definite indication for ongoing PPI treatment, the PPI can be re-introduced but should preferably not be administered with a statin.

  4. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  5. Polyphenol Compound as a Transcription Factor Inhibitor.

    Science.gov (United States)

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  6. Synthesis of Novel Chalcones as Acetylcholinesterase Inhibitors

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2016-07-01

    Full Text Available A new series of benzylaminochalcone derivatives with different substituents on ring B were synthesized and evaluated as inhibitors of acetylcholinesterase. The study is aimed at identification of novel benzylaminochalcones capable of blocking acetylcholinesterase activity for further development of an approach to Alzheimer’s disease treatment. These compounds were produced in moderate to good yields via Claisen-Schmidt condensation and subjected to an in vitro acetylcholinesterase inhibition assay, using Ellman’s method. The in silico docking procedure was also employed to identify molecular interactions between the chalcone compounds and the enzyme. Compounds with ring B bearing pyridin-4-yl, 4-nitrophenyl, 4-chlorophenyl and 3,4-dimethoxyphenyl moieties were discovered to exhibit significant inhibitory activities against acetylcholinesterase, with IC50 values ranging from 23 to 39 µM. The molecular modeling studies are consistent with the hypothesis that benzylaminochalcones could exert their effects as dual-binding-site acetylcholinesterase inhibitors, which might simultaneously enhance cholinergic neurotransmission and inhibit β-amyloid aggregation through binding to both catalytic and peripheral sites of the enzyme. These derivatives could be further developed to provide novel leads for the discovery of new anti-Alzheimer drugs in the future.

  7. Flavonoids as Inhibitors of Human Butyrylcholinesterase Variants

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2014-01-01

    Full Text Available The inhibition of butyrylcholinesterase (BChE, EC 3.1.1.8 appears to be of interest in treating diseases with symptoms of reduced neurotransmitter levels, such as Alzheimer’s disease. However, BCHE gene polymorphism should not be neglected in research since it could have an effect on the expected outcome. Several well-known cholinergic drugs (e.g. galantamine, huperzine and rivastigmine originating from plants, or synthesised as derivatives of plant compounds, have shown that herbs could serve as a source of novel target-directed compounds. We focused our research on flavonoids, biologically active polyphenolic compounds found in many plants and plant-derived products, as BChE inhibitors. All of the tested flavonoids: galangin, quercetin, fisetin and luteolin reversibly inhibited usual, atypical, and fluoride-resistant variants of human BChE. The inhibition potency increased in the following order, identically for all three BChE variants: luteolininhibitor dissociation constants (Ki ranged from 10 to 170 mmol/L. We showed that no significant change in the inhibition potency of selected flavonoids exists in view of BChE polymorphism. Our results suggested that flavonoids could assist the further development of new BChE-targeted drugs for treating symptoms of neurodegenerative diseases and dementia.

  8. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  9. Superconducting current transducer

    International Nuclear Information System (INIS)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs

  10. Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid

    OpenAIRE

    M. Yadav; Debasis Behera; Usha Sharma

    2016-01-01

    The purpose of this paper is to evaluate the protective ability of 1-(2-aminoethyl)-2-oleylimidazoline (AEOI) and 1-(2-oleylamidoethyl)-2-oleylimidazoline (OAEOI) as corrosion inhibitors for N80 steel in 15% hydrochloric acid, which may find application as eco-friendly corrosion inhibitors in acidizing processes in petroleum industry. Different concentrations of synthesized inhibitors AEOI and OAEOI were added to the test solution (15% HCl) and the corrosion inhibition of N80 steel in hydroch...

  11. Aromatase inhibitors in men: effects and therapeutic options

    Directory of Open Access Journals (Sweden)

    de Jong Frank H

    2011-06-01

    Full Text Available Abstract Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended.

  12. Inhibitors of Fatty Acid Synthase for Prostate Cancer. Revision

    Science.gov (United States)

    2013-05-01

    acetyl- cholinesterase inhibitors have been developed, many with femtomolar binding affinities (7). This body of literature also confirms that the...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...May 2013 2. REPORT TYPE Revised Final 3. DATES COVERED 01 May 2009-30 Apr 2013 4. TITLE AND SUBTITLE Inhibitors of Fatty Acid Synthase for

  13. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    Science.gov (United States)

    2012-05-01

    compounds. For example, numerous classes of acetyl- cholinesterase inhibitors have been developed, m any with fe mtomolar binding affinities (7). This...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for...CONTRACT NUMBER Inhibitors of Fatty Acid Synthase for Prostate Cancer 5b. GRANT NUMBER W81XWH-09-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  14. Natural compounds as corrosion inhibitors for highly cycled systems

    Energy Technology Data Exchange (ETDEWEB)

    Quraishi, M.A.; Farooqi, I.H.; Saini, P.A. [Corrosion Research Lab., Aligarh (India)

    1999-11-01

    Strict environmental legislations have led to the development of green inhibitors in recent years. In continuation of the authors` research work on development of green inhibitors, they have investigated the aqueous extracts of three plants namely: Azadirachta indica, Punica Granatum and Momordica charantia as corrosion inhibitors for mild steel in 3% NaCl using weight loss and electrochemical methods. All the investigated compounds exhibited excellent corrosion inhibition properties comparable to that of HEDP. Azadirachta showed better scale inhibition effect than HEDP.

  15. Current options and new developments in the treatment of haemophilia.

    Science.gov (United States)

    Wong, Trisha; Recht, Michael

    2011-02-12

    Haemophilia A and B are X-linked bleeding disorders due to the inherited deficiency of factor VIII or factor IX, respectively. Of the approximately 1 per 5000-10000 male births affected by haemophilia, 80% are deficient in factor VIII and 20% are deficient in factor IX. Haemophilia is characterized by spontaneous and provoked joint, muscle, gastrointestinal and CNS bleeding leading to major morbidity and even mortality if left untreated or under-treated. The evolution of haemophilia management has been marked by tragedy and triumph over recent decades. Clotting factors and replacement strategies continue to evolve for patients without inhibitors. For patients with an inhibitor, factor replacement for acute bleeding episodes and immune tolerance, immune modulation and extracorporeal methods for inhibitor reduction are the cornerstone of care. In addition, adjuvant therapies such as desmopressin, antifibrinolytics and topical agents also contribute to improved outcomes for patients with and without inhibitors. The future direction of haemophilia care is promising with new longer-acting clotting factors and genetic therapies, including gene transfer and premature termination codon suppressors. With these current and future treatment modalities, the morbidity and mortality rates in patients with haemophilia certainly will continue to improve.

  16. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    Science.gov (United States)

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  17. Predicting DPP-IV inhibitors with machine learning approaches

    Science.gov (United States)

    Cai, Jie; Li, Chanjuan; Liu, Zhihong; Du, Jiewen; Ye, Jiming; Gu, Qiong; Xu, Jun

    2017-04-01

    Dipeptidyl peptidase IV (DPP-IV) is a promising Type 2 diabetes mellitus (T2DM) drug target. DPP-IV inhibitors prolong the action of glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), improve glucose homeostasis without weight gain, edema, and hypoglycemia. However, the marketed DPP-IV inhibitors have adverse effects such as nasopharyngitis, headache, nausea, hypersensitivity, skin reactions and pancreatitis. Therefore, it is still expected for novel DPP-IV inhibitors with minimal adverse effects. The scaffolds of existing DPP-IV inhibitors are structurally diversified. This makes it difficult to build virtual screening models based upon the known DPP-IV inhibitor libraries using conventional QSAR approaches. In this paper, we report a new strategy to predict DPP-IV inhibitors with machine learning approaches involving naïve Bayesian (NB) and recursive partitioning (RP) methods. We built 247 machine learning models based on 1307 known DPP-IV inhibitors with optimized molecular properties and topological fingerprints as descriptors. The overall predictive accuracies of the optimized models were greater than 80%. An external test set, composed of 65 recently reported compounds, was employed to validate the optimized models. The results demonstrated that both NB and RP models have a good predictive ability based on different combinations of descriptors. Twenty "good" and twenty "bad" structural fragments for DPP-IV inhibitors can also be derived from these models for inspiring the new DPP-IV inhibitor scaffold design.

  18. Experimental and theoretical studies of benzoxazines corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    Full Text Available 2-Methyl-4H-benzo[d][1,3]oxazin-4-one (BZ1 and 3-amino-2-methylquinazolin-4(3H-one (BZ2 were evaluated for their corrosion inhibition properties on mild steel (MS in hydrochloric acid solution by weight loss technique and scanning electron microscopy. Results show the inhibition efficiency values depend on the amount of nitrogen in the inhibitor, the inhibitor concentration and the inhibitor molecular weight with maximum inhibition efficiency of 89% and 65% for BZ2 and BZ1 at highest concentration of the compounds. Keywords: Methylquinazoline, Benzoxazines, Corrosion, Inhibitors

  19. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  20. Insights into the molecular evolution of peptidase inhibitors in arthropods.

    Science.gov (United States)

    Alonso, Joaquin; Martinez, Manuel

    2017-01-01

    Peptidase inhibitors are key proteins involved in the control of peptidases. In arthropods, peptidase inhibitors modulate the activity of peptidases involved in endogenous physiological processes and peptidases of the organisms with which they interact. Exploring available arthropod genomic sequences is a powerful way to obtain the repertoire of peptidase inhibitors in every arthropod species and to understand the evolutionary mechanisms involved in the diversification of this kind of proteins. A genomic comparative analysis of peptidase inhibitors in species belonging to different arthropod taxonomic groups was performed. The results point out: i) species or clade-specific presence is shown for several families of peptidase inhibitors; ii) multidomain peptidase inhibitors are commonly found in many peptidase inhibitor families; iii) several families have a wide range of members in different arthropod species; iv) several peptidase inhibitor families show species-specific (or clade-specific) gene family expansions; v) functional divergence may be assumed for particular clades; vi) passive expansions may be used by natural selection to fix adaptations. In conclusion, conservation and divergence of duplicated genes and the potential recruitment as peptidase inhibitors of proteins from other families are the main mechanisms used by arthropods to fix diversity. This diversity would be associated to the control of target peptidases and, as consequence, to adapt to specific environments.