WorldWideScience

Sample records for current induced avalanche

  1. [Avalanche emergencies. Review of the current situation].

    Science.gov (United States)

    Paal, P; Beikircher, W; Brugger, H

    2006-03-01

    In North America and Europe around 140 persons die every year due to avalanches, approximately 35 in North America, 100 in the European Alps, and 5 in other parts of Europe. Most of the victims are skiers and snowboarders. This article outlines the specific pathophysiology of avalanche burials, such as hypoxia, hypercapnia, and hypothermia and also other factors which influence survival. Strategies to minimize the mortality due to avalanches and the on-site treatment of buried persons are discussed. Finally, possibilities to reduce the number of avalanche deaths are pointed out.

  2. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    Science.gov (United States)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as "glowing avalanches", have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  3. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    the governing equations, are linearly unstable to arbitrarily small perturbations. It should be noted similar stability characteristics are found for shallow layer fluid flows on an inclined plane, with small wavelength perturbations stabilised by the inclusion of empirical frictional drag and viscous dissipation. Furthermore, depth-averaged models for roll waves on a monodisperse, shallow granular layer released on an inclined plane have a similar problem with high wave-number modes remaining linearly unstable. In this case the high wavenumber instability can be suppressed by the inclusion of (phenomenological) viscous dissipation. It is possible that by including similar rheological terms in our depth-averaged model the small wavelength modes can be stabilised and a well defined finger width can be predicted. This is the first model to describe the break-up of a uniform front of granular material, and it represents a crucial step forward in obtaining a mathematical model of this process. However, the current model is not complete and remains linearly unstable to arbitrarily small wavelength perturbations. We anticipate that these small wavelength instabilities can be stabilised by including additional physical effects, and this remains an active avenue of investigation. Reference: Woodhouse, M; Thornton, A. R.; Johnson, C.G.; Kokelaar, P, and Gray, J.M.N.T. Segregation-induced fingering instabilities in granular free surface flows. Journal of Fluids Mechanics. (2012). 709 543-580

  4. Motion of current filaments in avalanching PIN diodes

    Science.gov (United States)

    Xingrong, Ren; Changchun, Chai; Zhenyang, Ma; Yintang, Yang; Liping, Qiao; Chunlei, Shi; Lihua, Ren

    2013-04-01

    The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode.

  5. Substorm onset: Current sheet avalanche and stop layer

    Science.gov (United States)

    Haerendel, Gerhard

    2015-03-01

    A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be

  6. Dramatic role of critical current anisotropy on flux avalanches in MgB2 films.

    Science.gov (United States)

    Albrecht, J; Matveev, A T; Strempfer, J; Habermeier, H-U; Shantsev, D V; Galperin, Y M; Johansen, T H

    2007-03-16

    Anisotropic penetration of magnetic flux in MgB(2) films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, the anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate perpendicular to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.

  7. Pixelated Geiger-Mode Avalanche Photo-Diode Characterization through Dark Current Measurement

    CERN Document Server

    Amaudruz, Pierre-André; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retière, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D; Thompson, Christopher J

    2013-01-01

    PIXELATED geiger-mode avalanche photodiodes(PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure...

  8. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    Science.gov (United States)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  9. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    Science.gov (United States)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  10. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination.

    Science.gov (United States)

    Zhao, Yanli; Zhang, Dongdong; Qin, Long; Tang, Qi; Wu, Rui Hua; Liu, Jianjun; Zhang, Youping; Zhang, Hong; Yuan, Xiuhua; Liu, Wen

    2011-04-25

    Separate absorption grading charge multiplication avalanche photodiodes (SAGCM APDs) are widely accepted in photon starved optical communication systems due to the presence of large photocurrent gain. In this work, we present a detailed analysis of dark currents of planar-type SAGCM InGaAs-InP APDs with different thicknesses of multiplication layer. The effect of the diffusion process, the generation-recombination process, the tunneling process and the multiplication process on the total leakage current is discussed. A new empirical formula has been established to predict the optimal multiplication layer thickness of SAGCM APDs with dark current limited by generation-recombination at multiplication gain of 8.

  11. SEMICONDUCTOR DEVICES: Off-state avalanche breakdown induced degradation in 20 V NLDMOS devices

    Science.gov (United States)

    Shifeng, Zhang; Koubao, Ding; Yan, Han; Chenggong, Han; Jiaxian, Hu; Bin, Zhang

    2010-09-01

    Degradation behaviors of 20 V NLDMOS operated under off-state avalanche breakdown conditions are presented. A constant current pulse stressing test is applied to the device. Two different degradation mechanisms are identified by analysis of electrical data, technology computer-aided design (TCAD) simulations and charge pumping measurements. The first mechanism is attributed to positive oxide-trapped charges in the N-type drift region, and the second one is due to decreased electron mobility upon interface state formation in the drift region. Both of the mechanisms are enhanced with increasing avalanche breakdown current.

  12. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  13. Dark-current characteristics of GaN-based UV avalanche photodiodes

    Science.gov (United States)

    Xu, Jintong; Chang, Chao; Li, Xiangyang

    2015-04-01

    For UV detecting, it needs high ratio of signal to noise, which means high responsibility and low noise. GaN-based avalanche photodiodes can provide a high internal photocurrent gain. In this paper, we report the testing and characterization of GaN based thin film materials, optimization design of device structure, the device etching and passivation technology, and the photoelectric characteristics of the devices. Also, uniformity of the device was obtained. The relationship between dark current and material quality or device processes was the focus of this study. GaN based material with high aluminum components have high density defects. Scanning electron microscope, cathodoluminescence spectra, X-ray double crystal diffraction and transmission spectroscopy testing were employed to evaluate the quality of GaN-based material. It shows that patterned sapphire substrate or thick AlN buffer layer is more effective to get high quality materials. GaN-based materials have larger hole ionization coefficient, so back incident structure were adopted to maximize the hole-derived multiplication course and it was helped to get a smaller multiplication noise. The device with separate absorption and multiplication regions is also prospective to reduce the avalanche noise. According to AlGaN based material characteristics and actual device fabrication, device structure was optimized further. Low physical damage inductively coupled plasma (ICP) etching method was used to etch mesa and wet etching method was employed to treat mesa damage. Silica is passivation material of device mesa. For solar-blind ultraviolet device, it is necessary to adopt a wider bandgap material than AlGaN material. The current-voltage characteristics under reverse bias were measured in darkness and under UV illumination. The distribution of dark current and response of different devices was obtained. In short, for GaN-based UV avalanche photodiode, dark current was related to high density dislocation of

  14. Intrinsic noise induces critical behavior in leaky Markovian networks leading to avalanching.

    Directory of Open Access Journals (Sweden)

    Garrett Jenkinson

    2014-01-01

    Full Text Available The role intrinsic statistical fluctuations play in creating avalanches--patterns of complex bursting activity with scale-free properties--is examined in leaky Markovian networks. Using this broad class of models, we develop a probabilistic approach that employs a potential energy landscape perspective coupled with a macroscopic description based on statistical thermodynamics. We identify six important thermodynamic quantities essential for characterizing system behavior as a function of network size: the internal potential energy, entropy, free potential energy, internal pressure, pressure, and bulk modulus. In agreement with classical phase transitions, these quantities evolve smoothly as a function of the network size until a critical value is reached. At that value, a discontinuity in pressure is observed that leads to a spike in the bulk modulus demarcating loss of thermodynamic robustness. We attribute this novel result to a reallocation of the ground states (global minima of the system's stationary potential energy landscape caused by a noise-induced deformation of its topographic surface. Further analysis demonstrates that appreciable levels of intrinsic noise can cause avalanching, a complex mode of operation that dominates system dynamics at near-critical or subcritical network sizes. Illustrative examples are provided using an epidemiological model of bacterial infection, where avalanching has not been characterized before, and a previously studied model of computational neuroscience, where avalanching was erroneously attributed to specific neural architectures. The general methods developed here can be used to study the emergence of avalanching (and other complex phenomena in many biological, physical and man-made interaction networks.

  15. Anomalous winter snow amplified earthquake induced disaster of the 2015 Langtang avalanche in Nepal

    OpenAIRE

    Fujita, Koji; Inoue, Hiroshi; Izumi, Takeki; Yamaguchi, Satoru; Sadakane, Ayako; Sunako, Sojiro; Nishimura, Kouichi; Immerzeel, Walter W.; Shea, Joseph M.; Kayashta, Rijan B.; SAWAGAKI, Takanobu; Breashears, David F.; Yagi, Hiroshi; Sakai, Akiko

    2016-01-01

    Co-seismic avalanches and rock falls, and their simultaneous air blasts, which were induced by the 2015 Gorkha earthquake in Nepal, destroyed the village of Langtang. In order to reveal volume and structure of the deposit covering the village, and sequence of the multiple events, we conducted an intensive in-situ observation in October 2015. Multi-temporal digital elevation models created from photographs taken by helicopter and unmanned aerial vehicles reveal that the deposit volumes of the ...

  16. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    Science.gov (United States)

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.

    2008-01-01

    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  17. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Jiang, Naibo; Roy, Sukesh [Spectral Energies, LLC, 5100 Springfield St., Suite 301, Dayton, Ohio 45431 (United States); Gord, James R. [Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  18. Statistical theory of hierarchical avalanche ensemble

    OpenAIRE

    Olemskoi, Alexander I.

    1999-01-01

    The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.

  19. Avalanche diode having reduced dark current and method for its manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.

    2017-08-29

    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  20. Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes

    Science.gov (United States)

    Zeng, Q. Y.; Wang, W. J.; Wen, J.; Huang, L.; Liu, X. H.; Li, N.; Lu, W.

    2014-04-01

    The effects of surface charge on the dark current of the separate-absorption-grading-charge-multiplication InGaAs/InP avalanche photodiodes (APDs) are discussed using drift-diffusion simulation. The dark current increases exponentially with the increasing of surface charge density, and gets multiplied, thus influencing the performance of the APDs, especially in Geiger mode. The mechanism of the surface charge leakage current is discussed, and a floating guard ring structure is proposed to suppress the influence of surface charge effectively.

  1. Comparison of Measurement And Modeling Of Current Profile Changes Due To Neutral Bean Ion Redistribution During TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Douglas

    2013-07-09

    Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function

  2. Extreme geomagnetically induced currents

    Science.gov (United States)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  3. Geomagnetically Induced Currents: Principles

    Science.gov (United States)

    Oliveira, Denny M.; Ngwira, Chigomezyo M.

    2017-10-01

    The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.

  4. Single-step metal-organic vapor-phase diffusion for low-dark-current planar-type avalanche photodiodes

    Science.gov (United States)

    Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Youngjo; Shin, Chan-Soo; Park, Kyung Ho; Park, Won-Kyu; Kim, Min-Su; Kim, Sangin; Han, Sang Wook; Moon, Sung

    2016-10-01

    In this paper, a p-type diffusion process based literally on single-step metal-organic vapor-phase diffusion (MOVPD) employing diethyl zinc as the diffusion source in combination with the recessetching technique is developed to improve the dark-current characteristics of planar-type avalanche photodiodes (APDs). The developed single-step MOVPD process exhibits on excellent linear relationship between the diffusion depth and the square root of the diffusion time, which mainly results from maintaining constant source diffusion. The single-step MOVPD process without any additional thermal activation process achieves a surface doping concentration of 1.9 × 1018 cm -3, which is sufficient to form ohmic contact. The measured diffusion profiles of the APDs clearly reveal the presence of a two-dimensional diffusion front formed by the recess-etched and guard-ring regions. The impact of this p-type diffusion process on the performance of the APD devices has also been demonstrated by exhibiting improved dark-current characteristics for the fabricated APDs.

  5. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs.

    Science.gov (United States)

    Diverio, Silvana; Barbato, Olimpia; Cavallina, Roberta; Guelfi, Gabriella; Iaboni, Martina; Zasso, Renato; Di Mari, Walter; Santoro, Michele Matteo; Knowles, Toby G

    2016-09-01

    Saving human lives is of paramount importance in avalanche rescue missions. Avalanche military dogs represent an invaluable resource in these operations. However, their performance can be influenced by several environmental, social and transport challenges. If too severe, these are likely to activate a range of responses to stress, which might put at risk the dogs' welfare. The aim of this study was to assess the physiological and behavioural responses of a group of military dogs to a Simulated Avalanche Search and Rescue mission (SASR). Seventeen avalanche dogs from the Italian Military Force Guardia di Finanza (SAGF dogs) were monitored during a simulated search for a buried operator in an artificial avalanche area (SASR). Heart rate (HR), body temperature (RBT) and blood samples were collected at rest the day before the trial (T0), immediately after helicopter transport at the onset of the SASR (T1), after the discovery of the buried operator (T2) and 2h later (T3). Heart rate (HR), rectal body temperature (RBT), cortisol, aspartate aminotransferase (AST), creatine kinase (CK), non-esterified fatty acids (NEFA) and lactate dehydrogenase (LDH) were measured. During the search mission the behaviour of each SAGF dog was measured by focal animal sampling and qualitatively assessed by its handler and two observers. Inter-rater agreement was evaluated. Snow and environmental variables were also measured. All dogs successfully completed their search for the buried, simulated victim within 10min. The SASR was shown to exert significant increases on RBT, NEFA and cortisol (Psearch and rescue exercise. However, changes were moderate and limited over time, progressively decreasing with complete recovery at T3 except for sera cortisol that showed a slightly slower decline. More time walking within the search was related to lower RBT, conversely to walking. Standing still with head up and exploring with head-up were inversely related with HR. Agreement between handler and

  6. Saturated logistic avalanche model

    Science.gov (United States)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Liberti, B.; Paoloni, A.; Santonico, R.

    2003-08-01

    The search for an adequate avalanche RPC working model evidenced that the simple exponential growth can describe the electron multiplication phenomena in the gas with acceptable accuracy until the external electric field is not perturbed by the growing avalanche. We present here a model in which the saturated growth induced by the space charge effects is explained in a natural way by a constant coefficient non-linear differential equation, the Logistic equation, which was originally introduced to describe the evolution of a biological population in a limited resources environment. The RPCs, due to the uniform and intense field, proved to be an ideal device to test experimentally the presented model.

  7. Effect of tunneling current on the noise characteristics of a 4H-SiC Read Avalanche diode

    Institute of Scientific and Technical Information of China (English)

    Deepak K.Karan; Pranati Panda; G.N.Dash

    2013-01-01

    Noise characteristics of a Read Avalanche diode are analyzed by incorporating the tunneling mechanism of the electron into the avalanche mechanism.Analytical expressions are presented for the mean square noise voltage and noise measure in MITATT (mixed tunneling and avalanche transit time) mode operation.A wide band gap semiconductor (4H-SiC) based MITATT diode is considered to study the effect of tunneling on the noise characteristics and negative conductance.While exhibiting enough potential for 4H-SiC to be used as a terahertz source of power in the MITATT mode,our results record a noise measure of 35.18 dB at a frequency of 1.5 THz.

  8. Aging Avalanches

    Science.gov (United States)

    Boettcher, Stefan; Paczuski, Maya

    1997-03-01

    We have shown that in an analytically solvable model of Self-Organized Criticality (SOC)(S. Boettcher & M. Paczuski, Phys. Rev. Lett. 76), 348 (1996). the evolving avalanche is governed by an equation of motion with a memory term that ranges over all past events.(S. Boettcher & M. Paczuski, Phys. Rev. E 54), 1082 (1996). The solution for the propagator shows sub-diffusive behavior with a broad exponential tail. Numerical studies of the temporal correlations during avalanches in a variety of SOC systems indicate that history dependence and hierarchical structures are generic features which emerge dynamically from simple local update rules. In particular, we find(S. Boettcher & M. Paczuski, ``Off-Equilibrium Behavior and Aging in Self-Organized Criticality'', (in preparation).) ``aging'' similar to the slow relaxation behavior in disordered systems that move through ``rugged landscapes'' in phase space, such as spin glasses.

  9. Current-Induced Membrane Discharge

    OpenAIRE

    Andersen, MB; Soestbergen, van, M Michiel; A Mani; Bruus, H.; Biesheuvel, PM; Bazant, MZ

    2012-01-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by “current-induced membrane discharge” (CIMD), even in the...

  10. Reuyl Crater Dust Avalanches

    Science.gov (United States)

    2002-01-01

    't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust. No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere. For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background. The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches! That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again. Stay tuned to see if you too can pick out the changes over time!

  11. [Avalanche accidents and treatment of avalanche victims].

    Science.gov (United States)

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  12. Preliminary remote sensing assessment of the catastrophic avalanche in Langtang Valley induced by the 2015 Gorkha earthquake, Nepal

    Science.gov (United States)

    Nagai, Hiroto; Watanabe, Manabu; Tomii, Naoya

    2016-04-01

    calculations thus produce similar extractions of collapse sediment. (2) Visual interpretation of high-resolution satellite imagery suggests multiple layers of sediment with different physical properties. A DigitalGlobe satellite, WorldView-3, observed the Langtang Valley on May 8, 2015, using a panchromatic sensor with a spatial resolution of 0.3 m. Identification and mapping of avalanche-induced surface features were performed manually. The surface features were classified into 15 segments on the basis of sediment features, including darkness, the dominance of scattering or flowing features, and the recognition of boulders. Together, these characteristics suggest various combinations of physical properties, such as viscosity, density, and ice and snow content. (3) Altitude differences between the pre- and post-quake digital surface models (DSM) suggest the deposition of 5.2×105 m3 of sediment, mainly along the river bed. A 5 m-grid pre-event DSM was generated from PRISM stereo-pair images acquired on October 12, 2008. A 2 m-grid post-event DSM was generated from WorldView-3 images acquired on May 8, 2015. Comparing the two DSMs, a vertical difference of up to 22±13 m is observed, mainly along the river bed. Estimates of the total avalanched volume reach 5.2×105 m^3, with a possible range of 3.7×105 to 10.7×105 m^3.

  13. Controlling avalanche criticality in 2D nano arrays.

    Science.gov (United States)

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  14. Radiation damage effect on avalanche photodiodes

    CERN Document Server

    Baccaro, S; Cavallari, F; Da Ponte, V; Deiters, K; Denes, P; Diemoz, M; Kirn, Th; Lintern, A L; Longo, E; Montecchi, M; Musienko, Y; Pansart, J P; Renker, D; Reucroft, S; Rosi, G; Rusack, R; Ruuska, D; Stephenson, R; Torbet, M J

    1999-01-01

    Avalanche Photodiodes have been chosen as photon sensors for the electromagnetic calorimeter of the CMS experiment at the LHC. These sensors should operate in the 4T magnetic field of the experiment. Because of the high neutron radiation in the detector extensive studies have been done by the CMS collaboration on the APD neutron radiation damage. The characteristics of these devices after irradiation have been analized, with particular attention to the quantum efficiency and the dark current. The recovery of the radiation induced dark current has been studied carefully at room temperature and at slightly lower and higher temperatures. The temperature dependence of the defects decay-time has been evaluated.

  15. Current-induced membrane discharge

    CERN Document Server

    Andersen, M B; Mani, A; Bruus, H; Biesheuvel, P M; Bazant, M Z

    2012-01-01

    Possible mechanisms for over-limiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability (EOI) have recently been observed in microfluidic experiments, but the existing theory neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge" (CIMD), even in the absence of fluid flow. Salt depletion leads to a large electric field which expels water co-ions, causing the membrane to discharge and lose its selectivity. Since salt co-ions and water ions contribute to OLC, CIMD interferes with electrodialysis (salt counter-ion removal) but could be exploited for current-assisted ion exchange and pH control. CIMD also suppresses the extended space charge that leads to EOI, so it should be reconsidered in both models and experiments on OLC.

  16. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.;

    2012-01-01

    Possible mechanisms for overlimiting current (OLC) through aqueous ion-exchange membranes (exceeding diffusion limitation) have been debated for half a century. Flows consistent with electro-osmotic instability have recently been observed in microfluidic experiments, but the existing theory...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length....... Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...

  17. Assessment of the Perchertal avalanche in Tyrol, Austria

    OpenAIRE

    KURT, Tayfun

    2014-01-01

    The present study has been conducted to analyze the Perchertal avalanche area near Bärenkopf Mountain, which has several avalanche-prone areas on its slopes, within the area of Pertisau, Tyrol, in Austria. The main focus is on identifying the characteristics of the avalanche process itself to determine the potential risk to endangered objects, which include an important road and a hotel. Another focus is to evaluate the current local hazard map. Based on the dynamic avalanche models (Samos-AT...

  18. Negative feedback avalanche diode

    Science.gov (United States)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  19. Lumped transmission line avalanche pulser

    Science.gov (United States)

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  20. Current-Induced Effects in Nanoscale Conductors

    OpenAIRE

    2005-01-01

    We present an overview of current-induced effects in nanoscale conductors with emphasis on their description at the atomic level. In particular, we discuss steady-state current fluctuations, current-induced forces, inelastic scattering and local heating. All of these properties are calculated in terms of single-particle wavefunctions computed using a scattering approach within the static density-functional theory of many-electron systems. Examples of current-induced effects in atomic and mole...

  1. Comment on ``Monte Carlo investigation of current voltage and avalanche noise in GaN double-drift impact diodes'' [J. Appl. Phys. 97, 043709 (2005)

    Science.gov (United States)

    Dash, G. N.

    2005-11-01

    The avalanche noise behavior of impact avalanche transit-time (IMPATT) diodes has been modeled by Reklaitis and Reggiani [J. Appl. Phys. 97, 043709 (2005)]. They have obtained general agreement of their results with those of McIntyre [IEEE Trans. Electron Devices ED-13, 164 (1966)]. However, McIntyre's theory predicts the opposite noise behavior from that observed in the IMPATT diode. Hence the applicability of the noise model of Reklaitis and Reggiani to IMPATT diode is questionable.

  2. Avalanche speed in thin avalanche photodiodes

    Science.gov (United States)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  3. A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: Implications for hazard assessment

    Science.gov (United States)

    Carrasco-Núñez, Gerardo; Vallance, James W.; Rose, William I.

    1993-12-01

    During the late Pleistocene the ancestral edifice of Citlaltépetl volcano (also known as Pico de Orizaba) collapsed to form a clay-rich deposit that extends 85 km from its source, has a volume of 1.8 km 3, and covers an area of 143 km 2 east of the volcano. The deposit has clay content ranging from 10 to 16% and contains secondary alteration minerals such as smectite and kaolinite. The deposit's features suggest that it had an origin as a sector collapse of hydrothermally altered rock that transformed from a debris avalanche to a cohesive lahar very close to its source. The presence of glacier ice and a hydrothermal system during late Pleistocene times apparently provided a source of pore water which enhanced the hydrothermal alteration of the summit of Citlaltépetl and was the origin of most of the water for the lahar. This deposit and several others suggest that glaciated volcanoes are sites where hydrothermal alteration and resulting cohesive lahars are most likely. Although cohesive lahars and debris avalanches both have origins as sector collapses, cohesive lahars are more mobile than similar-sized debris avalanches. Thus potential hazard of edifice collapse at glaciated volcanoes, especially those with large volumes of hydrothermally altered rock, includes the possibility of large-volume cohesive lahars.

  4. Simulations of avalanche breakdown statistics: probability and timing

    Science.gov (United States)

    Ng, Jo Shien; Tan, Chee Hing; David, John P. R.

    2010-04-01

    Important avalanche breakdown statistics for Single Photon Avalanche Diodes (SPADs), such as avalanche breakdown probability, dark count rate, and the distribution of time taken to reach breakdown (providing mean time to breakdown and jitter), were simulated. These simulations enable unambiguous studies on effects of avalanche region width, ionization coefficient ratio and carrier dead space on the avalanche statistics, which are the fundamental limits of the SPADs. The effects of quenching resistor/circuit have been ignored. Due to competing effects between dead spaces, which are significant in modern SPADs with narrow avalanche regions, and converging ionization coefficients, the breakdown probability versus overbias characteristics from different avalanche region widths are fairly close to each other. Concerning avalanche breakdown timing at given value of breakdown probability, using avalanche material with similar ionization coefficients yields fast avalanche breakdowns with small timing jitter (albeit higher operating field), compared to material with dissimilar ionization coefficients. This is the opposite requirement for abrupt breakdown probability versus overbias characteristics. In addition, by taking band-to-band tunneling current (dark carriers) into account, minimum avalanche region width for practical SPADs was found to be 0.3 and 0.2 μm, for InP and InAlAs, respectively.

  5. Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters.

    Science.gov (United States)

    Dada, Oluwatosin O; Essaka, David C; Hindsgaul, Ole; Palcic, Monica M; Prendergast, Jillian; Schnaar, Ronald L; Dovichi, Norman J

    2011-04-01

    The dynamic range of capillary electrophoresis analysis is ultimately limited by molecular shot noise at low concentrations and by concentration-induced band broadening at high concentrations. We report a system that approaches these fundamental limits. A laser-induced fluorescence detector is reported that employs a cascade of four fiber-optic beam splitters connected in series to generate a primary signal and four attenuated signals, each monitored by a single-photon counting avalanche photodiode. Appropriate scaling of the signals from the five photodiodes produces a linear optical calibration curve for 5-carboxyl-tetramethylrhodamine from the concentration detection limit of 1 pM to the upper limit of 1 mM. Mass detection limits are 120 yoctomoles (70 molecules) injected into the instrument. The very-wide dynamic range instrument was used to study the metabolic products of the fluorescently labeled glycosphingolipid tetramethylrhodamine labeled GM1 (GM1-TMR) produced by single cells isolated from the rat cerebellum.

  6. Influences of non-uniformities and anisotropies on the flux avalanche behaviors of type-II superconducting films

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2016-10-01

    In this paper, the anisotropic flux avalanche processes in thin square-shaped type-II superconducting films are numerically investigated by solving the coupled nonlinear Maxwell’s equations and the thermal diffusion equations. Influences of the non-uniformities and intrinsic critical current density anisotropies originate from the manufacturing process are considered in the simulation. In addition, we also studied the effect of the extrinsic anisotropy induced by the in-plane magnetic field. The results demonstrate that the non-uniformities and anisotropies of the critical current density play significant roles in the flux avalanche process of the thin film superconductors. Slight anisotropy (either intrinsic or extrinsic) can dramatically change the propagation direction of avalanches in the superconducting film, which is consistent with the experimental results. Simulations on the thin square-shaped isotropic superconducting films show that the threshold magnetic field for the flux avalanches increases with the angle between the applied field and the superconducting film-plane. In addition, the flux avalanche patterns change with the angular variation of the in-plane component of external magnetic field. When the in-plane magnetic field component is along the diagonal lines of the superconducting square, symmetric flux avalanche penetration patterns occur to the film.

  7. How does relativity affect magnetically induced currents?

    Science.gov (United States)

    Berger, R J F; Repisky, M; Komorovsky, S

    2015-09-21

    Magnetically induced probability currents in molecules are studied in relativistic theory. Spin-orbit coupling (SOC) enhances the curvature and gives rise to a previously unobserved current cusp in AuH or small bulge-like distortions in HgH2 at the proton positions. The origin of this curvature is magnetically induced spin-density arising from SOC in the relativistic description.

  8. Nearest neighbour models for local and regional avalanche forecasting

    Directory of Open Access Journals (Sweden)

    M. Gassner

    2002-01-01

    Full Text Available This paper presents two avalanche forecasting applications NXD2000 and NXD-REG which were developed at the Swiss Federal Institute for Snow and Avalanche Re-search (SLF. Even both are based on the nearest neighbour method they are targeted to different scales. NXD2000 is used to forecast avalanches on a local scale. It is operated by avalanche forecasters responsible for snow safety at snow sport areas, villages or cross country roads. The area covered ranges from 10 km2 up to 100 km2 depending on the climatological homogeneity. It provides the forecaster with ten most similar days to a given situation. The observed avalanches of these days are an indication of the actual avalanche danger. NXD-REG is used operationally by the Swiss avalanche warning service for regional avalanche forecasting. The Nearest Neighbour approach is applied to the data sets of 60 observer stations. The results of each station are then compiled into a map of current and future avalanche hazard. Evaluation of the model by cross-validation has shown that the model can reproduce the official SLF avalanche forecasts in about 52% of the days.

  9. Reliability assessment of multiple quantum well avalanche photodiodes

    Science.gov (United States)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  10. Avalanche effects near nanojunctions

    Science.gov (United States)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  11. Current drive induced by intermittent trapping

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Israel (Israel)

    1999-02-01

    We propose a mechanism for driving a current in a dispersive plasma based on intermittent trapping of electrons in a ponderomotive well generated by two- counterpropagating electron cyclotron waves. By choosing properly the parameters of the system, this mechanism is expected to induce a high efficiency current drive. (authors)

  12. Avalanche dynamics in silicon avalanche single- and few-photon sensitive photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Blazej, J; Prochazka, I, E-mail: blazej@fjfi.cvut.c [Czech Technical University in Prague, Brehova 7, 115 19 Prague 1 (Czech Republic)

    2009-11-15

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) avalanche pulse response rise-time and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 {mu}m active area, the character of avalanche, and the correlation between the avalanche build-up time and the photon number involved in the avalanche trigger. The detection chip was operated with bias higher then breakdown voltage, ie. in Geiger mode. The detection chip was operated in a passive quenching circuit with active gating. This set-up enabled us to monitor both the diode reverse current using an electrometer and a fast digitizing oscilloscope. The electrometer reading enabled to estimate the photon number per detection event, the avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented.

  13. High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes.

    Science.gov (United States)

    Sandall, Ian C; Xie, Shiyu; Xie, Jingjing; Tan, Chee Hing

    2011-11-01

    The evolution of the dark currents and breakdown at elevated temperatures of up to 450  K are studied using thin AlAsSb avalanche regions. While the dark currents increase rapidly as the temperature is increased, the avalanche gain is shown to only have a weak temperature dependence. Temperature coefficients of breakdown voltage of 0.93 and 1.93  mV/K were obtained from the diodes of 80 and 230  nm avalanche regions (i-regions), respectively. These values are significantly lower than for other available avalanche materials at these temperatures. The wavelength dependence of multiplication characteristics of AlAsSb p-i-n diodes has also been investigated, and it was found that the ionization coefficients for electrons and holes are comparable within the electric field and wavelength ranges measured.

  14. Ultraviolet avalanche photodiodes

    Science.gov (United States)

    McClintock, Ryan; Razeghi, Manijeh

    2015-08-01

    The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  15. Rock avalanches on glaciers

    OpenAIRE

    Shugar, Daniel

    2011-01-01

    This thesis examines relations between rock avalanches and the glaciers on which they are deposited. I have attempted to understand a geophysical phenomenon from two viewpoints: sedimentology and glaciology. The contributions are both methodological, and practical. I have used a GIS to quantify debris sheet geomorphology. A thorough characterization of rock avalanche debris is a necessary step in understanding the flow mechanics of large landslide. I have also developed a technique for solvin...

  16. A cooled avalanche photodiode with high photon detection probability

    Science.gov (United States)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  17. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes

    Science.gov (United States)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  18. Electromagnetic currents induced by color fields

    CERN Document Server

    Tanji, Naoto

    2015-01-01

    The quark production in classical color fields is investigated with a focus on the induction of an electromagnetic current by produced quarks. We show that the SU(2) and the SU(3) theories lead significantly different results for the electromagnetic current. In uniform SU(2) color fields, the net electromagnetic current is not generated, while for SU(3) the net current is induced depending on the color direction of background fields. Also the numerical study of the quark production in inhomogeneous color fields is done. Motivated by gauge field configurations provided by the color glass condensate framework, we introduce an ensemble of randomly distributed color electric fluxtubes. The spectrum of photons emitted from the quarks by a classical process is shown.

  19. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  20. Rock avalanches: significance and progress (Invited)

    Science.gov (United States)

    Davies, T. R.

    2013-12-01

    1. The probability distribution of landslide volumes follows a power-law indicating that large rock avalanches dominate the terrestrial sediment supply from mountains, and that their source area morphologies dominate mountain topography. 2. Large rock slope failures (~ 106 m3 or greater) often mobilise into rock avalanches, which can travel extraordinarily long distances with devastating effect. This hypermobility has been the subject of many investigations; we have demonstrated that it can be explained quantitatively and accurately by considering the energetics of the intense rock fragmentation that always occurs during motion of a large rock mass. 3. Study of rock avalanche debris psd shows that the energy used in creating new rock surface area during fragmentation is not lost to surface energy, but is recycled generating a high-frequency elastic energy field that reduces the frictional resistance to motion during runout. 4. Rock avalanches that deposit on glaciers can eventually form large terminal moraines that have no connection with any climatic event; unless these are identified as rock-avalanche-influenced they can confuse palaeoclimatic inferences drawn from moraine ages. Rock-avalanche-derived fines, however, can be identified in moraine debris up to ten thousand years old by the characteristic micron-scale agglomerates that form during intense fragmentation, and which are absent from purely climatically-induced moraines; there is thus a strong case for re-examining existing palaeoclimatic databases to eliminate potentially rock-avalanche-influenced moraine ages. 5. Rock avalanches (especially coseismic ones) are a serious hazard, being very destructive in their own right; they also block river valleys, forming landslide dams and potentially devastating dambreak floods, and subsequent severe decade-scale aggradation of downstream fans and floodplains. Rock avalanches falling into lakes or fiords can cause catastrophic tsunami that pose a serious risk to

  1. Dune Avalanche Scars

    Science.gov (United States)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  2. Modeling and monitoring avalanches caused by rain-on-snow events

    Science.gov (United States)

    Havens, S.; Marshall, H. P.; Trisca, G. O.; Johnson, J. B.; Nicholson, B.

    2014-12-01

    Direct-action avalanches occur during large storm cycles in mountainous regions, when stresses on the snowpack increase rapidly due to the load of new snow and outpace snow strengthening due to compaction. If temperatures rise above freezing during the storm and snowfall turns to rain, the near-surface snow undergoes rapid densification caused by the introduction of liquid water. This shock to the snowpack, if stability is near critical, can cause widespread immediate avalanching due to the large induced strain rates in the slab, followed by secondary delayed avalanches due to both the increased load as well as water percolation to the depth of a weak layer. We use the semi-empirical SNOow Slope Stability model (SNOSS) to estimate the evolution of stability prior to large avalanches during rain-on-snow events on Highway 21 north of Boise, Idaho. We have continuously monitored avalanche activity using arrays of infrasound sensors in the avalanche-prone section of HW21 near Stanley, in collaboration with the Idaho Transportation Department's avalanche forecasting program. The autonomous infrasound avalanche monitoring system provides accurate timing of avalanche events, in addition to capturing avalanche dynamics during some major releases adjacent to the array. Due to the remote location and low winter traffic volume, the highway is typically closed for multiple days during major avalanche cycles. Many major avalanches typically release naturally and reach the road, but due the complex terrain and poor visibility, manual observations are often not possible until several days later. Since most avalanche programs typically use explosives on a regular basis to control slope stability, the infrasound record of avalanche activity we have recorded on HW21 provides a unique opportunity to study large naturally triggered avalanches. We use a first-order physically based stability model to estimate the importance of precipitation phase, amount, and rate during major rain

  3. Abelian avalanches and Tutte polynomials

    Science.gov (United States)

    Gabrielov, Andrei

    1993-04-01

    We introduce a class of deterministic lattice models of failure, Abelian avalanche (AA) models, with continuous phase variables, similar to discrete Abelian sandpile (ASP) models. We investigate analytically the structure of the phase space and statistical properties of avalanches in these models. We show that the distributions of avalanches in AA and ASP models with the same redistribution matrix and loading rate are identical. For an AA model on a graph, statistics of avalanches is linked to Tutte polynomials associated with this graph and its subgraphs. In the general case, statistics of avalanches is linked to an analog of a Tutte polynomial defined for any symmetric matrix.

  4. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    Science.gov (United States)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  5. The science of geomagnetically induced currents

    Science.gov (United States)

    Pulkkinen, A.

    2012-12-01

    Geomagnetically induced currents (GIC) phenomenon impacting long conductor systems on the ground can be considered as the end link of chain of complex physical processes comprising the Sun-Earth system. In this paper I briefly review the current status of our understanding of the physics of GIC and novel applications enabled by the new understanding. More specifically, I will demonstrate how we can follow the chain of physical processes from the solar corona down to the upper mantle of the Earth and to GIC. Further, I will show how state-of-the-art models enable predictive modeling of the entire chain of complex processes. The potential for severe societal consequences has been driving recent increasing interest in extreme GIC events. I will show how we have addressed the issue by generating 100-year GIC event scenarios. These scenarios are of substantial power grid industry interest and have been fed directly into further engineering analyses. I will review the results of our of 100-year geomagnetically induced current scenarios work and discuss some of the future directions in the field.

  6. Charged current neutrino induced coherent pion production

    CERN Document Server

    Alvarez-Ruso, L; Hirenzaki, S; Vacas, M J V

    2007-01-01

    We analyze the neutrino induced charged current coherent pion production at the energies of interest for recent experiments like K2K and MiniBooNE. Medium effects in the production mechanism and the distortion of the pion wave function, obtained solving the Klein Gordon equation with a microscopic optical potential, are included in the calculation. We find a strong reduction of the cross section due to these effects and also substantial modifications of the energy distributions of the final lepton and pion.

  7. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    Science.gov (United States)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  8. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    Science.gov (United States)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  9. Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current

    Science.gov (United States)

    Morisaki, Tsubasa; Wakaura, Hikaru; Abou Ghantous, Michel; Koizumi, Hiroyasu

    2017-07-01

    The spin-vortex-induced loop current (SVILC) is a loop current generated around a spin-vortex formed by itinerant electrons. It is generated by a U(1) instanton created by the single-valued requirement of wave functions with respect to the coordinate, and protected by the topological number, "winding number". In a system with SVILCs, a macroscopic persistent current is generated as a collection of SVILCs. In the present work, we consider the situation where external currents are fed in the SVILC system and response currents are measured as spontaneous currents that flow through leads attached to the SVILC system. The response currents from SVILC systems are markedly different from the feeding currents in their directions and magnitude, and depend on the original current pattern of the SVILC system; thus, they may be used in the readout process in the recently proposed SVILC quantum computer, a quantum computer that utilizes SVILCs as qubits. We also consider the use of the response current to detect SVILCs.

  10. AVALANCHES - EXTREME WINTER EVENTS. MONITORING AND AVALANCHE RISK

    Directory of Open Access Journals (Sweden)

    NARCISA MILIAN

    2012-03-01

    Full Text Available This paper presents the avalanches monitored by the National Meteorological Administration within the nivo-meteorological program since february 2004. Daily observations and weekly snow measurements are made at the weather stations from Bucegi Mountains - Vârful Omu (2504 m, Sinaia (1500 m şi Predeal (1100m and Făgăraş Mountains – Bâlea-Lac (2055m, to provide data for avalanche risk estimation using the european avalanche danger scale. Increasing winter sport activities had led to several avalanche accidents, some of them fatal.

  11. III-V alloy heterostructure high speed avalanche photodiodes

    Science.gov (United States)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  12. Disordered artificial spin ices: Avalanches and criticality (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Libál, Andras [Faculty of Mathematics and Computer Science, Babes-Bolyai University, RO-400591 Cluj-Napoca (Romania)

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  13. Current management of heparin-induced thrombocytopenia.

    Science.gov (United States)

    Cosmi, Benilde

    2015-12-01

    Heparin-induced thrombocytopenia (HIT) is an immune adverse reaction to heparin (both unfractionated and low-molecular-weight), which is mediated by the formation of IgG antibodies against platelet factor 4-heparin complexes. The IgG/platelet factor 4 immunocomplexes activate platelets with resulting thrombocytopenia, which is not associated with bleeding, but with paradoxical life-threatening thrombotic complications, for coagulation activation. HIT diagnosis requires the assessment of pre-test clinical probability in combination with the measurement of platelet activating antibodies against platelet factor 4-heparin complexes with immunological and functional assays. When HIT is diagnosed, any form of heparin should be stopped and a non-heparin alternative anticoagulant should be started. Argatroban and danaparoid are currently the only drugs licensed for HIT, with different country availability. Bivalirudin is an option in cardiac surgery and procedures in HIT patients.

  14. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase.

    Directory of Open Access Journals (Sweden)

    Artem G Lada

    Full Text Available Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.

  15. Use of a magnetic field to modify and detect avalanche behavior on a conical bead pile

    Science.gov (United States)

    Johnson, Nathan; Lehman, Susan

    2015-03-01

    A conical bead pile subject to slow driving and an external magnetic field is used to test the effects of drop height and cohesion on avalanche statistics. Magnetically susceptible beads were dropped onto a pile from different heights and into different strengths of magnetic field. Avalanches were recorded by the change in mass as beads fall off the pile. For beads dropped from a low drop height with no cohesion, the avalanche size distribution follows a power law. As cohesion increases, we observe an increase in the probability of very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased, matching the prediction by an analytic theory from a mean-field model of slip avalanches. The model also makes predictions for avalanche duration, which is not measurable with our current system. Since the steel beads are magnetized while in the applied magnetic field, their motion during an avalanche creates a change in magnetic flux. To detect this motion, we have placed a large-diameter pick-up coil around the pile. Results of the testing and calibration of this coil to measure avalanche duration are presented.

  16. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    Science.gov (United States)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  17. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  18. Avalanche robustness of SiC Schottky diode

    OpenAIRE

    Dchar, Ilyas; Buttay, Cyril; Morel, Hervé

    2016-01-01

    International audience; Reliability is one of the key issues for the application of Silicon carbide (SiC) diode in high power conversion systems. For instance, in high voltage direct current (HVDC) converters, the devices can be submitted to high voltage transients which yield to avalanche. This paper presents the experimental evaluation of SiC diodes submitted to avalanche, and shows that the energy dissipation in the device can increase quickly and will not be uniformly distributed across t...

  19. Characteristics of avalanche accidents and a overview of avalanche equipment

    Directory of Open Access Journals (Sweden)

    Mateusz Biela

    2015-12-01

    Full Text Available Avalanches are one of the most spectacular phenomena which may occur in the mountains. Unfortunately they are often caused by humans and pose for him a big danger. In the Polish Tatras alone they represent 18% of all causes of death among 1996-2013. One fourth of the people caught by an avalanche dies, and their chances of survival depends on the depth of burial, burial time, the presence of an air pocket and the degree of injuries. The most common cause of death is asphyxiation, the next is injuries and hypothermia is the rarest cause of death. The fate of the buried people depends on their equipment such as avalanche transceiver, ABS backpack and AvaLung, and also from the equipment of the people who are seeking (avalanche probes, avalanche transceiver and shovels, which has been proven in practice and research.

  20. Avalanches in UGe 2

    Science.gov (United States)

    Lhotel, E.; Paulsen, C.; Huxley, A. D.

    2004-05-01

    In UGe 2 ferromagnetism and superconductivity co-exist for pressures in the range 1.0- 1.6 GPa. The magnetic state, however, has several unusual properties. Here we report measurements of hysteresis loops for fields parallel to the easy-axis at low temperature and ambient pressure, measured for two separate UGe 2 single crystals. Steps in the magnetization as the field is changed at low temperature are observed for both crystals. The general phenomenology associated with the steps strongly suggests that they correspond to avalanches of domain-wall motion.

  1. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  2. Electrothermal simulation of superconducting nanowire avalanche photodetectors

    Science.gov (United States)

    Marsili, Francesco; Najafi, Faraz; Herder, Charles; Berggren, Karl K.

    2011-02-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  3. Shot noise suppression in avalanche photodiodes.

    Science.gov (United States)

    Ma, Feng; Wang, Shuling; Campbell, Joe C

    2005-10-21

    We identify a new shot noise suppression mechanism in a thin (approximately 100 nm) heterostructure avalanche photodiode. In the low-gain regime the shot noise is suppressed due to temporal correlations within amplified current pulses. We demonstrate in a Monte Carlo simulation that the effective excess noise factors can be < 1, and reconcile the apparent conflict between theory and experiments. This shot noise suppression mechanism is independent of known mechanisms such as Coulomb interaction, or reflection at heterojunction interfaces.

  4. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    Science.gov (United States)

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  5. Turn-on and turn-off voltages of an avalanche p—n junction

    Science.gov (United States)

    Guoqing, Zhang; Dejun, Han; Changjun, Zhu; Xuejun, Zhai

    2012-09-01

    Characteristics of the turn-on and turn-off voltage of avalanche p—n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-off voltage cannot be neglected when the size of the p—n junction is in the order of microns. The difference increases inversely with the area of a junction, exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions. Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases. Moreover, the “breakdown voltage" in the formula of the avalanche asymptotic current is, in essence, the avalanche turn-off voltage, and consequently, the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.

  6. On possibilities of application of Miller formula for determination of parameters of Micropixel Avalanche Photodiodes

    CERN Document Server

    Sadygov, Z; Akhmedov, G; Akhmedov, F; Mukhtarov, R; Sadygov, A; Titov, A; Zhezher, V

    2014-01-01

    Miller formula modified to take into account voltage drop on serial resistor of an avalanche photodiode is considered. It is proven by experimental data that modified Miller formula can describe operation of both regular and micropixel avalanche photodiodes with good enough precision. It is shown that operation parameters of the devices can be determined using a linear extrapolation of the voltage-current curve for both regular avalanche photodiode and the one operating in Geiger mode.

  7. On possibilities of application of Miller formula for determination of parameters of Micropixel Avalanche Photodiodes

    OpenAIRE

    Sadygov, Z.; Abdullaev, Kh.; Akhmedov, G.; Akhmedov, F.; Mukhtarov, R.; Sadygov, A.; Titov, A.; Zhezher, V.

    2014-01-01

    Miller formula modified to take into account voltage drop on serial resistor of an avalanche photodiode is considered. It is proven by experimental data that modified Miller formula can describe operation of both regular and micropixel avalanche photodiodes with good enough precision. It is shown that operation parameters of the devices can be determined using a linear extrapolation of the voltage-current curve for both regular avalanche photodiode and the one operating in Geiger mode.

  8. Exponential time response in analogue and Geiger mode avalanche photodiodes\\ud

    OpenAIRE

    Groves, C.; Tan, C H; David, J.P.R.; Rees, G J; Hayat, M.M.

    2005-01-01

    The mean avalanche current impulse response in an\\ud avalanche photodiode exhibits an initial transient and then grows or decays, above or below breakdown, at exponential rates which depend only on the probability distributions of the electron and hole ionization events. The process continues while the electric field profile remains unchanged by the applied bias or the evolving space\\ud charge. Below breakdown the distribution in the avalanche duration also exhibits an initial transient and t...

  9. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    Science.gov (United States)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  10. Do Neural Avalanches Indicate Criticality After All?

    CERN Document Server

    Dehghani, Mohammad; Shahbazi, Farhad

    2016-01-01

    Neural avalanches in size and duration exhibit a power law distribution illustrating as a straight line when plotted on the logarithmic scales. The power-law exponent is interpreted as the signature of criticality and it is assumed that the resting brain operates near criticality. However, there is no clear evidence that supports this assumption, and even there are extensive research studies conflicting one another. The model of the current paper is an extension of a previous publication wherein we used an integrate-and-fire model on a regular lattice with periodic boundary conditions and introduced the temporal complexity as a genuine signature of criticality. However, in that model the power-law distribution of neural avalanches were manifestation of super-criticality rather than criticality. Here, however, we show that replacing the discrete noise in the model with a Gaussian noise and continuous time solution of the equation leads to coincidence of temporal complexity and spatiotemporal patterns of neural...

  11. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two

  12. Technological advances in avalanche survival.

    Science.gov (United States)

    Radwin, Martin I; Grissom, Colin K

    2002-01-01

    Over the last decade, a proliferation of interest has emerged in the area of avalanche survival, yielding both an improved understanding of the pathophysiology of death after avalanche burial and technological advances in the development of survival equipment. The dismal survival statistics born out of the modern era of winter recreation unmistakably reveal that elapsed time and depth of burial are the most critical variables of survival and the focus of newer survival devices on the market. Although blunt trauma may kill up to one third of avalanche victims, early asphyxiation is the predominant mechanism of death, and hypothermia is rare. A survival plateau or delay in asphyxiation may be seen in those buried in respiratory communication with an air pocket until a critical accumulation of CO2 or an ice lens develops. The newest survival devices available for adjunctive protection, along with a transceiver and shovel, are the artificial air pocket device (AvaLung), the avalanche air bag system (ABS), and the Avalanche Ball. The artificial air pocket prolongs adequate respiration during snow burial and may improve survival by delaying asphyxiation. The ABS, which forces the wearer to the surface of the avalanche debris by inverse segregation to help prevent burial, has been in use in Europe for the last 10 years with an impressive track record. Finally, the Avalanche Ball is a visual locator device in the form of a spring-loaded ball attached to a tether, which is released from a fanny pack by a rip cord. Despite the excitement surrounding these novel technologies, avalanche avoidance through knowledge and conservative judgment will always be the mainstay of avalanche survival, never to be replaced by any device.

  13. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  14. Large-Area Superconducting Nanowire Single-Photon Detector with Double-Stage Avalanche Structure

    OpenAIRE

    2016-01-01

    We propose a novel design of superconducting nanowire avalanche photodetectors (SNAPs), which combines the advantages of multi-stage avalanche SNAPs to lower the avalanche current I_AV and that of series-SNAPs to reduce the reset time. As proof of principle, we fabricated 800 devices with large detection area (15 um * 15 um) and five different designs on a single silicon chip for comparison, which include standard SNSPDs, series-3-SNAPs and our modified series-SNAPs with double-stage avalanch...

  15. Josephson Currents Induced by the Witten Effect

    Science.gov (United States)

    Nogueira, Flavio S.; Nussinov, Zohar; van den Brink, Jeroen

    2016-10-01

    We reveal the existence of a new type of topological Josephson effect involving type II superconductors and three-dimensional topological insulators as tunnel junctions. We predict that vortex lines induce a variant of the Witten effect that is the consequence of the axion electromagnetic response of the topological insulator: at the interface of the junction each flux quantum attains a fractional electrical charge of e /4 . As a consequence, if an external magnetic field is applied perpendicular to the junction, the Witten effect induces an ac Josephson effect in the absence of any external voltage. We derive a number of further experimental consequences and propose potential setups where these quantized, flux induced Witten effects may be observed.

  16. Imaging findings of avalanche victims

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)

    2007-06-15

    Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)

  17. Nanopillar Optical Antenna Avalanche Detectors

    Science.gov (United States)

    2014-08-30

    68 , (11), 10. 51. Adachi, S., Properties of aluminium gallium ...bandwidth products > 100 GHz. 2 UNIVERSITY OF CALIFORNIA Los Angeles Nanopillar Optical Antenna Avalanche Detectors A dissertation... products > 100 GHz. 6 iii The dissertation of Pradeep

  18. Model of single-electron performance of micropixel avalanche photodiodes

    CERN Document Server

    Sadygov, Z; Akhmedov, G; Akhmedov, F; Khorev, S; Mukhtarov, R; Sadigov, A; Sidelev, A; Titov, A; Zerrouk, F; Zhezher, V

    2014-01-01

    An approximate iterative model of avalanche process in a pixel of micropixel avalanche photodiode initiated by a single photoelectron is presented. The model describes development of the avalanche process in time, taking into account change of electric field within the depleted region caused by internal discharge and external recharge currents. Conclusions obtained as a result of modelling are compared with experimental data. Simulations show that typical durations of the front and rear edges of the discharge current have the same magnitude of less than 50 ps. The front of the external recharge current has the same duration, however duration of the rear edge depends on value of the quenching micro-resistor. It was found that effective capacitance of the pixel calculated as the slope of linear dependence of the pulse charge on bias voltage exceeds its real capacitance by a factor of two.

  19. Current-induced forces: a simple derivation

    DEFF Research Database (Denmark)

    Todorov, Tchavdar N.; Dundas, Daniel; Lü, Jing-Tao;

    2014-01-01

    We revisit the problem of forces on atoms under current in nanoscale conductors. We derive and discuss the five principal kinds of force under steady-state conditions from a simple standpoint that-with the help of background literature-should be accessible to physics undergraduates. The discussion...

  20. Investigation on a new inducer of pulsed eddy current thermography

    Science.gov (United States)

    He, Min; Zhang, Laibin; Zheng, Wenpei; Feng, Yijing

    2016-09-01

    In this paper, a new inducer of pulsed eddy current thermography (PECT) is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR) camera's view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  1. Investigation on a new inducer of pulsed eddy current thermography

    Directory of Open Access Journals (Sweden)

    Min He

    2016-09-01

    Full Text Available In this paper, a new inducer of pulsed eddy current thermography (PECT is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR camera’s view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  2. Current heating induced spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Schreier, Michael, E-mail: michael.schreier@wmi.badw.de; Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Goennenwein, Sebastian T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Gross, Rudolf [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, Technische Universität München, Garching (Germany)

    2013-12-09

    A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.

  3. Infrasonic monitoring of snow avalanches in the Alps

    Science.gov (United States)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  4. Current-induced switching in a magnetic insulator

    Science.gov (United States)

    Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.

    2016-11-01

    The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

  5. Neutron induced current pulses in fission chambers. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Taboas, A L; Buck, W L

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained.

  6. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    of the flow in the slope, and make observations of the internal flow dynamics, especially flow regimes transitions, which depend on the slope-perpendicular energy fluxes induced by collisions at the basal boundary. The recorded data over several experimental seasons provide a catalogue of seismic data from different types and sizes of avalanches triggered at the VDLS experimental site. These avalanches are recorded also by the SLF instrumentation (FMCW radars, photography, photogrammetry, video, videogrammetry, pressure sensors). We select the best-quality avalanche data to model and establish comparisons. All this information allows us to calibrate parameters governing the internal energy fluxes, especially parameters governing the interaction of the avalanche with the incumbent snow cover. For the comparison between the seismic signal and the RAMMS models, we are focusing at the temporal evolution of the flow, trying to find the same arrival times of the front at the seismic sensor location in the avalanche path. We make direct quantitative comparisons between measurements and model outputs, using modelled flow height, normal stress, velocity, and pressure values, compared with the seismic signal, its envelope and its running spectrogram. In all cases, the first comparisons between the seismic signal and RAMMS outputs are very promising.

  7. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    Rasmus Bjerregaard Christensen

    2016-01-01

    Full Text Available We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis. Our study illustrates how armchair nanoribbons can serve as a possible testbed for probing the current-induced forces.

  8. Avalanche risk assessment in Russia

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  9. Infrasound monitoring of snow avalanches in the Italian Alps

    Science.gov (United States)

    Ripepe, Maurizio; Ulivieri, Giacomo; Marchetti, Emanuele; Chiambretti, Igor; Segor, Valerio; Pitet, Luca

    2010-05-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2009 we installed a temporary 4-element, small aperture (100 m), infrasound array in the Alps. The array has been deployed south of Mt. Rosa, at an elevation of 2000 m a.s.l. in the valley of Gressoney, where natural avalanches are expected and triggered ones are regularly programmed. The array consists into 4 absolute pressure transducers with a sensitivity of 0.01 Pa in the 0.1-50 Hz frequency band and a 7 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. The array is completely buried in snow. Gel cell batteries and 200 W solar panels provide the array power requirements (~3 W) and should allow a continuous operation during the winter season. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This pilot experiment in Italy will allow to verify the efficiency of the system, and might represent an important validation to modeled avalanches activity during this winter season.

  10. Avalanche Effect in Improperly Initialized CAESAR Candidates

    Directory of Open Access Journals (Sweden)

    Martin Ukrop

    2016-12-01

    Full Text Available Cryptoprimitives rely on thorough theoretical background, but often lack basic usability features making them prone to unintentional misuse by developers. We argue that this is true even for the state-of-the-art designs. Analyzing 52 candidates of the current CAESAR competition has shown none of them have an avalanche effect in authentication tag strong enough to work properly when partially misconfigured. Although not directly decreasing their security profile, this hints at their security usability being less than perfect. Paper details available at crcs.cz/papers/memics2016

  11. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  12. Solitary granular avalanches: stability, fingering and theoretical modeling

    Science.gov (United States)

    Malloggi, Florent; Andreotti, Bruno; Clément, Eric; Aronson, Igor; Tsimring, Lev

    2008-03-01

    Avalanching processes do not only occur in the air as we know of snow avalanches, mud flows and land-slides. Such events frequently happen below the see level as they take many forms from turbidity currents to thick sediment waves. In this study we report results on laboratory scale avalanche experiments taking place both in the air and under-water. In both cases a family of stable solitary erosion/deposition waves is observed [1]. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagrams, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. We also use these erosion/deposition waves to investigate the dynamics of granular flow and jamming in the frame work of the Partial Fluidization Theory (PFT) proposed by Aronson et al. to describe the dynamics of granular matter near jamming [2]. [1] F. Malloggi et al. Europhysics Letters, 2006, Erosion waves: Transverse instabilities and fingering 75, 825-831 [2] I. S. Aranson et al.. Transverse instability of avalanches in granular flows down an incline. Physical Review E, 2006, 73, 050302; I.S.Aronson et al., Non rheological properties of granular flows: exploring the near jamming limit, preprint (2007).

  13. Observations and modelling of snow avalanche entrainment

    OpenAIRE

    2002-01-01

    In this paper full scale avalanche dynamics measurements from the Italian Pizzac and Swiss Vallée de la Sionne test sites are used to develop a snowcover entrainment model. A detailed analysis of three avalanche events shows that snowcover entrainment at the avalanche front appears to dominate over bed erosion at the basal sliding surface. Furthermore, the distribution of mass within the avalanche body is primarily a function of basal fric...

  14. Correlations in avalanche critical points

    Science.gov (United States)

    Cerruti, Benedetta; Vives, Eduard

    2009-07-01

    Avalanche dynamics and related power-law statistics are ubiquitous in nature, arising in phenomena such as earthquakes, forest fires, and solar flares. Very interestingly, an analogous behavior is associated with many condensed-matter systems, such as ferromagnets and martensites. Bearing it in mind, we study the prototypical random-field Ising model at T=0 . We find a finite correlation between waiting intervals and the previous avalanche size. This correlation is not found in other models for avalanches but it is experimentally found in earthquakes and in forest fires. Our study suggests that this effect occurs in critical points that are at the end of a first-order discontinuity separating two regimes: one with high activity from another with low activity.

  15. Studies of Electron Avalanche Behavior in Liquid Argon

    CERN Document Server

    Kim, J G; Jackson, K H; Kadel, R W; Kadyk, J A; Peskov, Vladimir; Wenzel, W A

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche behavior is erratic, but the addition of even a small amount of xenon (>100ppm) stabilizes the performance. Similar attempts with neon (30%) as an additive to argon have been unsuccessful. Tests with higher energy gamma rays (57Co) yield spectra and other performance characteristics quite similar to those using the 241Am source. Two types of signal pulses are commonly observed: a set of pulses that are sensitive to ambient pressure, and a set of somewhat smaller pulses that are not pressure dependent.

  16. High quantum efficiency GaP avalanche photodiodes.

    Science.gov (United States)

    McIntosh, Dion; Zhou, Qiugui; Chen, Yaojia; Campbell, Joe C

    2011-09-26

    Gallium Phosphide (GaP) reach-through avalanche photodiodes (APDs) are reported. The APDs exhibited dark current less than a pico-ampere at unity gain. A quantum efficiency of 70% was achieved with a recessed window structure; this is almost two times higher than previous work. © 2011 Optical Society of America

  17. Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

    CERN Document Server

    Nieves, J; Vacas, M J V

    2006-01-01

    By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.

  18. Current-induced dynamics in carbon atomic contacts

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads

    2011-01-01

    voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...... of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects. Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic...... carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias...

  19. Current-induced dynamics in carbon atomic contacts

    Directory of Open Access Journals (Sweden)

    Jing-Tao Lü

    2011-12-01

    Full Text Available Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC and Berry-phase derived forces (BP with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects.Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating.Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system.

  20. Avalanche dynamics on a rough inclined plane.

    Science.gov (United States)

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  1. AlGaN solar-blind avalanche photodiodes with AlInN/AlGaN distributed Bragg reflectors

    Science.gov (United States)

    Yao, Chujun; Ye, Xuanchao; Sun, Rui; Yang, Guofeng; Wang, Jin; Lu, Yanan; Yan, Pengfei; Cao, Jintao

    2017-06-01

    AlGaN solar-blind avalanche photodiodes (APDs) with AlInN/AlGaN distributed Bragg reflectors (DBRs) operated at lower avalanche breakdown voltage are numerically demonstrated. The p-type AlGaN layer and the multiplicative layer with low Al composition are introduced to construct the polarization-induced electric field, which can significantly reduce the avalanche breakdown voltage of the APDs. Calculated results exhibit that the avalanche breakdown voltage of the designed APDs decrease by 13% compared with the conventional device structure. Simultaneously, an improved solar-blind spectral responsivity is achieved due to the inserted AlInN/AlGaN DBRs.

  2. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  3. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

    Science.gov (United States)

    Eckerstorfer, M.; Christiansen, H. H.; Rubensdotter, L.; Vogel, S.

    2013-09-01

    rockwall retreat rates of 1.1 mm yr-1 at Nybyen have been determined earlier. As cornice fall avalanches are the dominant type of avalanche in central Svalbard, the related geomorphological effect is assumed to be of significance at periglacial landscape scale. A climate-induced shift in prevailing winter wind direction could change the rockslope sedimentation effectively by changing the snow avalanche activity.

  4. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard

    Directory of Open Access Journals (Sweden)

    M. Eckerstorfer

    2013-09-01

    Larsbreen, while average Holocene rockwall retreat rates of 1.1 mm yr−1 at Nybyen have been determined earlier. As cornice fall avalanches are the dominant type of avalanche in central Svalbard, the related geomorphological effect is assumed to be of significance at periglacial landscape scale. A climate-induced shift in prevailing winter wind direction could change the rockslope sedimentation effectively by changing the snow avalanche activity.

  5. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions

    Institute of Scientific and Technical Information of China (English)

    Lu Jiang; Tian Xiaoli; Lu Shuojin; Zhou Hongyu; Zhu Yangjun; Han Zhengsheng

    2013-01-01

    The ability of high-voltage power MOSFETs and IGBTs to withstand avalanche events under unclamped inductive switching (UIS) conditions is measured.This measurement is to investigate and compare the dynamic avalanche failure behavior of the power MOSFETs and the IGBT,which occur at different current conditions.The UIS measurement results at different current conditions show that the main failure reason of the power MOSFETs is related to the parasitic bipolar transistor,which leads to the deterioration of the avalanche reliability of power MOSFETs.However,the results of the IGBT show two different failure behaviors.At high current mode,the failure behavior is similar to the power MOSFETs situation.But at low current mode,the main failure mechanism is related to the parasitic thyristor activity during the occurrence of the avalanche process and which is in good agreement with the experiment result.

  6. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration.

    Science.gov (United States)

    Amon, Daniel L; Niculescu, Tatiana; Utter, Brian C

    2013-07-01

    We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates. We measure time series of the slope of the interface and find that the critical angle for slope failure θ(c) and the resulting angle of repose θ(r) are broadly distributed with an approximate power-law distribution of avalanches θ(c)-θ(r) for large avalanches. The faceted pentagonal grains used lead to significant interlocking with critical and repose angles (θ(c)≈45° and θ(r)≈39°) larger than experiments using spherical grains, even with vibration, and avalanche magnitudes correlated with the prior build-up and anti-correlated with the prior avalanche. We find that the stability of the assembly increases with small vibrations and is destabilized at vibration amplitudes above a dimensionless acceleration (peak acceleration divided by acceleration due to gravity) of Γ=0.2. We also study history dependence of the avalanches by periodically oscillating the drum to compare the initial avalanche upon reversal of shear to steady-state distributions for avalanches during continuous rotation. We observe history dependence as an initial decrease in critical angle upon reversal of the drum rotation direction, indicating that a texture is induced to resist continued shear such that the surface is weaker to reversals in shear direction. Memory of this history is removed by sufficient external vibration (Γ≥0.8), which leads to compaction and relaxation of the surface layer grains responsible for avalanching dynamics, as initial and steady-state avalanche distributions become indistinguishable.

  7. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    Science.gov (United States)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  8. STUDY ON SIMULATION METHOD OF AVALANCHE : FLOW ANALYSIS OF AVALANCHE USING PARTICLE METHOD

    OpenAIRE

    2015-01-01

    In this paper, modeling for the simulation of the avalanche by a particle method is discussed. There are two kinds of the snow avalanches, one is the surface avalanche which shows a smoke-like flow, and another is the total-layer avalanche which shows a flow like Bingham fluid. In the simulation of the surface avalanche, the particle method in consideration of a rotation resistance model is used. The particle method by Bingham fluid is used in the simulation of the total-layer avalanche. At t...

  9. Gridded snow maps supporting avalanche forecasting in Norway

    Science.gov (United States)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  10. Avalanche hazard and control in Kazakhstan

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky

    2014-01-01

    Full Text Available In Kazakhstan, area of 124 thousand km2 is prone to the avalanche hazard. Avalanches are released down in mountain regions situated along the eastern boundary of Kazakhstan. Systematic studies of avalanches here were started in 1958 by explorer I.S. Sosedov; later on, I.V. Seversky continued these investigations in Institute of Geography of the Kazakh Soviet Republic. Actually, he founded the Kazakh school of the avalanche studies. In 1970–1980s, five snow-avalanche stations operated in Kazakhstan: two in Il’ Alatau, two in Zhetysu Alatau, and one in the Altai. At the present time, only two stations and two snow-avalanche posts operate, and all of them are located in Il’ Alatau.Since 1951 to 2013, 75 avalanches took place in Kazakhstan, releases of them caused significant damages. For this period 172 people happened to be under avalanches, among them 86 perished. Large avalanche catastrophes causing human victims and destructions took place in Altai in 1977 and in Karatau in 1990. In spring of 1966, only in Il’ Alatau avalanches destroyed more 600 ha of mature fir (coniferous forest, and the total area of forest destroyed here by avalanches amounts to 2677 ha or 7% of the total forest area.For 48 years of the avalanche observations, there were 15 winters with increased avalanche activity in the river Almatinka basin when total volume of released snow exceeded annual mean value of 147 thousand m3. During this period, number of days with winter avalanches changed from three (in season of 1973/1974 to 28 (1986/1987, the average for a year is 16 days for a season. Winter with the total volume of snow 1300 thousand m3 occur once in 150 years. Individual avalanches with maximal volume of 350 thousand m3 happen once in 80 years.Preventive avalanche releases aimed at protection of roads and settlements are used in Kazakhstan since 1974. These precautions are taken in Il’ Alatau, Altai, and on Kalbinsky Range. Avalanches are released with the

  11. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  12. Survey of Induced Voltage and Current Phenomena in GIS Substation

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Hassan Hosseini

    2014-03-01

    Full Text Available Induced capacitive voltage and current in high voltage GIS substation is one of the most significant phenomena that may have made some problems in this substation operation. At this study the various equipment of 420 KV Karoon4 substations such as powerhouses, input and output lines, bus-bar and bus-duct have simulated by applying EMTP-RV software. Then with the different condition of single-phase and three-phase faults on the lines in critical conditions, capacitive induction voltage and current by parallel capacitor with circuit breaker is surveyed. The results show the value of this induced current and voltage and that this critical conditions the breakers and dis-connector switches must be able to interrupt this value of current.

  13. Photoinduced current and emission induced by current in a nanowire transistor: Temperature dependence

    Indian Academy of Sciences (India)

    Darehdor Mahvash Arabi; Shahtahmassebi Nasser

    2016-03-01

    In this paper, we present a theoretical study on a light emitting and current carrying nanosystem, in the nonzero temperature regime. The system under consideration is a semiconducting nanowire sandwiched between two semi-infinite metallic electrodes. The study was performed using the Keldysh nonequilibrium Green’s function method. We systematically investigate the photoinduced current and the light emission induced by this electronic current in the presence of gate voltage. The temperature dependence of these processes are also investigated in the temperature range of 3–300 K. Our study shows that, the photoinduced current is due to the transfer of electrons from highest occupied molecular orbital (HOMO) to the lowest unoccupied molecularorbital (LUMO). Thus, the separation of electron from the electron–hole pair creates a free electron which is responsible for the observed photoinduced current. The same conclusion is also arrived at for the reverse process of light emission under the influence of the electronic current.

  14. Current-induced domain wall motion in ferromagnetic semiconductors

    Science.gov (United States)

    Ohno, Hideo

    2007-03-01

    Low magnetization (˜0.05 T) and high spin-polarization in ferromagnetism of transition metal-doped GaAs allow us to explore a number of spin-dependent phenomena not readily accessible in metal ferromagnets. Spin-polarized current induced domain wall (DW) motion in (Ga,Mn)As [1, 2] reveals rich physics resulting from the interaction between spin-polarized electrons and localized spins inside a magnetic DW. By using a 30 nm thick (Ga,Mn)As layer (xMn = 0.045) with perpendicular magnetic anisotropy, we have measured by magneto-optical Kerr microscopy a wide range of velocity-current density curves in the sample temperature range of 97 -- 107 K. Two regimes are found in the current density dependence of the DW velocity. At high-current densities (> 2 x 10^5 A/cm^2), the domain wall velocity is approximately a linear function of the current density above a threshold current density. This result will be compared to the recent theories of DW motion. At low-current densities, the functional form of the velocity-current curves follow an empirical scaling law, obtained by modifying the one for magnetic-field induced creep. This shows that current-induced DW creep is present. We have also determined the intrinsic resistance of the DW in a similar configuration [3]. *M. Yamanouchi, D. Chiba, F. Matsukura, and H. Ohno, Nature 428, 539 (2004). *M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl and H. Ohno, Phys. Rev. Lett. 96, 096601 (2006). *D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 96, 096602 (2006).

  15. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    Science.gov (United States)

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  16. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    Science.gov (United States)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  17. Electron avalanche structure determined by random walk theory

    Science.gov (United States)

    Englert, G. W.

    1973-01-01

    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  18. Comments on dyadic Green's functions and induced currents

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1996-01-01

    The article formulates the wave equation in regions with induced currents in the case of scattering by a perfect conductor. By using this formulation the ordinary solution using the dyadic Green's function for the problem is discussed. The region of validity of this solution is pointed out...

  19. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Lu, Jing Tao; Hedegard, Per

    2016-01-01

    We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from...

  20. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Lu, Jing Tao; Hedegard, Per

    2016-01-01

    We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from...

  1. Laser-induced incandescence : recent trends and current questions

    NARCIS (Netherlands)

    Schulz, C.; Kock, B.F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G.

    2006-01-01

    This paper provides an overview of a workshop focused on fundamental experimental and theoretical aspects of soot measurements by laser-induced incandescence (LII). This workshop was held in Duisburg, Germany in September 2005. The goal of the workshop was to review the current understanding of the

  2. Laser-induced incandescence : recent trends and current questions

    NARCIS (Netherlands)

    Schulz, C.; Kock, B.F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G.

    2006-01-01

    This paper provides an overview of a workshop focused on fundamental experimental and theoretical aspects of soot measurements by laser-induced incandescence (LII). This workshop was held in Duisburg, Germany in September 2005. The goal of the workshop was to review the current understanding of the

  3. The prehospital management of avalanche victims.

    Science.gov (United States)

    Kornhall, Daniel K; Martens-Nielsen, Julie

    2016-12-01

    Avalanche accidents are frequently lethal events with an overall mortality of 23%. Mortality increases dramatically to 50% in instances of complete burial. With modern day dense networks of ambulance services and rescue helicopters, health workers often become involved during the early stages of avalanche rescue. Historically, some of the most devastating avalanche accidents have involved military personnel. Armed forces are frequently deployed to mountain regions in order to train for mountain warfare or as part of ongoing conflicts. Furthermore, military units are frequently called to assist civilian organised rescue in avalanche rescue operations. It is therefore important that clinicians associated with units operating in mountain regions have an understanding of, the medical management of avalanche victims, and of the preceding rescue phase. The ensuing review of the available literature aims to describe the pathophysiology particular to avalanche victims and to outline a structured approach to the search, rescue and prehospital medical management.

  4. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  5. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  6. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior

    Science.gov (United States)

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  7. Rock avalanches clusters along the northern Chile coastal scarp

    Science.gov (United States)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.

    2017-07-01

    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  8. Chemotherapy-induced peripheral neuropathy: Current status and progress.

    Science.gov (United States)

    Brewer, Jamie R; Morrison, Gladys; Dolan, M Eileen; Fleming, Gini F

    2016-01-01

    As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, with a focus on CIPN related to platinum and taxane agents. We will then discuss current clinical models of peripheral neuropathy and ongoing research to better understand CIPN and develop potential treatment options.

  9. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  10. Modelling of helical current filaments induced by LHW on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael; Denner, Peter; Liang, Yunfeng [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Zeng, Long [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gong, Xianzu; Gan, Kaifu; Wang, Liang; Liu, Fukun; Qian, Jinping; Shen, Biao; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gauthier, Eric [Association EURATOM-CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Collaboration: the EAST Team

    2013-07-01

    Helical radiation belts have been observed in the scrape-off layer (SOL) of the plasma during the application of lower hybrid wave (LHW) heating at the superconducting tokamak EAST. Modelled SOL field lines, starting in-front of the LHW antennas, show agreement in position and pitch angle to the experimental observed radiation belts. A splitting of the strike-line can be observed on the outer divertor plates during the application of LHW heating. Agreement in the comparison of the Mirnov coil signals and a modelled electric current flow along these SOL field lines was found. A lower hybrid current drive can induce such an electric current flow near the plasma edge. This electric current flow causes a change of the plasma topology which could result in the splitting of the strike-line as known from the application of resonant magnetic perturbation fields. Comparisons of modelled footprint structures and experimental observed heat load patterns in the divertor region are discussed.

  11. Nonconservative current-induced forces: A physical interpretation

    Directory of Open Access Journals (Sweden)

    Tchavdar N. Todorov

    2011-10-01

    Full Text Available We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron–phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.

  12. Nonconservative current-induced forces: A physical interpretation.

    Science.gov (United States)

    Todorov, Tchavdar N; Dundas, Daniel; Paxton, Anthony T; Horsfield, Andrew P

    2011-01-01

    We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron-phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.

  13. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    Science.gov (United States)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  14. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  15. Current-induced forces and hot spots in biased nanojunctions.

    Science.gov (United States)

    Lü, Jing-Tao; Christensen, Rasmus B; Wang, Jian-Sheng; Hedegård, Per; Brandbyge, Mads

    2015-03-06

    We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant asymmetric concentration of excess heating (hot spot) even for a symmetric conductor. When coupled to the electrode phonons, CIFs drive different phonon heat flux into the two electrodes. First-principles calculations on realistic biased nanojunctions illustrate the importance of the effect.

  16. Current-Induced Forces and Hot Spots in Biased Nanojunctions

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Wang, Jian-Sheng;

    2015-01-01

    We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant...... asymmetric concentration of excess heating (hot spot) even for a symmetric conductor. When coupled to the electrode phonons, CIFs drive different phonon heat flux into the two electrodes. First-principles calculations on realistic biased nanojunctions illustrate the importance of the effect....

  17. Single and few photon avalanche photodiode detection process study

    Science.gov (United States)

    Blazej, Josef; Prochazka, Ivan

    2009-07-01

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) pulse response risetime and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 μm active area and the correlation between the avalanche buildup time and the photon number involved in the avalanche trigger. The detection chip was operated in a passive quenching circuit with active gating. This setup enabled us to monitor the diode reverse current using an electrometer, a fast digitizing oscilloscope, and using a custom design comparator circuit. The electrometer reading enabled to estimate the photon number per detection event, independently on avalanche process. The avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented. The existing solid state photon counting detectors have been dedicated for picosecond resolution and timing stability of single photon events. However, the high timing stability is maintained for individual single photons detection, only. If more than one photon is absorbed within the detector time resolution, the detection delay will be significantly affected. This fact is restricting the application of the solid state photon counters to cases where single photons may be guaranteed, only. For laser ranging purposes it is highly desirable to have a detector, which detects both single photon and multi photon signals with picoseconds stability. The SPAD based photon counter works in a purely digital mode: a uniform output signal is generated once the photon is detected. If the input signal consists of several photons, the first absorbed one triggers the avalanche. Obviously, for multiple photon signals, the

  18. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches

    Science.gov (United States)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty

    2016-04-01

    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  19. GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization

    DEFF Research Database (Denmark)

    Adelfinger, L; Turecek, R; Ivankova, K

    2014-01-01

    released from the G-protein. Receptor-activated K+ currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K+ currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which...... reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G......-protein βγ subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast...

  20. On the temporal organization of neuronal avalanches.

    Science.gov (United States)

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  1. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  2. Climate-induced boreal forest change: Predictions versus current observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart; Stackhouse, Paul W.

    2007-04-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  3. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  4. Triaging multiple victims in an avalanche setting: the Avalanche Survival Optimizing Rescue Triage algorithmic approach.

    Science.gov (United States)

    Bogle, Lee B; Boyd, Jeff J; McLaughlin, Kyle A

    2010-03-01

    As winter backcountry activity increases, so does exposure to avalanche danger. A complicated situation arises when multiple victims are caught in an avalanche and where medical and other rescue demands overwhelm resources in the field. These mass casualty incidents carry a high risk of morbidity and mortality, and there is no recommended approach to patient care specific to this setting other than basic first aid principles. The literature is limited with regard to triaging systems applicable to avalanche incidents. In conjunction with the development of an electronic avalanche rescue training module by the Canadian Avalanche Association, we have designed the Avalanche Survival Optimizing Rescue Triage algorithm to address the triaging of multiple avalanche victims to optimize survival and disposition decisions.

  5. Silicon Geiger mode avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    M. Mazzillo; S. Billotta; G. Bonanno; A. Campisi; L. Cosentino; P. Finocchiaro; F. Musumeci; S.Privitera; S. Tudisco; G. Condorelli; D. Sanfilippo; G. Fallica; E. Sciacca; S. Aurite; S. Lombardo; E. Rlmini; M. Belluso

    2007-01-01

    In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes (GMAP) fabricated by silicon standard planar technology. Low dark count rates, negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields, as telecommunications and nuclear medical imaging.

  6. Avalanche!--Teachable Moments in Outdoor Education

    Science.gov (United States)

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  7. Assessment of the tsunami-induced current hazard

    Science.gov (United States)

    Lynett, Patrick J.; Borrero, Jose; Son, Sangyoung; Wilson, Rick; Miller, Kevin

    2014-03-01

    The occurrence of tsunami damage is not limited to events causing coastal inundation. Even without flooding, maritime assets are vulnerable to significant damage from strong currents and associated drag forces. While such impacts have been observed in the past, they have not been well studied in any context. Nearshore tsunami currents are governed by nonlinear and turbulent physics and often have large spatial and temporal variability making high-fidelity modeling particularly challenging. Furthermore, measured data for the validation of numerical simulations is limited, with few quality data sets appearing after recent tsunami events. In this paper, we present a systematic approach for the interpretation of measured tsunami-induced current impacts as well as a validation approach for simulation tools. The methods and results provided here lay the foundation for much needed efforts to assess tsunami hazards in ports and harbors.

  8. Observations and modelling of snow avalanche entrainment

    Directory of Open Access Journals (Sweden)

    B. Sovilla

    2002-01-01

    Full Text Available In this paper full scale avalanche dynamics measurements from the Italian Pizzac and Swiss Vallée de la Sionne test sites are used to develop a snowcover entrainment model. A detailed analysis of three avalanche events shows that snowcover entrainment at the avalanche front appears to dominate over bed erosion at the basal sliding surface. Furthermore, the distribution of mass within the avalanche body is primarily a function of basal friction. We show that the mass distribution in the avalanche changes the flow dynamics significantly. Two different dynamical models, the Swiss Voellmy-fluid model and the Norwegian NIS model, are used to back calculate the events. Various entrainment methods are investigated and compared to measurements. We demon-strate that the Norwegian NIS model is clearly better able to simulate the events once snow entrainment has been included in the simulations.

  9. Thermal energy in dry snow avalanches

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2015-09-01

    Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. For the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the effective elevation drop of the mass of the avalanche with a warming of approximately 0.3 °C per 100 vertical metres. Contrarily, the temperature change due to entrainment varied for the individual avalanches, from -0.08 to 0.3 °C, and depended on the temperature of the snow along the path and the erosion depth. Infrared radiation thermography (IRT) was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to identify the warmest temperatures to be located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  10. Thermal energy in dry snow avalanches

    Directory of Open Access Journals (Sweden)

    W. Steinkogler

    2014-11-01

    Full Text Available Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional and collisional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. Infrared radiation thermography (IRT was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. We could confirm that, for the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche with a warming of approximately 0.5 °C per 100 height meters. Contrary, warming due to entrainment was very specific to the individual avalanche and depended on the temperature of the snow along the path and the erosion depth ranging from nearly no warming to a maximum observed warming of 1 °C. Furthermore, we could observe the warmest temperatures are located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  11. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  12. Turn-on and turn-off voltages of an avalanche p-n junction

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoqing; Han Dejun; Zhu Changjun; Zhai Xuejun

    2012-01-01

    Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied.As opposed to existing reports,the differences between the turn-on and turn-off voltage cannot be neglected when the size of the p-n junction is in the order of microns.The difference increases inversely with the area of a junction,exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions.Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases.Moreover,the "breakdown voltage" in the formula of the avalanche asymptotic current is,in essence,the avalanche turn-off voltage,and consequently,the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.

  13. Equilibrium avalanches in spin glasses

    Science.gov (United States)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMmodel. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  14. Spontaneous avalanche ionization of a strongly blockaded Rydberg gas

    CERN Document Server

    Robert-de-Saint-Vincent, M; Schempp, H; Günter, G; Whitlock, S; Weidemüller, M

    2012-01-01

    We report the sudden and spontaneous evolution of an initially correlated gas of repulsively interacting Rydberg atoms to an ultracold plasma. Under continuous laser coupling we create a Rydberg ensemble in the strong blockade regime, which at longer times undergoes an ionization avalanche. By combining optical imaging and ion detection, we access the full information on the dynamical evolution of the system, including the rapid increase in the number of ions and a sudden depletion of the Rydberg and ground state densities. Rydberg-Rydberg interactions are observed to strongly affect the dynamics of plasma formation. Using a coupled rate-equation model to describe our data, we extract the average energy of electrons trapped in the plasma, and an effective cross-section for ionizing collisions between Rydberg atoms and atoms in low-lying states. Our results suggest that the initial correlations of the Rydberg ensemble should persist through the avalanche. This would provide the means to overcome disorder-induc...

  15. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area

    Science.gov (United States)

    Yoshida, Hidetsugu

    2014-10-01

    This paper investigates the relationship of hummock orientation to the flow dynamics of volcanic debris avalanches. There are opposing views on whether hummocks are systematically aligned along debris avalanche paths, or not. To investigate this geomorphologically fundamental question, I investigated hummock orientation for six Japanese debris avalanches of two simple styles: four "freely spreading" debris avalanches, and two "valley-filling" debris avalanches. Quantitative GIS-based data analysis revealed that hummock orientation along the avalanche flow path alternated between dominantly parallel to and dominantly perpendicular to the flow direction. These changes of alignment reflect dynamic changes of the local stress field within the avalanche, alternating between extensional and compressional in response to changes of the slope of the pre-avalanche ground surface. Changes of hummock alignment from perpendicular to parallel indicate that the local stress regime has changed from compressional to extensional. Conversely, changes of hummock alignment from parallel to perpendicular indicate that the local stress regime has changed from extensional to compressional. Thus, this research demonstrated a clear relationship between hummock orientation and dynamic changes of stress regime within avalanches that are related to changes of the slope of the pre-avalanche ground surface.

  16. Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes

    Science.gov (United States)

    Valero, Cesar Vera; Wever, Nander; Bühler, Yves; Stoffel, Lukas; Margreth, Stefan; Bartelt, Perry

    2016-11-01

    Mining activities in cold regions are vulnerable to snow avalanches. Unlike operational facilities, which can be constructed in secure locations outside the reach of avalanches, access roads are often susceptible to being cut, leading to mine closures and significant financial losses. In this paper we discuss the application of avalanche runout modelling to predict the operational risk to mining roads, a long-standing problem for mines in high-altitude, snowy regions. We study the 35 km long road located in the "Cajón del rio Blanco" valley in the central Andes, which is operated by the Codelco Andina copper mine. In winter and early spring, this road is threatened by over 100 avalanche paths. If the release and snow cover conditions can be accurately specified, we find that avalanche dynamics modelling is able to represent runout, and safe traffic zones can be identified. We apply a detailed, physics-based snow cover model to calculate snow temperature, density and moisture content in three-dimensional terrain. This information is used to determine the initial and boundary conditions of the avalanche dynamics model. Of particular importance is the assessment of the current snow conditions along the avalanche tracks, which define the mass and thermal energy entrainment rates and therefore the possibility of avalanche growth and long runout distances.

  17. Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles.

    Science.gov (United States)

    Hügli, R V; Duff, G; O'Conchuir, B; Mengotti, E; Rodríguez, A Fraile; Nolting, F; Heyderman, L J; Braun, H B

    2012-12-28

    Artificial spin-ice systems consisting of nanolithographic arrays of isolated nanomagnets are model systems for the study of frustration-induced phenomena. We have recently demonstrated that monopoles and Dirac strings can be directly observed via synchrotron-based photoemission electron microscopy, where the magnetic state of individual nanoislands can be imaged in real space. These experimental results of Dirac string formation are in excellent agreement with Monte Carlo simulations of the hysteresis of an array of dipoles situated on a kagome lattice with randomized switching fields. This formation of one-dimensional avalanches in a two-dimensional system is in sharp contrast to disordered thin films, where avalanches associated with magnetization reversal are two-dimensional. The self-organized restriction of avalanches to one dimension provides an example of dimensional reduction due to frustration. We give simple explanations for the origin of this dimensional reduction and discuss the disorder dependence of these avalanches. We conclude with the explicit demonstration of how these avalanches can be controlled via locally modified anisotropies. Such a controlled start and stop of avalanches will have potential applications in data storage and information processing.

  18. Avalanches and hysteresis in frustrated superconductors and XY spin-glasses

    Science.gov (United States)

    Sharma, Auditya; Andreanov, Alexei; Mueller, Markus

    2014-03-01

    We study avalanches along the hysteresis loop of long-range interacting spin-glasses with continuous XY symmetry - which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T = 0 configurations of the XY phases, as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events, and study the correlation between the no n-linear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, sim ilarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin-glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law, but rather have a typical size which scales with the system size.

  19. Some influences of rock strength and strain rate on propagation of rock avalanches

    Science.gov (United States)

    Bowman, Elisabeth; Rait, Kim

    2016-04-01

    Rock avalanches are extreme and destructive mass movements in which large volumes of rock (typically >1 million cubic metres) travel at high speeds, covering large distances, and the occurrence of which is highly unpredictable. The "size effect" in rock avalanches, whereby those with larger volumes produce greater spreading efficiency (as defined by an increase in normalised runout) or lower farboschung angle (defined as the tangent of the ratio of fall height to runout length), is well known. Studies have shown that rock strength is a controlling factor in the mobility of rock avalanches - that is, mass movements involving lower strength rock are generally found to produce greater mobility as evidenced by the spread of deposits or low farboschung angle. However, there are conflicting ideas as to how and why this influence is manifested. This paper discusses different theories of rock comminution in light of numerical simulations of rock clasts undergoing normal and shear induced loading, experimental work on rock avalanche behaviour, and dynamic fracture mechanics. In doing so, we introduce the idea of thresholds of strain rate for the production of dynamic fragmentation (as opposed to pseudo-static clast crushing) that are based, inter alia, on static rock strength. To do this, we refer to data from physical models using rock analogue materials, field data on chalk cliff collapses, and field statistics from documented rock avalanches. The roles of normal and shear loading and loading rate within a rock avalanche are examined numerically using 3D Discrete Element Method models of rock clasts loaded to failure. Results may help to reconcile the observations that large rock avalanches in stronger materials tend not to fragment as much as those in weaker materials and also possess lower mobility, while small cliff collapses (typically > 1000 cubic metres) in weak chalk can exhibit rock avalanche-like behaviour at much smaller volumes.

  20. Current-induced nonlinear magnetoelectric effects in strontium hexaferrite

    Science.gov (United States)

    Zavislyak, I. V.; Popov, M. A.; Srinivasan, G.

    2016-12-01

    We report on the observation of nonlinear magnetoelectric effects at room temperature due to a dc current in the ferrimagnetic M -type strontium hexaferrite platelets. Utilizing microwave measurement techniques and data on the shift in magnetic mode frequencies, it was found that a dc current along the hexagonal c axis resulted in a significant decrease in the saturation magnetization and an increase in the uniaxial magnetocrystalline anisotropy field. These changes in the magnetic order parameters were directly proportional to the square of applied electric field and were found to be much higher than variations due to Joule heating. A phenomenological theory that takes into account the current-induced magnetobielectric (MBE) effects is proposed. Expressions for coupling coefficients for MBE effects have been obtained and have been calculated from the variations in magnetic order parameters. The electric field E (or current) tuning of the magnetic modes in Sr M reported here is orders of magnitude stronger than strain mediated E tuning of magnetic resonance in hexaferrite-ferroelectric composites. The nonlinear magnetoelectric effects in hexaferrite, therefore, open up an avenue for the realization of E -tunable broadband microwave and millimeter wave ferrite signal processing devices such as resonators and filters.

  1. Control of optically induced currents in semiconductor crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Kapil Kumar

    2010-06-01

    The generation and control of optically induced currents has the potential to become an important building block for optical computers. Here, shift and rectification currents are investigated that emerge from a divergence of the optical susceptibility. It is known that these currents react to the shape of the impinging laser pulse, and especially to the shape of the pulse envelope. The main goal is the systematic manipulation of the pulse envelope with an optical pulse shaper that is integrated into a standard THz emission setup. The initial approach, the chirping of the laser pulse only has a weak influence on the envelope and the currents. Instead, a second approach is suggested that uses the combined envelope of a phase-stable pulse-pair as a parameter. In a laser pulse, the position of the maxima of the electrical field and the pulse envelope are shifted relative to each other. This shift is known as the Carrier-Envelope Phase (CEP). It is a new degree of freedom that is usually only accessible in specially stabilized systems. It is shown, that in a phase-stable pulse-pair, at least the relative CEP is usable as a new degree of freedom. It has a great influence on the shape of the pulse envelope and thus on the current density. It is shown that this approach enables the coherent control of the current density. The experiments are corroborated by a theoretical model of the system. The potential of this approach is demonstrated in an application. A framework is presented that uses an iterative genetic algorithm to create arbitrarily shaped THz traces. The algorithm controls the optical pulse shaper, and varies the phase of the impinging laser pulses until the desired target trace is found. (orig.)

  2. Temporal correlations in neuronal avalanche occurrence

    Science.gov (United States)

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-04-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  3. Temporal correlations in neuronal avalanche occurrence.

    Science.gov (United States)

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-04-20

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  4. Avalanche Initiaition Mechanism - A Finite-element Approach

    Directory of Open Access Journals (Sweden)

    S. Senthil

    2003-01-01

    Full Text Available The Himalayas, the longest chain of mountains in the world, experiences extensive snowfall and avalanche activity during winter. Some of these areas are densely populated, and death and destruction on large scale due to avalanche activity has been reported in these areas. One of the ways of reducing the loss of life and material due to avalanches is through prediction of avalanches. An understanding of weather forecasting, terrain, and avalanche initiation mechanism is a prerequisite for avalanche prediction. In the present paper mathematical modelling of avalanche initiation mechanism has been discussed.

  5. Photo-induced dipole relaxation current in natural Amethyst

    Directory of Open Access Journals (Sweden)

    Fabricio Trombini Russo

    2012-06-01

    Full Text Available Thermally stimulated depolarization current (TSDC measurements were carried out for SiO2 in the amethyst form, aiming to investigate the relationship of observed current with relaxation phenomena related to quartz impurities. In addition to TSDC conventional dark procedure, photo-induced TSDC was also carried out, where the exciting light came from an Ar+ laser, tuned either at 488 nm or at 541 nm. X-ray diffraction and optical absorption measurements were used as complement for the interpretation of TSDC data. Optical absorption data, mainly in the range 400-700 nm, allow identifying the characteristic bands of amethyst as well as to relate them with TSDC and photo-induced TSDC data, leading to a relationship between absorption bands and light irradiation with selected wavelengths. These results allow determining how the formation of a TSDC band in the range 220-260 K, is affected by the light absorption, modifying the formation and the dipole orientation distribution in the samples. Results also help the verification of defects formed by Fe3+ or Fe4+ ions in the amethyst structure, as well as suggest that these defects, besides the participation in the amethyst structure as color centers, also play a role in the formation of TSDC bands, contributing for the observed effect of monochromatic light irradiation on these bands.

  6. Sixteen-year follow-up of childhood avalanche survivors

    Science.gov (United States)

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C.; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Background Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods Childhood survivors (aged 2–19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, punemployment and/or disability (F=3.04, p<0.05). In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001) and traumatic reactions of caregivers (t=2.49, p<0.05) in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms. Highlights of the article PTSD symptoms following avalanche exposure during childhood were associated with poorer socioeconomic status in adulthood. Lack of social support and traumatic reactions of caregivers in the aftermath of avalanches predicted PTSD symptoms among childhood

  7. Granular avalanches down inclined and vibrated planes

    Science.gov (United States)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  8. Ragweed-induced allergic rhinoconjunctivitis: current and emerging treatment options

    Directory of Open Access Journals (Sweden)

    Ihler F

    2015-02-01

    Full Text Available Friedrich Ihler, Martin CanisDepartment of Otorhinolaryngology, University Medical Center Göttingen, Göttingen, GermanyAbstract: Ragweed (Ambrosia spp. is an annually flowering plant whose pollen bears high allergenic potential. Ragweed-induced allergic rhinoconjunctivitis has long been seen as a major immunologic condition in Northern America with high exposure and sensitization rates in the general population. The invasive occurrence of ragweed (A. artemisiifolia poses an increasing challenge to public health in Europe and Asia as well. Possible explanations for its worldwide spread are climate change and urbanization, as well as pollen transport over long distances by globalized traffic and winds. Due to the increasing disease burden worldwide, and to the lack of a current and comprehensive overview, this study aims to review the current and emerging treatment options for ragweed-induced rhinoconjunctivitis. Sound clinical evidence is present for the symptomatic treatment of ragweed-induced allergic rhinoconjunctivitis with oral third-generation H1-antihistamines and leukotriene antagonists. The topical application of glucocorticoids has also been efficient in randomized controlled clinical trials. Combined approaches employing multiple agents are common. The mainstay of causal treatment to date, especially in Northern America, is subcutaneous immunotherapy with the focus on the major allergen, Amb a 1. Beyond this, growing evidence from several geographical regions documents the benefit of sublingual immunotherapy. Future treatment options promise more specific symptomatic treatment and fewer side effects during causal therapy. Novel antihistamines for symptomatic treatment are aimed at the histamine H3-receptor. New adjuvants with toll-like receptor 4 activity or the application of the monoclonal anti-immunoglobulin E antibody, omalizumab, are supposed to enhance conventional immunotherapy. An approach targeting toll-like receptor 9 by

  9. Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes.

    Science.gov (United States)

    Ker, Pin Jern; David, John P R; Tan, Chee Hing

    2012-12-31

    Measurement and analysis of the temperature dependence of avalanche gain and excess noise in InAs electron avalanche photodiodes (eAPDs) at 77 to 250 K are reported. The avalanche gain, initiated by pure electron injection, was found to reduce with decreasing temperature. However no significant change in the excess noise was measured as the temperature was varied. For avalanche gain > 3, the InAs APDs with 3.5 µm i-region show consistently low excess noise factors between 1.45 and 1.6 at temperatures of 77 to 250 K, confirming that the eAPD characteristics are exhibited in the measured range of electric field. As the dark current drops much more rapidly than the avalanche gain and the excess noise remains very low, our results confirmed that improved signal to noise ratio can be obtained in InAs eAPDs by reducing the operating temperature. The lack of hole impact ionization, as confirmed by the very low excess noise and the exponentially rising avalanche gain, suggests that hole impact ionization enhancement due to band "resonance" does not occur in InAs APDs at the reported temperatures.

  10. Numerical simulation on the flux avalanche behaviors of microstructured superconducting thin films

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2017-01-01

    Controlling and suppressing the propagation of magnetic flux avalanches is an important issue for the application of type-II superconductors. The effects of engineered pinning centers (antidots) on the guidance of flux avalanche propagation paths in type-II superconducting thin films are numerically investigated by solving the coupled nonlinear Maxwell's equations and the thermal diffusion equations. The field dependence of critical current density is considered in the simulation in this paper. Dynamic propagations of the thermomagnetic avalanches within the superconducting films patterned with different arrangements of antidots (like random, periodic square, and conformal mapping arrays) are presented. We reveal that presence of the antidots significantly modifies the propagation paths of the avalanches. The flux avalanche patterns of the superconducting films change with the variation of the arrangements of antidots. The patterned antidots in the form of conformal mapping arrays within the superconducting film exhibit strong guidance to the thermomagnetic avalanches. In addition, introducing the antidots in the form of conformal mapping arrays into the superconducting film can effectively lower the magnetic flux jump sizes.

  11. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  12. Scale-free avalanches in the multifractal random walk

    Science.gov (United States)

    Bartolozzi, M.

    2007-06-01

    Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth's crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from a simple time series without having much information about the underlying system. As a working example we use a modified version of the multifractal random walk originally proposed as a model for the stock market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance of cascade models in representing turbulent-like phenomena, on the other, they also raise the question about the current state of reliability of SOC inference from time series analysis.

  13. Current-induced enhancement of DNA bubble creation

    Science.gov (United States)

    Gu, Lei; Fu, Hua-Hua

    2016-05-01

    Current-induced heating of short double-stranded DNA chains is studied within a two-probe transport setup by using the Langevin approach. The electrons are modeled by a tight-binding Hamiltonian. The DNA atomic motion is described by the Peyrard-Bishop-Dauxois atomic potential, coupled with electrons through the Holstein interaction. The solvent environment is accounted for as a classical heat bath. Voltage biases of 0.1˜ 0.5 {{V}} can effectively break the base pairs and lead to the melting transition, which can be detected from the resulting significant reduction of the conductance. When the bias increases, the opening of base pairs near the leads with higher chemical potential is suppressed and bubble (localized separation of the double strand) formation becomes asymmetric. Our results suggest that the voltage bias can excite the base pairs, hence increases the chemical activity of DNA.

  14. Monitoring and modelling snow avalanches in Svalbard

    Science.gov (United States)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  15. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2007-01-01

    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  16. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva

    2014-01-01

    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  17. Current-Induced Transistor Sensorics with Electrogenic Cells.

    Science.gov (United States)

    Fromherz, Peter

    2016-04-25

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand-activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  18. Assessment of Nearshore Hazard due to Tsunami-Induced Currents

    Science.gov (United States)

    Lynett, P. J.; Ayca, A.; Borrero, J. C.; Eskijian, M.; Miller, K.; Wilson, R. I.

    2014-12-01

    The California Tsunami Program in cooperation with NOAA and FEMA has begun implementing a plan to increase tsunami hazard preparedness and mitigation in maritime communities (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education program will help save lives and reduce exposure of damage to boats and harbor infrastructure. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. The initial goals of the study are to (1) evaluate the effectiveness and sensitivity of existing numerical models for assessing maritime tsunami hazards, (2) find a relationship between current speeds and expected damage levels, (3) evaluate California ports and harbors in terms of tsunami induced hazards by identifying regions that are prone to higher current speeds and damage and to identify regions of relatively lower impact that may be used for evacuation of maritime assets, and (4) determine 'safe depths' for evacuation of vessels from ports and harbors during a tsunami event. We will present details of a new initiative to evaluate the future likelihood of failure for different structural components of a harbor, leading to the identification of high priority areas for mitigation. This presentation will focus on the results from California ports and harbors across the State, and will include feedback we have received from discussions with local harbor masters and port authorities. To help promote accurate and consistent products, the authors are also working through the National Tsunami Hazard Mitigation Program to organize a tsunami current model benchmark workshop.

  19. Current induced magnetization reversal in spin valves with Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aoshima, K. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)]. E-mail: aoshima.k-ia@nhk.or.jp; Funabashi, N. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Machida, K. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Miyamoto, Y. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Kuga, K. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan); Kawamura, N. [Science and Technical Reserch Laboratories, Japan Broadcasting Corporation, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

    2007-03-15

    Current induced magnetization reversal using current-perpendicular-to-plane (CPP) spin valves devises with Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} alloys were investigated. Film stacks of Si/SiO{sub 2}/Cu/IrMn/Heusler-pinned-layer/Cu/Heusler-free-layer were deposited by DC magnetron sputtering followed by post-annealing. Saturation magnetization (B {sub s}) of Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} are 12.7, 14.0, and 25 kg, respectively and magnetoresistance (MR) ratios of spin valves with the Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} are 3.6%, 3.5%, and 2.2%, respectively. The B {sub s} values and MR ratios obtained for Co{sub 2}MnGe and Co{sub 2}FeSi spin valves were smaller and larger, respectively, than those obtained for Co{sub 75}Fe{sub 25}. We speculated that the large MR ratios could be attributed to larger spin polarization of Heusler alloys. J {sub c0} of Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} spin valves were 1.6x10{sup 7}, 2.7x10{sup 7}, and 5.1x10{sup 7} A/cm{sup 2}, respectively. The thermal factors of Co{sub 2}MnGe, Co{sub 2}FeSi, and Co{sub 75}Fe{sub 25} were 65, 48, and 55, respectively. Using the Heusler alloys, we successfully reduced the intrinsic critical current without degrading the thermal factor.

  20. Evolution of the average avalanche shape with the universality class.

    Science.gov (United States)

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.

  1. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    Science.gov (United States)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  2. Supershort avalanche electron beam in SF6 and krypton

    Science.gov (United States)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  3. Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model

    Institute of Scientific and Technical Information of China (English)

    LI Wei; CAI Xu

    2003-01-01

    Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc ? The variation of the IE near the critical point yields an exponent entropy index E = (T - l)/avalanche size distribution and avalanche size cutoff, respectively. A new quantity DT(g) (g = 1 - (fc - G)'r-1' , where G is the gap of the current state), denned as 1 - IT(g)/IT(l), with IT(g) and /T(l) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.

  4. Spin Seebeck measurements of current-induced switching in YIG

    Science.gov (United States)

    Bartell, Jason; Jermain, Colin; Aradhya, Sriharsha; Wang, Hailong; Buhrman, Robert; Yang, Fengyuan; Ralph, Daniel; Fuchs, Gregory

    Quantifying spin torques generated at the interface between a normal metal (NM) and a ferromagnetic insulator (FI) is an important step in understanding the spin hall effect without charge transport. Measuring magnetization in NM/FI devices is challenging, however, because both magnetoresistive and magneto-optical signals are tiny in thin-film bilayers. We show that a promising alternative measurement approach is the use of picosecond thermal gradients to study spin torques in Pt/Yttrium Iron Garnet (YIG) bilayers. Recently, we demonstrated the application of heat to stroboscopically transduce a local magnetic moment into an electrical signal via the time resolved anomalous Nernst effect (TRANE) in ferromagnetic metals. Using a similar geometry the spin Seebeck effect of YIG combined with the inverse spin Hall effect of Pt enables measurement of local magnetization. Here we describe our study using this technique to study current-induced switching in Pt/YIG with sub-10 nm thick YIG films We acknowledge support from AFOSR.

  5. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    CHEN LingYi; Liu Lin

    2009-01-01

    Induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of few transcription factors. Like embryonic stem (ES) cells, iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body. iPS cells hold great promise for regenerative medicine,because iPS ceils circumvent not only immunological rejection but also ethical issues. Since the first report on the derivation of iPS cells in 2006, many laboratories all over the world started research on iPS cells and have made significant progress. This paper reviews recent progress in iPS cell research,Including the methods to generate iPS cells, the molecular mechanism of reprogramming in the formation of iPS ceils, and the potential applications of iPS cells in cell replacement therapy. Current problems that need to be addressed and the prospects for iPS research are also discussed.

  6. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Induced pluripotent stem(iPS) cells are derived from somatic cells by ectopic expression of few transcription factors.Like embryonic stem(ES) cells,iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body.iPS cells hold great promise for regenerative medicine,because iPS cells circumvent not only immunological rejection but also ethical issues.Since the first report on the derivation of iPS cells in 2006,many laboratories all over the world started research on iPS cells and have made significant progress.This paper reviews recent progress in iPS cell research,including the methods to generate iPS cells,the molecular mechanism of reprogramming in the formation of iPS cells,and the potential applications of iPS cells in cell replacement therapy.Current problems that need to be addressed and the prospects for iPS research are also discussed.

  7. Geomagnetically induced currents in Uruguay: Sensitivity to modelling parameters

    Science.gov (United States)

    Caraballo, R.

    2016-11-01

    According to the traditional wisdom, geomagnetically induced currents (GIC) should occur rarely at mid-to-low latitudes, but in the last decades a growing number of reports have addressed their effects on high-voltage (HV) power grids at mid-to-low latitudes. The growing trend to interconnect national power grids to meet regional integration objectives, may lead to an increase in the size of the present energy transmission networks to form a sort of super-grid at continental scale. Such a broad and heterogeneous super-grid can be exposed to the effects of large GIC if appropriate mitigation actions are not taken into consideration. In the present study, we present GIC estimates for the Uruguayan HV power grid during severe magnetic storm conditions. The GIC intensities are strongly dependent on the rate of variation of the geomagnetic field, conductivity of the ground, power grid resistances and configuration. Calculated GIC are analysed as functions of these parameters. The results show a reasonable agreement with measured data in Brazil and Argentina, thus confirming the reliability of the model. The expansion of the grid leads to a strong increase in GIC intensities in almost all substations. The power grid response to changes in ground conductivity and resistances shows similar results in a minor extent. This leads us to consider GIC as a non-negligible phenomenon in South America. Consequently, GIC must be taken into account in mid-to-low latitude power grids as well.

  8. A geomagnetically induced current warning system: model development and validation

    Science.gov (United States)

    McKay, A.; Clarke, E.; Reay, S.; Thomson, A.

    Geomagnetically Induced Currents (GIC), which can flow in technological systems at the Earth's surface, are a consequence of magnetic storms and Space Weather. A well-documented practical problem for the power transmission industry is that GIC can affect the lifetime and performance of transformers within the power grid. Operational mitigation is widely considered to be one of the best strategies to manage the Space Weather and GIC risk. Therefore in the UK a magnetic storm warning and GIC monitoring and analysis programme has been under development by the British Geological Survey and Scottish Power plc (the power grid operator for Central Scotland) since 1999. Under the auspices of the European Space Agency's service development activities BGS is developing the capability to meet two key user needs that have been identified. These needs are, firstly, the development of a near real-time solar wind shock/ geomagnetic storm warning, based on L1 solar wind data and, secondly, the development of an integrated surface geo-electric field and power grid network model that should allow prediction of GIC throughout the power grid in near real time. While the final goal is a `seamless package', the components of the package utilise diverse scientific techniques. We review progress to date with particular regard to the validation of the individual components of the package. The Scottish power grid response to the October 2003 magnetic storms is also discussed and model and validation data are presented.

  9. 3-D-numerical approach to simulate an avalanche impact into a reservoir

    Directory of Open Access Journals (Sweden)

    R. Gabl

    2015-06-01

    Full Text Available The impact of an avalanche into a reservoir induces an impulse wave, which poses a threat to population and infrastructure. For a good approximation of the generated wave height and length as well as the resulting outflow volume over structures and dams, formulas, which base on different simplifying assumptions, can be used. Further project-specific investigations by means of a scale model test or numerical simulations are advisable for complex reservoirs as well as the inclusion of hydraulic structures such as spillways. The paper presents a new approach for a 3-D-numerical simulation of an avalanche impact into a reservoir. In this model concept the energy and mass of the avalanche are represented by accelerated water on the real hill slope. Instead of snow, only water and air are used to simulate the moving avalanche with the software FLOW-3D. A significant advantage of this assumption is the self-adaptation of the model avalanche onto the terrain. In order to reach good comparability of the results with existing research at the ETH Zürich, a simplified reservoir geometry is investigated. Thus, a reference case has been analysed including a variation of three geometry parameters (still water depth in the reservoir, freeboard of the dam and reservoir width.

  10. Electron avalanches in liquid argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  11. Deterministically Driven Avalanche Models of Solar Flares

    Science.gov (United States)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  12. Deterministically Driven Avalanche Models of Solar Flares

    CERN Document Server

    Strugarek, Antoine; Joseph, Richard; Pirot, Dorian

    2014-01-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global st...

  13. An Atomically Layered InSe Avalanche Photodetector.

    Science.gov (United States)

    Lei, Sidong; Wen, Fangfang; Ge, Liehui; Najmaei, Sina; George, Antony; Gong, Yongji; Gao, Weilu; Jin, Zehua; Li, Bo; Lou, Jun; Kono, Junichiro; Vajtai, Robert; Ajayan, Pulickel; Halas, Naomi J

    2015-05-13

    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices.

  14. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  15. Adjoint method and runaway electron avalanche

    Science.gov (United States)

    Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; Bhattacharjee, Amitava

    2017-02-01

    The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green’s function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.

  16. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  17. Seismically induced landslides: current research by the US Geological Survey.

    Science.gov (United States)

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.

    1986-01-01

    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  18. Spectrum of lithium induced thyroid abnormalities: a current perspective

    Directory of Open Access Journals (Sweden)

    Kibirige Davis

    2013-02-01

    Full Text Available Abstract Background Lithium is an integral drug used in the management of acute mania, unipolar and bipolar depression and prophylaxis of bipolar disorders. Thyroid abnormalities associated with treatment with lithium have been widely reported in medical literature to date. These include goitre, hypothyroidism, hyperthyroidism and autoimmune thyroiditis. This current review explores the varied thyroid abnormalities frequently encountered among patients on lithium therapy and their management, since lithium is still a fundamental and widely drug used in psychiatry and Internal Medicine. Methods PubMed database and Google scholar were used to search for relevant English language articles relating to lithium therapy and thyroid abnormalities up to December 2012. The search terms used were lithium treatment, thyroid abnormalities, thyroid dysfunction, goitre, hypothyroidism, hyperthyroidism, thyrotoxicosis, autoimmune thyroiditis, lithium toxicity, treatment of affective disorders and depression and side effects of antipsychotic drugs. Reference lists of the identified articles were further used to identify other studies. Results Lithium affects normal thyroid functioning through multiple mechanisms. At the cellular level, it decreases thyroid hormone synthesis and release. It also decreases peripheral deiodination of tetraiodothyronine (T4 or thyroxine by decreasing the activity of type I 5’ de-iodinase enzyme. Hypothyroidism and goitre (clinically and/ultrasonographically detected are the most prevalent thyroid abnormalities among patients on long term lithium therapy. Lithium induced hyperthyroidism is very infrequent. Lithium increases the propensity to thyroid autoimmunity in susceptible individuals due to its effect of augmenting the activity of B lymphocytes and reducing the ratio of circulating suppressor to cytotoxic T cells. Conclusions Thyroid function tests (serum thyroid stimulating hormone, free thyroid hormones-T4 and

  19. A viscoplastic lubrication model for entrainment by avalanches and debris flows, and comparison with experiments

    Science.gov (United States)

    Bates, Belinda; Ancey, Christophe

    2015-04-01

    Recently, experiments were designed and carried out examining how a viscoplastic avalanche begins to entrain a shallow layer of identical fluid lying in its path, much like a snow avalanche or mud flow which suddenly encounters an entrainable layer, described as a yield stress material. This represents a simplified problem, investigated in order to gain some physical insight into entrainment by avalanches. These experiments serve as a test for mathematical models of entraining gravity currents. Two classes of entrainment behaviour were observed: either the avalanche ``glided'' out over the entrainable bed, immediately shearing it in the downstream direction and progressively incorporating fluid down to the rigid base, or the avalanche seemed to ``roll'' out onto the entrainable bed, with strong motion in the slope-normal direction in the bed after yield. This difference in behaviour was dictated by the magnitude of the flume's slope. For the steeper flows studied (20 and 24 degrees), entrainment was principally in the former class, whereas for shallower slope angle (12 and 16 degrees) entrainment more closely resembled the latter type. This would suggest that there is a competition between the normal and shear stresses exerted on the bed, with bed-yield and entrainment occurring when these stresses exceed a critical value. An interesting phenomenon that was observed in all cases was a sort of buckling of the bed, downstream of the avalanche front. This was far more significant in the flows down shallower slopes, and regular waves were created in the bed with wavelength dependent on the flow depth. Based on theoretical comparisons with non-entraining Herschel Bulkley flows, the physics of entraining flows are investigated numerically for shallow viscoplastic gravity currents on different slopes. The predictions are compared with the experimental values for velocity field and surface height. The model was successful in reproducing velocities of the correct order, but

  20. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Michael Joseph [Univ. of Colorado, Boulder, CO (United States)

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  1. Experimental observation of direct current voltage-induced phase synchronization

    Indian Academy of Sciences (India)

    Haihong Li; Weiqing Liu; Qiongling Dai; Jinghua Xiao

    2006-09-01

    The dynamics of two uncoupled distinct Chua circuits driven by a common direct current voltage is explored experimentally. It was found that, with increasing current intensity, the dominant frequencies of these two Chua circuits will first vary at different speeds, approach an identical value for a certain current intensity and then separate. Techniques such as synchronization index and phase difference distribution were employed to analyze the phase coherence between these two Chua circuits.

  2. Chemotherapy-Induced Peripheral Neuropathy: Current Status and Progress

    OpenAIRE

    Brewer, Jamie R; Morrison, Gladys; Dolan, M Eileen; Gini F Fleming

    2015-01-01

    As there are increasing numbers of cancer survivors, more attention is being paid to the long term unwanted effects patients may experience as a result of their treatment and the impact these side effects can have on their quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxicities from chemotherapy. In this review we will briefly review the clinical presentation, evaluation and management of chemotherapy-induced peripheral neuropathy, wit...

  3. Nano-multiplication region avalanche photodiodes and arrays

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  4. Electric Current Induced Light Emission from C60

    NARCIS (Netherlands)

    Palstra, T.T.M.; Haddon, R.C.; Lyons, K.B.

    1997-01-01

    We report the luminescence of C60 crystals and films due to the passage of an electrical current. The current-voltage behavior is highly non-linear with light-emission beyond a threshold voltage. The emission spectrum is featureless and resembles black-body radiation with an effective temperature on

  5. The avalanche-mode superjunction LED

    NARCIS (Netherlands)

    Dutta, Satadal; Steeneken, Peter G.; Agarwal, Vishal Vishal; Schmitz, Jurriaan; Annema, Anne J.; Hueting, Raymond Josephus Engelbart

    2017-01-01

    Avalanche-mode light-emitting diodes (AMLEDs) in silicon (Si) are potential light sources to enable monolithic optical links in standard CMOS technology, due to the large overlap of their electroluminescent (EL) spectra with the responsivity of Si photodiodes. These EL spectra depend on the reverse

  6. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  7. Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On May 25, 2014, a rain-on-snow induced rock avalanche occurred in the West Salt Creek Valley on the northern flank of Grand Mesa in western Colorado. The avalanche traveled 4.6 km down the confined valley, killing 3 people. The avalanche was rare for the contiguous U.S. because of its large size (54.5 Mm3) and long travel distance. To understand the avalanche failure sequence, mechanisms, and mobility, we mapped landslide structures, geology, and ponds at 1:1000-scale. We used high-resolution, Unmanned Aircraft System (UAS) imagery from July 2014 as a base for our field mapping. Here we present the map data and UAS imagery. The data accompany an interpretive paper published in the journal Geosphere. The full citation for this interpretive journal paper is: Coe, J.A., Baum, R.L., Allstadt, K.E., Kochevar, B.F., Schmitt, R.G., Morgan, M.L., White, J.L., Stratton, B.T., Hayashi, T.A., and Kean, J.W., 2016, Rock avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek Valley, western Colorado: Geosphere, v. 12, no. 2, p. 607-631,  doi:10.1130/GES01265.1. 

  8. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  9. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    Science.gov (United States)

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  10. Magnetic instability induced by tunnel current in single Co nanoparticles

    OpenAIRE

    Birk, F. Tijiwa; Jiang, W.; Davidović, D.

    2011-01-01

    Measurements of magnetic hysteresis loops in single Co nanoparticles at dilution refrigerator temperatures are presented. The nanoparticles are in electric contact with bulk Al leads via tunnel junctions. The tunnel current versus magnetic field displays a magnetic hysteresis loop. The magnetic switching field is reduced by current, and the magnetization of the nanoparticle can be switched by applying a voltage pulse, demonstrating that the magnetic stability of the nanoparticle is diminished...

  11. Short-term spatial and temporal forecast of dry snow avalanches of sublimation recrystallization and mixed origin

    Directory of Open Access Journals (Sweden)

    Yu. B. Andreev

    2013-01-01

    Full Text Available A possibility of space-temporary short-term forecast-diagnosis of dry sublimative recrystallization and mixed (recrystallization plus fresh snow avalanches is under consideration. The special discriminate analog–macrophysical models of the short-term background forecast is verified on correlation degree with probabilistic zoning of avalanche site № 22 in Khibiny. Аs a result we have correlation coefficients of order –(0.6÷0.7. The statistical significance of correlation coefficients (an order of 0.02–0.07 are checked and a conclusion on likelihood of assumed hypothesis is made. So by the current and predicted meteorological data such kind of forecast for such genetic avalanche types release in concrete sites becomes possible. The short-term forecast function transformation of the examined in the article avalanche types into long-term ones by averaging perennial realized forecast function values on slipping optimal 5-years intervals shows avalanche activity trend with probable 8–10 and 32-years harmonics during selected observation period. But in comparison with purely dry and wet fresh snow avalanches forecast analysed before the examined here above types are less precisely predicted. So it is needed an improvement of correspondent forecast functions on the base of theory contribution and future observations by increasing their series

  12. Magnetization oscillations induced by spin current in a paramagnetic disc

    NARCIS (Netherlands)

    Slachter, Abraham; van Wees, Bart Jan

    2011-01-01

    When electron spins are injected uniformly into a paramagnetic disk, they can precess along the demagnetizing field induced by the resulting magnetic moment. Normally this precession damps out by virtue of the spin relaxation, which is present in paramagnetic materials. We propose a mechanism to exc

  13. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis.

    Science.gov (United States)

    Blackwell, K T

    2000-01-01

    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  14. Temperature induced decay of persistent currents in superfluid ultracold gas

    CERN Document Server

    Kumar, Avinash; Jendrzejewski, Fred; Campbell, Gretchen K

    2016-01-01

    We study how temperature affects the lifetime of a quantized, persistent current state in a toroidal Bose-Einstein condensate (BEC). When the temperature is increased, we find a decrease in the persistent current lifetime. Comparing our measured decay rates to simple models of thermal activation and quantum tunneling, we do not find agreement. The measured critical velocity is also found to depend strongly on temperature, approaching the zero temperature mean-field solution as the temperature is decreased. This indicates that an appropriate definition of critical velocity must incorporate the role of thermal fluctuations, something not explicitly contained in traditional theories.

  15. Characterization of midwave infrared InSb avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Abautret, J., E-mail: johan.abautret@ies.univ-montp2.fr; Evirgen, A. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); SOFRADIR, BP 21, 38113 Veurey-Voroize (France); Perez, J. P.; Christol, P. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); Rothman, J. [CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cordat, A. [SOFRADIR, BP 21, 38113 Veurey-Voroize (France)

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  16. Inter-model analysis of tsunami-induced coastal currents

    Science.gov (United States)

    Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.

    2017-06-01

    To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.

  17. Current-induced magnetization dynamics in disordered itinerant ferromagnets

    NARCIS (Netherlands)

    Tserkovnyak, Y.; Skadsem, H.J.; Brataas, A.; Bauer, G.E.W.

    2006-01-01

    Current-driven magnetization dynamics in ferromagnetic metals is studied in a self-consistent adiabatic local-density approximation in the presence of spin-conserving and spin-dephasing impurity scattering. Based on a quantum kinetic equation, we derive Gilbert damping and spin-transfer torques ente

  18. Community Benchmarking of Tsunami-Induced Nearshore Current Models

    Science.gov (United States)

    Lynett, P. J.; Wilson, R. I.; Gately, K.

    2015-12-01

    To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program (NTHMP) Strategic Plan includes a requirement to develop and run a benchmarking workshop to evaluate the numerical tsunami modeling of currents. For this workshop, five different benchmarking datasets were organized. These datasets were selected based on characteristics such as geometric complexity, currents that are shear/separation driven (and thus are de-coupled from the incident wave forcing), tidal coupling, and interaction with the built environment. While tsunami simulation models have generally been well validated against wave height and runup, comparisons with speed data are much less common. As model results are increasingly being used to estimate or indicate damage to coastal infrastructure, understanding the accuracy and precision of speed predictions becomes of important. As a result of this 2-day workshop held in early 2015, modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts. In this presentation, the model results - from 14 different modelers - will be presented and summarized, with a focus on statistical and ensemble properties of the current predictions.

  19. Spin current-induced by a sound wave.

    Science.gov (United States)

    Lyapilin, Igor I

    2013-04-01

    The interaction of conduction electrons with a longitudinal sound wave propagating in a crystal in a constant magnetic field is investigated. It is shown that the transverse spin current arises when the longitudinal sound wave propagation through the system. The average power absorbed by the spin subsystem of the conduction electrons and the spin-Hall conductivity have a resonant character.

  20. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Jou...... of these in the Raman signals....

  1. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise.

    Science.gov (United States)

    Hunt, D C; Tanioka, Kenkichi; Rowlands, J A

    2007-03-01

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  2. Smartphone applications for communicating avalanche risk information - a review of existing practices

    Science.gov (United States)

    Charrière, M. K. M.; Bogaard, T. A.

    2015-11-01

    Every year, in all mountainous regions, people are victims of avalanches. One way to decrease those losses is believed to be informing about danger levels. The paper presents a study on current practices in the development of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of smartphone apps highlights the context of their development, how choices of content and visualization were made as well as how their effectiveness is evaluated. It appears that although the communicators agree on the message to disseminate, its representation triggers debate. Moreover, only simple evaluation processes are conducted but there is a clear awareness that further scientific efforts are needed to analyze the effectiveness of the smartphone apps. Finally, the current or planned possibility for non-experts users to report feedback on the snow and avalanches conditions open the doors to a transition of these apps from one-way communication tools to two-ways communication platforms. This paper also indicates the remaining challenges that avalanche risk communication is facing, although it is disputably the most advanced and standardized practice compared to other natural hazards. Therefore, this research is of interest for the entire field of natural hazards related risk communication.

  3. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip;

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  4. Current-induced domain wall motion in nanoscale ferromagnetic elements

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, G [Laboratoire de Physique des Solides, CNRS, Universite Paris-sud 11, 91405 Orsay Cedex (France); Boulle, O [SPINTEC, CEA/CNRS/UJF/GINP, INAC, 38054 Grenoble Cedex 9 (France); Klaeui, M, E-mail: Klaeui@uni-mainz.de [SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Laboratory of Nanomagnetism and Spin Dynamics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-09-28

    We review the details of domain wall (DW) propagation due to spin-polarized currents that could potentially be used in magnetic data storage devices based on domains and DWs. We discuss briefly the basics of the underlying spin torque effect and show how the two torques arising from the interaction between the spin-polarized charge carriers and the magnetization lead to complex dynamics of a spin texture such as a DW. By direct imaging we show how confined DWs in nanowires can be displaced using currents in in-plane soft-magnetic materials, and that when using short pulses, fast velocities can be attained. For high-anisotropy out-of-plane magnetized wires with narrow DWs we present approaches to deducing the torque terms and show that in these materials potentially more efficient domain wall motion could be achieved.

  5. Spectrum of lithium induced thyroid abnormalities: a current perspective

    OpenAIRE

    Kibirige Davis; Luzinda Kenneth; Ssekitoleko Richard

    2013-01-01

    Abstract Background Lithium is an integral drug used in the management of acute mania, unipolar and bipolar depression and prophylaxis of bipolar disorders. Thyroid abnormalities associated with treatment with lithium have been widely reported in medical literature to date. These include goitre, hypothyroidism, hyperthyroidism and autoimmune thyroiditis. This current review explores the varied thyroid abnormalities frequently encountered among patients on lithium therapy and their management,...

  6. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  7. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina

    2016-12-01

    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  8. Single electron multiplication distribution in GEM avalanches

    CERN Document Server

    Laszlo, Andras; Kiss, Gabor; Varga, Dezso

    2016-01-01

    In this paper measurement results and experimental methodology is presented on the determination of multiplication distributions of avalanches in GEM foils initiated by a single electron. The measurement relies on the amplification of photoelectrons by the GEM under study, which is subsequently amplified in an MWPC. The intrinsic detector resolution, namely the sigma over mean ratio of this distribution is also elaborated. Small gain dependence of the avalanche size is observed in the range of net effective gain of 15 to 100. The distribution has an exponentially decaying tail at large amplitudes, whereas the applied working gas is seen to have a well visible effect on the shape of the multiplication distribution at low amplitudes; or equivalently, the working gas has an influence on the intrinsic detector resolution of GEMs via suppression of the low amplitude responses. A sigma over mean ratio down to 0.75 was reached using neon based mixture, whereas other gases provided an intrinsic detector resolution cl...

  9. Numerical analysis of the temperature field in silicon avalanche photodiode by millisecond laser irradiation

    Science.gov (United States)

    Wang, Di; Jin, Guangyong; Wei, Zhi; Zhao, Hongyu

    2016-10-01

    Recent years, millisecond laser become a research hotspot. Avalanche photodiode (APD) based on silicon structure has excellent characteristics such as low noise and high-sensitivity. It is key components in receives for long-haul high-bit-rate optical communication system. The failure mechanism of silicon APD remains quite unknown, although some silicon p-i-n photodiode failure modes have been speculated. The COMSOL Multiphysics finite element analysis software was utilized in this paper. And the 2D model, which based on heat conduction equation, was established to simulate the temperature field of the silicon avalanche photodiode irradiated by millisecond laser. The model presented in the following section is a work which considers only melting of silicon by a millisecond laser pulse. The temperature dependences of material properties are taken into account, which has a great influence on the temperature fields indicated by the numerical results. The pulsed laser-induced transient temperature fields in silicon avalanche photodiode are obtained, which will be useful in the research on the mechanism of interactions between millisecond laser and photodiode. The evolution of temperature at the central point of the top surface, the temperature distribution along the radial direction in the end of laser irradiation and the temperature distribution along the axial direction in the end of laser irradiation were considered. Meanwhile, the fluence threshold value was obtained through the model. The conclusions had a reference value for revealing the mechanism of interactions between millisecond laser and the silicon avalanche photodiode.

  10. Prevention and management of transfusion-induced alloimmunization: current perspectives

    Directory of Open Access Journals (Sweden)

    Hauck-Dlimi B

    2014-08-01

    Full Text Available Barbara Hauck-Dlimi, Susanne Achenbach, Julian Strobel, Reinhold Eckstein, Robert Zimmermann Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen, Erlangen, Germany Abstract: Transfusion of blood components, transplantations, and exchange of blood between mother and child during pregnancy or at birth can lead to alloimmunization. Because of its clinical relevance, this review brings into focus alloimmunization against red blood cells, human platelet antigens, human leukocyte antigens, and human neutrophil antigens. In principle, an individual is able to develop antibodies after exposure to a nonautogenous antigen, but these cells actually induce alloimmunization only for a minority of patients. An individual producing alloantibodies after having contact with foreign antigens depends on various factors, such as genetic predisposition, underlying diseases, the patient's immune status, and clinical immune modulation. When alloimmunization has occurred, it could lead to problems for future transfusions or transplantations. Keywords: transfusion, alloimmunization, prevention

  11. Asymmetry-induced electric current rectification in permselective systems.

    Science.gov (United States)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

  12. Neuronal avalanches in spontaneous activity in vivo.

    Science.gov (United States)

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  13. Edge effect on the power law distribution of granular avalanches.

    Science.gov (United States)

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  14. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.

    Science.gov (United States)

    Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E C; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F

    2015-05-13

    Self-assembled DNA nanostructures have been used to create man-made transmembrane channels in lipid bilayers. Here, we present a DNA-tile structure with a nominal subnanometer channel and cholesterol-tags for membrane anchoring. With an outer diameter of 5 nm and a molecular weight of 45 kDa, the dimensions of our synthetic nanostructure are comparable to biological ion channels. Because of its simple design, the structure self-assembles within a minute, making its creation scalable for applications in biology. Ionic current recordings demonstrate that the tile structures enable ion conduction through lipid bilayers and show gating and voltage-switching behavior. By demonstrating the design of DNA-based membrane channels with openings much smaller than that of the archetypical six-helix bundle, our work showcases their versatility inspired by the rich diversity of natural membrane components.

  15. Monte Carlo investigation of avalanche multiplication process in thin InP avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; MA YuXiang

    2009-01-01

    An ensemble Monte Carlo simulation is presented to investigate the avalanche multiplication process in thin InP avalanche photodiodes (APDs). Analytical band structures are applied to the description of the conduction and valence band, and impact ionization is treated as an additional scattering mecha-nism with the Keldysh formula. Multiplication gain and excess noise factor of InP p~+-i-n~+ APDs aresimulated and obvious excess noise reduction is found in the thinner devices. The effect of dead space on excess noise in thin APD structures is investigated by the distribution of impact ionization events within the multiplication region. It is found that the dead space can suppress the feedback ionization events resulting in a more deterministic avalanche multiplication process and reduce the excess noise in thinner APDs.

  16. Interevent Correlations from Avalanches Hiding Below the Detection Threshold

    Science.gov (United States)

    Janićević, Sanja; Laurson, Lasse; Mâløy, Knut Jørgen; Santucci, Stéphane; Alava, Mikko J.

    2016-12-01

    Numerous systems ranging from deformation of materials to earthquakes exhibit bursty dynamics, which consist of a sequence of events with a broad event size distribution. Very often these events are observed to be temporally correlated or clustered, evidenced by power-law-distributed waiting times separating two consecutive activity bursts. We show how such interevent correlations arise simply because of a finite detection threshold, created by the limited sensitivity of the measurement apparatus, or used to subtract background activity or noise from the activity signal. Data from crack-propagation experiments and numerical simulations of a nonequilibrium crack-line model demonstrate how thresholding leads to correlated bursts of activity by separating the avalanche events into subavalanches. The resulting temporal subavalanche correlations are well described by our general scaling description of thresholding-induced correlations in crackling noise.

  17. Breaking the buildup-time limit of sensitivity in avalanche photodiodes by dynamic biasing.

    Science.gov (United States)

    Hayat, Majeed M; Zarkesh-Ha, Payman; El-Howayek, Georges; Efroymson, Robert; Campbell, Joe C

    2015-09-07

    Avalanche photodiodes (APDs) are the preferred photodetectors for direct-detection, high data-rate long-haul optical telecommunications. APDs can detect low-level optical signals due to their internal amplification of the photon-generated electrical current, which is attributable to the avalanche of electron and hole impact ionizations. Despite recent advances in APDs aimed at reducing the average avalanche-buildup time, which causes intersymbol interference and compromises receiver sensitivity at high data rates, operable speeds of commercially available APDs have been limited to 10Gbps. We report the first demonstration of a dynamically biased APD that breaks the traditional sensitivity-versus-speed limit by employing a data-synchronous sinusoidal reverse-bias that drastically suppresses the average avalanche-buildup time. Compared with traditional DC biasing, the sensitivity of germanium APDs at 3Gbps is improved by 4.3 dB, which is equivalent to a 3,500-fold reduction in the bit-error rate. The method is APD-type agnostic and it promises to enable operation at rates of 25Gbps and beyond.

  18. Transformation of the critical state in hard superconductors resulting from thermomagnetic avalanches

    Science.gov (United States)

    Chabanenko, V. V.; Kuchuk, E. I.; Rusakov, V. F.; Abaloszewa, I.; Nabiałek, A.; Pérez-Rodríguez, F.

    2016-04-01

    The results of experimental studies of magnetic flux dynamics in finite-size superconductors, obtained using integral and local measurements methods, are presented. Local methods were aimed at clarifying the role of the demagnetizing factor in the dynamic formation of a complex magnetic structure of the critical state of hard superconductors. To understand the reasons for drastic transformation of the magnetic induction, we further analyzed the literature data on the visualization of flux dynamics in the presence of avalanches, obtained by magneto-optical methods. New features in the behavior of the magnetic flux during and after an avalanche were revealed and characterized: two stages in the formation of the magnetic induction distribution inside the avalanche region were established—homogeneous and heterogeneous filling with magnetic flux; the mechanism of inversion of the induction profile; velocity oscillations in the propagating magnetic flux front; transformation of the critical state band near the edge of the sample; and the role of the thermal effects and demagnetizing factor in the dissipative flux dynamics. The generalized information allowed us to present, within the framework of the Bean concept, a model of the transformation of the patterns of magnetic induction in the critical state and superconducting currents in a finite superconductor occurring as a result of flux avalanches in two different regimes—shielding and trapping of magnetic flux.

  19. Modelling avalanche danger and understanding snow depth variability

    OpenAIRE

    2010-01-01

    This thesis addresses the causes of avalanche danger at a regional scale. Modelled snow stratigraphy variables were linked to [1] forecasted avalanche danger and [2] observed snowpack stability. Spatial variability of snowpack parameters in a region is an additional important factor that influences the avalanche danger. Snow depth and its change during individual snow fall periods are snowpack parameters which can be measured at a high spatial resolution. Hence, the spatial distribution of sn...

  20. Determining avalanche modelling input parameters using terrestrial laser scanning technology

    OpenAIRE

    2013-01-01

    International audience; In dynamic avalanche modelling, data about the volumes and areas of the snow released, mobilized and deposited are key input parameters, as well as the fracture height. The fracture height can sometimes be measured in the field, but it is often difficult to access the starting zone due to difficult or dangerous terrain and avalanche hazards. More complex is determining the areas and volumes of snow involved in an avalanche. Such calculations require high-resolution spa...

  1. Electric Current-induced Failure of 200-nm-thick Gold Interconnects

    Institute of Scientific and Technical Information of China (English)

    Bin ZHANG; Qingyuan YU; Jun TAN; Guangping ZHANG

    2008-01-01

    200-nm-thick Au interconnects on a quartz substrate were tested in-situ inside a dual-beam microscope by applying direct current,alternating current and alternating current with a small direct current component.The failure behavior of the Au interconnects under three kinds of electric currents were characterized in-situ by scanning electron microscopy.It is found that the formation of voids and subsequent growth perpendicular to the interconnect direction is the fatal failure mode for all the Au interconnects under three kinds of electric currents.The failure mechanism of the ultrathin metal lines induced by the electric currents was analyzed.

  2. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  3. Correcting for accidental correlations in saturated avalanche photodiodes

    National Research Council Canada - National Science Library

    Grieve, J A; Chandrasekara, R; Tang, Z; Cheng, C; Ling, A

    2016-01-01

    .... As an example, we provide a detailed high-level model for the behaviour of passively quenched avalanche photodiodes, and demonstrate effective background subtraction at rates commonly associated...

  4. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    Science.gov (United States)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  5. Single-photon avalanche photodiodes with integrated quenching resistor

    Energy Technology Data Exchange (ETDEWEB)

    Mazzillo, M. [STMicroelectronics, IMS R and D Stradale Primosole 50, 95121 Catania (Italy)], E-mail: massimo.mazzillo@st.com; Condorelli, G.; Piazza, A.; Sanfilippo, D.; Valvo, G.; Carbone, B.; Fallica, G. [STMicroelectronics, IMS R and D Stradale Primosole 50, 95121 Catania (Italy); Billotta, S.; Belluso, M.; Bonanno, G. [INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania (Italy); Pappalardo, A.; Cosentino, L.; Finocchiaro, P. [INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania (Italy)

    2008-06-21

    In this paper we present the results of the first electrical and optical characterization performed on STMicroelectronics new photosensor technology based on silicon single-photon avalanche photodiodes (SPAD). On the prospective of the design and the manufacturing of large-area silicon photomultipliers to be used as photodetectors for nuclear medicine imaging applications, we have modified our previous SPAD technology by means of the integration of a high-value quenching resistor to the photodiode. Moreover, an appropriate antireflective coating layer and the reduction of the quasi-neutral region thickness above the thin junction depletion layer have been introduced in the process flow of the device to enhance its spectral response in blue and near ultraviolet wavelength ranges. High gain, low leakage currents, low dark noise, very good quantum detection efficiency in blue-near UV ranges and a good linearity of the photodiode response to the incident luminous flux are the main characterization results.

  6. Rapid sequestration of rock avalanche deposits within glaciers.

    Science.gov (United States)

    Dunning, Stuart A; Rosser, Nicholas J; McColl, Samuel T; Reznichenko, Natalya V

    2015-08-19

    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude-frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes.

  7. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bast, Radovan; Juselius, Jonas [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway); Saue, Trond [Institut de Chimie de Strasbourg, CNRS et Universite Louis Pasteur, Laboratoire de Chimie Quantique, 4, rue Blaise Pascal, BP 1032, F-67070 Strasbourg (France)], E-mail: tsaue@chimie.u-strasbg.fr

    2009-02-17

    We present a 4-component relativistic implementation for calculating the magnetically induced current density within Hartree-Fock and Kohn-Sham linear response theory using a common gauge origin. We demonstrate how the current density can be decomposed into paramagnetic and diamagnetic contributions by calculating separately the contributions from rotations between positive-energy orbitals and contributions from rotations between the occupied positive-energy orbitals and the virtual negative-energy orbitals, respectively. This methodology is applied to the study of the magnetically induced current density in benzene and the group 15 heteroaromatic compounds C{sub 5}H{sub 5}E (E = N, P, As, Sb, Bi). Quantitative values for the magnetically induced ring currents are obtained by numerical integration over the current flow. We have found that the diatropic ring current is sustained for the entire series of the group 15 heteroaromatic compounds-the induced ring current susceptibility of bismabenzene being 76% of the benzene result. Having employed two hybrid and two nonhybrid generalized gradient approximation functionals, the results are found to be rather insensitive to the choice of the density functional approximation. The relativistic effect is relatively small, reaching its maximum of 8% for bismabenzene. The presented 4-component relativistic methodology opens up the possibility to visualize magnetically induced current densities of aromatic heavy-element systems with both scalar relativistic and spin-orbit effects included.

  8. Sixteen-year follow-up of childhood avalanche survivors

    Directory of Open Access Journals (Sweden)

    Edda Bjork Thordardottir

    2016-08-01

    Full Text Available Background: Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD can provide a gateway to recovery as well as enhancement of preventive measures. Objective: Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES and PTSD symptoms in adulthood. Methods: Childhood survivors (aged 2–19 at the time of exposure of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results: Response rate was 66% (108/163. Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05. When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001, poor financial status (F=12.21, p<0.001, and unemployment and/or disability (F=3.04, p<0.05. In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001 and traumatic reactions of caregivers (t=2.49, p<0.05 in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions: Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms.

  9. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    Science.gov (United States)

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.

  10. GIS FOR PREDICTING THE AVALANCHE ZONES IN THE MOUNTAIN REGIONS OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Zh. T. Omirzhanova

    2015-10-01

    Full Text Available Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  11. GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan

    Science.gov (United States)

    Omirzhanova, Zh. T.; Urazaliev, A. S.; Aimenov, A. T.

    2015-10-01

    Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  12. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields.

    Science.gov (United States)

    Gandhi, O P; Kang, G; Wu, D; Lazzi, G

    2001-02-01

    We have used the quasi-static impedance method to calculate the currents induced in the nominal 2 x 2 x 3 and 6 mm resolution anatomically based models of the human body for exposure to magnetic fields at 60 Hz. Uniform magnetic fields of various orientations and magnitudes 1 or 0.417 mT suggested in the ACGIH and ICNIRP safety guidelines are used to calculate induced electric fields or current densities for the various glands and organs of the body including the pineal gland. The maximum 1 cm(2) area-averaged induced current densities for the central nervous system tissues, such as the brain and the spinal cord, were within the reference level of 10 mA/m(2) as suggested in the ICNIRP guidelines for magnetic fields (0.417 mT at 60 Hz). Tissue conductivities were found to play an important role and higher assumed tissue conductivities gave higher induced current densities. We have also determined the induced current density distributions for nonuniform magnetic fields associated with two commonly used electrical appliances, namely a hair dryer and a hair clipper. Because of considerably higher magnetic fields for the latter device, higher induced electric fields and current densities were calculated.

  13. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism

    DEFF Research Database (Denmark)

    Tanriverdi, F; Agha, A; Aimaretti, G

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered...... and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here....

  14. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism.

    LENUS (Irish Health Repository)

    Tanriverdi, F

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here.

  15. Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach

    Science.gov (United States)

    Veitinger, Jochen; Purves, Ross Stuart; Sovilla, Betty

    2016-10-01

    Avalanche hazard assessment requires a very precise estimation of the release area, which still depends, to a large extent, on expert judgement of avalanche specialists. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. It overcomes some of the limitations of previous tools, which are currently not often applied in hazard mitigation practice. By introducing a multi-scale roughness parameter, fine-scale topography and its attenuation under snow influence is captured. This allows the assessment of snow influence on terrain morphology and, consequently, potential release area size and location. The integration of a wind shelter index enables the user to define release area scenarios as a function of the prevailing wind direction or single storm events. A case study illustrates the practical usefulness of this approach for the definition of release area scenarios under varying snow cover and wind conditions. A validation with historical data demonstrated an improved estimation of avalanche release areas. Our method outperforms a slope-based approach, in particular for more frequent avalanches; however, the application of the algorithm as a forecasting tool remains limited, as snowpack stability is not integrated. Future research activity should therefore focus on the coupling of the algorithm with snowpack conditions.

  16. Photon detection with cooled avalanche photodiodes

    Science.gov (United States)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  17. Cooled avalanche photodiode used for photon detection

    Science.gov (United States)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  18. Avalanche Photodiode Arrays for Optical Communications Receivers

    Science.gov (United States)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  19. Avalanches in UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lhotel, E. E-mail: lhotel@grenoble.cnrs.fr; Paulsen, C.; Huxley, A.D

    2004-05-01

    In UGe{sub 2} ferromagnetism and superconductivity co-exist for pressures in the range 1.0-1.6 GPa. The magnetic state, however, has several unusual properties. Here we report measurements of hysteresis loops for fields parallel to the easy-axis at low temperature and ambient pressure, measured for two separate UGe{sub 2} single crystals. Steps in the magnetization as the field is changed at low temperature are observed for both crystals. The general phenomenology associated with the steps strongly suggests that they correspond to avalanches of domain-wall motion.

  20. TCAD simulation of Low Gain Avalanche Detectors

    Science.gov (United States)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  1. Validation of DEM prediction for granular avalanches on irregular terrain

    Science.gov (United States)

    Mead, Stuart R.; Cleary, Paul W.

    2015-09-01

    Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.

  2. Avalanche Statistics of Driven Granular Slides in a Miniature Mound

    CERN Document Server

    Juanico, D E; Batac, R; Monterola, C

    2008-01-01

    We examine avalanche statistics of rain- and vibration-driven granular slides in miniature soil mounds using experimental and numerical approaches. A crossover from power-law to non power-law avalanche-size statistics is demonstrated as a generic driving rate $\

  3. Avalanches mediate crystallization in a hard-sphere glass.

    Science.gov (United States)

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-07

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  4. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...

  5. Current and Voltage Induced on the Cable by Flash of Lightning between Clouds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the transmission line equations, this paper has developed computing formulas of current and voltage induced on the cable over the ground plane by Flash of Lightning Between Clouds (FBC), and estimated current and voltage on the cable of metal shielded sheath and analyzed the results.

  6. Eddy-Induced Ekman Pumping from Sea-Surface Temperature and Surface Current Effects

    Science.gov (United States)

    Gaube, P.; Chelton, D. B.; O'Neill, L. W.

    2011-12-01

    Numerous past studies have discussed the biological importance of upwelling of nutrients into the interiors of nonlinear eddies. Such upwelling can occur during the transient stages of formation of cyclones from shoaling of the thermocline. In their mature stages, upwelling can occur from Ekman pumping driven by eddy-induced wind stress curl. Previous investigations of ocean-atmosphere interaction in regions of persistent sea-surface temperature (SST) frontal features have shown that the wind field is locally stronger over warm water and weaker over cold water. Spatial variability of the SST field thus results in a wind stress curl and an associated Ekman pumping in regions of crosswind temperature gradients. It can therefore be anticipated that any SST anomalies associated with eddies can generate Ekman pumping in the eddy interiors. Another mechanism for eddy-induced Ekman pumping is the curl of the stress on the sea surface that arises from the difference between the surface wind velocity and the surface ocean velocity. While SST-induced Ekman upwelling can occur over eddies of either polarity surface current effects on Ekman upwelling occur only over anticyclonic eddies The objective of this study is to determine the spatial structures and relative magnitudes of the two mechanisms for eddy-induced Ekman pumping within the interiors of mesoscale eddies. This is achieved by collocating satellite-based measurements of SST, surface winds and wind stress curl to the interiors of eddies identified and tracked with an automated procedure applied to the sea-surface height (SSH) fields in the Reference Series constructed by AVISO from the combined measurements by two simultaneously operating altimeters. It is shown that, on average, the wind stress curl from eddy-induced surface currents is largest at the eddy center, resulting in Ekman pumping velocities of order 10 cm day-1. While this surface current-induced Ekman pumping depends only weakly on the wind direction

  7. Snow drift: acoustic sensors for avalanche warning and research

    Science.gov (United States)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long

  8. Snow drift: acoustic sensors for avalanche warning and research

    Directory of Open Access Journals (Sweden)

    M. Lehning

    2002-01-01

    Full Text Available Based on wind tunnel measurements at the CSTB (Jules Verne facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b, or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a. On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966 are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations

  9. A theoretical analysis to current exponent variation regularity and electromigration-induced failure

    Science.gov (United States)

    Wang, Yuexing; Yao, Yao

    2017-02-01

    The electric current exponent, typically with j-n form, is a key parameter to predict electromigration-induced failure lifetime. It is experimentally observed that the current exponent depends on different damage mechanisms. In the current research, the physical mechanisms including void initiation, void growth, and joule heating effect are all taken into account to investigate the current exponent variation regularity. Furthermore, a physically based model to predict the mean time to failure is developed and the traditional Black's equation is improved with clear physical meaning. It is found that the solution to the resulting void initiation and growth equation yields a current exponent of 2 and 1, respectively. On the other hand, joule heating plays an important role in failure time prediction and will induce the current exponent n > 2 based on the traditional semi-empirical model. The predictions are in agreement with the experimental results.

  10. Volcano Instability Induced by Resurgence at the Ischia Island Caldera (Italy), and the Tsunamigenic Potential of the Related Debris Avalanche Deposits: a Complex Source of Hazard at Land-sea Interface

    Science.gov (United States)

    Tinti, S.; Zaniboni, F.; Pagnoni, G.; Marotta, E.; Della Seta, M.; de Vita, S.; Orsi, G.; Sansivero, F.; Fredi, P.

    2009-05-01

    Slope instability is a common feature in the evolution of active volcanic areas. The occurrence of mass movements is doubly linked to volcanism and volcano-tectonism, which act as either preparing factor (through increased topographic gradients or emplacement of unconsolidated deposits on slopes) or triggering factor (through earthquakes and/or eruptions). Debris avalanches and lahars in active volcanic areas are an additional factor of hazard, due to their high destructive power. Moreover, volcanoes located in coastal areas or on islands, may experience lateral collapses with the potential to generate large tsunamis. Ischia is an active volcanic island in the Gulf of Naples. Volcanism begun prior to 150 ka and continued, with periods of quiescence, until the last eruption in 1302 A.D. It has been dominated by a caldera-forming eruption (55 ka), which was followed by resurgence of the caldera floor. Volcanism and gravitational mass movements have been coeval to resurgence, which generated a maximum net uplift of about 900 m over the past 33 ka. Resurgence occurred through intermittent uplifting and tectonic quietness phases. During uplift, volcanism and generation of mass movements were very active. The resurgent area is composed of differentially displaced blocks and has a poligonal shape, resulting from reactivation of regional faults and activation of faults directly related to volcano-tectonism. The western sector is bordered by inward-dipping, high-angle reverse faults, cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. The north-eastern and the south-western sides are bordered by vertical faults with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block is displaced by outward- dipping normal faults. Some giant landslides and their relationships with volcano-tectonism have been recognized at Ischia. Their deposits are intercalated with primary

  11. Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Souma, Satofumi, E-mail: ssouma@harbor.kobe-u.ac.jp; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-05-05

    We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated.

  12. Avalanche behavior of power MOSFETs under different temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Lu Jiang; Wang Lixin; Lu Shuojin; Wang Xuesheng; Han Zhengsheng

    2011-01-01

    The ability of high-voltage power MOSFETs to withstand avalanche events under different temperature conditions are studied by experiment and two-dimensional device simulation. The experiment is performed to investigate dynamic avalanche failure behavior of the domestic power MOSFETs which can occur at the rated maximum operation temperature range (-55 to 150 ℃). An advanced ISE TCAD two-dimensional mixed mode simulator with thermodynamic non-isothermal model is used to analyze the avalanche failure mechanism. The unclamped inductive switching measurement and simulation results show that the parasitic components and thermal effect inside the device will lead to the deterioration of the avalanche reliability of power MOSFETs with increasing temperature. The main failure mechanism is related to the parasitic bipolar transistor activity during the occurrence of the avalanche behavior.

  13. Photocurrent, rectification, and magnetic field symmetry of induced current through quantum dots.

    Science.gov (United States)

    DiCarlo, L; Marcus, C M; Harris, J S

    2003-12-12

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic rectification.

  14. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...... that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic...

  15. Ab Initio Simulation of Electrical Currents Induced by Ultrafast Laser Excitation of Dielectric Materials

    Science.gov (United States)

    Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Sato, Shunsuke A.; Tong, Xiao-Min; Yabana, Kazuhiro

    2014-08-01

    We theoretically investigate the generation of ultrafast currents in insulators induced by strong few-cycle laser pulses. Ab initio simulations based on time-dependent density functional theory give insight into the atomic-scale properties of the induced current signifying a femtosecond-scale insulator-metal transition. We observe the transition from nonlinear polarization currents during the laser pulse at low intensities to tunnelinglike excitation into the conduction band at higher laser intensities. At high intensities, the current persists after the conclusion of the laser pulse considered to be the precursor of the dielectric breakdown on the femtosecond scale. We show that the transferred charge sensitively depends on the orientation of the polarization axis relative to the crystal axis, suggesting that the induced charge separation reflects the anisotropic electronic structure. We find good agreement with very recent experimental data on the intensity and carrier-envelope phase dependence [A. Schiffrin et al., Nature (London) 493, 70 (2013)].

  16. Odd-parity currents induced by dynamic deformations in graphene-like systems

    Science.gov (United States)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2016-11-01

    Reduced (3  +  1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation.

  17. Recent Sand Avalanching on Rabe Crater Dunes

    Science.gov (United States)

    2000-01-01

    Dark streaks on the steep, down-wind slopes of sand dunes in Rabe Crater are seen at several locations in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. These streaks indicate relatively recent (i.e., in the past few years or less) movement of sand down these slopes.Sand dunes move forward by the combined action of wind that drives sand up the shallow slope on the windward side of the dune (in this case, the slopes that face toward the lower right) and the avalanching of this sand down the steeper, lee-side slope. The steep slope is also known as the slip face. The dark streaks indicated by arrows are evidence for sand avalanches that occurred within a few months or years of the time when the picture was taken in March 1999. Other streaks which are seen criss-crossing the dunes may be the result of passing dust devils. This image is illuminated from the upper left and located in Rabe Crater of the Hellespontus-Noachis region near 44.2oS, 325.6oW.

  18. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    Science.gov (United States)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  19. Snow instability evaluation in skier-triggered snow slab avalanches: combining failure initiation and crack propagation

    Science.gov (United States)

    Gaume, Johan; Reuter, Benjamin

    2017-04-01

    Dry-snow slab avalanches start with a local failure in a weak snowpack layer buried below cohesive snow slab layers. If the size of the failed zone exceeds a critical size, rapid crack propagation occurs possibly followed by slab release if the slope is steep enough. The probability of skier-triggering a slab avalanche is generally characterized by classical stability indices that do not account for crack propagation. In this study, we propose a new model to evaluate the conditions for the onset of crack propagation in skier-triggered slab avalanches. For a given weak layer, the critical crack length characterizing crack propagation propensity was compared to the size of the area where the skier-induced stress exceeds the shear strength of the weak layer. The ratio between both length scales yields a stability criterion combining the processes of failure initiation and crack propagation. The critical crack length was calculated from a recently developed model based on numerical simulations. The skier-induced stress was computed from analytical solutions and finite element simulations to account for slab layering. A detailed sensitivity analysis was performed for simplified snow profiles to characterize the influence of snowpack properties and slab layering on crack propagation propensity. Finally, we applied our approach for manually observed snow profiles and compared our results to rutschblock stability tests.

  20. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Directory of Open Access Journals (Sweden)

    Silvia Scarpetta

    Full Text Available We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain. Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  1. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Science.gov (United States)

    Scarpetta, Silvia; de Candia, Antonio

    2013-01-01

    We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  2. ESTIMATION OF INDUCED CURRENTS IN THE SHIELDS OF ELECTRICAL POWER CABLES WITH XLPE INSULATION

    Directory of Open Access Journals (Sweden)

    I. V. Oleksyuk

    2015-01-01

    Full Text Available Electrical power cables with Cross-Linked Polyethylene Insulation (XLPE-insulation are currently utilized in projects of the electric-power supply systems of modern facilities. However, the higher costs, the incomplete design, installation and maintenance normativetechnical basis as well as certain constructional features of the XLPE-insulated cable lines hinder their large-scale implementation.The cables with XLPE insulation are mostly produced in a single-conductor core version being provided with a composite copper shield whose cross-section may vary while the electric conductor cross-section remains uniform. Earthing the cable shields on both sides causes the flow of electricity in them. The course of operational service of the XLPE-insulated cable lines revealed the following fact – the currents induced in the cable shields can run up to the levels commeasurable with those in the conductor-cores themselves. That, in its turn, leads to electrical safety-level reduction, cable lines failure, and economic losses. The currents induced in the shields may occur both in symmetric (normal and emergency and asymmetric operating modes of the power grid with values of the induced currents reaching 80 % of the conducting core currents. Many factors affect the level of the current induced in the shield: the midpoint conductor modes, the values of the core longitudinal currents in the normal and emergency operating modes, failure mode, the cross-section area of the shield, the cables mutual disposition, and the distance between them.The paper claims experimental existence conformation of the cable-shield current induced by that in the conductor-core and demonstrates its measured value. The author establishes that induction of dangerous currents in the cable shields demands elaboration of measures on reducing their level.

  3. Interaction of Avalanche Photodiodes (APDs Devices With Thermal Irradiation Environments

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-04-01

    Full Text Available This paper has been examined the high temperature irradiation variations testing in order to be used to determine avalanche photodiode lifetime, even though APD failure mechanisms are more sensitive to increases in current density. As a measured parameter of degradation, the current density is of great significance when searching for failure modes in APD. Raising the current density however, is not really indicative of lifetime since it is more likely a situation to be avoided than one that simulates normal lifetime degradation. The reliability of semiconductor detectors is very dependent on the degradation modes. This paper has investigated deeply some of the degradation performance and capabilities of typical APDs currently used in many communication and sensing systems over wide range of the affecting parameters. APDs are used in systems that require coherent and often single mode light such as high data rate communications and sensing applications. APDs are an attractive receiver choice for photon-starved (low signal applications, because their internal gain mechanism can improve signal to noise ratio. An optical receiver must also be appropriate for the laser wavelength being used. The near infrared is the preferred wavelength regime for deep space optical communications largely due to the wavelengths of available laser technologies that meet the optical power requirements of a deep space optical link

  4. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    Science.gov (United States)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  5. Current-induced changes of migration energy barriers in graphene and carbon nanotubes

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-04-29

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. © 2016 The Royal Society of Chemistry.

  6. Inward currents induced by ischemia in rat spinal cord dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Gu Jianguo G

    2007-04-01

    Full Text Available Abstract Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM and APV (50 μM. The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM. Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.

  7. Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Ohin; Woo, Eung Je

    2007-02-01

    Magnetic resonance electrical impedance tomography (MREIT) measures induced magnetic flux densities subject to externally injected currents in order to visualize conductivity distributions inside an electrically conducting object. Injection currents induce magnetic flux densities that appear in phase parts of acquired MR image data. In the conventional current injection method, we inject currents during the time segment between the end of the first RF pulse and the beginning of the reading gradient in order to ensure the gradient linearity. Noting that longer current injections can accumulate more phase changes, we propose a new pulse sequence called injection current nonlinear encoding (ICNE) where the duration of the injection current pulse is extended until the end of the reading gradient. Since the current injection during the reading gradient disturbs the gradient linearity, we first analyze the MR signal produced by the ICNE pulse sequence and suggest a novel algorithm to extract the induced magnetic flux density from the acquired MR signal. Numerical simulations and phantom experiments show that the new method is clearly advantageous in terms of the reduced noise level in measured magnetic flux density data. The amount of noise reduction depends on the choice of the data acquisition time and it was about 24% when we used a prolonged data acquisition time of 10.8 ms. The ICNE method will enhance the clinical applicability of the MREIT technique when it is combined with an appropriate phase artefact minimization method.

  8. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José

    2012-04-01

    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  9. Gauge-Origin Independent Calculations of the Anisotropy of the Magnetically Induced Current Densities.

    Science.gov (United States)

    Fliegl, Heike; Jusélius, Jonas; Sundholm, Dage

    2016-07-21

    Gauge-origin independent current density susceptibility tensors have been computed using the gauge-including magnetically induced current (GIMIC) method. The anisotropy of the magnetically induced current density (ACID) functions constructed from the current density susceptibility tensors are therefore gauge-origin independent. The ability of the gauge-origin independent ACID function to provide quantitative information about the current flow along chemical bonds has been assessed by integrating the cross-section area of the ACID function in the middle of chemical bonds. Analogously, the current strength susceptibility passing a given plane through the molecule is obtained by numerical integration of the current flow parallel to the normal vector of the integration plane. The cross-section area of the ACID function is found to be strongly dependent on the exact location of the integration plane, which is in sheer contrast to the calculated ring-current strength susceptibilities that are practically independent of the chosen position of the integration plane. The gauge-origin independent ACID functions plotted for different isosurface values show that a visual assessment of the current flow and degree of aromaticity depends on the chosen isosurface. The present study shows that ACID functions are not an unambiguous means to estimate the degree of molecular aromaticity according to the magnetic criterion and to determine the current pathway of complex molecular rings.

  10. Analysis of eddy current induced in track on medium-low speed maglev train

    Science.gov (United States)

    Li, Guanchun; Jia, Zhen; He, Guang; Li, Jie

    2017-06-01

    Electromagnetic levitation (EMS) maglev train relies on the attraction between the electromagnets and rails which are mounted on the train to achieve suspension. During the movement, the magnetic field generated by the electromagnet will induce the eddy current in the orbit and the eddy current will weaken the suspended magnetic field. Which leads to the attenuation of the levitation force, the increases of suspension current and the degradation the suspension performance. In this paper, the influence of eddy current on the air gap magnetic field is solved by theoretical analysis, and the correction coefficient of air gap magnetic field is fitted according to the finite element data. The levitation force and current are calculated by the modified formula, and the velocity curves of the levitation force and current are obtained. The results show that the eddy current effect increases the load power by 61.9% in the case of heavy loads.

  11. Resonant Charge Current in a Rashba Ring Induced by Spin-Dependent Potential

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhan-Feng; LI Hong

    2008-01-01

    A one-dimensional ring subject to Rashba spin-orbit coupling is investigated. When it is attached to a lead with spin-dependent chemical potential, there will be charge current in the ring. The charge current response is resonantly maximized when the Fermi energy of the lead is equal to any energy level of the 1D ring. And if two probes are attached to the ring, the electric voltage between them creates sawtooth-like wave, which indicates the direction of the charge current. A ferromagnetic lead can also induce persistent charge current, which can be detected by magnetization intensity measurement.

  12. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    Science.gov (United States)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W-1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K-1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  13. Design and realization of a facility for the characterization of Silicon Avalanche PhotoDiodes

    CERN Document Server

    Celentano, Andrea; De Vita, Raffaella; Fegan, Stuart; Mini, Giuseppe; Nobili, Gianni; Ottonello, Giacomo; Parodi, Franco; Rizzo, Alessandro; Zonta, Irene

    2015-01-01

    We present the design, construction, and performance of a facility for the characterization of Silicon Avalanche Photodiodes in the operating temperature range between -2 $^\\circ$C and 25 $^\\circ$C. The system can simultaneously measure up to 24 photo-detectors, in a completely automatic way, within one day of operations. The measured data for each sensor are: the internal gain as a function of the bias voltage and temperature, the gain variation with respect to the bias voltage, and the dark current as a function of the gain. The systematic uncertainties have been evaluated during the commissioning of the system to be of the order of 1%. This paper describes in detail the facility design and layout, and the procedure employed to characterize the sensors. The results obtained from the measurement of the 380 Avalanche Photodiodes of the CLAS12-Forward Tagger calorimeter detector are then reported, as the first example of the massive usage of the facility.

  14. Motion-induced eddy current thermography for high-speed inspection

    Science.gov (United States)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  15. X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu.

    Science.gov (United States)

    Kukreja, R; Bonetti, S; Chen, Z; Backes, D; Acremann, Y; Katine, J A; Kent, A D; Dürr, H A; Ohldag, H; Stöhr, J

    2015-08-28

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10^{-5}μ_{B} on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10^{-3}μ_{B} per atom. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  16. X-ray detection of transient magnetic moments induced by a spin current in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Kukreja, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Bonetti, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Chen, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Backes, D. [New York Univ. (NYU), New York, NY (United States); Acremann, Y. [ETH Zurich, Zurich (Switzerland); Katine, J. [HGST, a Western Digital Company, San Jose, CA (United States); Kent, A. D. [New York Univ. (NYU), New York, NY (United States); Durr, H. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ohldag, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stohr, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10–5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott’s two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10–3μB per atom. As a result, this reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  17. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  18. Statistics of avalanches with relaxation and Barkhausen noise: A solvable model

    Science.gov (United States)

    Dobrinevski, Alexander; Le Doussal, Pierre; Wiese, Kay Jörg

    2013-09-01

    We study a generalization of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model of a particle in a Brownian force landscape, including retardation effects. We show that under monotonous driving the particle moves forward at all times, as it does in absence of retardation (Middleton's theorem). This remarkable property allows us to develop an analytical treatment. The model with an exponentially decaying memory kernel is realized in Barkhausen experiments with eddy-current relaxation and has previously been shown numerically to account for the experimentally observed asymmetry of Barkhausen pulse shapes. We elucidate another qualitatively new feature: the breakup of each avalanche of the standard ABBM model into a cluster of subavalanches, sharply delimited for slow relaxation under quasistatic driving. These conditions are typical for earthquake dynamics. With relaxation and aftershock clustering, the present model includes important ingredients for an effective description of earthquakes. We analyze quantitatively the limits of slow and fast relaxation for stationary driving with velocity v>0. The v-dependent power-law exponent for small velocities, and the critical driving velocity at which the particle velocity never vanishes, are modified. We also analyze nonstationary avalanches following a step in the driving magnetic field. Analytically, we obtain the mean avalanche shape at fixed size, the duration distribution of the first subavalanche, and the time dependence of the mean velocity. We propose to study these observables in experiments, allowing a direct measurement of the shape of the memory kernel and tracing eddy current relaxation in Barkhausen noise.

  19. Current-induced forces in mesoscopic systems: A scattering-matrix approach

    Directory of Open Access Journals (Sweden)

    Niels Bode

    2012-02-01

    Full Text Available Nanoelectromechanical systems are characterized by an intimate connection between electronic and mechanical degrees of freedom. Due to the nanoscopic scale, current flowing through the system noticeably impacts upons the vibrational dynamics of the device, complementing the effect of the vibrational modes on the electronic dynamics. We employ the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium. For a slow mechanical mode the current can be obtained from the Landauer–Büttiker formula in the strictly adiabatic limit. The leading correction to the adiabatic limit reduces to Brouwer’s formula for the current of a quantum pump in the absence of a bias voltage. The principal results of the present paper are the scattering-matrix expressions for the current-induced forces acting on the mechanical degrees of freedom. These forces control the Langevin dynamics of the mechanical modes. Specifically, we derive expressions for the (typically nonconservative mean force, for the (possibly negative damping force, an effective “Lorentz” force that exists even for time-reversal-invariant systems, and the fluctuating Langevin force originating from Nyquist and shot noise of the current flow. We apply our general formalism to several simple models that illustrate the peculiar nature of the current-induced forces. Specifically, we find that in out-of-equilibrium situations the current-induced forces can destabilize the mechanical vibrations and cause limit-cycle dynamics.

  20. Weak avalanche discrimination for gated-mode single-photon avalanche photodiodes.

    Science.gov (United States)

    Cho, Seok-Beom; Kang, Sae-Kyoung

    2011-09-12

    The after-pulsing effect is a common problem that needs to be overcome for high-speed single-photon detection based on gated-mode single-photon avalanche photodiodes (SPADs). This paper presents a simple and practical method for suppression of the after-pulsing probability using an auxiliary signal to discriminate quite weak avalanches. The detection efficiency and after-pulse probability of an InGaAs/InP SPAD are investigated with a 10 MHz gating for conventional and proposed methods, and a sharp decrease of after-pulse probability is demonstrated with the application of the proposed method. At a gating frequency of 100 MHz, a detection efficiency of 10.4% is achieved with an after-pulse probability of 5.6% without dead time.

  1. Higher Harmonics Induced by Waves Propagating over A Submerged Obstacle in the Presence of Uniform Current

    Institute of Scientific and Technical Information of China (English)

    宁德志; 林红星; 滕斌; 邹青萍

    2014-01-01

    To investigate higher harmonics induced by a submerged obstacle in the presence of uniform current, a 2D fully nonlinear numerical wave flume (NWF) is developed by use of a time-domain higher-order boundary element method (HOBEM) based on potential flow theory. A four-point method is developed to decompose higher bound and free harmonic waves propagating upstream and downstream around the obstacle. The model predictions are in good agreement with the experimental data for free harmonics induced by a submerged horizontal cylinder in the absence of currents. This serves as a benchmark to reveal the current effects on higher harmonic waves. The peak value of non-dimensional second free harmonic amplitude is shifted upstream for the opposing current relative to that for zero current with the variation of current-free incident wave amplitude, and it is vice versa for the following current. The second-order analysis shows a resonant behavior which is related to the ratio of the cylinder diameter to the second bound mode wavelength over the cylinder. The second-order resonant position slightly downshifted for the opposing current and upshifted for the following current.

  2. Statistical analyses support power law distributions found in neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Andreas Klaus

    Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  3. Statistical analyses support power law distributions found in neuronal avalanches.

    Science.gov (United States)

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  4. IFKIS a basis for organizational measures in avalanche risk management

    Science.gov (United States)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  5. ac current generation in chiral magnetic insulators and Skyrmion motion induced by the spin Seebeck effect.

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D; Reichhardt, Charles; Saxena, Avadh

    2014-05-09

    We show that a temperature gradient induces an ac electric current in multiferroic insulators when the sample is embedded in a circuit. We also show that a thermal gradient can be used to move magnetic Skyrmions in insulating chiral magnets: the induced magnon flow from the hot to the cold region drives the Skyrmions in the opposite direction via a magnonic spin transfer torque. Both results are combined to compute the effect of Skyrmion motion on the ac current generation and demonstrate that Skyrmions in insulators are a promising route for spin caloritronics applications.

  6. TRIASSIC: the Time-Resolved Industrial Alpha-Source Scanning Induced Current microscope

    Science.gov (United States)

    Pallone, Arthur

    Time-resolved ion beam induced current (TRIBIC) microscopy yields useful information such as carrier mobility and lifetimes in semiconductors and defect locations in devices; however, traditional TRIBIC uses large, expensive particle accelerators that require specialized training to operate and maintain. The time-resolved industrial alpha-source scanning induced current (TRIASSIC) microscope transforms TRIBIC by replacing the particle accelerator facility with an affordable, tabletop instrument suitable for use in research and education at smaller colleges and universities. I will discuss the development of, successes with, setbacks to and future directions for TRIASSIC.

  7. Geometrically induced reversion of Hall current in a topological insulator cavity

    Science.gov (United States)

    Campos, W. H.; Moura-Melo, W. A.; Fonseca, J. M.

    2017-02-01

    An electric charge near the surface of a topological insulator induces an image magnetic monopole. Here, we show that if the topological insulator surface has a negative curvature, namely in the case of a semispherical cavity, the induced Hall current reverses its rotation as the electric charge crosses the semisphere geometric focus. Such a reversion is shown to be equivalent of inverting the charge of the image magnetic monopole. We also discuss upon the case of a semicylindrical cavity, where Hall current reversion appears to be feasible of probing in realistic experiments.

  8. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery

    Directory of Open Access Journals (Sweden)

    C. Huggel

    2005-01-01

    Full Text Available A massive rock/ice avalanche of about 100x106m3 volume took place on the northern slope of the Kazbek massif, North Ossetia, Russian Caucasus, on 20 September 2002. The avalanche started as a slope failure, that almost completely entrained Kolka glacier, traveled down the Genaldon valley for 20km, was stopped at the entrance of the Karmadon gorge, and was finally succeeded by a distal mudflow which continued for another 15km. The event caused the death of ca. 140 people and massive destruction. Several aspects of the event are extraordinary, i.e. the large ice volume involved, the extreme initial acceleration, the high flow velocity, the long travel distance and particularly the erosion of a valley-type glacier, a process not known so far. The analysis of these aspects is essential for process understanding and worldwide glacial hazard assessments. This study is therefore concerned with the analysis of processes and the evaluation of the most likely interpretations. The analysis is based on QuickBird satellite images, field observations, and ice-, flow- and thermo-mechanical considerations. QuickBird is currently the best available satellite sensor in terms of ground resolution (0.6 m and opens new perspectives for assessment of natural hazards. Evaluation of the potential of QuickBird images for assessment of high-mountain hazards shows the feasibility for detailed avalanche mapping and analysis of flow dynamics, far beyond the capabilities of conventional satellite remote sensing. It is shown that the avalanche was characterized by two different flows. The first one was comparable to a hyperconcentrated flow and was immediately followed by a flow with a much lower concentration of water involving massive volumes of ice. The high mobility of the avalanche is likely related to fluidization effects at the base of the moving ice/debris mass with high pore pressures and a continuous supply of water due to frictional melting of ice. The paper

  9. Smartphone applications for communicating avalanche risk information - a study on how they are developed and evaluated by their providers

    Science.gov (United States)

    Charrière, Marie K. M.; Bogaard, Thom A.

    2016-05-01

    Every year, people are victims of avalanches. It is commonly assumed that one way to decrease those losses is to inform about danger levels. This paper presents a study on current practices in the development and evaluation of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of six smartphone apps highlights the context of their development, how choices of content and visualization were made and how their effectiveness is evaluated by the developers themselves. It appears that all these communicators agree on the message to disseminate and the general representation concepts (i.e., use of the international avalanche danger scale and of a tiered approach). However, the specific ways this message is presented (e.g., maps, icons) is not uniform. Moreover, only simple evaluation processes (e.g., usage monitoring) are conducted by the developers. However, they are well aware that further efforts need to be made in order to thoroughly analyze the effectiveness of the smartphone apps in terms of their real impact (e.g., increase in awareness or change in behavior). This work also highlighted that the smartphone applications are in transition from being one-way communication tools to becoming two-way communication platforms, with the possibility for non-experts users to report on snow and avalanche conditions. This paper indicates challenges that avalanche risk communication is facing, although it is indisputably the most advanced and standardized practice compared to communication tools for other natural hazards. In addition to being relevant for the avalanche risk communication community, this research is therefore of interest for scientists and practitioners working on risk communication related to natural hazards.

  10. The coupling of mechanical dynamics and induced currents in plates and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weissenburger, D.W.; Bialek, J.M.

    1986-10-01

    Significant mechanical reactions and deflections may be produced when electrical eddy currents induced in a conducting structure by transformer-like electromotive forces interact with background magnetic fields. Additional eddy currents induced by structural motion through the background fields modify both the mechanical and electrical dynamic behavior of the system. The observed effects of these motional eddy currents are sometimes referred to as magnetic damping and magnetic stiffness. This paper addresses the coupled structural deformation and eddy currents in flat plates and simple two-dimensional surfaces in three-space. A coupled system of equations has been formulated using finite element techniques for the mechanical aspects and a mesh network method for the electrical aspects of the problem.

  11. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length.

  12. Simulation of Wave-Plus-Current Induced Scour Beneath Submarine Pipelines

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Sumer, B. Mutlu

    of combined wave-plus-current scour processes beneath pipelines. The results of 77 simulated wave-plus-current scour cases will be presented and analysed. The cases considered will consist of waves characterized by 10 different Keulegan-Carpenter numbers, KC=UmTw/D and up to eight different values of m......-plus-current environments. The present study, which is published in Larsen et al. (2016) focuses on the numerical simulation of wave-plus-current induced scour beneath submarine pipelines, based on a model solving Reynolds-averaged Navier-Stokes (RANS) equations, fully coupled with turbulence closure, bed and suspended...... load sediment transport descriptions, and a seabed morphological model. The model was utilized in simulating breaker bar development by Jacobsen et al. (2014) and has been used in simulating wave induced scour beneath pipelines by Fuhrman et al. (2014) . The model is utilized for the numerical study...

  13. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  14. Seeded excitation avalanches in off-resonantly driven Rydberg gases

    CERN Document Server

    Simonelli, Cristiano; Masella, Guido; Asteria, Luca; Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver

    2016-01-01

    We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.

  15. Effect of STI-induced mechanical stress on leakage current in deep submicron CMOS devices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The shallow trench isolation (STI) induced mechanical stress significantly affects the CMOS device off-state leakage behaviour. In this paper, we designed two types of devices to investigate this effect, and all leakage components,including sub-threshold leakage (Isub), gate-induced-drain-leakage (IGIDL), gate edge-direct-tunnelling leakage (IEDT) and band-to-band-tunnelling leakage (IBTBT) were analysed. For NMOS, Isub can be reduced due to the mechanical stress induced higher boron concentration in well region. However, the GIDL component increases simultaneously as a result of the high well concentration induced drain-to-well depletion layer narrowing as well as the shrinkage of the energy gap. For PMOS, the only mechanical stress effect on leakage current is the energy gap narrowing induced GIDL increase.

  16. Extracellular stimulation of nerve cells with electric current spikes induced by voltage steps

    OpenAIRE

    2016-01-01

    A new stimulation paradigm is presented for the stimulation of nerve cells by extracellular electric currents. In the new paradigm stimulation is achieved with the current spike induced by a voltage step whenever the voltage step is applied to a live biological tissue. By experimental evidence and theoretical arguments, it is shown that this spike is well suited for the stimulation of nerve cells. Stimulation of the human tongue is used for proof of principle. Charge injection thresholds are ...

  17. Circulating persistent current and induced magnetic field in a fractal network

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Srilekha [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108 (India); Karmakar, S.N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700 064 (India)

    2016-04-29

    We present the overall conductance as well as the circulating currents in individual loops of a Sierpinski gasket (SPG) as we apply bias voltage via the side attached electrodes. SPG being a self-similar structure, its manifestation on loop currents and magnetic fields is examined in various generations of this fractal and it has been observed that for a given configuration of the electrodes, the physical quantities exhibit certain regularity as we go from one generation to another. Also a notable feature is the introduction of anisotropy in hopping causes an increase in magnitude of overall transport current. These features are a subject of interest in this article. - Highlights: • Voltage driven circular current is analyzed in a fractal network. • Current induced magnetic field is strong enough to flip a spin. • Anisotropy in hopping enhances overall transport current.

  18. Avalanche of particles in evaporating coffee drops

    CERN Document Server

    Marin, Alvaro G; Snoeijer, Jacco; Lohse, Detlef

    2010-01-01

    The pioneering work of Deegan et al. [Nature 389, (1997)] showed how a drying sessile droplet suspension of particles presents a maximum evaporating flux at its contact line which drags liquid and particles creating the well known coffee stain ring. In this Fluid Dynamics Video, measurements using micro Particle Image Velocimetry and Particle Tracking clearly show an avalanche of particles being dragged in the last moments, for vanishing contact angles and droplet height. This explains the different characteristic packing of the particles in the layers of the ring: the outer one resembles a crystalline array, while the inner one looks more like a jammed granular fluid. Using the basic hydrodynamic model used by Deegan et al. [Phys. Rev. E 62, (2000)] it will be shown how the liquid radial velocity diverges as the droplet life comes to an end, yielding a good comparison with the experimental data.

  19. Photon counting techniques with silicon avalanche photodiodes.

    Science.gov (United States)

    Dautet, H; Deschamps, P; Dion, B; Macgregor, A D; Macsween, D; McIntyre, R J; Trottier, C; Webb, P P

    1993-07-20

    The properties of avalanche photodiodes and associated electronics required for photon counting in the Geiger and the sub-Geiger modes are reviewed. When the Geiger mode is used, there are significant improvements reported in overall photon detection efficiencies (approaching 70% at 633 nm), and a timing jitter (under 200 ps) is achieved with passive quenching at high overvoltages (20-30 V). The results obtained by using an active-mode fast quench circuit capable of switching overvoltages as high as 15 V (giving photon detection efficiencies in the 50% range) with a dead time of less than 50 ns are reported. Larger diodes (up to 1 mm in diameter) that are usable in the Geiger mode and that have quantum efficiencies over 80% in the 500-800-nm range are also reported.

  20. Avalanche photodiodes now and possible developments

    CERN Document Server

    Britvitch, I; Ingram, Q; Kuznetsov, A; Musienko, Y; Renker, D; Reucroft, S; Sakhelashvili, T M; Swain, J

    2004-01-01

    Avalanche Photodiodes (APDs) are now out of their infancy and are used in large numbers in the electromagnetic calorimeter of CMS where they have to stand the extremely hostile environment of LHC. This type - with smaller sensitive area and arranged in monolithic arrays - is an excellent candidate for the read out of scintillating crystals in medical imaging and a PET scanner operates already successfully since more than 3 years. We present the properties of the device used in CMS and possible improvements of the structure, which could open the door for new applications. Operating APDs at low temperatures or in Geiger mode will allow single photon counting and in future they could replace photomultiplier tubes.

  1. Overspill avalanching in a dense reservoir network

    CERN Document Server

    Mamede, G L; Schneider, C M; de Araújo, J C; Herrmann, H J

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand which can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world's largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning.

  2. Lautaret avalanche test site: outcomes from the 11th april 2012 event

    OpenAIRE

    2012-01-01

    International audience; The Lautaret full-scale avalanche test site has been used by Cemagref-Irstea since the early 70's. The first studies were dedicated to avalanche released systems. Later, experiments focused on avalanche dynamics and avalanche impact pressures both in relation with the fundamental knowledge of snow flow rheology and the engineering of defense structures and avalanche hazard zoning. Recent instrumentation developments now provide rich-documented in situ measurements of a...

  3. Numerical simulation of sediment transport in coastal waves and wave-induced currents

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; LYU Yigang; SHEN Yongming

    2016-01-01

    Prediction of coastal sediment transport is of particularly importance for analyzing coast erosion accurately and solving the corresponding coast protection engineering problems. The present study provided a numerical scheme for sediment transport in coastal waves and wave-induced currents. In the scheme, the sand transport model was implemented with wave refraction-diffraction model and near-shore current model. Coastal water wave was simulated by using the parabolic mild-slope equation in which wave refraction, diffraction and breaking effects are considered. Wave-induced current was simulated by using the nonlinear shallow water equations in which wave provides radiation stresses for driving current. Then, sediment transport in waves and wave-induced currents was simulated by using the two-dimensional suspended sediment transport equations for suspended sediment and the bed-load transport equation for bed load. The numerical scheme was validated by experiment results from the Large-scale Sediment Transport Facility at the US Army Corps of Engineer Research and Development Center in Vicksburg. The numerical results showed that the present scheme is an effective tool for modeling coastal sediment transport in waves and near-shore currents.

  4. Negative-shift activation, current reduction and resurgent currents induced by β-toxins from Centruroides scorpions in sodium channels.

    Science.gov (United States)

    Schiavon, Emanuele; Pedraza-Escalona, Martha; Gurrola, Georgina B; Olamendi-Portugal, Timoteo; Corzo, Gerardo; Wanke, Enzo; Possani, Lourival D

    2012-02-01

    The β-toxins purified from the New World scorpion venoms of the Centruroides species affect several voltage-gated sodium channels (VGSCs) and thus are essential tools not only for the discrimination of different channel sub-types but also for studying the structure-function relationship between channels and toxins. This communication reports the results obtained with four different peptides purified from three species of Centruroides scorpions and assayed on seven distinct isoforms of VGSC (Na(v)1.1-Na(v)1.7) by specific functional analysis conducted through single cell electrophysiology. The toxins studied were CssII from Centruroides suffusus suffusus, Cll1 and Cll2 from Centruroides limpidus limpidus and a novel toxin from Centruroides noxius, which was characterized for the first time here. It has 67 amino acid residues and four disulfide bridges with a molecular mass of 7626 Da. Three different functional features were identified: current reduction of macroscopic conductance, left shift of the voltage-dependent activation and induction of resurgent currents at negative voltages following brief, strong depolarizations. The isoforms which revealed to be more affected resulted to be Na(v)1.6 > 1.1 > 1.2 and, for the first time, a β-toxin is here shown to induce resurgent current also in isoforms different from Na(v)1.6. Additionally, these results were analyzed with molecular modelling. In conclusion, although the four toxins have a high degree of identity, they display tri-modal function, each of which shows selectivity among the different sub-types of Na+ -channels. Thus, they are invaluable as tools for structure-function studies of β-toxins and offer a basis for the design of novel ion channel-specific drugs.

  5. Tidal current-induced formation——storm-induced change——tidal current-induced recovery——Interpretation of depositional dynamics of formation and evolution of radial sand ridges on the Yellow Sea seafloor

    Institute of Scientific and Technical Information of China (English)

    张长宽; 张东生; 张君伦; 王震

    1999-01-01

    The results of simulated tidal current field, wave field and storm-induced current field are employed to interpret the depositional dynamic mechanism of formation and evolution of the radial sand ridges on the Yellow Sea seafloor. The anticlockwise rotary tidal wave to the south of Shandong Peninsula meets the following progressive tidal wave from the South Yellow Sea, forming a radial current field outside Jianggang. This current field provides a necessary dynamic condition for the formation and existence of the radial sand ridges on the Yellow Sea seafloor. The results of simulated "old current field (holocene)" show that there existed a convergent-divergent tidal zone just outside the palaeo-Yangtze River estuary where a palaeo-underwater accumulation was developed. The calculated results from wave models indicate that the wave impact on the topography, under the condition of high water level and strong winds, is significant. The storm current induced by typhoons landing in the Yangtze River estuary

  6. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  7. Controlling Confinement with Induced Toroidal Current in the Flexible Heliac TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. A.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Ascasibar, E.; TJ-II Team

    2002-07-01

    A method to control plasma particle an energy confinement in the TJ-II Heliac devices is reported A small toroidal current is induced in the plasma with the aid of a 0.2 Wb air core transformer. Plasma particle and energy confinement improve (degrade) with negative (positive) plasma current. For typical TJ-II discharges plasma density and temperature broaden considerably when plasma current is sufficiently negative, accounting for a 40% increase in stored energy. The experimental results agree qualitatively with the paradigm of instability growth rate modifications with magnetic shear. (Author) 18 refs.

  8. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  9. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing

    NARCIS (Netherlands)

    Barreiro, A.; Börrnert, F.; Avdoshenko, S.M.; Rellinghaus, B.; Cunibert, G.; Rümmeli, M.H.; Vandersypen, L.M.K.

    2013-01-01

    We shed light on the catalyst-free growth of graphene from amorphous carbon (a–C) by current induced annealing by witnessing the mechanism both with in-situ transmission electron microscopy and with molecular dynamics simulations. Both in experiment and in simulation, we observe that small a–C clust

  10. Current-induced energy barrier suppression for electromigration from first principles

    KAUST Repository

    Zhang, Ruoxing

    2011-08-01

    We present an efficient method for evaluating current-induced forces in nanoscale junctions, which naturally integrates into the nonequilibrium Green\\'s function formalism implemented within density functional theory. This allows us to perform dynamic atomic relaxation in the presence of an electric current while evaluating the current-voltage characteristics. The central idea consists of expressing the system energy density matrix in terms of Green\\'s functions. To validate our implementation, we perform a series of benchmark calculations, both at zero and at finite bias. First we evaluate the current-induced forces acting over an Al nanowire and compare them with previously published results for fixed geometries. Then we perform structural relaxation of the same wires under bias and determine the critical voltage at which they break. We find that although a perfectly straight wire does not break at any of the voltages considered, a zigzag wire is more fragile and snaps at 1.4 V, with the Al atoms moving against the electron flow. The critical current density for the rupture is estimated to be 9.6 × 1010 A/cm2, in good agreement with the experimentally measured value of 5 × 1010 A/cm2. Finally, we demonstrate the capability of our scheme to tackle the electromigration problem by studying the current-induced motion of a single Si atom covalently attached to the sidewall of a (4,4) armchair single-walled carbon nanotube. Our calculations indicate that if Si is attached along the current path, then current-induced forces can induce migration. In contrast, if the bonding site is away from the current path, then the adatom remains stable regardless of the voltage. An analysis based on decomposing the total force into a wind and an electrostatic component, as well as on a detailed evaluation of the bond currents, shows that this remarkable electromigration phenomenon is due solely to the position-dependent wind force. © 2011 American Physical Society.

  11. Analysis of an eddy-current brake considering finite radius and induced magnetic flux

    Science.gov (United States)

    Lee, Kapjin; Park, Kyihwan

    2002-11-01

    Since the eddy-current problem usually depends on the geometry of the moving conductive sheet and the pole shape, there is no general method to find an analytical solution. The analysis of the eddy currents in a rotating disk with an electromagnet is performed in the case of time-invariant field with the consideration of the boundary conditions of the rotating disk and induced magnetic flux. First, the concept of Coulomb's law and the method of images are introduced with the consideration of the boundary conditions. Second, the induced magnetic flux density is calculated by using Ampere's law. Third, the net magnetic flux density is introduced by defining the magnetic Reynolds number Rm as the ratio of the induced magnetic flux density to the applied magnetic flux density. Finally, the braking torque is calculated by applying the Lorentz force law and the computed results are compared with experimental ones.

  12. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  13. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  14. Dynamic intermittency in discrete erodible-bed avalanches

    Science.gov (United States)

    Arran, Matthew; Vriend, Nathalie

    2016-11-01

    The coexistence of fluid-like and solid-like behaviour in granular matter allows avalanches of grains to flow on the surface of a static but erodible bed. For sufficiently slow inflow, these avalanches are discrete, with previous experimentalists reporting that avalanche fronts pass a given point quasi-periodically. We report instead observations of dynamic intermittency between two regimes, one in which avalanches occur quasi-periodically and another in which the intervals between them are irregular. Finding the first regime consistent with existing models, we introduce a model for the second regime within the framework of Self-Organised Criticality, and describe the transition between the regimes with reference to the state of the erodible bed.

  15. Avalanche statistics from data with low time resolution.

    Science.gov (United States)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J; Gu, Xiaojun; Uhl, J T; Dahmen, Karin A

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  16. UNIQUENESS OF SOLUTIONS FOR SEMICONDUCTOR EQUATIONS WITH AVALANCHE TERM

    Institute of Scientific and Technical Information of China (English)

    Xing Jiasheng; Wang Yuanming

    2000-01-01

    In this paper, we consider the initial and mixed boundary value problems for the semiconductor equations with avalanche term, the uniqueness of the weak solution for the semiconductor equation has been proved.

  17. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 μm technology

    Science.gov (United States)

    Pellion, D.; Jradi, K.; Brochard, N.; Prêle, D.; Ginhac, D.

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 μm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm2) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters1

  18. Experimental Phenomena of Improved Ohmic Confinement Induced by Modulated Toroidal Current on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    毛剑珊; 罗家融; P.Phillips; 赵君煜; 揭银先; 吴振伟; 胡立群; 李建刚

    2002-01-01

    The phenomena of improved ohmic confinement have been observed during the modulation of the toroidal curranton the Hefei superconducting Tokamak-7 (HT-7). In the experiment, the programming ohmic heating field wasmodulated. A toroidal frequency-modulated current induced by modulated loop voltage was added on the plasmaequilibrium current. The ratio of ac amplitude of the plasma current to the main plasma current is about 12-30%.These improved plasma confinement phenomena include the facts that the average electron density and the centralelectron temperature both increase, the Dα radiation from the edge is reduced, the magnetohydrodynamics isobviously suppressed by oscillating plasma current, eand the global energy confinement time increases by 27-45%o.It is found that the faster the modulation is, the more effective the improved ohmic confinement phase.

  19. Geological history and within-island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti.

    Science.gov (United States)

    Brown, Richard P; Hoskisson, Paul A; Welton, John-Henry; Báez, Marcos

    2006-10-01

    Several processes have been described that could explain geographical variation and speciation within small islands, including fragmentation of populations through volcanic eruptions. Massive landslides, or debris avalanches, could cause similar effects. Here we analyse the potential impact of the 0.8 million-year-ago (Ma) Güimar valley debris avalanche on the phylogeography of the lizard Gallotia galloti on the Canary Island of Tenerife. Distributions of mitochondrial DNA lineages (based on cytochrome b sequences) were analysed on a 60-km southeastern coast transect centred on this area. Three main clades were detected, which can be divided into northern (one clade) and southern (two clades) groups that introgress across the valley. Maximum-likelihood estimates of migration rates (scaled for mutation rate) revealed highly asymmetric patterns, indicating that long-term gene flow into this region from both the northern and the southern populations greatly exceeded that in the opposite directions, consistent with recolonization of the area. The ancestral Tenerife node on the G. galloti tree is estimated at 0.80 Ma, matching closely with the geological estimate for the debris avalanche. Morphological variation (body dimensions and scalation) was also analysed and indicated a stepped cline in female scalation across the valley, although the patterns for male scalation and male and female body dimensions were not as clear. Together these findings provide support for the hypothesis that the debris avalanche has shaped the phylogeography of G. galloti and may even have been a primary cause of the within-island cladogenesis through population fragmentation and isolation. Current estimates of timing of island unification mean that the original hypothesis that within-island diversity is explained by the secondary contact of populations from the two ancient precursor islands of Teno and Anaga is less plausible for this and some other Tenerife species. Large-scale landslides

  20. Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland

    Science.gov (United States)

    Fuchs, S.; Bründl, M.; Stötter, J.

    2004-04-01

    In recent years, risk assessment has become increasingly important for the protection of settlements against natural hazards because the public authorities have to economise their budgets and therefore to legitimate their investments. To quantify risk, information is needed on both, recurrence intervals of the potentially damaging natural processes and on the associated damage potential. In the past, high efforts were undertaken to assess the former, while the latter was almost ignored. The aim of this study was to determine the development of the avalanche risk in the inhabited areas of the municipality of Davos, canton of Grisons, Switzerland, for the period between 1950 and 2000. The extent of avalanche prone areas was quantified using the numerical avalanche model AVAL-1D and the current legal hazard maps. The damage potential was quantified by the number and reinstatement values of buildings and by the number of persons per building. It has been demonstrated that, contrary to the frequently expressed statement that the vulnerability of communities has increased, the risk for this settlement in fact decreased substantially. This can mainly be attributed to the realisation of mitigation measures, such as defence structures in avalanche starting zones. The only exception regarding the development of risk was in the category of residential buildings, were an increase in risk was already detectable at medium recurrence intervals. This is remarkable because methods of land use planning, such as hazard mapping, are intended to protect residential buildings from the impact of hazardous processes. However, general statements referring to a larger area (region, country) might be difficult to make, since small-scale disparities have a very important influence on the diversification of risk and risk management. Furthermore, it has to be emphasized that the results are highly dependent on the assumptions made in this study.

  1. Leakage current and induced electrical energy dissipation in nonlinear oscillation of dielectric elastomer actuators

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-09-01

    Subject to a high voltage, leakage current and induced electrical energy dissipation inevitably occur during the actuation of dielectric elastomers (DEs). In this article, a theoretical model is developed to investigate the dissipative performance of DEs in dynamic actuation. Effects of three different actuation conditions, including DE materials’ viscoelasticity intensity, amplitude of applied voltage, and mechanical tensile force, are considered. Numerical calculations are employed to detect the dynamic dissipative performance of DEs including leakage current, electrical power density, and electrical energy density in certain vibrational periods. Leakage current and induced electrical energy dissipation are enhanced with the enlargement of amplitude of applied voltage and mechanical force, and are suppressed as the intensity of DEs’ viscoelastic creep increases. The electrical energy for dissipation and actuation is also analyzed and compared.

  2. Geiger-Mode Avalanche Photodiodes in Particle Detection

    OpenAIRE

    Vilella, E.; Alonso, O.; Trenado, J.; Vilà, A.; De Vos, M.; Garrido, L.; Diéguez, A.

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite sensitivity and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection remains still unexplored. In this contribution, we are going to expose the different steps that we have taken in order to prove the efficiency of Geiger mode avalanche photodiodes in the aforementioned field. In particula...

  3. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process

    Science.gov (United States)

    Mohammed Napiah, Zul Atfyi Fauzan; Hishiki, Takuya; Iiyama, Koichi

    2017-07-01

    Avalanche photodiodes fabricated by CMOS process (CMOS-APDs) have features of high avalanche gain below 10 V, wide bandwidth over 5 GHz, and easy integration with electronic circuits. In CMOS-APDs, guard ring structure is introduced for high-speed operation by canceling photo-generated carriers in the substrate at the sacrifice of the responsivity. We describe here wavelength dependence of the responsivity and the bandwidth of the CMOS-APDs with shorted and opened guard ring structure.

  4. Influence of snow-cover properties on avalanche dynamics

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2012-04-01

    Snow avalanches with the potential of reaching traffic routes and settlements are a permanent winter threat for many mountain communities. Snow safety officers have to take the decision whether to close a road, a railway line or a ski slope. Those decisions are often very difficult as they demand the ability to interpret weather forecasts, to establish their implication for the stability and the structure of the snow cover and to evaluate the influence of the snow cover on avalanche run-out distances. In the operational programme 'Italy-Switzerland, project STRADA' we focus on the effects of snow cover on avalanche dynamics, and thus run-out distance, with the aim to provide a better understanding of this influence and to ultimately develop tools to support snow safety officers in their decision process. We selected five avalanches, measured at the Vallée de la Sionne field site, with similar initial mass and topography but different flow dynamics and run-out distances. Significant differences amongst the individual avalanches could be observed for front and internal velocities, impact pressures, flow regimes, deposition volumes and run-out distances. For each of these avalanches, the prevailing snow conditions at release were reconstructed using field data from local snowpits or were modeled with SNOWPACK. Combining flow dynamical data with snow cover properties shows that erodible snow depth, snow density and snow temperature in the snow pack along the avalanche track are among the decisive variables that appear to explain the observed differences. It is further discussed, how these influencing factors can be quantified and used for improved predictions of site and time specific avalanche hazard.

  5. Effect of volume fraction on granular avalanche dynamics.

    Science.gov (United States)

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  6. Avalanche Phenomenon of Runaway Electrons During Additional Fuelling

    Institute of Scientific and Technical Information of China (English)

    杨进蔚; 曹建勇; 曾庆希; 张炜; 唐年益; 董贾福; 邓中朝; 肖正贵; 姚良骅

    2002-01-01

    During pellet injection and supersonic molecular beam injection, we have observed the increase of electron density and the enhancement of hard x-ray radiation, but the runaway electrons normally decrease without additional fuelling when the density of plasma increases. This phenomenon may come from the synergetic effects of Dreicer and avalanche runaway electrons. The experimental results are consistent with the calculation based on the theory of avalanche runaway in the HL-1M tokamak.

  7. The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling

    Science.gov (United States)

    Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.

    2008-12-01

    until they disappear entirely in the most distal reaches. The granulometric analysis and the comparison between the debris avalanche of the Tancitaro and other collapses with similar morphometric features (vertical relief during runout, travel distance, volume and area of the deposit) indicate that the collapse was most likely not primed by any type of eruption, but rather triggered by a strong seismic shock that could have induced the failure of a portion of the edifice, already deeply altered by intense hydrothermal fluid circulation. It is also possible to hypothesize that mechanical fluidization may have been the mechanism controlling the long runout of the avalanche, as has been determined for other well-known events. The behavior of the Tancitaro debris avalanche was numerically modeled using the DAN-W code. By opportunely modifying the rheological parameters of the different models selectable within DAN, it was determined that the two-parameter 'Voellmy model' provides the best approximation of the avalanche movement. The Voellmy model produces the most realistic results in terms of runout distance, velocity and spatial distribution of the failed mass. Since the Tancitaro event was not witnessed directly, it is possible to infer approximate velocities only from comparisons with similar and documented events, namely the Mt. St. Helens debris avalanche occurred on May 18, 1980.

  8. Numerical Analysis of Induced Current in Human Head Exposed to Nonuniform Magnetic Field Including Harmonics

    Science.gov (United States)

    Tarao, Hiroo; Hayashi, Noriyuki; Isaka, Katsuo

    In this paper, induced currents in an anatomical head model exposed to a non-uniform ELF magnetic field (B-field) including harmonics are numerically calculated, and are discussed based on the basic restriction established by International Commission on Non-Ionizing Radiation Protection (ICNIRP). A casual hair dryer of 100V and 1.2kW is chosen as a typical source of the non-uniform B-field including both the fundamental and second harmonic components. The B-field distribution around the hair dryer is estimated by using the 3-orthogonal magnetic dipole moments, which are derived from a couple of measured values around it. The high-resolution human head model used is constructed based on the MRI images of a real human, and consists of six kinds of tissues (bone, brain, eyeballs, muscle, skin and blood). So-called impedance method is used for the numerical calculation of the induced current. The numerical results show that the maximum values of the induced current of 17µA/m2, for the 60Hz component, which is about 1/120 of the ICNIRP basic restriction appear in the muscle near the eyeball when the hair dryer is used from the side of the head model, and the averaged current in the eyeballs that have the highest conductivity is the highest among the six tissues. It is also demonstrated that the induced current due to the 120Hz B-field becomes comparable to the 60Hz current although the magnitude of the 120Hz B-field is much smaller than that of the 60Hz B-field.

  9. Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons

    Science.gov (United States)

    Majidi, Danial; Faez, Rahim

    2017-02-01

    In this paper, using first principle calculation and non-equilibrium Green's function, the thermally induced spin current in Hydrogen terminated Zigzag-edge Germanene Nanoribbon (ZGeNR-H) is investigated. In this model, because of the difference between the source and the drain temperature of ZGeNR device, the spin up and spin down currents flow in the opposite direction with two different threshold temperatures (Tth). Hence, a pure spin polarized current which belongs to spin down is obtained. It is shown that, for temperatures above the threshold temperature spin down current increases with the increasing temperature up to 75 K and then decreases. But spin up current rises steadily and in the high temperature we can obtain polarized spin up current. In addition, we show an acceptable spin current around the room temperature for ZGeNR. The transmission peaks in ZGeNR which are closer to the Fermi level rather than Zigzag Graphene Nanoribbon (ZGNRS) which causes ZGeNR to have spin current at higher temperatures. Finally, it is indicated that by tuning the back gate voltage, the spin current can be completely modulated and polarized. Simulation results verify the Zigzag Germanene Nanoribbon as a promising candidate for spin caloritronics devices, which can be applied in future low power consumption technology.

  10. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  11. Repertoires of spike avalanches are modulated by behavior and novelty

    Directory of Open Access Journals (Sweden)

    Tiago Lins Ribeiro

    2016-03-01

    Full Text Available Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here we show that spike avalanches, recorded from hippocampus and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  12. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    Science.gov (United States)

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  13. A revision of the Haiming rock avalanche (Eastern Alps)

    Science.gov (United States)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph

    2016-04-01

    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  14. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    Science.gov (United States)

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  15. Decreased suicide rate after induced abortion, after the Current Care Guidelines in Finland 1987-2012.

    Science.gov (United States)

    Gissler, Mika; Karalis, Elina; Ulander, Veli-Matti

    2015-02-01

    Women with a recent induced abortion have a 3-fold risk for suicide, compared to non-pregnant women. The increased risk was recognised in unofficial guidelines (1996) and Current Care Guidelines (2001) on abortion treatment, highlighting the importance of a check-up 2 - 3 weeks after the termination, to monitor for mental health disorders. We studied the suicide trends after induced abortion in 1987 - 2012 in Finland. We linked the Register on Induced Abortions (N = 284,751) and Cause-of-Death Register (N = 3798 suicides) to identify women who had committed suicide within 1 year after an induced abortion (N = 79). The abortion rates per 100,000 person-years were calculated for 1987 - 1996 (period with no guidelines), 1997 - 2001 (with unofficial guidelines) and 2002 - 2012 (with Current Care Guidelines). The suicide rate after induced abortion declined by 24%, from 32.4/100,000 in 1987 - 1996 to 24.3/100,000 in 1997 - 2001 and then 24.8/100,000 in 2002 - 2012. The age-adjusted suicide rate among women aged 15 - 49 decreased by 13%; from 11.4/100,000 to 10.4/100,000 and 9.9/100,000, respectively. After induced abortions, the suicide rate increased by 30% among teenagers (to 25/100,000), stagnated for women aged 20 - 24 (at 32/100,000), but decreased by 43% (to 21/100,000) for women aged 25 - 49. The excess risk for suicide after induced abortion decreased, but the change was not statistically significant. Women with a recent induced abortion still have a 2-fold suicide risk. A mandatory check-up may decrease this risk. The causes for the increased suicide risk, including mental health prior to pregnancy and the social circumstances, should be investigated further. © 2014 the Nordic Societies of Public Health.

  16. Trap-assisted tunneling in AlGaN avalanche photodiodes

    Directory of Open Access Journals (Sweden)

    Z. G. Shao

    2017-06-01

    Full Text Available We fabricated AlGaN solar-blind avalanche photodiodes (APDs that were based on separate absorption and multiplication (SAM structures. It was determined experimentally that the dark current in these APDs is rapidly enhanced when the applied voltage exceeds 52 V. Theoretical analyses demonstrated that the breakdown voltage at 52 V is mainly related to the local trap-assisted tunneling effect. Because the dark current is mainly dependent on the trap states as a result of modification of the lifetimes of the electrons in the trap states, the tunneling processes can be modulated effectively by tuning the trap energy level, the trap density, and the tunnel mass.

  17. Trap-assisted tunneling in AlGaN avalanche photodiodes

    Science.gov (United States)

    Shao, Z. G.; Gu, Q. J.; Yang, X. F.; Zhang, J.; Kuang, Y. W.; Zhang, D. B.; Yu, H. L.; Hong, X. K.; Feng, J. F.; Liu, Y. S.

    2017-06-01

    We fabricated AlGaN solar-blind avalanche photodiodes (APDs) that were based on separate absorption and multiplication (SAM) structures. It was determined experimentally that the dark current in these APDs is rapidly enhanced when the applied voltage exceeds 52 V. Theoretical analyses demonstrated that the breakdown voltage at 52 V is mainly related to the local trap-assisted tunneling effect. Because the dark current is mainly dependent on the trap states as a result of modification of the lifetimes of the electrons in the trap states, the tunneling processes can be modulated effectively by tuning the trap energy level, the trap density, and the tunnel mass.

  18. Cesium blockade of delayed outward currents and electrically induced pacemaker activity in mammalian ventricular myocardium.

    Science.gov (United States)

    Meier, C F; Katzung, B G

    1981-05-01

    The effects of Cs+, 5-25 mM, were studied in cat and guinea pig papillary muscles using voltage clamp and current clamp techniques. In solutions containing normal K+, the major effects of Cs+ were depolarization of the resting potential and reduction of the delayed outward current (ixl) between -80 and -20 mV. Both inward and outward portions of the isochronal current voltage relation (l-s clamps) were reduced by extracellular Cs+. This resulted in a substantial reduction of inward rectification and, by subtraction from the normal I-V relationship, the definition of a Cs+-sensitive component of current. Under current clamp conditions, 5-10 mM Cs+ produced a dose-dependent slowing of repetitive firing induced by depolarization. At higher concentrations (25 mM) the resting potential was depolarized and repetitive activity could not be induced by further depolarization. However, release of hyperpolarizing pulses was followed by prolonged bursts of repetitive action potentials, suggesting partial reversal of blockade or participation of another pacemaker process. The experimental results and a numerical simulation show that under readily attainable conditions, reduction in an outward pacemaker current may slow pacemaker activity.

  19. Current-induced magnetic switching of a single molecule magnet on a spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zheng-Chuan, E-mail: wangzc@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, Qing-Rong [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Zheng-Gang [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); School of Electronics, Electric and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Su, Gang, E-mail: gsu@ucas.ac.cn [Theoretical Condensed Matter Physics and Computational Materials Physics Laboratory, School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-04-17

    The current-induced magnetic switching of a single-molecule magnet (SMM) attached on the central region of a spin valve is explored, and the condition for the switching current is derived. Electrons flowing through the spin valve will interact with the SMM via the s–d exchange interaction, producing the spin accumulation that satisfies the spin diffusion equation. We further describe the spin motion of the SMM by a Heisenberg-like equation. Based on the linear stability analysis, we obtain the critical current from two coupled equations. The results of the critical current versus the external magnetic field indicate that one can manipulate the magnetic state of the SMM by an external magnetic field. - Highlights: • We theoretically study the current-induced magnetic switching of the SMM. • We describe the spin motion of the SMM by a Heisenberg-like equation. • We describe the spin accumulation by the spin diffusion equation. • We obtain the critical current by the linear stability analysis. • Our approach can be easily extended to other SMMs.

  20. Induced fermionic currents in de Sitter spacetime in the presence of a compactified cosmic string

    CERN Document Server

    Mohammadi, A; Saharian, A A

    2014-01-01

    We investigate the vacuum fermionic currents in the geometry of a compactified cosmic string on background of de Sitter spacetime. The currents are induced by magnetic fluxes running along the cosmic string and enclosed by the compact dimension. We show that the vacuum charge and the radial component of the current density vanish. By using the Abel-Plana summation formula, the azimuthal and axial currents are explicitly decomposed into two parts: the first one corresponds to the geometry of a straight cosmic string and the second one is induced by the compactification of the string along its axis. For the axial current the first part vanishes and the corresponding topological part is an even periodic function of the magnetic flux along the string axis and an odd periodic function of the flux enclosed by the compact dimension with the periods equal to the flux quantum. The azimuthal current density is an odd periodic function of the flux along the string axis and an even periodic function of the flux enclosed ...

  1. Recent advances in very large area avalanche photodiodes

    Science.gov (United States)

    Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell

    2003-09-01

    The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.

  2. Modeling of snow avalanches for protection measures designing

    Science.gov (United States)

    Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton

    2017-04-01

    Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in

  3. Interpreting current-induced spin polarization in topological insulator surface states

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2016-06-01

    Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced nonequilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically trivial metal. This result ipso facto discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e., spin-momentum locking in the topologically protected surface state.

  4. Spin-orbit current-induced torques in (Ga,Mn)As

    Science.gov (United States)

    Vehstedt, Erin K.; Zarbo, Liviu P.; Vyborny, Karel; Kurebayashi, Hidekazu; Roy, Pierre; Wunderlich, Joerg; Ferguson, Andrew J.; Jungwirth, Tomas; Sinova, Jairo

    2013-03-01

    Electrical control of magnetic domains has the potential to overcome key challenges to the development of new non-volatile and down-scalable logic and memory devices. We study the spin-orbit torque induced by an unpolarized electric current in the dilute ferromagnetic semiconductor, (Ga,Mn)As. The current-induced torque (CIT) is modeled as the interaction between the uniform magnetization and an effective magnetic field representing the non-equilibrium carrier spin-polarization. We calculate the current-induced field (CIF) using the Kubo linear-response formalism for a broad range of material parameters. We find that the CIF is composed of a dominant term due to the inverse spin galvanic effect and a small component which is dependent on the relative orientation of the current, magnetization, and crystal axes. In conjunction with experimental studies, we investigate the magnetization dynamics using the phenomenological Landau-Lifschitz-Gilbert equation. The study of (Ga,Mn)As opens the door to a comprehensive theory of CITs in uniform magnetic semiconductors.

  5. Calcium-dependent potassium current following penicillin-induced epileptiform discharges in the hippocampal slice.

    Science.gov (United States)

    Domann, R; Dorn, T; Witte, O W

    1989-01-01

    Penicillin-induced paroxysmal depolarization shifts (PDS) are followed by prolonged afterhyperpolarizations of about 2 seconds duration. Intracellular injection of EGTA blocked a late component of the afterhyperpolarizations; an early one lasting up to one second was only slightly reduced by EGTA. It is concluded that afterhyperpolarizations following penicillin-induced PDS comprise different components: an initial one lasting up to one second which is not Ca2+-dependent and a slow one lasting up to two seconds which is caused by a Ca2+-dependent K+ current.

  6. Influence of bio-membrane on current characteristics induced by ambient ELF magnetic field for spherical tissue model

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Noriyuki [Kyushu University, Kasuga (Japan). Graduate School of Engineering Sciences; Tarao, Hiroo; Isaka, Katsuo [University of Tokushima (Japan). Faculty of Engineering

    1999-07-01

    Based on the experimental works using rats and chicken eggs, possible influences of the bio-membrane on the electric field and resultant current induced by the exposure to ambient ELF magnetic field, have been pointed out. Existence of the bio-membrane is, however, rarely implemented in conventional procedures of the induced current examination. The present contribution presents results of the analytical examination on how the thickness and electric conductivity of the bio-membrane affect the induced current profiles, indicating the significant role of the bio-membrane on the exact evaluation of the induced current characteristics. (author)

  7. Skier triggering of backcountry avalanches with skilled route selection

    Science.gov (United States)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  8. Induced fermionic charge and current densities in two-dimensional rings

    CERN Document Server

    Bellucci, S; Grigoryan, A Kh

    2016-01-01

    For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...

  9. Role of Ca(2+) in injury-induced changes in sodium current in rat skeletal muscle.

    Science.gov (United States)

    Filatov, Gregory N; Pinter, Martin J; Rich, Mark M

    2009-08-01

    Characteristics of voltage-dependent sodium current recorded from adult rat muscle fibers in loose patch mode were rapidly altered following nearby impalement with a microelectrode. Hyperpolarized shifts in the voltage dependence of activation and fast inactivation occurred within minutes. In addition, the amplitude of the maximal sodium current decreased within 30 min of impalement. Impalement triggered a sustained elevation of intracellular Ca(2+). However, buffering Ca(2+) by loading fibers with AM-BAPTA did not affect the hyperpolarized shifts in activation and inactivation, although it did prevent the reduction in current amplitude. Surprisingly, the rise in intracellular Ca(2+) occurred even in the absence of extracellular Ca(2+). This result indicated that the injury-induced Ca(2+) increase came from an intracellular source, but it was not blocked by an inhibitor of release from the sarcoplasmic reticulum, which suggested involvement of mitochondria. Ca(2+) release from mitochondria triggered by carbonyl cyanide 3-chlorophenylhydrazone was sufficient to cause a reduction in sodium current amplitude but had little effect of the voltage dependence of activation and fast inactivation. Our data suggest the effects of muscle injury can be separated into a Ca(2+)-dependent reduction in amplitude and a largely Ca(2+)-independent shift in activation and fast inactivation. Together, the impalement-induced changes in sodium current reduce the number of sodium channels available to open at the resting potential and may limit further depolarization and thus promote survival of muscle fibers following injury.

  10. Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current.

    Science.gov (United States)

    Best, Tyler K; Siarey, Richard J; Galdzicki, Zygmunt

    2007-01-01

    Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). We have recently shown that the DS mouse model, Ts65Dn, overexpresses GIRK2 throughout the brain and in particular the hippocampus. Here we report that this overexpression leads to a significant increase ( approximately 2-fold) in GABA(B)-mediated GIRK current in primary cultured hippocampal neurons. The dose response curves for peak and steady-state GIRK current density is significantly shifted left toward lower concentrations of baclofen in Ts65Dn neurons compared with diploid controls, consistent with increased functional expression of GIRK channels. Stationary fluctuation analysis of baclofen-induced GIRK current from Ts65Dn neurons indicated no significant change in single-channel conductance compared with diploid. However, significant increases in GIRK channel density was found in Ts65Dn neurons. In normalized baclofen-induced GIRK current and GIRK current kinetics no difference was found between diploid and Ts65Dn neurons, which suggests unimpaired mechanisms of interaction between GIRK channel and GABA(B) receptor. These results indicate that increased expression of GIRK2 containing channels have functional consequences that likely affect the balance between excitatory and inhibitory neuronal transmission.

  11. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  12. Safety of transcranial direct current stimulation in alcohol-induced psychotic disorder with comorbid psoriasis

    Directory of Open Access Journals (Sweden)

    Venkataram Shivakumar

    2016-01-01

    Full Text Available Transcranial Direct Current Stimulation (tDCS involves application of weak direct electric currents (up to 2mA using scalp electrodes with resultant neuroplasticity modulation by altering the cortical excitability. Though the side effect profile of tDCS is benign and less severe, the utility and safety of tDCS in dermatological conditions remains a concern. In this context, we report the safe administration of tDCS in a subject with substance induced psychosis and co-morbid psoriasis.

  13. Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs

    Science.gov (United States)

    Grzybowski, M. J.; Wadley, P.; Edmonds, K. W.; Beardsley, R.; Hills, V.; Campion, R. P.; Gallagher, B. L.; Chauhan, J. S.; Novak, V.; Jungwirth, T.; Maccherozzi, F.; Dhesi, S. S.

    2017-02-01

    The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using x-ray magnetic linear dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multidomain antiferromagnetic films.

  14. Avalanches in a granular stick-slip experiment: detection using wavelets

    Science.gov (United States)

    Abed Zadeh, Aghil; Barés, Jonathan; Behringer, Robert P.

    2017-06-01

    Avalanches have been experimentally investigated in a wide range of physical systems from granular physics to friction. Here, we measure and detect avalanches in a 2D granular stick-slip experiment. We discuss the conventional way of signal processing for avalanche extraction and how statistics depend on several parameters that are chosen in the analysis process. Then, we introduce another way of detecting avalanches using wavelet transformations that can be applied in many other systems. We show that by using this method and measuring Lipschitz exponents, we can intelligently detect noise in a signal, which leads to a better avalanche extraction and more reliable avalanche statistics.

  15. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný, J.

    2014-10-06

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  16. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  17. Coupled Dzyaloshinskii walls and their current-induced dynamics by the spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Eduardo, E-mail: edumartinez@usal.es [Dpto. de Fisica Aplicada, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Alejos, Óscar [Dpto. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén, 7, E-47011 Valladolid (Spain)

    2014-07-14

    The nucleation of domain walls in ultrathin ferromagnetic/heavy-metal bilayers is studied by means of micromagnetic simulations. In the presence of interfacial Dzyaloshinskii-Moriya interaction, the nucleated walls naturally adopt a homochiral configuration with internal magnetization pointing antiparallely. The interaction between these walls was analyzed and described in terms of a classical dipolar force between the magnetic moments of the walls, which couples their dynamics. Additionally, the current-induced motion of two homochiral walls in the presence of longitudinal fields was also studied by means of a simple one-dimensional model and micromagnetic modeling, considering both one free-defect strip and another one with random edge roughness. It is evidenced that in the presence of pinning due to edge roughness, the in-plane longitudinal field introduces an asymmetry in the current-induced depinning, in agreement with recent experimental results.

  18. Gyrotropic elastic response of skyrmion crystals to current-induced tensions

    Science.gov (United States)

    Ochoa, Hector; Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the dynamics of skyrmion crystals in electrically insulating chiral magnets subjected to current-induced spin torques by adjacent metallic layers. We develop an elasticity theory that accounts for the gyrotropic force engendered by the nontrivial topology of the spin texture, tensions at the boundaries due to the exchange of linear and spin angular momentum with the metallic reservoirs, and dissipation in the bulk of the film. A steady translation of the skyrmion crystal is triggered by the current-induced tensions and subsequently sustained by dissipative forces, generating an electromotive force on itinerant spins in the metals. This phenomenon should be revealed as a negative drag in an open two-terminal geometry, or equivalently, as a positive magnetoresistance when the terminals are connected in parallel. We propose nonlocal transport measurements with these salient features as a tool to characterize the phase diagram of insulating chiral magnets.

  19. Avalanche outbreaks emerging in cooperative contagions

    Science.gov (United States)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  20. The structure of powder snow avalanches

    Science.gov (United States)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  1. Carbon Monoxide Induces Cardiac Arrhythmia via Induction of the Late Na+ Current

    Science.gov (United States)

    Dallas, Mark L.; Yang, Zhaokang; Boyle, John P.; Boycott, Hannah E.; Scragg, Jason L.; Milligan, Carol J.; Elies, Jacobo; Duke, Adrian; Thireau, Jérôme; Reboul, Cyril; Richard, Sylvain; Bernus, Olivier; Steele, Derek S.

    2012-01-01

    Rationale: Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. Objectives: To understand the cellular basis of CO-induced arrhythmias and to indentify an effective therapeutic approach. Methods: Patch-clamp electrophysiology and confocal Ca2+ and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. Measurements and Main Results: CO increased the sustained (late) component of the inward Na+ current, resulting in prolongation of the action potential and the associated intracellular Ca2+ transient. In more than 50% of myocytes these changes progressed to early after-depolarization–like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na+ channel, Nav1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na+ current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. Conclusions: Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of NaV1.5 and to induction of the late Na+ current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias. PMID:22822026

  2. Wave-induced stress and estimation of its driven effect on currents

    Institute of Scientific and Technical Information of China (English)

    SUN Fu; GAO Shan; WANG Wei; QIAN Chengchun

    2004-01-01

    A genuine geostrophic small amplitude wave solution is deduced for the first time from the general form of linear fluid dynamic equations with the f-plane approximation, where the horizontal component of angular velocity of the earth rotation is taken into account. The Coriolisinduced stress obtained from this solution consists of lateral and reverse component, while its first order approximation is reduced to the result of Hasselmann or Xu Zhigang. Accordingly,combining the Coriolis-induced wave stress with the virtual wave stress proposed by Longuet-Higgins, the ratio of total wave-induced stress to wind stress on the sea surface is estimated, through which the importance of the wave-induced stress is emphasized in the study of the currents in the seas around China, especially in the Bohai Sea and the Yellow Sea.

  3. Avalanches in a stochastic model of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Marc Benayoun

    Full Text Available Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons. When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  4. Avalanches in a stochastic model of spiking neurons.

    Science.gov (United States)

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  5. Simulations of electron avalanches in an ultra-low-background proportional counter

    Science.gov (United States)

    Robinson, John W.; Aalseth, Craig; Dion, Michael P.; Overman, Cory; Seifert, Allen; VanDevender, Brent

    2016-02-01

    New classes have been added to the simulation package Garfield++ to import the potential and electric field solutions generated by ANSYS ® MaxwellTM v.16. Using these tools we report results on the simulation of electron avalanches and induced signal waveforms in comparison to experimental data of the ultra-low-background gas proportional counters being developed at Pacific Northwest National Laboratory. Furthermore, an improved mesh search algorithm based on Delaunay triangulation was implemented and provided at least a three order of magnitude time savings when compared to the built-in point-location search class of Garfield++.

  6. Measurements of electron avalanche formation time in W-band microwave air breakdown

    Science.gov (United States)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  7. Simulations of Electron Avalanches in an Ultra-Low-Background Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, John W.; Aalseth, Craig E.; Dion, Michael P.; Overman, Cory T.; Seifert, Allen; VanDevender, Brent A.

    2016-02-21

    New classes have been added to the simulation package Garfield++ to import the potential and electric field solutions generated by ANSYS R MaxwellTM v.16. Using these tools we report results on the simulation of electron avalanches and induced signal waveforms in comparison to experimental data of the ultra-lowbackground gas proportional counters being developed at Pacific Northwest National Laboratory. Furthermore, an improved mesh search algorithm based on Delaunay triangulation was implemented and provided at least a three order of magnitude time savings when compared to the built-in point-location search class of Garfield++.

  8. Effective amplifier noise for an optical receiver based on linear mode avalanche photodiodes

    Science.gov (United States)

    Chen, C.-C.

    1989-01-01

    The rms noise charge induced by the amplifier for an optical receiver based on the linear-mode avalanche photodiode (APD) was analyzed. It is shown that for an amplifier with a 1-pF capacitor and a noise temperature of 100 K, the rms noise charge due to the amplifier is about 300. Since the noise charge must be small compared to the signal gain, APD gains on the order of 1000 will be required to operate the receiver in the linear mode.

  9. Dynamics of air avalanches in the access pit of an underground quarry.

    Science.gov (United States)

    Perrier, F; Morat, P; Le Mouël, J-L

    2002-09-23

    Temperature measurements have been performed in the vertical access pit of an underground quarry. During autumn, air avalanches induce an initial thermal feedback and a stationary mixing state characterized by spatially coherent broad-band fluctuations with a standard deviation of about 0.2 degrees C, linearly increasing with the inside-minus-outside temperature difference. Phase changes of water are shown to contribute to the onset condition, the feedback, and the stationary mixing state. This experiment may give insight on turbulent thermal and compositional convection with nonadiabatic boundaries.

  10. 一种基于雪崩二极管电容特性提取通讯波段单光子信号的方法%A Feasible Method for Detecting 1.5 μm Single Photon Based on Capacitance Nature of Avalanche Photodiode

    Institute of Scientific and Technical Information of China (English)

    齐兰; 杨磊; 郭学石; 李小英

    2013-01-01

    InGaAs/InP雪崩二极管(APD)可用于探测光通讯波段的单光子.APD工作于门模盖革模式时,单个光子引起的雪崩电流信号通常淹没在电容瞬时充放电脉冲中,光电流信号提取困难.本文通过调整实验参数和APD的寄生电容,使雪崩信号与放电脉冲在时域上有效叠加,并由高速比较器将光电流信号直接甄别出来.本文设计的基于InGaAs/InP APD的单光子探测系统,运行稳定,方法简单可靠,说明这种利用APD的电容特性提取单光子信号是一种有效的方法.%InGaAs/InP avalanche photodiode(APD) working in gated Geiger mode can be used to measure single photons in the 1550 nm telecom-band.However,it is difficult to extract the photon induced avalanche current,which is usually buried in the charge and discharge pulses due to junction capacitance.When the avalanche signal and discharge pulse are properly overlaped in the time domain,the avalanche photocurrent is directly discriminated by high-speed comparator.The single photon detection system is simple and stable,which proves that it is efficient to extract the photon with this feature.

  11. Numerical Simulation of Wave-Induced Currents Combined with Parabolic Mild-Slope Equation in Curvilinear Coordinates

    Institute of Scientific and Technical Information of China (English)

    CUI Lei; TONG Fei-fei; SHI Feng

    2011-01-01

    Researches on breaking-induced currents by waves are summarized firstly in this paper.Then,a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline.The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation.The wave module actually serves as the driving force to provide the current module with required radiation stresses.The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module,respectively.The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater.The numerical results are compared with the measured data and published numerical results.

  12. Electrocardiographic Biomarkers for Detection of Drug-Induced Late Sodium Current Block

    Science.gov (United States)

    Vicente, Jose; Johannesen, Lars; Hosseini, Meisam; Mason, Jay W.; Sager, Philip T.; Pueyo, Esther; Strauss, David G.

    2016-01-01

    Background Drugs that prolong the heart rate corrected QT interval (QTc) on the electrocardiogram (ECG) by blocking the hERG potassium channel and also block inward currents (late sodium or L-type calcium) are not associated with torsade de pointes (e.g. ranolazine and verapamil). Thus, identifying ECG signs of late sodium current block could aid in the determination of proarrhythmic risk for new drugs. A new cardiac safety paradigm for drug development (the “CiPA” initiative) will involve the preclinical assessment of multiple human cardiac ion channels and ECG biomarkers are needed to determine if there are unexpected ion channel effects in humans. Methods and Results In this study we assess the ability of eight ECG morphology biomarkers to detect late sodium current block in the presence of QTc prolongation by analyzing a clinical trial where a selective hERG potassium channel blocker (dofetilide) was administered alone and then in combination with two late sodium current blockers (lidocaine and mexiletine). We demonstrate that late sodium current block has the greatest effect on the heart-rate corrected J-Tpeak interval (J-Tpeakc), followed by QTc and then T-wave flatness. Furthermore, J-Tpeakc is the only biomarker that improves detection of the presence of late sodium current block compared to using QTc alone (AUC: 0.83 vs. 0.72 respectively, p<0.001). Conclusions Analysis of the J-Tpeakc interval can differentiate drug-induced multichannel block involving the late sodium current from selective hERG potassium channel block. Future methodologies assessing drug effects on cardiac ion channel currents on the ECG should use J-Tpeakc to detect the presence of late sodium current block. Trial Registration NCT02308748 and NCT01873950 PMID:28036334

  13. Optogalvanic effect and laser-induced current oscillations in hollow-cathode lamps

    Science.gov (United States)

    Eldakli, Mohsan S. A.; Ivković, Saša S.; Obradović, Bratislav M.

    2017-03-01

    This paper presents a study of two commercial hollow-cathode lamps (HCLs) with the intention of demonstrating different phenomena in gas discharges. The optogalvanic effect in both HCLs is produced by a laser diode radiated at the wavelength that corresponds to neon transition 1s2–2p2 at 659.89 nm. The voltage–current characteristics of the lamps are explained using a classical theory of hollow-cathode discharge, while the optogalvanic signal is treated as a small perturbation of the discharge current. For certain values of voltage self-sustained current oscillations are observed in one of the HCLs. In the same HCL laser-induced optogalvanic dumped oscillations are detected. A phenomenological model that includes the effective circuit parameters of the discharge is used to explain the oscillation characteristics.

  14. Experiments on Interaction Between Current-Induced Vibration and Scour of Submarine Pipelines on Sandy Bottom

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhonghan; LIU Yubiao; LI Qingping; HUANG Qinghua; ZHU Farong

    2000-01-01

    In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model. A test model which can be testedin the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined.The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.

  15. Novel magnetic wire fabrication process by way of nanoimprint lithography for current induced magnetization switching

    Directory of Open Access Journals (Sweden)

    Tsukasa Asari

    2017-05-01

    Full Text Available Nanoimprint lithography (NIL is an effective method to fabricate nanowire because it does not need expensive systems and this process is easier than conventional processes. In this letter, we report the Current Induced Magnetization Switching (CIMS in perpendicularly magnetized Tb-Co alloy nanowire fabricated by NIL. The CIMS in Tb-Co alloy wire was observed by using current pulse under in-plane external magnetic field (HL. We successfully observed the CIMS in Tb-Co wire fabricated by NIL. Additionally, we found that the critical current density (Jc for the CIMS in the Tb-Co wire fabricated by NIL is 4 times smaller than that fabricated by conventional lift-off process under HL = 200Oe. These results indicate that the NIL is effective method for the CIMS.

  16. Structural tuning of nanogaps using electromigration induced by field emission current with bipolar biasing

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp [Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2015-07-07

    We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thus activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.

  17. THREE-DIMENSIONAL NUMERICAL MODELLING OF THE WAVE-INDUCED RIP CURRENTS UNDER IRREGULAR BATHYMETRY

    Institute of Scientific and Technical Information of China (English)

    XIE Ming-xiao

    2012-01-01

    A process-based 3-D hydrodynamic model is established to simulate the rip current structures under irregular bathymetty.The depth-varying wave-induced residual momentum,the surface rollers,the turbulent mixing and the wave-current interactions are considered.Experimental datasets are used to validate the model,and it is shown that the model can effectively describe the 3-D structures of the rip currents in both normal and oblique wave incident cases.The flow patterns of the rip currents see various characteristics for different incident wave directions.In the normal incident case,pairs of counter-rotating primary circulation cells are formed,and an offshore rip flow occurs in the embayment troughs.The peak seaward velocities occur at the top of the bed boundary layer,and the undertow is incorporated in addition to the rip currents.In the oblique incident case,the longshore currents are dominant,which result in a meandering flow along the depth contour,and the undertow is weaker compared to that in the normal incident condition.

  18. Sediment Transport by Spring Avalanches in the Southern Swiss Alps

    Science.gov (United States)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.

    2010-12-01

    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  19. Implications of Grainfall for Avalanches and Barchan Dune Morphodynamics

    Science.gov (United States)

    Nield, J. M.; Wiggs, G.; Baddock, M. C.; Hipondoka, M.

    2016-12-01

    Sediment accumulation on aeolian dunes is predominately though avalanching (or grainflow). This grainflow is initiated by the accumulation of grainfall deposits, close to the dune brink. When the accumulation, or `bulge', exceeds an angle of repose, avalanches are initiated and sediment is transported down the lee of the dune. The location of sediment accumulation, or avalanche initiation point, is determined by the distance that grainfall can travel from the dune brink. While previous studies have focused on determining angles at which avalanches occur, along with depositional flux rates, technical constraints have limited the testing of models to predict grainfall zone dynamics under varying wind conditions. Here we use terrestrial laser scanning (TLS) to measure both grainfall distance and associated lee slope surface change of a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that under stronger winds, the distance that grainfall can travel from the brink expands (by up to 0.45 m for a 3 m/s increase in wind speed). Along with this expansion of the grainfall distance there is an increase in saltation flux over the brink. The increased grainfall distance shifts sand further from the brink resulting in dominant avalanche initiation point locations expanding from 0.3 m to 0.4 m for wind speeds above 6 m/s. This shift also corresponds to the appearance of secondary avalanches, which are initiated by primary avalanche lobe deposits extending outside of the main grainfall zone. Ultimately, under stronger winds the expansion of the grainfall distance contributes to the destabilisation and movement of increased sediment volumes down the lee slope. Avalanches under stronger wind speeds, therefore, increase in thickness, width and length, while during weaker wind speeds, most of the grainfall and grainflow is limited to the upper section of the lee slope. The implication of this dual avalanche behaviour under variable wind

  20. Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data: Bingham Canyon Rock Avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R. [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Pankow, Kristine L. [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Ford, Sean R. [Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore California USA; Koper, Keith D. [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Hale, J. Mark [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Aaron, Jordan [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver British Columbia Canada; Larsen, Chris F. [Geophysical Institute, University of Alaska Fairbanks, Fairbanks Alaska USA

    2017-03-01

    The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. Here we combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greater volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~104–105 m3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. Our results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.

  1. Numerical modeling of debris avalanches at Nevado de Toluca (Mexico): implications for hazard evaluation and mapping

    Science.gov (United States)

    Grieco, F.; Capra, L.; Groppelli, G.; Norini, G.

    2007-05-01

    The present study concerns the numerical modeling of debris avalanches on the Nevado de Toluca Volcano (Mexico) using TITAN2D simulation software, and its application to create hazard maps. Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age, located in central México near to the cities of Toluca and México City; its past activity has endangered an area with more than 25 million inhabitants today. The present work is based upon the data collected during extensive field work finalized to the realization of the geological map of Nevado de Toluca at 1:25,000 scale. The activity of the volcano has developed from 2.6 Ma until 10.5 ka with both effusive and explosive events; the Nevado de Toluca has presented long phases of inactivity characterized by erosion and emplacement of debris flow and debris avalanche deposits on its flanks. The largest epiclastic events in the history of the volcano are wide debris flows and debris avalanches, occurred between 1 Ma and 50 ka, during a prolonged hiatus in eruptive activity. Other minor events happened mainly during the most recent volcanic activity (less than 50 ka), characterized by magmatic and tectonic-induced instability of the summit dome complex. According to the most recent tectonic analysis, the active transtensive kinematics of the E-W Tenango Fault System had a strong influence on the preferential directions of the last three documented lateral collapses, which generated the Arroyo Grande and Zaguàn debris avalanche deposits towards E and Nopal debris avalanche deposit towards W. The analysis of the data collected during the field work permitted to create a detailed GIS database of the spatial and temporal distribution of debris avalanche deposits on the volcano. Flow models, that have been performed with the software TITAN2D, developed by GMFG at Buffalo, were entirely based upon the information stored in the geological database. The modeling software is built upon equations

  2. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  3. Snow avalanche friction relation based on extended kinetic theory

    Science.gov (United States)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-11-01

    Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  4. The effectiveness of mean-field theory for avalanche distributions

    Science.gov (United States)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  5. The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne

    Science.gov (United States)

    Köhler, A.; McElwaine, J. N.; Sovilla, B.; Ash, M.; Brennan, P.

    2016-11-01

    Five avalanches were artificially released at the Vallée de la Sionne test site in the west of Switzerland on 3 February 2015 and recorded by the GEOphysical flow dynamics using pulsed Doppler radAR Mark 3 radar system. The radar beam penetrates the dilute powder cloud and measures reflections from the underlying denser avalanche features allowing the tracking of the flow at 111 Hz with 0.75 m downslope resolution. The data show that the avalanches contain many internal surges. The large or "major" surges originate from the secondary release of slabs. These slabs can each contain more mass than the initial release, and thus can greatly affect the flow dynamics, by unevenly distributing the mass. The small or "minor" surges appear to be a roll wave-like instability, and these can greatly influence the front dynamics as they can repeatedly overtake the leading edge. We analyzed the friction acting on the fronts of minor surges using a Voellmy-like, simple one-dimensional model with frictional resistance and velocity-squared drag. This model fits the data of the overall velocity, but it cannot capture the dynamics and especially the slowing of the minor surges, which requires dramatically varying effective friction. Our findings suggest that current avalanche models based on Voellmy-like friction laws do not accurately describe the physics of the intermittent frontal region of large mixed avalanches. We suggest that these data can only be explained by changes in the snow surface, such as the entrainment of the upper snow layers and the smoothing by earlier flow fronts.

  6. Numerical Examination of Silicon Avalanche Photodiodes Operated in Charge Storage Mode

    Science.gov (United States)

    Parks, Joseph W., Jr.; Brennan, Kevin F.

    1998-01-01

    The behavior of silicon-based avalanche photodiodes (APD's) operated in the charge storage mode is examined. In the charge storage mode, the diodes are periodically biased to a sub-breakdown voltage and then open-circuited. During this integration period, photo-excited and thermally generated carriers are accumulated within the structure. The dynamics of this accumulation and its effects upon the avalanching of the diode warrants a detailed, fully numerical analysis. The salient features of this investigation include device sensitivity to the input photo-current including the self-quenching effect of the diode and its limitations in sensing low light levels, the dependence of the response on the bulk lifetime and hence on the generation current within the device, the initial gain, transient response, dependence of the device uniformity upon performance, and the quantity of storable charge within the device. To achieve these tasks our device simulator, STEBS-2D, was utilized. A modified current-controlled boundary condition is employed which allows for the simulation of the isolated diode after the initial reset bias has been applied. With this boundary condition, it is possible to establish a steady-state voltage on the ohmic contact and then effectively remove the device from the external circuit while still including effects from surface recombination, trapped surface charge, and leakage current from the read-out electronics.

  7. State-of-the-art performance of GaAlAs/GaAs avalanche photodiodes

    Science.gov (United States)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Ga(0.15)Al(0.85)As/GaAs avalanche photodiodes have been successfully fabricated. The performance of these detectors is characterized by a rise time of less than 35 ps, an external quantum efficiency with an antireflection coating of 95% at 0.53 microns, and a microwave optical gain of 42 dB. The dark current density is in the low range (10 to the minus A/sq cm) at one-half the breakdown voltages, and rises to 0.0001 A/sq cm at 42 dB optical gain.

  8. Effect of tides and source location on nearshore tsunami-induced currents

    Science.gov (United States)

    Ayca, Aykut; Lynett, Patrick J.

    2016-12-01

    Here we present the results of a numerical modeling study that investigates how event-maximum tsunami-induced currents vary due to the dynamic effects of tides and wave directivity. First, analyses of tide-tsunami interaction are presented in three harbors by coupling the tsunami with the tide, and allowing the initial tsunami wave to arrive at various tidal phases. We find that tsunami-tide interaction can change the event-maximum current speed experienced in a harbor by up to 25% for the events and harbors studied, and we note that this effect is highly site-specific. Second, to evaluate the effect of wave directionality on event-maximum currents, earthquakes sources were placed throughout the Pacific, with magnitudes tuned to create the same maximum near-coast amplitude at the harbor of study. Our analysis also shows that, for the harbor and sources examined, the effect of offshore directionality and tsunami frequency content has a weak effect on the event-maximum currents experienced in the harbor. The more important dependency of event-maximum currents is the near-harbor amplitude of the wave, indicating that event-maximum currents in a harbor from a tsunami generated by a large far-field earthquake may be reasonably well predicted with only information about the predicted local maximum tsunami amplitude. This study was motivated by the hope of constructing a basis for understanding the dynamic effects of tides and wave directivity on current-based tsunami hazards in a coastal zone. The consideration of these aspects is crucial and yet challenging in the modeling of tsunami currents.

  9. Precision Blasting Techniques For Avalanche Control

    Science.gov (United States)

    Powell, Kevin M.

    Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.

  10. Readout electronics for low dark count Geiger mode avalanche photodiodes fabricated in conventional HV-CMOS technologies for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Vilella, E; Arbat, A; Alonso, O; Vila, A; Dieguez, A [Department of Electronics, University of Barcelona (UB) MartI i Franques 1, 08028 Barcelona (Spain); Comerma, A; Trenado, J; Gascon, D; Garrido, L, E-mail: evilella@el.ub.es [Department of Structure and Constituents of Matter, University of Barcelona (UB) MartI i Franques 1, 08028 Barcelona (Spain)

    2011-01-15

    This work presents low noise readout circuits for silicon pixel detectors based on Geiger mode avalanche photodiodes. Geiger mode avalanche photodiodes offer a high intrinsic gain as well as an excellent timing accuracy. In addition, they can be compatible with standard CMOS technologies. However, they suffer from a high intrinsic noise, which induces false counts indistinguishable from real events and represents an increase of the readout electronics area to store the false counts. We have developed new front-end electronic circuitry for Geiger mode avalanche photodiodes in a conventional 0.35 {mu}m HV-CMOS technology based on a gated mode of operation that allows low noise operation. The performance of the pixel detector is triggered and synchronized with the particle beam thanks to the gated acquisition. The circuits allow low reverse bias overvoltage operation which also improves the noise figures. Experimental characterization of the fabricated front-end circuit is presented in this work.

  11. Temperature Dependence Study of Mesa-Type InGaAs/InAlAs Avalanche Photodiode Characteristics

    Directory of Open Access Journals (Sweden)

    Jack Jia-Sheng Huang

    2017-01-01

    Full Text Available Avalanche photodiodes (APDs are key optical receivers due to their performance advantages of high speed, high sensitivity, and low noise. The most critical device parameters of APD include the avalanche breakdown voltage and dark current. In this work, we study the temperature dependence of the breakdown voltage and dark current of the mesa-type APD over a wide temperature range of 20–145°C. We institute an empirical model based on impact ionization processes to account for the experimental data. It is shown that highly stable breakdown characteristics of mesa-type APD can be attained with the optimization of the multiplication layer design. We have achieved excellent stability of avalanche breakdown voltage with a temperature coefficient of 0.017 V/°C. The temperature dependence of dark current is attributed to generation-recombination mechanism. The bandgap energy is estimated to be about 0.71 eV based on the temperature variation of dark current, in good agreement with the value for InGaAs.

  12. Secondary current properties generated by wind-induced water waves in experimental conditions

    Directory of Open Access Journals (Sweden)

    Michio Sanjou

    2014-06-01

    Full Text Available Secondary currents such as the Langmuir circulation are of high interest in natural rivers and the ocean because they have striking impacts on scour, sedimentation, and mass transport. Basic characteristics have been well-studied in straight open-channel flows. However, little is known regarding secondary circulation induced by wind waves. The presented study describes the generation properties of wind waves observed in the laboratory tank. Wind-induced water waves are known to produce large scale circulations. The phenomenon is observed together with high-speed and low-speed streaks, convergence and divergence zones, respectively. Therefore, it is important to determine the hydrodynamic properties of secondary currents for wind-induced water waves within rivers and lakes. In this study, using two high-speed CMOS cameras, stereoscopic particle image velocimetry (PIV measurements were conducted in order to reveal the distribution of all three components of velocity vectors. The experiments allowed us to investigate the three-dimensional turbulent structure under water waves and the generation mechanism of large-scale circulations. Additionally, a third CMOS camera was used to measure the spanwise profile of thefree-surface elevation. The time-series of velocity components and the free-surface were obtained simultaneously. From our experiments, free-surface variations were found to influence the instantaneous velocity distributions of the cross-sectional plane. We also considered thegeneration process by the phase analysis related to gravity waves and compared the contribution of the apparent stress.

  13. Induced fermionic current by a magnetic tube in the cosmic spacetime

    CERN Document Server

    de Sousa, M S Maior; de Mello, E R Bezerra

    2015-01-01

    In this paper, we consider a charged massive fermionic quantum field in the space-time of an idealized cosmic string, in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic field is taken into account: (i) a cylindrical shell of radius $a$, (ii) a magnetic field proportional to $1/r$ and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius $a$ coincides with the cosmic string. Our main objective is to analyze the induced vacuum fermionic current densities outside the tube. In order to do that, we explicitly construct the wave-functions inside and outside the tube for each case. Having the complete set of normalized wave-functions, we use the summation method to develop our analysis. We show that in the region outside the tube, the induced currents are decomposed into a parts corresponding to a zero-thickness magnetic flux in addition to a core-induced contributions. The latter presents...

  14. Inhibition of sodium current by taurine magnesium coordination compound prevents cesium chloride-induced arrhythmias.

    Science.gov (United States)

    Yin, Yongqiang; Wen, Ke; Wu, Yanna; Kang, Yi; Lou, Jianshi

    2012-05-01

    The mechanism(s) by which taurine magnesium coordination compound (TMCC) inhibits experimental arrhythmias remains poorly understood. The purpose of this study was to observe the effects of TMCC against cesium chloride-induced arrhythmia in the rabbit heart and find whether the antiarrhythmic activity is related to inhibition of sodium current. Early afterdepolarization was induced by 1.5 mM cesium chloride (1 ml kg(-1)) through intravenous injection. The monophasic action potentials (MAP) and electrocardiograms were simultaneously recorded. The effect of TMCC on functional refractory periods (FRPs) in the left atrium was also observed in vitro. Arrhythmias onset was significantly retarded by TMCC. The number of ventricular premature contractions and incidence of monophasic ventricular tachycardia and polyphasic ventricular tachycardia in 10 min were decreased by TMCC. These effects can be abolished by veratridine (10 μg kg(-1)). MAP duration at 90% repolarization was significantly prolonged by TMCC, which can be prolonged even longer by veratridine (10 μg kg(-1)). In vitro experiments showed that FRPs was prolonged by TMCC which can be cancelled by veratridine (10 μg kg(-1)). TMCC prevents cesium chloride-induced arrhythmias, and inhibition of sodium current, in part, contributes to the antiarrhythmic effect of TMCC.

  15. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art.

    Science.gov (United States)

    Radenković, Miroslav; Stojanović, Marko; Prostran, Milica

    2016-01-01

    Diabetes mellitus is a chronic metabolic disorder with a high prevalence worldwide. Animal models of diabetes represent an important tool in diabetes investigation that helps us to avoid unnecessary and ethically challenging studies in human subjects, as well as to obtain a comprehensive scientific viewpoint of this disease. Although there are several methods through which diabetes can be induced, chemical methods of alloxan- and streptozotocin-induced diabetes represent the most important and highly preferable experimental models for this pathological condition. Therefore, the aim of this article was to review the current knowledge related to quoted models of diabetes, including to this point available information about mechanism of action, particular time- and dose-dependent protocols, frequent problems, as well as major limitations linked to laboratory application of alloxan and sterptozotocin in inducing diabetes. Given that diabetes is known to be closely associated with serious health consequences it is of fundamental importance that current animal models for induction of diabetes should be continuously upgraded in order to improve overall prevention, diagnosis and treatment of this pathological condition.

  16. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study

    Directory of Open Access Journals (Sweden)

    Michele Devido Santos

    Full Text Available CONTEXT AND OBJECTIVE: Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. DESIGN AND SETTING: Prospective cohort study developed in a public university hospital. METHODS: Nineteen patients with chronic aphasia received 10 transcranial direct current stimulation sessions lasting 20 minutes each on consecutive days, using a current of 2 mA. The anode was positioned over the supraorbital area and the cathode over the contralateral motor cortex. The following variables were analyzed before and after the 10 neuromodulation sessions: oral language comprehension, copying, dictation, reading, writing, naming and verbal fluency. RESULTS: There were no adverse effects in the study. We found statistically significant differences from before to after stimulation in relation to simple sentence comprehension (P = 0.034, naming (P = 0.041 and verbal fluency for names of animals (P = 0.038. Improved scores for performing these three tasks were seen after stimulation. CONCLUSIONS: We observed that excitability of the primary motor cortex through transcranial direct current stimulation was associated with effects on different aspects of language. This can contribute towards future testing in randomized controlled trials.

  17. Induced current magnetic resonance electrical impedance tomography with z-gradient coil.

    Science.gov (United States)

    Eroğlu, Hasan H; Eyüboğlu, B Murat

    2014-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is a medical imaging method that provides images of electrical conductivity at low frequencies (0-1 kHz). In MREIT, electrical current is applied to the body via surface electrodes and corresponding magnetic flux density is measured by means of Magnetic Resonance (MR) phase imaging techniques. By utilizing the magnetic flux density measurements and surface potential measurements images of true conductivity distribution can be reconstructed. In order to overcome difficulties regarding current application via surface electrodes, Induced Current MREIT (ICMREIT) have been proposed in the past. In ICMREIT, electrical currents and corresponding magnetic flux density are generated in the object through electromagnetic induction by means of externally placed coils driven with time varying currents. In this study, use of z-gradient, z-Helmholtz, and circular coil configurations in ICMREIT are proposed and investigated. Finite Element Method (FEM) is used to solve the forward problem of ICMREIT. Consequently, excitation performances and clinical applicability of different coil configurations are analyzed.

  18. Reduced sodium current in the lateral ventricular wall induces inferolateral J-waves

    Directory of Open Access Journals (Sweden)

    Veronique Marlinde Frederica Meijborg

    2016-08-01

    Full Text Available Background: J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Methods: Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa, increasing transient outward current conductivity (Gto or cellular uncoupling in three predefined ventricular regions (lateral, anterior or septal. Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT.Results: Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation.Conclusion: Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.

  19. Numerical study on water waves and wave-induced longshore currents in Obaköy coastal water

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; LYU Yigang; SHEN Yongming

    2014-01-01

    In this paper, the water waves and wave-induced longshore currents in Obaköy coastal water which is lo-cated at the Mediterranean coast of Turkey were numerically studied. The numerical model is based on the parabolic mild-slope equation for coastal water waves and the nonlinear shallow water equation for the wave-induced currents. The wave transformation under the effects of shoaling, refraction, diffraction and breaking is considered, and the wave provides radiation stresses for driving currents in the model. The numerical results for the water wave-induced longshore currents were validated by the measured data to demonstrate the efficiency of the numerical model. Then the water waves and longshore currents induced by the waves from main directions were numerically simulated and analyzed based on the numerical re-sults. The numerical results show that the movement of the longshore currents was different while the wave propagated to a coastal zone from different directions.

  20. Effect of a pinning field on the critical current density for current-induced domain wall motion in perpendicular magnetic anisotropy nanowires.

    Science.gov (United States)

    Ooba, Ayaka; Fujimura, Yuma; Takahashi, Kota; Komine, Takashi; Sugita, Ryuji

    2012-09-01

    In this study, the effect of a pinning field on the critical current density for current-induced domain wall motion in nanowires with perpendicular magnetic anisotropy was investigated using micromagnetic simulations. In order to estimate the pinning field in notched nanowires, we conducted wall energy calculations for nanowires with various saturation magnetizations. The pinning field increased as the notch size increased. The pinning field decreased as the saturation magnetization decreased. As a result, the decreased in the pinning field causes the reduction of the critical current density. Therefore, a significant reduction of the critical current density can be obtained by decreasing the saturation magnetization, even if wall pinning occurs.

  1. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches

  2. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    Science.gov (United States)

    Akune, Tadahiro; Sakamoto, Nobuyoshi

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  3. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    Energy Technology Data Exchange (ETDEWEB)

    Akune, Tadahiro; Sakamoto, Nobuyoshi, E-mail: akune@te.kyusan-u.ac.j [Department of Electrical Engineering and Information Technology, Kyushu Sangyo University, 2-3-1 Matsukadai, Fukuoka 813-8503 (Japan)

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-T{sub c} superconductor. The critical current densities of the proximity-induced superconducting matrix J{sub cm} can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain J{sub cm}, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of J{sub cm} estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  4. Towards an automated detection of avalanche deposits using their directional properties

    OpenAIRE

    2009-01-01

    Snow avalanches killed more people in the Swiss alpine area during the past decades than any other natural hazard. To further improve the avalanche prediction and the protection of people and infrastructure, information about the occurrence and the distribution of avalanche activity is crucial. Nevertheless this information is missing for large parts of the Alpine area. The surface roughness of avalanche deposits differs considerably from the adjacent undisturbed snow cover and is an impor...

  5. Elementary excitations and avalanches in the Coulomb glass

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2012-07-01

    We study numerically the statistics of elementary excitations and charge avalanches in the classical Coulomb glass model of localized charges with unscreened Coulomb interaction and disorder. We compute the single-particle density of states with an energy minimization algorithm for systems of up to 1003 sites. The shape of the Coulomb gap is consistent with a power-law with exponent δ simeq 2.4 and marginally consistent with exponential behavior. The results are also compared with a recently proposed self-consistent approach. We then analyze the size distribution of the charge avalanches produced by a small perturbation of the system. We show that the distribution decays as a power law in the limit of large system size, and explain this behavior in terms of the elementary excitations. Similarities and differences with the scale-free avalanches observed in mean-field spin glasses are discussed.

  6. Precise method for determining avalanche breakdown voltage of silicon photomultipliers

    Science.gov (United States)

    Chirikov-Zorin, I.

    2017-07-01

    A physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDErel) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the p-n junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1-2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDErel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts.

  7. [Death by avalanche in the minor mountain range].

    Science.gov (United States)

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  8. Flux avalanches in Nb superconducting shifted strip arrays

    Science.gov (United States)

    Tsuchiya, Y.; Mawatari, Y.; Ibuka, J.; Tada, S.; Pyon, S.; Nagasawa, S.; Hidaka, M.; Maezawa, M.; Tamegai, T.

    2013-09-01

    Flux penetrations into three-dimensional Nb superconducting strip arrays, where two layers of strip arrays are stacked by shifting a half period, are studied using a magneto-optical imaging method. Flux avalanches are observed when the overlap between the top and bottom layers is large even if the width of each strip is well below the threshold value. In addition, anomalous linear avalanches perpendicular to the strip are observed in the shifted strip array when the overlap is very large and the thickness of the superconductor is greater than the penetration depth. We discuss possible origins for the flux avalanches, including linear ones, by considering flux penetration calculated by the Campbell method assuming the Bean model.

  9. Induced abortion in Thailand: current situation in public hospitals and legal perspectives.

    Science.gov (United States)

    Warakamin, Suwanna; Boonthai, Nongluk; Tangcharoensathien, Viroj

    2004-11-01

    Abortion is illegal in Thailand unless the woman's health is at risk or pregnancy is due to rape. This study, carried out in 1999 in 787 government hospitals, examined the magnitude and profile of abortion in Thailand, using data collected prospectively through a review of 45,990 case records (of which 28.5% were classified as induced and 71.5% as spontaneous abortions) and face-to-face interviews with a sub-set of 1854 women patients. The estimated induced abortion ratio was 19.5 per 1000 live births. Almost half the induced abortions were in young women under 25 years of age, many of whom had little or no access to contraception. Socio-economic reasons accounted for 60.2% of abortions. Serious complications were observed in almost a third of cases, especially following abortions performed by non-health personnel. Government physicians' current provision of induced abortion went beyond the provisions of the law in almost half of cases, most commonly for intrauterine death and for congenital anomalies. The paper proposes a framework for policy discussions of the grey areas of maternal and fetal indications leading to legal reform, in order to facilitate safe abortion. A recommendation to amend the abortion law has been proposed to the Ministry of Public Health and the Thai Medical Council.

  10. Proximity induced room temperature ferromagnetism in graphene probed with spin currents

    Science.gov (United States)

    Leutenantsmeyer, Johannes Christian; Kaverzin, Alexey A.; Wojtaszek, Magdalena; van Wees, Bart J.

    2017-03-01

    We present a direct measurement of the exchange interaction in room temperature ferromagnetic graphene. We study the spin transport in exfoliated graphene on an yttrium-iron-garnet substrate where the observed spin precession clearly indicates the presence and strength of an exchange field that is an unambiguous evidence of induced ferromagnetism. We describe the results with a modified Bloch diffusion equation and extract an average exchange field of the order of 0.2 T. Further, we demonstrate that a proximity induced 2D ferromagnet can efficiently modulate a spin current by controlling the direction of the exchange field. These findings can create a building block for magnetic-gate tuneable spin transport in one-atom-thick spintronic devices.

  11. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection.

    Science.gov (United States)

    Miron, Ioan Mihai; Garello, Kevin; Gaudin, Gilles; Zermatten, Pierre-Jean; Costache, Marius V; Auffret, Stéphane; Bandiera, Sébastien; Rodmacq, Bernard; Schuhl, Alain; Gambardella, Pietro

    2011-08-11

    Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple

  12. Spectral method for characterization of avalanche photodiode working as single-photon detector.

    Science.gov (United States)

    Cavalcanti, Maria Daniela Santabaia; Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2011-09-01

    In this Letter, a new method for avalanche photodiode characterization, based on the spectral analysis of the photocurrent produced during an avalanche, is proposed. The theory is developed, and an experimental characterization of an avalanche photodiode working in the Geiger mode with CW laser is performed.

  13. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude

    Science.gov (United States)

    Simonson, S.; Fassnacht, S. R.

    2011-12-01

    Practitioners working in avalanche terrain may never witness an extreme event, but understanding extreme events is important for categorizing avalanches that occur within a given season. Historical records of avalanche incidents and direct observations are the most reliable evidence of avalanche activity, but patterns in vegetation can be used to further quantify and map the frequency and magnitude of past events. We surveyed published literature to synthesize approaches for using vegetation sampling to characterize avalanche terrain, and developed examples to identify the benefits and caveats of using different practical field methods to estimate avalanche frequency and magnitude. Powerful avalanches can deposit massive piles of snow, rocks, and woody debris in runout zones. Large avalanches (relative to the path) can cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking trees. Discs and cores can be collected from downed trees to detect signals of past avalanche disturbance recorded in woody plant tissue. Signals of disturbance events recorded in tree rings can include direct impact scars from the moving snow and wind blast, development of reaction wood in response to tilting, and abrupt variation in the relative width of annual growth rings. The relative ages of trees in avalanche paths and the surrounding landscape can be an indicator of the area impacted by past avalanches. Repeat photography can also be useful to track changes in vegetation over time. For Colorado, and perhaps elsewhere, several vegetation ecology methods can be used in combination to accurately characterize local avalanche frequency and magnitude.

  14. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  15. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    Science.gov (United States)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  16. The 1.06 optical receiver. [avalanche photodiodes for laser range finders

    Science.gov (United States)

    Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.

    1978-01-01

    High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.

  17. Progress in simulations of micropattern gas avalanche detectors

    CERN Document Server

    Cwetanski, Peter

    2000-01-01

    Helpful for a better understanding of the intrinsic processes in the various gas avalanche detectors are simulations, involving three- dimensional Finite Element Method (FEM) field map computations in order to describe the more and more complex geometries. Drift, multiplication and attachment procedures are simulated using Monte Carlo techniques. Recent results show a remarkable agreement with gain and energy resolution measurements thanks to the refined computations of gas transport properties and improved avalanching models. As examples the influence of wire eccentricity on gas gain and energy resolution in the ATLAS TRT straws is shown as well as performed studies of the Micromegas detector. 8 Refs.

  18. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  19. Geiger-Mode Avalanche Photodiodes in Particle Detection

    CERN Document Server

    Vilella, E; Trenado, J; Vila, A; Vos, M; Garrido, L; Dieguez, A

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite sensitivity and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection remains still unexplored. In this contribution, we are going to expose the different steps that we have taken in order to prove the efficiency of Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present an array of pixels of 1mmx1mm fabricated with a standard CMOS technology for characterization in a test beam.

  20. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  1. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  2. Test of BESⅢ RPC in the avalanche mode

    Institute of Scientific and Technical Information of China (English)

    HAN Ji-Feng; ZHANG Jia-Wen; CHEN Jin; ZHANG Qing-Min; LIU Qian; XIE Yu-Guang; QIAN Sen; MA Lie-Hua

    2008-01-01

    The installation of the BESⅢ RPC system has been completed.Cosmic ray test results show that they perform very well in streamer mode and meet the BESⅢ requirements.We have tested several RPCs in the avalanche mode with the addition of extra SF6 in the gas mixture.We find an efficiency plateau that reaches~95%.and a time resolution of 1.8 ns.This demonstrates that the BESⅢ-type RPC can work in the avalanche mode as well.

  3. Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures

    CERN Document Server

    Li, Xinyu; Belovorodov, Andrei M

    2016-01-01

    We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimentional models that consider temperature-sensitive plastic flow, heat transport and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

  4. Assessing risk based on uncertain avalanche activity patterns

    Science.gov (United States)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  5. Analysis of Magnetic Field Intensity and Induced Current under Live Working Based on Charge Simulation Method

    Directory of Open Access Journals (Sweden)

    Luo Yuanxiang

    2015-01-01

    Full Text Available To the problem that safety distance is insufficient for 500 kV substation live working, a magnetic field analysis method for overhead line bus is given based on the charge simulation method. In the method, charge is calculated firstly, and the space field intensity distribution calculation is completed by overlying charge. The space field intensity distribution rule is carried out based on the appropriate analysis, and space field intensity distribution rule of substation is obtained. Then according to the calculation formula of inducing current, the human body induction current under a substation busbar is simulated based on MATLAB. The simulation results have a certain guidance function for actual live working.

  6. Solar cell evaluation using electron beam induced current with the large chamber scanning electron microscope

    Science.gov (United States)

    Wink, Tara; Kintzel, Edward; Marienhoff, Peter; Klein, Martin

    2012-02-01

    An initial study using electron beam induced current (EBIC) to evaluate solar cells has been carried out with the large chamber scanning electron microscope (LC-SEM) at the Western Kentucky University Nondestructive Analysis Center. EBIC is a scanning electron microscope technique used for the characterization of semiconductors. To facilitate our studies, we developed a Solar Amplification System (SASY) for analyzing current distribution and defects within a solar cell module. Preliminary qualitative results will be shown for a solar cell module that demonstrates the viability of the technique using the LC-SEM. Quantitative EBIC experiments will be carried out to analyze defects and minority carrier properties. Additionally, a well-focused spot of light from an LED mounted at the side of the SEM column will scan the same area of the solar cell using the LC-SEM positioning system. SASY will then output the solar efficiency to be compared with the minority carrier properties found using EBIC.

  7. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan

    2009-01-01

    We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (~100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ~10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.

  8. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  9. DC-current induced magneto-oscillations in very high-mobility 2D electron gas

    Science.gov (United States)

    Yang, C. L.; Zhang, Chi; Du, R. R.; Pfeiffer, L. N.; West, K. W.

    2007-03-01

    We report on a systematic experimental study of DC-current induced magneto-oscillations [1] using Hall bar samples of very high-mobility (8-20 x 10^6 cm^2/Vs) GaAs/AlxGa1-xAs heterostructures. Previously we show that remarkable nonlinear resistance and 1/B oscillations can arise when a high bias current (Ix) is passed through a Hall bar (width w), and the effect can be explained by a Zener tunneling model in the presence of a tilting Hall field [1]. Data of resistance Rxx≡Vx/Ix, differential resistance rxx≡Vx/Ix, and rxx'≡rxx/Ix in higher mobility samples, which show higher order oscillations, have confirmed the validity of this model. Our temperature dependent date show that this effect can persist to kBT>φc, where φc is the cyclotron energy. [1] Yang et al, Phys. Rev. Lett. 89, 076801 (2002).

  10. Deep-Trap Stress Induced Leakage Current Model for Nominal and Weak Oxides

    Science.gov (United States)

    Kamohara, Shiro; Hu, Chenming; Okumura, Tsugunori

    2008-08-01

    We have developed a model of the stress-induced leakage current (SILC) based on the inelastic trap-assisted tunneling (ITAT) by introducing a trap with a deep energy level of 3.6 eV from the bottom of the conduction band. This model can explain both of two field dependencies, i.e., a field dependence of the direct tunneling (DT) for A-mode SILC and that of the Fowler-Nordheim (FN) tunneling for B-mode SILC by analytical equations of a common form. For simple analytical equations, we introduce the most favorable trap position (MFTP), which gives the largest contribution to the leakage current. The trap area density for A-mode SILC of around 1×1010 cm-2 and the area density of the leakage paths for B-mode SILC of 1×102 cm-2 were obtained by comparisons between the experimental results and the present model.

  11. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation

    Science.gov (United States)

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Iacono, Maria Ida; Angelone, Leonardo M.; Kainz, Wolfgang; Kuster, Niels

    2016-06-01

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.

  12. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    SONG Jin-Xing; KANG Wen; HUO Li-Hua; HAO Yao-Dou; WANG Lei

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spallar tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV)magnets. The BH magnets are operated at a repetition rate of 25 Hz and are excited with a trapezoid rectangle waveform with about 1.6 milliseconds duration. The eddy current is induced in BH magnets and in the end plates it is expected to be large, so the heat generation is of our great concern. In this paper, the eddy current loss of the BH magnet has been investigated and calculated by using a coupling method of 3D electromagnetic and thermal analysis. The accuracy of the analysis is confirmed by testing the prototype BH magnet. The end plate temperature of the BH magnet provided with slit cuts has been decreased obviously and met the requirements.

  13. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    Science.gov (United States)

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-11-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials.

  14. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    Science.gov (United States)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a

  15. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    Science.gov (United States)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  16. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    Science.gov (United States)

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors.

  17. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, D.; Daniel, M. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli - 620 024 (India); Sabareesan, P. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur - 613 401 (India)

    2015-07-15

    The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 10{sup 12}Am{sup −2}. Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 10{sup 12}Am{sup −2} to 1.39 × 10{sup 12}Am{sup −2}.

  18. Current induced magnetization switching in Co/Cu/Ni-Fe nanopillar with orange peel coupling

    Directory of Open Access Journals (Sweden)

    D. Aravinthan

    2015-07-01

    Full Text Available The impact of orange peel coupling on spin current induced magnetization switching in a Co/Cu/Ni-Fe nanopillar device is investigated by solving the switching dynamics of magnetization of the free layer governed by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS equation. The value of the critical current required to initiate the magnetization switching is calculated analytically by solving the LLGS equation and verified the same through numerical analysis. Results of numerical simulation of the LLGS equation using Runge-Kutta fourth order procedure shows that the presence of orange peel coupling between the spacer and the ferromagnetic layers reduces the switching time of the nanopillar device from 67 ps to 48 ps for an applied current density of 4 × 1012Am−2. Also, the presence of orange peel coupling reduces the critical current required to initiate switching, and in this case, from 1.65 × 1012Am−2 to 1.39 × 1012Am−2.

  19. Outward potassium current oscillations in macrophage polykaryons: extracellular calcium entry and calcium-induced calcium release

    Directory of Open Access Journals (Sweden)

    Saraiva R.M.

    1997-01-01

    Full Text Available Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

  20. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2016-10-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity-temperature-depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5-8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  1. Quasi-steady multiple flux tubes induced by localized current perturbation in toroidal plasma

    Science.gov (United States)

    Yun, Gunsu

    2015-11-01

    Quasi-steady helical modes with dual, triple, or more flux tubes are easily produced by localized current drive in the core of sawtoothing plasma on the KSTAR tokamak. Individual flux tubes have m / n = 1 / 1 helicity, co-rotate around the magnetic axis, and later merge into a single m = 1 mode. The merged mode eventually crashes with rapid collapse of the core pressure and the next cycle repeats the same pattern, exhibiting sawtooth-like oscillations in the core pressure. The generation mechanism of multiple flux tubes (MFTs) has been studied in two different approaches to understand the observed trend that the number of flux tubes increases as the current drive location moves away from the magnetic axis up to about the magnetic surface of the safety factor q = 1 at the mode collapse: (1) nonlinear reduced MHD simulation with a localized current source modeling the time-varying interaction between the current source and flux tubes and (2) linear MHD simulation with a prescribed q profile with a radially localized current blip. Both studies show that MFTs can be produced only in plasmas with nearly flat q profile close to unity, suggesting the collapse of the m = 1 mode (i.e., sawtooth crash) is complete. Recent observation of long-lived MFTs induced by localized current drive in non-sawtoothing plasma suggests that q profile evolution toward lower- m instability is required for the merging and crash of MFTs. Work supported by the National Research Foundation of Korea, US D.O.E., and Japan Society for the Promotion of Science.

  2. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-02-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity-temperature-depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5-8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  3. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-01-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  4. KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents.

    Science.gov (United States)

    Fritzius, Thorsten; Turecek, Rostislav; Seddik, Riad; Kobayashi, Hiroyuki; Tiao, Jim; Rem, Pascal D; Metz, Michaela; Kralikova, Michaela; Bouvier, Michel; Gassmann, Martin; Bettler, Bernhard

    2017-02-01

    GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K(+)-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K(+) currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K(+) current responses in the hippocampus.

  5. Growth instability due to lattice-induced topological currents in limited-mobility epitaxial growth models.

    Science.gov (United States)

    Kanjanaput, Wittawat; Limkumnerd, Surachate; Chatraphorn, Patcha

    2010-10-01

    The energetically driven Ehrlich-Schwoebel barrier had been generally accepted as the primary cause of the growth instability in the form of quasiregular moundlike structures observed on the surface of thin film grown via molecular-beam epitaxy (MBE) technique. Recently the second mechanism of mound formation was proposed in terms of a topologically induced flux of particles originating from the line tension of the step edges which form the contour lines around a mound. Through large-scale simulations of MBE growth on a variety of crystalline lattice planes using limited-mobility, solid-on-solid models introduced by Wolf-Villain and Das Sarma-Tamborenea in 2+1 dimensions, we show that there exists a topological uphill particle current with strong dependence on specific lattice crystalline structure. Without any energetically induced barriers, our simulations produce spectacular mounds very similar, in some cases, to what have been observed in many recent MBE experiments. On a lattice where these currents cease to exist, the surface appears to be scale invariant, statistically rough as predicted by the conventional continuum growth equation.

  6. An eddy current-induced magnetic plucking for piezoelectric energy harvesting

    Science.gov (United States)

    Do, Nam Ho; Baek, Yoon Su

    2016-04-01

    Frequency up-conversion is a very efficient method of energy harvesting in order to overcome low, non-periodic, or altered ambient vibration. In order to perform frequency up-conversion and transference of mechanical energy without contact, an eddy current-induced magnetic drag force is used. In this paper, we present a novel configuration of eddy current-induced magnetic plucking for piezoelectric energy harvesting. Our method consists of two permanent magnets, a piezoelectric beam, and a copper disk piece. We design our harvesting method to achieve loading, sudden release, and free vibration using the actuation of the piezoelectric beam through the magnetic mutual coupling between the magnet and copper disk piece. We present the principle of magnetic drag force-generation, characterize the energy harvesting performance of our harvesting method, and demonstrate our harvesting method’s capability of frequency up-conversion and transference of mechanical energy without contact under low, non-periodic, or altered ambient vibration. To that end, we describe the calculation of magnetic drag force with various geometric dimensions and material properties, model of the piezoelectric cantilever beam, comparison between estimation response and measured experiment response, and the measured voltage and power responses.

  7. Spin-polarized current injection induced magnetic reconstruction at oxide interface

    Science.gov (United States)

    Fang, F.; Yin, Y. W.; Li, Qi; Lüpke, G.

    2017-01-01

    Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO3/La0.5Ca0.5MnO3/La0.7Sr0.3MnO3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. The effect is robust and may serve as a viable route for electronic and spintronic applications. PMID:28051142

  8. Mathematical models of blast induced TBI: current status, challenges and prospects

    Directory of Open Access Journals (Sweden)

    Raj K Gupta

    2013-05-01

    Full Text Available Blast induced traumatic brain injury (TBI has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast induced TBI, identify research gaps and recommend future developments. A brief overview of blast wave physics, injury biomechanics and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation and potential applications of the model for prevention and protection against blast wave TBI.

  9. The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology.

    Science.gov (United States)

    Giordano, Stefano; Spiezia, Luca; Campello, Elena; Simioni, Paolo

    2017-05-05

    The emergency management of acute severe bleeding in trauma patients has changed significantly in recent years. In particular, greater attention is now being devoted to a prompt assessment of coagulation alterations, which allows for immediate haemostatic resuscitation procedures when necessary. The importance of an early trauma-induced coagulopathy (TIC) diagnosis has led physicians to increase the efforts to better understand the pathophysiological alterations observed in the haemostatic system after traumatic injuries. As yet, the knowledge of TIC is not exhaustive, and further studies are needed. The aim of this review is to gather all the currently available data and information in an attempt to gain a better understanding of TIC. A comprehensive literature search was performed using MEDLINE database. The bibliographies of relevant articles were screened for additional publications. In major traumas, coagulopathic bleeding stems from a complex interplay among haemostatic and inflammatory systems, and is characterized by a multifactorial dysfunction. In the abundance of biochemical and pathophysiological changes occurring after trauma, it is possible to discern endogenously induced primary predisposing conditions and exogenously induced secondary predisposing conditions. TIC remains one of the most diagnostically and therapeutically challenging condition.

  10. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    Directory of Open Access Journals (Sweden)

    Seidman Seth J

    2011-10-01

    Full Text Available Abstract Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter

  11. Electric field distribution and simulation of avalanche formation due to the passage of heavy ions in a parallel grid avalanche counter

    Indian Academy of Sciences (India)

    D Kanjilal; S Saha

    2009-05-01

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed grid geometry has marginally higher gain at larger electric fields close to the avalanche region. The spatial uniformity of response in the two wire grid configurations is also compared.

  12. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.

    Directory of Open Access Journals (Sweden)

    Shan Yu

    Full Text Available Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of electrodes, i.e. spatial 'windowing', for well-characterized critical dynamics-neuronal avalanches. The local field potential (LFP was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP were identified on the full as well as compact sub-regions of the array quantified by the number of electrodes N (10-95, i.e., the window size. Spatiotemporal nLFP clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s, invariably followed a power law with exponent -1.5 up to N, beyond which p(s declined more steeply producing a 'cut-off' that varied with N and the LFP filter parameters. Clusters of size s≤N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s>N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally unfolding, predominantly feed-forward neuronal cascades.

  13. Bounce-averaged Fokker-Planck Simulation of Runaway Avalanche from Secondary Knock-on Production

    Science.gov (United States)

    Chiu, S. C.; Chan, V. S.; Harvey, R. W.; Rosenbluth, M. N.

    1996-11-01

    It has been pointed out that secondary production of runaway electrons by knock-on collisions with very energetic confined electrons can significantly change the runaway rate,(M.N. Rosenbluth, Bull. Amer. Phys. Soc. 40), 1804 (1995).^,(N.T. Besedin, I.M. Pankratov, Nucl. Fusion 26), 807 (1986).^,(R. Jaspers, K.H. Finden, G. Mank et al.), Nucl. Fusion 33, 1775 (1993). and is potentially a serious problem in reactors. Previous calculations of the effect have only partially included important effects such as toroidal trapping, synchrotron radiation, and bremsstrahlung. Furthermore, in a normal constant current operation, the increase of the density of runaway electrons causes a decrease of the ohmic field and all these effects can balance to a steady-state. The purpose of the present paper is to present results on bounce-averaged Fokker-Planck simulations of knock-on avalanching runaways including these effects. Initially, an energetic seed component is inserted to initiate knock-on avalanching. Results on the dependence of the steady-state runaway current on Z_eff, density, and radial location will be presented.

  14. Observing and characterizing avalanche activity in the Khumbu Himal, Nepal, using Pleiades and airborne HDR imagery

    Science.gov (United States)

    Thompson, Sarah; Nicholson, Lindsey; Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf; Bucher, Tilman; Brauchle, Jörg

    2017-04-01

    In the high, steep terrain of the Khumbu Himal, Nepal, snow avalanches play an important role in glacier mass balance, and rockfall supplies much of the rock material that forms the extensive debris covers on glaciers in the region. Information on the frequency and size of gravitational mass movements is helpful for understanding current and future glacier behaviour but currently lacking. In this study we use a combination of high resolution Pleiades optical satellite imagery in conjunction with airborne HDR imagery of slopes in deep shadow or overexposed snow slopes, provided by the German Aerospace Center (DLR) MACS system (see Brauchle et al., MM3.2/GI2.12/GMPV6.4/HS11.13/NH8.9/SSS12.24), to undertake a qualitative observational study of the gravitational processes evident in these sets of imagery. We classify the features found and discuss their likely frequency in the context of previously published research findings. Terrain analysis based upon digital terrain models derived from the same Pleiades imagery is used to investigate the slope angle, degree of confinement, curvature and aspect of observed avalanche and rock fall tracks. This work presents a first overview of the types of gravitational slides affecting glaciers of the Khumbu Himal. Subsequent research efforts will focus on attempting to quantify volumes of mass movement using repeat satellite imagery.

  15. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    Science.gov (United States)

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases.

  16. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  17. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    Science.gov (United States)

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  18. Avalanches in dry and saturated disordered media at fracture.

    Science.gov (United States)

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  19. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    Science.gov (United States)

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  20. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    Science.gov (United States)

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…