WorldWideScience

Sample records for current error control

  1. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  2. Redundant measurements for controlling errors

    International Nuclear Information System (INIS)

    Ehinger, M.H.; Crawford, J.M.; Madeen, M.L.

    1979-07-01

    Current federal regulations for nuclear materials control require consideration of operating data as part of the quality control program and limits of error propagation. Recent work at the BNFP has revealed that operating data are subject to a number of measurement problems which are very difficult to detect and even more difficult to correct in a timely manner. Thus error estimates based on operational data reflect those problems. During the FY 1978 and FY 1979 R and D demonstration runs at the BNFP, redundant measurement techniques were shown to be effective in detecting these problems to allow corrective action. The net effect is a reduction in measurement errors and a significant increase in measurement sensitivity. Results show that normal operation process control measurements, in conjunction with routine accountability measurements, are sensitive problem indicators when incorporated in a redundant measurement program

  3. X-ray tube current control

    International Nuclear Information System (INIS)

    Dupuis, W.A.; Resnick, T.A.

    1982-01-01

    A closed loop feedback system for controlling the current output of an x-ray tube. The system has circuitry for improving the transient response and stability of the x-ray tube current over a substantial nonlinear portion of the tube current production characteristic. The system includes a reference generator for applying adjustable step function reference signals representing desired tube currents. The system also includes means for instantaneous sensing of actual tube current. An error detector compares the value of actual and reference tube current and produces an error signal as a function of their difference. The system feedback loop includes amplification circuitry for controlling x-ray tube filament dc voltage to regulate tube current as a function of the error signal value. The system also includes compensation circuitry, between the reference generator and the amplification circuitry, to vary the loop gain of the feedback control system as a function of the reference magnitude

  4. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  5. Current control of superconducting coils for fusion experimental facility

    International Nuclear Information System (INIS)

    Ise, T.; Etou, D.; Chikaraishi, H.; Takami, S.; Inoue, T.

    2003-01-01

    The LHD (Large Helical Device) has twelve superconducting coils and six dc power supplies, and following specifications are required for its control system; each coil current must be controlled independently, the steady state control error is less than 0.01% of the reference value, the current settling time for 0.1% of control error is less than 1 second, and the control system must be robust against turbulence caused by appearance and disappearance of the plasma, parameter errors and external electro-magnetic noises. In this paper, the design and test results of the coil current control system for the LHD are described. The good response and robustness are in the relation of trade off each other. H-infinity controller is one of schemes to guarantee robustness for stability. However, the independent responses of six coils were impossible by the H-infinity controller only. To resolve this problem, we applied a feed-forward control with the H-infinity control. Moreover, the advanced design method of H-infinity controller using μ-synthesis was applied to guarantee the control performance in the whole operating condition. As a result, good control results were obtained by experiments. (author)

  6. Nonlinear Deadbeat Current Control of a Switched Reluctance Motor

    OpenAIRE

    Rudolph, Benjamin

    2009-01-01

    High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...

  7. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    Jang, Inseok; Jung, Wondea; Seong, Poong Hyun

    2015-01-01

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  8. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  9. Error Control for Network-on-Chip Links

    CERN Document Server

    Fu, Bo

    2012-01-01

    As technology scales into nanoscale regime, it is impossible to guarantee the perfect hardware design. Moreover, if the requirement of 100% correctness in hardware can be relaxed, the cost of manufacturing, verification, and testing will be significantly reduced. Many approaches have been proposed to address the reliability problem of on-chip communications. This book focuses on the use of error control codes (ECCs) to improve on-chip interconnect reliability. Coverage includes detailed description of key issues in NOC error control faced by circuit and system designers, as well as practical error control techniques to minimize the impact of these errors on system performance. Provides a detailed background on the state of error control methods for on-chip interconnects; Describes the use of more complex concatenated codes such as Hamming Product Codes with Type-II HARQ, while emphasizing integration techniques for on-chip interconnect links; Examines energy-efficient techniques for integrating multiple error...

  10. Back-to-back three-level converter controlled by a novel space-vector hysteresis current control for wind conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Ghennam, Tarak [Laboratoire d' Electronique de Puissance (LEP), UER: Electrotechnique, Ecole Militaire Polytechnique d' Alger, BP 17, Bordj EL Bahri, Alger (Algeria); Berkouk, El-Madjid [Laboratoire de Commande des Processus (LCP), Ecole Nationale Polytechnique d' Alger, BP 182, 10 avenue Hassen Badi, 16200 el Harrach (Algeria)

    2010-04-15

    In this paper, a novel space-vector hysteresis current control (SVHCC) is proposed for a back-to-back three-level converter which is used as an electronic interface in a wind conversion system. The proposed SVHCC controls the active and reactive powers delivered to the grid by the doubly fed induction machine (DFIM) through the control of its rotor currents. In addition, it controls the neutral point voltage by using the redundant inverter switching states. The three rotor current errors are gathered into a single space-vector quantity. The magnitude of the error vector is limited within boundary areas of a square shape. The control scheme is based firstly on the detection of the area and sector in which the vector tip of the current error can be located. Then, an appropriate voltage vector among the 27 voltage vectors of the three-level voltage source inverter (VSI) is applied to push the error vector towards the hysteresis boundaries. Simple look-up tables are required for the area and sector detection, and also for vector selection. The performance of the proposed control technique has been verified by simulations. (author)

  11. Stator Current Harmonic Control with Resonant Controller for Doubly Fed Induction Generator

    DEFF Research Database (Denmark)

    Liu, Changjin; Blaabjerg, Frede; Chen, Wenjie

    2012-01-01

    rotor current control loop for harmonic suppression. The overall control scheme is implemented in dq frame. Based on a mathematical model of the DFIG control system, the effects on system stability using the resonant controller, an analysis of the steady-state error, and the dynamic performance......, are discussed in this paper. Taking these effects into account, the parameters of the resonant controller can be designed and effectively damp the influence from the grid voltage harmonics. As a result, the impacts of the negative sequence fifth- and positive sequence seventh-order voltage harmonics...... harmonics, especially low-order harmonics. This paper proposes a stator current harmonic suppression method using a sixth-order resonant controller to eliminate negative sequence fifth- and positive sequence seventh-order current harmonics. A stator current harmonic control loop is added to the conventional...

  12. Nonlinear control of ships minimizing the position tracking errors

    Directory of Open Access Journals (Sweden)

    Svein P. Berge

    1999-07-01

    Full Text Available In this paper, a nonlinear tracking controller with integral action for ships is presented. The controller is based on state feedback linearization. Exponential convergence of the vessel-fixed position and velocity errors are proven by using Lyapunov stability theory. Since we only have two control devices, a rudder and a propeller, we choose to control the longship and the sideship position errors to zero while the heading is stabilized indirectly. A Virtual Reference Point (VRP is defined at the bow or ahead of the ship. The VRP is used for tracking control. It is shown that the distance from the center of rotation to the VRP will influence on the stability of the zero dynamics. By selecting the VRP at the bow or even ahead of the bow, the damping in yaw can be increased and the zero dynamics is stabilized. Hence, the heading angle will be less sensitive to wind, currents and waves. The control law is simulated by using a nonlinear model of the Japanese training ship Shiojimaru with excellent results. Wind forces are added to demonstrate the robustness and performance of the integral controller.

  13. Artificial neural network implementation of a near-ideal error prediction controller

    Science.gov (United States)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  14. Improved read disturb and write error rates in voltage-control spintronics memory (VoCSM) by controlling energy barrier height

    Science.gov (United States)

    Inokuchi, T.; Yoda, H.; Kato, Y.; Shimizu, M.; Shirotori, S.; Shimomura, N.; Koi, K.; Kamiguchi, Y.; Sugiyama, H.; Oikawa, S.; Ikegami, K.; Ishikawa, M.; Altansargai, B.; Tiwari, A.; Ohsawa, Y.; Saito, Y.; Kurobe, A.

    2017-06-01

    A hybrid writing scheme that combines the spin Hall effect and voltage-controlled magnetic-anisotropy effect is investigated in Ta/CoFeB/MgO/CoFeB/Ru/CoFe/IrMn junctions. The write current and control voltage are applied to Ta and CoFeB/MgO/CoFeB junctions, respectively. The critical current density required for switching the magnetization in CoFeB was modulated 3.6-fold by changing the control voltage from -1.0 V to +1.0 V. This modulation of the write current density is explained by the change in the surface anisotropy of the free layer from 1.7 mJ/m2 to 1.6 mJ/m2, which is caused by the electric field applied to the junction. The read disturb rate and write error rate, which are important performance parameters for memory applications, are drastically improved, and no error was detected in 5 × 108 cycles by controlling read and write sequences.

  15. Controlling errors in unidosis carts

    Directory of Open Access Journals (Sweden)

    Inmaculada Díaz Fernández

    2010-01-01

    Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.

  16. Error Control in Distributed Node Self-Localization

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2008-03-01

    Full Text Available Location information of nodes in an ad hoc sensor network is essential to many tasks such as routing, cooperative sensing, and service delivery. Distributed node self-localization is lightweight and requires little communication overhead, but often suffers from the adverse effects of error propagation. Unlike other localization papers which focus on designing elaborate localization algorithms, this paper takes a different perspective, focusing on the error propagation problem, addressing questions such as where localization error comes from and how it propagates from node to node. To prevent error from propagating and accumulating, we develop an error-control mechanism based on characterization of node uncertainties and discrimination between neighboring nodes. The error-control mechanism uses only local knowledge and is fully decentralized. Simulation results have shown that the active selection strategy significantly mitigates the effect of error propagation for both range and directional sensors. It greatly improves localization accuracy and robustness.

  17. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  18. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    International Nuclear Information System (INIS)

    Aljneibi, Hanan Salah Ali; Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun

    2015-01-01

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation

  19. Servo control booster system for minimizing following error

    Science.gov (United States)

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  20. Improvement of the grid-connect current quality using novel proportional-integral controller for photovoltaic inverters.

    Science.gov (United States)

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing

    2014-02-01

    Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.

  1. Utilizing measure-based feedback in control-mastery theory: A clinical error.

    Science.gov (United States)

    Snyder, John; Aafjes-van Doorn, Katie

    2016-09-01

    Clinical errors and ruptures are an inevitable part of clinical practice. Often times, therapists are unaware that a clinical error or rupture has occurred, leaving no space for repair, and potentially leading to patient dropout and/or less effective treatment. One way to overcome our blind spots is by frequently and systematically collecting measure-based feedback from the patient. Patient feedback measures that focus on the process of psychotherapy such as the Patient's Experience of Attunement and Responsiveness scale (PEAR) can be used in conjunction with treatment outcome measures such as the Outcome Questionnaire 45.2 (OQ-45.2) to monitor the patient's therapeutic experience and progress. The regular use of these types of measures can aid clinicians in the identification of clinical errors and the associated patient deterioration that might otherwise go unnoticed and unaddressed. The current case study describes an instance of clinical error that occurred during the 2-year treatment of a highly traumatized young woman. The clinical error was identified using measure-based feedback and subsequently understood and addressed from the theoretical standpoint of the control-mastery theory of psychotherapy. An alternative hypothetical response is also presented and explained using control-mastery theory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Relaxed error control in shape optimization that utilizes remeshing

    CSIR Research Space (South Africa)

    Wilke, DN

    2013-02-01

    Full Text Available Shape optimization strategies based on error indicators usually require strict error control for every computed design during the optimization run. The strict error control serves two purposes. Firstly, it allows for the accurate computation...

  3. Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive

    Directory of Open Access Journals (Sweden)

    BRANDSTETTER, P.

    2017-05-01

    Full Text Available The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper.

  4. Precision electronic speed controller for an alternating-current motor

    Science.gov (United States)

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  5. General Unified Integral Controller with Zero Steady-State Error for Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current regulation is crucial for operating single-phase grid-connected inverters. The challenge of the current controller is how to fast and precisely tracks the current with zero steady-state error. This paper proposes a novel feedback mechanism for the conventional PI controller. It allows...... done indicates that the widely used PR (P+Resonant) control is just a special case of the proposed control solution. The time-domain simulation in Matlab/Simulink and experimental results from a TMS320F2812 DSP based laboratory prototypes are in good agreement, which verify the effectiveness...

  6. A New Control Structure for Grid-Connected LCL PV Inverters with Zero Steady-State Error and Selective Harmonic Compensation

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Borup, Uffe

    2004-01-01

    disturbance rejection capability leads to the need of grid feed-forward compensation. However the imperfect compensation action of the feed-forward control results in high harmonic distortion of the current and consequently non-compliance with international standards. In this paper a new control strategy...... aimed to mitigate these problems is proposed. Stationary-frame generalized integrators are used to control the fundamental current and to compensate the grid harmonics providing disturbance rejection capability without the need of feed-forward grid compensation. Moreover the use of a grid LCL......The PI current control of a single-phase inverter has well known drawbacks: steady-state magnitude and phase-error and limited disturbance rejection capability. When the current controlled inverter is connected to the grid, the phase error results in a power factor decrement and the limited...

  7. Design of current controller of grid-connected voltage source converter based internal model control in wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xianping; Guo Jindong; Xu Honghua [Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China)

    2008-07-01

    Grid-connected voltage source converter (VSC) is important for variable speed turbines with doubly fed induction generator (DFIG), and bad performance of current loop of VSC may cause VSC inject much low and high order harmonics into grid. Therefore, design of current controller of VSC is very important. PI regulator is often used to regulate current error in dq rotating coordinate to obtain zero steady error. However, it is complex to design PI parameters, and researchers need many trial-and-error steps. Therefore, a novel and simple design method of PI regulator for grid-connected VSC, which is based internal model control (IMC), has been presented in this paper. The parameters of PI regulator can be expressed directly with certain L-type line filter parameters and the desired closed-loop bandwidth. At last, The simulation has been done and result shows that the method in this paper is easy and useful to regulate PI parameters. (orig.)

  8. Quantitative estimation of the human error probability during soft control operations

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jung, Wondea

    2013-01-01

    Highlights: ► An HRA method to evaluate execution HEP for soft control operations was proposed. ► The soft control tasks were analyzed and design-related influencing factors were identified. ► An application to evaluate the effects of soft controls was performed. - Abstract: In this work, a method was proposed for quantifying human errors that can occur during operation executions using soft controls. Soft controls of advanced main control rooms have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to identify the human error modes and quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests an evaluation framework for quantifying the execution error probability using soft controls. In the application result, it was observed that the human error probabilities of soft controls showed both positive and negative results compared to the conventional controls according to the design quality of advanced main control rooms

  9. Human error mode identification for NPP main control room operations using soft controls

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol

    2011-01-01

    The operation environment of main control rooms (MCRs) in modern nuclear power plants (NPPs) has considerably changed over the years. Advanced MCRs, which have been designed by adapting digital and computer technologies, have simpler interfaces using large display panels, computerized displays, soft controls, computerized procedure systems, and so on. The actions for the NPP operations are performed using soft controls in advanced MCRs. Soft controls have different features from conventional controls. Operators need to navigate the screens to find indicators and controls and manipulate controls using a mouse, touch screens, and so on. Due to these different interfaces, different human errors should be considered in the human reliability analysis (HRA) for advanced MCRs. In this work, human errors that could occur during operation executions using soft controls were analyzed. This work classified the human errors in soft controls into six types, and the reasons that affect the occurrence of the human errors were also analyzed. (author)

  10. Basic human error probabilities in advanced MCRs when using soft control

    International Nuclear Information System (INIS)

    Jang, In Seok; Seong, Poong Hyun; Kang, Hyun Gook; Lee, Seung Jun

    2012-01-01

    In a report on one of the renowned HRA methods, Technique for Human Error Rate Prediction (THERP), it is pointed out that 'The paucity of actual data on human performance continues to be a major problem for estimating HEPs and performance times in nuclear power plant (NPP) task'. However, another critical difficulty is that most current HRA databases deal with operation in conventional type of MCRs. With the adoption of new human system interfaces that are based on computer based technologies, the operation environment of MCRs in NPPs has changed. The MCRs including these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called advanced MCRs. Because of the different interfaces, different Basic Human Error Probabilities (BHEPs) should be considered in human reliability analyses (HRAs) for advanced MCRs. This study carries out an empirical analysis of human error considering soft controls. The aim of this work is not only to compile a database using the simulator for advanced MCRs but also to compare BHEPs with those of a conventional MCR database

  11. Current Control of Grid Converters Connected with Series AC Capacitor

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...... this paper proposes a fourth-order resonant controller in the stationary frame, which guarantees a zero steady-state current tracking error for the grid converters with series LC filter. This method is then implemented in a three-phase experimental system for verification, where the current harmonics below...... the LC filter resonance frequency are effectively eliminated. Experimental results confirm the validity of the proposed current control scheme....

  12. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  13. Control of error and convergence in ODE solvers

    International Nuclear Information System (INIS)

    Gustafsson, K.

    1992-03-01

    Feedback is a general principle that can be used in many different contexts. In this thesis it is applied to numerical integration of ordinary differential equations. An advanced integration method includes parameters and variables that should be adjusted during the execution. In addition, the integration method should be able to automatically handle situations such as: initialization, restart after failures, etc. In this thesis we regard the algorithms for parameter adjustment and supervision as a controller. The controlled measures different variable that tell the current status of the integration, and based on this information it decides how to continue. The design of the controller is vital in order to accurately and efficiently solve a large class of ordinary differential equations. The application of feedback control may appear farfetched, but numerical integration methods are in fact dynamical systems. This is often overlooked in traditional numerical analysis. We derive dynamic models that describe the behavior of the integration method as well as the standard control algorithms in use today. Using these models it is possible to analyze properties of current algorithms, and also explain some generally observed misbehaviors. Further, we use the acquired insight to derive new and improved control algorithms, both for explicit and implicit Runge-Kutta methods. In the explicit case, the new controller gives good overall performance. In particular it overcomes the problem with oscillating stepsize sequence that is often experienced when the stepsize is restricted by numerical stability. The controller for implicit methods is designed so that it tracks changes in the differential equation better than current algorithms. In addition, it includes a new strategy for the equation solver, which allows the stepsize to vary more freely. This leads to smoother error control without excessive operations on the iteration matrix. (87 refs.) (au)

  14. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  15. Theoretical inputs and errors in the new hadronic currents in TAUOLA

    International Nuclear Information System (INIS)

    Roig, P.; Nugent, I. M.; Przedzinski, T.; Shekhovtsova, O.; Was, Z.

    2012-01-01

    The new hadronic currents implemented in the TAUOLA library are obtained in the unified and consistent framework of Resonance Chiral Theory: a Lagrangian approach in which the resonances exchanged in the hadronic tau decays are active degrees of freedom included in a way that reproduces the low-energy results of Chiral Perturbation Theory. The short-distance QCD constraints on the imaginary part of the spin-one correlators yield relations among the couplings that render the theory predictive. In this communication, the obtaining of the two- and three-meson form factors is sketched. One of the criticisms to our framework is that the error may be as large as 1/3, since it is a realization of the large-N C limit of QCD in a meson theory. A number of arguments are given which disfavor that claim pointing to smaller errors, which would explain the phenomenological success of our description in these decays. Finally, other minor sources of error and current improvements of the code are discussed.

  16. Theoretical inputs and errors in the new hadronic currents in TAUOLA

    CERN Document Server

    Roig, P; Przedzinski, T; Shekhovtsova, O; Was, Z

    2012-01-01

    The new hadronic currents implemented in the TAUOLA library are obtained in the unified and consistent framework of Resonance Chiral Theory: a Lagrangian approach in which the resonances exchanged in the hadronic tau decays are active degrees of freedom included in a way that reproduces the low-energy results of Chiral Perturbation Theory. The short-distance QCD constraints on the imaginary part of the spin-one correlators yield relations among the couplings that render the theory predictive. In this communication, the obtaining of the two- and three-meson form factors is sketched. One of the criticisms to our framework is that the error may be as large as 1/3, since it is a realization of the large-N_C limit of QCD in a meson theory. A number of arguments are given which disfavor that claim pointing to smaller errors, which would explain the phenomenological success of our description in these decays. Finally, other minor sources of error and current improvements of the code are discussed.

  17. Context Specificity of Post-Error and Post-Conflict Cognitive Control Adjustments

    Science.gov (United States)

    Forster, Sarah E.; Cho, Raymond Y.

    2014-01-01

    There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, control-related performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. PMID:24603900

  18. Analysis of influence on back-EMF based sensorless control of PMSM due to parameter variations and measurement errors

    DEFF Research Database (Denmark)

    Wang, Z.; Lu, K.; Ye, Y.

    2011-01-01

    To achieve better performance of sensorless control of PMSM, a precise and stable estimation of rotor position and speed is required. Several parameter uncertainties and variable measurement errors may lead to estimation error, such as resistance and inductance variations due to temperature...... and flux saturation, current and voltage errors due to measurement uncertainties, and signal delay caused by hardwares. This paper reveals some inherent principles for the performance of the back-EMF based sensorless algorithm embedded in a surface mounted PMSM system adapting vector control strategy...

  19. Smart photodetector arrays for error control in page-oriented optical memory

    Science.gov (United States)

    Schaffer, Maureen Elizabeth

    1998-12-01

    Page-oriented optical memories (POMs) have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in two-dimensional pages resulting in high throughput data rates. Since currently measured raw bit error rates for these systems fall several orders of magnitude short of industry requirements for binary data storage, powerful error control codes must be adopted. These codes must be designed to take advantage of the two-dimensional memory output. In addition, POMs require an optoelectronic interface to transfer the optical data pages to one or more electronic host systems. Conventional charge coupled device (CCD) arrays can receive optical data in parallel, but the relatively slow serial electronic output of these devices creates a system bottleneck thereby eliminating the POM advantage of high transfer rates. Also, CCD arrays are "unintelligent" interfaces in that they offer little data processing capabilities. The optical data page can be received by two-dimensional arrays of "smart" photo-detector elements that replace conventional CCD arrays. These smart photodetector arrays (SPAs) can perform fast parallel data decoding and error control, thereby providing an efficient optoelectronic interface between the memory and the electronic computer. This approach optimizes the computer memory system by combining the massive parallelism and high speed of optics with the diverse functionality, low cost, and local interconnection efficiency of electronics. In this dissertation we examine the design of smart photodetector arrays for use as the optoelectronic interface for page-oriented optical memory. We review options and technologies for SPA fabrication, develop SPA requirements, and determine SPA scalability constraints with respect to pixel complexity, electrical power dissipation, and optical power limits. Next, we examine data

  20. Electronic laboratory system reduces errors in National Tuberculosis Program: a cluster randomized controlled trial.

    Science.gov (United States)

    Blaya, J A; Shin, S S; Yale, G; Suarez, C; Asencios, L; Contreras, C; Rodriguez, P; Kim, J; Cegielski, P; Fraser, H S F

    2010-08-01

    To evaluate the impact of the e-Chasqui laboratory information system in reducing reporting errors compared to the current paper system. Cluster randomized controlled trial in 76 health centers (HCs) between 2004 and 2008. Baseline data were collected every 4 months for 12 months. HCs were then randomly assigned to intervention (e-Chasqui) or control (paper). Further data were collected for the same months the following year. Comparisons were made between intervention and control HCs, and before and after the intervention. Intervention HCs had respectively 82% and 87% fewer errors in reporting results for drug susceptibility tests (2.1% vs. 11.9%, P = 0.001, OR 0.17, 95%CI 0.09-0.31) and cultures (2.0% vs. 15.1%, P Chasqui users sent on average three electronic error reports per week to the laboratories. e-Chasqui reduced the number of missing laboratory results at point-of-care health centers. Clinical users confirmed viewing electronic results not available on paper. Reporting errors to the laboratory using e-Chasqui promoted continuous quality improvement. The e-Chasqui laboratory information system is an important part of laboratory infrastructure improvements to support multidrug-resistant tuberculosis care in Peru.

  1. Harmonic Mitigation Using a Polarized Ramp-time Current-Controlled Inverter

    Directory of Open Access Journals (Sweden)

    Lawrence J. Borle

    2010-12-01

    Full Text Available This paper describes the implementation of a shunt active power filter for a three-phase four-wire system to compensate for power quality problems generated by mixed non-linear loads, which are a combination of harmonic, reactive and unbalanced components. The filter is a three-phase current-controlled voltage source inverter (CC-VSI with a filter inductor at the AC output and a DC-bus capacitor. The CC-VSI is operated to directly control the grid current to be sinusoidal and in phase with the grid voltage without sensing the load currents. The switching is controlled using polarized ramp-time current control, which is based on the concept of zero average current error (ZACE with a fixed switching frequency. The laboratory experiment results indicate that the filter is able to mitigate predominantly the harmonics, as well as the reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical although the grid voltage contains harmonics.

  2. Internal quality control of RIA with Tonks error calculation method

    International Nuclear Information System (INIS)

    Chen Xiaodong

    1996-01-01

    According to the methodology feature of RIA, an internal quality control chart with Tonks error calculation method which is suitable for RIA is designed. The quality control chart defines the value of the allowance error with normal reference range. The method has the simplicity of its performance and directly perceived through the senses. Taking the example of determining T 3 and T 4 , the calculation of allowance error, drawing of quality control chart and the analysis of result are introduced

  3. The Modulation of Error Processing in the Medial Frontal Cortex by Transcranial Direct Current Stimulation

    Directory of Open Access Journals (Sweden)

    Lisa Bellaïche

    2013-01-01

    Full Text Available Background. In order to prevent future errors, we constantly control our behavior for discrepancies between the expected (i.e., intended and the real action outcome and continuously adjust our behavior accordingly. Neurophysiological correlates of this action-monitoring process can be studied with event-related potentials (error-related negativity (ERN and error positivity (Pe originating from the medial prefrontal cortex (mPFC. Patients with neuropsychiatric diseases often show performance monitoring dysfunctions potentially caused by pathological changes of cortical excitability; therefore, a modulation of the underlying neuronal activity might be a valuable therapeutic tool. One technique which allows us to explore cortical modulation of neural networks is transcranial direct current stimulation (tDCS. Therefore, we tested the effect of medial-prefrontal tDCS on error-monitoring potentials in 48 healthy subjects randomly assigned to anodal, cathodal, or sham stimulation. Results. We found that cathodal stimulation attenuated Pe amplitudes compared to both anodal and sham stimulation, but no effect for the ERN. Conclusions. Our results indicate that cathodal tDCS over the mPFC results in an attenuated cortical excitability leading to decreased Pe amplitudes. We therefore conclude that tDCS has a neuromodulatory effect on error-monitoring systems suggesting a future approach to modify the sensitivity of corresponding neural networks in patients with action-monitoring deficits.

  4. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  5. Speed controller for an alternating - current motor

    International Nuclear Information System (INIS)

    Bolie, V.W.

    1984-01-01

    A controller for a multi-phase ac motor that is subject to a large inertial load, e.g. an induction motor driving a heavy spinning rotor of a neutron chopper that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal Esub(L) having a meandering line frequency, includes a sensor which provides a feedback pulse train representative of the actual speed of the motor which is compared (by counting clock pulses between feedback pulses) with a reference clock signal in a computing unit to provide a motor control signal Esub(c). The motor control signal is a weighted linear sum of a speed error signal, a phase error signal, and a drift error signal, the magnitudes of which are recalculated and updated with each revolution of the motor shaft. The speed error signal is constant for large speed errors but highly sensitive to small speed errors. The stator windings of the motor are driven by variable-frequency power amplifiers which are controlled by the motor control signal Esub(c) via PROMs which store digital representations of sine and cosine waveforms in quadrature. (author)

  6. Error-controlled adaptive finite elements in solid mechanics

    National Research Council Canada - National Science Library

    Stein, Erwin; Ramm, E

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...

  7. Zero-Axis Virtual Synchronous Coordinate Based Current Control Strategy for Grid-Connected Inverter

    Directory of Open Access Journals (Sweden)

    Longyue Yang

    2018-05-01

    Full Text Available Unbalanced power has a great influence on the safe and stable operation of the distribution network system. The static power compensator, which is essentially a grid-connected inverter, is an effective solution to the three-phase power imbalance problem. In order to solve the tracking error problem of zero-sequence AC current signals, a novel control strategy based on zero-axis virtual synchronous coordinates is proposed in this paper. By configuring the operation of filter transmission matrices, a specific orthogonal signal is obtained for zero-axis reconstruction. In addition, a controller design scheme based on this method is proposed. Compared with the traditional zero-axis direct control, this control strategy is equivalent to adding a frequency tuning module by the orthogonal signal generator. The control gain of an open loop system can be equivalently promoted through linear transformation. With its clear mathematical meaning, zero- sequence current control can be controlled with only a first-order linear controller. Through reasonable parameter design, zero steady-state error, fast response and strong stability can be achieved. Finally, the performance of the proposed control strategy is verified by both simulations and experiments.

  8. An Analysis and Quantification Method of Human Errors of Soft Controls in Advanced MCRs

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jae Whan; Jang, Seung Cheol

    2011-01-01

    In this work, a method was proposed for quantifying human errors that may occur during operation executions using soft control. Soft controls of advanced main control rooms (MCRs) have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to define the human error modes and to quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests a modified K-HRA method for quantifying error probability

  9. Experimental Evaluation of a Mixed Controller That Amplifies Spatial Errors and Reduces Timing Errors

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-06-01

    Full Text Available Research on motor learning suggests that training with haptic guidance enhances learning of the timing components of motor tasks, whereas error amplification is better for learning the spatial components. We present a novel mixed guidance controller that combines haptic guidance and error amplification to simultaneously promote learning of the timing and spatial components of complex motor tasks. The controller is realized using a force field around the desired position. This force field has a stable manifold tangential to the trajectory that guides subjects in velocity-related aspects. The force field has an unstable manifold perpendicular to the trajectory, which amplifies the perpendicular (spatial error. We also designed a controller that applies randomly varying, unpredictable disturbing forces to enhance the subjects’ active participation by pushing them away from their “comfort zone.” We conducted an experiment with thirty-two healthy subjects to evaluate the impact of four different training strategies on motor skill learning and self-reported motivation: (i No haptics, (ii mixed guidance, (iii perpendicular error amplification and tangential haptic guidance provided in sequential order, and (iv randomly varying disturbing forces. Subjects trained two motor tasks using ARMin IV, a robotic exoskeleton for upper limb rehabilitation: follow circles with an ellipsoidal speed profile, and move along a 3D line following a complex speed profile. Mixed guidance showed no detectable learning advantages over the other groups. Results suggest that the effectiveness of the training strategies depends on the subjects’ initial skill level. Mixed guidance seemed to benefit subjects who performed the circle task with smaller errors during baseline (i.e., initially more skilled subjects, while training with no haptics was more beneficial for subjects who created larger errors (i.e., less skilled subjects. Therefore, perhaps the high functional

  10. Current-Loop Control for the Pitching Axis of Aerial Cameras via an Improved ADRC

    Directory of Open Access Journals (Sweden)

    BingYou Liu

    2017-01-01

    Full Text Available An improved active disturbance rejection controller (ADRC is designed to eliminate the influences of the current-loop for the pitching axis control system of an aerial camera. The improved ADRC is composed of a tracking differentiator (TD, an improved extended state observer (ESO, an improved nonlinear state error feedback (NLSEF, and a disturbance compensation device (DCD. The TD is used to arrange transient process. The improved ESO is utilized to observe the state extended by nonlinear dynamics, model uncertainty, and external disturbances. Overtime variation of the current-loop can be predicted by the improved ESO. The improved NLSEF is adopted to restrain the residual errors of the current-loop. The DCD is used to compensate the overtime variation of the current-loop in real time. The improved ADRC is designed based on a new nonlinear function newfal(·. This function exhibits enhanced continuity and smoothness compared to previously available nonlinear functions. Thus, the new nonlinear function can effectively decrease the high-frequency flutter phenomenon. The improved ADRC exhibits improved control performance, and disturbances of the current-loop can be eliminated by the improved ADRC. Finally, simulation experiments are performed. Results show that the improved ADRC displayed better performance than the proportional integral (PI control strategy and traditional ADRC.

  11. An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.

  12. Composite Gauss-Legendre Quadrature with Error Control

    Science.gov (United States)

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  13. Controlling qubit drift by recycling error correction syndromes

    Science.gov (United States)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  14. An improved current control scheme for grid-connected DG unit based distribution system harmonic compensation

    DEFF Research Database (Denmark)

    He, Jinwei; Wei Li, Yun; Wang, Xiongfei

    2013-01-01

    In order to utilize DG unit interfacing converters to actively compensate distribution system harmonics, this paper proposes an enhanced current control approach. It seamlessly integrates system harmonic mitigation capabilities with the primary DG power generation function. As the proposed current...... controller has two well decoupled control branches to independently control fundamental and harmonic DG currents, phase-locked loops (PLL) and system harmonic component extractions can be avoided during system harmonic compensation. Moreover, a closed-loop power control scheme is also employed to derive...... the fundamental current reference. The proposed power control scheme effectively eliminates the impacts of steady-state fundamental current tracking errors in the DG units. Thus, an accurate power control is realized even when the harmonic compensation functions are activated. Experimental results from a single...

  15. Refractive error assessment: influence of different optical elements and current limits of biometric techniques.

    Science.gov (United States)

    Ribeiro, Filomena; Castanheira-Dinis, Antonio; Dias, Joao Mendanha

    2013-03-01

    To identify and quantify sources of error on refractive assessment using exact ray tracing. The Liou-Brennan eye model was used as a starting point and its parameters were varied individually within a physiological range. The contribution of each parameter to refractive error was assessed using linear regression curve fits and Gaussian error propagation analysis. A MonteCarlo analysis quantified the limits of refractive assessment given by current biometric measurements. Vitreous and aqueous refractive indices are the elements that influence refractive error the most, with a 1% change of each parameter contributing to a refractive error variation of +1.60 and -1.30 diopters (D), respectively. In the phakic eye, axial length measurements taken by ultrasound (vitreous chamber depth, lens thickness, and anterior chamber depth [ACD]) were the most sensitive to biometric errors, with a contribution to the refractive error of 62.7%, 14.2%, and 10.7%, respectively. In the pseudophakic eye, vitreous chamber depth showed the highest contribution at 53.7%, followed by postoperative ACD at 35.7%. When optic measurements were considered, postoperative ACD was the most important contributor, followed by anterior corneal surface and its asphericity. A MonteCarlo simulation showed that current limits of refractive assessment are 0.26 and 0.28 D for the phakic and pseudophakic eye, respectively. The most relevant optical elements either do not have available measurement instruments or the existing instruments still need to improve their accuracy. Ray tracing can be used as an optical assessment technique, and may be the correct path for future personalized refractive assessment. Copyright 2013, SLACK Incorporated.

  16. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    Science.gov (United States)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  17. Current pulse: can a production system reduce medical errors in health care?

    Science.gov (United States)

    Printezis, Antonios; Gopalakrishnan, Mohan

    2007-01-01

    One of the reasons for rising health care costs is medical errors, a majority of which result from faulty systems and processes. Health care in the past has used process-based initiatives such as Total Quality Management, Continuous Quality Improvement, and Six Sigma to reduce errors. These initiatives to redesign health care, reduce errors, and improve overall efficiency and customer satisfaction have had moderate success. Current trend is to apply the successful Toyota Production System (TPS) to health care since its organizing principles have led to tremendous improvement in productivity and quality for Toyota and other businesses that have adapted them. This article presents insights on the effectiveness of TPS principles in health care and the challenges that lie ahead in successfully integrating this approach with other quality initiatives.

  18. Design of Nonlinear Robust Rotor Current Controller for DFIG Based on Terminal Sliding Mode Control and Extended State Observer

    Directory of Open Access Journals (Sweden)

    Guowei Cai

    2014-01-01

    Full Text Available As to strong nonlinearity of doubly fed induction generators (DFIG and uncertainty of its model, a novel rotor current controller with nonlinearity and robustness is proposed to enhance fault ride-though (FRT capacities of grid-connected DFIG. Firstly, the model error, external disturbances, and the uncertain factors were estimated by constructing extended state observer (ESO so as to achieve linearization model, which is compensated dynamically from nonlinear model. And then rotor current controller of DFIG is designed by using terminal sliding mode variable structure control theory (TSMC. The controller has superior dynamic performance and strong robustness. The simulation results show that the proposed control approach is effective.

  19. Elimination of the induced current error in magnetometers using superconducting flux transformers

    International Nuclear Information System (INIS)

    Dummer, D.; Weyhmann, W.

    1987-01-01

    The changing magnetization of a sample in a superconducting flux transformer coupled magnetometer induces a current in the transformer which in turn changes the field at the sample. This ''image'' field and the error caused by it can be eliminated by sensing the current in the loop and nulling it by feedback through a mutual inductance. We have tested the technique on the superconducting transition of indium in an applied magnetic field and shown that the observed width of the transition is greatly reduced by maintaining zero current in the flux transformer

  20. Analysis technique for controlling system wavefront error with active/adaptive optics

    Science.gov (United States)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  1. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    Directory of Open Access Journals (Sweden)

    Takahiro eSoshi

    2015-01-01

    Full Text Available Post-error slowing is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms. Neural correlates of post-error processing were examined using event-related potentials (ERPs. Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS. Behavioral results demonstrated that the commission error for No-go trials was 15%, but post-error slowing did not take place immediately. Delayed post-error slowing was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to post-error slowing. Stimulus-locked N2 was negatively correlated with post-error slowing and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater post-error slowing and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and post-error slowing did not occur quickly. Furthermore, post-error slowing and its neural correlate (N2 were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke

  2. When soft controls get slippery: User interfaces and human error

    International Nuclear Information System (INIS)

    Stubler, W.F.; O'Hara, J.M.

    1998-01-01

    Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety

  3. Masked and unmasked error-related potentials during continuous control and feedback

    Science.gov (United States)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the

  4. Neurometaplasticity: Glucoallostasis control of plasticity of the neural networks of error commission, detection, and correction modulates neuroplasticity to influence task precision

    Science.gov (United States)

    Welcome, Menizibeya O.; Dane, Şenol; Mastorakis, Nikos E.; Pereverzev, Vladimir A.

    2017-12-01

    The term "metaplasticity" is a recent one, which means plasticity of synaptic plasticity. Correspondingly, neurometaplasticity simply means plasticity of neuroplasticity, indicating that a previous plastic event determines the current plasticity of neurons. Emerging studies suggest that neurometaplasticity underlie many neural activities and neurobehavioral disorders. In our previous work, we indicated that glucoallostasis is essential for the control of plasticity of the neural network that control error commission, detection and correction. Here we review recent works, which suggest that task precision depends on the modulatory effects of neuroplasticity on the neural networks of error commission, detection, and correction. Furthermore, we discuss neurometaplasticity and its role in error commission, detection, and correction.

  5. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    Science.gov (United States)

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  6. Reduced phase error through optimized control of a superconducting qubit

    International Nuclear Information System (INIS)

    Lucero, Erik; Kelly, Julian; Bialczak, Radoslaw C.; Lenander, Mike; Mariantoni, Matteo; Neeley, Matthew; O'Connell, A. D.; Sank, Daniel; Wang, H.; Weides, Martin; Wenner, James; Cleland, A. N.; Martinis, John M.; Yamamoto, Tsuyoshi

    2010-01-01

    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors, in particular, we have developed an experimental metrology - amplified phase error (APE) pulses - that amplifies and helps identify phase errors in general multilevel qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement 'half derivative', an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to ∼1.6 deg. per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit |2> state, is also reduced to ∼10 -4 for 20% faster gates.

  7. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    Science.gov (United States)

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  8. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response.

    Science.gov (United States)

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2014-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.

  9. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...... of error detection methods includes a high level software specification. this has the purpose of illustrating that the designed can be used in practice....

  10. The influence of the analog-to-digital conversion error on the JT-60 plasma position/shape feedback control system

    International Nuclear Information System (INIS)

    Yoshida, Michiharu; Kurihara, Kenichi

    1995-12-01

    In the plasma feedback control system (PFCS) and the direct digital controller (DDC) for the poloidal field coil power supply in the JT-60 tokamak, it is necessary to observe signals of all the poloidal field coil currents. Each of the signals, originally measured by a single sensor, is distributed to the PFCS and DDC through different cable routes and different analog-to-digital converters from each other. This produces the conversion error to the amount of several bits. Consequently, proper voltage from feedback calculation cannot be applied to the coil, and hence the control performance is possibly supposed to deteriorate to a certain extent. This paper describes how this error makes an influence on the plasma horizontal position control and how to improve the deteriorated control performance. (author)

  11. Current control loop design and analysis based on resonant regulators for microgrid applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michelle; de Sousa Ribeiro, Luiz Antonio

    2015-01-01

    Voltage and current control loops play an important role in the performance of microgrids employing power electronics voltage source inverters. Correct design of feedback loops is essential for the proper operation of these systems. This paper analyzes the influence of state feedback cross......-coupling in the design of resonant regulators for inner current loops in power converters operating in standalone microgrids. It is also demonstrated that the effect of state feedback cross-coupling degrades the performance of the control loops by increasing the steady-state error. Different resonant regulators...

  12. An empirical study on the basic human error probabilities for NPP advanced main control room operation using soft control

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Harbi, Mohamed Ali Salem Al; Lee, Seung Jun; Kang, Hyun Gook; Seong, Poong Hyun

    2013-01-01

    Highlights: ► The operation environment of MCRs in NPPs has changed by adopting new HSIs. ► The operation action in NPP Advanced MCRs is performed by soft control. ► Different basic human error probabilities (BHEPs) should be considered. ► BHEPs in a soft control operation environment are investigated empirically. ► This work will be helpful to verify if soft control has positive or negative effects. -- Abstract: By adopting new human–system interfaces that are based on computer-based technologies, the operation environment of main control rooms (MCRs) in nuclear power plants (NPPs) has changed. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, soft controls, and so on, are called Advanced MCRs. Among the many features in Advanced MCRs, soft controls are an important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, touch screens, and so on, operators can select a specific screen, then choose the controller, and finally manipulate the devices. However, because of the different interfaces between soft control and hardwired conventional type control, different basic human error probabilities (BHEPs) should be considered in the Human Reliability Analysis (HRA) for advanced MCRs. Although there are many HRA methods to assess human reliabilities, such as Technique for Human Error Rate Prediction (THERP), Accident Sequence Evaluation Program (ASEP), Human Error Assessment and Reduction Technique (HEART), Human Event Repository and Analysis (HERA), Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR), Cognitive Reliability and Error Analysis Method (CREAM), and so on, these methods have been applied to conventional MCRs, and they do not consider the new features of advance MCRs such as soft controls. As a result, there is an insufficient database for assessing human reliabilities in advanced

  13. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    NARCIS (Netherlands)

    Luijten, Maartje; Machielsen, Marise W. J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H. A.

    2014-01-01

    Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined

  14. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    NARCIS (Netherlands)

    Luijten, M.; Machielsen, M.W.J.; Veltman, D.J.; Hester, R.; de Haan, L.; Franken, I.H.A.

    2014-01-01

    Background: Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The

  15. Periodic boundary conditions and the error-controlled fast multipole method

    Energy Technology Data Exchange (ETDEWEB)

    Kabadshow, Ivo

    2012-08-22

    The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.

  16. A new controller for the JET error field correction coils

    International Nuclear Information System (INIS)

    Zanotto, L.; Sartori, F.; Bigi, M.; Piccolo, F.; De Benedetti, M.

    2005-01-01

    This paper describes the hardware and the software structure of a new controller for the JET error field correction coils (EFCC) system, a set of ex-vessel coils that recently replaced the internal saddle coils. The EFCC controller has been developed on a conventional VME hardware platform using a new software framework, recently designed for real-time applications at JET, and replaces the old disruption feedback controller increasing the flexibility and the optimization of the system. The use of conventional hardware has required a particular effort in designing the software part in order to meet the specifications. The peculiarities of the new controller will be highlighted, such as its very useful trigger logic interface, which allows in principle exploring various error field experiment scenarios

  17. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    of generic run-time error types, design of methods of observing application software behaviorduring execution and design of methods of evaluating run time constraints. In the definition of error types it is attempted to cover all relevant aspects of the application softwaree behavior. Methods of observation......In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...

  18. Study on a new framework of Human Reliability Analysis to evaluate soft control execution error in advanced MCRs of NPPs

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Jung, Wondea; Seong, Poong Hyun

    2016-01-01

    Highlights: • The operation environment of MCRs in NPPs has changed by adopting new HSIs. • The operation action in NPP Advanced MCRs is performed by soft control. • New HRA framework should be considered in the HRA for advanced MCRs. • HRA framework for evaluation of soft control execution human error is suggested. • Suggested method will be helpful to analyze human reliability in advance MCRs. - Abstract: Since the Three Mile Island (TMI)-2 accident, human error has been recognized as one of the main causes of Nuclear Power Plant (NPP) accidents, and numerous studies related to Human Reliability Analysis (HRA) have been carried out. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). However, the operating environment of MCRs in NPPs has changed with the adoption of new Human-System Interfaces (HSIs) that are based on computer-based technologies. The MCRs that include these digital technologies, such as large display panels, computerized procedures, and soft controls, are called advanced MCRs. Among the many features of advanced MCRs, soft controls are a particularly important feature because operating actions in NPP advanced MCRs are performed by soft control. Due to the differences in interfaces between soft control and hardwired conventional type control, different Human Error Probabilities (HEPs) and a new HRA framework should be considered in the HRA for advanced MCRs. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing a soft control task analysis and the literature regarding widely accepted human error taxonomies is reviewed. Moreover, since most current HRA databases deal with operation in conventional MCRs and are not explicitly designed to deal with digital HSIs, empirical analysis of human error and error recovery considering soft controls under an advanced MCR mockup are carried out to collect human error data, which is

  19. A memory of errors in sensorimotor learning.

    Science.gov (United States)

    Herzfeld, David J; Vaswani, Pavan A; Marko, Mollie K; Shadmehr, Reza

    2014-09-12

    The current view of motor learning suggests that when we revisit a task, the brain recalls the motor commands it previously learned. In this view, motor memory is a memory of motor commands, acquired through trial-and-error and reinforcement. Here we show that the brain controls how much it is willing to learn from the current error through a principled mechanism that depends on the history of past errors. This suggests that the brain stores a previously unknown form of memory, a memory of errors. A mathematical formulation of this idea provides insights into a host of puzzling experimental data, including savings and meta-learning, demonstrating that when we are better at a motor task, it is partly because the brain recognizes the errors it experienced before. Copyright © 2014, American Association for the Advancement of Science.

  20. An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Peer Jesper

    2015-01-07

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations.

  1. Trellis and turbo coding iterative and graph-based error control coding

    CERN Document Server

    Schlegel, Christian B

    2015-01-01

    This new edition has been extensively revised to reflect the progress in error control coding over the past few years. Over 60% of the material has been completely reworked, and 30% of the material is original. Convolutional, turbo, and low density parity-check (LDPC) coding and polar codes in a unified framework. Advanced research-related developments such as spatial coupling. A focus on algorithmic and implementation aspects of error control coding.

  2. Making the error-controlling algorithm of observable operator models constructive.

    Science.gov (United States)

    Zhao, Ming-Jie; Jaeger, Herbert; Thon, Michael

    2009-12-01

    Observable operator models (OOMs) are a class of models for stochastic processes that properly subsumes the class that can be modeled by finite-dimensional hidden Markov models (HMMs). One of the main advantages of OOMs over HMMs is that they admit asymptotically correct learning algorithms. A series of learning algorithms has been developed, with increasing computational and statistical efficiency, whose recent culmination was the error-controlling (EC) algorithm developed by the first author. The EC algorithm is an iterative, asymptotically correct algorithm that yields (and minimizes) an assured upper bound on the modeling error. The run time is faster by at least one order of magnitude than EM-based HMM learning algorithms and yields significantly more accurate models than the latter. Here we present a significant improvement of the EC algorithm: the constructive error-controlling (CEC) algorithm. CEC inherits from EC the main idea of minimizing an upper bound on the modeling error but is constructive where EC needs iterations. As a consequence, we obtain further gains in learning speed without loss in modeling accuracy.

  3. Data mining of air traffic control operational errors

    Science.gov (United States)

    2006-01-01

    In this paper we present the results of : applying data mining techniques to identify patterns and : anomalies in air traffic control operational errors (OEs). : Reducing the OE rate is of high importance and remains a : challenge in the aviation saf...

  4. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    Science.gov (United States)

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  5. Optimization Based Shunt APF Controller to Mitigate Reactive Power, Burden of Neutral Conductor, Current Harmonics and Improve cosɸ

    Directory of Open Access Journals (Sweden)

    P. Anjana

    2017-03-01

    Full Text Available This paper presents a Modified Gravitational Search Algorithm (MGSA to improve the performance of PI controller in varying load condition. The proposed approach is capable of mitigating reactive power, neutral current, source current THD and significant improvement in power factor nearly unity (0.997. The DC link voltage across the capacitor is controlled by PI controller which is deciding the performance of shunt APF. Hence, the robust optimization technique based integral time square error (ITSE with consideration of weight factor (α & β, maximum overshoot ((|(∆_Ve ̅〖(n〗_max | and setling time t_s-t_0, is providing the optimum solution of Kp & Ki. The robustness of proposed objective function and algorithm compared with GSA based three other error criterion techniques. The efficiency of the proposed controller has been tested over nonlinear and unbalance loading condition. The performance of ITSE based MGSA-PI controller is batter then other three error criterion techniques. The values of THD are below the mark of 5% specified in IEEE-519 standard.

  6. The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules

    International Nuclear Information System (INIS)

    Wang, Gang; Zhao, Ke; Qiu, Tian; Yang, Xinsheng; Zhang, Yong; Zhao, Yong

    2016-01-01

    In the modeling and simulation of photovoltaic modules, especially in calculating the reverse saturation current of the diode, the series and parallel resistances are often neglected, causing certain errors. We analyzed the errors at the open circuit point, and proposed an iterative algorithm to calculate the modified values of the reverse saturation current, series resistance and parallel resistance of the diode, in order to reduce the errors. Assuming independent irradiation and temperature effects, the irradiation-dependence and the temperature-dependence of the open circuit voltage were introduced to obtain the modified formula of the open circuit voltage under any condition. Experimental results show that this modified formula has high accuracy, even at irradiance as low as 40 W/m"2. The errors of open circuit voltage were significantly reduced, indicating that this modified model is suitable for simulations of photovoltaic modules. - Highlights: • We propose a new method for modeling PV modules with higher accuracy. • The errors of open circuit voltage are significantly reduced. • I_o under any condition is calculated.

  7. ERROR DETECTION BY ANTICIPATION FOR VISION-BASED CONTROL

    Directory of Open Access Journals (Sweden)

    A ZAATRI

    2001-06-01

    Full Text Available A vision-based control system has been developed.  It enables a human operator to remotely direct a robot, equipped with a camera, towards targets in 3D space by simply pointing on their images with a pointing device. This paper presents an anticipatory system, which has been designed for improving the safety and the effectiveness of the vision-based commands. It simulates these commands in a virtual environment. It attempts to detect hard contacts that may occur between the robot and its environment, which can be caused by machine errors or operator errors as well.

  8. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  9. Error Resilience in Current Distributed Video Coding Architectures

    Directory of Open Access Journals (Sweden)

    Tonoli Claudia

    2009-01-01

    Full Text Available In distributed video coding the signal prediction is shifted at the decoder side, giving therefore most of the computational complexity burden at the receiver. Moreover, since no prediction loop exists before transmission, an intrinsic robustness to transmission errors has been claimed. This work evaluates and compares the error resilience performance of two distributed video coding architectures. In particular, we have considered a video codec based on the Stanford architecture (DISCOVER codec and a video codec based on the PRISM architecture. Specifically, an accurate temporal and rate/distortion based evaluation of the effects of the transmission errors for both the considered DVC architectures has been performed and discussed. These approaches have been also compared with H.264/AVC, in both cases of no error protection, and simple FEC error protection. Our evaluations have highlighted in all cases a strong dependence of the behavior of the various codecs to the content of the considered video sequence. In particular, PRISM seems to be particularly well suited for low-motion sequences, whereas DISCOVER provides better performance in the other cases.

  10. Human error and the associated recovery probabilities for soft control being used in the advanced MCRs of NPPs

    International Nuclear Information System (INIS)

    Jang, Inseok; Jung, Wondea; Seong, Poong Hyun

    2016-01-01

    Highlights: • The operation environment of MCRs in NPPs has changed by adopting digital HSIs. • Most current HRA databases are not explicitly designed to deal with digital HSI. • Empirical analysis for new HRA DB under an advanced MCR mockup are carried. • It is expected that the results can be used for advanced MCR HRA. - Abstract: Since the Three Mile Island (TMI)-2 accident, human error has been recognized as one of the main causes of Nuclear Power Plant (NPP) accidents, and numerous studies related to Human Reliability Analysis (HRA) have been carried out. Most of these studies were focused on considering the conventional Main Control Room (MCR) environment. However, the operating environment of MCRs in NPPs has changed with the adoption of new human-system interfaces (HSI) largely based on up-to-date digital technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called advanced MCRs. Among the many features of advanced MCRs, soft controls are a particularly important because operating actions in advanced MCRs are performed by soft control. Due to the difference in interfaces between soft control and hardwired conventional controls, different HEP should be used in the HRA for advanced MCRs. Unfortunately, most current HRA databases deal with operations in conventional MCRs and are not explicitly designed to deal with digital Human System Interface (HSI). For this reason, empirical human error and the associated error recovery probabilities were collected from the mockup of an advanced MCR equipped with soft controls. To this end, small-scaled experiments are conducted with 48 graduated students in the department of nuclear engineering in Korea Advanced Institute of Science and Technology (KAIST) are participated, and accident scenarios are designed with respect to the typical Design Basis Accidents (DBAs) in NPPs, such as Steam Generator Tube Rupture

  11. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies

    Directory of Open Access Journals (Sweden)

    Finch Stephen J

    2005-04-01

    Full Text Available Abstract Background Phenotype error causes reduction in power to detect genetic association. We present a quantification of phenotype error, also known as diagnostic error, on power and sample size calculations for case-control genetic association studies between a marker locus and a disease phenotype. We consider the classic Pearson chi-square test for independence as our test of genetic association. To determine asymptotic power analytically, we compute the distribution's non-centrality parameter, which is a function of the case and control sample sizes, genotype frequencies, disease prevalence, and phenotype misclassification probabilities. We derive the non-centrality parameter in the presence of phenotype errors and equivalent formulas for misclassification cost (the percentage increase in minimum sample size needed to maintain constant asymptotic power at a fixed significance level for each percentage increase in a given misclassification parameter. We use a linear Taylor Series approximation for the cost of phenotype misclassification to determine lower bounds for the relative costs of misclassifying a true affected (respectively, unaffected as a control (respectively, case. Power is verified by computer simulation. Results Our major findings are that: (i the median absolute difference between analytic power with our method and simulation power was 0.001 and the absolute difference was no larger than 0.011; (ii as the disease prevalence approaches 0, the cost of misclassifying a unaffected as a case becomes infinitely large while the cost of misclassifying an affected as a control approaches 0. Conclusion Our work enables researchers to specifically quantify power loss and minimum sample size requirements in the presence of phenotype errors, thereby allowing for more realistic study design. For most diseases of current interest, verifying that cases are correctly classified is of paramount importance.

  13. Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors

    Science.gov (United States)

    Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean

    2016-01-01

    A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?

  14. Trends in Health Information Technology Safety: From Technology-Induced Errors to Current Approaches for Ensuring Technology Safety

    Science.gov (United States)

    2013-01-01

    Objectives Health information technology (HIT) research findings suggested that new healthcare technologies could reduce some types of medical errors while at the same time introducing classes of medical errors (i.e., technology-induced errors). Technology-induced errors have their origins in HIT, and/or HIT contribute to their occurrence. The objective of this paper is to review current trends in the published literature on HIT safety. Methods A review and synthesis of the medical and life sciences literature focusing on the area of technology-induced error was conducted. Results There were four main trends in the literature on technology-induced error. The following areas were addressed in the literature: definitions of technology-induced errors; models, frameworks and evidence for understanding how technology-induced errors occur; a discussion of monitoring; and methods for preventing and learning about technology-induced errors. Conclusions The literature focusing on technology-induced errors continues to grow. Research has focused on the defining what an error is, models and frameworks used to understand these new types of errors, monitoring of such errors and methods that can be used to prevent these errors. More research will be needed to better understand and mitigate these types of errors. PMID:23882411

  15. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    Science.gov (United States)

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  16. SU-F-T-241: Reduction in Planning Errors Via a Process Control Developed Using the Eclipse Scripting API

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, D; McCarthy, A; Galavis, P; Xu, A [NYU Langone Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# to check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria

  17. Recognition Errors Control in Biometric Identification Cryptosystems

    Directory of Open Access Journals (Sweden)

    Vladimir Ivanovich Vasilyev

    2015-06-01

    Full Text Available The method of biometric cryptosystem designed on the basis of fuzzy extractor, in which main disadvantages of biometric and cryptographic systems are absent, is considered. The main idea of this work is a control of identity recognition errors with use of fuzzy extractor which operates with Reed – Solomon correcting code. The fingerprint features vector is considered as a biometric user identifier.

  18. A Digital Hysteresis Current Control for Half-Bridge Inverters with Constrained Switching Frequency

    Directory of Open Access Journals (Sweden)

    Triet Nguyen-Van

    2017-10-01

    Full Text Available This paper proposes a new robustly adaptive hysteresis current digital control algorithm for half-bridge inverters, which plays an important role in electric power, and in various applications in electronic systems. The proposed control algorithm is assumed to be implemented on a high-speed Field Programmable Gate Array (FPGA circuit, using measured data with high sampling frequency. The hysteresis current band is computed in each switching modulation period based on both the current error and the negative half switching period during the previous modulation period, in addition to the conventionally used voltages measured at computation instants. The proposed control algorithm is derived by solving the optimization problem—where the switching frequency is always constrained at below the desired constant frequency—which is not guaranteed by the conventional method. The optimization problem also keeps the output current stable around the reference, and minimizes power loss. Simulation results show good performances of the proposed algorithm compared with the conventional one.

  19. Errors of Mean Dynamic Topography and Geostrophic Current Estimates in China's Marginal Seas from GOCE and Satellite Altimetry

    DEFF Research Database (Denmark)

    Jin, Shuanggen; Feng, Guiping; Andersen, Ole Baltazar

    2014-01-01

    and geostrophic current estimates from satellite gravimetry and altimetry are investigated and evaluated in China's marginal seas. The cumulative error in MDT from GOCE is reduced from 22.75 to 9.89 cm when compared to the Gravity Recovery and Climate Experiment (GRACE) gravity field model ITG-Grace2010 results......The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and satellite altimetry can provide very detailed and accurate estimates of the mean dynamic topography (MDT) and geostrophic currents in China's marginal seas, such as, the newest high-resolution GOCE gravity field model GO......-CONS-GCF-2-TIM-R4 and the new Centre National d'Etudes Spatiales mean sea surface model MSS_CNES_CLS_11 from satellite altimetry. However, errors and uncertainties of MDT and geostrophic current estimates from satellite observations are not generally quantified. In this paper, errors and uncertainties of MDT...

  20. Experimental quantum error correction with high fidelity

    International Nuclear Information System (INIS)

    Zhang Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond

    2011-01-01

    More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett. 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from ε to ∼ε 2 . In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.

  1. Knowledge-Based Trajectory Error Pattern Method Applied to an Active Force Control Scheme

    Directory of Open Access Journals (Sweden)

    Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

    2012-08-01

    Full Text Available The active force control (AFC method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.

  2. Unequal error control scheme for dimmable visible light communication systems

    Science.gov (United States)

    Deng, Keyan; Yuan, Lei; Wan, Yi; Li, Huaan

    2017-01-01

    Visible light communication (VLC), which has the advantages of a very large bandwidth, high security, and freedom from license-related restrictions and electromagnetic-interference, has attracted much interest. Because a VLC system simultaneously performs illumination and communication functions, dimming control, efficiency, and reliable transmission are significant and challenging issues of such systems. In this paper, we propose a novel unequal error control (UEC) scheme in which expanding window fountain (EWF) codes in an on-off keying (OOK)-based VLC system are used to support different dimming target values. To evaluate the performance of the scheme for various dimming target values, we apply it to H.264 scalable video coding bitstreams in a VLC system. The results of the simulations that are performed using additive white Gaussian noises (AWGNs) with different signal-to-noise ratios (SNRs) are used to compare the performance of the proposed scheme for various dimming target values. It is found that the proposed UEC scheme enables earlier base layer recovery compared to the use of the equal error control (EEC) scheme for different dimming target values and therefore afford robust transmission for scalable video multicast over optical wireless channels. This is because of the unequal error protection (UEP) and unequal recovery time (URT) of the EWF code in the proposed scheme.

  3. Current Controller for Multi-level Front-end Converter and Its Digital Implementation Considerations on Three-level Flying Capacitor Topology

    Science.gov (United States)

    Tekwani, P. N.; Shah, M. T.

    2017-10-01

    This paper presents behaviour analysis and digital implementation of current error space phasor based hysteresis controller applied to three-phase three-level flying capacitor converter as front-end topology. The controller is self-adaptive in nature, and takes the converter from three-level to two-level mode of operation and vice versa, following various trajectories of sector change with the change in reference dc-link voltage demanded by the load. It keeps current error space phasor within the prescribed hexagonal boundary. During the contingencies, the proposed controller takes the converter in over modulation mode to meet the load demand, and once the need is satisfied, controller brings back the converter in normal operating range. Simulation results are presented to validate behaviour of controller to meet the said contingencies. Unity power factor is assured by proposed controller with low current harmonic distortion satisfying limits prescribed in IEEE 519-2014. Proposed controller is implemented using TMS320LF2407 16-bit fixed-point digital signal processor. Detailed analysis of numerical format to avoid overflow of sensed variables in processor, and per-unit model implementation in software are discussed and hardware results are presented at various stages of signal conditioning to validate the experimental setup. Control logic for the generation of reference currents is implemented in TMS320LF2407A using assembly language and experimental results are also presented for the same.

  4. Quaternion error-based optimal control applied to pinpoint landing

    Science.gov (United States)

    Ghiglino, Pablo

    Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.

  5. Resisting attraction: Individual differences in executive control are associated with subject-verb agreement errors in production.

    Science.gov (United States)

    Veenstra, Alma; Antoniou, Kyriakos; Katsos, Napoleon; Kissine, Mikhail

    2018-04-19

    We propose that attraction errors in agreement production (e.g., the key to the cabinets are missing) are related to two components of executive control: working memory and inhibitory control. We tested 138 children aged 10 to 12, an age when children are expected to produce high rates of errors. To increase the potential of individual variation in executive control skills, participants came from monolingual, bilingual, and bidialectal language backgrounds. Attraction errors were elicited with a picture description task in Dutch and executive control was measured with a digit span task, Corsi blocks task, switching task, and attentional networks task. Overall, higher rates of attraction errors were negatively associated with higher verbal working memory and, independently, with higher inhibitory control. To our knowledge, this is the first demonstration of the role of both working memory and inhibitory control in attraction errors in production. Implications for memory- and grammar-based models are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Human error recovery failure probability when using soft controls in computerized control rooms

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Seong, Poong Hyun; Jung, Wondea

    2014-01-01

    Many literatures categorized recovery process into three phases; detection of problem situation, explanation of problem causes or countermeasures against problem, and end of recovery. Although the focus of recovery promotion has been on categorizing recovery phases and modeling recovery process, research related to human recovery failure probabilities has not been perform actively. On the other hand, a few study regarding recovery failure probabilities were implemented empirically. Summarizing, researches that have performed so far have several problems in terms of use in human reliability analysis (HRA). By adopting new human-system interfaces that are based on computer-based technologies, the operation environment of MCRs in NPPs has changed from conventional MCRs to advanced MCRs. Because of the different interfaces between conventional and advanced MCRs, different recovery failure probabilities should be considered in the HRA for advanced MCRs. Therefore, this study carries out an empirical analysis of human error recovery probabilities under an advanced MCR mockup called compact nuclear simulator (CNS). The aim of this work is not only to compile a recovery failure probability database using the simulator for advanced MCRs but also to collect recovery failure probability according to defined human error modes to compare that which human error mode has highest recovery failure probability. The results show that recovery failure probability regarding wrong screen selection was lowest among human error modes, which means that most of human error related to wrong screen selection can be recovered. On the other hand, recovery failure probabilities of operation selection omission and delayed operation were 1.0. These results imply that once subject omitted one task in the procedure, they have difficulties finding and recovering their errors without supervisor's assistance. Also, wrong screen selection had an effect on delayed operation. That is, wrong screen

  7. Analysis of Wind Speed Forecasting Error Effects on Automatic Generation Control Performance

    Directory of Open Access Journals (Sweden)

    H. Rajabi Mashhadi

    2014-09-01

    Full Text Available The main goal of this paper is to study statistical indices and evaluate AGC indices in power system which has large penetration of the WTGs. Increasing penetration of wind turbine generations, needs to study more about impacts of it on power system frequency control. Frequency control is changed with unbalancing real-time system generation and load . Also wind turbine generations have more fluctuations and make system more unbalance. Then AGC loop helps to adjust system frequency and the scheduled tie-line powers. The quality of AGC loop is measured by some indices. A good index is a proper measure shows the AGC performance just as the power system operates. One of well-known measures in literature which was introduced by NERC is Control Performance Standards(CPS. Previously it is claimed that a key factor in CPS index is related to standard deviation of generation error, installed power and frequency response. This paper focuses on impact of a several hours-ahead wind speed forecast error on this factor. Furthermore evaluation of conventional control performances in the power systems with large-scale wind turbine penetration is studied. Effects of wind speed standard deviation and also degree of wind farm penetration are analyzed and importance of mentioned factor are criticized. In addition, influence of mean wind speed forecast error on this factor is investigated. The study system is a two area system which there is significant wind farm in one of those. The results show that mean wind speed forecast error has considerable effect on AGC performance while the mentioned key factor is insensitive to this mean error.

  8. Falls and Postural Control in Older Adults With Eye Refractive Errors

    Directory of Open Access Journals (Sweden)

    Afsun Nodehi-Moghadam

    2016-04-01

    Conclusion: Vision impairment of older adults due to refractive error is not associated with an increase in falls. Furthermore, TUG test results did not show balance disorders in these groups. Further research, such as assessment of postural control with advanced devices and considering other falling risk factors is also needed to identify the predictors of falls in older adults with eye refractive errors.

  9. Variable current speed controller for eddy current motors

    Science.gov (United States)

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  10. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  11. Subdivision Error Analysis and Compensation for Photoelectric Angle Encoder in a Telescope Control System

    Directory of Open Access Journals (Sweden)

    Yanrui Su

    2015-01-01

    Full Text Available As the position sensor, photoelectric angle encoder affects the accuracy and stability of telescope control system (TCS. A TCS-based subdivision error compensation method for encoder is proposed. Six types of subdivision error sources are extracted through mathematical expressions of subdivision signals first. Then the period length relationships between subdivision signals and subdivision errors are deduced. And the error compensation algorithm only utilizing the shaft position of TCS is put forward, along with two control models; Model I is that the algorithm applies only to the speed loop of TCS and Model II is applied to both speed loop and position loop. Combined with actual project, elevation jittering phenomenon of the telescope is discussed to decide the necessity of DC-type subdivision error compensation. Low-speed elevation performance before and after error compensation is compared to help decide that Model II is preferred. In contrast to original performance, the maximum position error of the elevation with DC subdivision error compensation is reduced by approximately 47.9% from 1.42″ to 0.74″. The elevation gets a huge decrease in jitters. This method can compensate the encoder subdivision errors effectively and improve the stability of TCS.

  12. The impact of treatment complexity and computer-control delivery technology on treatment delivery errors

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Lash, Kathy L.; Matrone, Gwynne M.; Volkman, Susan K.; McShan, Daniel L.; Kessler, Marc L.; Lichter, Allen S.

    1998-01-01

    Purpose: To analyze treatment delivery errors for three-dimensional (3D) conformal therapy performed at various levels of treatment delivery automation and complexity, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system (CCRS). Methods and Materials: All treatment delivery errors which occurred in our department during a 15-month period were analyzed. Approximately 34,000 treatment sessions (114,000 individual treatment segments [ports]) on four treatment machines were studied. All treatment delivery errors logged by treatment therapists or quality assurance reviews (152 in all) were analyzed. Machines 'M1' and 'M2' were operated in a standard manual setup mode, with no record and verify system (R/V). MLC machines 'M3' and 'M4' treated patients under the control of the CCRS system, which (1) downloads the treatment delivery plan from the planning system; (2) performs some (or all) of the machine set up and treatment delivery for each field; (3) monitors treatment delivery; (4) records all treatment parameters; and (5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3; therefore, it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments, nonaxial and noncoplanar plans, multisegment intensity modulation, and pseudoisocentric treatments studied for a 6-month period (505 patients) concurrent with the period in which the delivery errors were obtained. Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines; therefore, this analysis does not depend on fixed therapist staff on particular

  13. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Wang, Aiping; Guo, Lei; Wang, Hong

    2017-07-09

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  14. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    Science.gov (United States)

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  15. Sensorless SPMSM Position Estimation Using Position Estimation Error Suppression Control and EKF in Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Zhanshan Wang

    2014-01-01

    Full Text Available The control of a high performance alternative current (AC motor drive under sensorless operation needs the accurate estimation of rotor position. In this paper, one method of accurately estimating rotor position by using both motor complex number model based position estimation and position estimation error suppression proportion integral (PI controller is proposed for the sensorless control of the surface permanent magnet synchronous motor (SPMSM. In order to guarantee the accuracy of rotor position estimation in the flux-weakening region, one scheme of identifying the permanent magnet flux of SPMSM by extended Kalman filter (EKF is also proposed, which formed the effective combination method to realize the sensorless control of SPMSM with high accuracy. The simulation results demonstrated the validity and feasibility of the proposed position/speed estimation system.

  16. Design and implementation of predictive current control of three-phase PWM rectifier using space-vector modulation (SVM)

    International Nuclear Information System (INIS)

    Bouafia, Abdelouahab; Gaubert, Jean-Paul; Krim, Fateh

    2010-01-01

    This paper is concerned with the design and implementation of current control of three-phase PWM rectifier based on predictive control strategy. The proposed predictive current control technique operates with constant switching frequency, using space-vector modulation (SVM). The main goal of the designed current control scheme is to maintain the dc-bus voltage at the required level and to achieve the unity power factor (UPF) operation of the converter. For this purpose, two predictive current control algorithms, in the sense of deadbeat control, are developed for direct controlling input current vector of the converter in the stationary α-β and rotating d-q reference frame, respectively. For both predictive current control algorithms, at the beginning of each switching period, the required rectifier average voltage vector allowing the cancellation of both tracking errors of current vector components at the end of the switching period, is computed and applied during a predefined switching period by means of SVM. The main advantages of the proposed predictive current control are that no need to use hysteresis comparators or PI controllers in current control loops, and constant switching frequency. Finally, the developed predictive current control algorithms were tested both in simulations and experimentally, and illustrative results are presented here. Results have proven excellent performance in steady and transient states, and verify the validity of the proposed predictive current control which is compared to other control strategies.

  17. CMOS current controlled fully balanced current conveyor

    International Nuclear Information System (INIS)

    Wang Chunhua; Zhang Qiujing; Liu Haiguang

    2009-01-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  18. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution

    International Nuclear Information System (INIS)

    Wojtas, H.

    2004-01-01

    The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate

  19. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  20. Coordinated joint motion control system with position error correction

    Science.gov (United States)

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  1. Comparing Interval Management Control Laws for Steady-State Errors and String Stability

    Science.gov (United States)

    Weitz, Lesley A.; Swieringa, Kurt A.

    2018-01-01

    Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.

  2. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    Science.gov (United States)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  3. The impact of a brief mindfulness meditation intervention on cognitive control and error-related performance monitoring

    Directory of Open Access Journals (Sweden)

    Michael J Larson

    2013-07-01

    Full Text Available Meditation is associated with positive health behaviors and improved cognitive control. One mechanism for the relationship between meditation and cognitive control is changes in activity of the anterior cingulate cortex-mediated neural pathways. The error-related negativity (ERN and error positivity (Pe components of the scalp-recorded event-related potential (ERP represent cingulate-mediated functions of performance monitoring that may be modulated by mindfulness meditation. We utilized a flanker task, an experimental design, and a brief mindfulness intervention in a sample of 55 healthy non-meditators (n = 28 randomly assigned to the mindfulness group and n = 27 randomly assigned to the control group to examine autonomic nervous system functions as measured by blood pressure and indices of cognitive control as measured by response times, error rates, post-error slowing, and the ERN and Pe components of the ERP. Systolic blood pressure significantly differentiated groups following the mindfulness intervention and following the flanker task. There were non-significant differences between the mindfulness and control groups for response times, post-error slowing, and error rates on the flanker task. Amplitude and latency of the ERN did not differ between groups; however, amplitude of the Pe was significantly smaller in individuals in the mindfulness group than in the control group. Findings suggest that a brief mindfulness intervention is associated with reduced autonomic arousal and decreased amplitude of the Pe, an ERP associated with error awareness, attention, and motivational salience, but does not alter amplitude of the ERN or behavioral performance. Implications for brief mindfulness interventions and state versus trait affect theories of the ERN are discussed. Future research examining graded levels of mindfulness and tracking error awareness will clarify relationship between mindfulness and performance monitoring.

  4. Robust Two Degrees-of-freedom Single-current Control Strategy for LCL-type Grid-Connected DG System under Grid-Frequency Fluctuation and Grid-impedance Variation

    DEFF Research Database (Denmark)

    Zhou, Leming; Chen, Yandong; Luo, An

    2016-01-01

    -of-freedom single-current control (RTDOF-SCC) strategy is proposed, which mainly includes the synchronous reference frame quasi-proportional-integral (SRFQPI) control and robust grid-current-feedback active damping (RGCFAD) control. The proposed SRFQPI control can compensate the local-loads reactive power......, and regulate the instantaneous grid current without steady-state error regardless of the fundamental frequency fluctuation. Simultaneously, the proposed RGCFAD control effectively damps the LCL-resonance peak regardless of the grid-impedance variation, and further improves both transient and steady...

  5. On global error estimation and control for initial value problems

    NARCIS (Netherlands)

    J. Lang (Jens); J.G. Verwer (Jan)

    2007-01-01

    textabstractThis paper addresses global error estimation and control for initial value problems for ordinary differential equations. The focus lies on a comparison between a novel approach based onthe adjoint method combined with a small sample statistical initialization and the classical approach

  6. On global error estimation and control for initial value problems

    NARCIS (Netherlands)

    Lang, J.; Verwer, J.G.

    2007-01-01

    Abstract. This paper addresses global error estimation and control for initial value problems for ordinary differential equations. The focus lies on a comparison between a novel approach based on the adjoint method combined with a small sample statistical initialization and the classical approach

  7. Control of Human Error and comparison Level risk after correction action With the SHERPA Method in a control Room of petrochemical industry

    Directory of Open Access Journals (Sweden)

    A. Zakerian

    2011-12-01

    Full Text Available Background and aims Today in many jobs like nuclear, military and chemical industries, human errors may result in a disaster. Accident in different places of the world emphasizes this subject and we indicate for example, Chernobyl disaster in (1986, tree Mile accident in (1974 and Flixborough explosion in (1974.So human errors identification especially in important and intricate systems is necessary and unavoidable for predicting control methods.   Methods Recent research is a case study and performed in Zagross Methanol Company in Asalouye (South pars.   Walking –Talking through method with process expert and control room operators, inspecting technical documents are used for collecting required information and completing Systematic Human Error Reductive and Predictive Approach (SHERPA worksheets.   Results analyzing SHERPA worksheet indicated that, were accepting capable invertebrate errors % 71.25, % 26.75 undesirable errors, % 2 accepting capable(with change errors, % 0 accepting capable errors, and after correction action forecast Level risk to this arrangement, accepting capable invertebrate errors % 0, % 4.35 undesirable errors , % 58.55 accepting capable(with change errors, % 37.1 accepting capable errors .   ConclusionFinally this result is comprehension that this method in different industries especially in chemical industries is enforceable and useful for human errors identification that may lead to accident and adventures.

  8. Current good manufacturing practice in manufacturing, processing, packing, or holding of drugs; revision of certain labeling controls. Final rule.

    Science.gov (United States)

    2012-03-20

    The Food and Drug Administration (FDA) is amending the packaging and labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and veterinary drug products by limiting the application of special control procedures for the use of cut labeling to immediate container labels, individual unit cartons, or multiunit cartons containing immediate containers that are not packaged in individual unit cartons. FDA is also permitting the use of any automated technique, including differentiation by labeling size and shape, that physically prevents incorrect labeling from being processed by labeling and packaging equipment when cut labeling is used. This action is intended to protect consumers from labeling errors more likely to cause adverse health consequences, while eliminating the regulatory burden of applying the rule to labeling unlikely to reach or adversely affect consumers. This action is also intended to permit manufacturers to use a broader range of error prevention and labeling control techniques than permitted by current CGMPs.

  9. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  11. The accuracy of webcams in 2D motion analysis: sources of error and their control

    International Nuclear Information System (INIS)

    Page, A; Candelas, P; Belmar, F; Moreno, R

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented. Finally, an experiment with controlled movement is performed to experimentally measure the errors described above and to assess the effectiveness of the proposed corrective measures. It will be shown that when these aspects are considered, it is possible to obtain errors lower than 0.1%. This level of accuracy demonstrates that webcams should be considered as very precise and accurate measuring instruments at a remarkably low cost

  12. The accuracy of webcams in 2D motion analysis: sources of error and their control

    Energy Technology Data Exchange (ETDEWEB)

    Page, A; Candelas, P; Belmar, F [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Moreno, R [Instituto de Biomecanica de Valencia, Valencia (Spain)], E-mail: alvaro.page@ibv.upv.es

    2008-07-15

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented. Finally, an experiment with controlled movement is performed to experimentally measure the errors described above and to assess the effectiveness of the proposed corrective measures. It will be shown that when these aspects are considered, it is possible to obtain errors lower than 0.1%. This level of accuracy demonstrates that webcams should be considered as very precise and accurate measuring instruments at a remarkably low cost.

  13. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    Science.gov (United States)

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  14. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function.

    Science.gov (United States)

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-04-28

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm.

  15. Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.

    Science.gov (United States)

    Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick

    2018-01-01

    Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    Science.gov (United States)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  17. Simultaneous real-time control of the current and pressure profiles in JET: experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Mazon, D.; Laborde, L.; Litaudon, X.; Moreau, D.; Zabeo, L.; Joffrin, E. [Association Euratom-CEA Cadarache (DSM/DRFC), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Murari, A. [Consorzio RFX Association Euratom-ENEA, Padova (Italy); Ariola, M.; Albanese, R.; Tommasi, G. de; Pironti, A. [Association Euratom-ENEA, CREATE, Napoly (Italy); Moreau, D. [EFDA-JET CSU, Culham Science Centre, Abingdon, OX (United Kingdom); Tala, T. [Euratom-Tekes Association, VTT Processes (Finland); Crisanti, F.; Pericoli-Ridolfini, V.; Tuccillo, A. [Association Euratom-ENEA, C.R. Frascati (Italy); Baar, M. de; Vries, P. de [Euratom-FOM Association, TEC Cluster, Nieuwegein (Netherlands); De la Luna, E. [Euratom-Ciemat Association (Spain); Felton, R.; Corrigan, G. [Euratom-UKAEA Association, Culham Science Centre, Abingdon (United Kingdom)

    2004-07-01

    Real-time control of the plasma profiles (current density, pressure and flow) is one of the major issues for sustaining internal transport barriers (ITB) in a high performance plasma, with a large bootstrap current fraction. We have recently investigated the experimental and numerical aspects of the simultaneous control of the current and pressure profiles in JET ITB discharges. The current density and the electron temperature were successfully controlled via the safety factor profile (or via its inverse the tau-profile) and the {rho}{sup *}{sub Te} profile respectively. The results of these new studies are presented. With only a limited number of actuators, the technique aims at minimizing an integral square error signal which combines the 2 profiles, rather than attempting to control plasma parameters at some given radii with great precision. The resulting fuzziness of the control scheme allows the plasma to relax towards a physically accessible non-linear state which may not be accurately known in advance, but is close enough to the requested one to provide the required plasma performance. Closed loop experiments have allow to reach different target q and {rho}{sup *}{sub Te} profiles, and to some degree, to displace the region of maximum electron temperature gradient. The control has also shown some robustness in front of rapid transients.

  18. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600-MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600-MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV

  19. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    International Nuclear Information System (INIS)

    Beck, S.M.

    1975-04-01

    A mobile self-contained Faraday cup system for beam current measurements of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 +- 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV. (auth)

  20. Types and Severity of Medication Errors in Iran; a Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    Ava Mansouri

    2013-06-01

    Full Text Available Medication error (ME is the most common single preventable cause of adverse drug events which negatively affects patient safety. ME prevalence is a valuable safety indicator in healthcare system. Inadequate studies on ME, shortage of high-quality studies and wide variations in estimations from developing countries including Iran, decreases the reliability of ME evaluations. In order to clarify the status of MEs, we aimed to review current available literature on this subject from Iran. We searched Scopus, Web of Science, PubMed, CINAHL, EBSCOHOST and also Persian databases (IranMedex, and SID up to October 2012 to find studies on adults and children about prescription, transcription, dispensing, and administration errors. Two authors independently selected and one of them reviewed and extracted data for types, definitions and severity of MEs. The results were classified based on different stages of drug delivery process. Eighteen articles (11 Persian and 7 English were included in our review. All study designs were cross-sectional and conducted in hospital settings. Nursing staff and students were the most frequent populations under observation (12 studies; 66.7%. Most of studies did not report the overall frequency of MEs aside from ME types. Most of studies (15; 83.3% reported prevalence of administration errors between 14.3%-70.0%. Prescribing error prevalence ranged from 29.8%-47.8%. The prevalence of dispensing and transcribing errors were from 11.3%-33.6% and 10.0%-51.8% respectively. We did not find any follow up or repeated studies. Only three studies reported findings on severity of MEs. The most reported types of and the highest percentages for any type of ME in Iran were administration errors. Studying ME in Iran is a new area considering the duration and number of publications. Wide ranges of estimations for MEs in different stages may be because of the poor quality of studies with diversity in definitions, methods, and populations

  1. Development of a framework to estimate human error for diagnosis tasks in advanced control room

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, In Seok; Seong, Proong Hyun

    2014-01-01

    In the emergency situation of nuclear power plants (NPPs), a diagnosis of the occurring events is crucial for managing or controlling the plant to a safe and stable condition. If the operators fail to diagnose the occurring events or relevant situations, their responses can eventually inappropriate or inadequate Accordingly, huge researches have been performed to identify the cause of diagnosis error and estimate the probability of diagnosis error. D.I Gertman et al. asserted that 'the cognitive failures stem from erroneous decision-making, poor understanding of rules and procedures, and inadequate problem solving and this failures may be due to quality of data and people's capacity for processing information'. Also many researchers have asserted that human-system interface (HSI), procedure, training and available time are critical factors to cause diagnosis error. In nuclear power plants, a diagnosis of the event is critical for safe condition of the system. As advanced main control room is being adopted in nuclear power plants, the operators may obtain the plant data via computer-based HSI and procedure. Also many researchers have asserted that HSI, procedure, training and available time are critical factors to cause diagnosis error. In this regards, using simulation data, diagnosis errors and its causes were identified. From this study, some useful insights to reduce diagnosis errors of operators in advanced main control room were provided

  2. Error Management in ATLAS TDAQ: An Intelligent Systems approach

    CERN Document Server

    Slopper, John Erik

    2010-01-01

    This thesis is concerned with the use of intelligent system techniques (IST) within a large distributed software system, specically the ATLAS TDAQ system which has been developed and is currently in use at the European Laboratory for Particle Physics(CERN). The overall aim is to investigate and evaluate a range of ITS techniques in order to improve the error management system (EMS) currently used within the TDAQ system via error detection and classication. The thesis work will provide a reference for future research and development of such methods in the TDAQ system. The thesis begins by describing the TDAQ system and the existing EMS, with a focus on the underlying expert system approach, in order to identify areas where improvements can be made using IST techniques. It then discusses measures of evaluating error detection and classication techniques and the factors specic to the TDAQ system. Error conditions are then simulated in a controlled manner using an experimental setup and datasets were gathered fro...

  3. Learning from prescribing errors

    OpenAIRE

    Dean, B

    2002-01-01

    

 The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...

  4. MEASUREMENT ERROR EFFECT ON THE POWER OF CONTROL CHART FOR ZERO-TRUNCATED POISSON DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Ashit Chakraborty

    2013-09-01

    Full Text Available Measurement error is the difference between the true value and the measured value of a quantity that exists in practice and may considerably affect the performance of control charts in some cases. Measurement error variability has uncertainty which can be from several sources. In this paper, we have studied the effect of these sources of variability on the power characteristics of control chart and obtained the values of average run length (ARL for zero-truncated Poisson distribution (ZTPD. Expression of the power of control chart for variable sample size under standardized normal variate for ZTPD is also derived.

  5. The using of the control room automation against human errors

    International Nuclear Information System (INIS)

    Kautto, A.

    1993-01-01

    The control room automation has developed very strongly during the 80's in IVO (Imatran Voima Oy). The former work expanded strongly with building of the full scope training simulator to the Loviisa plant. The important milestones has been, for example the testing of the Critical Function Monitoring System, a concept developed by Combustion Eng. Inc., in Loviisa training simulator 1982, the replacing of the process and simulator computers in Loviisa 1989, and 1990 and the presenting the use of the computer based procedures in training of operators 1993. With developing of automation and procedures it is possible to minimize the probability of human error. However, it is not possible totally eliminate the risks caused by human errors. (orig.)

  6. Optimal control strategy to reduce the temporal wavefront error in AO systems

    NARCIS (Netherlands)

    Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.

    2004-01-01

    An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of

  7. Designing single phase Current-Programmed-Controlled rectifiers by harmonic currents

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Blaabjerg, Frede

    2002-01-01

    The grid current harmonics of a Current-Programmed-Controlled (CPC) pfc rectifier strongly depends on the choice of switching frequency and switching inductance. This paper describes a new simple and vert fast method to calculate the grid current of a CPC controlled pfc converter. The method...

  8. The effect of speaking rate on serial-order sound-level errors in normal healthy controls and persons with aphasia.

    Science.gov (United States)

    Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I

    Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions

  9. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  10. A fast transient response low dropout regulator with current control methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ma Zhuo; Guo Yang; Duan Zhikui; Xie Lunguo; Chen Jihua; Yu Jinshan, E-mail: guoyang@nudt.edu.cn [School of Computer, National University of Defense Technology, Changsha 410073 (China)

    2011-08-15

    A transient performance optimized CCL-LDO regulator is proposed. In the CCL-LDO, the control method of the charge pump phase-locked loop is adopted. A current control loop has the feedback signal and reference current to be compared, and then a loop filter generates the gate voltage of the power MOSFET by integrating the error current. The CCL-LDO has the optimized damping coefficient and natural resonant frequency, while its output voltage can be sub-1-V and is not restricted by the reference voltage. With a 1 {mu}F decoupling capacitor, the experimental results based on a 0.13 {mu}m CMOS process show that the output voltage is 1.0 V; when the workload changes from 100 {mu}A to 100 mA transiently, the stable dropout is 4.25 mV, the settling time is 8.2 {mu}s and the undershoot is 5.11 mV; when the workload changes from 100 mA to 100 {mu}A transiently, the stable dropout is 4.25 mV, the settling time is 23.3 {mu}s and the overshoot is 6.21 mV. The PSRR value is more than -95 dB. Most of the attributes of the CCL-LDO are improved rapidly with a FOM value of 0.0097.

  11. A fast transient response low dropout regulator with current control methodology

    International Nuclear Information System (INIS)

    Ma Zhuo; Guo Yang; Duan Zhikui; Xie Lunguo; Chen Jihua; Yu Jinshan

    2011-01-01

    A transient performance optimized CCL-LDO regulator is proposed. In the CCL-LDO, the control method of the charge pump phase-locked loop is adopted. A current control loop has the feedback signal and reference current to be compared, and then a loop filter generates the gate voltage of the power MOSFET by integrating the error current. The CCL-LDO has the optimized damping coefficient and natural resonant frequency, while its output voltage can be sub-1-V and is not restricted by the reference voltage. With a 1 μF decoupling capacitor, the experimental results based on a 0.13 μm CMOS process show that the output voltage is 1.0 V; when the workload changes from 100 μA to 100 mA transiently, the stable dropout is 4.25 mV, the settling time is 8.2 μs and the undershoot is 5.11 mV; when the workload changes from 100 mA to 100 μA transiently, the stable dropout is 4.25 mV, the settling time is 23.3 μs and the overshoot is 6.21 mV. The PSRR value is more than -95 dB. Most of the attributes of the CCL-LDO are improved rapidly with a FOM value of 0.0097.

  12. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error.

    Science.gov (United States)

    Verduzco-Flores, Sergio O; O'Reilly, Randall C

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.

  13. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error

    Directory of Open Access Journals (Sweden)

    Sergio Oscar Verduzco-Flores

    2015-03-01

    Full Text Available We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.

  14. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  15. Errors in patient specimen collection: application of statistical process control.

    Science.gov (United States)

    Dzik, Walter Sunny; Beckman, Neil; Selleng, Kathleen; Heddle, Nancy; Szczepiorkowski, Zbigniew; Wendel, Silvano; Murphy, Michael

    2008-10-01

    Errors in the collection and labeling of blood samples for pretransfusion testing increase the risk of transfusion-associated patient morbidity and mortality. Statistical process control (SPC) is a recognized method to monitor the performance of a critical process. An easy-to-use SPC method was tested to determine its feasibility as a tool for monitoring quality in transfusion medicine. SPC control charts were adapted to a spreadsheet presentation. Data tabulating the frequency of mislabeled and miscollected blood samples from 10 hospitals in five countries from 2004 to 2006 were used to demonstrate the method. Control charts were produced to monitor process stability. The participating hospitals found the SPC spreadsheet very suitable to monitor the performance of the sample labeling and collection and applied SPC charts to suit their specific needs. One hospital monitored subcategories of sample error in detail. A large hospital monitored the number of wrong-blood-in-tube (WBIT) events. Four smaller-sized facilities, each following the same policy for sample collection, combined their data on WBIT samples into a single control chart. One hospital used the control chart to monitor the effect of an educational intervention. A simple SPC method is described that can monitor the process of sample collection and labeling in any hospital. SPC could be applied to other critical steps in the transfusion processes as a tool for biovigilance and could be used to develop regional or national performance standards for pretransfusion sample collection. A link is provided to download the spreadsheet for free.

  16. Performance of an Error Control System with Turbo Codes in Powerline Communications

    Directory of Open Access Journals (Sweden)

    Balbuena-Campuzano Carlos Alberto

    2014-07-01

    Full Text Available This paper reports the performance of turbo codes as an error control technique in PLC (Powerline Communications data transmissions. For this system, computer simulations are used for modeling data networks based on the model classified in technical literature as indoor, and uses OFDM (Orthogonal Frequency Division Multiplexing as a modulation technique. Taking into account the channel, modulation and turbo codes, we propose a methodology to minimize the bit error rate (BER, as a function of the average received signal noise ratio (SNR.

  17. Value-based HR practices, i-deals and clinical error control with CSR as a moderator.

    Science.gov (United States)

    Luu, Tuan; Rowley, Chris; Siengthai, Sununta; Thanh Thao, Vo

    2017-05-08

    Purpose Notwithstanding the rising magnitude of system factors in patient safety improvement, "human factors" such as idiosyncratic deals (i-deals) which also contribute to the adjustment of system deficiencies should not be neglected. The purpose of this paper is to investigate the role of value-based HR practices in catalyzing i-deals, which then influence clinical error control. The research further examines the moderating role of corporate social responsibility (CSR) on the effect of value-based HR practices on i-deals. Design/methodology/approach The data were collected from middle-level clinicians from hospitals in the Vietnam context. Findings The research results confirmed the effect chain from value-based HR practices through i-deals to clinical error control with CSR as a moderator. Originality/value The HRM literature is expanded through enlisting i-deals and clinical error control as the outcomes of HR practices.

  18. Error-information in tutorial documentation: Supporting users' errors to facilitate initial skill learning

    NARCIS (Netherlands)

    Lazonder, Adrianus W.; van der Meij, Hans

    1995-01-01

    Novice users make many errors when they first try to learn how to work with a computer program like a spreadsheet or wordprocessor. No matter how user-friendly the software or the training manual, errors can and will occur. The current view on errors is that they can be helpful or disruptive,

  19. Cognitive Impairments in Occupational Burnout – Error Processing and Its Indices of Reactive and Proactive Control

    Directory of Open Access Journals (Sweden)

    Krystyna Golonka

    2017-05-01

    Full Text Available The presented study refers to cognitive aspects of burnout as the effects of long-term work-related stress. The purpose of the study was to investigate electrophysiological correlates of burnout to explain the mechanisms of the core burnout symptoms: exhaustion and depersonalization/cynicism. The analyzed error-related electrophysiological markers shed light on impaired cognitive mechanisms and the specific changes in information-processing in burnout. In the EEG study design (N = 80, two components of error-related potential (ERP, error-related negativity (ERN, and error positivity (Pe, were analyzed. In the non-clinical burnout group (N = 40, a significant increase in ERN amplitude and a decrease in Pe amplitude were observed compared to controls (N = 40. Enhanced error detection, indexed by increased ERN amplitude, and diminished response monitoring, indexed by decreased Pe amplitude, reveal emerging cognitive problems in the non-clinical burnout group. Cognitive impairments in burnout subjects relate to both reactive and unconscious (ERN and proactive and conscious (Pe aspects of error processing. The results indicate a stronger ‘reactive control mode’ that can deplete resources for proactive control and the ability to actively maintain goals. The analysis refers to error processing and specific task demands, thus should not be extended to cognitive processes in general. The characteristics of ERP patterns in burnout resemble psychophysiological indexes of anxiety (increased ERN and depressive symptoms (decreased Pe, showing to some extent an overlapping effect of burnout and related symptoms and disorders. The results support the scarce existing data on the psychobiological nature of burnout, while extending and specifying its cognitive characteristics.

  20. Post-error expression of speed and force while performing a simple, monotonous task with a haptic pen

    NARCIS (Netherlands)

    Bruns, M.; Keyson, D.V.; Jabon, M.E.; Hummels, C.C.M.; Hekkert, P.P.M.; Bailenson, J.N.

    2013-01-01

    Control errors often occur in repetitive and monotonous tasks, such as manual assembly tasks. Much research has been done in the area of human error identification; however, most existing systems focus solely on the prediction of errors, not on increasing worker accuracy. The current study examines

  1. Control strategies for active noise barriers using near-field error sensing

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper active noise control strategies for noise barriers are presented which are based on the use of sensors near the noise barrier. Virtual error signals are derived from these near-field sensor signals such that reductions of the far-field sound pressure are obtained with the active

  2. Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control.

    Science.gov (United States)

    Mi, Xiaotao; Yu, Haili; Yu, Hongzhu; Zhang, Shanwen; Li, Xiaotian; Yao, Xuefeng; Qi, Xiangdong; Bayinhedhig; Wan, Qiuhua

    2017-07-20

    Groove error is one of the most important factors affecting grating quality and spectral performance. To reduce groove error, we propose a new ruling-tool carriage system based on aerostatic guideways. We design a new blank carriage system with double piezoelectric actuators. We also propose a completely closed-loop servo-control system with a new optical measurement system that can control the position of the diamond relative to the blank. To evaluate our proposed methods, we produced several gratings, including an echelle grating with 79  grooves/mm, a grating with 768  grooves/mm, and a high-density grating with 6000  grooves/mm. The results show that our methods effectively reduce groove error in ruled gratings.

  3. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  4. A Novel Sensorless Control Strategy for Brushless Direct Current Motor Based on the Estimation of Line Back Electro-Motive Force

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-09-01

    Full Text Available In this paper, a novel sensorless control strategy based on the estimation of line back electro-motive force (BEMF is proposed. According to the phase relationship between the ideal commutation points of the brushless direct current motor (BLDCM and the zero-crossing points (ZCPs of the line BEMF, the calculation formula of line BEMF is simplified properly and the commutation rule for different positions of the rotor is presented. The estimation error of line BEMF caused by the freewheeling current of silent phase is analyzed, and the solution is given. With the phase shift of the low-pass filter considered, a compensation method using “60°-α” and “120°-α” is studied in this paper to eliminate the error. Finally, the simulation and experimental results show that the rotor-position-detection error is reduced effectively and the motor driven by the accurate commutation signal can work well at low and high speed.

  5. Current control of PMSM based on maximum torque control reference frame

    Science.gov (United States)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  6. Statistical method for quality control in presence of measurement errors

    International Nuclear Information System (INIS)

    Lauer-Peccoud, M.R.

    1998-01-01

    In a quality inspection of a set of items where the measurements of values of a quality characteristic of the item are contaminated by random errors, one can take wrong decisions which are damageable to the quality. So of is important to control the risks in such a way that a final quality level is insured. We consider that an item is defective or not if the value G of its quality characteristic is larger or smaller than a given level g. We assume that, due to the lack of precision of the measurement instrument, the measurement M of this characteristic is expressed by ∫ (G) + ξ where f is an increasing function such that the value ∫ (g 0 ) is known and ξ is a random error with mean zero and given variance. First we study the problem of the determination of a critical measure m such that a specified quality target is reached after the classification of a lot of items where each item is accepted or rejected depending on whether its measurement is smaller or greater than m. Then we analyse the problem of testing the global quality of a lot from the measurements for a example of items taken from the lot. For these two kinds of problems and for different quality targets, we propose solutions emphasizing on the case where the function ∫ is linear and the error ξ and the variable G are Gaussian. Simulation results allow to appreciate the efficiency of the different considered control procedures and their robustness with respect to deviations from the assumptions used in the theoretical derivations. (author)

  7. Towards automatic global error control: Computable weak error expansion for the tau-leap method

    KAUST Repository

    Karlsson, Peer Jesper; Tempone, Raul

    2011-01-01

    This work develops novel error expansions with computable leading order terms for the global weak error in the tau-leap discretization of pure jump processes arising in kinetic Monte Carlo models. Accurate computable a posteriori error approximations are the basis for adaptive algorithms, a fundamental tool for numerical simulation of both deterministic and stochastic dynamical systems. These pure jump processes are simulated either by the tau-leap method, or by exact simulation, also referred to as dynamic Monte Carlo, the Gillespie Algorithm or the Stochastic Simulation Slgorithm. Two types of estimates are presented: an a priori estimate for the relative error that gives a comparison between the work for the two methods depending on the propensity regime, and an a posteriori estimate with computable leading order term. © de Gruyter 2011.

  8. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  9. Using Feedback Error Learning for Control of Electro Hydraulic Servo System by Laguerre

    Directory of Open Access Journals (Sweden)

    Amir Reza Zare Bidaki

    2014-01-01

    Full Text Available In this paper, a new Laguerre controller is proposed to control the electro hydraulic servo system. The proposed controller uses feedback error learning method and leads to significantly improve performance in terms of settling time and amplitude of control signal rather than other controllers. All derived results are validated by simulation of nonlinear mathematical model of the system. The simulation results show the advantages of the proposed method for improved control in terms of both settling time and amplitude of control signal.

  10. Correcting errors in a quantum gate with pushed ions via optimal control

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Sklarz, Shlomo; Tannor, David

    2010-01-01

    We analyze in detail the so-called pushing gate for trapped ions, introducing a time-dependent harmonic approximation for the external motion. We show how to extract the average fidelity for the gate from the resulting semiclassical simulations. We characterize and quantify precisely all types...... of errors coming from the quantum dynamics and reveal that slight nonlinearities in the ion-pushing force can have a dramatic effect on the adiabaticity of gate operation. By means of quantum optimal control techniques, we show how to suppress each of the resulting gate errors in order to reach a high...

  11. Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.

    Science.gov (United States)

    2002-07-01

    Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...

  12. Error analysis of acceleration control loops of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1991-01-01

    For beam control during acceleration, it is conventional to derive the frequency from an external reference, be it a field marker or an external oscillator, to provide phase and radius feedback loops to ensure the phase stability, radial position and emittance integrity of the beam. The open and closed loop behaviors of both feedback control and their response under the possible frequency, phase and radius errors are derived from fundamental principles and equations. The stability of the loops is investigated under a wide range of variations of the gain and time delays. Actual system performance of the AGS Booster is analyzed and compared to commissioning experiences. Such analysis is useful for setting design criteria and tolerances for new proton synchrotrons. 4 refs., 13 figs

  13. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  14. Error message recording and reporting in the SLC control system

    International Nuclear Information System (INIS)

    Spencer, N.; Bogart, J.; Phinney, N.; Thompson, K.

    1985-01-01

    Error or information messages that are signaled by control software either in the VAX host computer or the local microprocessor clusters are handled by a dedicated VAX process (PARANOIA). Messages are recorded on disk for further analysis and displayed at the appropriate console. Another VAX process (ERRLOG) can be used to sort, list and histogram various categories of messages. The functions performed by these processes and the algorithms used are discussed

  15. Error message recording and reporting in the SLC control system

    International Nuclear Information System (INIS)

    Spencer, N.; Bogart, J.; Phinney, N.; Thompson, K.

    1985-04-01

    Error or information messages that are signaled by control software either in the VAX host computer or the local microprocessor clusters are handled by a dedicated VAX process (PARANOIA). Messages are recorded on disk for further analysis and displayed at the appropriate console. Another VAX process (ERRLOG) can be used to sort, list and histogram various categories of messages. The functions performed by these processes and the algorithms used are discussed

  16. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  17. The current approach to human error and blame in the NHS.

    Science.gov (United States)

    Ottewill, Melanie

    There is a large body of research to suggest that serious errors are widespread throughout medicine. The traditional response to these adverse events has been to adopt a 'person approach' - blaming the individual seen as 'responsible'. The culture of medicine is highly complicit in this response. Such an approach results in enormous personal costs to the individuals concerned and does little to address the root causes of errors and thus prevent their recurrence. Other industries, such as aviation, where safety is a paramount concern and which have similar structures to the medical profession, have, over the past decade or so, adopted a 'systems' approach to error, recognizing that human error is ubiquitous and inevitable and that systems need to be developed with this in mind. This approach has been highly successful, but has necessitated, first and foremost, a cultural shift. It is in the best interests of patients, and medical professionals alike, that such a shift is embraced in the NHS.

  18. An empirical study on the human error recovery failure probability when using soft controls in NPP advanced MCRs

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Jung, Wondea; Seong, Poong Hyun

    2014-01-01

    Highlights: • Many researchers have tried to understand human recovery process or step. • Modeling human recovery process is not sufficient to be applied to HRA. • The operation environment of MCRs in NPPs has changed by adopting new HSIs. • Recovery failure probability in a soft control operation environment is investigated. • Recovery failure probability here would be important evidence for expert judgment. - Abstract: It is well known that probabilistic safety assessments (PSAs) today consider not just hardware failures and environmental events that can impact upon risk, but also human error contributions. Consequently, the focus on reliability and performance management has been on the prevention of human errors and failures rather than the recovery of human errors. However, the recovery of human errors is as important as the prevention of human errors and failures for the safe operation of nuclear power plants (NPPs). For this reason, many researchers have tried to find a human recovery process or step. However, modeling the human recovery process is not sufficient enough to be applied to human reliability analysis (HRA), which requires human error and recovery probabilities. In this study, therefore, human error recovery failure probabilities based on predefined human error modes were investigated by conducting experiments in the operation mockup of advanced/digital main control rooms (MCRs) in NPPs. To this end, 48 subjects majoring in nuclear engineering participated in the experiments. In the experiments, using the developed accident scenario based on tasks from the standard post trip action (SPTA), the steam generator tube rupture (SGTR), and predominant soft control tasks, which are derived from the loss of coolant accident (LOCA) and the excess steam demand event (ESDE), all error detection and recovery data based on human error modes were checked with the performance sheet and the statistical analysis of error recovery/detection was then

  19. Scalable error correction in distributed ion trap computers

    International Nuclear Information System (INIS)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-01-01

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment

  20. Response Accuracy and Tracking Errors with Decentralized Control of Commercial V2G Chargers

    DEFF Research Database (Denmark)

    Ziras, Charalampos; Zecchino, Antonio; Marinelli, Mattia

    2018-01-01

    There is a growing interest in using the flexibility of electric vehicles (EVs) to provide power system services, such as fast frequency regulation. Decentralized control is advocated due to its reliability and much lower communication requirements. A commonly used linear droop characteristic...... results in low average efficiencies, whereas controllers with 3 modes (idle, fully charging, fully discharging) result in large reserve errors when the aggregation size is small. To address these issues, we propose a stochastic, decentralized controller with tunable response granularity which minimizes...... switching actions. The EV fleet operator can optimize the chargers’ performance according to the fleet size, the service error requirements, the average switching rate and the average efficiency. We use real efficiency characteristics from EVs and chargers providing fast frequency regulation and we show...

  1. Tracking error constrained robust adaptive neural prescribed performance control for flexible hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-02-01

    Full Text Available A robust adaptive neural control scheme based on a back-stepping technique is developed for the longitudinal dynamics of a flexible hypersonic flight vehicle, which is able to ensure the state tracking error being confined in the prescribed bounds, in spite of the existing model uncertainties and actuator constraints. Minimal learning parameter technique–based neural networks are used to estimate the model uncertainties; thus, the amount of online updated parameters is largely lessened, and the prior information of the aerodynamic parameters is dispensable. With the utilization of an assistant compensation system, the problem of actuator constraint is overcome. By combining the prescribed performance function and sliding mode differentiator into the neural back-stepping control design procedure, a composite state tracking error constrained adaptive neural control approach is presented, and a new type of adaptive law is constructed. As compared with other adaptive neural control designs for hypersonic flight vehicle, the proposed composite control scheme exhibits not only low-computation property but also strong robustness. Finally, two comparative simulations are performed to demonstrate the robustness of this neural prescribed performance controller.

  2. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  3. A parallel row-based algorithm for standard cell placement with integrated error control

    Science.gov (United States)

    Sargent, Jeff S.; Banerjee, Prith

    1989-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cell-placement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control.

  4. An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Peer Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system

  5. Irregular analytical errors in diagnostic testing - a novel concept.

    Science.gov (United States)

    Vogeser, Michael; Seger, Christoph

    2018-02-23

    In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC

  6. Correcting errors in a quantum gate with pushed ions via optimal control

    International Nuclear Information System (INIS)

    Poulsen, Uffe V.; Sklarz, Shlomo; Tannor, David; Calarco, Tommaso

    2010-01-01

    We analyze in detail the so-called pushing gate for trapped ions, introducing a time-dependent harmonic approximation for the external motion. We show how to extract the average fidelity for the gate from the resulting semiclassical simulations. We characterize and quantify precisely all types of errors coming from the quantum dynamics and reveal that slight nonlinearities in the ion-pushing force can have a dramatic effect on the adiabaticity of gate operation. By means of quantum optimal control techniques, we show how to suppress each of the resulting gate errors in order to reach a high fidelity compatible with scalable fault-tolerant quantum computing.

  7. Electrolytic tritium enrichment: Current control using current-stabilised Kepco Type JQE modular supplies

    International Nuclear Information System (INIS)

    1976-01-01

    This note describes the principles, design and operation of a current-stabilised power source for tritium electrolytic enrichment cells. A Kepoo Tpe JE, modular supply is current-stabilised by controlled current feedback. The accompanying control unit incorporates a temperature sensor or the cooling unit of the electrolysis cells, a line monitor to register current shut-off due to temporary power failure, a time-of-day clock, a current control potentiometer and a digital voltmeter providing current reading to an accuracy of 0.01A

  8. Electrolytic tritium enrichment: Current control using current-stabilised Kepco Type JQE modular supplies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-12

    This note describes the principles, design and operation of a current-stabilised power source for tritium electrolytic enrichment cells. A Kepoo Tpe JE, modular supply is current-stabilised by controlled current feedback. The accompanying control unit incorporates a temperature sensor or the cooling unit of the electrolysis cells, a line monitor to register current shut-off due to temporary power failure, a time-of-day clock, a current control potentiometer and a digital voltmeter providing current reading to an accuracy of 0.01A.

  9. Design of power controller in CDMA system with power and SIR error minimization

    Institute of Scientific and Technical Information of China (English)

    Shulan KONG; Huanshui ZHANG; Zhaosheng ZHANG; Hongxia WANG

    2007-01-01

    In this paper, an uplink power control problem is considered for code division multiple access (CDMA) systems. A distributed algorithm is proposed based on linear quadratic optimal control theory. The proposed scheme minimizes the sum of the power and the error of signal-to-interference ratio (SIR). A power controller is designed by constructing an optimization problem of a stochastic linear quadratic type in Krein space and solving a Kalman filter problem.

  10. Awareness of technology-induced errors and processes for identifying and preventing such errors.

    Science.gov (United States)

    Bellwood, Paule; Borycki, Elizabeth M; Kushniruk, Andre W

    2015-01-01

    There is a need to determine if organizations working with health information technology are aware of technology-induced errors and how they are addressing and preventing them. The purpose of this study was to: a) determine the degree of technology-induced error awareness in various Canadian healthcare organizations, and b) identify those processes and procedures that are currently in place to help address, manage, and prevent technology-induced errors. We identified a lack of technology-induced error awareness among participants. Participants identified there was a lack of well-defined procedures in place for reporting technology-induced errors, addressing them when they arise, and preventing them.

  11. Fast and error-resilient coherent control in an atomic vapor

    Science.gov (United States)

    He, Yizun; Wang, Mengbing; Zhao, Jian; Qiu, Liyang; Wang, Yuzhuo; Fang, Yami; Zhao, Kaifeng; Wu, Saijun

    2017-04-01

    Nanosecond chirped pulses from an optical arbitrary waveform generator is applied to both invert and coherently split the D1 line population of potassium vapor within a laser focal volume of 2X105 μ m3. The inversion fidelity of f>96%, mainly limited by spontaneous emission during the nanosecond pulse, is inferred from both probe light transmission and superfluorescence emission. The nearly perfect inversion is uniformly achieved for laser intensity varying over an order of magnitude, and is tolerant to detuning error of more than 1000 times the D1 transition linewidth. We further demonstrate enhanced intensity error resilience with multiple chirped pulses and ``universal composite pulses''. This fast and robust coherent control technique should find wide applications in the field of quantum optics, laser cooling, and atom interferometry. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11574053.

  12. Findings from analysing and quantifying human error using current methods

    International Nuclear Information System (INIS)

    Dang, V.N.; Reer, B.

    1999-01-01

    In human reliability analysis (HRA), the scarcity of data means that, at best, judgement must be applied to transfer to the domain of the analysis what data are available for similar tasks. In particular for the quantification of tasks involving decisions, the analyst has to choose among quantification approaches that all depend to a significant degree on expert judgement. The use of expert judgement can be made more reliable by eliciting relative judgements rather than absolute judgements. These approaches, which are based on multiple criterion decision theory, focus on ranking the tasks to be analysed by difficulty. While these approaches remedy at least partially the poor performance of experts in the estimation of probabilities, they nevertheless require the calibration of the relative scale on which the actions are ranked in order to obtain the probabilities of interest. This paper presents some results from a comparison of some current HRA methods performed in the frame of a study of SLIM calibration options. The HRA quantification methods THERP, HEART, and INTENT were applied to derive calibration human error probabilities for two groups of operator actions. (author)

  13. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    Science.gov (United States)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  14. Patterning control strategies for minimum edge placement error in logic devices

    Science.gov (United States)

    Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim

    2017-03-01

    In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.

  15. Skills, rules and knowledge in aircraft maintenance: errors in context

    Science.gov (United States)

    Hobbs, Alan; Williamson, Ann

    2002-01-01

    Automatic or skill-based behaviour is generally considered to be less prone to error than behaviour directed by conscious control. However, researchers who have applied Rasmussen's skill-rule-knowledge human error framework to accidents and incidents have sometimes found that skill-based errors appear in significant numbers. It is proposed that this is largely a reflection of the opportunities for error which workplaces present and does not indicate that skill-based behaviour is intrinsically unreliable. In the current study, 99 errors reported by 72 aircraft mechanics were examined in the light of a task analysis based on observations of the work of 25 aircraft mechanics. The task analysis identified the opportunities for error presented at various stages of maintenance work packages and by the job as a whole. Once the frequency of each error type was normalized in terms of the opportunities for error, it became apparent that skill-based performance is more reliable than rule-based performance, which is in turn more reliable than knowledge-based performance. The results reinforce the belief that industrial safety interventions designed to reduce errors would best be directed at those aspects of jobs that involve rule- and knowledge-based performance.

  16. Compensation for positioning error of industrial robot for flexible vision measuring system

    Science.gov (United States)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  17. Computer Simulation Tests of Feedback Error Learning Controller with IDM and ISM for Functional Electrical Stimulation in Wrist Joint Control

    OpenAIRE

    Watanabe, Takashi; Sugi, Yoshihiro

    2010-01-01

    Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES) system using powered orthotic devices. In this paper, Feedback Error Learning (FEL) controller for FES (FEL-FES controller) was examined using an inverse statics model (ISM) with an inverse dynamics model (IDM) to realize a feedforward FES controller. For FES application, the ISM was tested in learning off line using training data obtained by PID control of very slow movements. Computer simulation tests ...

  18. Emergency operation procedure navigation to avoid commission errors

    International Nuclear Information System (INIS)

    Gofuku, Akio; Ito, Koji

    2004-01-01

    New types of operation control system equipped with a large screen and CRT-based operation panels have been installed in newly constructed nuclear power plants. The operators can share important information of plant conditions by the large screen. The operation control system can know the operations by operators through the computers connected to the operation panels. The software switches placed in the CRT-based operation panels have a problem such that operators may make an error to manipulate an irrelevant software switch with their current operation. This study develops an operation procedure navigation technique to avoid this kind of commission errors. The system lies between CRT-based operation panels and plant control systems and checks an operation by operators if it follows the operation procedure of operation manuals. When the operation is a right one, the operation is executed as if the operation command is directly transmitted to control systems. If the operation does not follow the operation procedure, the system warns the commission error to operators. This paper describes the operation navigation technique, format of base operation model, and a proto-type operation navigation system for a three loop pressurized water reactor plant. The validity of the proto-type system is demonstrated by the operation procedure navigation for a steam generator tube rupture accident. (author)

  19. Measurement error in longitudinal film badge data

    International Nuclear Information System (INIS)

    Marsh, J.L.

    2002-04-01

    The classical measurement error model is that of a simple linear regression with unobservable variables. Information about the covariates is available only through error-prone measurements, usually with an additive structure. Ignoring errors has been shown to result in biased regression coefficients, reduced power of hypothesis tests and increased variability of parameter estimates. Radiation is known to be a causal factor for certain types of leukaemia. This link is mainly substantiated by the Atomic Bomb Survivor study, the Ankylosing Spondylitis Patients study, and studies of various other patients irradiated for therapeutic purposes. The carcinogenic relationship is believed to be a linear or quadratic function of dose but the risk estimates differ widely for the different studies. Previous cohort studies of the Sellafield workforce have used the cumulative annual exposure data for their risk estimates. The current 1:4 matched case-control study also uses the individual worker's film badge data, the majority of which has been unavailable in computerised form. The results from the 1:4 matched (on dates of birth and employment, sex and industrial status) case-control study are compared and contrasted with those for a 1:4 nested (within the worker cohort and matched on the same factors) case-control study using annual doses. The data consist of 186 cases and 744 controls from the work forces of four BNFL sites: Springfields, Sellafield, Capenhurst and Chapelcross. Initial logistic regressions turned up some surprising contradictory results which led to a re-sampling of Sellafield mortality controls without the date of employment matching factor. It is suggested that over matching is the cause of the contradictory results. Comparisons of the two measurements of radiation exposure suggest a strongly linear relationship with non-Normal errors. A method has been developed using the technique of Regression Calibration to deal with these in a case-control study context

  20. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration.

    Science.gov (United States)

    Sanderson, Eleanor; Macdonald-Wallis, Corrie; Davey Smith, George

    2018-04-01

    Negative control exposure studies are increasingly being used in epidemiological studies to strengthen causal inference regarding an exposure-outcome association when unobserved confounding is thought to be present. Negative control exposure studies contrast the magnitude of association of the negative control, which has no causal effect on the outcome but is associated with the unmeasured confounders in the same way as the exposure, with the magnitude of the association of the exposure with the outcome. A markedly larger effect of the exposure on the outcome than the negative control on the outcome strengthens inference that the exposure has a causal effect on the outcome. We investigate the effect of measurement error in the exposure and negative control variables on the results obtained from a negative control exposure study. We do this in models with continuous and binary exposure and negative control variables using analysis of the bias of the estimated coefficients and Monte Carlo simulations. Our results show that measurement error in either the exposure or negative control variables can bias the estimated results from the negative control exposure study. Measurement error is common in the variables used in epidemiological studies; these results show that negative control exposure studies cannot be used to precisely determine the size of the effect of the exposure variable, or adequately adjust for unobserved confounding; however, they can be used as part of a body of evidence to aid inference as to whether a causal effect of the exposure on the outcome is present.

  1. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    Science.gov (United States)

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  2. Analysis of Human Error Types and Performance Shaping Factors in the Next Generation Main Control Room

    International Nuclear Information System (INIS)

    Sin, Y. C.; Jung, Y. S.; Kim, K. H.; Kim, J. H.

    2008-04-01

    Main control room of nuclear power plants has been computerized and digitalized in new and modernized plants, as information and digital technologies make great progresses and become mature. Survey on human factors engineering issues in advanced MCRs: Model-based approach, Literature survey-based approach. Analysis of human error types and performance shaping factors is analysis of three human errors. The results of project can be used for task analysis, evaluation of human error probabilities, and analysis of performance shaping factors in the HRA analysis

  3. Quality controls in integrative approaches to detect errors and inconsistencies in biological databases

    Directory of Open Access Journals (Sweden)

    Ghisalberti Giorgio

    2010-12-01

    Full Text Available Numerous biomolecular data are available, but they are scattered in many databases and only some of them are curated by experts. Most available data are computationally derived and include errors and inconsistencies. Effective use of available data in order to derive new knowledge hence requires data integration and quality improvement. Many approaches for data integration have been proposed. Data warehousing seams to be the most adequate when comprehensive analysis of integrated data is required. This makes it the most suitable also to implement comprehensive quality controls on integrated data. We previously developed GFINDer (http://www.bioinformatics.polimi.it/GFINDer/, a web system that supports scientists in effectively using available information. It allows comprehensive statistical analysis and mining of functional and phenotypic annotations of gene lists, such as those identified by high-throughput biomolecular experiments. GFINDer backend is composed of a multi-organism genomic and proteomic data warehouse (GPDW. Within the GPDW, several controlled terminologies and ontologies, which describe gene and gene product related biomolecular processes, functions and phenotypes, are imported and integrated, together with their associations with genes and proteins of several organisms. In order to ease maintaining updated the GPDW and to ensure the best possible quality of data integrated in subsequent updating of the data warehouse, we developed several automatic procedures. Within them, we implemented numerous data quality control techniques to test the integrated data for a variety of possible errors and inconsistencies. Among other features, the implemented controls check data structure and completeness, ontological data consistency, ID format and evolution, unexpected data quantification values, and consistency of data from single and multiple sources. We use the implemented controls to analyze the quality of data available from several

  4. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  5. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    Science.gov (United States)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  6. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    Science.gov (United States)

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  7. Generalized perturbation theory error control within PWR core-loading pattern optimization

    International Nuclear Information System (INIS)

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  8. Current control system for superconducting coils of LHD

    International Nuclear Information System (INIS)

    Chikaraishi, H.; Yamada, S.; Inoue, T.

    1996-01-01

    This paper introduce a coil current control system of the LHD. The main part of this system consists of two VME based real time computers and a risc based work station which are connected by optical fiber link. In this computer system, a coil current controller for steady state operation of LHD which based on a state variable control theory is installed. Also advanced current control scheme, which are now developing for dynamic current control in phase II operation of LHD, are introduced. (author)

  9. Detecting errors and anomalies in computerized materials control and accountability databases

    International Nuclear Information System (INIS)

    Whiteson, R.; Hench, K.; Yarbro, T.; Baumgart, C.

    1998-01-01

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines these large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results

  10. A preliminary taxonomy of medical errors in family practice.

    Science.gov (United States)

    Dovey, S M; Meyers, D S; Phillips, R L; Green, L A; Fryer, G E; Galliher, J M; Kappus, J; Grob, P

    2002-09-01

    To develop a preliminary taxonomy of primary care medical errors. Qualitative analysis to identify categories of error reported during a randomized controlled trial of computer and paper reporting methods. The National Network for Family Practice and Primary Care Research. Family physicians. Medical error category, context, and consequence. Forty two physicians made 344 reports: 284 (82.6%) arose from healthcare systems dysfunction; 46 (13.4%) were errors due to gaps in knowledge or skills; and 14 (4.1%) were reports of adverse events, not errors. The main subcategories were: administrative failure (102; 30.9% of errors), investigation failures (82; 24.8%), treatment delivery lapses (76; 23.0%), miscommunication (19; 5.8%), payment systems problems (4; 1.2%), error in the execution of a clinical task (19; 5.8%), wrong treatment decision (14; 4.2%), and wrong diagnosis (13; 3.9%). Most reports were of errors that were recognized and occurred in reporters' practices. Affected patients ranged in age from 8 months to 100 years, were of both sexes, and represented all major US ethnic groups. Almost half the reports were of events which had adverse consequences. Ten errors resulted in patients being admitted to hospital and one patient died. This medical error taxonomy, developed from self-reports of errors observed by family physicians during their routine clinical practice, emphasizes problems in healthcare processes and acknowledges medical errors arising from shortfalls in clinical knowledge and skills. Patient safety strategies with most effect in primary care settings need to be broader than the current focus on medication errors.

  11. Error Control Techniques for Efficient Multicast Streaming in UMTS Networks: Proposals andPerformance Evaluation

    Directory of Open Access Journals (Sweden)

    Michele Rossi

    2004-06-01

    Full Text Available In this paper we introduce techniques for efficient multicast video streaming in UMTS networks where a video content has to be conveyed to multiple users in the same cell. Efficient multicast data delivery in UMTS is still an open issue. In particular, suitable solutions have to be found to cope with wireless channel errors, while maintaining both an acceptable channel utilization and a controlled delivery delay over the wireless link between the serving base station and the mobile terminals. Here, we first highlight that standard solutions such as unequal error protection (UEP of the video flow are ineffective in the UMTS systems due to its inherent large feedback delay at the link layer (Radio Link Control, RLC. Subsequently, we propose a local approach to solve errors directly at the UMTS link layer while keeping a reasonably high channel efficiency and saving, as much as possible, system resources. The solution that we propose in this paper is based on the usage of the common channel to serve all the interested users in a cell. In this way, we can save resources with respect to the case where multiple dedicated channels are allocated for every user. In addition to that, we present a hybrid ARQ (HARQ proactive protocol that, at the cost of some redundancy (added to the link layer flow, is able to consistently improve the channel efficiency with respect to the plain ARQ case, by therefore making the use of a single common channel for multicast data delivery feasible. In the last part of the paper we give some hints for future research, by envisioning the usage of the aforementioned error control protocols with suitably encoded video streams.

  12. Design of an error-free nondestructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.; Steward, W.E.

    1987-01-01

    An automated, at-line nondestructive assay (NDA) laboratory is installed in facilities recently constructed at the Savannah River Plant. The laboratory will enhance nuclear materials accounting in new plutonium scrap and waste recovery facilities. The advantages of at-line NDA operations will not be realized if results are clouded by errors in analytical procedures, sample identification, record keeping, or techniques for extracting samples from process streams. Minimization of such errors has been a primary design objective for the new facility. Concepts for achieving that objective include mechanizing the administrative tasks of scheduling activities in the laboratory, identifying samples, recording and storing assay data, and transmitting results information to process control and materials accounting functions. These concepts have been implemented in an analytical computer system that is programmed to avoid the obvious sources of error encountered in laboratory operations. The laboratory computer exchanges information with process control and materials accounting computers, transmitting results information and obtaining process data and accounting information as required to guide process operations and maintain current records of materials flow through the new facility

  13. Blood transfusion sampling and a greater role for error recovery.

    Science.gov (United States)

    Oldham, Jane

    Patient identification errors in pre-transfusion blood sampling ('wrong blood in tube') are a persistent area of risk. These errors can potentially result in life-threatening complications. Current measures to address root causes of incidents and near misses have not resolved this problem and there is a need to look afresh at this issue. PROJECT PURPOSE: This narrative review of the literature is part of a wider system-improvement project designed to explore and seek a better understanding of the factors that contribute to transfusion sampling error as a prerequisite to examining current and potential approaches to error reduction. A broad search of the literature was undertaken to identify themes relating to this phenomenon. KEY DISCOVERIES: Two key themes emerged from the literature. Firstly, despite multi-faceted causes of error, the consistent element is the ever-present potential for human error. Secondly, current focus on error prevention could potentially be augmented with greater attention to error recovery. Exploring ways in which clinical staff taking samples might learn how to better identify their own errors is proposed to add to current safety initiatives.

  14. Reliability and error analysis on xenon/CT CBF

    International Nuclear Information System (INIS)

    Zhang, Z.

    2000-01-01

    This article provides a quantitative error analysis of a simulation model of xenon/CT CBF in order to investigate the behavior and effect of different types of errors such as CT noise, motion artifacts, lower percentage of xenon supply, lower tissue enhancements, etc. A mathematical model is built to simulate these errors. By adjusting the initial parameters of the simulation model, we can scale the Gaussian noise, control the percentage of xenon supply, and change the tissue enhancement with different kVp settings. The motion artifact will be treated separately by geometrically shifting the sequential CT images. The input function is chosen from an end-tidal xenon curve of a practical study. Four kinds of cerebral blood flow, 10, 20, 50, and 80 cc/100 g/min, are examined under different error environments and the corresponding CT images are generated following the currently popular timing protocol. The simulated studies will be fed to a regular xenon/CT CBF system for calculation and evaluation. A quantitative comparison is given to reveal the behavior and effect of individual error resources. Mixed error testing is also provided to inspect the combination effect of errors. The experiment shows that CT noise is still a major error resource. The motion artifact affects the CBF results more geometrically than quantitatively. Lower xenon supply has a lesser effect on the results, but will reduce the signal/noise ratio. The lower xenon enhancement will lower the flow values in all areas of brain. (author)

  15. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  16. Architecture design for soft errors

    CERN Document Server

    Mukherjee, Shubu

    2008-01-01

    This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques.

  17. Comercialización del sistema control de errores y versiones de software

    OpenAIRE

    Vargas Caicedo, Hilda Elisa; Rodriguez Loor, Carol Vanessa; Gaibor, Gustavo

    2009-01-01

    El principal objetivo es proveer soluciones en el ámbito de tecnología de información a las necesidades de las empresas para lograr una eficiente administración de los procesos, apoyados en la innovación y optimización continua. Nuestra propuesta, será enfocada a ofrecer un sistema que combina las funciones de control de errores, helpdesk y control de versiones de software a un buen precio. Se indicarán aspectos como las estrategias de venta, de promoción, ingresos y egresos. Aparte de l...

  18. A theory of human error

    Science.gov (United States)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  19. Error characterization and quantum control benchmarking in liquid state NMR using quantum information processing techniques

    Science.gov (United States)

    Laforest, Martin

    Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for

  20. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...

  1. Do People With Severe Traumatic Brain Injury Benefit From Making Errors? A Randomized Controlled Trial of Error-Based and Errorless Learning.

    Science.gov (United States)

    Ownsworth, Tamara; Fleming, Jennifer; Tate, Robyn; Beadle, Elizabeth; Griffin, Janelle; Kendall, Melissa; Schmidt, Julia; Lane-Brown, Amanda; Chevignard, Mathilde; Shum, David H K

    2017-12-01

    Errorless learning (ELL) and error-based learning (EBL) are commonly used approaches to rehabilitation for people with traumatic brain injury (TBI). However, it is unknown whether making errors is beneficial in the learning process to promote skills generalization after severe TBI. To compare the efficacy of ELL and EBL for improving skills generalization, self-awareness, behavioral competency, and psychosocial functioning after severe TBI. A total of 54 adults (79% male; mean age = 38.0 years, SD = 13.4) with severe TBI were randomly allocated to ELL or EBL and received 8 × 1.5-hour therapy sessions that involved meal preparation and other goal-directed activities. The primary outcome was total errors on the Cooking Task (near-transfer). Secondary outcome measures included the Zoo Map Test (far-transfer), Awareness Questionnaire, Patient Competency Rating Scale, Sydney Psychosocial Reintegration Scale, and Care and Needs Scale. Controlling for baseline performance and years of education, participants in the EBL group made significantly fewer errors at postintervention (mean = 36.25; 95% CI = 32.5-40.0) than ELL participants (mean = 42.57; 95% CI = 38.8-46.3). EBL participants also demonstrated greater self-awareness and behavioral competency at postintervention than ELL participants ( P .05), or at the 6-month follow-up assessment. EBL was found to be more effective than ELL for enhancing skills generalization on a task related to training and improving self-awareness and behavioral competency.

  2. Negligence, genuine error, and litigation

    Directory of Open Access Journals (Sweden)

    Sohn DH

    2013-02-01

    Full Text Available David H SohnDepartment of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH, USAAbstract: Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort system in the United States; and review current and future solutions, including medical malpractice reform, alternative dispute resolution, health courts, and no-fault compensation systems. The current political environment favors investigation of non-cap tort reform remedies; investment into more rational oversight systems, such as health courts or no-fault systems may reap both quantitative and qualitative benefits for a less costly and safer health system.Keywords: medical malpractice, tort reform, no fault compensation, alternative dispute resolution, system errors

  3. Error Characterization and Mitigation for 16Nm MLC NAND Flash Memory Under Total Ionizing Dose Effect

    Science.gov (United States)

    Li, Yue (Inventor); Bruck, Jehoshua (Inventor)

    2018-01-01

    A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.

  4. IPTV multicast with peer-assisted lossy error control

    Science.gov (United States)

    Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd

    2010-07-01

    Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.

  5. Implementation of an operator model with error mechanisms for nuclear power plant control room operation

    International Nuclear Information System (INIS)

    Suh, Sang Moon; Cheon, Se Woo; Lee, Yong Hee; Lee, Jung Woon; Park, Young Taek

    1996-01-01

    SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation

  6. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    induction motor (IM) drives. The control design, based on synchronously rotating d-q frame model of the machine, has a simple structure that combines the proportional portion of a conventional PI control and output of the observer. The observer is predicted to estimate the disturbances caused by parameters...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  7. Impact of controlling the sum of error probability in the sequential probability ratio test

    Directory of Open Access Journals (Sweden)

    Bijoy Kumarr Pradhan

    2013-05-01

    Full Text Available A generalized modified method is proposed to control the sum of error probabilities in sequential probability ratio test to minimize the weighted average of the two average sample numbers under a simple null hypothesis and a simple alternative hypothesis with the restriction that the sum of error probabilities is a pre-assigned constant to find the optimal sample size and finally a comparison is done with the optimal sample size found from fixed sample size procedure. The results are applied to the cases when the random variate follows a normal law as well as Bernoullian law.

  8. Nursing Associated Medication Errors: Are Internationally Educated Nurses Different from U.S. Educated Nurses?

    Directory of Open Access Journals (Sweden)

    Jay J. Shen

    2018-02-01

    Full Text Available Medication errors can be detrimental to patient safety and contribute to additional costs in healthcare. The United States has seen a steady increase in internationally-educated nurses (IENs entering the nursing workforce. The current study builds upon the existing research examining the relationship between IENs and medication errors by controlling for confounding factors and testing whether IENs were more likely to make multiple medication errors compared to USENs. This study was a quasi-case control study. The 2006 and 2010 medication error incident data from hospital risk management departments were used. The final sample was 1,773, representing 788 registered nurse in the case group and 985 registered nurses in the control group. Multivariable analyses were conducted to examine single medication error, multiple errors, and consequence of medication errors, in comparing the IENs to USENs. IENs tended to have multiple errors more often than USENs in 2006 (31.7% for IENs and 20.5% for USENs, p = 0.03, but these differences became marginally significant after combining both years of data and completing the multivariable models adjusting for covariates (Odds ratio = 1.38, p = 0.06. No significant differences in making a single error and medication error consequences were observed between IENs and USENs. Although no significant differences between IENs and USENs in having medication error incidents were observed, IENs might be more likely to have multiple medication error incidents in a year compared to USENs. Policies that encourage targeted orientation addressing implicit belief systems about the nursing role and explains patient safety expectations as well as procedures for medication administration may be beneficial for IENs. Supportive leadership that is culturally competent, ensures ongoing continuing education in pharmacology, and provides culturally appropriate incentives for self-reporting medication errors are important.

  9. Magnetoelectric control of spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, J. E.; Vargas, J. M.; Avilés-Félix, L.; Butera, A. [Centro Atómico Bariloche, Instituto de Nanociencia y Nanotecnología (CNEA) and Conicet, 8400 Bariloche, Río Negro (Argentina)

    2016-06-13

    The ability to control the spin current injection has been explored on a hybrid magnetoelectric system consisting of a (011)-cut ferroelectric lead magnesium niobate-lead titanate (PMNT) single crystal, a ferromagnetic FePt alloy, and a metallic Pt. With this PMNT/FePt/Pt structure we have been able to control the magnetic field position or the microwave excitation frequency at which the spin pumping phenomenon between FePt and Pt occurs. We demonstrate that the magnetoelectric heterostructure operating in the L-T (longitudinal magnetized-transverse polarized) mode couples the PMNT crystal to the magnetostrictive FePt/Pt bilayer, displaying a strong magnetoelectric coefficient of ∼140 Oe cm kV{sup −1}. Our results show that this mechanism can be effectively exploited as a tunable spin current intensity emitter and open the possibility to create an oscillating or a bistable switch to effectively manipulate spin currents.

  10. Influence of Current Transformer Saturation on Operation of Current Protection

    Directory of Open Access Journals (Sweden)

    F. A. Romaniouk

    2010-01-01

    Full Text Available An analysis of the influence of instrument current transformer errors on operation of current protection of power supply diagram elements has been carried out in the paper. The paper shows the influence of an aperiodic component of transient current and secondary load on current  transformer errors.Peculiar operational features of measuring elements of electromechanical and microprocessor current protection with their joint operation with electromagnetic current transformers have been analyzed in the paper.

  11. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.

    Science.gov (United States)

    Bui, Huu Phuoc; Tomar, Satyendra; Courtecuisse, Hadrien; Audette, Michel; Cotin, Stéphane; Bordas, Stéphane P A

    2018-05-01

    An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Versão eletrônica de questionário e o controle de erros de resposta Electronic version of a questionnaire and control of answer errors

    Directory of Open Access Journals (Sweden)

    Sadao Omote

    2005-12-01

    Full Text Available O artigo relata a análise de erros cometidos em questionário impresso e a aplicabilidade de uma versão eletrônica do mesmo questionário para o controle desses erros. Sessenta estudantes de pós-graduação em Educação responderam à versão eletrônica programada em Visual Basice outros 52 responderam à versão impressa. No questionário impresso, foram cometidos 95 erros, dos quais 28 não invalidam as respostas. Os demais erros podem levar à exclusão dos participantes que os cometeram, se todos os itens forem analisados rigorosamente de acordo com as instruções. Os erros cometidos na versão impressa podem ser controlados na versão eletrônica mediante adequada programação. Nenhuma dificuldade para responder a versão eletrônica foi identificada. As vantagens apontadas pelos respondentes e a possibilidade de controle total dos erros de resposta, aliadas à eliminação de erro de tabulação mediante a inserção automática das respostas em banco de dados, recomendam o uso de versão eletrônica de questionário.The article reports the analysis of errors made in a printed questionnaire and the possibility of using an electronic version of the same questionnaire aiming to control those errors. Sixty Education graduate students answered an electronic version, programmed in Visual Basic, and another 52 answered a printed version. In the printed questionnaire, 95 errors were made of which 28 errors may be ignored. The other errors may cause the exclusion of respondents that made them, if all items were analyzed strictly in agreement with the instructions. The errors made in the printed version may be controlled in an electronic version by means of appropriate programming. No difficulty in answering the electronic version was reported. The advantages pointed out by the respondents and the possibility of total control of answer errors, allied with the elimination of tabulation errors by means of automatic database insertion of the

  13. Larger error signals in major depression are associated with better avoidance learning

    Directory of Open Access Journals (Sweden)

    James F eCavanagh

    2011-11-01

    Full Text Available The medial prefrontal cortex (mPFC is particularly reactive to signals of error, punishment, and conflict in the service of behavioral adaptation and it is consistently implicated in the etiology of Major Depressive Disorder (MDD. This association makes conceptual sense, given that MDD has been associated with hyper-reactivity in neural systems associated with punishment processing. Yet in practice, depression-related variance in measures of mPFC functioning often fails to relate to performance. For example, neuroelectric reflections of mediofrontal error signals are often found to be larger in MDD, but a deficit in post-error performance suggests that these error signals are not being used to rapidly adapt behavior. Thus, it remains unknown if depression-related variance in error signals reflects a meaningful alteration in the use of error or punishment information. However, larger mediofrontal error signals have also been related to another behavioral tendency: increased accuracy in avoidance learning. The integrity of this error-avoidance system remains untested in MDD. In this study, EEG was recorded as 21 symptomatic, drug-free participants with current or past MDD and 24 control participants performed a probabilistic reinforcement learning task. Depressed participants had larger mPFC EEG responses to error feedback than controls. The direct relationship between error signal amplitudes and avoidance learning accuracy was replicated. Crucially, this relationship was stronger in depressed participants for high conflict lose-lose situations, demonstrating a selective alteration of avoidance learning. This investigation provided evidence that larger error signal amplitudes in depression are associated with increased avoidance learning, identifying a candidate mechanistic model for hypersensitivity to negative outcomes in depression.

  14. A Novel Sliding Mode Control Technique for Indirect Current Controlled Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2012-01-01

    Full Text Available A novel sliding mode control (SMC method for indirect current controlled three-phase parallel active power filter is presented in this paper. There are two designed closed loops in the system: one is the DC voltage controlling loop and the other is the reference current tracking loop. The first loop with a PI regulator is used to control the DC voltage approximating to the given voltage of capacitor, and the output of PI regulator through a low-pass filter is applied as the input of the power supply reference currents. The second loop implements the tracking of the reference currents using integral sliding mode controller, which can improve the harmonic treating performance. Compared with the direct current control technique, it is convenient to be implemented with digital signal processing system because of simpler system structure and better harmonic treating property. Simulation results verify that the generated reference currents have the same amplitude with the load currents, demonstrating the superior harmonic compensating effects with the proposed shunt active power filter compared with the hysteresis method.

  15. Conjugate descent formulation of backpropagation error in feedforward neural networks

    Directory of Open Access Journals (Sweden)

    NK Sharma

    2009-06-01

    Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.

  16. Optimizer convergence and local minima errors and their clinical importance

    International Nuclear Information System (INIS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-01-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization

  17. High cortisol awakening response is associated with impaired error monitoring and decreased post-error adjustment.

    Science.gov (United States)

    Zhang, Liang; Duan, Hongxia; Qin, Shaozheng; Yuan, Yiran; Buchanan, Tony W; Zhang, Kan; Wu, Jianhui

    2015-01-01

    The cortisol awakening response (CAR), a rapid increase in cortisol levels following morning awakening, is an important aspect of hypothalamic-pituitary-adrenocortical axis activity. Alterations in the CAR have been linked to a variety of mental disorders and cognitive function. However, little is known regarding the relationship between the CAR and error processing, a phenomenon that is vital for cognitive control and behavioral adaptation. Using high-temporal resolution measures of event-related potentials (ERPs) combined with behavioral assessment of error processing, we investigated whether and how the CAR is associated with two key components of error processing: error detection and subsequent behavioral adjustment. Sixty university students performed a Go/No-go task while their ERPs were recorded. Saliva samples were collected at 0, 15, 30 and 60 min after awakening on the two consecutive days following ERP data collection. The results showed that a higher CAR was associated with slowed latency of the error-related negativity (ERN) and a higher post-error miss rate. The CAR was not associated with other behavioral measures such as the false alarm rate and the post-correct miss rate. These findings suggest that high CAR is a biological factor linked to impairments of multiple steps of error processing in healthy populations, specifically, the automatic detection of error and post-error behavioral adjustment. A common underlying neural mechanism of physiological and cognitive control may be crucial for engaging in both CAR and error processing.

  18. An Analysis of Medication Errors at the Military Medical Center: Implications for a Systems Approach for Error Reduction

    National Research Council Canada - National Science Library

    Scheirman, Katherine

    2001-01-01

    An analysis was accomplished of all inpatient medication errors at a military academic medical center during the year 2000, based on the causes of medication errors as described by current research in the field...

  19. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    International Nuclear Information System (INIS)

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-01-01

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach

  20. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    Energy Technology Data Exchange (ETDEWEB)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  1. Clock error models for simulation and estimation

    International Nuclear Information System (INIS)

    Meditch, J.S.

    1981-10-01

    Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction

  2. Passive quantum error correction of linear optics networks through error averaging

    Science.gov (United States)

    Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.

    2018-02-01

    We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.

  3. Partitioning,Automation and Error Recovery in the Control and Monitoring System of an LHC Experiment

    Institute of Scientific and Technical Information of China (English)

    C.Gaspar

    2001-01-01

    The Joint Controls Project(JCOP)is a collaboration between CERN and the four LHC experiments to find and implement common solutions for their control and monitoring systems.As part of this project and Architecture Working Group was set up in order to study the requirements and devise an architectural model that would suit the four experiments.Many issues were studied by this working group:Alarm handling,Access Control,Hierarchical Control,etc.This paper will report on the specific issue of hierarchical control and in particular partitioning,automation and error recovery.

  4. The human fallibility of scientists : Dealing with error and bias in academic research

    NARCIS (Netherlands)

    Veldkamp, Coosje

    2017-01-01

    THE HUMAN FALLIBILITY OF SCIENTISTS Dealing with error and bias in academic research Recent studies have highlighted that not all published findings in the scientific lit¬erature are trustworthy, suggesting that currently implemented control mechanisms such as high standards for the reporting of

  5. Controlling type I error rate for fast track drug development programmes.

    Science.gov (United States)

    Shih, Weichung J; Ouyang, Peter; Quan, Hui; Lin, Yong; Michiels, Bart; Bijnens, Luc

    2003-03-15

    The U.S. Food and Drug Administration (FDA) Modernization Act of 1997 has a Section (No. 112) entitled 'Expediting Study and Approval of Fast Track Drugs' (the Act). In 1998, the FDA issued a 'Guidance for Industry: the Fast Track Drug Development Programs' (the FTDD programmes) to meet the requirement of the Act. The purpose of FTDD programmes is to 'facilitate the development and expedite the review of new drugs that are intended to treat serious or life-threatening conditions and that demonstrate the potential to address unmet medical needs'. Since then many health products have reached patients who suffered from AIDS, cancer, osteoporosis, and many other diseases, sooner by utilizing the Fast Track Act and the FTDD programmes. In the meantime several scientific issues have also surfaced when following the FTDD programmes. In this paper we will discuss the concept of two kinds of type I errors, namely, the 'conditional approval' and the 'final approval' type I errors, and propose statistical methods for controlling them in a new drug submission process. Copyright 2003 John Wiley & Sons, Ltd.

  6. A Study on Large Display Panel Design for the Countermeasures against Team Errors within the Main Control Room of APR-1400

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa Kil; Lee, Yong Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The personal aspect of human errors has been mainly overcome by virtue of the education and training. However, in the system aspect, the education and training system needs to be reconsidered for more effective reduction of human errors affected from various systems hazards. Traditionally the education and training systems are mainly not focused on team skills such as communication, situational awareness, and coordination, etc. but individual knowledge, skill, and attitude. However, the team factor is one of the crucial issues to reduce the human errors in most industries. In this study, we identify the emerging types of team errors, especially, in digitalized control room of nuclear power plants such as the APR-1400 main control room. Most works in nuclear industry are to be performed by a team of more than two persons. Even though the individual errors can be detected and recovered by the qualified others and/or the well trained team, it is rather seldom that the errors by team could be easily detected and properly recovered by the team itself. Note that the team is defined as two or more people who are appropriately interacting with each other, and the team is a dependent aggregate, which accomplishes a valuable goal. Team error is one of the typical organizational errors that may occur during performing operations in nuclear power plants. The large display panel is a representative feature of digitalized control room. As a group-view display, the large display panel provides plant overview to the operators. However, in terms of team performance and team errors, the large display panel is on a discussion board still because the large display panel was designed just a concept of passive display. In this study, we will propose revised large display panel which is integrated with several alternative interfaces against feasible team errors.

  7. A Study on Large Display Panel Design for the Countermeasures against Team Errors within the Main Control Room of APR-1400

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Lee, Yong Hee

    2015-01-01

    The personal aspect of human errors has been mainly overcome by virtue of the education and training. However, in the system aspect, the education and training system needs to be reconsidered for more effective reduction of human errors affected from various systems hazards. Traditionally the education and training systems are mainly not focused on team skills such as communication, situational awareness, and coordination, etc. but individual knowledge, skill, and attitude. However, the team factor is one of the crucial issues to reduce the human errors in most industries. In this study, we identify the emerging types of team errors, especially, in digitalized control room of nuclear power plants such as the APR-1400 main control room. Most works in nuclear industry are to be performed by a team of more than two persons. Even though the individual errors can be detected and recovered by the qualified others and/or the well trained team, it is rather seldom that the errors by team could be easily detected and properly recovered by the team itself. Note that the team is defined as two or more people who are appropriately interacting with each other, and the team is a dependent aggregate, which accomplishes a valuable goal. Team error is one of the typical organizational errors that may occur during performing operations in nuclear power plants. The large display panel is a representative feature of digitalized control room. As a group-view display, the large display panel provides plant overview to the operators. However, in terms of team performance and team errors, the large display panel is on a discussion board still because the large display panel was designed just a concept of passive display. In this study, we will propose revised large display panel which is integrated with several alternative interfaces against feasible team errors

  8. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  9. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    International Nuclear Information System (INIS)

    Parker, S

    2015-01-01

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignment of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors

  10. Error Discounting in Probabilistic Category Learning

    Science.gov (United States)

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    The assumption in some current theories of probabilistic categorization is that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report 2 probabilistic-categorization experiments in which we investigated error…

  11. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...... speed control loop is closed around the current loop...

  12. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...... is closed around the current loop....

  13. Adaptive control of nonlinear system using online error minimum neural networks.

    Science.gov (United States)

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Negligence, genuine error, and litigation

    Science.gov (United States)

    Sohn, David H

    2013-01-01

    Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort system in the United States; and review current and future solutions, including medical malpractice reform, alternative dispute resolution, health courts, and no-fault compensation systems. The current political environment favors investigation of non-cap tort reform remedies; investment into more rational oversight systems, such as health courts or no-fault systems may reap both quantitative and qualitative benefits for a less costly and safer health system. PMID:23426783

  15. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    Science.gov (United States)

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  16. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  17. Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2015-04-01

    Full Text Available A projective synchronization scheme for a kind of n-dimensional discrete dynamical system is proposed by means of a linear feedback control technique. The scheme consists of master and slave discrete dynamical systems coupled by linear state error variables. A kind of novel 3-D chaotic discrete system is constructed, to which the test for chaos is applied. By using the stability principles of an upper or lower triangular matrix, two controllers for achieving projective synchronization are designed and illustrated with the novel systems. Lastly some numerical simulations are employed to validate the effectiveness of the proposed projective synchronization scheme.

  18. An estimate and evaluation of design error effects on nuclear power plant design adequacy

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1984-01-01

    An area of considerable concern in evaluating Design Control Quality Assurance procedures applied to design and analysis of nuclear power plant is the level of design error expected or encountered. There is very little published data 1 on the level of error typically found in nuclear power plant design calculations and even less on the impact such errors would be expected to have on overall design adequacy of the plant. This paper is concerned with design error associated with civil and mechanical structural design and analysis found in calculations which form part of the Design or Stress reports. These reports are meant to document the design basis and adequacy of the plant. The estimates contained in this paper are based on the personal experiences of the author. In Table 1 is a partial listing of the design docummentation review performed by the author on which the observations contained in this paper are based. In the preparation of any design calculations, it is a utopian dream to presume such calculations can be made error free. The intent of this paper is to define error levels which might be expected in a competent engineering organizations employing currently technically qualified engineers and accepted methods of Design Control. In addition, the effects of these errors on the probability of failure to meet applicable design code requirements also are estimated

  19. Opportunistic Error Correction for WLAN Applications

    NARCIS (Netherlands)

    Shao, X.; Schiphorst, Roelof; Slump, Cornelis H.

    2008-01-01

    The current error correction layer of IEEE 802.11a WLAN is designed for worst case scenarios, which often do not apply. In this paper, we propose a new opportunistic error correction layer based on Fountain codes and a resolution adaptive ADC. The key part in the new proposed system is that only

  20. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    Science.gov (United States)

    Xiaobo, Wu; Qing, Liu; Menglian, Zhao; Mingyang, Chen

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA.

  1. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  2. Current control loop of 3-phase grid-connected inverter

    International Nuclear Information System (INIS)

    Jabbar, A F; Mansor, M

    2013-01-01

    This paper presents a comparative study of current control loop in 3-phase inverter which is used to control the active and reactive output power. Generally, current control loop, power control loop and phase lock-loop are the conventional parameters that can be found in an inverter system controlled by the conventional linear control type, for instance proportional (P), integral (I) and derivative (D). If the grid remains stable throughout the day, PID control can be use. However variation of magnitude, frequency, voltage dips, transient, and other related power quality issues occur in a 3-phase grid often affects the control loop. This paper aims to provide an overall review on the available current control techniques used in grid connected system.

  3. Reliable methods for computer simulation error control and a posteriori estimates

    CERN Document Server

    Neittaanmäki, P

    2004-01-01

    Recent decades have seen a very rapid success in developing numerical methods based on explicit control over approximation errors. It may be said that nowadays a new direction is forming in numerical analysis, the main goal of which is to develop methods ofreliable computations. In general, a reliable numerical method must solve two basic problems: (a) generate a sequence of approximations that converges to a solution and (b) verify the accuracy of these approximations. A computer code for such a method must consist of two respective blocks: solver and checker.In this book, we are chie

  4. Energy efficiency of error correcting mechanisms for wireless communications

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    We consider the energy efficiency of error control mechanisms for wireless communication. Since high error rates are inevitable to the wireless environment, energy efficient error control is an important issue for mobile computing systems. Although good designed retransmission schemes can be optimal

  5. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  6. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    CERN Document Server

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B

    2015-01-01

    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  7. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  8. An adaptive orienting theory of error processing.

    Science.gov (United States)

    Wessel, Jan R

    2018-03-01

    The ability to detect and correct action errors is paramount to safe and efficient goal-directed behaviors. Existing work on the neural underpinnings of error processing and post-error behavioral adaptations has led to the development of several mechanistic theories of error processing. These theories can be roughly grouped into adaptive and maladaptive theories. While adaptive theories propose that errors trigger a cascade of processes that will result in improved behavior after error commission, maladaptive theories hold that error commission momentarily impairs behavior. Neither group of theories can account for all available data, as different empirical studies find both impaired and improved post-error behavior. This article attempts a synthesis between the predictions made by prominent adaptive and maladaptive theories. Specifically, it is proposed that errors invoke a nonspecific cascade of processing that will rapidly interrupt and inhibit ongoing behavior and cognition, as well as orient attention toward the source of the error. It is proposed that this cascade follows all unexpected action outcomes, not just errors. In the case of errors, this cascade is followed by error-specific, controlled processing, which is specifically aimed at (re)tuning the existing task set. This theory combines existing predictions from maladaptive orienting and bottleneck theories with specific neural mechanisms from the wider field of cognitive control, including from error-specific theories of adaptive post-error processing. The article aims to describe the proposed framework and its implications for post-error slowing and post-error accuracy, propose mechanistic neural circuitry for post-error processing, and derive specific hypotheses for future empirical investigations. © 2017 Society for Psychophysiological Research.

  9. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  10. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  11. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.

    Science.gov (United States)

    Popa, Laurentiu S; Streng, Martha L; Hewitt, Angela L; Ebner, Timothy J

    2016-04-01

    The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.

  12. Current control by ECCD for W7-X

    International Nuclear Information System (INIS)

    Turkin, Yu.; Maassberg, H.; Beidler, C.D.; Geiger, J.; Marushchenko, N.B.

    2005-01-01

    One of the optimization criteria for the stellarator W7-X is the minimization of the bootstrap current. The plasma current changes the magnetic configuration, especially near the plasma edge, where X-points and islands are located. It was shown that the plasma parameter distributions in the divertor region and the particle and energy depositions on the divertor plates depend strongly on the island geometry. An estimation of the tolerable plasma current obtained from the shift of the island structure close to the target plates shows that the plasma current should be controlled within a range of about 10 kA. The bootstrap current even for the standard configuration can easily exceed this value. The W7-X is not equipped with an Ohmic transformer, so the only means for compensating this current is electron cyclotron current drive (ECCD) and/or neutral beam current drive (NBCD). In this report we study the compensation of residual bootstrap current by using ECCD. To model the control of the toroidal current we use a predictive 1D transport code, which is under development. For evaluation of the bootstrap current and neoclassical transport coefficients we use results from an international collaboration on neoclassical transport in stellarators. Power deposition and current drive profiles due to electron cyclotron resonance heating are calculated by a new ray tracing code. The modeling showed that the loop voltage induced by ECCD leads to a redistribution of the current density with the diffusion time of about two seconds. The relaxation time of the total current is much longer than this time - for a typical ECRH-plasma the total toroidal current reaches steady state after several L/R-time that is about hundreds of seconds. In order to keep current in an acceptable range and to avoid long relaxation times we propose Feed-forward or Predictive control using ECCD as actuator, the steps are as follows: - calculate the bootstrap current distribution using measured plasma

  13. A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls

    International Nuclear Information System (INIS)

    Kim, Yochan; Park, Jinkyun; Jung, Wondea; Jang, Inseok; Hyun Seong, Poong

    2015-01-01

    Despite recent efforts toward data collection for supporting human reliability analysis, there remains a lack of empirical basis in determining the effects of performance shaping factors (PSFs) on human error probabilities (HEPs). To enhance the empirical basis regarding the effects of the PSFs, a statistical methodology using a logistic regression and stepwise variable selection was proposed, and the effects of the PSF on HEPs related with the soft controls were estimated through the methodology. For this estimation, more than 600 human error opportunities related to soft controls in a computerized control room were obtained through laboratory experiments. From the eight PSF surrogates and combinations of these variables, the procedure quality, practice level, and the operation type were identified as significant factors for screen switch and mode conversion errors. The contributions of these significant factors to HEPs were also estimated in terms of a multiplicative form. The usefulness and limitation of the experimental data and the techniques employed are discussed herein, and we believe that the logistic regression and stepwise variable selection methods will provide a way to estimate the effects of PSFs on HEPs in an objective manner. - Highlights: • It is necessary to develop an empirical basis for the effects of the PSFs on the HEPs. • A statistical method using a logistic regression and variable selection was proposed. • The effects of PSFs on the HEPs of soft controls were empirically investigated. • The significant factors were identified and their effects were estimated

  14. Off-axis current drive and real-time control of current profile in JT-60U

    International Nuclear Information System (INIS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.

    2008-01-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (q min ) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control q min . The real-time control of q min is demonstrated in a high-β plasma, where q min follows the temporally changing reference q min,ref from 1.3 to 1.7. Applying the control to another high-β discharge (β N = 1.7, β p = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), q min was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement

  15. Adaptive finite element analysis of incompressible viscous flow using posteriori error estimation and control of node density distribution

    International Nuclear Information System (INIS)

    Yashiki, Taturou; Yagawa, Genki; Okuda, Hiroshi

    1995-01-01

    The adaptive finite element method based on an 'a posteriori error estimation' is known to be a powerful technique for analyzing the engineering practical problems, since it excludes the instinctive aspect of the mesh subdivision and gives high accuracy with relatively low computational cost. In the adaptive procedure, both the error estimation and the mesh generation according to the error estimator are essential. In this paper, the adaptive procedure is realized by the automatic mesh generation based on the control of node density distribution, which is decided according to the error estimator. The global percentage error, CPU time, the degrees of freedom and the accuracy of the solution of the adaptive procedure are compared with those of the conventional method using regular meshes. Such numerical examples as the driven cavity flows of various Reynolds numbers and the flows around a cylinder have shown the very high performance of the proposed adaptive procedure. (author)

  16. Detecting and correcting partial errors: Evidence for efficient control without conscious access.

    Science.gov (United States)

    Rochet, N; Spieser, L; Casini, L; Hasbroucq, T; Burle, B

    2014-09-01

    Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed.

  17. A Modified Droop Control Method for Parallel-Connected Current Source Inverters

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    In this paper, a novel control method was proposed for current source inverters under the grid-connected working mode. The control scheme is based on a modified droop control method, with an additional current reference signal that will be generated instead of the voltage reference. Hence......, there is only a current control loop with droop control in the whole control scheme without voltage control loop. So it is very suitable for grid-connected current source inverter which will simplify the design of the control scheme and combine the advantage of droop control. The parallel configuration...... is widely used to acquire high power demand, but the circulating current problem is a key issue that should be considered. In this paper, a simulation based on parallel current source inverters using the proposed control scheme is provided. Simulation results showed that a good circulating current...

  18. Effect of DM Actuator Errors on the WFIRST/AFTA Coronagraph Contrast Performance

    Science.gov (United States)

    Sidick, Erkin; Shi, Fang

    2015-01-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs two sequential deformable mirrors (DMs) to compensate for phase and amplitude errors in creating dark holes. DMs are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Working with a low-order wavefront-sensor the DM that is conjugate to a pupil can also be used to correct low-order wavefront drift during a scientific observation. However, not all actuators in a DM have the same gain. When using such a DM in low-order wavefront sensing and control subsystem, the actuator gain errors introduce high-spatial frequency errors to the DM surface and thus worsen the contrast performance of the coronagraph. We have investigated the effects of actuator gain errors and the actuator command digitization errors on the contrast performance of the coronagraph through modeling and simulations, and will present our results in this paper.

  19. Brezzi-Pitkaranta stabilization and a priori error analysis for the Stokes Control

    Directory of Open Access Journals (Sweden)

    Aytekin Cibik

    2016-12-01

    Full Text Available In this study, we consider a Brezzi-Pitkaranta stabilization scheme for the optimal control problem governed by stationary Stokes equation, using a P1-P1 interpolation for velocity and pressure. We express the stabilization as extra terms added to the discrete variational form of the problem.  We first prove the stability of the finite element discretization of the problem. Then, we derive a priori error bounds for each variable and present a numerical example to show the effectiveness of the stabilization clearly.

  20. Error management process for power stations

    International Nuclear Information System (INIS)

    Hirotsu, Yuko; Takeda, Daisuke; Fujimoto, Junzo; Nagasaka, Akihiko

    2016-01-01

    The purpose of this study is to establish 'error management process for power stations' for systematizing activities for human error prevention and for festering continuous improvement of these activities. The following are proposed by deriving concepts concerning error management process from existing knowledge and realizing them through application and evaluation of their effectiveness at a power station: an entire picture of error management process that facilitate four functions requisite for maraging human error prevention effectively (1. systematizing human error prevention tools, 2. identifying problems based on incident reports and taking corrective actions, 3. identifying good practices and potential problems for taking proactive measures, 4. prioritizeng human error prevention tools based on identified problems); detail steps for each activity (i.e. developing an annual plan for human error prevention, reporting and analyzing incidents and near misses) based on a model of human error causation; procedures and example of items for identifying gaps between current and desired levels of executions and outputs of each activity; stages for introducing and establishing the above proposed error management process into a power station. By giving shape to above proposals at a power station, systematization and continuous improvement of activities for human error prevention in line with the actual situation of the power station can be expected. (author)

  1. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A simplified controller and detailed dynamics of constant off-time peak current control

    Science.gov (United States)

    Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan

    2017-09-01

    A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.

  3. Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response

    Science.gov (United States)

    Brunsell, P. R.; Olofsson, K. E. J.; Frassinetti, L.; Drake, J. R.

    2007-10-01

    Experiments in the EXTRAP T2R reversed field pinch [P. R. Brunsell, H. Bergsåker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] on feedback control of m =1 resistive wall modes (RWMs) are compared with simulations using the cylindrical linear magnetohydrodynamic model, including the dynamics of the active coils and power amplifiers. Stabilization of the main RWMs (n=-11,-10,-9,-8,+5,+6) is shown using modest loop gains of the order G ˜1. However, other marginally unstable RWMs (n=-2,-1,+1,+2) driven by external field errors are only partially canceled at these gains. The experimental system stability limit is confirmed by simulations showing that the latency of the digital controller ˜50μs is degrading the system gain margin. The transient response is improved with a proportional-plus-derivative controller, and steady-state error is improved with a proportional-plus-integral controller. Suppression of all modes is obtained at high gain G ˜10 using a proportional-plus-integral-plus-derivative controller.

  4. The Institute for Safe Medication Practices and Poison Control Centers: Collaborating to Prevent Medication Errors and Unintentional Poisonings.

    Science.gov (United States)

    Vaida, Allen J

    2015-06-01

    This article provides an overview on the Institute for Safe Medication Practices (ISMP), the only independent nonprofit organization in the USA devoted to the prevention of medication errors. ISMP developed the national Medication Errors Reporting Program (MERP) and investigates and analyzes errors in order to formulate recommendations to prevent further occurrences. ISMP works closely with the US Food and Drug Administration (FDA), drug manufacturers, professional organizations, and others to promote changes in package design, practice standards, and healthcare practitioner and consumer education. By collaborating with ISMP to share and disseminate information, Poison Control centers, emergency departments, and toxicologists can help decrease unintentional and accidental poisonings.

  5. Compact disk error measurements

    Science.gov (United States)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  6. The effect of errors in charged particle beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1987-01-01

    Residual errors in a charged particle optical system determine how well the performance of the system conforms to the theory on which it is based. Mathematically possible optical modes can sometimes be eliminated as requiring precisions not attainable. Other plans may require introduction of means of correction for the occurrence of various errors. Error types include misalignments, magnet fabrication precision limitations, and magnet current regulation errors. A thorough analysis of a beam optical system requires computer simulation of all these effects. A unified scheme for the simulation of errors and their correction is discussed

  7. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  8. Practical, Reliable Error Bars in Quantum Tomography

    OpenAIRE

    Faist, Philippe; Renner, Renato

    2015-01-01

    Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of...

  9. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  10. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  11. Comparison of Unmodulated Current Control Characteristics of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Anwar Muqorobin

    2014-12-01

    Full Text Available This paper discusses comparison of unmodulated current controls in PMSM, more specifically, on-off, sliding mode, predictive and hybrid controls. The purpose of this study is to select the most appropriate control technique to be adopted. The comparison method is preceded by modeling the motor and entering the values of the motor parameters. PI control is used for speed control and zero d-axis current is employed. Furthermore, performing simulation for each type ofthe selected current controls and analyzing their responses in terms of dq and abc currents, q-axis current response with step reference, as well as THD. Simulation results show that the on-off control gives the best overall performance based on its abc-axis current ripple and THD at large load torque. The hybrid control shows the best response occurring only at the fastest transient time of q-axis current but its response exhibits bad qualities compared with other controls. The predictive control yields the best responses offering the smallest d-axis ripple current and THD at small load torque condition. The sliding mode control, however, does not exhibit any prominent performance compared to the others. Results presented in this paper further indicate that for the PMSM used in the simulation the most appropriate control is the predictive control.

  12. A queueing model for error control of partial buffer sharing in ATM

    Directory of Open Access Journals (Sweden)

    Ahn Boo Yong

    1999-01-01

    Full Text Available We model the error control of the partial buffer sharing of ATM by a queueing system M 1 , M 2 / G / 1 / K + 1 with threshold and instantaneous Bernoulli feedback. We first derive the system equations and develop a recursive method to compute the loss probabilities at an arbitrary time epoch. We then build an approximation scheme to compute the mean waiting time of each class of cells. An algorithm is developed for finding the optimal threshold and queue capacity for a given quality of service.

  13. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  14. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  15. Negligence, genuine error, and litigation

    OpenAIRE

    Sohn DH

    2013-01-01

    David H SohnDepartment of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH, USAAbstract: Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort syst...

  16. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  17. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  18. Sources of Error in Satellite Navigation Positioning

    Directory of Open Access Journals (Sweden)

    Jacek Januszewski

    2017-09-01

    Full Text Available An uninterrupted information about the user’s position can be obtained generally from satellite navigation system (SNS. At the time of this writing (January 2017 currently two global SNSs, GPS and GLONASS, are fully operational, two next, also global, Galileo and BeiDou are under construction. In each SNS the accuracy of the user’s position is affected by the three main factors: accuracy of each satellite position, accuracy of pseudorange measurement and satellite geometry. The user’s position error is a function of both the pseudorange error called UERE (User Equivalent Range Error and user/satellite geometry expressed by right Dilution Of Precision (DOP coefficient. This error is decomposed into two types of errors: the signal in space ranging error called URE (User Range Error and the user equipment error UEE. The detailed analyses of URE, UEE, UERE and DOP coefficients, and the changes of DOP coefficients in different days are presented in this paper.

  19. Automatic error compensation in dc amplifiers

    International Nuclear Information System (INIS)

    Longden, L.L.

    1976-01-01

    When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks

  20. Computer Simulation Tests of Feedback Error Learning Controller with IDM and ISM for Functional Electrical Stimulation in Wrist Joint Control

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    2010-01-01

    Full Text Available Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES system using powered orthotic devices. In this paper, Feedback Error Learning (FEL controller for FES (FEL-FES controller was examined using an inverse statics model (ISM with an inverse dynamics model (IDM to realize a feedforward FES controller. For FES application, the ISM was tested in learning off line using training data obtained by PID control of very slow movements. Computer simulation tests in controlling wrist joint movements showed that the ISM performed properly in positioning task and that IDM learning was improved by using the ISM showing increase of output power ratio of the feedforward controller. The simple ISM learning method and the FEL-FES controller using the ISM would be useful in controlling the musculoskeletal system that has nonlinear characteristics to electrical stimulation and therefore is expected to be useful in applying to hybrid FES system using powered orthotic device.

  1. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  2. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  3. Fuzzy Adaptation Algorithms’ Control for Robot Manipulators with Uncertainty Modelling Errors

    Directory of Open Access Journals (Sweden)

    Yongqing Fan

    2018-01-01

    Full Text Available A novel fuzzy control scheme with adaptation algorithms is developed for robot manipulators’ system. At the beginning, one adjustable parameter is introduced in the fuzzy logic system, the robot manipulators system with uncertain nonlinear terms as the master device and a reference model dynamic system as the slave robot system. To overcome the limitations such as online learning computation burden and logic structure in conventional fuzzy logic systems, a parameter should be used in fuzzy logic system, which composes fuzzy logic system with updated parameter laws, and can be formed for a new fashioned adaptation algorithms controller. The error closed-loop dynamical system can be stabilized based on Lyapunov analysis, the number of online learning computation burdens can be reduced greatly, and the different kinds of fuzzy logic systems with fuzzy rules or without any fuzzy rules are also suited. Finally, effectiveness of the proposed approach has been shown in simulation example.

  4. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    International Nuclear Information System (INIS)

    Wu Xiaobo; Liu Qing; Zhao Menglian; Chen Mingyang

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA. (semiconductor integrated circuits)

  5. Dead Zone Oscillator Control for Communication-Free Synchronization of Paralleled, Three-Phase, Current-Controlled Inverters

    Science.gov (United States)

    2016-05-11

    Current-Controlled Inverters by Midshipman 1/C Spencer C. Shabshab, USN UNITED STATES NAVAL ACADEMY...Three-Phase, Current-Controlled Inverters by Midshipman 1/C Spencer C. Shabshab United States Naval Academy Annapolis, Maryland...for Communication-Free Synchronization of Paralleled, 5a. CONTRACT NUMBER Three-Phase, Current-Controlled Inverters 5b. GRANT NUMBER 5c

  6. Augmenting intracortical brain-machine interface with neurally driven error detectors

    Science.gov (United States)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  7. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  8. Error characterization for asynchronous computations: Proxy equation approach

    Science.gov (United States)

    Sallai, Gabriella; Mittal, Ankita; Girimaji, Sharath

    2017-11-01

    Numerical techniques for asynchronous fluid flow simulations are currently under development to enable efficient utilization of massively parallel computers. These numerical approaches attempt to accurately solve time evolution of transport equations using spatial information at different time levels. The truncation error of asynchronous methods can be divided into two parts: delay dependent (EA) or asynchronous error and delay independent (ES) or synchronous error. The focus of this study is a specific asynchronous error mitigation technique called proxy-equation approach. The aim of this study is to examine these errors as a function of the characteristic wavelength of the solution. Mitigation of asynchronous effects requires that the asynchronous error be smaller than synchronous truncation error. For a simple convection-diffusion equation, proxy-equation error analysis identifies critical initial wave-number, λc. At smaller wave numbers, synchronous error are larger than asynchronous errors. We examine various approaches to increase the value of λc in order to improve the range of applicability of proxy-equation approach.

  9. SHERPA: A systematic human error reduction and prediction approach

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1986-01-01

    This paper describes a Systematic Human Error Reduction and Prediction Approach (SHERPA) which is intended to provide guidelines for human error reduction and quantification in a wide range of human-machine systems. The approach utilizes as its basic current cognitive models of human performance. The first module in SHERPA performs task and human error analyses, which identify likely error modes, together with guidelines for the reduction of these errors by training, procedures and equipment redesign. The second module uses a SARAH approach to quantify the probability of occurrence of the errors identified earlier, and provides cost benefit analyses to assist in choosing the appropriate error reduction approaches in the third module

  10. A Comparative Study on Error Analysis

    DEFF Research Database (Denmark)

    Wu, Xiaoli; Zhang, Chun

    2015-01-01

    Title: A Comparative Study on Error Analysis Subtitle: - Belgian (L1) and Danish (L1) learners’ use of Chinese (L2) comparative sentences in written production Xiaoli Wu, Chun Zhang Abstract: Making errors is an inevitable and necessary part of learning. The collection, classification and analysis...... the occurrence of errors either in linguistic or pedagogical terms. The purpose of the current study is to demonstrate the theoretical and practical relevance of error analysis approach in CFL by investigating two cases - (1) Belgian (L1) learners’ use of Chinese (L2) comparative sentences in written production...... of errors in the written and spoken production of L2 learners has a long tradition in L2 pedagogy. Yet, in teaching and learning Chinese as a foreign language (CFL), only handful studies have been made either to define the ‘error’ in a pedagogically insightful way or to empirically investigate...

  11. Understanding and Confronting Our Mistakes: The Epidemiology of Error in Radiology and Strategies for Error Reduction.

    Science.gov (United States)

    Bruno, Michael A; Walker, Eric A; Abujudeh, Hani H

    2015-10-01

    Arriving at a medical diagnosis is a highly complex process that is extremely error prone. Missed or delayed diagnoses often lead to patient harm and missed opportunities for treatment. Since medical imaging is a major contributor to the overall diagnostic process, it is also a major potential source of diagnostic error. Although some diagnoses may be missed because of the technical or physical limitations of the imaging modality, including image resolution, intrinsic or extrinsic contrast, and signal-to-noise ratio, most missed radiologic diagnoses are attributable to image interpretation errors by radiologists. Radiologic interpretation cannot be mechanized or automated; it is a human enterprise based on complex psychophysiologic and cognitive processes and is itself subject to a wide variety of error types, including perceptual errors (those in which an important abnormality is simply not seen on the images) and cognitive errors (those in which the abnormality is visually detected but the meaning or importance of the finding is not correctly understood or appreciated). The overall prevalence of radiologists' errors in practice does not appear to have changed since it was first estimated in the 1960s. The authors review the epidemiology of errors in diagnostic radiology, including a recently proposed taxonomy of radiologists' errors, as well as research findings, in an attempt to elucidate possible underlying causes of these errors. The authors also propose strategies for error reduction in radiology. On the basis of current understanding, specific suggestions are offered as to how radiologists can improve their performance in practice. © RSNA, 2015.

  12. High performance predictive current control of a three phase VSI: An ...

    Indian Academy of Sciences (India)

    ... current control of a three phase VSI: An experimental assessment ... Voltage source inverter; two level inverter; predictive current control; weighting factor ... Conventionally, for reference current tracking control in a two level VSI, the objective ...

  13. DC-Compensated Current Transformer.

    Science.gov (United States)

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  14. A Control Method of Current Type Matrix Converter for Plasma Control Coil Power Supply

    International Nuclear Information System (INIS)

    Shimada, K.; Matsukawa, M.; Kurihara, K.; Jun-ichi Itoh

    2006-01-01

    In exploration to a tokamak fusion reactor, the control of plasma instabilities of high β plasma such as neoclassical tearing mode (NTM), resistive wall mode (RWM) etc., is the key issue for steady-state sustainment. One of the proposed methods to avoid suppressing RWM is that AC current having a phase to work for reduction the RWM growth is generated in a coil (sector coil) equipped spirally on the plasma vacuum vessel. To stabilize RWM, precise and fast real-time feedback control of magnetic field with proper amplitude and frequency is necessary. This implies that an appropriate power supply dedicated for such an application is expected to be developed. A matrix converter as one of power supply candidates for this purpose could provide a solution The matrix converter, categorized in an AC/AC direct converter composed of nine bi-directional current switches, has a great feature that a large energy storage element is unnecessary in comparison with a standard existing AC/AC indirect converter, which is composed of an AC/DC converter and a DC/AC inverter. It is also advantageous in cost and size of its applications. Fortunately, a voltage type matrix converter has come to be available at the market recently, while a current type matrix converter, which is advantageous for fast control of the large-inductance coil current, has been unavailable. On the background above mentioned, we proposed a new current type matrix converter and its control method applicable to a power supply with fast response for suppressing plasma instabilities. Since this converter is required with high accuracy control, the gate control method is adopted to three-phase switching method using middle phase to reduce voltage and current waveforms distortion. The control system is composed of VME-bus board with DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) for high speed calculation and control. This paper describes the control method of a current type matrix converter

  15. Current control of light by nonreciprocal magnetoplasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yongkang, E-mail: yongkang.gong@southwales.ac.uk; Li, Kang; Carver, Sara; Martinez, Juan Jose; Huang, Jungang; Copner, Nigel [Wireless and Optoelectronics Research and Innovation Centre (WORIC), Faculty of Computing, Engineering and Science, University of South Wales, Cardiff CF37 1DL (United Kingdom); Thueux, Yoann; Avlonitis, Nick [Airbus Group Innovations, Quadrant House, Celtic Springs, Coedkernew, NP10 8FZ Newport (United Kingdom)

    2015-05-11

    The ability to actively control light has long been a major scientific and technological goal. We proposed a scheme that allows for active control of light by utilizing the nonreciprocal magnetoplasmonic effect. As a proof of concept, we applied current signal through an ultrathin metallic film in a magneto-plasmonic multilayer and found that dynamic photonic nonreciprocity appears in magnetic-optical material layer due to the magnetic field being induced from current signal and modulates surface plasmon polaritons trapped in the metal surface and the light reflected. The proposed concept provides a possible way for the active control of light and could find potential applications such as ultrafast optoelectronic signal processing for plasmonic nanocircuit technology and ultrafast/large-aperture free-space electro-optic modulation platform for wireless laser communication technology.

  16. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  17. Energy efficiency of error correction on wireless systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    1999-01-01

    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software.

  18. Mitigation of grid-current distortion for LCL-filtered grid-connected voltage-source inverter with inverter-side current control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2017-01-01

    Due to the low inductance of an LCL-filter, the grid current generated by an LCL-filtered Voltage Source Inverter (VSI) is sensitive to low-order grid-voltage harmonics. This issue is especially tough for the control system with Inverter Current Feedback (ICF), because the grid-current harmonics...... can freely flow into the filter capacitor without control. To cope with this issue, this paper develops an approach for the ICF control system to suppress the grid-current harmonics without adding extra sensors. The proposed method applies harmonic controllers and feedforward scheme simultaneously...

  19. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  1. Medical Error and Moral Luck.

    Science.gov (United States)

    Hubbeling, Dieneke

    2016-09-01

    This paper addresses the concept of moral luck. Moral luck is discussed in the context of medical error, especially an error of omission that occurs frequently, but only rarely has adverse consequences. As an example, a failure to compare the label on a syringe with the drug chart results in the wrong medication being administered and the patient dies. However, this error may have previously occurred many times with no tragic consequences. Discussions on moral luck can highlight conflicting intuitions. Should perpetrators receive a harsher punishment because of an adverse outcome, or should they be dealt with in the same way as colleagues who have acted similarly, but with no adverse effects? An additional element to the discussion, specifically with medical errors, is that according to the evidence currently available, punishing individual practitioners does not seem to be effective in preventing future errors. The following discussion, using relevant philosophical and empirical evidence, posits a possible solution for the moral luck conundrum in the context of medical error: namely, making a distinction between the duty to make amends and assigning blame. Blame should be assigned on the basis of actual behavior, while the duty to make amends is dependent on the outcome.

  2. Correcting AUC for Measurement Error.

    Science.gov (United States)

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  3. Measuring worst-case errors in a robot workcell

    International Nuclear Information System (INIS)

    Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.

    1997-10-01

    Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot's model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors

  4. Collection of offshore human error probability data

    International Nuclear Information System (INIS)

    Basra, Gurpreet; Kirwan, Barry

    1998-01-01

    Accidents such as Piper Alpha have increased concern about the effects of human errors in complex systems. Such accidents can in theory be predicted and prevented by risk assessment, and in particular human reliability assessment (HRA), but HRA ideally requires qualitative and quantitative human error data. A research initiative at the University of Birmingham led to the development of CORE-DATA, a Computerised Human Error Data Base. This system currently contains a reasonably large number of human error data points, collected from a variety of mainly nuclear-power related sources. This article outlines a recent offshore data collection study, concerned with collecting lifeboat evacuation data. Data collection methods are outlined and a selection of human error probabilities generated as a result of the study are provided. These data give insights into the type of errors and human failure rates that could be utilised to support offshore risk analyses

  5. The Perception of Error in Production Plants of a Chemical Organisation

    Science.gov (United States)

    Seifried, Jurgen; Hopfer, Eva

    2013-01-01

    There is considerable current interest in error-friendly corporate culture, one particular research question being how and under what conditions errors are learnt from in the workplace. This paper starts from the assumption that errors are inevitable and considers key factors which affect learning from errors in high responsibility organisations,…

  6. Laboratory errors and patient safety.

    Science.gov (United States)

    Miligy, Dawlat A

    2015-01-01

    evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.

  7. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  8. An in-situ measuring method for planar straightness error

    Science.gov (United States)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  9. Human errors in operation - what to do with them?

    International Nuclear Information System (INIS)

    Michalek, J.

    2009-01-01

    'It is human to make errors!' This saying of our predecessors is still current and will continue to be valid also in the future, until human is a human. Errors cannot be completely eliminated from human activities. In average human makes two simple errors in one hour. For example, how many typing errors do we make while typing on the computer keyboard? How many times we make mistakes in writing the date in the first days of a new year? These errors have no major consequences, however, in certain situations errors of humans are very unpleasant and may be also very costly, they may even endanger human lives. (author)

  10. Analysis of errors of radiation relay, (1)

    International Nuclear Information System (INIS)

    Koyanagi, Takami; Nakajima, Sinichi

    1976-01-01

    The statistical error of liquid level controlled by radiation relay is analysed and a method of minimizing the error is proposed. This method comes to the problem of optimum setting of the time constant of radiation relay. The equations for obtaining the value of time constant are presented and the numerical results are shown in a table and plotted in a figure. The optimum time constant of the upper level control relay is entirely different from that of the lower level control relay. (auth.)

  11. Mitigation of Grid Current Distortion for LCL-Filtered Voltage Source Inverter with Inverter Current Feedback Control

    DEFF Research Database (Denmark)

    Xin, Zhen; Mattavelli, Paolo; Yao, WenLi

    2018-01-01

    LCL filters feature low inductance; thus, the injected grid current from an LCL-filtered Voltage Source Inverter (VSI) can be easily distorted by grid voltage harmonics. This problem is especially tough for the control system with Inverter-side Current Feedback (ICF), since the grid current...... harmonics can freely flow into the filter capacitor. In this case, because of the loss of harmonic information, traditional harmonic controllers fail to mitigate the grid current distortion. Although this problem may be avoided using the grid voltage feedforward scheme, the required differentiators may...

  12. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    Science.gov (United States)

    Griffiths, Lauren; Higham, Philip A

    2018-02-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  13. Nursing Errors in Intensive Care Unit by Human Error Identification in Systems Tool: A Case Study

    Directory of Open Access Journals (Sweden)

    Nezamodini

    2016-03-01

    Full Text Available Background Although health services are designed and implemented to improve human health, the errors in health services are a very common phenomenon and even sometimes fatal in this field. Medical errors and their cost are global issues with serious consequences for the patients’ community that are preventable and require serious attention. Objectives The current study aimed to identify possible nursing errors applying human error identification in systems tool (HEIST in the intensive care units (ICUs of hospitals. Patients and Methods This descriptive research was conducted in the intensive care unit of a hospital in Khuzestan province in 2013. Data were collected through observation and interview by nine nurses in this section in a period of four months. Human error classification was based on Rose and Rose and Swain and Guttmann models. According to HEIST work sheets the guide questions were answered and error causes were identified after the determination of the type of errors. Results In total 527 errors were detected. The performing operation on the wrong path had the highest frequency which was 150, and the second rate with a frequency of 136 was doing the tasks later than the deadline. Management causes with a frequency of 451 were the first rank among identified errors. Errors mostly occurred in the system observation stage and among the performance shaping factors (PSFs, time was the most influencing factor in occurrence of human errors. Conclusions Finally, in order to prevent the occurrence and reduce the consequences of identified errors the following suggestions were proposed : appropriate training courses, applying work guidelines and monitoring their implementation, increasing the number of work shifts, hiring professional workforce, equipping work space with appropriate facilities and equipment.

  14. Error Sonification of a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Riener Robert

    2011-12-01

    Full Text Available Visual information is mainly used to master complex motor tasks. Thus, additional information providing augmented feedback should be displayed in other modalities than vision, e.g. hearing. The present work evaluated the potential of error sonification to enhance learning of a rowing-type motor task. In contrast to a control group receiving self-controlled terminal feedback, the experimental group could not significantly reduce spatial errors. Thus, motor learning was not enhanced by error sonification, although during the training the participant could benefit from it. It seems that the motor task was too slow, resulting in immediate corrections of the movement rather than in an internal representation of the general characteristics of the motor task. Therefore, further studies should elaborate the impact of error sonification when general characteristics of the motor tasks are already known.

  15. Introduction to precision machine design and error assessment

    CERN Document Server

    Mekid, Samir

    2008-01-01

    While ultra-precision machines are now achieving sub-nanometer accuracy, unique challenges continue to arise due to their tight specifications. Written to meet the growing needs of mechanical engineers and other professionals to understand these specialized design process issues, Introduction to Precision Machine Design and Error Assessment places a particular focus on the errors associated with precision design, machine diagnostics, error modeling, and error compensation. Error Assessment and ControlThe book begins with a brief overview of precision engineering and applications before introdu

  16. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Science.gov (United States)

    Spüler, Martin; Niethammer, Christian

    2015-01-01

    When a person recognizes an error during a task, an error-related potential (ErrP) can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback. With this study, we wanted to answer three different questions: (i) Can ErrPs be measured in electroencephalography (EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action). We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible. Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG. PMID:25859204

  17. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Directory of Open Access Journals (Sweden)

    Martin eSpüler

    2015-03-01

    Full Text Available When a person recognizes an error during a task, an error-related potential (ErrP can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback.With this study, we wanted to answer three different questions: (i Can ErrPs be measured in electroencephalography (EEG recordings during a task with continuous cursor control? (ii Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action. We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible.Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

  18. New Approaches to Circulating Current Controllers for Modular Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Miguel Moranchel

    2017-01-01

    Full Text Available In the next years, modular multilevel converters (MMCs are going to be a next generation multilevel converters for medium to high voltage conversion applications, such as medium voltage motor drives, medium voltage flexible AC transmission systems (FACTS and high voltage direct current transmission. They provide advantages such as high modularity, availability, low generation of harmonics, etc. However, the circulating current distorts the leg currents and increases the rated current of power devices, which further increases system cost. This paper focuses on analysis and suppression of these currents in a MMC using two algorithms for tracking of harmonics. For this work resonant controllers and repetitive controllers have been selected. Both controllers are analyzed and simulations results are presented. Moreover, the controllers have been tested and validated for a three phase MMC operating as an inverter using a real processing platform based on Zynq by Xilinx and designed to control large multilevel converters and in a real MMC prototype. These results are provided to demonstrate the feasibility of the proposed method.

  19. Proportional-Resonant Controllers. A New Breed of Controllers Suitable for Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    This paper is describing the recently introduced proportional-resonant (PR) controllers and their suitability for grid-connected converters current control. It is shown that the known shortcomings associated with PI controllers like steady - state error for single-phase converters and the need...... of decoupling for three-phase converters can be alleviated. Additionally, selective harmonic compensation is also possible with PR controllers. Suggested control-diagrams for three-phase grid converters and active filters are also presented. A practical application of PR current control for a photovoltaic (PV...

  20. Error-finding and error-correcting methods for the start-up of the SLC

    International Nuclear Information System (INIS)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.; Selig, L.J.

    1987-02-01

    During the commissioning of an accelerator, storage ring, or beam transfer line, one of the important tasks of an accelertor physicist is to check the first-order optics of the beam line and to look for errors in the system. Conceptually, it is important to distinguish between techniques for finding the machine errors that are the cause of the problem and techniques for correcting the beam errors that are the result of the machine errors. In this paper we will limit our presentation to certain applications of these two methods for finding or correcting beam-focus errors and beam-kick errors that affect the profile and trajectory of the beam respectively. Many of these methods have been used successfully in the commissioning of SLC systems. In order not to waste expensive beam time we have developed and used a beam-line simulator to test the ideas that have not been tested experimentally. To save valuable physicist's time we have further automated the beam-kick error-finding procedures by adopting methods from the field of artificial intelligence to develop a prototype expert system. Our experience with this prototype has demonstrated the usefulness of expert systems in solving accelerator control problems. The expert system is able to find the same solutions as an expert physicist but in a more systematic fashion. The methods used in these procedures and some of the recent applications will be described in this paper

  1. Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-02-01

    Full Text Available This paper studies a frequency-controlled current-fed resonant circuit. The adopted direct current (DC-to-DC converter contains two boost circuits and a resonant circuit on the primary side. First, two boost circuits are connected in parallel to achieve voltage step-up and reduce input ripple current by using interleaved pulse-width modulation. Therefore, the size and current rating of boost inductors are decreased in the proposed converter. Second, the boost voltage is connected to the resonant circuit to realize the mechanism of the zero-voltage switching of all active switches and zero-current switching of all diodes. Two boost circuits and a resonant circuit use the same power devices in order to lessen the switch counts. The voltage doubler topology is adopted on the secondary side (high-voltage side. Therefore, the voltage rating of diodes on the high-voltage side is clamped at output voltage. The feasibility of the studied circuit is confirmed by the experimental tests with a 1 kW prototype circuit.

  2. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...

  3. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-03-01

    The purpose of this paper is to demonstrate a statistical method for verifying superconducting wire process stability as represented by I c . The paper does not propose changing the I c testing frequency for wire during Phase 1 of the present Vendor Qualification Program. The actual statistical limits demonstrated for one supplier's data are not expected to be suitable for all suppliers. However, the method used to develop the limits and the potential for improved process through their use, may be applied equally. Implementing the demonstrated method implies that the current practice of testing all pieces of wire from each billet, for the purpose of detecting manufacturing process errors (i.e. missing a heat-treatment cycle for a part of the billet, etc.) can be replaced by other less costly process control measures. As used in this paper process control limits for critical current are quantitative indicators of the source manufacturing process uniformity. The limits serve as alarms indicating the need for manufacturing process investigation

  4. Propagation of resist heating mask error to wafer level

    Science.gov (United States)

    Babin, S. V.; Karklin, Linard

    2006-10-01

    As technology is approaching 45 nm and below the IC industry is experiencing a severe product yield hit due to rapidly shrinking process windows and unavoidable manufacturing process variations. Current EDA tools are unable by their nature to deliver optimized and process-centered designs that call for 'post design' localized layout optimization DFM tools. To evaluate the impact of different manufacturing process variations on final product it is important to trace and evaluate all errors through design to manufacturing flow. Photo mask is one of the critical parts of this flow, and special attention should be paid to photo mask manufacturing process and especially to mask tight CD control. Electron beam lithography (EBL) is a major technique which is used for fabrication of high-end photo masks. During the writing process, resist heating is one of the sources for mask CD variations. Electron energy is released in the mask body mainly as heat, leading to significant temperature fluctuations in local areas. The temperature fluctuations cause changes in resist sensitivity, which in turn leads to CD variations. These CD variations depend on mask writing speed, order of exposure, pattern density and its distribution. Recent measurements revealed up to 45 nm CD variation on the mask when using ZEP resist. The resist heating problem with CAR resists is significantly smaller compared to other types of resists. This is partially due to higher resist sensitivity and the lower exposure dose required. However, there is no data yet showing CD errors on the wafer induced by CAR resist heating on the mask. This effect can be amplified by high MEEF values and should be carefully evaluated at 45nm and below technology nodes where tight CD control is required. In this paper, we simulated CD variation on the mask due to resist heating; then a mask pattern with the heating error was transferred onto the wafer. So, a CD error on the wafer was evaluated subject to only one term of the

  5. [Event-related EEG potentials associated with error detection in psychiatric disorder: literature review].

    Science.gov (United States)

    Balogh, Lívia; Czobor, Pál

    2010-01-01

    Error-related bioelectric signals constitute a special subgroup of event-related potentials. Researchers have identified two evoked potential components to be closely related to error processing, namely error-related negativity (ERN) and error-positivity (Pe), and they linked these to specific cognitive functions. In our article first we give a brief description of these components, then based on the available literature, we review differences in error-related evoked potentials observed in patients across psychiatric disorders. The PubMed and Medline search engines were used in order to identify all relevant articles, published between 2000 and 2009. For the purpose of the current paper we reviewed publications summarizing results of clinical trials. Patients suffering from schizophrenia, anorexia nervosa or borderline personality disorder exhibited a decrease in the amplitude of error-negativity when compared with healthy controls, while in cases of depression and anxiety an increase in the amplitude has been observed. Some of the articles suggest specific personality variables, such as impulsivity, perfectionism, negative emotions or sensitivity to punishment to underlie these electrophysiological differences. Research in the field of error-related electric activity has come to the focus of psychiatry research only recently, thus the amount of available data is significantly limited. However, since this is a relatively new field of research, the results available at present are noteworthy and promising for future electrophysiological investigations in psychiatric disorders.

  6. Generalized space vector control for current source inverters and rectifiers

    Directory of Open Access Journals (Sweden)

    Roseline J. Anitha

    2016-06-01

    Full Text Available Current source inverters (CSI is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI are dealt in this paper. As space vector pulse width modulation (SVPWM features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.

  7. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  8. Brain mechanisms of self-control: A neurocognitive investigation of reward-based action control and error awareness

    NARCIS (Netherlands)

    Harsay, H.A.

    2014-01-01

    Motivation and the ability to detect errors are critical for the interaction with our environment. They provide us with the opportunity to engage in purposive, persistent and corrective behavior, and to take the consequences of our actions into account. Diminished motivation and error awareness have

  9. A unified grid current control for grid-interactive DG inverters in microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittan...... locus analyses in the discrete z-domain are performed for elaborating the controller design. Simulations and experimental results demonstrate the performances of the proposed approach.......This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittance...... in the outer loop. It, therefore, provides several superior features over traditional control schemes: 1) high-quality grid current in the grid-connected mode, 2) inherent derivative-less virtual output impedance control, and 3) the unified active damping for both grid-connected and islanded operations. Root...

  10. L2 Spelling Errors in Italian Children with Dyslexia.

    Science.gov (United States)

    Palladino, Paola; Cismondo, Dhebora; Ferrari, Marcella; Ballagamba, Isabella; Cornoldi, Cesare

    2016-05-01

    The present study aimed to investigate L2 spelling skills in Italian children by administering an English word dictation task to 13 children with dyslexia (CD), 13 control children (comparable in age, gender, schooling and IQ) and a group of 10 children with an English learning difficulty, but no L1 learning disorder. Patterns of difficulties were examined for accuracy and type of errors, in spelling dictated short and long words (i.e. disyllables and three syllables). Notably, CD were poor in spelling English words. Furthermore, their errors were mainly related with phonological representation of words, as they made more 'phonologically' implausible errors than controls. In addition, CD errors were more frequent for short than long words. Conversely, the three groups did not differ in the number of plausible ('non-phonological') errors, that is, words that were incorrectly written, but whose reading could correspond to the dictated word via either Italian or English rules. Error analysis also showed syllable position differences in the spelling patterns of CD, children with and English learning difficulty and control children. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Learning from Errors: An Exploratory Study Among Dutch Auditors

    NARCIS (Netherlands)

    Gold, A.H.; van Mourik, O.; Van Dyck, Cathy; Wallage, P.

    2017-01-01

    Despite the presence of substantial quality control measures present at audit firms, results from regulator inspections suggest that auditors make errors during their work. According to the error management literature, even though errors often lead to negative immediate consequences, they also offer

  12. Learning from Errors: An Exploratory Study Among Dutch Auditors

    NARCIS (Netherlands)

    Gold, A.H.; Van Dyck, Cathy; Wallage, P.

    Despite the presence of substantial quality control measures present at audit firms, results from regulator inspections suggest that auditors make errors during their work. According to the error management literature, even though errors often lead to negative immediate consequences, they also offer

  13. Learning from Errors: An Exploratory Study Among Dutch Auditors

    NARCIS (Netherlands)

    Gold, A.H.; Van Dyck, Cathy; Wallage, P.

    2016-01-01

    Despite the presence of substantial quality control measures present at audit firms, results from regulator inspections suggest that auditors make errors during their work. According to the error management literature, even though errors often lead to negative immediate consequences, they also offer

  14. A New Tuning Method of Multi-Resonant Current Controllers for Grid-Connected Voltage Source Converters

    DEFF Research Database (Denmark)

    Xie, Chuan; Zhao, Xin; Li, Kai

    2018-01-01

    Resonant controllers (RSCs) are widely adopted for controlling power converters since they can track AC signals of both positive and negative sequences without steady-state error. However, the performance of RSCs has not been fully exploited due to the improper phase compensation angle and insuff...

  15. [Medication errors in a hospital emergency department: study of the current situation and critical points for improving patient safety].

    Science.gov (United States)

    Pérez-Díez, Cristina; Real-Campaña, José Manuel; Noya-Castro, María Carmen; Andrés-Paricio, Felicidad; Reyes Abad-Sazatornil, María; Bienvenido Povar-Marco, Javier

    2017-01-01

    To determine the frequency of medication errors and incident types in a tertiary-care hospital emergency department. To quantify and classify medication errors and identify critical points where measures should be implemented to improve patient safety. Prospective direct-observation study to detect errors made in June and July 2016. The overall error rate was 23.7%. The most common errors were made while medications were administered (10.9%). We detected 1532 incidents: 53.6% on workdays (P=.001), 43.1% during the afternoon/evening shift (P=.004), and 43.1% in observation areas (P=.004). The medication error rate was significant. Most errors and incidents occurred during the afternoon/evening shift and in the observation area. Most errors were related to administration of medications.

  16. Generalizing human error rates: A taxonomic approach

    International Nuclear Information System (INIS)

    Buffardi, L.; Fleishman, E.; Allen, J.

    1989-01-01

    It is well established that human error plays a major role in malfunctioning of complex, technological systems and in accidents associated with their operation. Estimates of the rate of human error in the nuclear industry range from 20-65% of all system failures. In response to this, the Nuclear Regulatory Commission has developed a variety of techniques for estimating human error probabilities for nuclear power plant personnel. Most of these techniques require the specification of the range of human error probabilities for various tasks. Unfortunately, very little objective performance data on error probabilities exist for nuclear environments. Thus, when human reliability estimates are required, for example in computer simulation modeling of system reliability, only subjective estimates (usually based on experts' best guesses) can be provided. The objective of the current research is to provide guidelines for the selection of human error probabilities based on actual performance data taken in other complex environments and applying them to nuclear settings. A key feature of this research is the application of a comprehensive taxonomic approach to nuclear and non-nuclear tasks to evaluate their similarities and differences, thus providing a basis for generalizing human error estimates across tasks. In recent years significant developments have occurred in classifying and describing tasks. Initial goals of the current research are to: (1) identify alternative taxonomic schemes that can be applied to tasks, and (2) describe nuclear tasks in terms of these schemes. Three standardized taxonomic schemes (Ability Requirements Approach, Generalized Information-Processing Approach, Task Characteristics Approach) are identified, modified, and evaluated for their suitability in comparing nuclear and non-nuclear power plant tasks. An agenda for future research and its relevance to nuclear power plant safety is also discussed

  17. Control of the current density profile with lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1

  18. DC-Compensated Current Transformer †

    Science.gov (United States)

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  19. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  20. Use of historical control data for assessing treatment effects in clinical trials

    Science.gov (United States)

    Viele, Kert; Berry, Scott; Neuenschwander, Beat; Amzal, Billy; Chen, Fang; Enas, Nathan; Hobbs, Brian; Ibrahim, Joseph G.; Kinnersley, Nelson; Lindborg, Stacy; Micallef, Sandrine; Roychoudhury, Satrajit; Thompson, Laura

    2014-01-01

    Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts of clinical data are available prior to the start of a study, particularly on the current study’s control arm. There is obvious appeal in using (i.e., ‘borrowing’) this information. With historical data providing information on the control arm, more trial resources can be devoted to the novel treatment while retaining accurate estimates of the current control arm parameters. This can result in more accurate point estimates, increased power, and reduced type I error in clinical trials, provided the historical information is sufficiently similar to the current control data. If this assumption of similarity is not satisfied, however, one can acquire increased mean square error of point estimates due to bias and either reduced power or increased type I error depending on the direction of the bias. In this manuscript, we review several methods for historical borrowing, illustrating how key parameters in each method affect borrowing behavior, and then, we compare these methods on the basis of mean square error, power and type I error. We emphasize two main themes. First, we discuss the idea of ‘dynamic’ (versus ‘static’) borrowing. Second, we emphasize the decision process involved in determining whether or not to include historical borrowing in terms of the perceived likelihood that the current control arm is sufficiently similar to the historical data. Our goal is to provide a clear review of the key issues involved in historical borrowing and provide a comparison of several methods useful for practitioners. PMID:23913901

  1. Use of historical control data for assessing treatment effects in clinical trials.

    Science.gov (United States)

    Viele, Kert; Berry, Scott; Neuenschwander, Beat; Amzal, Billy; Chen, Fang; Enas, Nathan; Hobbs, Brian; Ibrahim, Joseph G; Kinnersley, Nelson; Lindborg, Stacy; Micallef, Sandrine; Roychoudhury, Satrajit; Thompson, Laura

    2014-01-01

    Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts of clinical data are available prior to the start of a study, particularly on the current study's control arm. There is obvious appeal in using (i.e., 'borrowing') this information. With historical data providing information on the control arm, more trial resources can be devoted to the novel treatment while retaining accurate estimates of the current control arm parameters. This can result in more accurate point estimates, increased power, and reduced type I error in clinical trials, provided the historical information is sufficiently similar to the current control data. If this assumption of similarity is not satisfied, however, one can acquire increased mean square error of point estimates due to bias and either reduced power or increased type I error depending on the direction of the bias. In this manuscript, we review several methods for historical borrowing, illustrating how key parameters in each method affect borrowing behavior, and then, we compare these methods on the basis of mean square error, power and type I error. We emphasize two main themes. First, we discuss the idea of 'dynamic' (versus 'static') borrowing. Second, we emphasize the decision process involved in determining whether or not to include historical borrowing in terms of the perceived likelihood that the current control arm is sufficiently similar to the historical data. Our goal is to provide a clear review of the key issues involved in historical borrowing and provide a comparison of several methods useful for practitioners. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Disturbance estimator based predictive current control of grid-connected inverters

    OpenAIRE

    Al-Khafaji, Ahmed Samawi Ghthwan

    2013-01-01

    ABSTRACT: The work presented in my thesis considers one of the modern discrete-time control approaches based on digital signal processing methods, that have been developed to improve the performance control of grid-connected three-phase inverters. Disturbance estimator based predictive current control of grid-connected inverters is proposed. For inverter modeling with respect to the design of current controllers, we choose the d-q synchronous reference frame to make it easier to understand an...

  3. Factors controlling volume errors through 2D gully erosion assessment: guidelines for optimal survey design

    Science.gov (United States)

    Castillo, Carlos; Pérez, Rafael

    2017-04-01

    The assessment of gully erosion volumes is essential for the quantification of soil losses derived from this relevant degradation process. Traditionally, 2D and 3D approaches has been applied for this purpose (Casalí et al., 2006). Although innovative 3D approaches have recently been proposed for gully volume quantification, a renewed interest can be found in literature regarding the useful information that cross-section analysis still provides in gully erosion research. Moreover, the application of methods based on 2D approaches can be the most cost-effective approach in many situations such as preliminary studies with low accuracy requirements or surveys under time or budget constraints. The main aim of this work is to examine the key factors controlling volume error variability in 2D gully assessment by means of a stochastic experiment involving a Monte Carlo analysis over synthetic gully profiles in order to 1) contribute to a better understanding of the drivers and magnitude of gully erosion 2D-surveys uncertainty and 2) provide guidelines for optimal survey designs. Owing to the stochastic properties of error generation in 2D volume assessment, a statistical approach was followed to generate a large and significant set of gully reach configurations to evaluate quantitatively the influence of the main factors controlling the uncertainty of the volume assessment. For this purpose, a simulation algorithm in Matlab® code was written, involving the following stages: - Generation of synthetic gully area profiles with different degrees of complexity (characterized by the cross-section variability) - Simulation of field measurements characterised by a survey intensity and the precision of the measurement method - Quantification of the volume error uncertainty as a function of the key factors In this communication we will present the relationships between volume error and the studied factors and propose guidelines for 2D field surveys based on the minimal survey

  4. ERROR HANDLING IN INTEGRATION WORKFLOWS

    Directory of Open Access Journals (Sweden)

    Alexey M. Nazarenko

    2017-01-01

    Full Text Available Simulation experiments performed while solving multidisciplinary engineering and scientific problems require joint usage of multiple software tools. Further, when following a preset plan of experiment or searching for optimum solu- tions, the same sequence of calculations is run multiple times with various simulation parameters, input data, or conditions while overall workflow does not change. Automation of simulations like these requires implementing of a workflow where tool execution and data exchange is usually controlled by a special type of software, an integration environment or plat- form. The result is an integration workflow (a platform-dependent implementation of some computing workflow which, in the context of automation, is a composition of weakly coupled (in terms of communication intensity typical subtasks. These compositions can then be decomposed back into a few workflow patterns (types of subtasks interaction. The pat- terns, in their turn, can be interpreted as higher level subtasks.This paper considers execution control and data exchange rules that should be imposed by the integration envi- ronment in the case of an error encountered by some integrated software tool. An error is defined as any abnormal behavior of a tool that invalidates its result data thus disrupting the data flow within the integration workflow. The main requirementto the error handling mechanism implemented by the integration environment is to prevent abnormal termination of theentire workflow in case of missing intermediate results data. Error handling rules are formulated on the basic pattern level and on the level of a composite task that can combine several basic patterns as next level subtasks. The cases where workflow behavior may be different, depending on user's purposes, when an error takes place, and possible error handling op- tions that can be specified by the user are also noted in the work.

  5. Error-related negativity and tic history in pediatric obsessive-compulsive disorder.

    Science.gov (United States)

    Hanna, Gregory L; Carrasco, Melisa; Harbin, Shannon M; Nienhuis, Jenna K; LaRosa, Christina E; Chen, Poyu; Fitzgerald, Kate D; Gehring, William J

    2012-09-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential after an incorrect response, which is often increased in patients with obsessive-compulsive disorder (OCD). However, the relation of the ERN to comorbid tic disorders has not been examined in patients with OCD. This study compared ERN amplitudes in patients with tic-related OCD, patients with non-tic-related OCD, and healthy controls. The ERN, correct response negativity, and error number were measured during an Eriksen flanker task to assess performance monitoring in 44 youth with a lifetime diagnosis of OCD and 44 matched healthy controls ranging in age from 10 to 19 years. Nine youth with OCD had a lifetime history of tics. ERN amplitude was significantly increased in patients with OCD compared with healthy controls. ERN amplitude was significantly larger in patients with non-tic-related OCD than in patients with tic-related OCD or controls. ERN amplitude had a significant negative correlation with age in healthy controls but not in patients with OCD. Instead, in patients with non-tic-related OCD, ERN amplitude had a significant positive correlation with age at onset of OCD symptoms. ERN amplitude in patients was unrelated to OCD symptom severity, current diagnostic status, or treatment effects. The results provide further evidence of increased error-related brain activity in pediatric OCD. The difference in the ERN between patients with tic-related and those with non-tic-related OCD provides preliminary evidence of a neurobiological difference between these two OCD subtypes. The results indicate the ERN is a trait-like measurement that may serve as a biomarker for non-tic-related OCD. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Current developments in bovine mastitis treatment and control.

    Science.gov (United States)

    Wager, L A; Linquist, W E; Hayes, G L; Britten, A M; Whitehead, R G; Webster, D E; Barnes, F D

    1978-01-01

    Mastitis in its complexity has managed to forestall all efforts of eradication in spite of years of research, antibiotics and practical control measures. This minisymposium will touch on seven topics current to treatment and control of this economically important disease.

  7. Data Analysis & Statistical Methods for Command File Errors

    Science.gov (United States)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.

  8. A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions

    Science.gov (United States)

    Exl, Lukas

    2017-12-01

    An efficient solver for the three dimensional free-space Poisson equation is presented. The underlying numerical method is based on finite Fourier series approximation. While the error of all involved approximations can be fully controlled, the overall computation error is driven by the convergence of the finite Fourier series of the density. For smooth and fast-decaying densities the proposed method will be spectrally accurate. The method scales with O(N log N) operations, where N is the total number of discretization points in the Cartesian grid. The majority of the computational costs come from fast Fourier transforms (FFT), which makes it ideal for GPU computation. Several numerical computations on CPU and GPU validate the method and show efficiency and convergence behavior. Tests are performed using the Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is provided to the interested community.

  9. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    Directory of Open Access Journals (Sweden)

    Xingwu Zhang

    2016-01-01

    Full Text Available Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT is used and no Inverse Fast Fourier Transform (IFFT is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

  10. Error-Related Negativity and Tic History in Pediatric Obsessive-Compulsive Disorder (OCD)

    Science.gov (United States)

    Hanna, Gregory L.; Carrasco, Melisa; Harbin, Shannon M.; Nienhuis, Jenna K.; LaRosa, Christina E.; Chen, Poyu; Fitzgerald, Kate D.; Gehring, William J.

    2012-01-01

    Objective The error-related negativity (ERN) is a negative deflection in the event-related potential following an incorrect response, which is often increased in patients with obsessive-compulsive disorder (OCD). However, the relationship of the ERN to comorbid tic disorders has not been examined in patients with OCD. This study compared ERN amplitudes in patients with tic-related OCD, patients with non-tic-related OCD, and healthy controls. Method The ERN, correct response negativity, and error number were measured during an Eriksen flanker task to assess performance monitoring in 44 youth with a lifetime diagnosis of OCD and 44 matched healthy controls ranging in age from 10 to 19 years. Nine youth with OCD had a lifetime history of tics. Results ERN amplitudewas significantly increased in OCD patients compared to healthy controls. ERN amplitude was significantly larger in patients with non-tic-related OCD than either patients with tic-related OCD or controls. ERN amplitude had a significant negative correlation with age in healthy controls but not patients with OCD. Instead, in patients with non-tic-related OCD, ERN amplitude had a significant positive correlation with age at onset of OCD symptoms. ERN amplitude in patients was unrelated to OCD symptom severity, current diagnostic status, or treatment effects. Conclusions The results provide further evidence of increased error-related brain activity in pediatric OCD. The difference in the ERN between patients with tic-related and non-tic-related OCD provides preliminary evidence of a neurobiological difference between these two OCD subtypes. The results indicate the ERN is a trait-like measure that may serve as a biomarker for non-tic-related OCD. PMID:22917203

  11. Tutorial on beam current monitoring

    International Nuclear Information System (INIS)

    Webber, Robert C.

    2000-01-01

    This paper is a tutorial level review covering a wide range of aspects related to charged particle beam current measurement. The tutorial begins with a look at the characteristics of the beam as a signal source, the associated electromagnetic fields, the influence of the typical accelerator environment on those fields, and the usual means of modifying and controlling that environment to facilitate beam current measurement. Short descriptions of three quite different types of current monitors are presented and a quantitative review of the classical transformer circuit is given. Recognizing that environmental noise pick-up may present a large source of error in quantitative measurements, signal handling considerations are given considerable attention using real-life examples. An example of a successful transport line beam current monitor implementation is presented and the tutorial concludes with a few comments about signal processing and current monitor calibration issues

  12. Drought Persistence Errors in Global Climate Models

    Science.gov (United States)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  13. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  14. Errors as a Means of Reducing Impulsive Food Choice.

    Science.gov (United States)

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2016-06-05

    Nowadays, the increasing incidence of eating disorders due to poor self-control has given rise to increased obesity and other chronic weight problems, and ultimately, to reduced life expectancy. The capacity to refrain from automatic responses is usually high in situations in which making errors is highly likely. The protocol described here aims at reducing imprudent preference in women during hypothetical intertemporal choices about appetitive food by associating it with errors. First, participants undergo an error task where two different edible stimuli are associated with two different error likelihoods (high and low). Second, they make intertemporal choices about the two edible stimuli, separately. As a result, this method decreases the discount rate for future amounts of the edible reward that cued higher error likelihood, selectively. This effect is under the influence of the self-reported hunger level. The present protocol demonstrates that errors, well known as motivationally salient events, can induce the recruitment of cognitive control, thus being ultimately useful in reducing impatient choices for edible commodities.

  15. Harmonic current control for LCL-filtered VSCs connected to ultra-weak grids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Yang, Dongsheng; Blaabjerg, Frede

    2017-01-01

    This paper addresses the harmonic current control for LCL-filtered Voltage-Source Converters (VSCs) connected to ultra-weak (high-impedance) grids. It is shown that the harmonic current controllers tend to be unstable as the Short-Circuit Ratio (SCR) of the system reduces. An active stabilizing...... control scheme is thus proposed by feeding back the filter capacitor voltage and the converter-side current. The method not only stabilizes the harmonic current control with a wide range of SCR values, but also mitigates harmonic distortions in the grid-side current of the VSC. The stabilizing mechanism...

  16. Estimation of chromatic errors from broadband images for high contrast imaging

    Science.gov (United States)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  17. A Comparative Study of Voltage, Peak Current and Dual Current Mode Control Methods for Noninverting Buck-Boost Converter

    Directory of Open Access Journals (Sweden)

    M. Č. Bošković

    2016-06-01

    Full Text Available This paper presents a comparison of voltage mode control (VMC and two current mode control (CMC methods of noninverting buck-boost converter. The converter control-to-output transfer function, line-to-output transfer function and the output impedance are obtained for all methods by averaging converter equations over one switching period and applying small-signal linearization. The obtained results are required for the design procedure of feedback compensator to keep a system stable and robust. A comparative study of VMC, peak current mode control (PCMC and dual-current mode control (DCMC is performed. Performance evaluation of the closed-loop system with obtained compensator between these methods is performed via numerical simulations.

  18. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    International Nuclear Information System (INIS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-01-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s −1 0.005% s −1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class. (paper)

  19. Current applications of optimal estimation and control theory to the LOFT reactor plant

    International Nuclear Information System (INIS)

    Feeley, J.J.; Tylee, J.L.

    1980-01-01

    Two advanced estimation and control systems being developed for the LOFT reactor plant are described and evaluated. The advanced protection system, based on a Kalman filter estimator is capable of providing on-line estimates of such critical variables as fuel and cladding temperature, DNBR, and LHGR. The steam generator LQG control system provides stable, closed-loop, zero steady state error control over a wide power range and also provides on-line estimates of certain unmeasureable variables as steam generator power output and cooling capacity for operator information

  20. Locked modes and magnetic field errors in MST

    International Nuclear Information System (INIS)

    Almagri, A.F.; Assadi, S.; Prager, S.C.; Sarff, J.S.; Kerst, D.W.

    1992-06-01

    In the MST reversed field pinch magnetic oscillations become stationary (locked) in the lab frame as a result of a process involving interactions between the modes, sawteeth, and field errors. Several helical modes become phase locked to each other to form a rotating localized disturbance, the disturbance locks to an impulsive field error generated at a sawtooth crash, the error fields grow monotonically after locking (perhaps due to an unstable interaction between the modes and field error), and over the tens of milliseconds of growth confinement degrades and the discharge eventually terminates. Field error control has been partially successful in eliminating locking

  1. Did I Do That? Expectancy Effects of Brain Stimulation on Error-related Negativity and Sense of Agency.

    Science.gov (United States)

    Hoogeveen, Suzanne; Schjoedt, Uffe; van Elk, Michiel

    2018-06-19

    This study examines the effects of expected transcranial stimulation on the error(-related) negativity (Ne or ERN) and the sense of agency in participants who perform a cognitive control task. Placebo transcranial direct current stimulation was used to elicit expectations of transcranially induced cognitive improvement or impairment. The improvement/impairment manipulation affected both the Ne/ERN and the sense of agency (i.e., whether participants attributed errors to oneself or the brain stimulation device): Expected improvement increased the ERN in response to errors compared with both impairment and control conditions. Expected impairment made participants falsely attribute errors to the transcranial stimulation. This decrease in sense of agency was correlated with a reduced ERN amplitude. These results show that expectations about transcranial stimulation impact users' neural response to self-generated errors and the attribution of responsibility-especially when actions lead to negative outcomes. We discuss our findings in relation to predictive processing theory according to which the effect of prior expectations on the ERN reflects the brain's attempt to generate predictive models of incoming information. By demonstrating that induced expectations about transcranial stimulation can have effects at a neural level, that is, beyond mere demand characteristics, our findings highlight the potential for placebo brain stimulation as a promising tool for research.

  2. Feedback control of current drive by using hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Wijnands, T.J.; CEA Centre d'Etudes de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author)

  3. Eliminating US hospital medical errors.

    Science.gov (United States)

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  4. A current controlled variable delay superconducting transmission line

    International Nuclear Information System (INIS)

    Anlage, S.M.; Snortland, H.J.; Beasley, M.R.

    1989-01-01

    The authors present a device concept for a current-controlled variable delay for superconducting transmission line. The device makes use of the change in kinetic inductance of a superconducting transmission line under the application of a DC bias current. The relevant materials parameters and several promising superconducting materials have been identified

  5. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  6. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    Science.gov (United States)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  7. Neurochemical enhancement of conscious error awareness.

    Science.gov (United States)

    Hester, Robert; Nandam, L Sanjay; O'Connell, Redmond G; Wagner, Joe; Strudwick, Mark; Nathan, Pradeep J; Mattingley, Jason B; Bellgrove, Mark A

    2012-02-22

    How the brain monitors ongoing behavior for performance errors is a central question of cognitive neuroscience. Diminished awareness of performance errors limits the extent to which humans engage in corrective behavior and has been linked to loss of insight in a number of psychiatric syndromes (e.g., attention deficit hyperactivity disorder, drug addiction). These conditions share alterations in monoamine signaling that may influence the neural mechanisms underlying error processing, but our understanding of the neurochemical drivers of these processes is limited. We conducted a randomized, double-blind, placebo-controlled, cross-over design of the influence of methylphenidate, atomoxetine, and citalopram on error awareness in 27 healthy participants. The error awareness task, a go/no-go response inhibition paradigm, was administered to assess the influence of monoaminergic agents on performance errors during fMRI data acquisition. A single dose of methylphenidate, but not atomoxetine or citalopram, significantly improved the ability of healthy volunteers to consciously detect performance errors. Furthermore, this behavioral effect was associated with a strengthening of activation differences in the dorsal anterior cingulate cortex and inferior parietal lobe during the methylphenidate condition for errors made with versus without awareness. Our results have implications for the understanding of the neurochemical underpinnings of performance monitoring and for the pharmacological treatment of a range of disparate clinical conditions that are marked by poor awareness of errors.

  8. Errors in practical measurement in surveying, engineering, and technology

    International Nuclear Information System (INIS)

    Barry, B.A.; Morris, M.D.

    1991-01-01

    This book discusses statistical measurement, error theory, and statistical error analysis. The topics of the book include an introduction to measurement, measurement errors, the reliability of measurements, probability theory of errors, measures of reliability, reliability of repeated measurements, propagation of errors in computing, errors and weights, practical application of the theory of errors in measurement, two-dimensional errors and includes a bibliography. Appendices are included which address significant figures in measurement, basic concepts of probability and the normal probability curve, writing a sample specification for a procedure, classification, standards of accuracy, and general specifications of geodetic control surveys, the geoid, the frequency distribution curve and the computer and calculator solution of problems

  9. A Harmonic Current Suppression Control Strategy for Droop-Controlled Inverter Connected to the Distorted Grid

    DEFF Research Database (Denmark)

    Wei, Feng; Sun, Kai; Guan, Yajuan

    2015-01-01

    currents. Therefore, the reason of generation of distorted grid-feeding current of GF-VCI under the distorted grid voltage is investigated firstly in this paper. Then, a harmonic grid-feeding current suppression control strategy for GF-VCI is proposed. Two different filters are compared and analysed before...... voltage component at the point of common coupling. As a result, the difference of harmonic voltage between PCC and GF-VCI is reduced and the THDi of grid feeding-currents is decreased. Finally, the proposed control strategy is verified through simulations and experimental results....

  10. Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael

    2009-01-01

    Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well....

  11. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    Science.gov (United States)

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  12. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    Science.gov (United States)

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  13. Friendship at work and error disclosure

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Mao

    2017-10-01

    Full Text Available Organizations rely on contextual factors to promote employee disclosure of self-made errors, which induces a resource dilemma (i.e., disclosure entails costing one's own resources to bring others resources and a friendship dilemma (i.e., disclosure is seemingly easier through friendship, yet the cost of friendship is embedded. This study proposes that friendship at work enhances error disclosure and uses conservation of resources theory as underlying explanation. A three-wave survey collected data from 274 full-time employees with a variety of occupational backgrounds. Empirical results indicated that friendship enhanced error disclosure partially through relational mechanisms of employees’ attitudes toward coworkers (i.e., employee engagement and of coworkers’ attitudes toward employees (i.e., perceived social worth. Such effects hold when controlling for established predictors of error disclosure. This study expands extant perspectives on employee error and the theoretical lenses used to explain the influence of friendship at work. We propose that, while promoting error disclosure through both contextual and relational approaches, organizations should be vigilant about potential incongruence.

  14. Bifurcated states of the error-field-induced magnetic islands

    International Nuclear Information System (INIS)

    Zheng, L.-J.; Li, B.; Hazeltine, R.D.

    2008-01-01

    We find that the formation of the magnetic islands due to error fields shows bifurcation when neoclassical effects are included. The bifurcation, which follows from including bootstrap current terms in a description of island growth in the presence of error fields, provides a path to avoid the island-width pole in the classical description. The theory offers possible theoretical explanations for the recent DIII-D and JT-60 experimental observations concerning confinement deterioration with increasing error field

  15. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  16. Current applications of optimal estimation and control theory to the LOFT reactor plant

    International Nuclear Information System (INIS)

    Feeley, J.J.; Tylee, J.L.

    1980-01-01

    Two advanced estimation and control systems being developed for the LOFT reactor plant are described and evaluated. The advanced protection system, based on a Kalman filter estimator is capable of providing on-line estimates of such critical variables as fuel and cladding temperature, DNBR, and LHGR. The steam generator LQG control system provides stable, closed-loop, zero steady state error control over a wide power range and also provides on-line estimates of certain unmeasureable variables as steam generator power output and cooling capacity for operator information. 12 refs

  17. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  18. Normalization of Deviation: Quotation Error in Human Factors.

    Science.gov (United States)

    Lock, Jordan; Bearman, Chris

    2018-05-01

    Objective The objective of this paper is to examine quotation error in human factors. Background Science progresses through building on the work of previous research. This requires accurate quotation. Quotation error has a number of adverse consequences: loss of credibility, loss of confidence in the journal, and a flawed basis for academic debate and scientific progress. Quotation error has been observed in a number of domains, including marine biology and medicine, but there has been little or no previous study of this form of error in human factors, a domain that specializes in the causes and management of error. Methods A study was conducted examining quotation accuracy of 187 extracts from 118 published articles that cited a control article (Vaughan's 1996 book: The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA). Results Of extracts studied, 12.8% ( n = 24) were classed as inaccurate, with 87.2% ( n = 163) being classed as accurate. A second dimension of agreement was examined with 96.3% ( n = 180) agreeing with the control article and only 3.7% ( n = 7) disagreeing. The categories of accuracy and agreement form a two by two matrix. Conclusion Rather than simply blaming individuals for quotation error, systemic factors should also be considered. Vaughan's theory, normalization of deviance, is one systemic theory that can account for quotation error. Application Quotation error is occurring in human factors and should receive more attention. According to Vaughan's theory, the normal everyday systems that promote scholarship may also allow mistakes, mishaps, and quotation error to occur.

  19. Control of optically induced currents in semiconductor crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Kapil Kumar

    2010-06-01

    The generation and control of optically induced currents has the potential to become an important building block for optical computers. Here, shift and rectification currents are investigated that emerge from a divergence of the optical susceptibility. It is known that these currents react to the shape of the impinging laser pulse, and especially to the shape of the pulse envelope. The main goal is the systematic manipulation of the pulse envelope with an optical pulse shaper that is integrated into a standard THz emission setup. The initial approach, the chirping of the laser pulse only has a weak influence on the envelope and the currents. Instead, a second approach is suggested that uses the combined envelope of a phase-stable pulse-pair as a parameter. In a laser pulse, the position of the maxima of the electrical field and the pulse envelope are shifted relative to each other. This shift is known as the Carrier-Envelope Phase (CEP). It is a new degree of freedom that is usually only accessible in specially stabilized systems. It is shown, that in a phase-stable pulse-pair, at least the relative CEP is usable as a new degree of freedom. It has a great influence on the shape of the pulse envelope and thus on the current density. It is shown that this approach enables the coherent control of the current density. The experiments are corroborated by a theoretical model of the system. The potential of this approach is demonstrated in an application. A framework is presented that uses an iterative genetic algorithm to create arbitrarily shaped THz traces. The algorithm controls the optical pulse shaper, and varies the phase of the impinging laser pulses until the desired target trace is found. (orig.)

  20. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    Science.gov (United States)

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  1. Scaffolding--How Can Contingency Lead to Successful Learning When Dealing with Errors?

    Science.gov (United States)

    Wischgoll, Anke; Pauli, Christine; Reusser, Kurt

    2015-01-01

    Errors indicate learners' misunderstanding and can provide learning opportunities. Providing learning support which is contingent on learners' needs when errors occur is considered effective for developing learners' understanding. The current investigation examines how tutors and tutees interact productively with errors when working on a…

  2. A fault-tolerant strategy based on SMC for current-controlled converters

    Science.gov (United States)

    Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.

    2018-05-01

    The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.

  3. Reduced error signalling in medication-naive children with ADHD

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Allen, Elena A; Eichele, Heike

    2016-01-01

    BACKGROUND: We examined the blood-oxygen level-dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). METHODS: We acquired...... functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8-12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions...... and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. RESULTS: We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions...

  4. A novel harmonic current sharing control strategy for parallel-connected inverters

    DEFF Research Database (Denmark)

    Guan, Yajuan; Guerrero, Josep M.; Savaghebi, Mehdi

    2017-01-01

    A novel control strategy which enables proportional linear and nonlinear loads sharing among paralleled inverters and voltage harmonic suppression is proposed in this paper. The proposed method is based on the autonomous currents sharing controller (ACSC) instead of conventional power droop control...... to provide fast transient response, decoupling control and large stability margin. The current components at different sequences and orders are decomposed by a multi-second-order generalized integrator-based frequency locked loop (MSOGI-FLL). A harmonic-orthogonal-virtual-resistances controller (HOVR......) is used to proportionally share current components at different sequences and orders independently among the paralleled inverters. Proportional resonance controllers tuned at selected frequencies are used to suppress voltage harmonics. Simulations based on two 2.2 kW paralleled three-phase inverters...

  5. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    Science.gov (United States)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  6. Integration of error tolerance into the design of control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Sepanloo, Kamran

    1998-08-01

    Many complex technological systems' failures have been attributed to human errors. Today, based on extensive research on the role of human element in technological systems it is known that human error can not totally be eliminated in modern, flexible, or changing work environments by conventional style design strategies(e.g. defence in depth), or better instructions nor should they be. Instead, the operators' ability to explore degrees of freedom should be supported and means for recovering from the effects of errors should be included. This calls for innovative error tolerant design of technological systems. Integration of error tolerant concept into the design, construction, startup, and operation of nuclear power plants provides an effective means of reducing human error occurrence during all stages of life of it and therefore leads to considerable enhancement of plant's safety

  7. An Investigation into Soft Error Detection Efficiency at Operating System Level

    OpenAIRE

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and soft...

  8. Bayesian networks modeling for thermal error of numerical control machine tools

    Institute of Scientific and Technical Information of China (English)

    Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN

    2008-01-01

    The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.

  9. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  10. Automation of Commanding at NASA: Reducing Human Error in Space Flight

    Science.gov (United States)

    Dorn, Sarah J.

    2010-01-01

    Automation has been implemented in many different industries to improve efficiency and reduce human error. Reducing or eliminating the human interaction in tasks has been proven to increase productivity in manufacturing and lessen the risk of mistakes by humans in the airline industry. Human space flight requires the flight controllers to monitor multiple systems and react quickly when failures occur so NASA is interested in implementing techniques that can assist in these tasks. Using automation to control some of these responsibilities could reduce the number of errors the flight controllers encounter due to standard human error characteristics. This paper will investigate the possibility of reducing human error in the critical area of manned space flight at NASA.

  11. PRA (probabilistic risk analysis) in the nuclear sector. Quantifying human error and human malice

    International Nuclear Information System (INIS)

    Heyes, A.G.

    1995-01-01

    Regardless of the regulatory style chosen ('command and control' or 'functional') a vital prerequisite for coherent safety regulations in the nuclear power industry is the ability to assess accident risk. In this paper we present a critical analysis of current techniques of probabilistic risk analysis applied in the industry, with particular regard to the problems of quantifying risks arising from, or exacerbated by, human risk and/or human error. (Author)

  12. A Bayesian sequential design using alpha spending function to control type I error.

    Science.gov (United States)

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  13. NDE errors and their propagation in sizing and growth estimates

    International Nuclear Information System (INIS)

    Horn, D.; Obrutsky, L.; Lakhan, R.

    2009-01-01

    The accuracy attributed to eddy current flaw sizing determines the amount of conservativism required in setting tube-plugging limits. Several sources of error contribute to the uncertainty of the measurements, and the way in which these errors propagate and interact affects the overall accuracy of the flaw size and flaw growth estimates. An example of this calculation is the determination of an upper limit on flaw growth over one operating period, based on the difference between two measurements. Signal-to-signal comparison involves a variety of human, instrumental, and environmental error sources; of these, some propagate additively and some multiplicatively. In a difference calculation, specific errors in the first measurement may be correlated with the corresponding errors in the second; others may be independent. Each of the error sources needs to be identified and quantified individually, as does its distribution in the field data. A mathematical framework for the propagation of the errors can then be used to assess the sensitivity of the overall uncertainty to each individual error component. This paper quantifies error sources affecting eddy current sizing estimates and presents analytical expressions developed for their effect on depth estimates. A simple case study is used to model the analysis process. For each error source, the distribution of the field data was assessed and propagated through the analytical expressions. While the sizing error obtained was consistent with earlier estimates and with deviations from ultrasonic depth measurements, the error on growth was calculated as significantly smaller than that obtained assuming uncorrelated errors. An interesting result of the sensitivity analysis in the present case study is the quantification of the error reduction available from post-measurement compensation of magnetite effects. With the absolute and difference error equations, variance-covariance matrices, and partial derivatives developed in

  14. Current Mode Control for LLC Series Resonant DC-to-DC Converters

    Directory of Open Access Journals (Sweden)

    Jinhaeng Jang

    2015-06-01

    Full Text Available Conventional voltage mode control only offers limited performance for LLC series resonant DC-to-DC converters experiencing wide variations in operational conditions. When the existing voltage mode control is employed, the closed-loop performance of the converter is directly affected by unavoidable changes in power stage dynamics. Thus, a specific control design optimized at one particular operating point could become unacceptable when the operational condition is varied. This paper presents a new current mode control scheme which could consistently provide good closed-loop performance for LLC resonant converters for the entire operational range. The proposed control scheme employs an additional feedback from the current of the resonant tank network to overcome the limitation of the existing voltage mode control. The superiority of the proposed current mode control over the conventional voltage mode control is verified using an experimental 150 W LLC series resonant DC-to-DC converter.

  15. Errors in the Total Testing Process in the Clinical Chemistry ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... Analytical errors related to internal and external quality control exceeding the target range, (14.4%) ... indicators to assess errors in the total testing process. The. University ... Evidence showed that the risk of .... Data management and quality control: Pre-test ..... indicators and specifications for key processes.

  16. KMRR thermal power measurement error estimation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Sim, B.S.; Lim, I.C.; Oh, S.K.

    1990-01-01

    The thermal power measurement error of the Korea Multi-purpose Research Reactor has been estimated by a statistical Monte Carlo method, and compared with those obtained by the other methods including deterministic and statistical approaches. The results show that the specified thermal power measurement error of 5% cannot be achieved if the commercial RTDs are used to measure the coolant temperatures of the secondary cooling system and the error can be reduced below the requirement if the commercial RTDs are replaced by the precision RTDs. The possible range of the thermal power control operation has been identified to be from 100% to 20% of full power

  17. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2014-01-01

    Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.

  18. Error management for musicians: an interdisciplinary conceptual framework.

    Science.gov (United States)

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians' generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly - or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and

  19. Error management for musicians: an interdisciplinary conceptual framework

    Directory of Open Access Journals (Sweden)

    Silke eKruse-Weber

    2014-07-01

    Full Text Available Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians’ generally negative attitude toward errors and the tendency to aim for errorless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error and error management (during and after the error are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly - or not at all. A more constructive, creative and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of these abilities. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further

  20. Decreasing patient identification band errors by standardizing processes.

    Science.gov (United States)

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  1. Hierarchical Controlled Grid-Connected Microgrid based on a Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...

  2. Selection of anchor values for human error probability estimation

    International Nuclear Information System (INIS)

    Buffardi, L.C.; Fleishman, E.A.; Allen, J.A.

    1989-01-01

    There is a need for more dependable information to assist in the prediction of human errors in nuclear power environments. The major objective of the current project is to establish guidelines for using error probabilities from other task settings to estimate errors in the nuclear environment. This involves: (1) identifying critical nuclear tasks, (2) discovering similar tasks in non-nuclear environments, (3) finding error data for non-nuclear tasks, and (4) establishing error-rate values for the nuclear tasks based on the non-nuclear data. A key feature is the application of a classification system to nuclear and non-nuclear tasks to evaluate their similarities and differences in order to provide a basis for generalizing human error estimates across tasks. During the first eight months of the project, several classification systems have been applied to a sample of nuclear tasks. They are discussed in terms of their potential for establishing task equivalence and transferability of human error rates across situations

  3. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    International Nuclear Information System (INIS)

    Leng Min-Rui; Zhou Guo-Hua; Zhang Kai-Tun; Li Zhen-Hua

    2015-01-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. (paper)

  4. The surveillance error grid.

    Science.gov (United States)

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  5. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  6. Speed Control Analysis of Brushless DC Motor Based on Maximum Amplitude DC Current Feedback

    Directory of Open Access Journals (Sweden)

    Hassan M.A.A.

    2014-07-01

    Full Text Available This paper describes an approach to develop accurate and simple current controlled modulation technique for brushless DC (BLDC motor drive. The approach is applied to control phase current based on generation of quasi-square wave current by using only one current controller for the three phases. Unlike the vector control method which is complicated to be implemented, this simple current modulation technique presents advantages such as phase currents are kept in balance and the current is controlled through only one dc signal which represent maximum amplitude value of trapezoidal current (Imax. This technique is performed with Proportional Integral (PI control algorithm and triangular carrier comparison method to generate Pulse Width Modulation (PWM signal. In addition, the PI speed controller is incorporated with the current controller to perform desirable speed operation of non-overshoot response. The performance and functionality of the BLDC motor driver are verified via simulation by using MATLAB/SIMULINK. The simulation results show the developed control system performs desirable speed operation of non-overshoot and good current waveforms.

  7. Real-time control for long ohmic alternate current discharges

    International Nuclear Information System (INIS)

    Carvalho, Ivo S.; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.; Gomes, Rui B.

    2014-01-01

    Highlights: • 40 Alternate plasma current (AC) semi-cycles without loss of ionization, more than 1 s of operation. • AC discharges automatic control: feedback loops, time-windows control strategy, goal oriented time-windows and exception handling. • Energy deposition and Carbon radiation evolution during the AC discharges. - Abstract: The ISTTOK tokamak has a long tradition on alternate plasma current (AC) discharges, but the old control system was limiting and lacked full system integration. In order to improve the AC discharges performance the ISTTOK fast control system was updated. This control system developed on site based on the Advanced Telecommunications Computing Architecture (ATCA) standard now integrates the information gathered by all the tokamak real-time diagnostics to produce an accurate observation of the plasma parameters. The real-time actuators were also integrated, allowing a Multiple Input Multiple Output (MIMO) control environment with several synchronization strategies available. The control system software was developed in C++ on top of a Linux system with the Multi-threaded Application Real-Time executor (MARTe) Framework to synchronize the real-time code execution under a 100μs control cycle. In addition, to simplify the discharge programming, a visual Human–Machine Interface (HMI) was also developed using the BaseLib2 libraries included in the MARTe Framework. This paper presents the ISTTOK control system and the optimizations that extended the AC current discharges duration to more than 1 s, corresponding to 40 semi-cycles without apparent degradation of the plasma parameters. This upgrade allows ISTTOK to be used as a low-cost material testing facility with long time exposures to nuclear fusion relevant plasmas, comparable (in duration) with medium size tokamaks

  8. Real-time control for long ohmic alternate current discharges

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.; Gomes, Rui B.

    2014-05-15

    Highlights: • 40 Alternate plasma current (AC) semi-cycles without loss of ionization, more than 1 s of operation. • AC discharges automatic control: feedback loops, time-windows control strategy, goal oriented time-windows and exception handling. • Energy deposition and Carbon radiation evolution during the AC discharges. - Abstract: The ISTTOK tokamak has a long tradition on alternate plasma current (AC) discharges, but the old control system was limiting and lacked full system integration. In order to improve the AC discharges performance the ISTTOK fast control system was updated. This control system developed on site based on the Advanced Telecommunications Computing Architecture (ATCA) standard now integrates the information gathered by all the tokamak real-time diagnostics to produce an accurate observation of the plasma parameters. The real-time actuators were also integrated, allowing a Multiple Input Multiple Output (MIMO) control environment with several synchronization strategies available. The control system software was developed in C++ on top of a Linux system with the Multi-threaded Application Real-Time executor (MARTe) Framework to synchronize the real-time code execution under a 100μs control cycle. In addition, to simplify the discharge programming, a visual Human–Machine Interface (HMI) was also developed using the BaseLib2 libraries included in the MARTe Framework. This paper presents the ISTTOK control system and the optimizations that extended the AC current discharges duration to more than 1 s, corresponding to 40 semi-cycles without apparent degradation of the plasma parameters. This upgrade allows ISTTOK to be used as a low-cost material testing facility with long time exposures to nuclear fusion relevant plasmas, comparable (in duration) with medium size tokamaks.

  9. Electrophysiological correlates of error processing in borderline personality disorder.

    Science.gov (United States)

    Ruchsow, Martin; Walter, Henrik; Buchheim, Anna; Martius, Philipp; Spitzer, Manfred; Kächele, Horst; Grön, Georg; Kiefer, Markus

    2006-05-01

    The electrophysiological correlates of error processing were investigated in patients with borderline personality disorder (BPD) using event-related potentials (ERP). Twelve patients with BPD and 12 healthy controls were additionally rated with the Barratt impulsiveness scale (BIS-10). Participants performed a Go/Nogo task while a 64 channel EEG was recorded. Three ERP components were of special interest: error-related negativity (ERN)/error negativity (Ne), early error positivity (early Pe) reflecting automatic error processing, and the late Pe component which is thought to mirror the awareness of erroneous responses. We found smaller amplitudes of the ERN/Ne in patients with BPD compared to controls. Moreover, significant correlations with the BIS-10 non-planning sub-score could be demonstrated for both the entire group and the patient group. No between-group differences were observed for the early and late Pe components. ERP measures appear to be a suitable tool to study clinical time courses in BPD.

  10. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  11. A Coordinate Control Strategy for Circulating Current Suppression in Multiparalleled Three-Phase Inverters

    DEFF Research Database (Denmark)

    Zhang, Xueguang; Wang, Tianyi; Wang, Xiongfei

    2017-01-01

    This paper addresses the zero-sequence circulating current control in the multiparalleled three-phase voltage-source inverters. The model of the zero-sequence circulating current in the N-paralleled (N ≥ 3) inverters is derived. It is shown that the circulating current is not only susceptible...... to the mismatches of circuit parameters, but it is also influenced by the interactions of circulating current controllers used by other paralleled inverters. To eliminate these adverse effects on the circulating current control loop, a coordinate control strategy for the N-paralleled inverter is proposed based...... on the zero-vector feedforward method with the space-vector pulse width modulation. Moreover, a virtual inverter method is introduced to facilitate the implementation of the proposed controller, which decouples the interactions of circulating current controllers in the paralleled inverters. Finally...

  12. Results of the NLO error-propagation exercise

    International Nuclear Information System (INIS)

    Gessiness, B.; Lower, C.W.; Porter, G.K.

    1984-01-01

    The successful conclusion of the Error Propagation Exercise, started 2 years ago at NLO, Inc.'s Feed Materials Production Center, Fernald, Ohio, was reached when a statistically based LEID was determined in a controlled balance area, processing low enriched uranium materials. The three-month test demonstrated that it is possible even in a high-throughput bulk processing facility to collect and process all data necessary for computation of a rigorously determined LEID without interference with production and without significant cost increases. The exercise further demonstrated that much of the data necessary are already collected for other routine uses (e.g., production control, measurement quality control, etc.) so that only a modest increase in data collection is necessary. The automated data collection system developed showed that the additional data can be collected quickly, accurately, and relatively cheaply using readily-available commercial hardware. The benefits of error propagation in terms of increased confidence in nuclear materials safeguards are clear; plans have been developed to extend error propagation to all the enriched uranium processing areas of the Feed Materials Production Center. 6 references, 3 figures

  13. Error Mitigation for Short-Depth Quantum Circuits

    Science.gov (United States)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  14. Research on control strategy based on fuzzy PR for grid-connected inverter

    Science.gov (United States)

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  15. Distributed Secondary Control for DC Microgrid Applications with Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2013-01-01

    With the consideration of line resistances in a dc microgrid, the current sharing accuracy is lowered down, since the dc output voltage cannot be exactly the same for different interfacing converters. Meanwhile, the dc bus voltage deviation is involved by using droop control. In this paper...... control diagram is accomplished and the requirement of distributed configuration in a microgrid is satisfied. The experimental validation based on a 2×2.2 kW prototype was implemented to demonstrate the proposed approach......., a distributed secondary control method is proposed. Droop control is employed as the primary control method for load current sharing. Meanwhile, the dc output voltage and current in each module is transferred to the others by the low bandwidth communication (LBC) network. Average voltage and current controllers...

  16. Systematic errors in VLF direction-finding of whistler ducts

    International Nuclear Information System (INIS)

    Strangeways, H.J.; Rycroft, M.J.

    1980-01-01

    In the previous paper it was shown that the systematic error in the azimuthal bearing due to multipath propagation and incident wave polarisation (when this also constitutes an error) was given by only three different forms for all VLF direction-finders currently used to investigate the position of whistler ducts. In this paper the magnitude of this error is investigated for different ionospheric and ground parameters for these three different systematic error types. By incorporating an ionosphere for which the refractive index is given by the full Appleton-Hartree formula, the variation of the systematic error with ionospheric electron density and latitude and direction of propagation is investigated in addition to the variation with wave frequency, ground conductivity and dielectric constant and distance of propagation. The systematic bearing error is also investigated for the three methods when the azimuthal bearing is averaged over a 2 kHz bandwidth. This is found to lead to a significantly smaller bearing error which, for the crossed-loops goniometer, approximates the bearing error calculated when phase-dependent terms in the receiver response are ignored. (author)

  17. Error Resilient Video Compression Using Behavior Models

    Directory of Open Access Journals (Sweden)

    Jacco R. Taal

    2004-03-01

    Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.

  18. Alpha particle induced soft errors in NMOS RAMs: a review

    International Nuclear Information System (INIS)

    Carter, P.M.; Wilkins, B.R.

    1987-01-01

    The paper aims to explain the alpha particle induced soft error phenomenon using the NMOS dynamic random access memory (RAM) as a model. It discusses some of the many techniques experimented with by manufacturers to overcome the problem, and gives a review of the literature covering most aspects of soft errors in dynamic RAMs. Finally, the soft error performance of current dynamic RAM and static RAM products from several manufacturers are compared. (author)

  19. On the problem of non-zero word error rates for fixed-rate error correction codes in continuous variable quantum key distribution

    International Nuclear Information System (INIS)

    Johnson, Sarah J; Ong, Lawrence; Shirvanimoghaddam, Mahyar; Lance, Andrew M; Symul, Thomas; Ralph, T C

    2017-01-01

    The maximum operational range of continuous variable quantum key distribution protocols has shown to be improved by employing high-efficiency forward error correction codes. Typically, the secret key rate model for such protocols is modified to account for the non-zero word error rate of such codes. In this paper, we demonstrate that this model is incorrect: firstly, we show by example that fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity. Secondly, we show that using this secret key model combined with greater than unity efficiency codes, implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an impossible scenario. We then consider the secret key model from a post-selection perspective, and examine the implications for key rate if we constrain the forward error correction codes to operate at low word error rates. (paper)

  20. Indirect learning control for nonlinear dynamical systems

    Science.gov (United States)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  1. Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using volpara v1.5.0 software.

    Science.gov (United States)

    Waade, Gunvor Gipling; Highnam, Ralph; Hauge, Ingrid H R; McEntee, Mark F; Hofvind, Solveig; Denton, Erika; Kelly, Judith; Sarwar, Jasmine J; Hogg, Peter

    2016-06-01

    Mammographic density has been demonstrated to predict breast cancer risk. It has been proposed that it could be used for stratifying screening pathways and recommending additional imaging. Volumetric density tools use the recorded compressed breast thickness (CBT) of the breast measured at the x-ray unit in their calculation; however, the accuracy of the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies in recorded CBT impact upon volumetric density classification and to examine whether the current quality control (QC) standard is sufficient for assessing mammographic density. Raw data from 52 digital screening mammograms were included in the study. For each image, the clinically recorded CBT was artificially increased and decreased in increments of 1 mm to simulate measurement error, until ±15% from the recorded CBT was reached. New images were created for each 1 mm step in thickness resulting in a total of 974 images which then had volpara density grade (VDG) and volumetric density percentage assigned. A change in VDG was observed in 38.5% (n = 20) of mammograms when applying ±15% error to the recorded CBT and 11.5% (n = 6) was within the QC standard prescribed error of ±5 mm. The current QC standard of ±5 mm error in recorded CBT creates the potential for error in mammographic density measurement. This may lead to inaccurate classification of mammographic density. The current QC standard for assessing mammographic density should be reconsidered.

  2. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation

    Directory of Open Access Journals (Sweden)

    Francisco Resquín

    2016-07-01

    Full Text Available Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  3. The role of hand of error and stimulus orientation in the relationship between worry and error-related brain activity: Implications for theory and practice.

    Science.gov (United States)

    Lin, Yanli; Moran, Tim P; Schroder, Hans S; Moser, Jason S

    2015-10-01

    Anxious apprehension/worry is associated with exaggerated error monitoring; however, the precise mechanisms underlying this relationship remain unclear. The current study tested the hypothesis that the worry-error monitoring relationship involves left-lateralized linguistic brain activity by examining the relationship between worry and error monitoring, indexed by the error-related negativity (ERN), as a function of hand of error (Experiment 1) and stimulus orientation (Experiment 2). Results revealed that worry was exclusively related to the ERN on right-handed errors committed by the linguistically dominant left hemisphere. Moreover, the right-hand ERN-worry relationship emerged only when stimuli were presented horizontally (known to activate verbal processes) but not vertically. Together, these findings suggest that the worry-ERN relationship involves left hemisphere verbal processing, elucidating a potential mechanism to explain error monitoring abnormalities in anxiety. Implications for theory and practice are discussed. © 2015 Society for Psychophysiological Research.

  4. Design of laser diode driver with constant current and temperature control system

    Science.gov (United States)

    Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang

    2017-10-01

    A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.

  5. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....

  6. Ironic Effects of Drawing Attention to Story Errors

    Science.gov (United States)

    Eslick, Andrea N.; Fazio, Lisa K.; Marsh, Elizabeth J.

    2014-01-01

    Readers learn errors embedded in fictional stories and use them to answer later general knowledge questions (Marsh, Meade, & Roediger, 2003). Suggestibility is robust and occurs even when story errors contradict well-known facts. The current study evaluated whether suggestibility is linked to participants’ inability to judge story content as correct versus incorrect. Specifically, participants read stories containing correct and misleading information about the world; some information was familiar (making error discovery possible), while some was more obscure. To improve participants’ monitoring ability, we highlighted (in red font) a subset of story phrases requiring evaluation; readers no longer needed to find factual information. Rather, they simply needed to evaluate its correctness. Readers were more likely to answer questions with story errors if they were highlighted in red font, even if they contradicted well-known facts. Though highlighting to-be-evaluated information freed cognitive resources for monitoring, an ironic effect occurred: Drawing attention to specific errors increased rather than decreased later suggestibility. Failure to monitor for errors, not failure to identify the information requiring evaluation, leads to suggestibility. PMID:21294039

  7. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.

    Directory of Open Access Journals (Sweden)

    Ing-Shiou Hwang

    Full Text Available Discharge patterns from a population of motor units (MUs were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF. In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.

  8. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    Science.gov (United States)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  9. Error framing effects on performance: cognitive, motivational, and affective pathways.

    Science.gov (United States)

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  10. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    Science.gov (United States)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  11. Design and Implementation of Digital Current Mode Controller for DC-DC Converters

    DEFF Research Database (Denmark)

    Taeed, Fazel

    to be regulated by a closed-loop controller. The Peak Current Mode Control (PCMC) is one of the most promising control methods for dc-dc converters. It has been known for high bandwidth (speed), and inherent current protection. Increasing the controller bandwidth decreases the output filter size and cost. Analog...

  12. Digital peak current mode control with adaptive slope compensation for DC-DC converters

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2017-01-01

    performance and stability of current mode control. The presented method adapt to DC-DC converter operating conditions by estimating the rising and falling inductor current slopes, to apply a current slope compensation value to obtain a constant quality factor. The experimental results verifies the theoretical......This paper presents an adaptive slope compensation method for peak current mode control of digital controlled DC-DC converters, which controls the quality factor of the complex conjugated poles at half the switching frequency. Using quality factor control enables optimization of the dynamic...

  13. Inherent Error in Asynchronous Digital Flight Controls.

    Science.gov (United States)

    1980-02-01

    operation will be eliminated. If T* is close to T, the inherent error (eA) is a small value. Then the deficiency of the basic model, which is de... tK2 at m ~VCONTR0RKIPPIL I~+ R tKT 2 TKT 5 ~I G E 1 i V OTN TRIL 2-REDN HNE IjT e UT 3 ~49__I 4.) 4 -4 - 4.-4 U 4.) k-4E-- Iz E-4 P E-44)-4. 4.)l 1s...indicate the channel failure. To reduce this deficiency , the new model computes a tolerance value equal to the maximum steady-state sample covariance of the

  14. Decisions to shoot in a weapon identification task: The influence of cultural stereotypes and perceived threat on false positive errors.

    Science.gov (United States)

    Fleming, Kevin K; Bandy, Carole L; Kimble, Matthew O

    2010-01-01

    The decision to shoot a gun engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC), where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and electroencephalogram (EEG) activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of Middle-Eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERNs were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERNs, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of Middle-Eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to Middle-Eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance.

  15. DSOGI-PLL Based Power Control Method to Mitigate Control Errors Under Disturbances of Grid Connected Hybrid Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Meral

    2018-01-01

    Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.

  16. Multi-GNSS signal-in-space range error assessment - Methodology and results

    Science.gov (United States)

    Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André

    2018-06-01

    The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.

  17. Development of safety analysis and constraint detection techniques for process interaction errors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chin-Feng, E-mail: csfanc@saturn.yzu.edu.tw [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China); Tsai, Shang-Lin; Tseng, Wan-Hui [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China)

    2011-02-15

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  18. Development of safety analysis and constraint detection techniques for process interaction errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Tsai, Shang-Lin; Tseng, Wan-Hui

    2011-01-01

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  19. Nonlinear error dynamics for cycled data assimilation methods

    International Nuclear Information System (INIS)

    Moodey, Alexander J F; Lawless, Amos S; Potthast, Roland W E; Van Leeuwen, Peter Jan

    2013-01-01

    We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at t k , k = 1, 2, 3, …, with a first guess given by the state propagated via a dynamical system model M k from time t k−1 to time t k . In particular, for nonlinear dynamical systems M k that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ‖e k ‖ ≔ ‖x (a) k − x (t) k ‖ between the estimated state x (a) and the true state x (t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system M k under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ‖e k ‖, depending on the size δ of the observation error, the reconstruction operator R α , the observation operator H and the Lipschitz constants K (1) and K (2) on the lower and higher modes of M k controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c‖R α ‖δ with some constant c. Since ‖R α ‖ → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz ‘63 system. (paper)

  20. An Approach to Human Error Hazard Detection of Unexpected Situations in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangjun; Oh, Yeonju; Shin, Youmin; Lee, Yong-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fukushima accident is a typical complex event including the extreme situations induced by the succeeding earthquake, tsunami, explosion, and human errors. And it is judged with incomplete cause of system build-up same manner, procedure as a deficiency of response manual, education and training, team capability and the discharge of operator from human engineering point of view. Especially, the guidelines of current operating NPPs are not enough including countermeasures to the human errors at the extreme situations. Therefore, this paper describes a trial to detect the hazards of human errors at extreme situation, and to define the countermeasures that can properly response to the human error hazards when an individual, team, organization, and working entities that encounter the extreme situation in NPPs. In this paper we try to propose an approach to analyzing and extracting human error hazards for suggesting additional countermeasures to the human errors in unexpected situations. They might be utilized to develop contingency guidelines, especially for reducing the human error accident in NPPs. But the trial application in this study is currently limited since it is not easy to find accidents cases in detail enough to enumerate the proposed steps. Therefore, we will try to analyze as more cases as possible, and consider other environmental factors and human error conditions.

  1. An Approach to Human Error Hazard Detection of Unexpected Situations in NPPs

    International Nuclear Information System (INIS)

    Park, Sangjun; Oh, Yeonju; Shin, Youmin; Lee, Yong-Hee

    2015-01-01

    Fukushima accident is a typical complex event including the extreme situations induced by the succeeding earthquake, tsunami, explosion, and human errors. And it is judged with incomplete cause of system build-up same manner, procedure as a deficiency of response manual, education and training, team capability and the discharge of operator from human engineering point of view. Especially, the guidelines of current operating NPPs are not enough including countermeasures to the human errors at the extreme situations. Therefore, this paper describes a trial to detect the hazards of human errors at extreme situation, and to define the countermeasures that can properly response to the human error hazards when an individual, team, organization, and working entities that encounter the extreme situation in NPPs. In this paper we try to propose an approach to analyzing and extracting human error hazards for suggesting additional countermeasures to the human errors in unexpected situations. They might be utilized to develop contingency guidelines, especially for reducing the human error accident in NPPs. But the trial application in this study is currently limited since it is not easy to find accidents cases in detail enough to enumerate the proposed steps. Therefore, we will try to analyze as more cases as possible, and consider other environmental factors and human error conditions

  2. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    Science.gov (United States)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  3. Intervention strategies for the management of human error

    Science.gov (United States)

    Wiener, Earl L.

    1993-01-01

    This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.

  4. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS

    International Nuclear Information System (INIS)

    CARDONA, J.; PEGGS, S.; PILAT, R.; PTITSYN, V.

    2004-01-01

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented [2]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model

  5. A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2017-12-01

    Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.

  6. Challenge and Error: Critical Events and Attention-Related Errors

    Science.gov (United States)

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  7. Magnetohydrodynamic effects of current profile control in reversed field pinches

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1999-01-01

    Linear and non-linear MHD computations are used to investigate reversed field pinch configurations with magnetic fluctuations reduced through current profile control. Simulations with reduced ohmic drive and moderate auxiliary current drive, represented generically with an electron force term, applied locally in radius near the plasma edge show magnetic fluctuation energies that are orders of magnitude smaller than those in simulations without profile control. The core of the improved configurations has reduced magnetic shear and closed flux surfaces in some cases, and reversal is sustained through the auxiliary current drive. Modes resonant near the edge may become unstable with auxiliary drive, but their saturation levels can be controlled. The space of auxiliary drive parameters is explored, and the ill effects of deviating far from optimal conditions is demonstrated in non-linear simulations. (author)

  8. Error forecasting schemes of error correction at receiver

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-08-01

    To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)

  9. Review of current GPS methodologies for producing accurate time series and their error sources

    Science.gov (United States)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e

  10. Start Up Current Control of Buck-Boost Convertor-Fed Serial DC Motor

    Directory of Open Access Journals (Sweden)

    Yusuf SÖNMEZ

    2009-02-01

    Full Text Available Generally, DC motors are given preference for industrial applications such as electric locomotives, cranes, goods lifts. Because of they have high starting moment; they initially start with high current. This high start-up current must be decreased since it may damage windings of the motor and increases power consumption. It could be controlled by an appropriate driver system and controller. The nature of fuzzy logic control has adaptive characteristics that can achieve robust response to a system with uncertainty, parameter variation, and load disturbance. In this paper, fuzzy logic based control of start-up current of a Buck-Boost Converter fed serial DC motor is examined through computer simulation. In order to see the advantages of fuzzy logic control, classical PI control has applied to the same motor, under same circumstances and has been compared. C++ Builder software has been used for the simulation. According to the simulation results, plainly, fuzzy logic control has stronger responses than classical PI control and uses lower current at starting moment.

  11. A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing

    DEFF Research Database (Denmark)

    Gao, Liyuan; Liu, Yao; Ren, Huisong

    2017-01-01

    The DC microgrid has become a new trend for microgrid study with the advantages of high reliability, simple control and low losses. With regard to the drawbacks of the traditional droop control strategies, an improved DC droop control strategy based on integrator current-sharing is introduced....... In the strategy, the principle of eliminating deviation through an integrator is used, constructing the current-sharing term in order to make the power-sharing between different distributed generation (DG) units uniform and reasonable, which can reduce the circulating current between DG units. Furthermore......, at the system coordinated control level, a hierarchical/droop control strategy based on the DC bus voltage is proposed. In the strategy, the operation modes of the AC main network and micro-sources are determined through detecting the DC voltage variation, which can ensure the power balance of the DC microgrid...

  12. Aliasing errors in measurements of beam position and ellipticity

    International Nuclear Information System (INIS)

    Ekdahl, Carl

    2005-01-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all

  13. Aliasing errors in measurements of beam position and ellipticity

    Science.gov (United States)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  14. Error Variability in Apraxia of Speech: A Matter of Controversy

    Science.gov (United States)

    Staiger, Anja; Finger-Berg, Wolf; Aichert, Ingrid; Ziegler, Wolfram

    2012-01-01

    Purpose: Error variability has traditionally been considered a hallmark of apraxia of speech (AOS). However, in some of the current AOS literature, relatively invariable error patterns are claimed as a mandatory criterion for a diagnosis of AOS. This paradigm shift has far-reaching consequences for our understanding of the disorder and for its…

  15. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  16. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2017-03-01

    Full Text Available A new electronically tunable mixed-mode biquadratic filter with three current controlled current conveyor transconductance amplifiers (CCCCTAs and two grounded capacitors is proposed. With current input, the filter can realise lowpass (LP, bandpass (BP, highpass (HP, bandstop (BS and allpass (AP responses in current mode and LP, BP and HP responses in transimpedance mode. With voltage input, the filter can realise LP, BP, HP, BS and AP responses in voltage and transadmittance modes. Other attractive features of the mixed-mode biquadratic filter are (1 the use of two grounded capacitors, which is ideal for integrated circuit implementation; (2 orthogonal control of the quality factor (Q and resonance angular frequency (ωo for easy electronic tenability; (3 low input impedance and high output impedance for current signals; (4 high input impedance for voltage signal; (5 avoidance of need for component-matching conditions; (6 resistorless and electronically tunable structure; (7 low active and passive sensitivities; and (8 independent control of the voltage transfer gains without affecting the parameters ωo and Q.

  17. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  18. Acceleration, current amplification and emittance in MBE-4, an experimental beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Gough, D.E.; Keefe, D.; Meuth, H.

    1988-10-01

    We report on the implementation of a second schedule of acceleration and current amplification in MBE-4. Control of the beam current within the bunch is improved over that in the first schedule by the addition of several small amplitude induction pulsers to compensate for acceleration errors and to control the ends of the bunch. Measurements of the longitudinal and transverse emittance are presented. 5 refs., 3 figs., 1 tab

  19. Current control by a homopolar machine with moving brushes

    International Nuclear Information System (INIS)

    Vogel, H.

    1978-01-01

    The equation for TNS Doublet's E-coil circuit with moving brush homopolar machine is integrated in the flux of the homopolar for a monotonically increasing current function extending beyond the current reversal into the burn period. The results show that the moving brush feature is not useful for controlling the burn

  20. Multiple imputation to account for measurement error in marginal structural models

    Science.gov (United States)

    Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.

    2015-01-01

    Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338

  1. Multiple Imputation to Account for Measurement Error in Marginal Structural Models.

    Science.gov (United States)

    Edwards, Jessie K; Cole, Stephen R; Westreich, Daniel; Crane, Heidi; Eron, Joseph J; Mathews, W Christopher; Moore, Richard; Boswell, Stephen L; Lesko, Catherine R; Mugavero, Michael J

    2015-09-01

    Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and nondifferential measurement error in a marginal structural model. We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3,686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality (hazard ratio [HR]: 1.2 [95% confidence interval [CI] = 0.6, 2.3]). The HR for current smoking and therapy [0.4 (95% CI = 0.2, 0.7)] was similar to the HR for no smoking and therapy (0.4; 95% CI = 0.2, 0.6). Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies.

  2. Probability of undetected error after decoding for a concatenated coding scheme

    Science.gov (United States)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.

  3. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Zhao, Xin

    2017-01-01

    In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...... output filters, and the proposed control structure includes: the primary control with additional phase-shift loop, the secondary control for voltage amplitude and frequency restoration, the virtual impedance loops which contains virtual positive- and negative-sequence impedance loops at fundamental...... frequency, and virtual variable harmonic impedance loop at harmonic frequencies, and the inner voltage and current loop controllers. A small-signal model for the primary and secondary controls with additional phase-shift loop is presented, which shows an over-damped feature from eigenvalue analysis...

  4. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Saunders, J.L.

    1982-01-01

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10 -4 , the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  5. High-frequency, three-phase current controller implementation in an FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M.; Round, S. D.; Kolar, J. W.

    2008-07-01

    Three phase rectifiers with switching frequencies of 500 kHz or more require high speed current controllers. At such high switching frequencies analog controllers as well as high speed digital signal processing (DSP) systems have limited performance. In this paper, two high speed current controller implementations using two different field-programmable gate arrays (FPGA) - one for switching frequencies up to 1 MHz and one for switching frequencies beyond 1 MHz - are presented to overcome this performance limitation. Starting with the digital system design all the blocks of the signal chain, containing analog-to-digital (A/D) interface, digital controller implementation using HW-multipliers and implementation of a novel high speed, high resolution pulse width modulation (PWM) are discussed and compared. Final measurements verify the performance of the controllers. (author)

  6. Robust a Posteriori Error Control and Adaptivity for Multiscale, Multinumerics, and Mortar Coupling

    KAUST Repository

    Pencheva, Gergina V.; Vohralí k, Martin; Wheeler, Mary F.; Wildey, Tim

    2013-01-01

    -order polynomials are used on the mortar interface mesh. We derive several fully computable a posteriori error estimates which deliver a guaranteed upper bound on the error measured in the energy norm. Our estimates are also locally efficient and one of them

  7. Analysis of Medication Error Reports

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Paul D.; Young, Jonathan; Santell, John; Hicks, Rodney; Posse, Christian; Fecht, Barbara A.

    2004-11-15

    In medicine, as in many areas of research, technological innovation and the shift from paper based information to electronic records has created a climate of ever increasing availability of raw data. There has been, however, a corresponding lag in our abilities to analyze this overwhelming mass of data, and classic forms of statistical analysis may not allow researchers to interact with data in the most productive way. This is true in the emerging area of patient safety improvement. Traditionally, a majority of the analysis of error and incident reports has been carried out based on an approach of data comparison, and starts with a specific question which needs to be answered. Newer data analysis tools have been developed which allow the researcher to not only ask specific questions but also to “mine” data: approach an area of interest without preconceived questions, and explore the information dynamically, allowing questions to be formulated based on patterns brought up by the data itself. Since 1991, United States Pharmacopeia (USP) has been collecting data on medication errors through voluntary reporting programs. USP’s MEDMARXsm reporting program is the largest national medication error database and currently contains well over 600,000 records. Traditionally, USP has conducted an annual quantitative analysis of data derived from “pick-lists” (i.e., items selected from a list of items) without an in-depth analysis of free-text fields. In this paper, the application of text analysis and data analysis tools used by Battelle to analyze the medication error reports already analyzed in the traditional way by USP is described. New insights and findings were revealed including the value of language normalization and the distribution of error incidents by day of the week. The motivation for this effort is to gain additional insight into the nature of medication errors to support improvements in medication safety.

  8. Modeling Conflict and Error in the Medial Frontal Cortex

    Science.gov (United States)

    Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.

    2014-01-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411

  9. Modeling conflict and error in the medial frontal cortex.

    Science.gov (United States)

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  10. Human error in remote Afterloading Brachytherapy

    International Nuclear Information System (INIS)

    Quinn, M.L.; Callan, J.; Schoenfeld, I.; Serig, D.

    1994-01-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US. The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  11. Real-time control of the current density and pressure profiles in Jet

    International Nuclear Information System (INIS)

    Mazon, D.; Moreau, D.; Litaudon, X.; Joffrin, E.; Laborde, L.; Zabeo, L.; Crisanti, F.; Riva, M.; Felton, R.; Murari, A.; Tala, T.

    2003-01-01

    In order to ultimately control internal transport barriers during advanced operation scenarios, new algorithms using a truncated singular value decomposition of a linearized model operator have been implemented in the JET real-time controller, with the potentiality of retaining the distributed nature of plasma parameter profiles. First experiments using the simplest, lumped-parameter, version of this technique have been dedicated to the feedback control of the current density profile in a negative shear plasma using three heating and current drive actuators, namely neutral beam injection (NBI), ion cyclotron resonant frequency heating (ICRH) and lower hybrid current drive (LHCD). Successful control of the safety factor profile has been achieved on the time scale of the current redistribution time, first during an extended preheat phase with only LHCD as actuator and, then, in quasi steady-state conditions during the main heating phase of a discharge, using the three heating and current drive actuators

  12. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper describes a theoretical with experiment study on a control strategy for the parallel operation of threephase voltage source inverters (VSI), to be applied to uninterruptible power systems (UPS). A circulating current suppression strategy for parallel VSIs is proposed in this paper based...... on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper......, droop control is used to generate the reference voltage of each inverter, and the virtual impedance is used to fix the output impedance of the inverters. In addition, a secondary control is used in order to recover the voltage deviation caused by the virtual impedance. And the auxiliary current control...

  13. Towards Current Profile Control in ITER: Potential Approaches and Research Needs

    Science.gov (United States)

    Schuster, E.; Barton, J. E.; Wehner, W. P.

    2014-10-01

    Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.

  14. Error-Free Software

    Science.gov (United States)

    1989-01-01

    001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.

  15. Design of Current-Controller with PR-regulator for LCL-Filter Based Grid-Connected Converter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg

    2010-01-01

    In the application of LCL-filter based converters, the structure and parameters of current-controller is very important for the system stability and output current quality. This paper presents a filter-capacitor current feedback control scheme for grid-connected converter. The controller...... is consisted of a proportional-resonance regulator and a proportional regulator. Unlike the existing control strategy with unit capacitor current feedback, the proposed method applies the proportional regulator to the feedback path, which can decouple these two regulators, and simplify the tuning process...... of the control strategy and the proposed current controller design method are verified by the simulation results of a 50kVA grid-connected inverter....

  16. High Precision Current Control for the LHC Main Power Converters

    CERN Document Server

    Thiesen, H; Hudson, G; King, Q; Montabonnet, V; Nisbet, D; Page, S

    2010-01-01

    Since restarting at the end of 2009, the LHC has reached a new energy record in March 2010 with the two 3.5 TeV beams. To achieve the performance required for the good functioning of the accelerator, the currents in the main circuits (Main Bends and Main Quadrupoles) must be controlled with a higher precision than ever previously requested for a particle accelerator at CERN: a few parts per million (ppm) of nominal current. This paper describes the different challenges that were overcome to achieve the required precision for the current control of the main circuits. Precision tests performed during the hardware commissioning of the LHC illustrate this paper.

  17. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  18. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  19. Error rates in forensic DNA analysis: Definition, numbers, impact and communication

    NARCIS (Netherlands)

    Kloosterman, A.; Sjerps, M.; Quak, A.

    2014-01-01

    Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and

  20. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity.

    Science.gov (United States)

    Carey, Susan E; Nestor, Liam; Jones, Jennifer; Garavan, Hugh; Hester, Robert

    2015-10-01

    The chronic use of cannabis has been associated with error processing dysfunction, in particular, hypoactivity in the dorsal anterior cingulate cortex (dACC) during the processing of cognitive errors. Given the role of such activity in influencing post-error adaptive behaviour, we hypothesised that chronic cannabis users would have significantly poorer learning from errors. Fifteen chronic cannabis users (four females, mean age=22.40 years, SD=4.29) and 15 control participants (two females, mean age=23.27 years, SD=3.67) were administered a paired associate learning task that enabled participants to learn from their errors, during fMRI data collection. Compared with controls, chronic cannabis users showed (i) a lower recall error-correction rate and (ii) hypoactivity in the dACC and left hippocampus during the processing of error-related feedback and re-encoding of the correct response. The difference in error-related dACC activation between cannabis users and healthy controls varied as a function of error type, with the control group showing a significantly greater difference between corrected and repeated errors than the cannabis group. The present results suggest that chronic cannabis users have poorer learning from errors, with the failure to adapt performance associated with hypoactivity in error-related dACC and hippocampal regions. The findings highlight a consequence of performance monitoring dysfunction in drug abuse and the potential consequence this cognitive impairment has for the symptom of failing to learn from negative feedback seen in cannabis and other forms of dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.