WorldWideScience

Sample records for current electrical stimulation

  1. Direct current electrical stimulation chamber for treating cells in vitro.

    Science.gov (United States)

    Mobini, Sahba; Leppik, Liudmila; Barker, John H

    2016-02-01

    Electrical stimulation has been shown to promote healing and regeneration in skin, bone, muscle, and nerve tissues in clinical studies. Recently, studies applying electrical stimulation to influence cell behavior associated with proliferation, differentiation, and migration have provided a better understanding of the underlying mechanisms of electrical stimulation-based clinical treatments and improved tissue-engineered products through electro-bioreactor technologies. Here, we present a novel device for delivering direct current (DC) electrical stimulation (ES) to cultivated cells in vitro. Our simplified electro-bioreactor is customized for applying DC electrical current simultaneously in six individual tissue culture wells. The design overcomes previous experimental replicate limitations, thus reducing experimental time and cost.

  2. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  3. Gender differences in current received during transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Michael eRussell

    2014-08-01

    Full Text Available Low current transcranial electrical stimulation is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation (GETS modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, Proton Density MRIs from 24 adult subjects (12 male and 12 female were modeled with virtual electrodes placed at F3, F4, C3 and C4. Two sizes of electrodes 20 mm round and 50 x 45 mm square were examined at 0.5, 1 and 2 mA input currents. The intensity of current received was sampled in a one centimeter sphere placed at the cortex directly under each scalp electrode. There was a tenfold range in the current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P <0.05. Larger electrodes delivered somewhat larger amounts of current then the smaller ones (P <0.01. Electrodes in the frontal regions delivered less current than those in the parietal region (P<0.05. There were large individual differences in current levels the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancellous parietal bone and females more dense parietal bone (p<0.01. These differences should be considered when planning transcranial electrical stimulation studies and call into question earlier reports of gender differences due to hormonal influences.

  4. Determinants of the electric field during transcranial direct current stimulation.

    Science.gov (United States)

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Repair of nonunions by electrically pulsed current stimulation.

    Science.gov (United States)

    Zichner, L

    1981-01-01

    Five congenital and 52 acquired nonunions of bone were stimulated using an invasive device. The unit delivered a constant but pulsed right-angled current of positive polarity measuring 20 to 25 muAmps (voltage of 750 mV) and a frequency of 20 Hz. The power pack encapsulated in epoxy resin was implanted at the time of operative fragment stabilization. THe cathode was inserted at the site of the nonunion gap. After two to 12 months, all but two of the acquired nonunions and one of the congenital pseudarthroses healed. In the unsuccessful cases, the bone ends were often totally necrotic. Four cases required reimplantation because of broken wires or expiration of the battery, and two cases failed owing to purulent infection. Electrostimulation is an adjuvant treatment to fragment stabilization in hyporeactive and hypovascular or congenital pseudarthroses. Electrical stimuli may be assumed to simulate conditions which are essential for bone healing.

  6. Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts.

    Science.gov (United States)

    Ren, Jian; Chew, Daniel J; Biers, Suzanne; Thiruchelvam, Nikesh

    2016-03-01

    In this review, we focus on the current attempts of electrical nerve stimulation for micturition in spinal cord injury (SCI) patients. A literature search was performed through PubMed using "spinal cord injury," "electrical nerve stimulation AND bladder," "sacral anterior root stimulation/stimulator" and "Brindley stimulator" from January 1975 to January 2014. Twenty studies were selected for this review. Electrical nerve stimulation is a clinical option for promoting micturition in SCI patients. Well-designed, randomized and controlled studies are essential for further investigation. © 2015 Wiley Periodicals, Inc.

  7. Extracellular stimulation of nerve cells with electric current spikes induced by voltage steps

    OpenAIRE

    2016-01-01

    A new stimulation paradigm is presented for the stimulation of nerve cells by extracellular electric currents. In the new paradigm stimulation is achieved with the current spike induced by a voltage step whenever the voltage step is applied to a live biological tissue. By experimental evidence and theoretical arguments, it is shown that this spike is well suited for the stimulation of nerve cells. Stimulation of the human tongue is used for proof of principle. Charge injection thresholds are ...

  8. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    OpenAIRE

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the r...

  9. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    Science.gov (United States)

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain.

  10. [Stimulation of longitudinal growth of long bones through electrical current. Scintigraphic examinations on ribbit tibiae].

    Science.gov (United States)

    Klems, H; Venohr, H; Weigert, M

    1975-01-01

    Report on szintigraphical examinations using 87-mSr in young rabbits treated by direct current of different intensity varying from 2.5 to 40 micro-Ampère. The current was applicated to one tibia using the other as comparison. Corresponding to the realised growth-increase by electric stimulation there was found an increased uptake of 87m-Sr in the electro-stimulated tibia in all 16 rabbits.

  11. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    Science.gov (United States)

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  12. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  13. Comparison of Twitch Responses During Current- or Voltage-Controlled Transcutaneous Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Vargas Luna, José Luis; Krenn, Matthias; Löfler, Stefan; Kern, Helmut; Cortés R, Jorge A; Mayr, Winfried

    2015-10-01

    Neuromuscular electrical stimulation (NMES) is an established method for functional restoration of muscle function, rehabilitation, and diagnostics. In this work, NMES was applied with surface electrodes placed on the anterior thigh to identify the main differences between current-controlled (CC) and voltage-controlled (VC) modes. Measurements of the evoked knee extension force and the myoelectric signal of quadriceps and hamstrings were taken during stimulation with different amplitudes, pulse widths, and stimulation techniques. The stimulation pulses were rectangular and symmetric biphasic for both stimulation modes. The electrode-tissue impedance influences the differences between CC and VC stimulation. The main difference is that for CC stimulation, variation of pulse width and amplitude influences the amount of nerve depolarization, whereas VC stimulation is only dependent on amplitude variations for pulse widths longer than 150 μs. An important remark is that these findings are strongly dependent on the characteristics of the electrode-skin interface. In our case, we used large stimulation electrodes placed on the anterior thigh, which cause higher capacitive effects. The controllability, voltage compliance, and charge characteristics of each stimulation technique should be considered during the stimulators design. For applications that require the activation of a large amount of nerve fibers, VC is a more suitable option. In contrast, if the application requires a high controllability, then CC should be chosen prior to VC.

  14. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    Science.gov (United States)

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  15. Effects of thermal agents on electrical sensory threshold and current tolerance when applied prior to neuromuscular electrical stimulation.

    Science.gov (United States)

    Çıtak Karakaya, İlkim; Güney, Ömer Faruk; Aydın, Yasemin; Karakaya, Mehmet Gürhan

    2014-01-01

    This study aimed to investigate the effects of thermal agents on electrical sensory threshold and current tolerance when applied prior to neuromuscular electrical stimulation. In this single-blind and cross-over trial, electrical sensory threshold and current tolerance of 24 healthy volunteers were evaluated by using biphasic symmetrical pulses (240 μsec, 50 pps), before and after thermal agent (cold pack, hot pack and ultrasound) applications. Electrical sensory threshold increased after cold-pack, and current tolerance reduced after hot-pack applications (p< 0.05). Inter-agent comparisons of pre and post-application differences of the investigated parameters revealed that the most obvious effects were caused by application of hot pack. Hot pack application prior to neuromuscular electrical stimulation (NMES) may reduce current tolerance and limit to reach the desired current intensity for strengthening the electrically induced contractions. Results are considered to be valuable for physiotherapists, who apply thermal agents and NMES consecutively, in their treatment programs.

  16. The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina

    Science.gov (United States)

    Werginz, Paul; Rattay, Frank

    2016-08-01

    Objective. In spite of intense theoretical and experimental investigations on electrical nerve stimulation, the influence of reversed ion currents on network activity during extracellular stimulation has not been investigated so far. Approach. Here, the impact of calcium current reversal on neurotransmitter release during subretinal stimulation was analyzed with a computational multi-compartment model of a retinal bipolar cell (BC) that was coupled with a four-pool model for the exocytosis from its ribbon synapses. Emphasis was laid on calcium channel dynamics and how these channels influence synaptic release. Main results. Stronger stimulation with anodic pulses caused transmembrane voltages above the Nernst potential of calcium in the terminals and, by this means, forced calcium ions to flow in the reversed direction from inside to the outside of the cell. Consequently, intracellular calcium concentration decreased resulting in a reduced vesicle release or preventing release at all. This mechanism is expected to lead to a pronounced ring-shaped pattern of exocytosis within a group of neighbored BCs when the stronger stimulated cells close to the electrode fail in releasing vesicles. Significance. Stronger subretinal stimulation causes failure of synaptic exocytosis due to reversal of calcium flow into the extracellular space in cells close to the electrode.

  17. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Science.gov (United States)

    Thottakkattumana Parameswaran, Vishnu; Barker, John Howard

    2017-01-01

    Background Electrical stimulation (ES) has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM-) and adipose tissue- (AT-) derived mesenchymal stem cells (MSCs) to direct current electrical stimulation (DC ES) and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  18. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Sahba Mobini

    2017-01-01

    Full Text Available Background Electrical stimulation (ES has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM- and adipose tissue- (AT- derived mesenchymal stem cells (MSCs to direct current electrical stimulation (DC ES and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  19. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells.

    Science.gov (United States)

    Mobini, Sahba; Leppik, Liudmila; Thottakkattumana Parameswaran, Vishnu; Barker, John Howard

    2017-01-01

    Electrical stimulation (ES) has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. In the present study we exposed rat bone marrow- (BM-) and adipose tissue- (AT-) derived mesenchymal stem cells (MSCs) to direct current electrical stimulation (DC ES) and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  20. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  1. Evaluation of the electric field in the brain during transcranial direct current stimulation: A sensitivity analysis.

    Science.gov (United States)

    Santos, Laura; Martinho, Miguel; Salvador, Ricardo; Wenger, Cornelia; Fernandes, Sofia R; Ripolles, Oscar; Ruffini, Giulio; Miranda, Pedro C

    2016-08-01

    The use of computational modeling studies accounts currently for the best approach to predict the electric field (E-field) distribution in transcranial direct current stimulation. As with any model, the values attributed to the physical properties, namely the electrical conductivity of the tissues, affect the predicted E-field distribution. A wide range of values for the conductivity of most tissues is reported in the literature. In this work, we used the finite element method to compute the E-field induced in a realistic human head model for two electrode montages targeting the left dorso-lateral prefrontal cortex (DLPFC). A systematic analysis of the effect of different isotropic conductivity profiles on the E-field distribution was performed for the standard bipolar 7×5 cm2 electrodes configuration and also for an optimized multielectrode montage. Average values of the E-field's magnitude, normal and tangential components were calculated in the target region in the left DLPFC. Results show that the field decreases with increasing scalp, cerebrospinal fluid (CSF) and grey matter (GM) conductivities, while the opposite is observed for the skull and white matter conductivities. The tissues whose conductivity most affects the E-field in the cortex are the scalp and the CSF, followed by the GM and the skull. Uncertainties in the conductivity of individual tissues may affect electric field values by up to about 80%.

  2. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation

    Science.gov (United States)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-01

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  3. Alignment and Elongation of Human Adipose-Derived Stem Cells in Response to Direct-Current Electrical Stimulation

    OpenAIRE

    Tandon, Nina; Goh, Brian; Marsano, Anna; Chao, Pen-Hsiu Grace; Montouri-Sorrentino, Chrystina; Gimble, Jeffrey; Vunjak-Novakovic, Gordana

    2009-01-01

    In vivo, direct current electric fields are present during embryonic development and wound healing. In vitro, direct current (DC) electric fields induce directional cell migration and elongation. For the first time, we demonstrate that cultured human adipose tissue-derived stem cells (hASCs) respond to the presence of direct-current electric fields. Cells were stimulated for 2–4 hours with DC electric fields of 6 V/cm that were similar to those encountered in vivo post-injury. Upon stimulatio...

  4. Comparison of premodulated interferential and pulsed current electrical stimulation in prevention of deep muscle atrophy in rats.

    Science.gov (United States)

    Tanaka, Minoru; Hirayama, Yusuke; Fujita, Naoto; Fujino, Hidemi

    2013-04-01

    The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.

  5. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans.

    Science.gov (United States)

    Parazzini, Marta; Rossi, Elena; Ferrucci, Roberta; Liorni, Ilaria; Priori, Alberto; Ravazzani, Paolo

    2014-03-01

    Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation.

    Science.gov (United States)

    Greenebaum, Ben

    2015-12-01

    The prime goal of this work was to model essentially steady (DC) fields from electrodes, implanted in several ways, which have been suggested as possible means to encourage nerve fiber regrowth in spinal cord injuries. A simplified model of the human spinal cord in the lumbar region and the SEMCAD-X computer program were used to calculate electric field and current density patterns from electrodes outside vertebrae and those inserted extradurally within the spinal canal. DC electric fields guide nerve growth in developing organisms and in vitro. They also have been shown to encourage healing of injured peripheral nerves, and application of a longitudinal field has been used in attempts to bridge spinal cord injuries. When calculated results are scaled to the experimental level used in the literature, all modeled electrodes produced fields in the spinal cord below fields needed in the literature for stimulation of spinal as well as peripheral nerve growth in vitro, in dogs, and in a published clinical human trial. The highly-conducting cerebrospinal fluid appeared to provide effective shielding; there was also a very high degree of polarization at electrodes. © 2015 Wiley Periodicals, Inc.

  7. Electrical safety in spinal cord stimulation: current density analysis by computer modeling

    NARCIS (Netherlands)

    Wesselink, W.A.; Holsheimer, J.

    1995-01-01

    The possibility of tissue damage in spinal cord stimulation was investigated in a computer modeling study. A decrease of the electrode area in monopolar stimulation resulted in an increase of the current density at the electrode surface. When comparing the modeling results with experimental data

  8. The Effects of High-Volt Pulsed Current Electrical Stimulation on Delayed-Onset Muscle Soreness

    Science.gov (United States)

    Butterfield, David Lynn; Draper, David O.; Ricard, Mark D.; Myrer, J. William; Schulthies, Shane S.; Durrant, Earlene

    1997-01-01

    Objective: We investigated three 30-minute high-volt pulsed current electrical stimulation (HVPC) treatments of 125 pps to reduce pain, restore range of motion (ROM), and recover strength loss associated with delayed-onset muscle soreness (DOMS). Design and Setting: Randomized, masked comparison of three 30-minute treatment and sham HVPC regimens over a 48-hour period. Subjects: Twenty-eight college students. Measurements: Subjects performed concentric and eccentric knee extensions with the right leg to induce muscle soreness. Assessments were made before and after the exercise bout and each treatment at 24, 48, and 72 hours postexercise. Results: Three separate 2 × 3 × 2 ANOVAs were used to determine significant differences (p < .05) between days, treatments, and pre-post treatment effects and significant interaction among these variables. Scheffe post hoc tests showed no significant reduction in pain perception or improvement in loss of function at 24, 48, and 72 hours postexercise. Mean pain perception assessments (0 = no pain, 10 = severe pain) for the HVPC group were 2.9, 4.5, and 3.5 and for the sham group 3.8, 4.8, and 3.5). Mean ROM losses for the HVPC group were 9.0°, 22.3°, and 26.2°, and for the sham group were 9.5°, 23.1°, and 23.0°. Mean strength losses (1RM) for the HVPC group were 25.9, 25.7, and 20.8 lbs and for the sham group were 22.3, 22.3, and 13.8 lbs. Conclusions: HVPC as we studied it was ineffective in providing lasting pain reduction and at reducing ROM and strength losses associated with DOMS. PMID:16558426

  9. Endogenous and exogenous electric fields as modifiers of brain activity: rational design of noninvasive brain stimulation with transcranial alternating current stimulation.

    Science.gov (United States)

    Fröhlich, Flavio

    2014-03-01

    Synchronized neuronal activity in the cortex generates weak electric fields that are routinely measured in humans and animal models by electroencephalography and local field potential recordings. Traditionally, these endogenous electric fields have been considered to be an epiphenomenon of brain activity. Recent work has demonstrated that active cortical networks are surprisingly susceptible to weak perturbations of the membrane voltage of a large number of neurons by electric fields. Simultaneously, noninvasive brain stimulation with weak, exogenous electric fields (transcranial current stimulation, TCS) has undergone a renaissance due to the broad scope of its possible applications in modulating brain activity for cognitive enhancement and treatment of brain disorders. This review aims to interface the recent developments in the study of both endogenous and exogenous electric fields, with a particular focus on rhythmic stimulation for the modulation of cortical oscillations. The main goal is to provide a starting point for the use of rational design for the development of novel mechanism-based TCS therapeutics based on transcranial alternating current stimulation, for the treatment of psychiatric illnesses.

  10. Electrical stimulation for gastroesophageal reflux disease: current state of the art

    Directory of Open Access Journals (Sweden)

    Kim SE

    2016-01-01

    Full Text Available Sharon E Kim, Edy Soffer Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Abstract: Patients with gastroesophageal reflux disease (GERD who are not satisfied with acid suppression therapy can benefit primarily from fundoplication, a surgical intervention. Fundoplication has been the standard surgical procedure for GERD. It is effective but is associated with adverse effects, resulting in a declining number of interventions, creating a need for alternative interventions that are effective, yet have a better adverse effect profile. One such alternative involves the application of electrical stimulation to the lower esophageal sphincter. A number of animal studies showed that such stimulation can increase resting lower esophageal sphincter pressure. An acute human study confirmed this effect, and was followed by two open-label studies, with a follow-up of up to 3 years. Results thus far show that the therapy is associated with a significant improvement in symptoms, a significant reduction in esophageal acid exposure, and a very good safety profile. This review will describe the evolution of electrical stimulation therapy for GERD, as well as the safety and efficacy of this intervention. Keywords: gastroesophageal reflux disease, lower esophageal sphincter, health-related quality of life

  11. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    Science.gov (United States)

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  12. A novel biphasic-current-pulse calibration technique for electrical neural stimulation.

    Science.gov (United States)

    Maohua Ren; Jinyong Zhang; Lei Wang; Zhenyu Wang

    2014-01-01

    One of the major challenge in neural prosthetic device design is to ensure charge-balanced stimulation. This paper presents a new calibration technique to minimize the mismatch between anodic and cathodic current amplitudes. The proposed circuit mainly consists of a digital and an analog calibration, where a successive approximation register (SAR) logic and a comparator are used in digital calibration while a source follower is adopted in analog calibration. With a 0.18 μm high voltage CMOS process, the simulation shows that the maximum current mismatch is 45 nA (<0.05%).

  13. Electrical stimulation in exercise training

    Science.gov (United States)

    Kroll, Walter

    1994-01-01

    muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  14. Modulating Endogenous Electric Currents in Human Corneal Wounds—A Novel Approach of Bioelectric Stimulation Without Electrodes

    Science.gov (United States)

    Reid, Brian; Graue-Hernandez, Enrique O.; Mannis, Mark J.; Zhao, Min

    2011-01-01

    Purpose To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Methods Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Results Unwounded cornea had small outward currents (0.07 μA/cm2). Wounding increased the current more than 5 fold (0.41 μA/cm2). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Conclusions Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients. PMID:21099404

  15. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.

    Science.gov (United States)

    Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan

    2017-02-01

    Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.

  16. Field distribution of epidural electrical stimulation.

    Science.gov (United States)

    Xie, Xiaobo; Cui, Hong yan; Xu, Shengpu; Hu, Yong

    2013-11-01

    Epidural electrical stimulation has been applied in clinics for many years. However, there is still a concern about possible injury to spinal nerves. This study investigated electrical field and current density distribution during direct epidural electrical stimulation. Field distribution models were theoretically deduced, while the distribution of potentials and current were analyzed. The current density presented an increase of 70-80%, with one peak value ranging from -85° to 85° between the two stimulated poles. The effect of direct epidural electrical stimulation is mainly on local tissue surrounding the electrodes, concentrated around the two stimulated positions. © 2013 Elsevier Ltd. All rights reserved.

  17. Neuromuscular electrical stimulation for skeletal muscle function.

    Science.gov (United States)

    Doucet, Barbara M; Lam, Amy; Griffin, Lisa

    2012-06-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle.

  18. Low intensity transcranial electric stimulation

    DEFF Research Database (Denmark)

    Antal, Andrea; Alekseichuk, I; Bikson, M

    2017-01-01

    Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears...... following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them......, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly...

  19. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.

    Science.gov (United States)

    Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Tsai, Yun-An; Tang, Shuen-Chang; Kawakami, Michiyuki; Mizuno, Katsuhiro; Kodama, Mitsuhiko; Masakado, Yoshihisa; Liu, Meigen

    2016-06-01

    Supraspinal excitability and sensory input may play an important role for the modulation of spinal inhibitory interneurons and functional recovery among patients with incomplete spinal cord injury (SCI). Here, we investigated the effects of anodal transcranial direct current stimulation (tDCS) combined with patterned electrical stimulation (PES) on spinal inhibitory interneurons in patients with chronic incomplete SCI and in healthy individuals. Eleven patients with incomplete SCI and ten healthy adults participated in a single-masked, sham-controlled crossover study. PES involved stimulating the common peroneal nerve with a train of ten 100 Hz pulses every 2 s for 20 min. Anodal tDCS (1 mA) was simultaneously applied to the primary motor cortex that controls the tibialis anterior muscle. We measured reciprocal inhibition and presynaptic inhibition of a soleus H-reflex by stimulating the common peroneal nerve prior to tibial nerve stimulation, which elicits the H-reflex. The inhibition was assessed before, immediately after, 10 min after and 20 min after the stimulation. Compared with baseline, simultaneous application of anodal tDCS with PES significantly increased changes in disynaptic reciprocal inhibition and long-latency presynaptic inhibition in both healthy and SCI groups for at least 20 min after the stimulation (all, p stimulation (p = 0.004). In conclusion, anodal tDCS combined with PES could induce spinal plasticity and improve ankle movement in patients with incomplete SCI.

  20. Frequency-dependent reduction of voltage-gated sodium current modulates retinal ganglion cell response rate to electrical stimulation

    Science.gov (United States)

    Tsai, David; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2011-10-01

    The ability to elicit visual percepts through electrical stimulation of the retina has prompted numerous investigations examining the feasibility of restoring sight to the blind with retinal implants. The therapeutic efficacy of these devices will be strongly influenced by their ability to elicit neural responses that approximate those of normal vision. Retinal ganglion cells (RGCs) can fire spikes at frequencies greater than 200 Hz when driven by light. However, several studies using isolated retinas have found a decline in RGC spiking response rate when these cells were stimulated at greater than 50 Hz. It is possible that the mechanism responsible for this decline also contributes to the frequency-dependent 'fading' of electrically evoked percepts recently reported in human patients. Using whole-cell patch clamp recordings of rabbit RGCs, we investigated the causes for the spiking response depression during direct subretinal stimulation of these cells at 50-200 Hz. The response depression was not caused by inhibition arising from the retinal network but, instead, by a stimulus-frequency-dependent decline of RGC voltage-gated sodium current. Under identical experimental conditions, however, RGCs were able to spike at high frequency when driven by light stimuli and intracellular depolarization. Based on these observations, we demonstrated a technique to prevent the spiking response depression.

  1. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation.

    Directory of Open Access Journals (Sweden)

    Hsieh-Fu Tsai

    Full Text Available Physiological electric field (EF plays a pivotal role in tissue development and regeneration. In vitro, cells under direct-current electric field (dcEF stimulation may demonstrate directional migration (electrotaxis and long axis reorientation (electro-alignment. Although the biophysical models and biochemical signaling pathways behind cell electrotaxis have been investigated in numerous normal cells and cancer cells, the molecular signaling mechanisms in CL1 lung adenocarcinoma cells have not been identified. Two subclones of CL1 cells, the low invasive CL1-0 cells and the highly invasive CL 1-5 cells, were investigated in the present study. CL1-0 cells are non-electrotactic while the CL 1-5 cells are anodally electrotactic and have high expression level of epidermal growth factor receptor (EGFR, in this study, we investigated the generally accepted hypothesis of receptor tyrosine kinase (RTK activation in the two cell lines under dcEF stimulation. Erbitux, a therapeutic drug containing an anti-EGFR monoclonal antibody, cetuximab, was used to investigate the EGFR signaling in the electrotaxis of CL 1-5 cells. To investigate RTK phosphorylation and intracellular signaling in the CL1 cells, large amount of cellular proteins were collected in an airtight dcEF stimulation device, which has advantages of large culture area, uniform EF distribution, easy operation, easy cell collection, no contamination, and no medium evaporation. Commercial antibody arrays and Western blotting were used to study the phosphorylation profiles of major proteins in CL1 cells under dcEF stimulation. We found that electrotaxis of CL 1-5 cells is serum independent and EGFR independent. Moreover, the phosphorylation of Akt and S6 ribosomal protein (rpS6 in dcEF-stimulated CL1 cells are different from that in EGF-stimulated cells. This result suggests that CL1 cells' response to dcEF stimulation is not through EGFR-triggered pathways. The new large-scale dcEF stimulation

  2. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation.

    Science.gov (United States)

    Tsai, Hsieh-Fu; Huang, Ching-Wen; Chang, Hui-Fang; Chen, Jeremy J W; Lee, Chau-Hwang; Cheng, Ji-Yen

    2013-01-01

    Physiological electric field (EF) plays a pivotal role in tissue development and regeneration. In vitro, cells under direct-current electric field (dcEF) stimulation may demonstrate directional migration (electrotaxis) and long axis reorientation (electro-alignment). Although the biophysical models and biochemical signaling pathways behind cell electrotaxis have been investigated in numerous normal cells and cancer cells, the molecular signaling mechanisms in CL1 lung adenocarcinoma cells have not been identified. Two subclones of CL1 cells, the low invasive CL1-0 cells and the highly invasive CL 1-5 cells, were investigated in the present study. CL1-0 cells are non-electrotactic while the CL 1-5 cells are anodally electrotactic and have high expression level of epidermal growth factor receptor (EGFR), in this study, we investigated the generally accepted hypothesis of receptor tyrosine kinase (RTK) activation in the two cell lines under dcEF stimulation. Erbitux, a therapeutic drug containing an anti-EGFR monoclonal antibody, cetuximab, was used to investigate the EGFR signaling in the electrotaxis of CL 1-5 cells. To investigate RTK phosphorylation and intracellular signaling in the CL1 cells, large amount of cellular proteins were collected in an airtight dcEF stimulation device, which has advantages of large culture area, uniform EF distribution, easy operation, easy cell collection, no contamination, and no medium evaporation. Commercial antibody arrays and Western blotting were used to study the phosphorylation profiles of major proteins in CL1 cells under dcEF stimulation. We found that electrotaxis of CL 1-5 cells is serum independent and EGFR independent. Moreover, the phosphorylation of Akt and S6 ribosomal protein (rpS6) in dcEF-stimulated CL1 cells are different from that in EGF-stimulated cells. This result suggests that CL1 cells' response to dcEF stimulation is not through EGFR-triggered pathways. The new large-scale dcEF stimulation device developed

  3. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation.

    Science.gov (United States)

    Metwally, Mohamed K; Han, Seung Moo; Kim, Tae-Seong

    2015-10-01

    Transcranial direct current stimulation (tDCS) is considered to be a promising technique for noninvasive brain stimulation and brain disease therapy. Recent studies have investigated the distribution of the electric field (EF) magnitude over gyri and sulci and the effect of tissue homogeneity with isotropic electrical conductivities. However, it is well known that the skull and white matter (WM) are highly anisotropic electrically, requiring investigations of their anisotropic effects on the magnitude and the directional components of the induced EF due to the high dependency between neuromodulation and the EF direction. In this study, we investigated the effects of the skull and WM anisotropy on the radial and tangential components of the EF via gyri-specific high-resolution finite element head models. For tDCS, three configurations were investigated: the conventional rectangular pad electrode, a 4(cathodes) +1(anode) ring configuration, and a bilateral configuration. The results showed that the skull anisotropy has a crucial influence on the distribution of the radial EF component. The affected cortical regions by the radial EF were reduced about 22 % when considering the skull anisotropy in comparison with the regions with the skull isotropy. On the other hand, the WM anisotropy strongly alters the EF directionality, especially within the sulci. The electric current tends to flow radially to the cortical surface with the WM anisotropy. This effect increases the affected cortical areas by the radial EF component within the sulcal regions. Our results suggest that one must examine the distribution of the EF components in tDCS, not just the magnitude of the EF alone.

  4. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats.

    Science.gov (United States)

    Asgari, Azam; Semnanian, Saeed; Atapour, Nafiseh; Shojaei, Amir; Moradi-Chameh, Homeira; Ghafouri, Samireh; Sheibani, Vahid; Mirnajafi-Zadeh, Javad

    2016-08-25

    Low frequency stimulation (LFS) has been proposed as a new approach in the treatment of epilepsy. The anticonvulsant mechanism of LFS may be through its effect on GABAA receptors, which are the main target of phenobarbital anticonvulsant action. We supposed that co-application of LFS and phenobarbital may increase the efficacy of phenobarbital. Therefore, the interaction of LFS and phenobarbital on GABAergic inhibitory post-synaptic currents (IPSCs) in kindled and control rats was investigated. Animals were kindled by electrical stimulation of basolateral amygdala in a semi rapid manner (12 stimulations/day). The effect of phenobarbital, LFS and phenobarbital+LFS was investigated on GABAA-mediated evoked and miniature IPSCs in the hippocampal brain slices in control and fully kindled animals. Phenobarbital and LFS had positive interaction on GABAergic currents. In vitro co-application of an ineffective pattern of LFS (100 pulses at afterdischarge threshold intensity) and a sub-threshold dose of phenobarbital (100μM) which had no significant effect on GABAergic currents alone, increased the amplitude and area under curve of GABAergic currents in CA1 pyramidal neurons of hippocampal slices significantly. Interestingly, the sub-threshold dose of phenobarbital potentiated the GABAergic currents when applied on the hippocampal slices of kindled animals which received LFS in vivo. Post-synaptic mechanisms may be involved in observed interactions. Obtained results implied a positive interaction between LFS and phenobarbital through GABAA currents. It may be suggested that a combined therapy of phenobarbital and LFS may be a useful manner for reinforcing the anticonvulsant action of phenobarbital. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.

    Science.gov (United States)

    Manoli, Zoi; Parazzini, Marta; Ravazzani, Paolo; Samaras, Theodoros

    2017-01-01

    The lack of knowledge of the electric field distribution inside the brain of stroke patients receiving transcranial direct current stimulation (tDCS) calls for estimating it computationally. Moreover, the impact on this distribution of a novel clinical management approach which involves secondary motor areas (SMA) in stroke rehabilitation needs to be evaluated. Finally, the differences in the electric field distributions due to gender and age need to be investigated. This work presents the development of two different anatomical models (young adult female and elderly male) with an ischemic stroke region of spherical volume 10 cm(3) or 50 cm(3) , using numerical models of the Virtual Population (ViP). The stroke phase was considered as acute or chronic, resulting in different electrical properties of the area. Two different electrode montages were used - One over the lesion area and the contralateral supra-orbital region and the other over the SMA and the contralateral supra-orbital region. A quasi-electrostatic solver was used to numerically solve the Laplace equation with the finite-difference technique. Both the 99th percentile of the electric field intensity distribution ("E peak value") and the percentage of the tissue volumes with electric field intensity over 50% and 70% of the E peak value were assessed inside the target areas of the primary motor cortex (M1) and the SMA, as well as in other brain tissues (hypothalamus and cerebellum). In the acute phase of an ischemic stroke, the normalized electric field intensity distributions do not differ noticeably compared to those in the brain of a healthy person (mean square difference electric field in the tissues in the SMA are almost equal for both electrode montages. The peak values of the electric field distribution ("E peak values") in cerebellum and hypothalamus for both electrode montages are rather small but different from those of healthy patients. The largest difference of 21% decrease with respect to a

  6. The efficacy of neuromuscular electrical stimulation with alternating currents in the kilohertz frequency to stimulate gait rhythm in rats following spinal cord injury.

    Science.gov (United States)

    Kanchiku, Tsukasa; Suzuki, Hidenori; Imajo, Yasuaki; Yoshida, Yuichiro; Moriya, Atsushi; Suetomi, Yutaka; Nishida, Norihiro; Takahashi, Youhei; Taguchi, Toshihiko

    2015-10-29

    Rehabilitation facilitates the reorganization of residual/regenerated neural pathways and is key in improving motor function following spinal cord injury. Neuromuscular electrical stimulation (NMES) has been reported as being clinically effective. Although it can be used after the acute phase post-injury, the optimal stimulation conditions to improve motor function remain unclear. In this paper, we examined the effectiveness of NMES with alternating currents in the kilohertz (kHz) frequency in gait rhythm stimulation therapy. Tests were performed using 20 mature female Fischer rats. Incomplete spinal cord injuries (T9 level) were made with an IH impactor using a force of 150 kdyn, and NMES was administered for 3 days from the 7th day post-injury. The needle electrodes were inserted percutaneously near the motor point of each muscle in conscious rats, and each muscle on the left and right leg was stimulated for 15 min at two frequencies, 75 Hz and 8 kHz, to induce a gait rhythm. Motor function was evaluated using Basso, Beattie, Bresnahan (BBB) scores and three-dimensional (3D) gait analysis. Rats were divided into four groups (5 rats/group), including the NMES treatment 75-Hz group (iSCI-NMES 75 Hz), 8-kHz group (iSCI-NMES 8 kHz), injury control group (iSCI-NT), and normal group (Normal-CT), and were compared. There was no significant difference in BBB scores among the three groups. In 3D gait analysis, compared with the injury control group, the 8-kHz group showed a significant improvement in synergistic movement of both hindlimbs. We suggest that kHz stimulation is effective in gait rhythm stimulation using NMES.

  7. Current Directions in Non-Invasive Low Intensity Electric Brain Stimulation for Depressive Disorder

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Sack, A.T.

    2014-01-01

    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating

  8. Current Directions in Non-Invasive Low Intensity Electric Brain Stimulation for Depressive Disorder

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Sack, A.T.

    2014-01-01

    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating

  9. Current distribution in skeletal muscle activated by functional electrical stimulation: image-series formulation and isometric recruitment curve.

    Science.gov (United States)

    Livshitz, L M; Einziger, P D; Mizrahi, J

    2000-01-01

    The present work develops an analytical model that allows one to estimate the current distribution within the whole muscle and the resulting isometric recruitment curve (IRC). The quasistatic current distribution, expressed as an image series, i.e., a collection of properly weighted and shifted point-source responses, outlines an extension for more than three layers of the classical image theory in conductive plane-stratified media. Evaluation of the current distribution via the image series expansions requires substantially less computational time than the standard integral representation. The expansions use a unique recursive representation for Green's function, that is a generic characteristic of the stratification. This approach permits one to verify which of the tissue electrical properties are responsible for the current density distribution within the muscle, and how significant their combinations are. In addition, the model permits one to study the effect of different electrode placement on the shape and the magnitude of the potential distribution. A simple IRC model was used for parameter estimation and model verification by comparison with experimentally obtained isometric recruitment curves. Sensitivity of the model to different parameters such as conductivity of the tissues and activation threshold was verified. The resulting model demonstrated characteristic features that were similar to those of experimentally obtained data. The model also quantitatively confirmed the differences existing between surface (transcutaneous) and implanted (percutaneous) electrode stimulation.

  10. Combination of Transcranial Direct Current Stimulation and Neuromuscular Electrical Stimulation Improves Gait Ability in a Patient in Chronic Stage of Stroke

    Directory of Open Access Journals (Sweden)

    Takeshi Satow

    2016-02-01

    Full Text Available Background: Walking ability is important in stroke patients to maintain daily life. Nevertheless, its improvement is limited with conventional physical therapy in chronic stage. We report the case of a chronic stroke patient showing a remarkable improvement in gait function after a new neurorehabilitation protocol using transcranial direct current stimulation (tDCS and neuromuscular electrical stimulation (NMES. Case Presentation: A 62-year-old male with left putaminal hemorrhage suffered from severe right hemiparesis. He could move by himself with a wheelchair 1 year after the ictus. Anodal tDCS at the vertex (2 mA, 20 min with NMES at the anterior tibialis muscle had been applied for 3 weeks. The Timed Up and Go test and 10-meter walk test improved after the intervention, which had been maintained for at least 1 month. Conclusion: This single case suggests the possibility that tDCS with NMES could be a new rehabilitation approach to improve the gait ability in chronic stroke patients.

  11. The in vivo reduction of afferent facilitation induced by low frequency electrical stimulation of the motor cortex is antagonized by cathodal direct current stimulation of the cerebellum.

    Science.gov (United States)

    Oulad Ben Taib, Nordeyn; Manto, Mario

    2016-01-01

    Low-frequency electrical stimulation to the motor cortex (LFSMC) depresses the excitability of motor circuits by long-term depression (LTD)-like effects. The interactions between LFSMC and cathodal direct current stimulation (cDCS) over the cerebellum are unknown. We assessed the corticomotor responses and the afferent facilitation of corticomotor responses during a conditioning paradigm in anaesthetized rats. We applied LFSMC at a frequency of 1 Hz and a combination of LFSMC with cDCS. LFSMC significantly depressed both the corticomotor responses and the afferent facilitation of corticomotor responses. Simultaneous application of cDCS over the cerebellum antagonized the depression of corticomotor responses and cancelled the depression of the afferent facilitation. Our results demonstrate that cDCS of the cerebellum is a potent modulator the inhibition of the motor circuits induced by LFSMC applied in vivo. These results expand our understanding of the effects of cerebellar DCS on motor commands and open novel applications for a cerebellar remote control of LFSMC-induced neuroplasticity. We suggest that the cerebellum acts as a neuronal machine supervising not only long-term potentiation (LTP)-like effects, but also LTD-like effects in the motor cortex, two mechanisms which underlie cerebello-cerebral interactions and the cerebellar control of remote plasticity. Implications for clinical ataxiology are discussed.

  12. Electrical stimulation and muscle strengthening

    National Research Council Canada - National Science Library

    Dehail, P; Duclos, C; Barat, M

    2008-01-01

    ...: muscular or neuromuscular, electromyostimulation, electrical stimulation, strengthening, strength training, immobilization, muscle dystrophy, bed-rest, bed-bound, knee or hip surgery, postoperative...

  13. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  14. Electrical stimulation of mechanoreceptors

    Science.gov (United States)

    Echenique, A. M.; Graffigna, J. P.

    2011-12-01

    Within the field of Rehabilitation Engineering, this work is aimed at identifying the optimal parameters of electric current stimulus which activate the nervous axons of mecanoreceptors found in the fingertip, allowing, this way, to resemble tactile senses. These sensorial feelings can be used by aiding technological means, namely, the sensorial substitution technology, in an attempt to render information to blind people through the tactile sense. The physical pressure on sensorial areas (fingertips) used for reading activities through the Braille System is the main effect that is imitated and studied in this research work. An experimental aiding prototype for Braille reading research has been developed and tested with blinds and reduced vision people, with highly satisfactory results.

  15. Design of a pulse-triggered four-channel functional electrical stimulator using complementary current source and time division multiplexing output method.

    Science.gov (United States)

    Wang, Hai-Peng; Wang, Zhi-Gong; Lü, Xiao-Ying; Huang, Zong-Hao; Zhou, Yu-Xuan

    2015-08-01

    In this paper, a four-channel pulse-triggered functional electrical stimulator using complementary current source and time division output method is proposed for the research and application of functional electrical stimulation (FES). The high-voltage compliance and output impedance is increased by adopting the complementary current source, which can also realize the linear voltage-to-current conversion and high channel isolation. A high-voltage analog switch chip MAX14803, combined with a FIFO queue algorithm in the microprocessor, is used to setup the H-bridge and multiplexers for the four-channel time division multiplexing output. With this method, the size and cost of the key components are reduced greatly. The stimulating core circuit area is 30 × 50 mm(2). According to the experiments, the stimulator can achieve the four-channel charge-balanced biphasic stimulation with a current range between 0 and 60 mA and a single-phase pulse amplitude up to 60 V.

  16. Electric pulse current stimulation increases electrophysiological properties of If current reconstructed in mHCN4-transfected canine mesenchymal stem cells.

    Science.gov (United States)

    Feng, Yuanyuan; Luo, Shouming; Yang, Pan; Song, Zhiyuan

    2016-04-01

    The 'funny' current, also known as the If current, play a crucial role in the spontaneous diastolic depolarization of sinoatrial node cells. The If current is primarily induced by the protein encoded by the hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) gene. The functional If channel can be reconstructed in canine mesenchymal stem cells (cMSCs) transfected with mouse HCN4 (mHCN4). Biomimetic studies have shown that electric pulse current stimulation (EPCS) can promote cardiogenesis in cMSCs. However, whether EPCS is able to influence the properties of the If current reconstructed in mHCN4-transfected cMSCs remains unclear. The present study aimed to investigate the effects of EPCS on the If current reconstructed in mHCN4-transfected cMSCs. The cMSCs were transfected with the lentiviral vector pLentis-mHCN4-GFP. Following transfection, these cells were divided into two groups: mHCN4-transfected cMSCs (group A), and mHCN4-transfected cMSCs induced by EPCS (group B). Using a whole cell patch-clamp technique, the If current was recorded, and group A cMSCs showed significant time and voltage dependencies and sensitivity to extracellular Cs+. The half-maximal activation (V1/2) value was -101.2±4.6 mV and the time constant of activation was 324±41 msec under -160 mV. In the group B cells the If current increased obviously and activation curve moved to right. The absolute value of V1/2 increased significantly to -92.4±4.8 mV (P<0.05), and the time constant of activation diminished under the same command voltage (251±44 vs. 324±41, P<0.05). In addition, the mRNA and protein expression levels of HCN4, connexin 43 (Cx43) and Cx45 were upregulated in group B compared with group A, as determined by reverse transcription-quantitative polymerase chain reaction and western blot analyses. Transmission electron micrographs also confirmed the increased gap junctions in group B. Collectively, these results indicated that reconstructed If channels may have a

  17. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    Science.gov (United States)

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  18. Transcranial electrical stimulation: An introduction

    CERN Document Server

    Tarazona, Carlos G; Chávez, Laura; Andrade, Sebastián

    2015-01-01

    The main objective of the electrical stimulation of the brain is to generate action potentials from the application of electromagnetic fields. Among the available techniques, transcranial electrical stimulation (TES) represents a popular method of administration that has the advantage of being non-invasive and economically more affordable. This article aims to briefly introduce the reader into the understanding of TES in terms of the physics involved as well as for some of the relevant results of studies applying this technique.

  19. Electric current locator

    Science.gov (United States)

    King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  20. Braille line using electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, A; Pures, P; Echenique, A M; Ensinck, J P Graffigna y G [Gabinete de TecnologIa Medica. Universidad N. de San Juan (Argentina)

    2007-11-15

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  1. Braille line using electrical stimulation

    Science.gov (United States)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  2. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    Science.gov (United States)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  3. Electrical Stimulation to Promote Peripheral Nerve Regeneration.

    Science.gov (United States)

    Willand, Michael P; Nguyen, May-Anh; Borschel, Gregory H; Gordon, Tessa

    2016-06-01

    Peripheral nerve injury afflicts individuals from all walks of life. Despite the peripheral nervous system's intrinsic ability to regenerate, many patients experience incomplete functional recovery. Surgical repair aims to expedite this recovery process in the most thorough manner possible. However, full recovery is still rarely seen especially when nerve injury is compounded with polytrauma where surgical repair is delayed. Pharmaceutical strategies supplementary to nerve microsurgery have been investigated but surgery remains the only viable option. Brief low-frequency electrical stimulation of the proximal nerve stump after primary repair has been widely investigated. This article aims to review the currently known biological basis for the regenerative effects of acute brief low-frequency electrical stimulation on axonal regeneration and outline the recent clinical applications of the electrical stimulation protocol to demonstrate the significant translational potential of this modality for repairing peripheral nerve injuries. The review concludes with a discussion of emerging new advancements in this exciting area of research. The current literature indicates the imminent clinical applicability of acute brief low-frequency electrical stimulation after surgical repair to effectively promote axonal regeneration as the stimulation has yielded promising evidence to maximize functional recovery in diverse types of peripheral nerve injuries. © The Author(s) 2015.

  4. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  5. Multiscale coupling of transcranial direct current stimulation to neuron electrodynamics: modeling the influence of the transcranial electric field on neuronal depolarization.

    Science.gov (United States)

    Dougherty, Edward T; Turner, James C; Vogel, Frank

    2014-01-01

    Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model's validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model's predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.

  6. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  7. Electrical stimulation of experimental nonunions

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R.R.; Luethi, U.; Dueland, R.T.; Perren, S.M.

    Hypertrophic and oligotrophic nonunions were prepared by resection of a portion of the proximal ulna in dogs. In the hypertrophic nonunions, 20 muamps of direct current for eight weeks produced an increase in bone formation compared to the opposite control limb by radiography, photometry, point counting of new bone, and growth rate by sequential fluorochrome labeling and the dynamic uptake of 99mTc-labeled methylene disphosphonate. Oligotrophic nonunions were treated by plating and aspiration grafting in addition to direct-current stimulation. Ony the point counting of new bone showed a significant increase in bone formation with stimulation. Sequential fluorochrome labeling demonstrated that the new bone was laid down on existing bone and not primarily adjacent to the cathode within the fibrous nonunion. This finding supports the cell-mediated rather than physicochemical effect of electrostimulation.

  8. High-frequency and brief-pulse stimulation pulses terminate cortical electrical stimulation-induced afterdischarges.

    Science.gov (United States)

    Ren, Zhi-Wei; Li, Yong-Jie; Yu, Tao; Ni, Duan-Yu; Zhang, Guo-Jun; Du, Wei; Piao, Yuan-Yuan; Zhou, Xiao-Xia

    2017-06-01

    Brief-pulse stimulation at 50 Hz has been shown to terminate afterdischarges observed in epilepsy patients. However, the optimal pulse stimulation parameters for terminating cortical electrical stimulation-induced afterdischarges remain unclear. In the present study, we examined the effects of different brief-pulse stimulation frequencies (5, 50 and 100 Hz) on cortical electrical stimulation-induced afterdischarges in 10 patients with refractory epilepsy. Results demonstrated that brief-pulse stimulation could terminate cortical electrical stimulation-induced afterdischarges in refractory epilepsy patients. In conclusion, (1) a brief-pulse stimulation was more effective when the afterdischarge did not extend to the surrounding brain area. (2) A higher brief-pulse stimulation frequency (especially 100 Hz) was more likely to terminate an afterdischarge. (3) A low current intensity of brief-pulse stimulation was more likely to terminate an afterdischarge.

  9. Effects of transcutaneous electrical nerve stimulation (TENS and interferential currents (IFC in patients with nonspecific chronic low back pain: randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Ligia Maria Facci

    Full Text Available CONTEXT AND OBJECTIVE: Transcutaneous electrical nerve stimulation (TENS and interferential current are the most used electrotherapy methods, although there is little scientific evidence to support their use. The aim of this study was to compare the effects of TENS and interferential current among patients with nonspecific chronic low back pain. DESIGN AND SETTING: Single-blind randomized controlled trial in the Department of Physiotherapy, Centro Universitário de Maringá. METHODS: One hundred and fifty patients were randomly divided into three groups: TENS (group 1, interferential current (group 2 and controls (group 3. The patients designated for electrotherapy received ten 30-minute sessions, while the control group remained untreated. All patients and controls were evaluated before and after treatment using a visual analog scale and the McGill Pain and Roland Morris questionnaires, and regarding their use of additional medications. RESULTS: There was a mean reduction on the visual analog scale of 39.18 mm with TENS, 44.86 mm with interferential current and 8.53 mm among the controls. In the Roland Morris questionnaire, group 1 had a mean reduction of 6.59; group 2, 7.20; and group 3, 0.70 points. In group 1, 84% of the patients stopped using medications after the treatment; in group 2, 75%; and in group 3, 34%. There was no statistically significant difference between the TENS and interferential current groups (P > 0.05; a difference was only found between these groups and the controls (P < 0.0001. CONCLUSION: There was no difference between TENS and interferential current for chronic low back pain treatment. CLINICAL TRIAL REGISTRATION: NCT01017913.

  10. Electrical stimulation counteracts muscle decline in seniors

    National Research Council Canada - National Science Library

    Kern, Helmut; Barberi, Laura; Löfler, Stefan; Sbardella, Simona; Burggraf, Samantha; Fruhmann, Hannah; Carraro, Ugo; Mosole, Simone; Sarabon, Nejc; Vogelauer, Michael; Mayr, Winfried; Krenn, Matthias; Cvecka, Jan; Romanello, Vanina; Pietrangelo, Laura; Protasi, Feliciano; Sandri, Marco; Zampieri, Sandra; Musaro, Antonio

    2014-01-01

    .... We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function...

  11. Tissue damage thresholds during therapeutic electrical stimulation

    Science.gov (United States)

    Cogan, Stuart F.; Ludwig, Kip A.; Welle, Cristin G.; Takmakov, Pavel

    2016-04-01

    Objective. Recent initiatives in bioelectronic modulation of the nervous system by the NIH (SPARC), DARPA (ElectRx, SUBNETS) and the GlaxoSmithKline Bioelectronic Medicines effort are ushering in a new era of therapeutic electrical stimulation. These novel therapies are prompting a re-evaluation of established electrical thresholds for stimulation-induced tissue damage. Approach. In this review, we explore what is known and unknown in published literature regarding tissue damage from electrical stimulation. Main results. For macroelectrodes, the potential for tissue damage is often assessed by comparing the intensity of stimulation, characterized by the charge density and charge per phase of a stimulus pulse, with a damage threshold identified through histological evidence from in vivo experiments as described by the Shannon equation. While the Shannon equation has proved useful in assessing the likely occurrence of tissue damage, the analysis is limited by the experimental parameters of the original studies. Tissue damage is influenced by factors not explicitly incorporated into the Shannon equation, including pulse frequency, duty cycle, current density, and electrode size. Microelectrodes in particular do not follow the charge per phase and charge density co-dependence reflected in the Shannon equation. The relevance of these factors to tissue damage is framed in the context of available reports from modeling and in vivo studies. Significance. It is apparent that emerging applications, especially with microelectrodes, will require clinical charge densities that exceed traditional damage thresholds. Experimental data show that stimulation at higher charge densities can be achieved without causing tissue damage, suggesting that safety parameters for microelectrodes might be distinct from those defined for macroelectrodes. However, these increased charge densities may need to be justified by bench, non-clinical or clinical testing to provide evidence of device

  12. Modulation of auditory percepts by transcutaneous electrical stimulation.

    Science.gov (United States)

    Ueberfuhr, Margarete Anna; Braun, Amalia; Wiegrebe, Lutz; Grothe, Benedikt; Drexl, Markus

    2017-07-01

    Transcutaneous, electrical stimulation with electrodes placed on the mastoid processes represents a specific way to elicit vestibular reflexes in humans without active or passive subject movements, for which the term galvanic vestibular stimulation was coined. It has been suggested that galvanic vestibular stimulation mainly affects the vestibular periphery, but whether vestibular hair cells, vestibular afferents, or a combination of both are excited, is still a matter of debate. Galvanic vestibular stimulation has been in use since the late 18th century, but despite the long-known and well-documented effects on the vestibular system, reports of the effect of electrical stimulation on the adjacent cochlea or the ascending auditory pathway are surprisingly sparse. The present study examines the effect of transcutaneous, electrical stimulation of the human auditory periphery employing evoked and spontaneous otoacoustic emissions and several psychoacoustic measures. In particular, level growth functions of distortion product otoacoustic emissions were recorded during electrical stimulation with alternating currents (2 Hz, 1-4 mA in 1 mA-steps). In addition, the level and frequency of spontaneous otoacoustic emissions were followed before, during, and after electrical stimulation (2 Hz, 1-4 mA). To explore the effect of electrical stimulation on the retrocochlear level (i.e. on the ascending auditory pathway beyond the cochlea), psychoacoustic experiments were carried out. Specifically, participants indicated whether electrical stimulation (4 Hz, 2 and 3 mA) induced amplitude modulations of the perception of a pure tone, and of auditory illusions after presentation of either an intense, low-frequency sound (Bounce tinnitus) or a faint band-stop noise (Zwicker tone). These three psychoacoustic measures revealed significant perceived amplitude modulations during electrical stimulation in the majority of participants. However, no significant changes of evoked and

  13. Closed-loop transcranial alternating current stimulation of slow oscillations

    Directory of Open Access Journals (Sweden)

    Wilde Christian

    2015-09-01

    Full Text Available Transcranial alternating current stimulation (tACS is an emerging non-invasive tool for modulating brain oscillations. There is evidence that weak oscillatory electrical stimulation during sleep can entrain cortical slow oscillations to improve the memory consolidation in rodents and humans. Using a novel method and a custom built stimulation device, automatic stimulation of slow oscillations in-phase with the endogenous activity in a real-time closed-loop setup is possible. Preliminary data from neuroplasticity experiments show a high detection performance of the proposed method, electrical measurements demonstrate the outstanding quality of the presented stimulation device.

  14. Multiscale Coupling of Transcranial Direct Current Stimulation to Neuron Electrodynamics: Modeling the Influence of the Transcranial Electric Field on Neuronal Depolarization

    Directory of Open Access Journals (Sweden)

    Edward T. Dougherty

    2014-01-01

    Full Text Available Transcranial direct current stimulation (tDCS continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.

  15. Spatially Patterned Electrical Stimulation to Enhance Resolution of Retinal Prostheses

    OpenAIRE

    2014-01-01

    Retinal prostheses electrically stimulate neurons to produce artificial vision in people blinded by photoreceptor degenerative diseases. The limited spatial resolution of current devices results in indiscriminate stimulation of interleaved cells of different types, precluding veridical reproduction of natural activity patterns in the retinal output. Here we investigate the use of spatial patterns of current injection to increase the spatial resolution of stimulation, using high-density multie...

  16. Electrical stimulation and muscle strengthening.

    Science.gov (United States)

    Dehail, P; Duclos, C; Barat, M

    2008-07-01

    To identify the effects of application methods and indications of direct muscle electrostimulation on strength gain. Literature review and analysis of articles from Medline database with the following entries: muscular or neuromuscular, electromyostimulation, electrical stimulation, strengthening, strength training, immobilization, muscle dystrophy, bed-rest, bed-bound, knee or hip surgery, postoperative phase, cachexia, sarcopenia, and their French equivalent. Because of its specific muscle recruitment order, different from that of voluntary contraction, direct muscle electrostimulation is theoretically a complementary tool for muscle strengthening. It can be used in healthy subjects and in several affections associated with muscle function loss. Its interest seems well-established for post-traumatic or postsurgery lower-limb immobilizations but too few controlled studies have clearly shown the overall benefits of its application in other indications. Whatever the indication, superimposed or combined electrostimulation techniques are generally more efficient than electrostimulation alone. Even though widely used, the level of evidence for the efficiency of electromyostimulation is still low. For strength gains, it yielded no higher benefits than traditional strengthening methods. Its interest should be tested in medical affections leading to major muscle deconditioning or in sarcopenia.

  17. Point Electric Stimulation and Children's Amblyopia

    Institute of Scientific and Technical Information of China (English)

    YAN Xing-ke; CHU Hui-ju; WANG Fu-chun; YANG Bo; GAO Yang; HAN Chou-ping

    2007-01-01

    To observe the therapeutic efficacy of electric stimulation on points for children's amblyopia.Method:Ninety children amblyopia cases with ametropia upon correction were randomized into three groups:point electric stimulation,comprehensive conventional therapy and integrative therapy of the above two.And then visual function changes of kids in the three groups were observed.Results:Among the above three therapies,the recovery rates of point electric stimulation,comprehensive conventional therapy and integrative therapy of the two were 83.9%,82.6%and 94.25 respectively,showing no significant difierence(P>0.05) among the three groups.Conclusion:Point electric stimulation has similar action with comprehensive conventional therapy in the treatment of children's amblyopia,and the combination of the two therapies has better effect,indicating point electric stimulation can speed up recovery of visual function of kids with amblyopia.

  18. Vomiting Center reanalyzed: An electrical stimulation study

    Science.gov (United States)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  19. Electromyographic evaluation of functional electrical stimulation to injured oculomotor nerve

    Institute of Scientific and Technical Information of China (English)

    Min Yang; Shiting Li; Youqiang Meng; Ningxi Zhu; Xuhui Wang; Liang Wan; Wenchuan Zhang; Jun Zhong; Shugan Zhu; Massimiliano Visocchi

    2011-01-01

    Functional electrical stimulation delivered early after injury to the proximal nerve stump has been proposed as a therapeutic approach for enhancing the speed and specificity of axonal regeneration following nerve injury. In this study, the injured oculomotor nerve was stimulated functionally by an implantable electrode. Electromyographic monitoring of the motor unit potential of the inferior oblique muscle was conducted for 12 weeks in two injury groups, one with and one without electric stimulation. The results revealed that, at 2, 4, 6, 8 weeks after functional electric stimulation of the injured oculomotor nerve, motor unit potentials significantly increased, such that amplitude was longer and spike duration gradually shortened. These findings indicate that the injured oculomotor nerve has the potential for regeneration and repair, but this ability is not sufficient for full functional recovery to occur. Importantly, the current results indicated that recovery and regeneration of the injured oculomotor nerve can be promoted with functional electrical stimulation.

  20. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  1. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  3. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  4. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    Science.gov (United States)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  5. Binaural hearing with electrical stimulation.

    Science.gov (United States)

    Kan, Alan; Litovsky, Ruth Y

    2015-04-01

    Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Deep Brain Electrical Stimulation in Epilepsy

    Science.gov (United States)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  7. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  8. [Functional electric stimulation (FES) in cerebral palsy].

    Science.gov (United States)

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  9. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    Science.gov (United States)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  10. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  11. Perceptions and electric senoidal current stimulation Percepções e estimulações elétricas por correntes senoidais

    Directory of Open Access Journals (Sweden)

    Julia Manzano Pimentel

    2006-03-01

    Full Text Available OBJECTIVE: To analyze the relationship between perceptions and electrical senoidal current stimulation (ESCS. METHOD: The study population comprise 100 healthy volunteers. ESCS of 5 Hz and 2 kHz were applied to the left index finger at one and 1.5 sensory threshold. Following each stimulus train a list of eight words (four related to thin fiber sensations and four related to thick fiber sensations was presented to the subjects who were asked to choose the three words closer to the experienced sensation. Each chosen word was given a score 1; final results were obtained by the sum of the scores for the words related to thin and thick fiber systems for each situation. RESULTS: For 5 Hz ESCS at one and 1.5 sensory threshold thin fibers had significantly higher scores than thick fibers; for 2 kHz ESCS, thick fibers had significantly higher scores. CONCLUSION: These results show that there is a relation between different sensations and ESCS of different frequencies.OBJETIVO: Estudar a relação entre as sensações evocadas por estimulação elétrica por corrente senoidal (ESCS. MÉTODO: 100 voluntários normais foram estudados. ESCS a 5 Hz e 2 kHz foram aplicadas no dedo indicador esquerdo com uma e 1,5 vezes o limiar sensorial. Listas de oito palavras (4 relacionadas a fibras grossas, 4 a fibras finas foram apresentadas após cada estimulação e foi solicitado que o sujeito escolhesse as 3 palavras que mais se aproximassem das sensações experimentadas. Às palavras escolhidas foi dado o escore 1. Os resultados finais para análise foram obtidos da soma dos escores para as palavras relacionadas aos diferentes sistemas de fibras. RESULTADOS: Para ESCS a 5 Hz sensações relacionadas a fibras finas foram significantemente mais escolhidas, já para estimulações a 2 kHz sensações relacionadas a fibras grossas foram significantemente mais escolhidas. CONCLUSÃO: Estes resultados mostram um relação entre diferentes percepções e diferentes freq

  12. Artifacts of Functional Electrical Stimulation on Electromyograph

    Institute of Scientific and Technical Information of China (English)

    DUAN Ren-quan; ZHANG Ding-guo

    2014-01-01

    The purpose of this study is to investigate different factors of the artifact in surface electromyography (EMG) signal caused by functional electrical stimulation (FES). The factors investigated include the size of stimulation electrode pads, the amplitude, frequency, and pulse width of the stimulation waveform and the detecting electrode points. We calculate the root mean square (RMS) of EMG signal to analyze the effect of these factors on the M-wave properties. The results indicate that the M-wave mainly depends on the stimulation amplitude and the distribution of detecting electrodes, but not on the other factors. This study can assist the reduction of artifact and the selection of detecting electrode points.

  13. Pressure Stimulated Currents (PSCin marble samples

    Directory of Open Access Journals (Sweden)

    F. Vallianatos

    2004-06-01

    Full Text Available The electrical behaviour of marble samples from Penteli Mountain was studied while they were subjected to uniaxial stress. The application of consecutive impulsive variations of uniaxial stress to thirty connatural samples produced Pressure Stimulated Currents (PSC. The linear relationship between the recorded PSC and the applied variation rate was investigated. The main results are the following: as far as the samples were under pressure corresponding to their elastic region, the maximum PSC value obeyed a linear law with respect to pressure variation. In the plastic region deviations were observed which were due to variations of Young s modulus. Furthermore, a special burst form of PSC recordings during failure is presented. The latter is emitted when irregular longitudinal splitting is observed during failure.

  14. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease.

    Science.gov (United States)

    Fregni, Felipe; Boggio, Paulo S; Santos, Marcelo C; Lima, Moises; Vieira, Adriana L; Rigonatti, Sergio P; Silva, M Teresa A; Barbosa, Egberto R; Nitsche, Michael A; Pascual-Leone, Alvaro

    2006-10-01

    Electrical stimulation of deep brain structures, such as globus pallidus and subthalamic nucleus, is widely accepted as a therapeutic tool for patients with Parkinson's disease (PD). Cortical stimulation either with epidural implanted electrodes or repetitive transcranial magnetic stimulation can be associated with motor function enhancement in PD. We aimed to study the effects of another noninvasive technique of cortical brain stimulation, transcranial direct current stimulation (tDCS), on motor function and motor-evoked potential (MEP) characteristics of PD patients. We tested tDCS using different electrode montages [anodal stimulation of primary motor cortex (M1), cathodal stimulation of M1, anodal stimulation of dorsolateral prefrontal cortex (DLPFC), and sham-stimulation] and evaluated the effects on motor function--as indexed by Unified Parkinson's Disease Rating Scale (UPDRS), simple reaction time (sRT) and Purdue Pegboard test--and on corticospinal motor excitability (MEP characteristics). All experiments were performed in a double-blinded manner. Anodal stimulation of M1 was associated with a significant improvement of motor function compared to sham-stimulation in the UPDRS (P stimulation of M1 or anodal stimulation of DLPFC. Furthermore, whereas anodal stimulation of M1 significantly increased MEP amplitude and area, cathodal stimulation of M1 significantly decreased them. There was a trend toward a significant correlation between motor function improvement after M1 anodal-tDCS and MEP area increase. These results confirm and extend the notion that cortical brain stimulation might improve motor function in patients with PD.

  15. Approximating transcranial magnetic stimulation with electric stimulation in mouse: a simulation study.

    Science.gov (United States)

    Barnes, Walter L; Lee, Won Hee; Peterchev, Angel V

    2014-01-01

    Rodent models are valuable for preclinical examination of novel therapeutic techniques, including transcranial magnetic stimulation (TMS). However, comparison of TMS effects in rodents and humans is confounded by inaccurate scaling of the spatial extent of the induced electric field in rodents. The electric field is substantially less focal in rodent models of TMS due to the technical restrictions of making very small coils that can handle the currents required for TMS. We examine the electric field distributions generated by various electrode configurations of electric stimulation in an inhomogeneous high-resolution finite element mouse model, and show that the electric field distributions produced by human TMS can be approximated by electric stimulation in mouse. Based on these results and the limits of magnetic stimulation in mice, we argue that the most practical and accurate way to model focal TMS in mice is electric stimulation through either cortical surface electrodes or electrodes implanted halfway through the mouse cranium. This approach could allow much more accurate approximation of the human TMS electric field focality and strength than that offered by TMS in mouse, enabling, for example, focal targeting of specific cortical regions, which is common in human TMS paradigms.

  16. Comparative Evaluation of Tactile Sensation by Electrical and Mechanical Stimulation.

    Science.gov (United States)

    Yem, Vibol; Kajimoto, Hiroyuki

    2017-01-01

    An electrotactile display is a tactile interface that provides tactile perception by passing electrical current through the surface of the skin. It is actively used instead of mechanical tactile displays for tactile feedback because of several advantages such as its small and thin size, light weight, and high responsiveness. However, the similarities and differences between these sensations is still not clear. This study directly compares the intensity sensation of electrotactile stimulation to that of mechanical stimulation, and investigates the characteristic sensation of anodic and cathodic stimulation. In the experiment, participants underwent a 30 pps electrotactile stimulus every one second to their middle finger, and were asked to match this intensity by adjusting the intensity of a mechanical tactile stimulus to an index finger. The results showed that anodic stimulation mainly produced vibration sensation, whereas cathodic sensation produced both vibration and pressure sensations. Relatively low pressure sensation was also observed for anodic stimulation but it remains low, regardless of the increasing of electrical intensity.

  17. Combining functional magnetic resonance imaging with transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Catarina eSaiote

    2013-08-01

    Full Text Available Transcranial electrical stimulation (tES is a neuromodulatory method with promising potential for basic research and as a therapeutic tool. The most explored type of tES is transcranial direct current stimulation (tDCS, but also transcranial alternating current stimulation (tACS and transcranial random noise stimulation (tRNS have been shown to affect cortical excitability, behavioral performance and brain activity. Although providing indirect measure of brain activity, functional magnetic resonance imaging (fMRI can tell us more about the global effects of stimulation in the whole brain and what is more, on how it modulates functional interactions between brain regions, complementing what is known from electrophysiological methods such as measurement of motor evoked potentials. With this review, we aim to present the studies that have combined these techniques, the current approaches and discuss the results obtained so far.

  18. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  19. Functional electrical stimulation with surface electrodes

    Directory of Open Access Journals (Sweden)

    Bajd Tadej

    2008-01-01

    Full Text Available The review investigates the objective evidences of benefits derived from surface functional electrical stimulation (FES of lower and upper extremities for people after incomplete spinal cord injury (SCI and stroke. FES can offer noticeable benefits in walking ability. It can be efficiently combined with treadmill and body weight support. Voluntary muscle strength and endurance gain can be achieved through FES assisted gait training together with increased gait velocity in absence of electrical stimulator. Cyclic FES, FES augmented by biofeedback, and FES used in various daily activities can result in substantial improvements of the voluntary control of upper extremities.

  20. Electrically stimulated high-frequency replicas of a resonant current in GaAs/AlAs resonant-tunneling double-barrier THz nanostructures

    Science.gov (United States)

    Aleksanyan, A. A.; Karuzskii, A. L.; Kazakov, I. P.; Mityagin, Yu. A.; Murzin, V. N.; Perestoronin, A. V.; Shmelev, S. S.; Tskhovrebov, A. M.

    2016-12-01

    The periodical-in-voltage features of the negative differential conductance (NDC) region in the current-voltage characteristics of a high-quality GaAs/AlAs terahertz resonant-tunneling diode have been detected. The found oscillations are considered taking account of the LO-phonon excitation stimulated by tunneling of electrons through the quantum active region in the resonance nanostructure where an undoped quantum well layer is sandwiched between two undoped barrier layers. Rearrangements in the I-V characteristics of the resonant-tunneling diode as a consequence of the topological transformation of a measurement circuit from the circuit with the series resistance Rs to the circuit with the shunt Rp have been experimentally studied and analyzed. The revealed substantial changes in the current-voltage characteristics of the resonant-tunneling diode are discussed schematically using Kirchhoff's voltage law.

  1. Remote electrical stimulation by means of implanted rectifiers.

    Directory of Open Access Journals (Sweden)

    Antoni Ivorra

    Full Text Available Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants--batteries and inductive couplers--comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 µm deliverable by injection are easily conceivable.

  2. [About optimized designs and circuits of autonomous electric stimulators for the gastrointestinal tract].

    Science.gov (United States)

    Glushchuk, S F

    2004-01-01

    Described in the paper are the key principles of designing of autonomous electrodes for the gastrointestinal tract (AE GT) as well as circuits of stimulating-pulse generators. A shape for the electric-stimulator frame, its geometric dimensions and choice of a material for electrodes are substantiated. The electric- and trauma-safety of AE GT is discussed. The main stimulating current parameters, as well as the flowchart and design of the electric stimulator are presented.

  3. Anal sphincter responses after perianal electrical stimulation

    DEFF Research Database (Denmark)

    Pedersen, Ejnar; Klemar, B; Schrøder, H D

    1982-01-01

    By perianal electrical stimulation and EMG recording from the external anal sphincter three responses were found with latencies of 2-8, 13-18 and 30-60 ms, respectively. The two first responses were recorded in most cases. They were characterised by constant latency and uniform pattern, were...

  4. Transcranial Direct Current Stimulation in Stroke Recovery

    OpenAIRE

    Schlaug, Gottfried; Renga, Vijay; Nair, Dinesh

    2008-01-01

    TDCS - Transcranial Direct Current Stimulation - is an emerging technique of non-invasive brain stimulation that has been found useful in examining cortical function in normal subjects and in facilitating treatments of various neurological disorders. A better understanding of adaptive as well as maladaptive post-stroke neuroplasticity and its modulation through non-invasive brain stimulation has opened up experimental treatment options using TDCS for patients recovering from stroke. We will r...

  5. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring...

  6. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    Science.gov (United States)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  7. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    Science.gov (United States)

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  8. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.

    Science.gov (United States)

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-02-07

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials.

  9. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  10. DNA Generated Electric Current Biosensor.

    Science.gov (United States)

    Hu, Lanshuang; Hu, Shengqiang; Guo, Linyan; Shen, Congcong; Yang, Minghui; Rasooly, Avraham

    2017-02-21

    In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm(2). This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm(2) in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.

  11. Muscle damage induced by electrical stimulation.

    Science.gov (United States)

    Nosaka, Kazunori; Aldayel, Abdulaziz; Jubeau, Marc; Chen, Trevor C

    2011-10-01

    Electrical stimulation (ES) induces muscle damage that is characterised by histological alterations of muscle fibres and connective tissue, increases in circulating creatine kinase (CK) activity, decreases in muscle strength and development of delayed onset muscle soreness (DOMS). Muscle damage is induced not only by eccentric contractions with ES but also by isometric contractions evoked by ES. Muscle damage profile following 40 isometric contractions of the knee extensors is similar between pulsed current (75 Hz, 400 μs) and alternating current (2.5 kHz delivered at 75 Hz, 400 μs) ES for similar force output. When comparing maximal voluntary and ES-evoked (75 Hz, 200 μs) 50 isometric contractions of the elbow flexors, ES results in greater decreases in maximal voluntary contraction strength, increases in plasma CK activity and DOMS. It appears that the magnitude of muscle damage induced by ES-evoked isometric contractions is comparable to that induced by maximal voluntary eccentric contractions, although the volume of affected muscles in ES is not as large as that of eccentric exercise-induced muscle damage. It seems likely that the muscle damage in ES is associated with high mechanical stress on the activated muscle fibres due to the specificity of motor unit recruitment (i.e., non-selective, synchronous and spatially fixed manner). The magnitude of muscle damage induced by ES is significantly reduced when the second ES bout is performed 2-4 weeks later. It is possible to attenuate the magnitude of muscle damage by "pre-conditioning" muscles, so that muscle damage should not limit the use of ES in training and rehabilitation.

  12. Functional electrical stimulation on paraplegic patients

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2014-07-01

    Full Text Available We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern`s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively

  13. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity.

    Science.gov (United States)

    Choi, Bup Kyung; Oh, Tong In; Sajib, Saurav Zk; Kim, Jin Woong; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-04-01

    To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments.

  14. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity

    Science.gov (United States)

    2017-01-01

    Purpose To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Methods Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. Results The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. Conclusions An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments. PMID:28446015

  15. Electric Current Circuits in Astrophysics

    CERN Document Server

    Kuijpers, Jan; Fletcher, Lyndsay

    2014-01-01

    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting flux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms.

  16. Finite Element Modeling of Cutaneous Electrical Stimulation for Sensory Feedback

    Institute of Scientific and Technical Information of China (English)

    LI Si; CHAI Guo-hong; SUI Xiao-hong; LAN Ning

    2014-01-01

    It is currently difficult for the amputee to perceive environmental information such as tactile pressure on the fingertip of the present upper limb prostheses. Sensory feedback induced by cutaneous electrical stimulation can be used to transmit tactile information from hand prostheses to sensory nerve of intact upper arm, thus producing the corresponding perceptions in human brain. In order to have a deeper understanding on the distribution of stimulation current within the limb, and find a better placement of the stimulating and reference electrodes, we constructed a three-dimensional upper-limb model to systematically study the effect of electrode placement on current distribution based on finite element analysis. In these simulations, the reference electrode is positioned at four different locations around and on the axial direction of the arm. The results show that with the increase of distance between reference electrode and stimulating electrode, the current density increases in the skin layer of the upper limb. When the reference electrode is on the opposite side of stimulating electrode around the arm, the current is more concentrated in the skin layer, which is in line with recent findings in psychophysiological experiments. But better spatial selectivity could be achieved when the reference electrode is closer to the stimulating electrode around the arm, and it is more obvious in comparison with that on the axial direction. These findings will provide insights for the design of electrode array used for evoking cutaneous sensory afferents.

  17. Electrical stimulation for epilepsy: stimulation of hippocampal foci.

    Science.gov (United States)

    Velasco, F; Velasco, M; Velasco, A L; Menez, D; Rocha, L

    2001-01-01

    Subacute and chronic continuous electrical stimulation at the epileptic focus in the hippocampus or parahippocampal cortex at 130 Hz, 0.21-1.0 ms, 2.5-3.5 V (about 200-300 microA) induces a decrease in focal EEG epileptic interictal activity and also in the occurrence of clinical seizures. This may represent an alternative for the treatment of temporal lobe seizures originated in bilateral independent temporal lobe foci or occurring in patients where one is uncertain whether memory deficit might result from ablative procedures.

  18. Electrical stimulation systems for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures.

  19. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  20. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  1. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor)...

  2. Electric stimulation with sinusoids and white noise for neural prostheses

    Directory of Open Access Journals (Sweden)

    Daniel K Freeman

    2010-02-01

    Full Text Available We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell’s spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with peak response that occur 25ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS.

  3. Electrical stimulation for pressure sore prevention and wound healing.

    Science.gov (United States)

    Bogie, K M; Reger, S I; Levine, S P; Sahgal, V

    2000-01-01

    This paper reviews applications of therapeutic electrical stimulation (ES) specific to wound healing and pressure sore prevention. The application of ES for wound healing has been found to increase the rate of healing by more than 50%. Furthermore, the total number of wounds healed is also increased. However, optimal delivery techniques for ES therapy have not been established to date. A study of stimulation current effects on wound healing in a pig model has shown that direct current (DC) stimulation is most effective in wound area reduction and alternating current (AC) stimulation for wound volume reduction at current densities of 127 microA/cm2 and 1,125 microA/cm2, respectively. Preliminary studies have been carried out at two research centers to assess the role of ES in pressure sore prevention. Surface stimulation studies have shown that ES can produce positive short-term changes in tissue health variables such as regional blood flow and pressure distribution. The use of an implanted stimulation system consisting of intramuscular electrodes with percutaneous leads has been found to produce additional long-term changes. Specifically, gluteal muscle thickness increased by 50% with regular long-term ES application concurrent with a 20% decrease in regional interface pressures and increased tissue oxygen levels. These findings indicate that an implantable ES system may have great potential for pressure sore prevention, particularly for individuals who lack sensation or who are physically unable to perform regular independent pressure relief.

  4. Development of Low-Cost Current Controlled Stimulator for Paraplegics

    Directory of Open Access Journals (Sweden)

    Aizan Masdar

    2012-12-01

    Full Text Available A spinal cord injury (SCI has a severe impact on human life in general as well as on the physical status and condition. The use of electrical signals to restore the function of paralyzed muscles is called functional electrical stimulation (FES. FES is a promising way to restore mobility to SCI by applying low-level electrical current to the paralyzed muscles so as to enhance that person’s ability to function and live independently. However, due to the limited number of commercially available FES assisted exerciser systems and their rather high cost, the conventional devices are unaffordable for most peoples. It is also inconvenient because of wired based system that creates a limitation in performing exercise. Thus, this project is concerned with the development of low-cost current controlled stimulator mainly for the paraplegic subjects. The developed device is based on a microcontroller, wireless based system using Zigbee module, voltage-to-current converter circuit and should produce proper monopolar and bipolar current pulses, pulse trains, arbitrary current waveforms, and a trigger output for FES applications. This device has been developed as in the new technique of the stimulator development with low cost and one of the contributing factors in Rehabilitation Engineering for patients with SCI.

  5. Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.

    Science.gov (United States)

    Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat

    2012-12-01

    Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.

  6. Electrical Stimulation of the Retina to Produce Artificial Vision.

    Science.gov (United States)

    Weiland, James D; Walston, Steven T; Humayun, Mark S

    2016-10-14

    Retinal prostheses aim to restore vision to blind individuals suffering from retinal diseases such as retinitis pigmentosa and age-related macular degeneration. These devices function by electrically stimulating surviving retinal neurons, whose activation is interpreted by the brain as a visual percept. Many prostheses are currently under development. They are categorized as epiretinal, subretinal, and suprachoroidal prostheses on the basis of the placement of the stimulating microelectrode array. Each can activate ganglion cells through direct or indirect stimulation. The response of retinal neurons to these modes of stimulation are discussed in detail and are placed in context of the visual percept they are likely to evoke. This article further reviews challenges faced by retinal prosthesis and discusses potential solutions to address them.

  7. Characterization of electrical stimulation electrodes for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, Nina; Cannizzaro, Chris; Figallo, Elisa; Voldman, Joel; Vunjak-Novakovic, Gordana

    2006-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. The goal of this study was to assess the conditions of electrical stimulation with respect to the electrode geometry, material properties and charge-transfer characteristics at the electrode-electrolyte interface. We compared various biocompatible materials, including nanoporous carbon, stainless steel, titanium and titanium nitride, for use in cardiac tissue engineering bioreactors. The faradaic and non-faradaic charge transfer mechanisms were assessed by electrochemical impedance spectroscopy (EIS), studying current injection characteristics, and examining surface properties of electrodes with scanning electron microscopy. Carbon electrodes were found to have the best current injection characteristics. However, these electrodes require careful handling because of their limited mechanical strength. The efficacy of various electrodes for use in 2-D and 3-D cardiac tissue engineering systems with neonatal rat cardiomyocytes is being determined by assessing cell viability, amplitude of contractions, excitation thresholds, maximum capture rate, and tissue morphology.

  8. Functional electrical stimulation bicycle ergometry: patient perceptions.

    Science.gov (United States)

    Sipski, M L; Delisa, J A; Schweer, S

    1989-06-01

    Forty-seven patients who had participated in a clinical electrical stimulation ergometry program were administered a questionnaire to determine their perceptions of the therapy. Improved endurance was reported by 62% of paraplegics and 65% of quadriplegics. Sixty-two percent of paraplegics and 56% of quadriplegics reported improved self-image, while 54% of paraplegics and 77% of quadriplegics perceived their appearance was better. Thirty-nine percent of paraplegics and 24% of quadriplegics noted decreased lower extremity edema with training. Six out of nine patients with a previous history of neurogenic pain noted an increase in pain, which caused them to leave the program.

  9. A Systematic Review of Electric-Acoustic Stimulation

    Science.gov (United States)

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  10. Electrical stimulation of the preoptic area in Eigenmannia: evoked interruptions in the electric organ discharge.

    Science.gov (United States)

    Wong, C J

    2000-01-01

    The functional role of the basal forebrain and preoptic regions in modulating the normally regular electric organ discharge was determined by focal brain stimulation in the weakly electric fish, Eigenmannia. The rostral preoptic area, which is connected with the diencephalic prepacemaker nucleus, was examined physiologically by electrical stimulation in a curarized fish. Electrical stimulation of the most rostral region of the preoptic area with trains of relatively low intensity current elicits discrete bursts of electric organ discharge interruptions in contrast to other forebrain loci. These responses were observed primarily as after-responses following the termination of the stimulus train and were relatively immune to variations in the stimulus parameters. As the duration and rate of these preoptic-evoked bursts of electric organ discharge interruptions (approximately 100 ms at 2 per s) are similar to duration and rate of natural interruptions, it is proposed that these bursts might be precursors to natural interruptions. These data suggest that the preoptic area, consistent with its role in controlling reproductive behaviors in vertebrates, may be influencing the occurrence of electric organ discharge courtship signals by either direct actions on the prepacemaker nucleus or through other regions that are connected with the diencephalic pre-pacemaker nucleus.

  11. [Transcranial direct current stimulation for depressive disorders].

    Science.gov (United States)

    Aust, S; Palm, U; Padberg, F; Bajbouj, M

    2015-12-01

    Major depressive disorders are one of the most prevalent psychiatric disorders worldwide but approximately 20-30 % of patients do not respond to standard guideline conform treatment. Recent neuroimaging studies in depressive patients revealed altered activation patterns in prefrontal brain areas and that successful cognitive behavioral therapy and psychopharmacological interventions are associated with a reversal of these neural alterations. Therefore, a direct modulation of prefrontal brain activation by non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) seems to be a promising and innovative approach for the treatment of depressive disorders. In addition, recent neuropsychological findings indicated an augmentation of positive tDCS effects by simultaneous external activation of the stimulated brain area, for example by cognitive training tasks. Based on these findings, the possibility to augment cognitive-emotional learning processes during cognitive behavioral therapy by simultaneous tDCS to increase antidepressive therapeutic effects is discussed in this article.

  12. [Electrical nerve stimulation for plexus and nerve blocks].

    Science.gov (United States)

    Birnbaum, J; Klotz, E; Bogusch, G; Volk, T

    2007-11-01

    Despite the increasing use of ultrasound, electrical nerve stimulation is commonly used as the standard for both plexus and peripheral nerve blocks. Several recent randomized trials have contributed to a better understanding of physiological and clinical correlations. Traditionally used currents and impulse widths are better defined in relation to the distance between needle tip and nerves. Commercially available devices enable transcutaneous nerve stimulation and provide new opportunities for the detection of puncture sites and for training. The electrically ideal position of the needle usually is defined by motor responses which can not be interpreted without profound anatomical knowledge. For instance, interscalene blocks can be successful even after motor responses of deltoid or pectoral muscles. Infraclavicular blocks should be aimed at stimulation of the posterior fascicle (extension). In contrast to multiple single nerve blocks, axillary single-shot blocks more commonly result in incomplete anaesthesia. Blockade of the femoral nerve can be performed without any nerve stimulation if the fascia iliaca block is used. Independently of the various approaches to the sciatic nerve, inversion and plantar flexion are the best options for single-shot blocks. Further clinical trials are needed to define the advantages of stimulating catheters in continuous nerve blocks.

  13. Amplifier design for EMG recording from stimulation electrodes during functional electrical stimulation leg cycling ergometry.

    Science.gov (United States)

    Shalaby, Raafat; Schauer, Thomas; Liedecke, Wolfgang; Raisch, Jörg

    2011-02-01

    Functional electrical stimulation leg cycle ergometry (FES-LCE), which is often used as exercise for people with spinal cord injury (SCI), has recently been applied in the motor rehabilitation of stroke patients. Recently completed studies show controversial results, but with a tendency to positive training effects. Current technology is identical to that used in FES-LCE for SCI, whereas the pathology of stroke differs strongly. Most stroke patients with hemiparesis are able to drive an ergometer independently. Depending on the degree of spasticity, the paretic leg will partially support or hinder movements. Electrical stimulation increases muscle force and endurance and both are prerequisites for restoring gait. However, the effect of FES-LCE on improving impaired motor coordination is unclear. To measure motor coordination during FES-LCE, an EMG-amplifier design has been investigated which suppresses stimulation artifacts and allows detection of volitional or reflex induced muscle activity. Direct measurement of EMG from stimulation electrodes between stimulation pulses is an important asset of this amplifier. Photo-MOS switches in front of the preamplifier are utilized to achieve this. The technology presented here can be used to monitor the effects of FES-LCE to adapt the stimulation strategy or to realize EMG-biofeedback training.

  14. A remote constant current stimulator designed for rat-robot navigation.

    Science.gov (United States)

    Chen, Xi; Xu, Kedi; Ye, Shuming; Guo, Songchao; Zheng, Xiaoxiang

    2013-01-01

    In this paper, a remote stimulator is developed for rat-robot navigation based on the technique of Brain-Computer-Interface (BCI). The stimulator can output constant current from 0 to 1000 µA, which overcome several shortages of our previous constant voltage stimulator. The constant current stimulator consists of four major components, including power supply, micro control unit (MCU), constant current source and bluetooth transceiver for downloading stimulation commands. The stimulator has a weight of about 20 g and size of 32 mm*25 mm*6mm. It has five channels of stimulation, which are connected with implanted microelectrodes in rat brain. The electrical parameters were characterized on three rats with different recovery time after brain surgery. Increasing current stimulations were applied on the dorsolateral periaqueductal gray (dlPAG) area to prove the effect of current stimulation on rat behavior.

  15. Bioluminescence of Pleuromamma piseki under the effect of electric stimulation

    National Research Council Canada - National Science Library

    Yevstigneyev, P.V

    1983-01-01

    .... At the present time, the bioluminescence characteristics of numerous species are studied mostly with the use of electric stimulation which makes it possible to dose the stimulation more accurately...

  16. Superimposed electrical stimulation comfortably improves the endurance of maximal voluntary contractions.

    OpenAIRE

    Boisgontier, Matthieu; Moineau, Bastien; Nougier, Vincent

    2012-01-01

    International audience; AIM: Electrical stimulation has shown to improve muscle endurance in sub-maximal contractions but sessions were painful due to the electric stimuli parameters. Therefore, the present study tested the effects of the superimposed electrical stimulation technique using comfortable current on endurance in repetitions of maximal voluntary contraction. METHODS: Seventeen young healthy subjects performed fifty maximal voluntary contractions of the triceps brachii in two condi...

  17. Practical aspects of cardiac tissue engineering with electrical stimulation.

    Science.gov (United States)

    Cannizzaro, Christopher; Tandon, Nina; Figallo, Elisa; Park, Hyoungshin; Gerecht, Sharon; Radisic, Milica; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2007-01-01

    Heart disease is a leading cause of death in western society. Despite the success of heart transplantation, a chronic shortage of donor organs, along with the associated immunological complications of this approach, demands that alternative treatments be found. One such option is to repair, rather than replace, the heart with engineered cardiac tissue. Multiple studies have shown that to attain functional tissue, assembly signaling cues must be recapitulated in vitro. In their native environment, cardiomyocytes are directed to beat in synchrony by propagation of pacing current through the tissue. Recently, we have shown that electrical stimulation directs neonatal cardiomyocytes to assemble into native-like tissue in vitro. This chapter provides detailed methods we have employed in taking this "biomimetic" approach. After an initial discussion on how electric field stimulation can influence cell behavior, we examine the practical aspects of cardiac tissue engineering with electrical stimulation, such as electrode selection and cell seeding protocols, and conclude with what we feel are the remaining challenges to be overcome.

  18. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces.

    Science.gov (United States)

    Qian, Jing-Guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-11-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern.

  19. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  20. Targeted transcranial direct current stimulation for rehabilitation after stroke.

    Science.gov (United States)

    Dmochowski, Jacek P; Datta, Abhishek; Huang, Yu; Richardson, Jessica D; Bikson, Marom; Fridriksson, Julius; Parra, Lucas C

    2013-07-15

    Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.

  1. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects.

    Science.gov (United States)

    Phillips, James O; Ling, Leo; Nie, Kaibao; Jameyson, Elyse; Phillips, Christopher M; Nowack, Amy L; Golub, Justin S; Rubinstein, Jay T

    2015-06-01

    Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0-400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear.

  2. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.

    Science.gov (United States)

    Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe

    2013-01-15

    The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES.

  3. Investigation of In Vitro Bone Cell Adhesion and Proliferation on Ti Using Direct Current Stimulation.

    Science.gov (United States)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C; Bandyopadhyay, Amit

    2012-12-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 µA, were used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell-materials interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 µA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 µA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell-materials interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model.

  4. Impact of transcranial direct current stimulation (tDCS) on neuronal functions

    NARCIS (Netherlands)

    Das, S. (Suman); P. Holland (Peter); M.A. Frens (Maarten); O. Donchin (Opher)

    2016-01-01

    textabstractTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes a

  5. Wireless distributed functional electrical stimulation system

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S

    2012-08-01

    Full Text Available Abstract Background The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. Methods The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype’s software. Results The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers. One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. Conclusions The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  6. Modulating human auditory processing by transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Kai eHeimrath

    2016-03-01

    Full Text Available Transcranial electrical stimulation (tES has become a valuable research tool for the investigation of neurophysiological processes underlying human action and cognition. In recent years, striking evidence for the neuromodulatory effects of transcranial direct current stimulation (tDCS, transcranial alternating current stimulation (tACS, and transcranial random noise stimulation (tRNS has emerged. However, while the wealth of knowledge has been gained about tES in the motor domain and, to a lesser extent, about its ability to modulate human cognition, surprisingly little is known about its impact on perceptual processing, particularly in the auditory domain. Moreover, while only a few studies systematically investigated the impact of auditory tES, it has already been applied in a large number of clinical trials, leading to a remarkable imbalance between basic and clinical research on auditory tES. Here, we review the state of the art of tES application in the auditory domain focussing on the impact of neuromodulation on acoustic perception and its potential for clinical application in the treatment of auditory related disorders.

  7. Advances in Electrical Current Collection

    Science.gov (United States)

    1982-01-01

    temperature rise at sliding electrical contacts ....................... 29 E. Rabinowicz (Cambridge, MA, U.S.A.) Thermal stability in graphite contacts...I. IR. McNab, J. L. Johnson, P. Reichner, J. J. Schreurs, P. K. Lee and E. Rabinowicz for * helpful discussions, the Westinghouse Research and...to express their appreciation to I. R, McNab, J. L. Johnson, P. Reichner, J. J. Schreurs, P. K. Lee and E. Rabinowicz forIhelpful discussions, the

  8. Electric Field Model of Transcranial Electric Stimulation in Nonhuman Primates: Correspondence to Individual Motor Threshold.

    Science.gov (United States)

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2015-09-01

    To develop a pipeline for realistic head models of nonhuman primates (NHPs) for simulations of noninvasive brain stimulation, and use these models together with empirical threshold measurements to demonstrate that the models capture individual anatomical variability. Based on structural MRI data, we created models of the electric field (E-field) induced by right unilateral (RUL) electroconvulsive therapy (ECT) in four rhesus macaques. Individual motor threshold (MT) was measured with transcranial electric stimulation (TES) administered through the RUL electrodes in the same subjects. The interindividual anatomical differences resulted in 57% variation in median E-field strength in the brain at fixed stimulus current amplitude. Individualization of the stimulus current by MT reduced the E-field variation in the target motor area by 27%. There was significant correlation between the measured MT and the ratio of simulated electrode current and E-field strength (r(2) = 0.95, p = 0.026). Exploratory analysis revealed significant correlations of this ratio with anatomical parameters including of the superior electrode-to-cortex distance, vertex-to-cortex distance, and brain volume (r(2) > 0.96, p stimulation interventions, help link the results to clinical studies, and ultimately lead to more rational brain stimulation dosing paradigms.

  9. Electric Brain Stimulation No Better Than Meds for Depression: Study

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_166920.html Electric Brain Stimulation No Better Than Meds For Depression: Study Novel ... can't find relief, stimulating the brain with electric impulses may help. ... (tDCS) against the antidepressant escitalopram (Lexapro), researchers found ...

  10. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.

    Science.gov (United States)

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-10-01

    Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.

  11. Physiological Mechanisms in Combined Electric-Acoustic Stimulation.

    Science.gov (United States)

    Sato, Mika; Baumhoff, Peter; Tillein, Jochen; Kral, Andrej

    2017-09-01

    Electrical stimulation is normally performed on ears that have no hearing function, i.e., lack functional hair cells. The properties of electrically-evoked responses in these cochleae were investigated in several previous studies. Recent clinical developments have introduced cochlear implantation (CI) in residually-hearing ears to improve speech understanding in noise. The present study documents the known physiological differences between electrical stimulation of hair cells and of spiral ganglion cells, respectively, and reviews the mechanisms of combined electric and acoustic stimulation in the hearing ears. Literature review from 1971 to 2016. Compared with pure electrical stimulation the combined electroacoustic stimulation provides additional low-frequency information and expands the dynamic range of the input. Physiological studies document a weaker synchronization of the evoked activity in electrically stimulated hearing ears compared with deaf ears that reduces the hypersynchronization of electrically-evoked activity. The findings suggest the possibility of balancing the information provided by acoustic and electric input using stimulus intensity. Absence of distorting acoustic-electric interactions allows exploiting these clinical benefits of electroacoustic stimulation.

  12. Electrical stimulation of microbial PCB degradation in sediment.

    Science.gov (United States)

    Chun, Chan Lan; Payne, Rayford B; Sowers, Kevin R; May, Harold D

    2013-01-01

    Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical stimulation of microbial PCB dechlorination/degradation was examined in sediment maintained under simulated in situ conditions. Voltage was applied to open microcosms filled with PCB-impacted (Aroclor 1242) freshwater sediment from a Superfund site (Fox River, WI). The effect of applied low voltages (1.5-3.0 V) on the microbial transformation of PCBs was determined with: 1) spiked PCBs, and 2) indigenous weathered PCBs. The results indicate that both oxidative and reductive microbial transformation of the spiked PCBs was stimulated but oxidation was dominant and most effective with higher voltage. Chlorobenzoates were produced as oxidation metabolites of the spiked PCBs, but increasing voltage enhanced chlorobenzoate consumption, indicating that overall degradation was enhanced. In the case of weathered PCBs, the total concentration decreased 40-60% in microcosms exposed to electric current while no significant decrease of PCB concentration was observed in control reactors (0 V or sterilized). Single congener analysis of the weathered PCBs showed significant loss of di- to penta-chlorinated congeners, indicating that microbial activity was not limited to anaerobic dechlorination of only higher chlorinated congeners. Degradation was most apparent with the application of only 1.5 V where anodic O(2) was not generated, indicating a mechanism of degradation independent of electrolytic O(2). Low voltage stimulation of the microbial degradation of weathered PCBs observed in this

  13. Electrical stimulation counteracts muscle decline in seniors.

    Science.gov (United States)

    Kern, Helmut; Barberi, Laura; Löfler, Stefan; Sbardella, Simona; Burggraf, Samantha; Fruhmann, Hannah; Carraro, Ugo; Mosole, Simone; Sarabon, Nejc; Vogelauer, Michael; Mayr, Winfried; Krenn, Matthias; Cvecka, Jan; Romanello, Vanina; Pietrangelo, Laura; Protasi, Feliciano; Sandri, Marco; Zampieri, Sandra; Musaro, Antonio

    2014-01-01

    The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise. We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function. We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity. ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF-1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis. Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.

  14. Tinnitus suppression by electric stimulation of the auditory nerve

    Directory of Open Access Journals (Sweden)

    Janice Erica Chang

    2012-03-01

    Full Text Available Electric stimulation of the auditory nerve via a cochlear implant (CI has been observed to suppress tinnitus, but parameters of an effective electric stimulus remain unexplored. Here we used CI research processors to systematically vary pulse rate, electrode place, and current amplitude of electric stimuli, and measure their effects on tinnitus loudness and stimulus loudness as a function of stimulus duration. Thirteen tinnitus subjects who used CIs were tested, with 9 (70% being Responders who achieved greater than 30% tinnitus loudness reduction in response to at least one stimulation condition and the remaining 4 (30% being Non-Responders who had less than 30% tinnitus loudness reduction in response to any stimulus condition tested. Despite large individual variability, several interesting observations were made between stimulation parameters, tinnitus characteristics, and tinnitus suppression. If a subject’s tinnitus was suppressed by one stimulus, then it was more likely to be suppressed by another stimulus. If the tinnitus contained a pulsating component, then it would be more likely suppressed by a given combination of stimulus parameters than tinnitus without these components. There was also a disassociation between the subjects’ clinical speech processor and our research processor in terms of their effectiveness in tinnitus suppression. Finally, an interesting dichotomy was observed between loudness adaptation to electric stimuli and their effects on tinnitus loudness, with the Responders exhibiting higher degrees of loudness adaptation than the Non-Responders. Although the mechanisms underlying these observations remain to be resolved, their clinical implications are clear. When using a CI to manage tinnitus, the clinical processor that is optimized for speech perception needs to be customized for optimal tinnitus suppression.

  15. Computational thermodynamics in electric current metallurgy

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Qin, R.S.

    2015-01-01

    A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature....... The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations....

  16. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    Science.gov (United States)

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  17. Technical Rebuilding of Movement Function Using Functional Electrical Stimulation

    Science.gov (United States)

    Gföhler, Margit

    To rebuild lost movement functions, neuroprostheses based on functional electrical stimulation (FES) artificially activate skeletal muscles in corresponding sequences, using both residual body functions and artificial signals for control. Besides the functional gain, FES training also brings physiological and psychological benefits for spinal cord-injured subjects. In this chapter, current stimulation technology and the main components of FES-based neuroprostheses including enhanced control systems are presented. Technology and application of FES cycling and rowing, both approaches that enable spinal cord-injured subjects to participate in mainstream activities and improve their health and fitness by exercising like able-bodied subjects, are discussed in detail, and an overview of neuroprostheses that aim at restoring movement functions for daily life as walking or grasping is given.

  18. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    to neutralize the charge induced during the cathodic phase. Single-neuron recordings in cat auditory nerve using monophasic electrical stimulation show, however, that both phases in isolation can generate an AP. The site of AP generation differs for both phases, being more central for the anodic phase and more...... perception of CI listeners, a model needs to incorporate the correct responsiveness of the AN to anodic and cathodic polarity. Previous models of electrical stimulation have been developed based on AN responses to symmetric biphasic stimulation or to monophasic cathodic stimulation. These models, however......, fail to correctly predict responses to anodic stimulation. This study presents a model that simulates AN responses to anodic and cathodic stimulation. The main goal was to account for the data obtained with monophasic electrical stimulation in cat AN. The model is based on an exponential integrate...

  19. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    Science.gov (United States)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  20. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Takeda K

    2017-08-01

    Full Text Available Kotaro Takeda,1 Genichi Tanino,2 Hiroyuki Miyasaka1,3 1Faculty of Rehabilitation, School of Health Sciences, 2Joint Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, 3Department of Rehabilitation, Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie, Japan Abstract: Neuromuscular electrical stimulation (NMES, specifically functional electrical stimulation (FES that compensates for voluntary motion, and therapeutic electrical stimulation (TES aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG or electroencephalogram (EEG changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. Keywords: functional electrical stimulation, therapeutic electrical stimulation, EMG-triggered stimulation, brain–machine interface, brain–computer interface

  1. A figure of merit for neural electrical stimulation circuits.

    Science.gov (United States)

    Kolbl, Florian; Demosthenous, Andreas

    2015-01-01

    Electrical stimulators are widely used in neuro-prostheses. Many different implementations exist. However, no quantitative ranking criterion is available to allow meaningful comparison of the various stimulation circuits and systems to aid the designer. This paper presents a novel Figure of Merit (FOM) dedicated to stimulation circuits and systems. The proposed optimization performance metric takes into account tissue safety conditions and energy efficiency which can be evaluated by measurement. The FOM is used to rank several stimulator circuits and systems.

  2. Fundamentals of Transcranial Electric and Magnetic Stimulation Dose: Definition, Selection, and Reporting Practices

    Science.gov (United States)

    Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom

    2011-01-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345

  3. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    Science.gov (United States)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  4. Electrical carotid sinus stimulation in treatment resistant arterial hypertension.

    Science.gov (United States)

    Jordan, Jens; Heusser, Karsten; Brinkmann, Julia; Tank, Jens

    2012-12-24

    Treatment resistant arterial hypertension is commonly defined as blood pressure that remains above goal in spite of the concurrent use of three antihypertensive agents of different classes. The sympathetic nervous system promotes arterial hypertension and cardiovascular as well as renal damage, thus, providing a logical treatment target in these patients. Recent physiological studies suggest that baroreflex mechanisms contribute to long-term control of sympathetic activity and blood pressure providing an impetus for the development of electrical carotid sinus stimulators. The concept behind electrical stimulation of baroreceptors or baroreflex afferent nerves is that the stimulus is sensed by the brain as blood pressure increase. Then, baroreflex efferent structures are adjusted to counteract the perceived blood pressure increase. Electrical stimulators directly activating afferent baroreflex nerves were developed years earlier but failed for technical reasons. Recently, a novel implantable device was developed that produces an electrical field stimulation of the carotid sinus wall. Carefully conducted experiments in dogs provided important insight in mechanisms mediating the depressor response to electrical carotid sinus stimulation. Moreover, these studies showed that the treatment success may depend on the underlying pathophysiology of the hypertension. Clinical studies suggest that electrical carotid sinus stimulation attenuates sympathetic activation of vasculature, heart, and kidney while augmenting cardiac vagal regulation, thus lowering blood pressure. Yet, not all patients respond to treatment. Additional clinical trials are required. Patients equipped with an electrical carotid sinus stimulator provide a unique opportunity gaining insight in human baroreflex physiology.

  5. Electrical nerve stimulation as an aid to the placement of a brachial plexus block : clinical communication

    Directory of Open Access Journals (Sweden)

    K.E. Joubert

    2002-07-01

    Full Text Available Most local anaesthetic blocks are placed blindly, based on a sound knowledge of anatomy. Very often the relationship between the site of deposition of local anaesthetic and the nerve to be blocked is unknown. Large motor neurons may be stimulated with the aid of an electrical current. By observing for muscle twitches, through electrical stimulation of the nerve, a needle can be positioned extremely close to the nerve. The accuracy of local anaesthetic blocks can be improved by this technique. By using the lowest possible current a needle could be positioned within 2-5mm of a nerve. The correct duration of stimulation ensures that stimulation of sensory nerves does not occur. The use of electrical nerve stimulation in veterinary medicine is a novel technique that requires further evaluation.

  6. Experimental Study of the Course of Threshold Current, Voltage and Electrode Impedance During Stepwise Stimulation From the Skin Surface to the Human Cortex

    NARCIS (Netherlands)

    Szelenyi, Andrea; Journee, Henricus Louis; Herrlich, Simon; Galistu, Gianni M.; van den Berg, Joris; van Dijk, J. Marc C.

    Background: Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. Objective: Threshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the

  7. Experimental Study of the Course of Threshold Current, Voltage and Electrode Impedance During Stepwise Stimulation From the Skin Surface to the Human Cortex

    NARCIS (Netherlands)

    Szelenyi, Andrea; Journee, Henricus Louis; Herrlich, Simon; Galistu, Gianni M.; van den Berg, Joris; van Dijk, J. Marc C.

    2013-01-01

    Background: Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. Objective: Threshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the cer

  8. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  9. Direct current stimulation : new approach to enhancing heavy oil production

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, J.K. [Electro-Petroleum Inc., Wayne, PA (United States); Hill, D.G. [Southern California Univ., Los Angeles, CA (United States)

    2006-07-01

    The limited recovery of heavy crude oil can be attributed to the high viscosity of the liquids in the oil reservoirs. A viable technology has been lacking for the economic recovery of heavy oil. This paper discussed the advantages of direct current electrical stimulation or electro-enhanced oil recovery (EEOR). The paper outlined the advantages, including data produced from field demonstrations as well as the results of recent laboratory studies. The paper provided a historical and electro-chemical background of EEOR. Field operations that were discussed included electric field maps and a comparison of direct current versus alternating current electrical power. A series of EEOR field demonstrations were presented for the Santa Maria basin in California and the eastern Alberta plains. The paper also discussed produced fluid chemical changes and electro-osmosis and effective permeability. Last, the paper provided a comparison of EEOR to other existing and emerging technologies including steam flood; surfactant flood; co-solvent flood; carbon dioxide flood; and fire flood. It was concluded that the biggest EEOR limitation is its limited field application portfolio. EEOR has produced encouraging field demonstrations to date and has facilitated beneficial chemical changes in the produced fluids. 26 refs., 5 tabs., 10 figs.

  10. Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording

    Directory of Open Access Journals (Sweden)

    James eDowsett

    2016-03-01

    Full Text Available Transcranial alternating current stimulation (tACS has until now mostly been administered as an alternating sinusoidal wave. Despite modern tACS stimulators being able to deliver alternating current with any arbitrary shape there has been no systematic exploration into the relative benefits of different waveforms. As tACS is a relatively new technique there is a huge parameter space of unexplored possibilities which may prove superior or complimentary to the traditional sinusoidal waveform. Here we begin to address this with an investigation into the effects of sawtooth wave tACS on individual alpha power. Evidence from animal models suggests that the gradient and direction of an electric current should be important factors for the subsequent neural firing rate; we compared positive and negative ramp sawtooth waves to test this. An additional advantage of sawtooth waves is that the resulting artefact in the electroencephalogram (EEG recording is significantly simpler to remove than a sine wave; accordingly we were able to observe alpha oscillations both during and after stimulation.We found that positive ramp sawtooth, but not negative ramp sawtooth, significantly enhanced alpha power during stimulation relative to sham (p<0.01. In addition we tested for an after-effect of both sawtooth and sinusoidal stimulation on alpha power but in this case did not find any significant effect. This preliminary study paves the way for further investigations into the effect of the gradient and direction of the current in tACS which could significantly improve the usefulness of this technique.

  11. The reinforcing effect of electrical stimulation of the tongue in thirsty rats : brief communication

    NARCIS (Netherlands)

    Slangen, J.L.; Weijmen, J.A.W.M.

    1972-01-01

    Thirsty rats repeatedly closed the electric circuit of a drinkometer with their tongue in the absence of water. The hypothesis that electrical stimulation of the tongue has reinforcing properties was tested. The results indicate that persistent licking by a thirsty rat is dependent on a current as l

  12. The reinforcing effect of electrical stimulation of the tongue in thirsty rats : brief communication

    NARCIS (Netherlands)

    Slangen, J.L.; Weijmen, J.A.W.M.

    Thirsty rats repeatedly closed the electric circuit of a drinkometer with their tongue in the absence of water. The hypothesis that electrical stimulation of the tongue has reinforcing properties was tested. The results indicate that persistent licking by a thirsty rat is dependent on a current as

  13. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS)

    NARCIS (Netherlands)

    Witkowski, M.; Garcia Cossio, E.; Chander, B.S.; Braun, C.; Birbaumer, N.; Robinson, S.E.; Soekadar, S.R.

    2016-01-01

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly

  14. Effects of electrical stimulation of acupuncture points on blood pressure.

    Science.gov (United States)

    Zhang, John; Ng, Derek; Sau, Amy

    2009-03-01

    Arterial hypertension is considered a major contributor to coronary arterial disease. The purpose of the study was to investigate the effects of Hans electrical stimulation of acupuncture points on blood pressure. Subjects with normal and elevated blood pressure were recruited and randomly assigned into control and experimental groups. Only the experimental subjects received active Hans electrical stimulation on 2 acupuncture points for 30 minutes each session, twice a week for 5 weeks. Twenty-seven subjects (17 male) were recruited and completed the study. The average age of the subjects was 25 +/- 5 years. The youngest subject was 20 years old and the oldest was 36 years old. After using the Hans electrical stimulation on acupuncture points for 5 weeks, the systolic blood pressure decreased significantly in the experimental group with active treatment. The mean systolic blood pressure was 117.8 +/- 4.2 mm Hg before the treatment and was reduced to 110.8 +/- 5.5 mm Hg (P .05) in the third week and to 74.8 +/- 4.3 mm Hg (P > .05) in the fifth week, but both did not reach statistically significant levels. The systolic and diastolic blood pressures in the control group did not show statistically significant changes. The mean systolic blood pressure was 115.6 +/- 13.3 mm Hg before the treatment and was reduced to 113.0 +/- 12.6 mm Hg (P > 0.05) in the third week and to 112.2 +/- 10.3 mm Hg in the fifth week (P > .05). The mean diastolic blood pressure was 76.4 +/- 7.9 mm Hg before treatment and was reduced to 76.5 +/- 6.9 mm Hg (P > .05) in the third week and to 73.9 +/- 5.4 mm Hg (P > .05) in the fifth week. It was concluded that Hans electrical stimulation of acupuncture points reduced systolic blood pressure but not the diastolic blood pressure in the current subject population with normal and elevated blood pressure.

  15. Modulation of proprioceptive feedback during functional electrical stimulation

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grey, Michael James

    2013-01-01

    Functional electrical stimulation (FES) is sometimes used as a therapeutic modality in motor rehabilitation to augment voluntary motor drive to effect movement that would otherwise not be possible through voluntary activation alone. Effective motor rehabilitation should require that the central...

  16. Electric current arising from unpolarized polyvinyl formal

    Indian Academy of Sciences (India)

    P K Khare; P L Jain; R K Pandey

    2000-10-01

    An appreciable electric current is observed in a system consisting of a polyvinyl formal (PVF) film in a sandwich configuration, in the temperature range 30–110°C. The maximum value of the current during first heating is found to be of the order of 10–10 A and its thermograms exhibit one transition (i.e. current peak) at around 60°C. The position of the current peak in thermal spectrum shifts with the heating rate. A temperature dependence of the open circuit voltage is also observed. The activation energy of the process responsible for the current is determined. The magnitude of the current is more in the case of dissimilar electrode systems. It is proposed that the electric current arising from unpolarized metal–polymer–metal system is a water activated phenomenon, which is influenced by the transitional changes of the polymer.

  17. Optimization of electrical stimulation parameters for cardiac tissue engineering.

    Science.gov (United States)

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2011-06-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.

  18. Cortical excitability changes following grasping exercise augmented with electrical stimulation

    DEFF Research Database (Denmark)

    Barsi, Gergely Istvan; Popovic, Dejan B.; Tarkka, Ina M.

    2008-01-01

    excitability was evaluated by analysing the input-output relationship between transcranial magnetic stimulation intensity and motor evoked potentials (MEPs) from the flexor muscles of the fingers. The study was performed with 25 healthy volunteers who underwent 20-min simulated therapy sessions of: (1......Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical......) functional electrical stimulation (FES) of the finger flexors and extensors, (2) voluntary movement (VOL) with sensory stimulation, and (3) therapeutic FES (TFES) where the electrical stimulation augmented voluntary activation. TFES training produced a significant increase in MEP magnitude throughout...

  19. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    Science.gov (United States)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  20. Toward rational design of electrical stimulation strategies for epilepsy control

    OpenAIRE

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical t...

  1. Electrical stimulation: a novel tool for tissue engineering.

    Science.gov (United States)

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2013-02-01

    New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.

  2. Effect of Electrical Stimulation on Blood Flow Velocity and Vessel Size

    Science.gov (United States)

    Jin, Hee-Kyung; Hwang, Tae-Yeon; Cho, Sung-Hyoun

    2017-01-01

    Abstract Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters. Forty-five healthy adult male and female subjects were studied. Bipolar adhesive pad electrodes were used to stimulate the autonomic nervous system at the thoracic vertebrae 1-4 levels for 20 min. Using Doppler ultrasonography, blood flow was measured to determine velocity and vessel size before, immediately after, and 30 min after electrical stimulation. Changes in blood flow velocity were significantly different immediately and 30 min after stimulation. The interaction between intervention periods and groups was significantly different between the exercise and pain stimulation groups immediately after stimulation (p<0.05). The vessel size was significantly different before and 30 min after stimulation (p<0.05). Imbalances in the sympathetic nervous system, which regulates balance throughout the body, may present with various symptoms. Therefore, in the clinical practice, the parameters of electrical stimulation should be selectively applied in accordance with various conditions and changes in form.

  3. Neuromuscular electrical stimulation for muscle wasting in heart failure patients.

    Science.gov (United States)

    Saitoh, Masakazu; Dos Santos, Marcelo Rodrigues; Anker, Markus; Anker, Stefan D; von Haehling, Stephan; Springer, Jochen

    2016-12-15

    Neuromuscular electrical stimulation (NMES) seems to be safe and beneficial in improvement in functional capacity, muscle strength, and quality of life when compared with conventional aerobic exercise, while the change in muscle fiber composition and muscle size was conflicting in patients with heart failure (HF). Moreover, NMES studies seem to have beneficial effects on pro-inflammatory cytokine, oxidative enzyme activity, and protein anabolic and catabolic metabolism that are the key molecular mechanism of muscle wasting in patients with HF. We review specific issues related to the effects of NMES on muscle wasting in patients with HF, whether NMES seems to be an alternative exercise modality preventing or improving in muscle wasting for HF patients who are unable or unwilling to engage in conventional exercise training; however no established strategies currently exist to focus on the patients with HF accompanied by muscle wasting. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. [Impact of the Overlap Region Between Acoustic and Electric Stimulation].

    Science.gov (United States)

    Baumann, Uwe; Mocka, Moritz

    2017-06-01

    Patients with residual hearing in the low frequencies and ski-slope hearing loss with partial deafness at medium and high frequencies receive a cochlear implant treatment with electric-acoustic stimulation (EAS, "hybrid" stimulation). In the border region between electric and acoustic stimulation a superposition of the 2 types of stimulation is expected. The area of overlap is determined by the insertion depth of the stimulating electrode and the lower starting point of signal transmission provided by the CI speech processor. The study examined the influence of the variation of the electric-acoustic overlap area on speech perception in noise, whereby the width of the "transmission gap" between the 2 different stimulus modalities was varied by 2 different methods. The results derived from 9 experienced users of the MED-EL Duet 2 speech processor show that the electric-acoustic overlapping area and with it the crossover frequency between the acoustic part and the CI should be adjusted individually. Overall, speech reception thresholds (SRT) showed a wide variation of results in between subjects. Further studies shall investigate whether generalized procedures about the setting of the overlap between electric and acoustic stimulation are reasonable, whereby an increased number of subjects and a longer period of acclimatization prior to the conduction of hearing tests deemed necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  5. FUNCTIONAL ELECTRICAL STIMULATION FOR CONTROL OF EPILEPTIC SEIZURES

    DEFF Research Database (Denmark)

    Jiao, Jianhang

    parameters regarding their ability to inhibit seizures. The present thesis hypothesized that the antiepileptic effects of vagus nerve stimulation and spinal cord stimulation could be improved by using higher stimulation frequencies than those that are currently used in clinic or proposed in the literature....

  6. A murine model of muscle training by neuromuscular electrical stimulation.

    Science.gov (United States)

    Ambrosio, Fabrisia; Fitzgerald, G Kelley; Ferrari, Ricardo; Distefano, Giovanna; Carvell, George

    2012-05-09

    Neuromuscular electrical stimulation (NMES) is a common clinical modality that is widely used to restore (1), maintain (2) or enhance (3-5) muscle functional capacity. Transcutaneous surface stimulation of skeletal muscle involves a current flow between a cathode and an anode, thereby inducing excitement of the motor unit and the surrounding muscle fibers. NMES is an attractive modality to evaluate skeletal muscle adaptive responses for several reasons. First, it provides a reproducible experimental model in which physiological adaptations, such as myofiber hypertophy and muscle strengthening (6), angiogenesis (7-9), growth factor secretion (9-11), and muscle precursor cell activation (12) are well documented. Such physiological responses may be carefully titrated using different parameters of stimulation (for Cochrane review, see (13)). In addition, NMES recruits motor units non-selectively, and in a spatially fixed and temporally synchronous manner (14), offering the advantage of exerting a treatment effect on all fibers, regardless of fiber type. Although there are specified contraindications to NMES in clinical populations, including peripheral venous disorders or malignancy, for example, NMES is safe and feasible, even for those who are ill and/or bedridden and for populations in which rigorous exercise may be challenging. Here, we demonstrate the protocol for adapting commercially available electrodes and performing a NMES protocol using a murine model. This animal model has the advantage of utilizing a clinically available device and providing instant feedback regarding positioning of the electrode to elicit the desired muscle contractile effect. For the purpose of this manuscript, we will describe the protocol for muscle stimulation of the anterior compartment muscles of a mouse hindlimb.

  7. Therapeutic electrical stimulation for spasticity: quantitative gait analysis.

    Science.gov (United States)

    Pease, W S

    1998-01-01

    Improvement in motor function following electrical stimulation is related to strengthening of the stimulated spastic muscle and inhibition of the antagonist. A 26-year-old man with familial spastic paraparesis presented with gait dysfunction and bilateral lower limb spastic muscle tone. Clinically, muscle strength and sensation were normal. He was considered appropriate for a trial of therapeutic electrical stimulation following failed trials of physical therapy and baclofen. No other treatment was used concurrent with the electrical stimulation. Before treatment, quantitative gait analysis revealed 63% of normal velocity and a crouched gait pattern, associated with excessive electromyographic activity in the hamstrings and gastrocnemius muscles. Based on these findings, bilateral stimulation of the quadriceps and anterior compartment musculature was performed two to three times per week for three months. Repeat gait analysis was conducted three weeks after the cessation of stimulation treatment. A 27% increase in velocity was noted associated with an increase in both cadence and right step length. Right hip and bilateral knee stance motion returned to normal (rather than "crouched"). No change in the timing of dynamic electromyographic activity was seen. These findings suggest a role for the use of electrical stimulation for rehabilitation of spasticity. The specific mechanism of this improvement remains uncertain.

  8. Electric-field-stimulated protein mechanics.

    Science.gov (United States)

    Hekstra, Doeke R; White, K Ian; Socolich, Michael A; Henning, Robert W; Šrajer, Vukica; Ranganathan, Rama

    2016-12-15

    The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2(PDZ2)) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.

  9. Animal models of transcranial direct current stimulation: Methods and mechanisms.

    Science.gov (United States)

    Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom

    2016-11-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the

  10. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O2 Hbint ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (Lin ) and "outside" (Lout ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (Rin and Rout ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O2 Hbint in the Lin than Lout ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O2 Hbint "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  11. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  12. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  13. Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Bodhak, Subhadip; Bose, Susmita [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Kinsel, William C. [Mechanical Engineering, Washington State University, Tri-Cities, WA (United States); Bandyopadhyay, Amit, E-mail: amitband@wsu.edu [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2012-12-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 {mu}A, was used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell-material interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 {mu}A direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 {mu}A electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell-material interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. - Highlights: Black-Right-Pointing-Pointer D.C. stimulation was used to enhance in vitro bone cell adhesion and proliferation. Black-Right-Pointing-Pointer Cells cultured on Ti were stimulated by using a custom made electrical stimulator. Black-Right-Pointing-Pointer Optimization was performed by using a varying range of direct currents {approx} 5 to 25 {mu}A. Black-Right-Pointing-Pointer 25 {mu}A stimulation was found most beneficial

  14. Mimosa pudica: Electrical and mechanical stimulation of plant movements.

    Science.gov (United States)

    Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S

    2010-02-01

    Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.

  15. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review

    NARCIS (Netherlands)

    Schutter, D.J.L.G.

    2016-01-01

    Transcranial alternating current stimulation (tACS) applies exogenous oscillatory electric field potentials to entrain neural rhythms and is used to investigate brain-function relationships and its potential to enhance perceptual and cognitive performance. However, due to current spread tACS can

  16. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review

    NARCIS (Netherlands)

    Schutter, D.J.L.G.

    2016-01-01

    Transcranial alternating current stimulation (tACS) applies exogenous oscillatory electric field potentials to entrain neural rhythms and is used to investigate brain-function relationships and its potential to enhance perceptual and cognitive performance. However, due to current spread tACS can cau

  17. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2015-07-01

    Full Text Available Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  18. Transcranial direct current stimulation as a treatment for auditory hallucinations.

    Directory of Open Access Journals (Sweden)

    Sanne eKoops

    2015-03-01

    Full Text Available Auditory hallucinations (AH are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS is a safe and non-invasive technique that is able to directly influence cortical excitability through the application of very low electric currents. A 1-2 mA direct current is applied between two surface electrodes, one serving as the anode and the other as the cathode. Cortical excitability is increased in the vicinity of the anode and reduced near the cathode. The technique, which has only a few transient side effects and is cheap and portable, is increasingly explored as a treatment for neurological and psychiatric symptoms. It has shown efficacy on symptoms of depression, bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. However, the application of tDCS as a treatment for AH is relatively new. This article provides an overview of the current knowledge in this field and provides guidelines for future research.

  19. Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review.

    Science.gov (United States)

    Schuhfried, Othmar; Crevenna, Richard; Fialka-Moser, Veronika; Paternostro-Sluga, Tatjana

    2012-02-01

    The aim of this educational review is to provide an overview of the clinical application of transcutaneous electrical stimulation of the extremities in patients with upper motor neurone lesions. In general two methods of electrical stimulation can be distinguished: (i) therapeutic electrical stimulation, and (ii) functional electrical stimulation. Therapeutic electrical stimulation improves neuromuscular functional condition by strengthening muscles, increasing motor control, reducing spasticity, decreasing pain and increasing range of motion. Transcutaneous electrical stimulation may be used for neuromuscular electrical stimulation inducing repetitive muscle contraction, electromyography-triggered neuromuscular electrical stimulation, position-triggered electrical stimulation and subsensory or sensory transcutaneous electric stimulation. Functional electrical stimulation provokes muscle contraction and thereby produces a functionally useful movement during stimulation. In patients with spinal cord injuries or stroke, electrical upper limb neuroprostheses are applied to enhance upper limb and hand function, and electrical lower limb neuroprostheses are applied for restoration of standing and walking. For example, a dropped foot stimulator is used to trigger ankle dorsiflexion to restore gait function. A review of the literature and clinical experience of the use of therapeutic electrical stimulation as well as of functional electrical stimulation in combination with botulinum toxin, exercise therapy and/or splinting are presented. Although the evidence is limited we conclude that neuromuscular electrical stimulation in patients with central nervous system lesions can be an effective modality to improve function, and that combination with other treatments has an additive therapeutic effect.

  20. Current injection electrodes for electrical impedance tomography.

    Science.gov (United States)

    Armstrong, S; Jennings, D

    2004-08-01

    Current conveyors have been identified as a possible component within the current injection electrodes of an electrical impedance tomography system, where accurate current generation or precise measurement of the current injected is required. Several circuit configurations have been investigated through simulation to determine the most suitable to meet the specifications of the EIT system. A bipolar (floating source) circuit configuration employing the use of current conveyors has been designed, which achieves greater than 12 mA output current without saturation, over an accepted body impedance range. Simulations were performed over frequencies in excess of 1 MHz, and the output phase shift was less than 0.15 degrees up to 250 kHz, and 0.6 degrees up to 1 MHz.

  1. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain.

    Science.gov (United States)

    Antal, Andrea; Bikson, Marom; Datta, Abhishek; Lafon, Belen; Dechent, Peter; Parra, Lucas C; Paulus, Walter

    2014-01-15

    Functional magnetic resonance imaging (fMRI) of brain activation during transcranial electrical stimulation is used to provide insight into the mechanisms of neuromodulation and targeting of particular brain structures. However, the passage of current through the body may interfere with the concurrent detection of blood oxygen level-dependent (BOLD) signal, which is sensitive to local magnetic fields. To test whether these currents can affect concurrent fMRI recordings we performed conventional gradient echo-planar imaging (EPI) during transcranial direct current (tDCS) and alternating current stimulation (tACS) on two post-mortem subjects. tDCS induced signals in both superficial and deep structures. The signal was specific to the electrode montage, with the strongest signal near cerebrospinal fluid (CSF) and scalp. The direction of change relative to non-stimulation reversed with tDCS stimulation polarity. For tACS there was no net effect of the MRI signal. High-resolution individualized modeling of current flow and induced static magnetic fields suggested a strong coincidence of the change EPI signal with regions of large current density and magnetic fields. These initial results indicate that (1) fMRI studies of tDCS must consider this potentially confounding interference from current flow and (2) conventional MRI imaging protocols can be potentially used to measure current flow during transcranial electrical stimulation. The optimization of current measurement and artifact correction techniques, including consideration of the underlying physics, remains to be addressed.

  2. Effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits

    Directory of Open Access Journals (Sweden)

    Wang ZHANG

    2015-10-01

    Full Text Available Objective To study the effect of transcutaneous electric stimulation on the cardiac electrical activity in New Zealand white rabbits, in order to search a safety threshold for clinical electrical stimulation therapy, as to provide the theoretical basis for the design of in vitro pacemaker. Methods New Zealand white rabbits were randomly assigned into 17 groups (6 each. Rabbits in 16 experimental groups were given 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80V electrical stimulation, respectively, with the stimulating site designated at epigastric region. BL -420F biological function experimental system was employed to supply the power and acquire the ECG, with the output pulse electrical stimulation frequency set at 270 times/minute, and the stimulating wave as square wave. A control group was set, in which the stimulating voltage was set to 35V, the stimulant anode was located in the anterior chest area, and the cathode was on the skin surface of back corresponding to the site of the heart, and the rest was the same as in experimental groups. Results No stimulation rhythm was observed in rabbits of those experimental groups with voltage ≤35V, but all stimulation rhythm was observed in rabbits of control group. No arrhythmia occurred in rabbits of those experimental groups with voltage ≤30V, while the heart rate was slowed down after stimulation in rabbits of the experimental groups with voltage ≥45V stimulation. In rabbits receiving stimulation with voltage ≤35V there was no dystropy or light dystropy, but with no visible injury to the local tissues. No visible injury was observed in the rabbits undergoing stimulation with voltage ≤40V. Conclusion Pulse electric stimulation with voltage ≤35V in the epigastric region would not affect the cardiac electrical activity in rabbits, while stimulation with 35V will lead to all pacing rhythm of the heart without affecting the cardiac electrical activity in rabbits

  3. Electrically stimulated contractions of Vorticella convallaria

    Science.gov (United States)

    Kantha, Deependra; van Winkle, David

    2009-03-01

    The contraction of Vorticella convallaria was triggered by applying a voltage pulse in its host culturing medium. The 50V, 1ms wide pulse was applied across platinum wires separated by 0.7 cm on a microscope slide. The contractions were recorded as cines (image sequences) by a Phantom V5 camera (Vision Research) on a bright field microscope with 20X objective, with the image size of 256 pixels x 128 pixels at 7352 pictures per second. The starting time of the cines was synchronized with the starting of the electrical pulse. We recorded five contractions of each of 12 organisms. The cines were analyzed to obtain the initiation time, defined as the difference in time between the leading edge of the electrical pulse and the first frame showing zooid movement. From multiple contractions of same organism, we found the initiation time is reproducible. In comparing different organisms, we found the average initiation time of 1.73 ms with a standard deviation of 0.63 ms. This research is supported by the state of Florida (MARTECH) and Research Corporation.

  4. Bladder emptying by intermittent electrical stimulation of the pudendal nerve

    Science.gov (United States)

    Boggs, Joseph W.; Wenzel, Brian J.; Gustafson, Kenneth J.; Grill, Warren M.

    2006-03-01

    Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with α-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 ± 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 ± 19%, p stimulation (25 ± 23%, p nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 ± 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.

  5. Safe neuromuscular electrical stimulator designed for the elderly.

    Science.gov (United States)

    Krenn, Matthias; Haller, Michael; Bijak, Manfred; Unger, Ewald; Hofer, Christian; Kern, Helmut; Mayr, Winfried

    2011-03-01

    A stimulator for neuromuscular electrical stimulation (NMES) was designed, especially suiting the requirements of elderly people with reduced cognitive abilities and diminished fine motor skills. The aging of skeletal muscle is characterized by a progressive decline in muscle mass, force, and condition. Muscle training with NMES reduces the degradation process. The discussed system is intended for evoked muscle training of the anterior and posterior thigh. The core of the stimulator is based on a microcontroller with two modular output stages. The system has two charge-balanced biphasic voltage-controlled stimulation channels. Additionally, the evoked myoelectric signal (M-wave) and the myokinematic signal (surface acceleration) are measured. A central controller unit allows using the stimulator as a stand-alone device. To set up the training sequences and to evaluate the compliance data, a personal computer is connected to the stimulator via a universal serial bus. To help elderly people handle the stimulator by themselves, the user interface is kept very simple. For safety reasons, the electrode impedance is monitored during stimulation. A comprehensive compliance management with included measurements of muscle activity and stimulation intensity enables a scientific use of the stimulator in clinical trials.

  6. Soft Encapsulation of Flexible Electrical Stimulation Implant: Challenges and Innovations

    Directory of Open Access Journals (Sweden)

    Adrien Debelle

    2016-11-01

    Full Text Available In this document we discuss the main challenges encountered when producing flexible electrical stimulation implants, and present our approach to solving them for prototype production. We include a study of the optimization of the flexible PCB design, the selection of additive manufacturing materials for the mold, and the chemical compatibility of the different materials. Our approach was tested on a flexible gastro-stimulator as part of the ENDOGES research program.

  7. Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.

    Science.gov (United States)

    Curado, Marco; Fritsch, Brita; Reis, Janine

    2016-02-04

    Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.

  8. Cortical excitability changes following grasping exercise augmented with electrical stimulation.

    Science.gov (United States)

    Barsi, Gergely I; Popovic, Dejan B; Tarkka, Ina M; Sinkjaer, Thomas; Grey, Michael J

    2008-10-01

    Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical excitability was evaluated by analysing the input-output relationship between transcranial magnetic stimulation intensity and motor evoked potentials (MEPs) from the flexor muscles of the fingers. The study was performed with 25 healthy volunteers who underwent 20-min simulated therapy sessions of: (1) functional electrical stimulation (FES) of the finger flexors and extensors, (2) voluntary movement (VOL) with sensory stimulation, and (3) therapeutic FES (TFES) where the electrical stimulation augmented voluntary activation. TFES training produced a significant increase in MEP magnitude throughout the stimulation range, suggesting an increase in cortical excitability. In contrast, neither the FES nor voluntary movement alone had such an effect. These results suggest that the combination of voluntary effort and FES has greater potential to induce plasticity in the motor cortex and that TFES might be a more effective approach in rehabilitation after stroke than FES or repetitive voluntary training alone.

  9. Biphasic Electrical Field Stimulation Aids in Tissue Engineering of Multicell-Type Cardiac Organoids

    Science.gov (United States)

    Chiu, Loraine L.Y.; Iyer, Rohin K.; King, John-Paul

    2011-01-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence. PMID:18783322

  10. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids.

    Science.gov (United States)

    Chiu, Loraine L Y; Iyer, Rohin K; King, John-Paul; Radisic, Milica

    2011-06-01

    The main objectives of current work were (1) to compare the effects of monophasic or biphasic electrical field stimulation on structure and function of engineered cardiac organoids based on enriched cardiomyocytes (CM) and (2) to determine if electrical field stimulation will enhance electrical excitability of cardiac organoids based on multiple cell types. Organoids resembling cardiac myofibers were cultivated in Matrigel-coated microchannels fabricated of poly(ethylene glycol)-diacrylate. We found that field stimulation using symmetric biphasic square pulses at 2.5 V/cm, 1 Hz, 1 ms (per pulse phase) was an improved stimulation protocol, as compared to no stimulation and stimulation using monophasic square pulses of identical total amplitude and duration (5 V/cm, 1 Hz, 2 ms). This was supported by the highest success rate for synchronous contractions, low excitation threshold, the highest cell density, and the highest expression of Connexin-43 in the biphasic group. Subsequently, enriched CM were seeded on the networks of (1) cardiac fibroblasts (FB), (2) D4T endothelial cells (EC), or (3) a mixture of FB and EC that were precultured for 2 days prior to the addition of enriched CM. Biphasic field stimulation was also effective at improving electrical excitability of these cardiac organoids by improving the three-dimensional organization of the cells, increasing cellular elongation and enhancing Connexin-43 presence.

  11. Platelet activation using electric pulse stimulation: growth factor profile and clinical implications.

    Science.gov (United States)

    Torres, Andrew S; Caiafa, Antonio; Garner, Allen L; Klopman, Steve; LaPlante, Nicole; Morton, Christine; Conway, Kenneth; Michelson, Alan D; Frelinger, Andrew L; Neculaes, V Bogdan

    2014-09-01

    Autologous platelet gel therapy using platelet-rich plasma has emerged as a promising alternative for chronic wound healing, hemostasis, and wound infection control. A critical step for this therapeutic approach is platelet activation, typically performed using bovine thrombin (BT) and calcium chloride. However, exposure of humans to BT can stimulate antibody formation, potentially resulting in severe hemorrhagic or thrombotic complications. Electric pulse stimulation using nanosecond PEFs (pulse electric fields) is an alternative, nonbiochemical platelet activation method, thereby avoiding exposure to xenogeneic thrombin and associated risks. In this study, we identified specific requirements for a clinically relevant activator instrument by dynamically measuring current, voltage, and electric impedance for platelet-rich plasma samples. From these samples, we investigated the profile of growth factors released from human platelets with electric pulse stimulation versus BT, specifically platelet-derived growth factor, transforming growth factor β, and epidermal growth factor, using commercial enzyme-linked immunosorbent assay kits. Electric pulse stimulation triggers growth factor release from platelet α-granules at the same or higher level compared with BT. Electric pulse stimulation is a fast, inexpensive, easy-to-use platelet activation method for autologous platelet gel therapy.

  12. Electrical Stimulation of Microbial PCB Degradation in Sediment

    OpenAIRE

    Chun, Chan Lan; Payne, Rayford B.; Sowers, Kevin R.; May, Harold D.

    2012-01-01

    Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical...

  13. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions.

  14. Patterned electrical stimulation of primate retina for the development of retinal prostheses

    OpenAIRE

    2012-01-01

    Epiretinal prostheses are designed to restore vision to people blinded by retinal degenerations, using electrical stimulation with an array of electrodes implanted on the surface of the retina to convey artificial visual signals to the brain. Current clinical prostheses provide limited visual function, in part because the activity that they generate is different from natural retinal responses to visual stimuli. An ideal retinal prosthesis would stimulate the retinal ganglion cells (RGCs) in a...

  15. Modeling transcranial electric stimulation in mouse: a high resolution finite element study.

    Science.gov (United States)

    Bernabei, John M; Lee, Won Hee; Peterchev, Angel V

    2014-01-01

    Mouse models are widely used in studies of various forms of transcranial electric stimulation (TES). However, there is limited knowledge of the electric field distribution induced by TES in mice, and computational models to estimate this distribution are lacking. This study examines the electric field and current density distribution in the mouse brain induced by TES. We created a high-resolution finite element mouse model incorporating ear clip electrodes commonly used in mouse TES to study, for example, electroconvulsive therapy (ECT). The electric field strength and current density induced by an ear clip electrode configuration were computed in the anatomically realistic, inhomogenous mouse model. The results show that the median electric field strength induced in the brain at 1 mA of stimulus current is 5.57 V/m, and the strongest field of 20.19 V/m was observed in the cerebellum. Therefore, to match the median electric field in human ECT at 800 mA current, the electrode current in mouse should be set to approximately 15 mA. However, the location of the strongest electric field in posterior brain regions in the mouse does not model well human ECT which targets more frontal regions. Therefore, the ear clip electrode configuration may not be a good model of human ECT. Using high-resolution realistic models for simulating TES in mice may guide the establishment of appropriate stimulation parameters for future in vivo studies.

  16. Russian electricity market. Current state and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Abdurafikov, R.

    2009-06-15

    The Russian electricity market is currently in transition. The restructuring of the sector has been completed and former public vertically integrated monopolies have been unbundled and partly privatised. The government retained control in all the network companies, the system operator, nuclear generation, and hydro generation. The state retains control also via owner-ship in several TGCs and WGCs in the strategic regions of Moscow and Saint-Petersburg via the state owned gas monopoly Gazprom. The liberalization takes place within two price zones, Europe and Siberia, where more than 90%, 913 TWh in 2007, of Russian electricity consumption takes place. In the rest of Russia, e.g. the Far East and isolated areas like Kaliningrad, electricity is supplied at regulated rates. Only a minor part of electricity in the price zones is currently traded at free prices. The share of electricity traded at free market prices will increase according to the liberalization schedule, reaching ca 90%, all except households, by 2011. Wholesale electricity market bids are aggregated in a detailed power system model of the Russian power grid, taking into account the physical locations of the facilities. The resulting 7700+ nodal market prices, scattered across the 7 time zones of the Russian market area, capture costs of congestion and load losses in the grid. The price level of electricity seems to be rather low at a glance - about 21 euro and 15 euro per MWh in Europe and Siberia respectively. On the other hand, wholesale market buyers have to pay for capacity availability, on average around 3000 euro/MW monthly. With greater share of electricity traded at free prices there will be an increased need to hedge price risks. For this reason a financial market is planned. There are also plans for support schemes for renewable generation and to limit environmental pollution as well as ancillary services markets. Some areas do not experience a likewise opening of the competition in Russia, for

  17. Electrical Stimulation for Wound-Healing: Simulation on the Effect of Electrode Configurations

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2017-01-01

    Full Text Available Endogenous electric field is known to play important roles in the wound-healing process, mainly through its effects on protein synthesis and cell migration. Many clinical studies have demonstrated that electrical stimulation (ES with steady direct currents is beneficial to accelerating wound-healing, even though the underlying mechanisms remain unclear. In the present study, a three-dimensional finite element wound model was built to optimize the electrode configuration in ES. Four layers of the skin, stratum corneum, epidermis, dermis, and subcutis, with defined thickness and electrical properties were modeled. The main goal was to evaluate the distributions of exogenous electric fields delivered with direct current (DC stimulation using different electrode configurations such as sizes and positions. Based on the results, some guidelines were obtained in designing the electrode configuration for applications of clinical ES.

  18. Cerebellar Transcranial Direct Current Stimulation (ctDCS)

    Science.gov (United States)

    Grimaldi, Giuliana; Argyropoulos, Georgios P.; Bastian, Amy; Cortes, Mar; Davis, Nicholas J.; Edwards, Dylan J.; Ferrucci, Roberta; Fregni, Felipe; Galea, Joseph M.; Hamada, Masahi; Manto, Mario; Miall, R. Chris; Morales-Quezada, Leon; Pope, Paul A.; Priori, Alberto; Rothwell, John; Tomlinson, S. Paul; Celnik, Pablo

    2016-01-01

    The cerebellum is critical for both motor and cognitive control. Dysfunction of the cerebellum is a component of multiple neurological disorders. In recent years, interventions have been developed that aim to excite or inhibit the activity and function of the human cerebellum. Transcranial direct current stimulation of the cerebellum (ctDCS) promises to be a powerful tool for the modulation of cerebellar excitability. This technique has gained popularity in recent years as it can be used to investigate human cerebellar function, is easily delivered, is well tolerated, and has not shown serious adverse effects. Importantly, the ability of ctDCS to modify behavior makes it an interesting approach with a potential therapeutic role for neurological patients. Through both electrical and non-electrical effects (vascular, metabolic) ctDCS is thought to modify the activity of the cerebellum and alter the output from cerebellar nuclei. Physiological studies have shown a polarity-specific effect on the modulation of cerebellar–motor cortex connectivity, likely via cerebellar–thalamocortical pathways. Modeling studies that have assessed commonly used electrode montages have shown that the ctDCS-generated electric field reaches the human cerebellum with little diffusion to neighboring structures. The posterior and inferior parts of the cerebellum (i.e., lobules VI-VIII) seem particularly susceptible to modulation by ctDCS. Numerous studies have shown to date that ctDCS can modulate motor learning, and affect cognitive and emotional processes. Importantly, this intervention has a good safety profile; similar to when applied over cerebral areas. Thus, investigations have begun exploring ctDCS as a viable intervention for patients with neurological conditions. PMID:25406224

  19. Transcranial direct current stimulation: electrode montage in stroke.

    Science.gov (United States)

    Mahmoudi, Hooman; Borhani Haghighi, Afshin; Petramfar, Peyman; Jahanshahi, Sepehr; Salehi, Zahra; Fregni, Felipe

    2011-01-01

    Neurophysiological and computer modelling studies have shown that electrode montage is a critical parameter to determine the neuromodulatory effects of transcranial direct current stimulation (tDCS). We tested these results clinically by systematically investigating optimal tDCS electrode montage in stroke. Ten patients received in a counterbalanced and randomised order the following conditions of stimulation (i) anodal stimulation of affected M1 (primary motor cortex) and cathodal stimulation of unaffected M1 ('bilateral tDCS'); (ii) anodal stimulation of affected M1 and cathodal stimulation of contralateral supraorbital area ('anodal tDCS'); (iii) cathodal stimulation of unaffected M1 and anodal stimulation of contralateral supraorbital area ('cathodal tDCS'); (iv) anodal stimulation of affected M1 and cathodal stimulation of contralateral deltoid muscle ('extra-cephalic tDCS') and (v) sham stimulation. We used the Jebsen-Taylor Test (JTT) as a widely accepted measure of upper limb function. Bilateral tDCS, anodal tDCS and cathodal tDCS were shown to be associated with significant improvements on the JTT. Placing the reference electrode in an extracephalic position and use of sham stimulation did not induce any significant effects. This small sham controlled cross-over clinical trial is important to provide additional data on the clinical effects of tDCS in stroke and for planning and designing future large tDCS trials in patients with stroke.

  20. Acetylation mediates Cx43 reduction caused by electrical stimulation

    Science.gov (United States)

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  1. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable of produ......Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  2. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia.

    Science.gov (United States)

    Knutson, Jayme S; Fu, Michael J; Sheffler, Lynne R; Chae, John

    2015-11-01

    This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described, and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized.

  3. Effect of bleeding method and low voltage electrical stimulation on ...

    African Journals Online (AJOL)

    None the less, personal observations would recommend the use of TS due ... Electrical stimulation also had no effect on the Warner Bratzler shear force values in the fillet. It can be concluded that low voltage ES has no advantage pertaining to ...

  4. A distributed transducer system for functional electrical stimulation

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Nielsen, Jannik Hammel; Bruun, Erik

    2001-01-01

    Implanted transducers for functional electrical stimulation (FES) powered by inductive links are subject to conflicting requirements arising from low link efficiency, a low power budget and the need for protection of the weak signals against strong RF electromagnetic fields. We propose a solution...

  5. Experimental electrical stimulation of the bladder using a new device

    DEFF Research Database (Denmark)

    Petersen, T; Christiansen, P; Nielsen, B

    1986-01-01

    Repeated bladder contractions were evoked during a six month period in three unanaesthetized female minipigs by using unipolar carbon fiber electrodes embedded in the bladder wall adjacent to the ureterovesical junction. In contrast to bipolar and direct bladder muscle stimulation unipolar electr...

  6. Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke

    DEFF Research Database (Denmark)

    Bath, Philip M W; Scutt, Polly; Love, Jo

    2016-01-01

    BACKGROUND AND PURPOSE: Dysphagia is common after stroke, associated with increased death and dependency, and treatment options are limited. Pharyngeal electric stimulation (PES) is a novel treatment for poststroke dysphagia that has shown promise in 3 pilot randomized controlled trials. METHODS:...

  7. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations.

    Science.gov (United States)

    Guleyupoglu, Berkan; Schestatsky, Pedro; Edwards, Dylan; Fregni, Felipe; Bikson, Marom

    2013-10-15

    Transcranial Electrical Stimulation (tES) encompasses all methods of non-invasive current application to the brain used in research and clinical practice. We present the first comprehensive and technical review, explaining the evolution of tES in both terminology and dosage over the past 100 years of research to present day. Current transcranial Pulsed Current Stimulation (tPCS) approaches such as Cranial Electrotherapy Stimulation (CES) descended from Electrosleep (ES) through Cranial Electro-stimulation Therapy (CET), Transcerebral Electrotherapy (TCET), and NeuroElectric Therapy (NET) while others like Transcutaneous Cranial Electrical Stimulation (TCES) descended from Electroanesthesia (EA) through Limoge, and Interferential Stimulation. Prior to a contemporary resurgence in interest, variations of transcranial Direct Current Stimulation were explored intermittently, including Polarizing current, Galvanic Vestibular Stimulation (GVS), and Transcranial Micropolarization. The development of these approaches alongside Electroconvulsive Therapy (ECT) and pharmacological developments are considered. Both the roots and unique features of contemporary approaches such as transcranial Alternating Current Stimulation (tACS) and transcranial Random Noise Stimulation (tRNS) are discussed. Trends and incremental developments in electrode montage and waveform spanning decades are presented leading to the present day. Commercial devices, seminal conferences, and regulatory decisions are noted. We conclude with six rules on how increasing medical and technological sophistication may now be leveraged for broader success and adoption of tES.

  8. Closing of venus flytrap by electrical stimulation of motor cells.

    Science.gov (United States)

    Volkov, Alexander G; Adesina, Tejumade; Jovanov, Emil

    2007-05-01

    Electrical signaling and rapid closure of the carnivorous plant Dionaea muscipula Ellis (Venus flytrap) have been attracting the attention of researchers since XIX century, but the exact mechanism of Venus flytrap closure is still unknown. We found that the electrical stimulus between a midrib and a lobe closes the Venus flytrap leaf by activating motor cells without mechanical stimulation of trigger hairs. The closing time of Venus flytrap by electrical stimulation of motor cells is 0.3 s, the same as mechanically induced closing. The mean electrical charge required for the closure of the Venus flytrap leaf is 13.6 microC. Ion channel blockers such as Ba(2+), TEACl as well as uncouplers such as FCCP, 2,4-dinitrophenol and pentachlorophenol dramatically decrease the speed of the trap closing. Using an ultra-fast data acquisition system with measurements in real time, we found that the action potential in the Venus flytrap has a duration time of about 1.5 ms. Our results demonstrate that electrical stimulation can be used to study mechanisms of fast activity in motor cells of the plant kingdom.

  9. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  10. [Gait training and functional electric stimulation with hemiplegic patients].

    Science.gov (United States)

    Tanović, Edina

    2007-01-01

    Cerebrovascular accident (stroke) is focal neurological deficiency occurring suddenly and lasting for more than 24 hours. Among its consequences are hemiplegia, speech impairment, swallowing impairment, changes of the facial nerve, sensibility, sphincter control or physiological changes. The goals of the study are to show the place functional electrical stimulation (FES) in the rehabilitation hemiplegic patients after cerebrovascular accident. In our study we analyzed two comparative groups with 40 hemiplegic patients, the first one, control group treated only with kinezitheraphy, and the second one, tested group treated with kinezitheraphy and functional electrical stimulation. Both groups of patients were analyzed according to gender, the etiology of the cerebrovascular accident and the duration of rehabilitation. We also had special analyzed of walking by BI index. Results has shown that we had two comparative groups according to gender and the etiology of the cerebrovascular accident. The duration of rehabilitation was longer in control group (77.5% for four months, 10% for five months) which is treated with kinezitherapy than in the tested group treated with kinezitheraphy and functional electrical stimulation (80% for three months, 20% for four months). After 4 weeks of rehabilitation of hemiplegic patients there are no significant differences between groups tested by BI index. After 8 and 12 weeks of rehabilitation tested gruop of patients treated with kinezitheraphy and functional electrical stimulation showed statistically significant better results than control group by BI index. In the conclusion we can say that functional electrical stimulation and kinezitherapy is methods which is faster, more successful and with better results in gait training.

  11. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    Effects of repetition and temperature on Contingent Electrical Stimulation. E.E. Castrillon W1, 2, Xinwen Zhou 3, P. Svensson1, 2, 4 1 Department of Dentistry and Oral Health, Section of Orofacial Pain and Jaw Function, Aarhus University, Denmark2 Scandinavian Center for Orofacial Neuroscience...... (SCON)3 Department of Dentistry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China. 4 Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden  Background: Contingent electrical stimulation (CES) of the facial skin has been shown to reduce electromyographic (EMG......) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  12. Magnetic versus electrical stimulation in the interpolation twitch technique of elbow flexors.

    Science.gov (United States)

    Lampropoulou, Sofia I; Nowicky, Alexander V; Marston, Louise

    2012-01-01

    The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB) in the single pulse Interpolation Twitch Technique (ITT). 14 healthy participants (31±7 years) participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum) at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG) from the BB, the triceps brachii m. (TB) and the abductor pollicis brevis m. (APB) were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA) of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N) and magnetic (0.81 ± 0.49 N) stimulation (p > 0.05), and the maximum VA of BB was comparable between electrical (95%) and magnetic (93%) stimulation (p > 0. 05). No differences (p >0.05) were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms) and magnetic (12.61 ± 0.58 mV.ms) stimulation. The TB M-waves were also similar (p > 0.05) but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p twitch amplitude by 6.5 ± 6.2 N (p < 0.05). The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising new application of peripheral magnetic stimulation as an alternative to the

  13. MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    Directory of Open Access Journals (Sweden)

    Sofia I. Lampropoulou

    2012-12-01

    Full Text Available The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB in the single pulse Interpolation Twitch Technique (ITT. 14 healthy participants (31±7 years participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG from the BB, the triceps brachii m. (TB and the abductor pollicis brevis m. (APB were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N and magnetic (0.81 ± 0.49 N stimulation (p > 0.05, and the maximum VA of BB was comparable between electrical (95% and magnetic (93% stimulation (p > 0. 05. No differences (p >0.05 were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms and magnetic (12.61 ± 0.58 mV.ms stimulation. The TB M-waves were also similar (p > 0.05 but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05. The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05. Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05. The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising

  14. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview.

    Science.gov (United States)

    Hamid, Samar; Hayek, Ray

    2008-09-01

    Structural discontinuity in the spinal cord after injury results in a disruption in the impulse conduction resulting in loss of various bodily functions depending upon the level of injury. This article presents a summary of the scientific research employing electrical stimulation as a means for anatomical or functional recovery for patients suffering from spinal cord injury. Electrical stimulation in the form of functional electrical stimulation (FES) can help facilitate and improve upper/lower limb mobility along with other body functions lost due to injury e.g. respiratory, sexual, bladder or bowel functions by applying a controlled electrical stimulus to generate contractions and functional movement in the paralysed muscles. The available rehabilitative techniques based on FES technology and various Food and Drug Administration, USA approved neuroprosthetic devices that are in use are discussed. The second part of the article summarises the experimental work done in the past 2 decades to study the effects of weakly applied direct current fields in promoting regeneration of neurites towards the cathode and the new emerging technique of oscillating field stimulation which has shown to promote bidirectional regeneration in the injured nerve fibres. The present article is not intended to be an exhaustive review but rather a summary aiming to highlight these two applications of electrical stimulation and the degree of anatomical/functional recovery associated with these in the field of spinal cord injury research.

  15. Perception of electrical and mechanical stimulation of the skin: implications for electrotactile feedback

    Science.gov (United States)

    Marcus, Patrick L.; Fuglevand, Andrew J.

    2009-12-01

    Spinal cord injury is often accompanied by impaired tactile and proprioceptive sensations. Normally, somatosensensory information derived from such sensations is important in the formation of voluntary motor commands. Therefore, as a preliminary step toward the development of an electrotactile feedback system to restore somatosensation, psychophysical methods were used to characterize perceptual attributes associated with electrical stimulation of the skin on the back of the neck in human subjects. These data were compared to mechanical stimulation of the skin on the back of neck and on the distal pad of the index finger. Spatial acuity of the neck, evaluated using two-point thresholds, was not significantly different for electrical (37 ± 14 mm) or mechanical stimulation (39 ± 10 mm). The exponent (β) of the best fitting power function relating perceived intensity to applied stimulus strength was used to characterize perceptual sensitivity to mechanical and electrical stimuli. For electrical stimuli, both current amplitude-modulated and frequency-modulated trains of pulses were tested. Perceptual sensitivity was significantly greater for current amplitude modulation (β = 1.14 ± 0.37) compared to frequency modulation (β = 0.57 ± 0.24) and mechanical stimulation (0.51 ± 0.12). Finally, based on the data gathered here, we derive a transfer function that could be used in the future to convert mechanical stimuli detected with artificial sensors placed on the fingers into electrotactile signals that evoke perceptions similar to those arising from normal mechanical stimulation of the skin.

  16. In situ electric fields causing electro-stimulation from conductor contact of charged human.

    Science.gov (United States)

    Nagai, Toshihiro; Hirata, Akimasa

    2010-08-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength-duration curves with parameters used in previous studies.

  17. Cellular Mechanisms of Transcranial Direct Current Stimulation

    Science.gov (United States)

    2016-07-14

    Durand DM (1999) Modulation of burst frequency, duration, and amplitude in the zero-Ca(2...polarizing current on action potential and transmitter release in crayfish motor nerve terminals. Pflugers Arch 324:227-248. Durand DM, Bikson M (2001...Markram H, Herz AV (1997) Neural codes: firing rates and beyond. Proc Natl Acad Sci U S A 94:12740-12741. Ghai RS, Bikson M, Durand DM

  18. Investigating Effects of Nano- to Micro-Ampere Alternating Current Stimulation on Trichophyton rubrum Growth

    Science.gov (United States)

    Kwon, Dong Rak; Kwon, Hyunjung; Lee, Woo Ram

    2016-01-01

    Background Fungi are eukaryotic microorganisms including yeast and molds. Many studies have focused on modifying bacterial growth, but few on fungal growth. Microcurrent electricity may stimulate fungal growth. Objective This study aims to investigate effects of microcurrent electric stimulation on Trichophyton rubrum growth. Methods Standard-sized inoculums of T. rubrum derived from a spore suspension were applied to potato dextrose cornmeal agar (PDACC) plates, gently withdrawn with a sterile pipette, and were applied to twelve PDACC plates with a sterile spreader. Twelve Petri dishes were divided into four groups. The given amperage of electric current was 500 nA, 2 µA, and 4 µA in groups A, B, and C, respectively. No electric current was given in group D. Results In the first 48 hours, colonies only appeared in groups A and B (500 nA and 2 µA exposure). Colonies in group A (500 nA) were denser. Group C (4 µA) plates showed a barely visible film of fungus after 96 hours of incubation. Fungal growth became visible after 144 hours in the control group. Conclusion Lower intensities of electric current caused faster fungal growth within the amperage range used in this study. Based on these results, further studies with a larger sample size, various fungal species, and various intensities of electric stimulation should be conducted. PMID:27746636

  19. Electrical vestibular stimulation after vestibular deafferentation and in vestibular schwannoma.

    Directory of Open Access Journals (Sweden)

    Swee Tin Aw

    Full Text Available BACKGROUND: Vestibular reflexes, evoked by human electrical (galvanic vestibular stimulation (EVS, are utilized to assess vestibular function and investigate its pathways. Our study aimed to investigate the electrically-evoked vestibulo-ocular reflex (eVOR output after bilateral and unilateral vestibular deafferentations to determine the characteristics for interpreting unilateral lesions such as vestibular schwannomas. METHODS: EVOR was recorded with dual-search coils as binocular three-dimensional eye movements evoked by bipolar 100 ms-step at EVS intensities of [0.9, 2.5, 5.0, 7.5, 10.0] mA and unipolar 100 ms-step at 5 mA EVS intensity. Five bilateral vestibular deafferented (BVD, 12 unilateral vestibular deafferented (UVD, four unilateral vestibular schwannoma (UVS patients and 17 healthy subjects were tested with bipolar EVS, and five UVDs with unipolar EVS. RESULTS: After BVD, bipolar EVS elicited no eVOR. After UVD, bipolar EVS of one functioning ear elicited bidirectional, excitatory eVOR to cathodal EVS with 9 ms latency and inhibitory eVOR to anodal EVS, opposite in direction, at half the amplitude with 12 ms latency, exhibiting an excitatory-inhibitory asymmetry. The eVOR patterns from UVS were consistent with responses from UVD confirming the vestibular loss on the lesion side. Unexpectedly, unipolar EVS of the UVD ear, instead of absent response, evoked one-third the bipolar eVOR while unipolar EVS of the functioning ear evoked half the bipolar response. CONCLUSIONS: The bidirectional eVOR evoked by bipolar EVS from UVD with an excitatory-inhibitory asymmetry and the 3 ms latency difference between normal and lesion side may be useful for detecting vestibular lesions such as UVS. We suggest that current spread could account for the small eVOR to 5 mA unipolar EVS of the UVD ear.

  20. Prediction of cortical responses to simultaneous electrical stimulation of the retina

    Science.gov (United States)

    Halupka, Kerry J.; Shivdasani, Mohit N.; Cloherty, Shaun L.; Grayden, David B.; Wong, Yan T.; Burkitt, Anthony N.; Meffin, Hamish

    2017-02-01

    Objective. Simultaneous electrical stimulation of multiple electrodes has shown promise in diversifying the responses that can be elicited by retinal prostheses compared to interleaved single electrode stimulation. However, the effects of interactions between electrodes are not well understood and clinical trials with simultaneous stimulation have produced inconsistent results. We investigated the effects of multiple electrode stimulation of the retina by developing a model of cortical responses to retinal stimulation. Approach. Electrical stimuli consisting of temporally sparse, biphasic current pulses, with amplitudes sampled from a bi-dimensional Gaussian distribution, were simultaneously delivered to the retina across a 42-channel electrode array implanted in the suprachoroidal space of anesthetized cats. Visual cortex activity was recorded using penetrating microelectrode arrays. These data were used to identify a linear-nonlinear model of cortical responses to retinal stimulation. The ability of the model to generalize was tested by predicting responses to non-white patterned stimuli. Main results. The model accurately predicted two cortical activity measures: multi-unit neural responses and evoked potential responses to white noise stimuli. The model also provides information about electrical receptive fields, including the relative effects of each stimulating electrode on every recording site. Significance. We have demonstrated a simple model that accurately describes cortical responses to simultaneous stimulation of a suprachoroidal retinal prosthesis. Overall, our results demonstrate that cortical responses to simultaneous multi-electrode stimulation of the retina are repeatable and predictable, and that interactions between electrodes during simultaneous stimulation are predominantly linear. The model shows promise for determining optimal stimulation paradigms for exploiting interactions between electrodes to shape neural activity, thereby improving

  1. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (cyborg insects or biobots.

  2. Coherent anti-Stokes Raman scattering under electric field stimulation

    Science.gov (United States)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  3. Transcutaneous electrical nerve stimulation therapy in reduction of orofacial pain

    Directory of Open Access Journals (Sweden)

    Đorđević Igor

    2014-01-01

    Full Text Available Introduction. Patients with craniomandibular disorders suffer from hypertonic, fatigued and painful masticatory muscles. This condition can lead to limitation of mandibular jaw movements. All of these symptoms and signs are included in myofascial pain dysfunction syndrome. Transcutaneous electrical nerve stimulation (TENS has been used for treatment of these patients. Objective. The aim of this study was to assess the effect of TENS therapy on chronic pain reduction in patients with the muscular dysfunction symptom. Methods. In order to evaluate the effect of TENS therapy before and after the treatment, Craniomandibular Index (Helkimo was used. Pain intensity was measured by VAS. Patients had TENS treatment over two-week period. BURST TENS modality was used. Current intensity was individually adjusted. Results. Two patients did not respond to TENS therapy. Complete pain reduction was recorded in 8 patients, while pain reduction was not significantly different after TENS therapy in 10 patients. Conclusion. TENS therapy was confirmed as therapeutic procedure in orofacial muscle relaxation and pain reduction.

  4. Electrical stimulation in the measurement of cutaneous sensibility.

    Science.gov (United States)

    Laitinen, L V; Eriksson, A T

    1985-06-01

    A portable constant current electrical stimulator with bipolar felt disk electrodes was developed for quantitative assessment of cutaneous sensibility. The new method was used in the measurement of thresholds for perception and pain in healthy volunteers. The mean values of the threshold for perception in different areas of the body varied between 1.0 and 2.0 mA (S.D. +/- 0.2-0.6 mA) and those of the threshold for pain between 2.5 and 4.3 mA (S.D. +/- 0.5-1.7 mA). There was no difference between the left and the right side. The interindividual range of the perception threshold varied from 0.4 to 3.0 mA and that of the pain threshold from 1.2 to 6.0 mA. Within a limited area of the body the reproducibility of the measurements was high both for the thresholds for perception and for pain. Anterolateral cordotomy caused a marked rise in the threshold for pain in the analgesic area of the body, whereas the threshold for perception did not change. It is hypothesized that the threshold for perception reflects an activation of A beta fibers and the threshold for pain an activation of A delta fibers. The new method is considered to be valuable in clinical neurology and neurosurgery.

  5. Revised model of thermally stimulated current in MOS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, D.M.

    1997-06-01

    It is shown analytically and experimentally that thermally stimulated current (TSC) measurements at negative bias incompletely describe oxide-trap charge in SIMOX and bipolar base oxides irradiated at 0 V. Positive-bias TSC is also required.

  6. Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis

    NARCIS (Netherlands)

    van der Borden, AJ; van der Mei, HC; Busscher, H

    2005-01-01

    In vitro Studies investigating the influence of electric DC current on bacterial detachment have demonstrated that continuous currents of only 25-125 mu A stimulated Staphylococcal strains to detach from surgical stainless steel. However, DC Currents produce more power that has to be dissipated by t

  7. Somatopy of perceptual threshold to cutaneous electrical stimulation in man.

    Science.gov (United States)

    Davey, N J; Nowicky, A V; Zaman, R

    2001-01-01

    Neurological testing tools for measuring and monitoring somatosensory function lack resolution and are often dependent on the clinician testing. In this study we have measured perceptual threshold (PT) to electrical stimulation of the skin and compared it with two-point discriminative ability (TPDA) in 12 control subjects. Tests were made on both sides of the body at American Spinal Injury Association (ASIA) key points on seven spinal dermatomes (C3 (neck), C4 (shoulder), C5 (upper arm), C6 (thumb), T8 (abdomen), L3 (knee), L5 (foot)) and in the mandibular (chin) and maxillary (cheek) fields of the trigeminal (V) nerve. Electrical stimulation (0.5 ms pulse width; 3 Hz) was applied via a self-adhesive cathode and an anode strapped to the wrist or ankle. The stimulus intensity was adjusted and PT was recorded as the lowest current at which the subject reported sensation. Sites were tested in random order. Indices for both TPDA and PT differed according to the dermatome tested but there was no correlation between TPDA and PT for any dermatome. There was good correlation between results from equivalent dermatomes on left and right sides for both PT and TPDA. Women frequently had lower mean (+/- S.E.) PTs and better TPDA than men; differences were significant (P < 0.05) for PT on the knee (women, 1.31 +/- 0.15 mA; men, 2.05 +/- 0.26 mA) and the foot (women, 2.90 +/- 0.19 mA; men, 4.13 +/- 0.28 mA) and for TPDA on the thumb (women, 3.8 +/- 0.2 mm; men, 7.8 +/- 1.3 mm) and the knee (women, 17.8 +/- 1.6 mm; men, 27.1 +/- 4.0 mm). Four subjects repeated the experiment on another day and the results correlated well with the first test for PT (r2, 0.62) and TPDA (r2, 0.48). PT differs between dermatomes in a predictable way but does not relate to TPDA. PT is easy to measure and may be a useful assessment tool with which to monitor recovery or deterioration in neuropathies, neurotrauma or after surgery.

  8. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  9. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Directory of Open Access Journals (Sweden)

    Hao Yu Choo

    Full Text Available Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera. A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs, flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%, rapid response time (< 1.0 s, and small variation (< 0.33 s; indicating little habituation. Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  10. Electrical stimulation modulates injury potentials in rats after spinal cord injury*

    Institute of Scientific and Technical Information of China (English)

    Guanghao Zhang; Xiaolin Huo; Aihua Wang; Changzhe Wu; Cheng Zhang; Jinzhu Bai

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as wel as injury current, can be modulated by direct current field stimulation;however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around-70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon il ustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cel membrane and the reduction of cation influx.

  11. Electrical stimulation modulates injury potentials in rats after spinal cord injury.

    Science.gov (United States)

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-09-25

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around -70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx.

  12. Short latency vestibular potentials evoked by electrical round window stimulation in the guinea pig.

    Science.gov (United States)

    Bordure, P; Desmadryl, G; Uziel, A; Sans, A

    1989-11-01

    Short-latency potentials evoked by round window electrical stimulation were recorded in guinea pig by means of vertex-pinna skin electrodes using averaging techniques. Constant current shocks of 20 microseconds or 50 microseconds (25-300 microA) were used to evoke both auditory and vestibular brain-stem potentials. Pure auditory potentials, comparable to those evoked by acoustic clicks, were obtained by 20 microseconds electrical stimuli and disappeared during an auditory masking procedure made with a continuous white noise (110 dB SPL). Short latency potentials labeled V1, V2 and V3 were obtained by 50 microseconds electrical stimuli during an auditory masking procedure. This response disappeared after specific vestibular neurectomy, whereas the auditory response evoked by acoustic clicks or by electrical stimulation remained unchanged, suggesting that these latter potentials had a vestibular origin.

  13. ELECTRICAL MUSCLE STIMULATION (EMS IMPLEMENTATION IN EXPLOSIVE STRENGTH DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Zoran Đokić

    2013-07-01

    Full Text Available Electrical muscle stimulation (EMS, is also known as neuromuscular electrical stimulation (NMES may be used for therapeutic purposes and training. EMS is causing muscle contractions via electrical impulses. The survey was conducted as a case study. The study was conducted on subject of 3 male of different ages. The study lasted 4 weeks, and the respondents have not used any type of training or activity, which would affect the development of explosive strength of the lower extremities. Electrical stimulation was performed in the evening, every other day, with COMPEX mi sport apparatus (Medical SA - All rights reserved - 07/06 - Art. 885,616 - V.2 model. In 4 week period, a total of 13 treatments were performed on selected muscle groups - quadriceps femoris and gastrocnemius. Program of plyometric training (Plyometric (28 min per treatment, for each muscle group were applied. The main objective of this study was to quantify and compare explosive leg strength, using different vertical jump protocols, before and after the EMS program. The initial and final testing was conducted in the laboratory of the Faculty of Sport and Tourism in Novi Sad, on the contact plate AXON JUMP (Bioingeniería Deportiva, VACUMED, 4538 Westinghouse Street Ventura, CA 93 003 under identical conditions. In all three of the respondents indicated an increase in vertical jump in all applied protocols.

  14. Promontory electrical stimulation to elicit vestibular evoked myogenic potentials (VEMPs).

    Science.gov (United States)

    Park, Jonas J-H; Shen, Anmin; Westhofen, Martin

    2015-03-01

    Vestibular evoked myogenic potentials (VEMPs) provoked electrically at the promontory provide a feasible method to record vestibular responses in awake patients. Electrically evoked VEMP testing has been performed by galvanic stimulation at the mastoid so far. The present study examined an electrical stimulation mode close to the otolith organs at the promontory. Fourteen cochlear implant candidates who were planned for clinical routine promontory stimulation testing (PST) to assess auditory nerve function underwent promontory VEMP testing. After testing the cochlear nerve function during PST promontory cervical VEMPs (p-c-VEMPs) and promontory ocular VEMPs (p-o-VEMPs) were recorded during subsequent transtympanic electrical stimulation at the promontory. Promontory VEMP testing was well tolerated by the patients. Mean latencies for p-c-VEMPs were 10.30 ± 2.23 ms (p1) and 17.86 ± 3.83 ms (n1). Mean latencies for p-o-VEMPs were 7.64 ± 1.24 ms (n1) and 11.2 ± 1.81 ms (p1). The stimulation threshold level was measured at 0.15 ± 0.07 mA for p-c-VEMPs and at 0.19 ± 0.11 mA for p-o-VEMPs. The discomfort level was found to be at 0.78 ± 0.29 mA for p-c-VEMPs and at 0.69 ± 0.25 mA for p-oVEMPs. Mean p1-n1 amplitude in p-c-VEMPs was 124.78 ± 56.55 µV and p-o-VEMPs showed a mean n1-p1 amplitude of 30.94 ± 18.98 µV.

  15. Electric current characteristic of anodic bonding

    Science.gov (United States)

    He, Jun; Yang, Fang; Wang, Wei; Zhang, Li; Huang, Xian; Zhang, Dacheng

    2015-06-01

    In this paper, a novel current-time model of anodic bonding is proposed and verified experimentally in order to investigate underlying mechanisms of anodic bonding and to achieve real-time monitoring of bonding procedure. The proposed model provides a thorough explanation for the electric current characteristic of anodic bonding. More significantly, it explains two issues which other models cannot explain. One is the sharp rise in current when a voltage is initially applied during anodic bonding. The other is the unexpected large width of depletion layers. In addition, enlargement of the intimately contacted area during anodic bonding can be obtained from the proposed model, which can be utilized to monitor the bonding process. To verify the proposed model, Borofloat33 glass and silicon wafers were adopted in bonding experiments in SUSS SB6 with five different bonding conditions (350 °C 1200 V 370 °C 1200 V 380 °C 1200 V 380 °C 1000 V and 380 °C 1400 V). The results indicate that the observed current data highly coincide with the proposed current-time model. For widths of depletion layers, depth profiling using secondary ion mass spectrometry demonstrates that the calculated values by the model are basically consistent with the experimental values as well.

  16. Electrical muscle stimulation for deep stabilizing muscles in abdominal wall.

    Science.gov (United States)

    Coghlan, Simon; Crowe, Louis; McCarthyPersson, Ulrik; Minogue, Conor; Caulfield, Brian

    2008-01-01

    Low back pain is associated with dysfunction in recruitment of muscles in the lumbopelvic region. Effective rehabilitation requires preferential activation of deep stabilizing muscle groups. This study was carried out in order to quantify the response of deep stabilizing muscles (transverses abdominis) and superficial muscle in the abdominal wall (external oblique) to electrical muscle stimulation (EMS). Results demonstrate that EMS can preferentially stimulate contractions in the deep stabilizers and may have significant potential as a therapeutic intervention in this area, pending further refinements to the technology.

  17. Electrical stimulation of the upper extremity in stroke: cyclic versus EMG-triggered stimulation

    NARCIS (Netherlands)

    Kroon, de Joke R.; IJzerman, Maarten J.

    2008-01-01

    Objective: To compare the effect of cyclic and electromyography (EMG)-triggered electrical stimulation on motor impairment and function of the affected upper extremity in chronic stroke. Design: Randomized controlled trial. Setting: Outpatient clinic of a rehabilitation centre. Subjects and inte

  18. Gastric electrical stimulation for treatment of clinically severe gastroparesis

    Directory of Open Access Journals (Sweden)

    Naga Venkatesh G Jayanthi

    2013-01-01

    Full Text Available Background: Severe, drug-resistant gastroparesis is a debilitating condition. Several, but not all, patients can get significant relief from nausea and vomiting by gastric electrical stimulation (GES. A trial of temporary, endoscopically delivered GES may be of predictive value to select patients for laparoscopic-implantation of a permanent GES device. Materials and Methods: We conducted a clinical audit of consecutive gastroparesis patients, who had been selected for GES, from May 2008 to January 2012. Delayed gastric emptying was diagnosed by scintigraphy of ≥50% global improvement in symptom-severity and well-being was a good response. Results: There were 71 patients (51 women, 72% with a median age of 42 years (range: 14-69. The aetiology of gastroparesis was idiopathic (43 patients, 61%, diabetes (15, 21%, or post-surgical (anti-reflux surgery, 6 patients; Roux-en-Y gastric bypass, 3; subtotal gastrectomy, 1; cardiomyotomy, 1; other gastric surgery, 2 (18%. At presentation, oral nutrition was supplemented by naso-jejunal tube feeding in 7 patients, surgical jejunostomy in 8, or parenterally in 1 (total 16 patients; 22%. Previous intervention included endoscopic injection of botulinum toxin (botox into the pylorus in 16 patients (22%, pyloroplasty in 2, distal gastrectomy in 1, and gastrojejunostomy in 1. It was decided to directly proceed with permanent GES in 4 patients. Of the remaining, 51 patients have currently completed a trial of temporary stimulation and 39 (77% had a good response and were selected for permanent GES, which has been completed in 35 patients. Outcome data are currently available for 31 patients (idiopathic, 21 patients; diabetes, 3; post-surgical, 7 with a median follow-up period of 10 months (1-28; 22 patients (71% had a good response to permanent GES, these included 14 (68% with idiopathic, 5 (71% with post-surgical, and remaining 3 with diabetic gastroparesis. Conclusions: Overall, 71% of well-selected patients

  19. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses.

    Science.gov (United States)

    Jepson, Lauren H; Hottowy, Pawel; Mathieson, Keith; Gunning, Deborah E; Dabrowski, Wladyslaw; Litke, Alan M; Chichilnisky, E J

    2013-04-24

    Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal ganglion cell types was investigated by simultaneous stimulation and recording in isolated peripheral primate (Macaca sp.) retina using multi-electrode arrays. ON and OFF midget, ON and OFF parasol, and small bistratified ganglion cells could all be activated directly to fire a single spike with submillisecond latency using brief pulses of current within established safety limits. Thresholds for electrical stimulation were similar in all five cell types. In many cases, a single cell could be specifically activated without activating neighboring cells of the same type or other types. These findings support the feasibility of direct electrical stimulation of the major visual pathways at or near their native spatial and temporal resolution.

  20. Behavior of Electric Current Subjected to ELF Electromagnetic Radiation

    CERN Document Server

    De Aquino, F

    2002-01-01

    Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. It is demonstrated that flux from high power density ELF radiation will cause transitory interruptions in electric current conduction.

  1. Neuromuscular electrical stimulation for mobility support of elderly

    Directory of Open Access Journals (Sweden)

    Winfried Mayr

    2015-10-01

    Full Text Available The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC and maximum stimulation induced contraction (MSC were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period

  2. An Electrical Muscle Stimulation Suit for Increasing Blood Pressure

    Science.gov (United States)

    2008-09-01

    being painful . The arterial blood pressure increases from baseline were reg- istered with noninvasive Portapres® equipment (FMS, Amsterdam, The...thighs and over the gluteal and abdominal muscles to create a positive and negative pole over the muscle areas. For better electrical contact... pain . Each subject was instructed to have the investigator lower the intensity or stop the stimulation if muscle contraction pain was experienced

  3. Treatment of Postherpetic Neuralgia by Surround Needling with Electric Stimulation

    Institute of Scientific and Technical Information of China (English)

    FAN Jin; YANG Qin-hua

    2005-01-01

    运用电针围刺法治疗带状疱疹后遗神经痛29例,获得较好疗效,总有效率为93.1%.%Twenty-nine cases of postherpetic neuralgia of herpes zoster were treated by the surround needling with electric stimulation, and the better therapeutic effect was obtained, the total effective rate was 93.1%.

  4. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    Science.gov (United States)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  5. New Electrical Stimulation Therapy Can Help Stroke Patients Move Paralyzed Hand

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160852.html New Electrical Stimulation Therapy Can Help Stroke Patients Move Paralyzed ... 8, 2016 (HealthDay News) -- A new form of electrical stimulation therapy can help rewire the brain and ...

  6. Experimental investigations of electric current under transverse and longitudinal electric field in uniaxially deformed p-Ge

    Science.gov (United States)

    Abramov, A. A.; Akimov, V. I.; Dalakyan, A. T.; Tulupenko, Victor N.; Zaitsev, A. M.; Danilov, S. N.; Firsov, D. A.; Shalygin, V. A.

    1999-11-01

    Comparison between cases of longitudinal and transverse directions of uniaxial pressure and strong electric field, affected the bulk hole germanium, to use it for lasting in far IR region has been carried out. Conclusion about preference of crossed directions is made. Threshold pressure, at which stimulated radiation arises, independence of crystallographic direction, along which external influences are applied, is also discussed. The results of experimental investigations of the crossed directions of uniaxial pressure and electric current are given.

  7. Clinical application of neuromuscular electrical stimulation induced cardiovascular exercise.

    Science.gov (United States)

    Caulfield, Brian; Crowe, Louis; Coughlan, Garrett; Minogue, Conor

    2011-01-01

    We need to find novel ways of increasing exercise participation, particularly in those populations who find it difficult to participate in voluntary exercise. In recent years researchers have started to investigate the potential for using electrical stimulation to artificially stimulate a pattern of muscle activity that would induce a physiological response consistent with cardiovascular exercise. Work to date has indicated that this is best achieved by using a stimulation protocol that results in rapid rhythmical isometric contractions of the large leg muscle groups at sub tetanic frequencies. Studies completed by our group indicate that this technique can serve as a viable alternative to voluntary cardiovascular exercise. Apart from being able to induce a cardiovascular exercise effect in patient populations (e.g. heart failure, COPD, spinal cord injury, obesity), this approach may also have value in promotion of exercise activity in a microgravity environment.

  8. Transcutaneous electrical nerve stimulation (TENS) for fibromyalgia in adults.

    Science.gov (United States)

    Johnson, Mark I; Claydon, Leica S; Herbison, G Peter; Jones, Gareth; Paley, Carole A

    2017-10-09

    Fibromyalgia is characterised by persistent, widespread pain; sleep problems; and fatigue. Transcutaneous electrical nerve stimulation (TENS) is the delivery of pulsed electrical currents across the intact surface of the skin to stimulate peripheral nerves and is used extensively to manage painful conditions. TENS is inexpensive, safe, and can be self-administered. TENS reduces pain during movement in some people so it may be a useful adjunct to assist participation in exercise and activities of daily living. To date, there has been only one systematic review in 2012 which included TENS, amongst other treatments, for fibromyalgia, and the authors concluded that TENS was not effective. To assess the analgesic efficacy and adverse events of TENS alone or added to usual care (including exercise) compared with placebo (sham) TENS; no treatment; exercise alone; or other treatment including medication, electroacupuncture, warmth therapy, or hydrotherapy for fibromyalgia in adults. We searched the following electronic databases up to 18 January 2017: CENTRAL (CRSO); MEDLINE (Ovid); Embase (Ovid); CINAHL (EBSCO); PsycINFO (Ovid); LILACS; PEDRO; Web of Science (ISI); AMED (Ovid); and SPORTDiscus (EBSCO). We also searched three trial registries. There were no language restrictions. We included randomised controlled trials (RCTs) or quasi-randomised trials of TENS treatment for pain associated with fibromyalgia in adults. We included cross-over and parallel-group trial designs. We included studies that evaluated TENS administered using non-invasive techniques at intensities that produced perceptible TENS sensations during stimulation at either the site of pain or over nerve bundles proximal (or near) to the site of pain. We included TENS administered as a sole treatment or TENS in combination with other treatments, and TENS given as a single treatment or as a course of treatments. Two review authors independently determined study eligibility by assessing each record and

  9. Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects

    DEFF Research Database (Denmark)

    Taylor, Janet L; Petersen, Nicolas Caesar; Butler, Jane E

    2002-01-01

    Transcranial magnetic stimulation activates corticospinal neurones directly and transsynaptically and hence, activates motoneurones and results in a response in the muscle. Transmastoid stimulation results in a similar muscle response through activation of axons in the spinal cord. This study...... was designed to determine whether the two stimuli activate the same descending axons. Responses to transcranial magnetic stimuli paired with electrical transmastoid stimuli were examined in biceps brachii in human subjects. Twelve interstimulus intervals (ISIs) from -6 ms (magnet before transmastoid) to 5 ms......-wave, facilitation still occurred at ISIs of -6 and -5 ms and depression of the paired response at ISIs of 0, 1, 4 and 5 ms. The interaction of the response to transmastoid stimulation with the multiple descending volleys elicited by magnetic stimulation of the cortex is complex. However, depression of the response...

  10. Direct Electrical Stimulation in the Human Brain Disrupts Melody Processing.

    Science.gov (United States)

    Garcea, Frank E; Chernoff, Benjamin L; Diamond, Bram; Lewis, Wesley; Sims, Maxwell H; Tomlinson, Samuel B; Teghipco, Alexander; Belkhir, Raouf; Gannon, Sarah B; Erickson, Steve; Smith, Susan O; Stone, Jonathan; Liu, Lynn; Tollefson, Trenton; Langfitt, John; Marvin, Elizabeth; Pilcher, Webster H; Mahon, Bradford Z

    2017-09-11

    Prior research using functional magnetic resonance imaging (fMRI) [1-4] and behavioral studies of patients with acquired or congenital amusia [5-8] suggest that the right posterior superior temporal gyrus (STG) in the human brain is specialized for aspects of music processing (for review, see [9-12]). Intracranial electrical brain stimulation in awake neurosurgery patients is a powerful means to determine the computations supported by specific brain regions and networks [13-21] because it provides reversible causal evidence with high spatial resolution (for review, see [22, 23]). Prior intracranial stimulation or cortical cooling studies have investigated musical abilities related to reading music scores [13, 14] and singing familiar songs [24, 25]. However, individuals with amusia (congenitally, or from a brain injury) have difficulty humming melodies but can be spared for singing familiar songs with familiar lyrics [26]. Here we report a detailed study of a musician with a low-grade tumor in the right temporal lobe. Functional MRI was used pre-operatively to localize music processing to the right STG, and the patient subsequently underwent awake intraoperative mapping using direct electrical stimulation during a melody repetition task. Stimulation of the right STG induced "music arrest" and errors in pitch but did not affect language processing. These findings provide causal evidence for the functional segregation of music and language processing in the human brain and confirm a specific role of the right STG in melody processing. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New algorithm to control a cycle ergometer using electrical stimulation.

    Science.gov (United States)

    Petrofsky, J S

    2003-01-01

    Data were collected from four male subjects to determine the relationships between load, speed and muscle use during cycle ergometry. These data were then used to construct equations to govern the stimulation of muscle in paralysed individuals, during cycle ergometry induced by functional electrical stimulation (FES) of the quadriceps, gluteus maximus and hamstring muscles. The algorithm was tested on four subjects who were paralysed owing to a complete spinal cord injury between T4 and T11. Using the multivariate equation, the control of movement was improved, and work was accomplished that was double (2940 Nm min(-1) compared with 5880 Nm min(-1)) that of traditional FES cycle ergometry, when muscle stimulation was also controlled by electrical stimulation. Stress on the body, assessed by cardiac output, was increased almost two-fold during maximum work with the new algorithm (81 min(-1) compared with 15 l min(-1) with the new algorithm). These data support the concept that the limitation to workload that a person can achieve on FES cycle ergometry is in the control equations and not in the paralysed muscle.

  12. Recovery of spinal cord function induced by direct current stimulation of the injured rat spinal cord.

    Science.gov (United States)

    Wallace, M C; Tator, C H; Piper, I

    1987-06-01

    Direct current stimulation has been shown by others to enhance the regeneration of several types of tissues, including nervous tissue in some species. The purpose of the present experiment was to assess the value of direct current stimulation for enhancing the recovery of spinal cord function after clip compression injury of the rat spinal cord. Twenty Wistar rats underwent a 1-minute, 50-g clip compression injury at T-1, after which electrodes were placed epidurally with the anode proximal and the cathode distal to the injury site. These electrodes were attached to a stimulator implanted subcutaneously. Ten animals received stimulators that produced a constant current of 14 microA, and the remainder received stimulators with no electrical output and served as controls. Assignment of stimulators was random, and the treatment group was not identified until sacrifice. Neurological function was tested weekly for 15 weeks by the inclined plane technique, after which the animals were killed and the injured cords were examined for histological evidence of regeneration. The mean inclined plane result for the treatment group (39 +/- 5 degrees) was significantly better than that for the control group (31 +/- 6 degrees) (P less than 0.02), although there was no significant difference in histological findings between the two groups. Thus, direct current stimulation of the injured mammalian spinal cord produced improvement in neurological function and warrants further investigation.

  13. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    Science.gov (United States)

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis

    Science.gov (United States)

    Barriga-Rivera, Alejandro; Guo, Tianruo; Yang, Chih-Yu; Abed, Amr Al; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.; Suaning, Gregg J.

    2017-01-01

    Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells. PMID:28209965

  15. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    Directory of Open Access Journals (Sweden)

    David Beckwée

    2014-06-01

    Full Text Available Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2 that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  16. The facilitation of motor actions by acoustic and electric stimulation.

    Science.gov (United States)

    Marinovic, Welber; Milford, Magdalene; Carroll, Timothy; Riek, Stephan

    2015-12-01

    The presentation of a loud acoustic stimulus during the preparation of motor actions can both speed movement initiation and increase response vigor. Several recent studies have explored this phenomenon as a means to investigate the mechanisms and neural correlates of movement preparation. Here, we sought to determine the generality of this effect across sensory modalities, and in particular whether unexpected somatosensory stimulation can facilitate movements in a manner similar to loud sounds. We show that electric and acoustic stimuli can be similarly effective in inducing the early release of motor actions, in both reaction time and anticipatory timing tasks. Consistent with recent response activation models of motor preparation, we also demonstrate that increasing the intensity of electric stimuli induces both progressive decreases in reaction time and increases in response vigor. Additionally, we show that the early release of motor actions can be induced by electric stimuli targeting predominantly either muscle afferents or skin afferents. Finally, we show that simultaneous acoustic and electric stimulation leads to earlier releases of anticipatory actions than either unimodal stimulus. These findings may lead to new avenues for experimental and clinical exploitation of the effects of accessory sensory information on movement preparation and initiation. © 2015 Society for Psychophysiological Research.

  17. Impact of transcranial direct current stimulation (tDCS on neuronal functions

    Directory of Open Access Journals (Sweden)

    Suman Das

    2016-11-01

    Full Text Available Transcranial direct current stimulation (tDCS, a noninvasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique’s effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects.

  18. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    Science.gov (United States)

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods.

  19. Habituation to experimentally induced electrical pain during voluntary-breathing controlled electrical stimulation (BreEStim.

    Directory of Open Access Journals (Sweden)

    Shengai Li

    Full Text Available OBJECTIVE: Painful peripheral electrical stimulation to acupuncture points was found to cause sensitization if delivered randomly (EStim, but induced habituation if triggered by voluntary breathing (BreEStim. The objective was to systematically compare the effectiveness of BreEStim and EStim and to investigate the possible mechanisms mediating the habituation effect of BreEStim. METHODS: Eleven pain-free, healthy subjects (6 males, 5 females participated in the study. Each subject received the BreEStim and EStim treatments in a random order at least three days apart. Both treatments consisted of 120 painful but tolerable stimuli to the ulnar nerve at the elbow on the dominant arm. BreEStim was triggered by voluntary breathing while EStim was delivered randomly. Electrical sensation threshold (EST and electrical pain threshold (EPT were measured from the thenar and hypothenar eminences on both hands at pre-intervention and 10-minutes post-intervention. RESULTS: There was no difference in the pre-intervention baseline measurement of EST and EPT between BreEStim and EStim. BreEStim increased EPT in all tested sites on both hands, while EStim increased EPT in the dominant hypothenar eminence distal to the stimulating site and had no effect on EPT in other sites. There was no difference in the intensity of electrical stimulation between EStim and BreEStim. CONCLUSION: Our findings support the important role human voluntary breathing plays in the systemic habituation effect of BreEStim to peripheral painful electrical stimulation.

  20. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    Science.gov (United States)

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  1. Effects of functional electrical stimulation in rehabilitation with hemiparesis patients.

    Science.gov (United States)

    Tanovic, Edina

    2009-02-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemiparesis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (pstroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities.

  2. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].

    Science.gov (United States)

    Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun

    2014-12-01

    We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.

  3. Proteomic Study of Retinal Proteins Associated with Transcorneal Electric Stimulation in Rats

    Directory of Open Access Journals (Sweden)

    Takashi Kanamoto

    2015-01-01

    Full Text Available Background. To investigate how transcorneal electric stimulation (TES affects the retina, by identifying those proteins up- and downregulated by transcorneal electric stimulation (TES in the retina of rats. Methods. Adult Wistar rats received TES on the left eyes at different electrical currents while the right eyes received no treatment and served as controls. After TES, the eye was enucleated and the retina was isolated. The retinas were analyzed by proteomics. Results. Proteomics showed that twenty-five proteins were upregulated by TES. The identified proteins included cellular signaling proteins, proteins associated with neuronal transmission, metabolic proteins, immunological factors, and structural proteins. Conclusions. TES induced changes in expression of various functional proteins in the retina.

  4. Electric currents in networks of interconnected memristors.

    Science.gov (United States)

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit Theory 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov et al. [Nature (London) 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network's strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect.

  5. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells.

    Science.gov (United States)

    Hernández-Bule, María Luisa; Paíno, Carlos Luis; Trillo, María Ángeles; Úbeda, Alejandro

    2014-01-01

    Capacitive-resistive electric transfer (CRET) is a non invasive electrothermal therapy that applies electric currents within the 400 kHz - 450 kHz frequency range to the treatment of musculoskeletal lesions. Evidence exists that electric currents and electric or magnetic fields can influence proliferative and/or differentiating processes involved in tissue regeneration. This work investigates proliferative responses potentially underlying CRET effects on tissue repair. XTT assay, flow cytometry, immunofluorescence and Western Blot analyses were conducted to asses viability, proliferation and differentiation of adipose-derived stem cells (ADSC) from healthy donors, after short, repeated (5 m On/4 h Off) in vitro stimulation with a 448-kHz electric signal currently used in CRET therapy, applied at a subthermal dose of 50 μA/mm(2) RESULTS: The treatment induced PCNA and ERK1/2 upregulation, together with significant increases in the fractions of ADSC undergoing cycle phases S, G2 and M, and enhanced cell proliferation rate. This proliferative effect did not compromise the multipotential ability of ADSC for subsequent adipogenic, chondrogenic or osteogenic differentiation. These data identify cellular and molecular phenomena potentially underlying the response to CRET and indicate that CRET-induced lesion repair could be mediated by stimulation of the proliferation of stem cells present in the injured tissues. © 2014 S. Karger AG, Basel.

  6. PI controller scheme for charge balance in implantable electrical stimulators

    Indian Academy of Sciences (India)

    C Rathna

    2016-01-01

    Electrical stimulation has been used in a wide variety of medical implant applications. In all of these applications, due to safety concerns, maintaining charge balance becomes a critically important issue that needs to be addressed at the design stage. It is important that charge balancing schemes be robust to circuit (process) and load impedance variations, and at the same time must also lend themselves to miniaturization. In this communication, simulation studies on the effectiveness of using Proportional Integral (P-I) control schemes for managing charge balance in electrical stimulation are presented. The adaptation of the P-I control scheme to implant circuits leads to two possible circuit realizations in the analog domain. The governing equations for these realizations are approximated to simple linear equations. Considering typical circuit and tissue parameter values and their expected uncertainties, Matlab as well as circuit simulations have been carried out. Simulation results presented indicate that the tissue voltages settle to well below 20% of the safe levels and within about 20 stimulations cycles, thus confirming the validity and robustness of the proposed schemes.

  7. Modeling and percept of transcorneal electrical stimulation in humans.

    Science.gov (United States)

    Xie, John; Wang, Gene-Jack; Yow, Lindy; J Cela, Carlos; Humayun, Mark S; Weiland, James D; Lazzi, Gianluca; Jadvar, Hossein

    2011-07-01

    Retinal activation via transcorneal electrical stimulation (TcES) in normal humans was investigated by comparing subject perception, model predictions, and brain activation patterns. The preferential location of retinal stimulation was predicted from 3-D admittance modeling. Visual cortex activation was measured using positron emission tomography (PET) and (18)F-fluorodeoxyglucose (FDG). Two different corneal electrodes were investigated: DTL-Plus and ERG-Jet. Modeling results predicted preferential stimulation of the peripheral, inferior, nasal retina during right eye TcES using DTL-Plus, but more extensive activation of peripheral, nasal hemiretina using ERG-Jet. The results from human FDG PET study using both corneal electrodes showed areas of visual cortex activation that consistently corresponded with the reported phosphene percept and modeling predictions. ERG-Jet was able to generate brighter phosphene percept than DTL-Plus and elicited retinotopically mapped primary visual cortex activation. This study demonstrates that admittance modeling and PET imaging consistently predict the perceived location of electrically elicited phosphenes produced during TcES.

  8. Enhanced Working Memory Binding by Direct Electrical Stimulation of the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Agustina Birba

    2017-06-01

    Full Text Available Recent works evince the critical role of visual short-term memory (STM binding deficits as a clinical and preclinical marker of Alzheimer’s disease (AD. These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer’s patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a the usefulness of the task to target prodromal stages of AD; (b the role of a posterior network in STM binding and in AD; and (c the potential opportunity to improve STM binding through brain stimulation.

  9. 微电场对滋养细胞迁移/侵袭相关MMPs/TIMPs表达的影响%Effect of small direct-current electrical stimulation on migration and invasion related MMPs/TIMPs expression of trophoblast cells

    Institute of Scientific and Technical Information of China (English)

    张娟; 李明勇; 贺元; 白怀; 范平

    2016-01-01

    Objective To investigate the effect of small direct‐current electrical stimulation on migration and invasion related MMPs/TIMPs expression of trophoblast cells .Methods The trophoblast cells were exposed to the direct current electrical field at 150 mV/mm for 5 and 10 hours .Cell images were recorded with continuous photographing and analyzed by image analyzer .The ex‐pression levels of MMP2 ,MMP9 ,TIMP1 and TIMP2 were measured using quantitative RT‐PCR and Western blot .Results In non‐electrical field culture trophoblast cells migrated slowly with random directions .Trophoblast cells cultured in media containing 10% calf serum with the application of 150 mV/mm direct current electrical stimulation ,showed marked cathodal migration (P<0 .01) ,the cell body stretched ,perpendicular to the direction of the electric field .Compared with the non‐electrical field stimulation controls ,trophoblasts under the electrical field stimulation had the increased MMP2 mRNA and protein expression (P< 0 .05) , while MMP9 ,TIMP1 and TIMP2 had no obvious changes of mRNA or protein expressions .Conclusion Physiological direct‐cur‐rent electrical fields might induce directed migration and perpendicular orientation of trophoblast cells .The enhanced MMP2 expres‐sion may play an important role in the migration and invasive activity of trophoblast cells in small electrical field .%目的:探讨生理性微电场对体外培养的人胎盘滋养细胞迁移/侵袭相关分子金属基质蛋白酶(M M Ps )/组织金属蛋白酶抑制剂(TIMPs)表达的影响。方法用150 mV/mm的直流微电场刺激滋养细胞,测定其迁移情况并观察形态变化。实时荧光定量PCR和Western blot检测刺激前后MMP2、MMP9和TIMP1、TIMP2基因和蛋白表达水平。结果未加电刺激的滋养细胞,其运动缓慢,迁移方向随机;在含有10%小牛血清的培养基中,150 m V/m m电场刺激下滋养细胞向负极迁移,迁移速

  10. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue

    Science.gov (United States)

    Hottowy, Paweł; Skoczeń, Andrzej; Gunning, Deborah E.; Kachiguine, Sergei; Mathieson, Keith; Sher, Alexander; Wiącek, Piotr; Litke, Alan M.; Dąbrowski, Władysław

    2012-01-01

    Objective Modern multielectrode array (MEA) systems can record the neuronal activity from thousands of electrodes, but their ability to provide spatio-temporal patterns of electrical stimulation is very limited. Furthermore, the stimulus-related artifacts significantly limit the ability to record the neuronal responses to the stimulation. To address these issues, we designed a multichannel integrated circuit for patterned MEA-based electrical stimulation and evaluated its performance in experiments with isolated mouse and rat retina. Approach The Stimchip includes 64 independent stimulation channels. Each channel comprises an internal digital-to-analog converter that can be configured as a current or voltage source. The shape of the stimulation waveform is defined independently for each channel by the real-time data stream. In addition, each channel is equipped with circuitry for reduction of the stimulus artifact. Main results Using a high-density MEA stimulation/recording system, we effectively stimulated individual retinal ganglion cells (RGCs) and recorded the neuronal responses with minimal distortion, even on the stimulating electrodes. We independently stimulated a population of RGCs in rat retina and, using a complex spatio-temporal pattern of electrical stimulation pulses, we replicated visually-evoked spiking activity of a subset of these cells with high fidelity. Significance Compared with current state-of-the-art MEA systems, the Stimchip is able to stimulate neuronal cells with much more complex sequences of electrical pulses and with significantly reduced artifacts. This opens up new possibilities for studies of neuronal responses to electrical stimulation, both in the context of neuroscience research and in the development of neuroprosthetic devices. PMID:23160018

  11. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...... in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non...

  12. Pulse electrical arc stimulator based on single-electrode for active exercise in tail-suspension rat

    Institute of Scientific and Technical Information of China (English)

    孙联文; 谢添; 樊瑜波; 张晓薇; 孙瑶; 杨肖

    2008-01-01

    To make rat do active exercise to counteract bone loss in the rat tail-suspension model, a pulse electrical stimulator based on single-electrode with a low-current and a high-voltage was designed. The stimulator was controlled by SCM (single chip micyoco) that could accurately control the stimulation duration and the interval between stimulations, and cease the operation after the recorded number of stimulation had reached the value set by the program. With the help of posture estimation part, the device would operate intelligently by determining whether to stimulate or not, depending on the posture of rat’s limb. Software was developed to make operator control the stimulator using computer, save the experiment data and print the report. In practical experiment, the voltaic arc is generated by the stimulator, and impacted on the rat’s thenar. This induced pain to the rat and the rat would actively contract its hindlimb to evade the pain, so active exercise was carried out. The tail-suspension rats were trained twice every day for 14 d. At the 0 and 14th day, bone mineral density of rat femurs was determined by dual energy X-ray absorptiometry (DXA). The results show that the active exercise stimulated by the pulse electrical arc stimulator can attenuate weightlessness-induced bone loss, and this device is a convenient steady performance electrical stimulator that can surely induce rat’s hindlimb to do active exercise.

  13. Online tremor suppression using electromyography and low-level electrical stimulation.

    Science.gov (United States)

    Dosen, Strahinja; Muceli, Silvia; Dideriksen, Jakob Lund; Romero, Juan Pablo; Rocon, Eduardo; Pons, Jose; Farina, Dario

    2015-05-01

    Tremor is one of the most prevalent movement disorders. There is a large proportion of patients (around 25%) in whom current treatments do not attain a significant tremor reduction. This paper proposes a tremor suppression strategy that detects tremor from the electromyographic signals of the muscles from which tremor originates and counteracts it by delivering electrical stimulation to the antagonist muscles in an out of phase manner. The detection was based on the iterative Hilbert transform and stimulation was delivered above the motor threshold (motor stimulation) and below the motor threshold (sensory stimulation). The system was tested on six patients with predominant wrist flexion/extension tremor (four with Parkinson disease and two with Essential tremor) and led to an average tremor reduction in the range of 46%-81% and 35%-48% across five patients when using the motor and sensory stimulation, respectively. In one patient, the system did not attenuate tremor. These results demonstrate that tremor attenuation might be achieved by delivering electrical stimulation below the motor threshold, preventing muscle fatigue and discomfort for the patients, which sets the basis for the development of an alternative treatment for tremor.

  14. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    Science.gov (United States)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  15. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves,...

  16. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    Science.gov (United States)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  17. Muscle maintenance by volitional contraction against applied electrical stimulation.

    Science.gov (United States)

    Nago, Takeshi; Umezu, Yuichi; Shiba, Naoto; Matsuse, Hiroo; Maeda, Takashi; Tagawa, Yoshihiko; Nagata, Kensei; Basford, Jeffrey R

    2007-01-01

    Muscle training exercises are needed for muscular endurance during spaceflight. This study was designed to investigate effects of volitional contraction against applied electrical stimulation on the muscular endurance of the proximal upper extremity. Thirteen healthy sedentary men were allocated into two groups. One group participated in a hybrid (HYB) exercise regimen in which the biceps brachii was stimulated as he volitionally extended his elbow, and the triceps brachii was stimulated as the volitionally flexed his elbow. The second group underwent a similar regimen in which the electrical stimulation (ELS) was alternatively delivered to the biceps brachii and then to the triceps brachii with the limb fixed. Forty-second surface electromyography (EMG) recordings at 50% maximum voluntary contraction (MVC) were made as baseline data at just before starting the training regimen, and again conclusion. The median frequency (MF) and mean power frequency (MPF) slopes with time were determined using power spectrum analysis. There were statistical significance only for the triceps in which the MF and MPF slopes in the HYB Group became less negative over the period of study (from -45.7+/-14.7 and -47.0+/-8.6%/min at baseline to -36.9+/-10.7 and -36.8+/-7.0%/min at the end of training, respectively). The corresponding values for these slopes in the ELS Group showed opposite tends with less marked changes of borderline significance for MF and of statistical significance for MPF. These results suggested that the HYB exercise regimen was capable of producing an improvement in triceps but not biceps brachii.

  18. Electrical stimulation for testing neuromuscular function: from sport to pathology.

    Science.gov (United States)

    Millet, Guillaume Y; Martin, Vincent; Martin, Alain; Vergès, Samuel

    2011-10-01

    The use of electrical stimulation (ES) can contribute to our knowledge of how our neuromuscular system can adapt to physical stress or unloading. Although it has been recently challenged, the standard technique used to explore central modifications is the twitch interpolated method which consists in superimposing single twitches or high-frequency doublets on a maximal voluntary contraction (MVC) and to compare the superimposed response to the potentiated response obtained from the relaxed muscle. Alternative methods consist in (1) superimposing a train of stimuli (central activation ratio), (2) comparing the MVC response to the force evoked by a high-frequency tetanus or (3) examining the change in maximal EMG response during voluntary contractions, if this variable is normalized to the maximal M wave, i.e. EMG response to a single stimulus. ES is less used to examine supraspinal factors but it is useful for investigating changes at the spinal level, either by using H reflexes, F waves or cervicomedullary motor-evoked potentials. Peripheral changes can be examined with ES, usually by stimulating the muscle in the relaxed state. Neuromuscular propagation of action potentials on the sarcolemma (M wave, high-frequency fatigue), excitation-contraction coupling (e.g. low-frequency fatigue) and intrinsic force (high-frequency stimulation at supramaximal intensity) can all be used to non-invasively explore muscular function with ES. As for all indirect methods, there are limitations and these are discussed in this review. Finally, (1) ES as a method to measure respiratory muscle function and (2) the comparison between electrical and magnetic stimulation will also be considered.

  19. Preventing Ischial Pressure Ulcers: I. Review of Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hilton M. Kaplan

    2011-01-01

    Full Text Available Objective: Pressure ulcers (PUs are common and debilitating wounds that arise when immobilized patients cannot shift their weight. Treatment is expensive and recurrence rates are high. Pathophysiological mechanisms include reduced bulk and perfusion of chronically atrophic muscles as well as prolonged occlusion of blood flow to soft tissues from lack of voluntary postural shifting of body weight. This has suggested that PUs might be prevented by reanimating the paralyzed muscles using neuromuscular electrical stimulation (NMES. A review of the published literature over the past 2 decades is detailed.

  20. Safety measures implemented for modular functioning electrical stimulators.

    Science.gov (United States)

    Chen, Chiun-Fan; Lai, Jin-Shin; Chen, Shih-Wei; Lin, Yin-Tsong; Kuo, Te-Son

    2009-01-01

    The modular architecture allows for greater flexibility in the building of neural prostheses with a variety of channels but may result in unpredictable accidents under circumstances such as sensor displacements, improper coordination of the connected modules and malfunction of any individual module. A novel fail-safe interface is offered as a solution that puts in place the necessary safety measures when building a module based functional electrical stimulator. By using a single reference line in the interconnecting bus of the modules, various commands would immediately be directed to each module so that proper actions may be taken.

  1. Gastric electrical stimulation: a report of two cases.

    LENUS (Irish Health Repository)

    Sibartie, V

    2012-02-03

    Gastroparesis refractory to prokinetic agents poses a major challenge to the physician and patient, alike. In the past 5 years, electrical methods to treat gastroparesis have emerged from animal and human experiments to a potentially valuable tool in clinical gastroenterology. One of these methods, known as gastric electrical stimulation (GES), is being increasingly used in specialized centres worldwide, but had never been tried in Ireland. We describe here our experience with the first two implantations of gastric neurostimulators performed in Ireland and the outcome with these 2 patients. Our results at 6 months show reduction in symptoms and improvement in quality of life, which is encouraging and should prompt further evaluation of GES for patients with gastroparesis refractory to medical therapy.

  2. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review.

    Science.gov (United States)

    Kasat, Vikrant; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-12-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS.

  3. Cerebellar transcranial direct current stimulation effects on saccade adaptation

    NARCIS (Netherlands)

    E. Avila (Eric); J.N. van der Geest (Jos); S. Kengne Kamga (Sandra); M.C. Verhage (M. Claire); O. Donchin (Opher); M.A. Frens (Maarten)

    2015-01-01

    textabstractSaccade adaptation is a cerebellar-mediated type of motor learning in which the oculomotor system is exposed to repetitive errors. Different types of saccade adaptations are thought to involve distinct underlying cerebellar mechanisms. Transcranial direct current stimulation (tDCS) induc

  4. Transcranial direct current stimulation enhances propulsion during walking

    NARCIS (Netherlands)

    Asseldonk, van E.H.F.; Jensen, W.; Andersen, O.K.; Akay, M.

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been shown to improve force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking. Here we investig

  5. Optical imaging of the retina in response to the electrical stimulation

    Science.gov (United States)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  6. Interaction of electrical stimulation and voluntary hand movement in SII and the cerebellum during simulated therapeutic functional electrical stimulation in healthy adults

    DEFF Research Database (Denmark)

    Iftime-Nielsen, Simona Denisia; Christensen, Mark Schram; Vingborg, Rune Jersin

    2012-01-01

    The therapeutic application of functional electrical stimulation (FES) has shown promising clinical results in the rehabilitation of post-stroke hemiplegia. It appears that the effect is optimal when the patterned electrical stimulation is used in close synchrony with voluntary movement, although...

  7. Effects of transcranial direct current stimulation in patients with non-fluent aphasia disorder

    Directory of Open Access Journals (Sweden)

    Mohsen Saeidmanesh

    2014-06-01

    Full Text Available Background and Aim: Aphasia, after stroke in the left hemisphere, is a common symptom. These patients often experience incomplete recovery despite intensive speech therapy. Direct electrical stimulation of the brain is a technique to stimulate the brain in patients with neurological and psychiatric diseases. The aim of this study was to investigate the effects of this stimulation on recovery of naming ability, working memory, and aphasia quotient and the lasting duration in patients with non-fluent aphasia.Methods: In this interventional study, 10 patients with after-stroke non-fluent aphasia were enrolled. Their aphasia quotient, working memory and naming ability scores were compared before and after sham and real treatments and two months after the real treatment. 10 sessions of 20-minutes sham electrical stimulation and 10 sessions of 20-minutes anodic and cathodic stimulation (2 mA at the dorsal lateral perifrontal cortex was done for each patient. Data were analyzed using repeated-measures ANOVA and Friedman nonparametric tests.Results: The ability of naming and working memory scores were increased significantly after treatment and two months after it compared with before study and after sham treatment (p<0.05 for all. There was no significant improvement in aphasia quotient.Conclusion: The transcranial direct current stimulation can sustain improvement in naming function and working memory in patients with non-fluent aphasia. It can be used in the rehabilitation program of these patients.

  8. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    Science.gov (United States)

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  9. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion

    OpenAIRE

    Finol-Urdaneta, R.; Remedi, M.; Raasch, W.; Becker, S; Clark, R; Struever, N.; Pavlov, E.; Nichols, C.; French, R; Terlau, H

    2012-01-01

    Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (K v ) generates an outward, ‘delayed rectifier’ potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several K v channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occ...

  10. Transcranial alternating current stimulation enhances individual alpha activity in human EEG.

    Directory of Open Access Journals (Sweden)

    Tino Zaehle

    Full Text Available Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity.The present findings are the first direct electrophysiological evidence of an interaction of tACS and ongoing oscillatory activity in the human cortex. The data demonstrate the ability of tACS to specifically modulate oscillatory brain activity and show its potential both at fostering knowledge on the functional significance of brain oscillations and for therapeutic application.

  11. Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study.

    Science.gov (United States)

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2013-01-01

    This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.

  12. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats.

    Science.gov (United States)

    Guan, Yun; Wacnik, Paul W; Yang, Fei; Carteret, Alene F; Chung, Chih-Yang; Meyer, Richard A; Raja, Srinivasa N

    2010-12-01

    The sites of action and cellular mechanisms by which spinal cord stimulation reduces neuropathic pain remain unclear. We examined the effect of bipolar electrical-conditioning stimulation (50 Hz, 0.2 ms, 5 min) of the dorsal column and lumbar dorsal roots on the response properties of spinal wide dynamic range (WDR) neurons in rats after L5 spinal nerve injury. The conditioning stimulation intensity was set at the lowest current that evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ- or C-compound action potential. Within 15 min of the dorsal column or root conditioning stimulation, the spontaneous activity rate of WDR neurons was significantly reduced in nerve-injured rats. Conditioning stimulation also significantly attenuated WDR neuronal responses to mechanical stimuli in nerve-injured rats and inhibited the C-component of the neuronal response to graded intracutaneous electrical stimuli applied to the receptive field in nerve-injured and sham-operated rats. It is noteworthy that dorsal column stimulation blocked windup of WDR neuronal response to repetitive intracutaneous electrical stimulation (0.5 Hz) in nerve-injured and sham-operated rats, whereas dorsal root stimulation inhibited windup only in sham-operated rats. Therefore, stimulation of putative spinal substrates at A-fiber intensities with parameters similar to those used by patients with spinal cord stimulators attenuated established WDR neuronal hyperexcitability in the neuropathic condition and counteracted activity-dependent increase in neuronal excitability (i.e., windup). These results suggest a potential cellular mechanism underlying spinal cord stimulation-induced pain relief. This in vivo model allows the neurophysiologic basis for spinal cord stimulation-induced analgesia to be studied.

  13. A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices.

    Science.gov (United States)

    Incerti, Paola V; Ching, Teresa Y C; Cowan, Robert

    2013-03-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices.

  14. BCI-Triggered functional electrical stimulation therapy for upper limb

    Directory of Open Access Journals (Sweden)

    Cesar Marquez-Chin

    2016-08-01

    Full Text Available We present here the integration of brain-computer interfacing (BCI technology with functional electrical stimulation therapy to restore voluntary function. The system was tested with a single man with chronic (6 years severe left hemiplegia resulting from a stroke. The BCI, implemented as a simple “brain-switch” activated by power decreases in the 18 Hz – 28 Hz frequency range of the participant’s electroencephalograpic signals, triggered a neuroprosthesis designed to facilitate forward reaching, reaching to the mouth, and lateral reaching movements. After 40 90-minute sessions in which the participant attempted the reaching tasks repeatedly, with the movements assisted by the BCI-triggered neuroprosthesis, the participant’s arm function showed a clinically significant six point increase in the Fugl-Meyer Asessment Upper Extermity Sub-Score. These initial results suggest that the combined use of BCI and functional electrical stimulation therapy may restore voluntary reaching function in individuals with chronic severe hemiplegia for whom the rehabilitation alternatives are very limited.

  15. Using electric current to surpass the microstructure breakup limit

    Science.gov (United States)

    Qin, Rongshan

    2017-01-01

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones.

  16. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation

    Directory of Open Access Journals (Sweden)

    Daniel eStrüber

    2015-08-01

    Full Text Available Transcranial alternating current stimulation is a novel method that allows application of sinusoidal currents to modulate brain oscillations and cognitive processes. Studies in humans have demonstrated tACS after-effects following stimulation durations in the range of minutes. However, such after-effects are absent in animal studies using much shorter stimulation protocols in the range of seconds. Thus, stimulation duration might be a critical parameter for after-effects to occur. To test this hypothesis, we repeated a recent human tACS experiment with a short duration. We applied alpha tACS intermittently for one second duration while keeping other parameters identical. The results demonstrate that this very short intermittent protocol did not produce after-effects on amplitude or phase of the electroencephalogram. Since synaptic plasticity has been suggested as a possible mechanism for after-effects, our results indicate that a stimulation duration of one second is too short to induce synaptic plasticity. Future studies in animals are required that use extended stimulation durations to reveal the neuronal underpinnings. A better understanding of the mechanisms of tACS after-effects is crucial for potential clinical applications.

  17. [Efficacy observation of dysphagia after acute stroke treated with acupuncture and functional electric stimulation].

    Science.gov (United States)

    Chang, Ling; He, Peng-Lan; Zhou, Zhen-Zhong; Li, Yan-Hua

    2014-08-01

    To observe the impacts on the recovery of swallowing function in patients of dysphagia after acute stroke treated with acupuncture and functional electric stimulation. Seventy-four patients were randomized into an acupuncture plus electric stimulation group (38 cases) and an electric stimulation group (36 cases). The functional electric stimulator was used in the two groups. The electric pads were placed on the hyoid bone, the upper part of thyroid cartilage, the masseter muscle and the mandibular joint. The treatment lasted for 30 mm each time. In the acupuncture plus electric stimulation group, acupuncture was supplemented at motor area of Jiao's scalp acupuncture, lower 2/5 of sensory area, Baihui (CV 20), Lianquan (CV 23), Jinjin (EX-HN 12) and Yuye (EX-HN 13), 30 mm each time. The treatment was given once a day, 6 treatments for one session and there was 1 day at interval between the sessions, 4 sessions were required totally in the two groups. The dysphagia scale was adopted for efficacy evaluation before treatment and after 4 sessions of treatment in the two groups. The removal rate of nasal feeding tube was observed after treatment. The dysphagia score was increased apparently after treatment compared with that before treatment in the two groups (both P electric stimulation group, the dysphagia score was increased much more apparently than that in the electric stimulation group (8.01 +/- 1.25 vs 6.73 +/- 1.36, P electric stimulation group, better than 58.3% (21/36) in the electric stimulation group (P electric stimulation group, which was higher than 50. 0% (18/36) in the electric stimulation group (P electric stimulation achieves the much better efficacy on dysphagia after acute stroke and promotes the early removal of nasal feeding tube. The efficacy is better than that of the simple electric stimulation therapy.

  18. Behavior of Electric Current Subjected to ELF Electromagnetic Radiation

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. An apparatus has been constructed to test the behavior of current subjected to ELF radiation. The experimental results are in agreement with theoretical predictions and show that ELF radiation can cause transitory interruptions in electric current conduction.

  19. Anatomically based lower limb nerve model for electrical stimulation

    Directory of Open Access Journals (Sweden)

    Soboleva Tanya K

    2007-12-01

    Full Text Available Abstract Background Functional Electrical Stimulation (FES is a technique that aims to rehabilitate or restore functionality of skeletal muscles using external electrical stimulation. Despite the success achieved within the field of FES, there are still a number of questions that remain unanswered. One way of providing input to the answers is through the use of computational models. Methods This paper describes the development of an anatomically based computer model of the motor neurons in the lower limb of the human leg and shows how it can be used to simulate electrical signal propagation from the beginning of the sciatic nerve to a skeletal muscle. One-dimensional cubic Hermite finite elements were used to represent the major portions of the lower limb nerves. These elements were fit to data that had been digitised using images from the Visible Man project. Nerves smaller than approximately 1 mm could not be seen in the images, and thus a tree-branching algorithm was used to connect the ends of the fitted nerve model to the respective skeletal muscle. To simulate electrical propagation, a previously published mammalian nerve model was implemented and solved on the anatomically based nerve mesh using a finite difference method. The grid points for the finite difference method were derived from the fitted finite element mesh. By adjusting the tree-branching algorithm, it is possible to represent different levels of motor-unit recruitment. Results To illustrate the process of a propagating nerve stimulus to a muscle in detail, the above method was applied to the nerve tree that connects to the human semitendinosus muscle. A conduction velocity of 89.8 m/s was obtained for a 15 μm diameter nerve fibre. This signal was successfully propagated down the motor neurons to a selected group of motor units in the muscle. Conclusion An anatomically and physiologically based model of the posterior motor neurons in the human lower limb was developed. This

  20. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    Science.gov (United States)

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  1. Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits.

    Science.gov (United States)

    Yan, Peng; Yang, Xiaohong; Yang, Xiaoyu; Zheng, Weidong; Tan, Yunbing

    2014-06-15

    Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9-10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation.

  2. Transcutaneous electrical nerve stimulation for spasticity: A systematic review.

    Science.gov (United States)

    Fernández-Tenorio, E; Serrano-Muñoz, D; Avendaño-Coy, J; Gómez-Soriano, J

    2016-07-26

    Although transcutaneous electrical nerve stimulation (TENS) has traditionally been used to treat pain, some studies have observed decreased spasticity after use of this technique. However, its use in clinical practice is still limited. Our purpose was twofold: to determine whether TENS is effective for treating spasticity or associated symptoms in patients with neurological involvement, and to determine which stimulation parameters exert the greatest effect on variables associated with spasticity. Two independent reviewers used PubMed, PEDro, and Cochrane databases to search for randomised clinical trials addressing TENS and spasticity published before 12 May 2015, and selected the articles that met the inclusion criteria. Of the initial 96 articles, 86 were excluded. The remaining 10 articles present results from 207 patients with a cerebrovascular accident, 84 with multiple sclerosis, and 39 with spinal cord lesions. In light of our results, we recommend TENS as a treatment for spasticity due to its low cost, ease of use, and absence of adverse reactions. However, the great variability in the types of stimulation used in the studies, and the differences in parameters and variables, make it difficult to assess and compare any results that might objectively determine the effectiveness of this technique and show how to optimise parameters. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Effectiveness of electrical stimulation in idiopathic Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Ebrahim NKC

    2015-04-01

    Full Text Available Background: Parkinson's disease is one of the most disabling chronic neurologic diseases and leads to a significant loss of quality of life. Electrical stimulation activate nerves innervating extremities affected by paralysis resulting from Spinal Cord Injury (SCI, head injury, stroke and hence is primarily used to restore function in people with disabilities. Methods: The study was performed after the institutional ethical clearance and informed consent from all the participants. The parameters assessed were time taken to complete 20 M walk with turn round, distance covered in the first 3 minutes of walking, gait dynamics like stride length, step length and cadence and number of falls with the help of video tape recorder, stop watch and measuring tape. Results: We observed a non-significant reduction (P = 0.471 of UPDRS, mean score of PDQ-39 was declined non-significantly (P = 0.36, time taken to complete 20 meters walk with turn was declined significantly (P = 0.017, The distances walked in 3 minutes by the patients were increased significantly (P = 0.000, number of steps during 20 meter walk was recorded and was found to be declined significantly (P = 0.088, stride length of the patients were increased significantly (P = 0.000, step length of the patients was increased significantly (P = 0.000, average number of falls reduced significantly (P = 0.00 during the stimulation period from week 0 to week 8. Conclusion: This study demonstrated the superior efficacy of electrical stimulation over best medical management in patients with advanced Parkinson's disease. [Int J Res Med Sci 2015; 3(4.000: 963-967

  4. Neuronal expression of c-Fos after epicortical and intracortical electric stimulation of the primary visual cortex.

    Science.gov (United States)

    Neyazi, Belal; Schwabe, Kerstin; Alam, Mesbah; Krauss, Joachim K; Nakamura, Makoto

    2016-11-01

    Electrical stimulation of the primary visual cortex (V1) is an experimental approach for visual prostheses. We here compared the response to intracortical and epicortical stimulation of the primary visual cortex by using c-Fos immunoreactivity as a marker for neuronal activation. The primary visual cortex of male Sprague Dawley rats was unilaterally stimulated for four hours using bipolar electrodes placed either intracortically in layer IV (n=26) or epicortically (n=20). Four different current intensities with a constant pulse width of 200μs and a constant frequency of 10Hz were used, for intracortical stimulation with an intensity of 0μA (sham-stimulation), 10μA, 20μA and 40μA, and for epicortical stimulation 0μA, 400μA, 600μA and 800μA. Subsequently all animals underwent c-Fos immunostaining and c-Fos expression was assessed in layer I-VI of the primary visual cortex within 200μm and 400μm distance to the stimulation site. C-Fos expression was higher after intracortical stimulation compared to epicortical stimulation, even though ten times lower current intensities were applied. Furthermore intracortical stimulation resulted in more focal neuronal activation than epicortical stimulation. C-Fos expression was highest after intracortical stimulation with 20μA compared to all other intensities. Epicortical stimulation showed a linear increase of c-Fos expression with the highest expression at 800μA. Sham stimulation showed similar expression of c-Fos in both hemispheres. The contralateral hemisphere was not affected by intracortical or epicortical stimulation of either intensities. In summary, intracortical stimulation resulted in more focal neuronal activation with less current than epicortical stimulation. This model may be used as a simple but reliable model to evaluate electrodes for microstimulation of the primary visual cortex before testing in more complex settings.

  5. Using independent component analysis to remove artifacts in visual cortex responses elicited by electrical stimulation of the optic nerve

    Science.gov (United States)

    Lu, Yiliang; Cao, Pengjia; Sun, Jingjing; Wang, Jing; Li, Liming; Ren, Qiushi; Chen, Yao; Chai, Xinyu

    2012-04-01

    In visual prosthesis research, electrically evoked potentials (EEPs) can be elicited by one or more biphasic current pulses delivered to the optic nerve (ON) through penetrating electrodes. Multi-channel EEPs recorded from the visual cortex usually contain large stimulus artifacts caused by instantaneous electrotonic current spread through the brain tissue. These stimulus artifacts contaminate the EEP waveform and often make subsequent analysis of the underlying neural responses difficult. This is particularly serious when investigating EEPs in response to electrical stimulation with long duration and multi-pulses. We applied independent component analysis (ICA) to remove these electrical stimulation-induced artifacts during the development of a visual prosthesis. Multi-channel signals were recorded from visual cortices of five rabbits in response to ON electrical stimulation with various stimulus parameters. ON action potentials were then blocked by lidocaine in order to acquire cortical potentials only including stimulus artifacts. Correlation analysis of reconstructed artifacts by ICA and artifacts recorded after blocking the ON indicates successful removal of artifacts from electrical stimulation by the ICA method. This technique has potential applications in studies designed to optimize the electrical stimulation parameters used by visual prostheses.

  6. Transcranial Direct Current Stimulation in Disorders of Consciousness: A Review.

    Science.gov (United States)

    Zhang, Ye; Song, Weiqun

    2017-09-18

    It is a challenge to evaluate and treat the patients with disorders of consciousness (DOC) in the clinic. Due to the huge costs of prolonged intensive care, the management of these patients raises great financial strain on families and important ethical questions. To date, several studies have attempted to specifically detect pharmacologic or non-pharmacologic effectiveness, until now there were no evidence-based guidelines about the treatment of patients with DOC. Recently, because of ethical and procedural limitations on the use of invasive stimulation techniques, non-invasive brain stimulation, such as the transcranial direct current stimulation (tDCS), has been investigated for improving the level of consciousness in patients with DOC. This paper briefly reviewed the key clinical investigations using tDCS with the aim of better understanding the pathophysiological mechanism of DOC or improving the level of consciousness in patients with DOC. In conclusion, some beneficial results of tDCS protocols have been shown in patients with DOC, especially targeting the left dorsolateral prefrontal cortex (DLPFC) in minimally conscious state (MCS). However, these investigations must be continued in larger controlled, randomized, blinded and prospective studies in order to transpose these preliminary data to clinical effects. Furthermore, an encouraging perspective for the future is the combination of neurophysiological or functional neuroimaging techniques with non-invasive brain stimulation to evaluate neuro-modulatory effects of stimulation in patients with DOC.

  7. Errorless and errorful learning modulated by transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Schmicker Marlen

    2011-07-01

    Full Text Available Abstract Background Errorless learning is advantageous over trial and error learning (errorful learning as errors are avoided during learning resulting in increased memory performance. Errorful learning challenges the executive control system of memory processes as the erroneous items compete with the correct items during retrieval. The left dorsolateral prefrontal cortex (DLPFC is a core region involved in this executive control system. Transcranial direct current stimulation (tDCS can modify the excitability of underlying brain functioning. Results In a single blinded tDCS study one group of young healthy participants received anodal and another group cathodal tDCS of the left DLPFC each compared to sham stimulation. Participants had to learn words in an errorless and an errorful manner using a word stem completion paradigm. The results showed that errorless compared to errorful learning had a profound effect on the memory performance in terms of quality. Anodal stimulation of the left DLPFC did not modulate the memory performance following errorless or errorful learning. By contrast, cathodal stimulation hampered memory performance after errorful learning compared to sham, whereas there was no modulation after errorless learning. Conclusions Concluding, the study further supports the advantages of errorless learning over errorful learning. Moreover, cathodal stimulation of the left DLPFC hampered memory performance following the conflict-inducing errorful learning as compared to no modulation after errorless learning emphasizing the importance of the left DLPFC in executive control of memory.

  8. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrea Antal

    2016-01-01

    Full Text Available Background. Transcranial alternating current stimulation (tACS is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS. While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations.

  9. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    Science.gov (United States)

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.

  10. Neurobiological effects of transcranial direct current stimulation: a review.

    Science.gov (United States)

    Medeiros, Liciane Fernandes; de Souza, Izabel Cristina Custodio; Vidor, Liliane Pinto; de Souza, Andressa; Deitos, Alícia; Volz, Magdalena Sarah; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2012-01-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique that is affordable and easy to operate compared to other neuromodulation techniques. Anodal stimulation increases cortical excitability, while the cathodal stimulation decreases it. Although tDCS is a promising treatment approach for chronic pain as well as for neuropsychiatric diseases and other neurological disorders, several complex neurobiological mechanisms that are not well understood are involved in its effect. The purpose of this systematic review is to summarize the current knowledge regarding the neurobiological mechanisms involved in the effects of tDCS. The initial search resulted in 171 articles. After applying inclusion and exclusion criteria, we screened 32 full-text articles to extract findings about the neurobiology of tDCS effects including investigation of cortical excitability parameters. Overall, these findings show that tDCS involves a cascade of events at the cellular and molecular levels. Moreover, tDCS is associated with glutamatergic, GABAergic, dopaminergic, serotonergic, and cholinergic activity modulation. Though these studies provide important advancements toward the understanding of mechanisms underlying tDCS effects, further studies are needed to integrate these mechanisms as to optimize clinical development of tDCS.

  11. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    Science.gov (United States)

    2016-10-01

    Extract Electrical Stimulation Artifact from Surface Electromyograms during Functional Electrical Stimulation”, Proceedings of IEEE Eng Med Bio Soc...function electrical stimulation artifact from surface electromyograms: preliminary investigation. IEEE Engineering in Medicine and Biology Conference...New York University Medical Center, New York, NY 1977 – 1979 Medical Residency, Montefiore Hospital & Medical Center, Bronx, NY 1979 – 1980 Endocrine

  12. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    Science.gov (United States)

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  13. Simultaneous high-definition transcranial direct current stimulation of the motor cortex and motor imagery.

    Science.gov (United States)

    Baxter, Bryan S; Edelman, Bradley; Zhang, Xiaotong; Roy, Abhrajeet; He, Bin

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been used to affect the excitability of neurons within the cerebral cortex. Improvements in motor learning have been found in multiple studies when tDCS was applied to the motor cortex during or before task learning is performed. The application of tDCS to motor imagery, a cognitive task showing activation in similar areas to motor execution, has resulted in differing effects based on the amplitude and duration of stimulation. We utilize high definition tDCS, a more spatially localized version of tDCS, to investigate the effect of anodal stimulation on human motor imagery performance. In parallel, we model this stimulation using a finite element model to calculate stimulation area and electrical field amplitude within the brain in the motor cortex and non-stimulated frontal and parietal regions. Overall, we found a delayed increase in resting baseline power 30 minutes post stimulation in both the right and left sensorimotor cortices which resulted in an increase in event-related desynchronization.

  14. Transcranial Direct Current Stimulation and Power Spectral Parameters: a tDCS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Anna Lisa Mangia

    2014-08-01

    Full Text Available Transcranial direct current stimulation (tDCS delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta and gamma power bands were investigated. Three main findings emerged: 1 an increase in theta band activity during the first minutes of stimulation; 2 an increase in alpha and beta power during and after stimulation; 3 a widespread activation in several brain regions.

  15. Paired associative transcranial alternating current stimulation increases the excitability of corticospinal projections in humans.

    Science.gov (United States)

    McNickle, Emmet; Carson, Richard G

    2015-04-01

    Many types of non-invasive brain stimulation alter corticospinal excitability (CSE). Paired associative stimulation (PAS) has attracted particular attention as its effects ostensibly adhere to Hebbian principles of neural plasticity. In prototypical form, a single electrical stimulus is directed to a peripheral nerve in close temporal contiguity with transcranial magnetic stimulation delivered to the contralateral primary motor cortex (M1). Repeated pairing of the two discrete stimulus events (i.e. association) over an extended period either increases or decreases the excitability of corticospinal projections from M1, contingent on the interstimulus interval. We studied a novel form of associative stimulation, consisting of brief trains of peripheral afferent stimulation paired with short bursts of high frequency (≥80 Hz) transcranial alternating current stimulation (tACS) over contralateral M1. Elevations in the excitability of corticospinal projections to the forearm were observed for a range of tACS frequency (80, 140 and 250 Hz), current (1, 2 and 3 mA) and duration (500 and 1000 ms) parameters. The effects were at least as reliable as those brought about by PAS or transcranial direct current stimulation. When paired with tACS, muscle tendon vibration also induced elevations of CSE. No such changes were brought about by the tACS or peripheral afferent stimulation alone. In demonstrating that associative effects are expressed when the timing of the peripheral and cortical events is not precisely circumscribed, these findings suggest that multiple cellular pathways may contribute to a long term potentiation-type response. Their relative contributions will differ depending on the nature of the induction protocol that is used.

  16. Transcranial direct current stimulation as a treatment for auditory hallucinations

    OpenAIRE

    Sanne eKoops; Hilde evan den Brink; Sommer, Iris E C

    2015-01-01

    Auditory hallucinations (AH) are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS) is a safe and non-invasive technique that is able to...

  17. Cerebellar transcranial direct current stimulation in neurological disease

    OpenAIRE

    Ferrucci, Roberta; Bocci, Tommaso; Cortese, Francesca; Ruggiero, Fabiana; Priori, Alberto

    2016-01-01

    Several studies have highlighted the therapeutic potential of transcranial direct current stimulation (tDCS) in patients with neurological diseases, including dementia, epilepsy, post-stroke dysfunctions, movement disorders, and other pathological conditions. Because of this technique’s ability to modify cerebellar excitability without significant side effects, cerebellar tDCS is a new, interesting, and powerful tool to induce plastic modifications in the cerebellum. In this report, we review...

  18. Simulation of injury potential compensation by direct current stimulation in rat spinal cord.

    Science.gov (United States)

    Wang, Aihua; Zhang, Guanghao; Zhang, Cheng; Wu, Changzhe; Song, Tao; Huo, Xiaolin

    2014-01-01

    Injury potential, a significant index of spinal cord injury (SCI), is generated by the movement of extracellular ions. It can be compensated through applied direct current (DC) stimulation, which prevents the influx of the free calcium, and eventually reduces the development of secondary injury. Therefore, the compensation of injury potential is beneficial to the repairing of the function of spinal cord. The compensation effect can be evaluated by whether the magnitudes of longitudinal electric fields (EFs) are compensated to zero. However, there have been no established criteria to determine the distribution and shape of stimulating electrodes. In this study, in order to optimize the stimulating electrodes, a finite element model (FEM) of rat spinal cord was developed, and the EFs changes induced by electrodes of different sizes, shapes and locations after SCI were calculated. All the designed configurations of electrodes were able to compensate injury potential, but the resultant compensation effects vary. Pin and disc electrodes produced uneven EFs, while ring electrodes produced uniformly distributed EFs. Moreover, large ring electrodes can compensate the longitudinal EFs almost to zero with relatively low current density (0.55 μA/mm(2)) applied. These results provide a basis for the determination of electrical stimulation parameters in the compensation of injury potential.

  19. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review.

    Science.gov (United States)

    Schutter, Dennis J L G

    2016-10-15

    Transcranial alternating current stimulation (tACS) applies exogenous oscillatory electric field potentials to entrain neural rhythms and is used to investigate brain-function relationships and its potential to enhance perceptual and cognitive performance. However, due to current spread tACS can cause cutaneous activation of the retina and phosphenes. Several lines of evidence suggest that retinal phosphenes are capable of inducing neural entrainment, making the contributions of central and peripheral stimulation to the effects in the brain difficult to disentangle. In this literature review, the importance of this issue is further illustrated by the fact that photic stimulation can have a direct impact on perceptual and cognitive performance. This leaves open the possibility that peripheral photic stimulation can at least in part explain the central effects that are attributed to tACS. The extent to which phosphene perception contributes to the effects of exogenous oscillatory electric fields in the brain and influence perception and cognitive performance needs to be examined to understand the working mechanisms of tACS in neurophysiology and behaviour.

  20. Current Topics in Deep Brain Stimulation for Parkinson Disease

    Science.gov (United States)

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  1. A pioneer work on electric brain stimulation in psychotic patients. Rudolph Gottfried Arndt and his 1870s studies.

    Science.gov (United States)

    Steinberg, Holger

    2013-07-01

    Today's brain stimulation methods are commonly traced back historically to surgical brain operations. With this one-sided historical approach it is easy to overlook the fact that non-surgical electrical brain-stimulating applications preceded present-day therapies. The first study on transcranial electrical brain stimulation for the treatment of severe mental diseases in a larger group of patients was carried out in the 1870s. Between 1870 and 1878 German psychiatrist Rudolph Gottfried Arndt published the results of his studies in three reports. These are contextualized with contemporary developments of the time, focusing in particular on the (neuro-) sciences. As was common practice at the time, Arndt basically reported individual cases in which electricity was applied to treat severe psychoses with depressive symptoms or even catatonia, hypochondriac delusion and melancholia. Despite their lengthiness, there is frequently a lack of precise physical data on the application of psychological-psychopathological details. Only his 1878 report includes general rules for electrical brain stimulation. Despite their methodological shortcomings and lack of precise treatment data impeding exact understanding, Arndt's studies are pioneering works in the field of electric brain stimulation with psychoses and its positive impacts. Today's transcranial direct current stimulation, and partly vagus nerve stimulation, can be compared with Arndt's methods. Although Arndt's only tangible results were indications for the application of faradic electricity (for inactivity, stupor, weakness and manic depressions) and galvanic current (for affective disorders and psychoses), a historiography of present-day brain stimulation therapies should no longer neglect studies on electrotherapy published in German and international psychiatric and neurological journals and monographs in the 1870s and 1880s. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Deqi Sensations of Transcutaneous Electrical Nerve Stimulation on Auricular Points

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2013-01-01

    Full Text Available Deqi sensation, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous research works have investigated the component of Deqi response upon acupuncture on acupoints on the trunk and limbs. However, the characteristics of Deqi sensations of transcutaneous electrical nerve stimulation (TENS on auricular points are seldom reported. In this study, we investigated the individual components of Deqi during TENS on auricular concha area and the superior scapha using quantitative measurements in the healthy subjects and depression patients. The most striking characteristics of Deqi sensations upon TENS on auricular points were tingling, numbness, and fullness. The frequencies of pressure, warmness, heaviness, and soreness were relatively lower. The dull pain and coolness are rare. The characteristics of Deqi were similar for the TENS on concha and on the superior scapha.

  3. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  4. Deqi sensations of transcutaneous electrical nerve stimulation on auricular points.

    Science.gov (United States)

    Wang, Xiaoling; Fang, Jiliang; Zhao, Qing; Fan, Yangyang; Liu, Jun; Hong, Yang; Wang, Honghong; Ma, Yunyao; Xu, Chunhua; Shi, Shan; Kong, Jian; Rong, Peijing

    2013-01-01

    Deqi sensation, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous research works have investigated the component of Deqi response upon acupuncture on acupoints on the trunk and limbs. However, the characteristics of Deqi sensations of transcutaneous electrical nerve stimulation (TENS) on auricular points are seldom reported. In this study, we investigated the individual components of Deqi during TENS on auricular concha area and the superior scapha using quantitative measurements in the healthy subjects and depression patients. The most striking characteristics of Deqi sensations upon TENS on auricular points were tingling, numbness, and fullness. The frequencies of pressure, warmness, heaviness, and soreness were relatively lower. The dull pain and coolness are rare. The characteristics of Deqi were similar for the TENS on concha and on the superior scapha.

  5. Functional electrical stimulation improves brain perfusion in cranial trauma patients

    Directory of Open Access Journals (Sweden)

    Bárbara Juarez Amorim

    2011-08-01

    Full Text Available OBJECTIVE: Demonstrate brain perfusion changes due to neuronal activation after functional electrical stimulation (FES. METHOD: It was studied 14 patients with hemiplegia who were submitted to a program with FES during fourteen weeks. Brain perfusion SPECT was performed before and after FES therapy. These patients were further separated into 2 groups according to the hemiplegia cause: cranial trauma and major vascular insults. All SPECT images were analyzed using SPM. RESULTS: There was a significant statistical difference between the two groups related to patient's ages and extent of hypoperfusion in the SPECT. Patients with cranial trauma had a reduction in the hypoperfused area and patients with major vascular insult had an increase in the hypoperfused area after FES therapy. CONCLUSION: FES therapy can result in brain perfusion improvement in patients with brain lesions due to cranial trauma but probably not in patients with major vascular insults with large infarct area.

  6. Motor cortex neurostimulation technologies for chronic post-stroke pain: implications of tissue damage on stimulation currents

    Directory of Open Access Journals (Sweden)

    Anthony Terrence O´Brien

    2016-11-01

    Full Text Available Background: Central post stroke pain (CPSP is a highly refractory syndrome that can occur after stroke. Primary motor cortex (M1 brain stimulation using epidural brain stimulation (EBS, transcranial magnetic stimulation (TMS, and transcranial direct current stimulation (tDCS have been explored as potential therapies for CPSP. These techniques have demonstrated variable clinical efficacy. It is hypothesized that changes in the stimulating currents that are caused by stroke-induced changes in brain tissue conductivity limit the efficacy of these techniques. Methods: We generated MRI-guided finite element models of the current density distributions in the human head and brain with and without chronic focal cortical infarctions during EBS, TMS, and tDCS. We studied the change in the stimulating current density distributions’ magnitude, orientation, and maxima locations between the different models. Results: Changes in electrical properties at stroke boundaries altered the distribution of stimulation currents in magnitude, location, and orientation. Current density magnitude alterations were larger for the non-invasive techniques (i.e., tDCS and TMS than for EBS. Nonetheless, the lesion also altered currents during EBS. The spatial shift of peak current density, relative to the size of the stimulation source, was largest for EBS.Conclusions: In order to maximize therapeutic efficiency, neurostimulation trials need to account for the impact of anatomically disrupted neural tissues on the location, orientation, and magnitude of exogenously applied currents. The relative current-neuronal structure should be considered when planning stimulation treatment, especially across techniques (e.g., using TMS to predict EBS response. We postulate that the effects of altered tissue properties in stroke regions may impact stimulation induced analgesic effects and/or lead to highly variable outcomes during brain stimulation treatments in CPSP.

  7. Motor Cortex Neurostimulation Technologies for Chronic Post-stroke Pain: Implications of Tissue Damage on Stimulation Currents

    Science.gov (United States)

    O’Brien, Anthony T.; Amorim, Rivadavio; Rushmore, R. Jarrett; Eden, Uri; Afifi, Linda; Dipietro, Laura; Wagner, Timothy; Valero-Cabré, Antoni

    2016-01-01

    Background: Central post stroke pain (CPSP) is a highly refractory syndrome that can occur after stroke. Primary motor cortex (M1) brain stimulation using epidural brain stimulation (EBS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have been explored as potential therapies for CPSP. These techniques have demonstrated variable clinical efficacy. It is hypothesized that changes in the stimulating currents that are caused by stroke-induced changes in brain tissue conductivity limit the efficacy of these techniques. Methods: We generated MRI-guided finite element models of the current density distributions in the human head and brain with and without chronic focal cortical infarctions during EBS, TMS, and tDCS. We studied the change in the stimulating current density distributions’ magnitude, orientation, and maxima locations between the different models. Results: Changes in electrical properties at stroke boundaries altered the distribution of stimulation currents in magnitude, location, and orientation. Current density magnitude alterations were larger for the non-invasive techniques (i.e., tDCS and TMS) than for EBS. Nonetheless, the lesion also altered currents during EBS. The spatial shift of peak current density, relative to the size of the stimulation source, was largest for EBS. Conclusion: In order to maximize therapeutic efficiency, neurostimulation trials need to account for the impact of anatomically disrupted neural tissues on the location, orientation, and magnitude of exogenously applied currents. The relative current-neuronal structure should be considered when planning stimulation treatment, especially across techniques (e.g., using TMS to predict EBS response). We postulate that the effects of altered tissue properties in stroke regions may impact stimulation induced analgesic effects and/or lead to highly variable outcomes during brain stimulation treatments in CPSP. PMID:27881958

  8. Motor Cortex Neurostimulation Technologies for Chronic Post-stroke Pain: Implications of Tissue Damage on Stimulation Currents.

    Science.gov (United States)

    O'Brien, Anthony T; Amorim, Rivadavio; Rushmore, R Jarrett; Eden, Uri; Afifi, Linda; Dipietro, Laura; Wagner, Timothy; Valero-Cabré, Antoni

    2016-01-01

    Background: Central post stroke pain (CPSP) is a highly refractory syndrome that can occur after stroke. Primary motor cortex (M1) brain stimulation using epidural brain stimulation (EBS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have been explored as potential therapies for CPSP. These techniques have demonstrated variable clinical efficacy. It is hypothesized that changes in the stimulating currents that are caused by stroke-induced changes in brain tissue conductivity limit the efficacy of these techniques. Methods: We generated MRI-guided finite element models of the current density distributions in the human head and brain with and without chronic focal cortical infarctions during EBS, TMS, and tDCS. We studied the change in the stimulating current density distributions' magnitude, orientation, and maxima locations between the different models. Results: Changes in electrical properties at stroke boundaries altered the distribution of stimulation currents in magnitude, location, and orientation. Current density magnitude alterations were larger for the non-invasive techniques (i.e., tDCS and TMS) than for EBS. Nonetheless, the lesion also altered currents during EBS. The spatial shift of peak current density, relative to the size of the stimulation source, was largest for EBS. Conclusion: In order to maximize therapeutic efficiency, neurostimulation trials need to account for the impact of anatomically disrupted neural tissues on the location, orientation, and magnitude of exogenously applied currents. The relative current-neuronal structure should be considered when planning stimulation treatment, especially across techniques (e.g., using TMS to predict EBS response). We postulate that the effects of altered tissue properties in stroke regions may impact stimulation induced analgesic effects and/or lead to highly variable outcomes during brain stimulation treatments in CPSP.

  9. Compensation for injury potential by electrical stimulation after acute spinal cord injury in rat.

    Science.gov (United States)

    Zhang, Guanghao; Wang, Aihua; Zhang, Cheng; Wu, Changzhe; Bai, Jinzhu; Huo, Xiaolin

    2013-01-01

    Injury potential, a direct current potential difference between normal section and the site of injury, is a significant index of spinal cord injury. However, its importance has been ignored in the studies of spinal cord electrophysiology and electrical stimulation (ES). In this paper, compensation for injury potential is used as a criterion to adjust the intensity of stimulation. Injury potential is modulated to slightly larger than 0 mV for 15, 30 and 45 minutes immediately after injury by placing the anodes at the site of injury and the cathodes at the rostral and caudal section. Injury potentials of all rats were recorded for statistical analysis. Results show that the injury potentials acquired after ES are higher than those measured from rats without stimulation and much lower than the initial amplitude. It is also observed that the stimulating voltage to keep injury potential be 0 remain the same. This phenomenon suggests that repair of membrane might occur during the period of stimulation. It is also suggested that a constant voltage stimulation can be applied to compensate for injury potential.

  10. Transcranial direct current stimulation during sleep improves declarative memory.

    Science.gov (United States)

    Marshall, Lisa; Mölle, Matthias; Hallschmid, Manfred; Born, Jan

    2004-11-03

    In humans, weak transcranial direct current stimulation (tDCS) modulates excitability in the motor, visual, and prefrontal cortex. Periods rich in slow-wave sleep (SWS) not only facilitate the consolidation of declarative memories, but in humans, SWS is also accompanied by a pronounced endogenous transcortical DC potential shift of negative polarity over frontocortical areas. To experimentally induce widespread extracellular negative DC potentials, we applied anodal tDCS (0.26 mA) [correction] repeatedly (over 30 min) bilaterally at frontocortical electrode sites during a retention period rich in SWS. Retention of declarative memories (word pairs) and also nondeclarative memories (mirror tracing skills) learned previously was tested after this period and compared with retention performance after placebo stimulation as well as after retention intervals of wakefulness. Compared with placebo stimulation, anodal tDCS during SWS-rich sleep distinctly increased the retention of word pairs (p affect declarative memory. Procedural memory was also not affected by tDCS. Mood was improved both after tDCS during sleep and during wake intervals. tDCS increased sleep depth toward the end of the stimulation period, whereas the average power in the faster frequency bands (,alpha, and beta) was reduced. Acutely, anodal tDCS increased slow oscillatory activity sleep-dependent consolidation of declarative memories.

  11. Transcranial Direct Current Stimulation and behavioral models of smoking addiction

    Directory of Open Access Journals (Sweden)

    Paige eFraser

    2012-08-01

    Full Text Available While few studies have applied transcranial direct current stimulation (tDCS to smoking addiction, existing work suggests that the intervention holds promise for altering the complex system by which environmental cues interact with cravings to drive behavior. Imaging and repetitive transcranial magnetic stimulation (rTMS studies suggest that increased dorsolateral prefrontal cortex (DLPFC activation and integrity may be associated with increased resistance to smoking cues. Anodal tDCS of the DLPFC, believed to boost activation, reduces cravings in response to these cues. The finding that noninvasive stimulation modifies cue induced cravings has profound implications for understanding the processes underlying addiction and relapse. TDCS can also be applied to probe mechanisms underlying and supporting nicotine addiction, as was done in a pharmacologic study that applied nicotine, tDCS, and TMS paired associative stimulation to find that stopping nicotine after chronic use induces a reduction in plasticity, causing difficulty in breaking free from association between cues and cravings. This mini-review will place studies that apply tDCS to smokers in the context of research involving the neural substrates of nicotine addiction.

  12. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges

    OpenAIRE

    Zeng, FG; Djalilian, H; LIN, H.

    2015-01-01

    © 2015 Wolters Kluwer Health, Inc. All rights reserved. PURPOSE OF REVIEW: Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. RECENT FINDINGS: Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their poin...

  13. Interaction of poststroke voluntary effort and functional neuromuscular electrical stimulation.

    Science.gov (United States)

    Makowski, Nathaniel; Knutson, Jayme; Chae, John; Crago, Patrick

    2013-01-01

    Functional electrical stimulation (FES) may be able to augment functional arm and hand movement after stroke. Poststroke neuroprostheses that incorporate voluntary effort and FES to produce the desired movement must consider how forces generated by voluntary effort and FES combine, even in the same muscle, in order to provide an appropriate level of stimulation to elicit the desired assistive force. The goal of this study was to determine whether the force produced by voluntary effort and FES add together independently of effort or whether the increment in force depends on the level of voluntary effort. Isometric force matching tasks were performed under different combinations of voluntary effort and FES. Participants reached a steady level of force, and while attempting to maintain a constant effort level, FES was applied to augment the force. Results indicate that the increment in force produced by FES decreases as the level of initial voluntary effort increases. Potential mechanisms causing the change in force output are proposed, but the relative contribution of each mechanism is unknown.

  14. Safety of transcranial direct current stimulation in alcohol-induced psychotic disorder with comorbid psoriasis

    Directory of Open Access Journals (Sweden)

    Venkataram Shivakumar

    2016-01-01

    Full Text Available Transcranial Direct Current Stimulation (tDCS involves application of weak direct electric currents (up to 2mA using scalp electrodes with resultant neuroplasticity modulation by altering the cortical excitability. Though the side effect profile of tDCS is benign and less severe, the utility and safety of tDCS in dermatological conditions remains a concern. In this context, we report the safe administration of tDCS in a subject with substance induced psychosis and co-morbid psoriasis.

  15. The value of electrical stimulation as an exercise training modality

    Science.gov (United States)

    Currier, Dean P.; Ray, J. Michael; Nyland, John; Noteboom, Tim

    1994-01-01

    Voluntary exercise is the traditional way of improving performance of the human body in both the healthy and unhealthy states. Physiological responses to voluntary exercise are well documented. It benefits the functions of bone, joints, connective tissue, and muscle. In recent years, research has shown that neuromuscular electrical stimulation (NMES) simulates voluntary exercise in many ways. Generically, NMES can perform three major functions: suppression of pain, improve healing of soft tissues, and produce muscle contractions. Low frequency NMES may gate or disrupt the sensory input to the central nervous system which results in masking or control of pain. At the same time NMES may contribute to the activation of endorphins, serotonin, vasoactive intestinal polypeptides, and ACTH which control pain and may even cause improved athletic performances. Soft tissue conditions such as wounds and inflammations have responded very favorably to NMES. NMES of various amplitudes can induce muscle contractions ranging from weak to intense levels. NMES seems to have made its greatest gains in rehabilitation where directed muscle contractions may improve joint ranges of motion correct joint contractures that result from shortening muscles; control abnormal movements through facilitating recruitment or excitation into the alpha motoneuron in orthopedically, neurologically, or healthy subjects with intense sensory, kinesthetic, and proprioceptive information; provide a conservative approach to management of spasticity in neurological patients; by stimulation of the antagonist muscle to a spastic muscle stimulation of the agonist muscle, and sensory habituation; serve as an orthotic substitute to conventional bracing used with stroke patients in lieu of dorsiflexor muscles in preventing step page gait and for shoulder muscles to maintain glenohumeral alignment to prevent subluxation; and of course NMES is used in maintaining or improving the performance or torque producing

  16. Transcutaneous electrical spinal-cord stimulation in humans.

    Science.gov (United States)

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Reggie Edgerton, V

    2015-09-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Effect of transcutaneous electrical nerve stimulation induced parotid stimulation on salivary flow

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Pattipati

    2013-01-01

    Full Text Available Aims and Objectives: The main objective of this study was to evaluate the duration of stimulation over the parotid salivary flow following the use of transcutaneous electric nerve stimulation (TENS in different age groups. Materials and Methods: The study was carried out in three different age groups. Under group A individuals from 21 to 35 years of age, group B 36-50 years and group C above 51 years were considered. In each group 30 subjects were taken of whom 15 were males and 15 were females. The placement of pads was approximated bilaterally over the parotid glands. The working parameters of TENS unit were fixed at 50 Hz and the unit was in normal mode. Results: Subjects belonging to group B were showing statistically significant increases in the duration of stimulated parotid salivary flow following the use of TENS. Conclusion: TENS can be considered as a non-pharmacological alternative to improve salivation for longer period in xerostomia patients.

  18. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.

    Science.gov (United States)

    Thrasher, Adam; Graham, Geoffrey M; Popovic, Milos R

    2005-06-01

    A major limitation of many functional electrical stimulation (FES) applications is that muscles tend to fatigue very rapidly. It was hypothesized that FES-induced muscle fatigue could be reduced by randomly modulating the pulse frequency, amplitude, and pulse width in a range of +/-15%. Seven subjects with spinal-cord injuries participated in this study. FES was applied to quadriceps and tibialis anterior muscles using surface electrodes. Isometric force was measured, and the time for the force to drop by 3 dB (fatigue time) was compared between trials. Four different modes of FES were applied in random order: constant stimulation, randomized frequency, randomized amplitude, and randomized pulse width. There was no significant difference between the fatigue-time measurements for the four modes of stimulation (P=0.329). Therefore, random modulation appeared to have no effect. Based on an observed correlation between maximum force measurements and trial order, we concluded that having 10-min rest periods between trials was insufficient.

  19. Simulation of the electrical field in equine larynx to optimize functional electrical stimulation in denervated musculus cricoarythenoideus dorsalis

    Directory of Open Access Journals (Sweden)

    Martin Reichel

    2014-03-01

    Full Text Available Distribution of the electrical field is very important to activate muscle and nerve cells properly. One therapeutic method to treat Recurrent Laryngeal Neuropathy (RLN in horses can be performed by Functional Electrical Stimulation (FES. Current method to optimize the stimulation effect is to use implanted quadripolar electrodes to the musculus cricoarythenoideus dorsalis (CAD and testing electrode configuration until best possible optimum is reached. For better understanding and finding of maximum possible activation of CAD a simulation model of the actual entire setting is currently in development. Therefore the geometric model is built from CT-data of a dissected larynx containing the quadripolar electrodes as well as fiducials for later data registration. The geometric model is the basis for a finite difference method containing of voxels with corresponding electrical conductivity of the different types of tissue due to threshold segmentation of the CT-data. Model validation can be done by the measurement of the 3D electrical potential distribution of a larynx positioned in an electrolytic tray. Finally, measured and calculated results have to be compared as well as further investigated. Preliminary results show, that changes of electrode as well as conductivity configuration leads to significant different voltage distributions and can be well presented by equipotential lines superimposed CT-slices – a Matlab graphical user interface visualizes the results in freely selectable slices of the 3D geometry. Voltage distribution along theoretically estimated fiber paths could be calculated as well as visualized. For further calculation of nerve or denervated muscle fiber activation and its optimization, real fiber paths have to be defined and referenced to the potential- and the CT-data.

  20. Simulation of the electrical field in equine larynx to optimize functional electrical stimulation in denervated musculus cricoarythenoideus dorsalis

    Directory of Open Access Journals (Sweden)

    Martin Reichel

    2014-09-01

    Full Text Available Distribution of the electrical field is very important to activate muscle and nerve cells properly. One therapeutic method to treat Recurrent Laryngeal Neuropathy (RLN in horses can be performed by Functional Electrical Stimulation (FES. Current method to optimize the stimulation effect is to use implanted quadripolar electrodes to the musculus cricoarythenoideus dorsalis (CAD and testing electrode configuration until best possible optimum is reached. For better understanding and finding of maximum possible activation of CAD a simulation model of the actual entire setting is currently in development. Therefore the geometric model is built from CT-data of a dissected larynx containing the quadripolar electrodes as well as fiducials for later data registration. The geometric model is the basis for a finite difference method containing of voxels with corresponding electrical conductivity of the different types of tissue due to threshold segmentation of the CT-data. Model validation can be done by the measurement of the 3D electrical potential distribution of a larynx positioned in an electrolytic tray. Finally, measured and calculated results have to be compared as well as further investigated. Preliminary results show, that changes of electrode as well as conductivity configuration leads to significant different voltage distributions and can be well presented by equipotential lines superimposed CT-slices – a Matlab graphical user interface visualizes the results in freely selectable slices of the 3D geometry. Voltage distribution along theoretically estimated fiber paths could be calculated as well as visualized. For further calculation of nerve or denervated muscle fiber activation and its optimization, real fiber paths have to be defined and referenced to the potential- and the CT-data.

  1. Therapeutic electric stimulation does not affect immune status in healthy individuals - a preliminary report

    National Research Council Canada - National Science Library

    Kopitar, Andreja N; Kotnik, Vladimir; Vidmar, Gaj; Ihan, Alojz; Novak, Primoz; Stefancic, Martin

    2012-01-01

    .... The objective of our study was to examine the possible immunological consequences of moderate low-frequency transcutaneous neuromuscular electric stimulation for quadriceps muscle strengthening in healthy individuals...

  2. Interleaved neuromuscular electrical stimulation after spinal cord injury.

    Science.gov (United States)

    Bergquist, Austin J; Wiest, Matheus J; Okuma, Yoshino; Collins, David F

    2017-02-28

    Neuromuscular electrical stimulation (NMES) over a muscle belly (mNMES) recruits superficial motor units (MUs) preferentially, whereas NMES over a nerve trunk (nNMES) recruits MUs evenly throughout the muscle. We performed tests to determine whether "interleaving" pulses between the mNMES and nNMES sites (iNMES) reduces the fatigability of contractions for people experiencing paralysis because of chronic spinal cord injury. Plantar flexion torque and soleus electromyography (M-waves) were recorded from 8 participants. A fatigue protocol (75 contractions; 2 s on/2 s off for 5 min) was delivered by iNMES. The results were compared with previously published data collected with mNMES and nNMES in the same 8 participants. Torque declined ∼40% more during mNMES than during nNMES or iNMES. M-waves declined during mNMES but not during nNMES or iNMES. To reduce fatigability of electrically evoked contractions of paralyzed plantar flexors, iNMES is equivalent to nNMES, and both are superior to mNMES. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  3. Near-infrared signals associated with electrical stimulation of peripheral nerves

    Science.gov (United States)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  4. Transcranial direct current stimulation (tDCS) - application in neuropsychology.

    Science.gov (United States)

    Shin, Yong-Il; Foerster, Águida; Nitsche, Michael A

    2015-03-01

    Non-invasive brain stimulation is a versatile tool to modulate psychological processes via alterations of brain activity, and excitability. It is applied to explore the physiological basis of cognition and behavior, as well as to reduce clinical symptoms in neurological and psychiatric diseases. Neuromodulatory brain stimulation via transcranial direct currents (tDCS) has gained increased attention recently. In this review we will describe physiological mechanisms of action of tDCS, and summarize its application to modulate psychological processes in healthy humans and neuropsychiatric diseases. Furthermore, beyond giving an overview of the state of the art of tDCS, including limitations, we will outline future directions of research in this relatively young scientific field.

  5. Transcranial direct current stimulation in the treatment of anorexia.

    Science.gov (United States)

    Hecht, David

    2010-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique for brain stimulation and it increasingly being used in the treatments of some neurological/psychiatric conditions (e.g. chronic pain, epilepsy, depression, motor rehabilitation after stroke and Parkinson's disease). With tDCS, cortical neurons excitability increases in the vicinity of the anodal electrode and suppressed near the cathodal electrode. There is evidence that anorexia is associated with hyperactivity in right-hemisphere frontal regions. tDCS, therefore has a promising potential in facilitating inter-hemispheric balance. A tDCS protocol is proposed: the anode electrode placed over the left prefrontal cortex and the cathode electrode located, either on the right homotopic region for non-SSRI-medicated anorexics, or on a non-cephalic site for SSRI-medicated anorexics. Together with nutritional supplements, psychotherapy and other treatments, tDCS have a good potential, as a complementary tool, in the treatment of anorexia.

  6. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    Science.gov (United States)

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  7. Visualization of the electric field evoked by transcranial electric stimulation during a craniotomy using the finite element method.

    Science.gov (United States)

    Tomio, Ryosuke; Akiyama, Takenori; Horikoshi, Tomo; Ohira, Takayuki; Yoshida, Kazunari

    2015-12-30

    Transcranial MEP (tMEP) monitoring is more readily performed than cortical MEP (cMEP), however, tMEP is considered as less accurate than cMEP. The craniotomy procedure and changes in CSF levels must affect current spread. These changes can impair the accuracy. The aim of this study was to investigate the influence of skull deformation and cerebrospinal fluid (CSF) decrease on tMEP monitoring during frontotemporal craniotomy. We used the finite element method to visualize the electric field in the brain, which was generated by transcranial electric stimulation, using realistic 3-dimensional head models developed from T1-weighted images. Surfaces of 5 layers of the head were separated as accurately as possible. We created 3 brain types and 5 craniotomy models. The electric field in the brain radiates out from the cortex just below the electrodes. When the CSF layer is thick, a decrease in CSF volume and depression of CSF surface level during the craniotomy has a major impact on the electric field. When the CSF layer is thin and the distance between the skull and brain is short, the craniotomy has a larger effect on the electric field than the CSF decrease. So far no report in the literature the electric field during intraoperative tMEP using a 3-dimensional realistic head model. Our main finding was that the intensity of the electric field in the brain is most affected by changes in the thickness and volume of the CSF layer. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation.

    Science.gov (United States)

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S; Weisz, Nathan

    2015-09-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior.

  9. Reducing current reversal time in electric motor control

    Science.gov (United States)

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  10. Autonomic Modulation by Electrical Stimulation of the Parasympathetic Nervous System: An Emerging Intervention for Cardiovascular Diseases.

    Science.gov (United States)

    He, Bo; Lu, Zhibing; He, Wenbo; Huang, Bing; Jiang, Hong

    2016-06-01

    The cardiac autonomic nervous system has been known to play an important role in the development and progression of cardiovascular diseases. Autonomic modulation by electrical stimulation of the parasympathetic nervous system, which increases the parasympathetic activity and suppresses the sympathetic activity, is emerging as a therapeutic strategy for the treatment of cardiovascular diseases. Here, we review the recent literature on autonomic modulation by electrical stimulation of the parasympathetic nervous system, including vagus nerve stimulation, transcutaneous auricular vagal stimulation, spinal cord stimulation, and ganglionated plexi stimulation, in the treatment of heart failure, atrial fibrillation, and ventricular arrhythmias.

  11. Electric breakdown during the pulsed current spreading in the sand

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-03-15

    Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.

  12. Equivalent Resistance in Pulse Electric Current Sintering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sintering resistance for conductive TiB2 and non-conductive Al2O3 as well as empty die during pulse current sintering were investigated in this paper.Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions.It is found that the current paths for conductive are different from those for non-conductive materials.For non-conductive materials,sintering resistances are influenced by powder sizes and heating rates,which indicates that pulse current has some interaction with non-conductive powders.For conductive TiB2,sintering resistances are influenced by heating rates and ball-milling time,which indicates the effect of powders activated by spark.

  13. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current.

    Science.gov (United States)

    Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed

    2016-01-15

    This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency.

  14. Transcranial Direct Current Stimulation: Considerations for Research in Adolescent Depression

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-06-01

    Full Text Available Adolescent depression is a prevalent disorder with substantial morbidity and mortality. Current treatment interventions do not target relevant pathophysiology and are frequently ineffective, thereby leading to a substantial burden for individuals, families, and society. During adolescence, the prefrontal cortex undergoes extensive structural and functional changes. Recent work suggests that frontolimbic development in depressed adolescents is delayed or aberrant. The judicious application of non-invasive brain stimulation techniques to the prefrontal cortex may present a promising opportunity for durable interventions in adolescent depression. Transcranial direct current stimulation (tDCS applies a low-intensity, continuous current that alters cortical excitability. While this modality does not elicit action potentials, it is thought to manipulate neuronal activity and neuroplasticity. Specifically, tDCS may modulate N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and effect changes through long-term potentiation or long-term depression-like mechanisms. This mini-review considers the neurobiological rationale for developing tDCS protocols in adolescent depression, reviews existing work in adult mood disorders, surveys the existing tDCS literature in adolescent populations, reviews safety studies, and discusses distinct ethical considerations in work with adolescents.

  15. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    Science.gov (United States)

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~ 8-13 Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach.

  16. The Role of Transcutaneous Electrical Nerve Stimulation in the Management of Temporomandibular Joint Disorder.

    Science.gov (United States)

    Awan, Kamran Habib; Patil, Shankargouda

    2015-12-01

    Temporomandibular joint disorders (TMD) constitutes of a group of diseases that functionally affect the masticatory system, including the muscles of mastication and temporomandibular joint (TMJ). A number of etiologies with specific treatment have been identified, including the transcutaneous electrical nerve stimulation (TENS). The current paper presents a literature review on the use of TENS in the management of TMD patients. Temporomandibular joint disorder is very common disorder with approximately 75% of people showing some signs, while more than quarter (33%) having at least one symptom. An attempt to treat the pain should be made whenever possible. However, in cases with no defined etiology, starting with less intrusive and reversible techniques is prescribed. Transcutaneous electrical nerve stimulation is one such treatment modality, i.e. useful in the management of TMD. It comprises of controlled exposure of electrical current to the surface of skin, causing hyperactive muscles relaxation and decrease pain. Although the value of TENS to manage chronic pain in TMD patients is still controversial, its role in utilization for masticatory muscle pain is significant. However, an accurate diagnosis is essential to minimize its insufficient use. Well-controlled randomized trials are needed to determine the utilization of TENS in the management of TMD patients.

  17. Using a direct current electrical field to promote spinal-cord regeneration.

    Science.gov (United States)

    Shen, N J; Wang, S C

    1999-08-01

    The authors used a direct current electrical field to promote spinal-cord regeneration in a canine model. Thirty-two dogs were randomly divided into four groups. Complete spinal-cord injury was induced, and electrical stimulators were then placed in the animals. Group 1 served as controls; Groups 2 to 4 were experimental groups, with varying stimulator voltages: 0V in Group 1, 12V in Groups 2 and 4, and 6V in Group 3, with the stimulator implanted 6 hr after spinal-cord injury in Group 4. Functional, electrophysiologic and morphometric assessments were carried out 1 to 3 months postoperatively. Results showed that spinal-cord function, cortical somatosensory evoked potentials, number of neurons, sectional area of neurons, and Nissl body density in the experimental groups were much better than those in the control group. In addition, all the indices in Group 2 were better than those in Groups 3 and 4. This indicated that direct current electrical stimulation could effectively promote spinal-cord regeneration and functional recovery in this model. The 12V voltage was safe for the animals. The stimulator was not rejected by the host for a relatively long period of time.

  18. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions

    Directory of Open Access Journals (Sweden)

    Alexander Opitz

    2014-01-01

    Full Text Available The spatial extent of transcranial magnetic stimulation (TMS is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES is a local brain stimulation method generally considered the gold standard to map structure–function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP mapping experiment for both TMS and DES with realistic individual finite element method (FEM simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  19. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    Science.gov (United States)

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  20. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  1. Electrical Stimulation: A Panacea for Disease?: DARPA Investigates New Bioelectrical Interfaces for a Range of Disorders.

    Science.gov (United States)

    Grifantini, Kristina

    2016-01-01

    It seems simple: send a small electrical current to a major nerve in the body and stimulate hormones and organs to react in the way you want. New efforts by research teams are doing just that, zapping peripheral nerves attached to major organs in the hopes of addressing problems as diverse as inflammatory bowel disease, chronic pain, and posttraumatic stress disorder. Thanks to the continued advance of smaller and more efficient electronics, researchers are finding new ways to develop implantable bioelectrical devices to treat a wide range of ailments.

  2. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations

    OpenAIRE

    Gunduz, Aysegul; Kumru, Hatice; Pascual-Leone, Alvaro

    2014-01-01

    Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhibits satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in improving ...

  3. Moving Forward by Stimulating the Brain: Transcranial Direct Current Stimulation in Post-Stroke Hemiparesis.

    Science.gov (United States)

    Peters, Heather T; Edwards, Dylan J; Wortman-Jutt, Susan; Page, Stephen J

    2016-01-01

    Stroke remains a leading cause of disability worldwide, with a majority of survivors experiencing long term decrements in motor function that severely undermine quality of life. While many treatment approaches and adjunctive strategies exist to remediate motor impairment, many are only efficacious or feasible for survivors with active hand and wrist function, a population who constitute only a minority of stroke survivors. Transcranial direct current stimulation (tDCS), a type of non-invasive brain stimulation, has been increasingly utilized to increase motor function following stroke as it is able to be used with stroke survivors of varying impairment levels, is portable, is relatively inexpensive and has few side effects and contraindications. Accordingly, in recent years the number of studies investigating its efficacy when utilized as an adjunct to motor rehabilitation regimens has drastically increased. While many of these trials have reported positive and promising efficacy, methodologies vary greatly between studies, including differences in stimulation parameters, outcome measures and the nature of physical practice. As such, an urgent need remains, centering on the need to investigate these methodological differences and synthesize the most current evidence surrounding the application of tDCS for post-stroke motor rehabilitation. Accordingly, the purpose of this paper is to provide a detailed overview of the most recent tDCS literature (published 2014-2015), while highlighting these variations in methodological approach, as well to elucidate the mechanisms associated with tDCS and post-stroke motor re-learning and neuroplasticity.

  4. Mechanisms and Effects of Transcranial Direct Current Stimulation

    Science.gov (United States)

    Giordano, James; Bikson, Marom; Kappenman, Emily S.; Clark, Vincent P.; Coslett, H. Branch; Hamblin, Michael R.; Hamilton, Roy; Jankord, Ryan; Kozumbo, Walter J.; McKinley, R. Andrew; Nitsche, Michael A.; Reilly, J. Patrick; Richardson, Jessica; Wurzman, Rachel

    2017-01-01

    The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged. PMID:28210202

  5. Electrical stimulation for the treatment of lower urinary tract dysfunction after spinal cord injury.

    Science.gov (United States)

    McGee, Meredith J; Amundsen, Cindy L; Grill, Warren M

    2015-03-01

    Electrical stimulation for bladder control is an alternative to traditional methods of treating neurogenic lower urinary tract dysfunction (NLUTD) resulting from spinal cord injury (SCI). In this review, we systematically discuss the neurophysiology of bladder dysfunction following SCI and the applications of electrical stimulation for bladder control following SCI, spanning from historic clinical approaches to recent pre-clinical studies that offer promising new strategies that may improve the feasibility and success of electrical stimulation therapy in patients with SCI. Electrical stimulation provides a unique opportunity to control bladder function by exploiting neural control mechanisms. Our understanding of the applications and limitations of electrical stimulation for bladder control has improved due to many pre-clinical studies performed in animals and translational clinical studies. Techniques that have emerged as possible opportunities to control bladder function include pudendal nerve stimulation and novel methods of stimulation, such as high frequency nerve block. Further development of novel applications of electrical stimulation will drive progress towards effective therapy for SCI. The optimal solution for restoration of bladder control may encompass a combination of efficient, targeted electrical stimulation, possibly at multiple locations, and pharmacological treatment to enhance symptom control.

  6. Electrical field stimulation promotes anastomotic healing in poorly perfused rat colon.

    LENUS (Irish Health Repository)

    Kennelly, Rory

    2011-03-01

    Hypoperfusion of the bowel is a risk factor for anastomotic failure. Electrical field stimulation has been shown to improve repair in ischemic tissue, but its influence in hypoperfused colon has not been investigated. The hypothesis of this experimental animal study was that electrical field stimulation improves anastomotic healing in ischemic bowel.

  7. Spasticity reduction using electrical stimulation in the lower limb of spinal cord injury patients

    NARCIS (Netherlands)

    van der Salm, Arjan

    2005-01-01

    The goal of this thesis was to investigate the influence of electrical stimulation on spasticity of leg muscles in spinal cord injury patients and its impact on gait. Both, the carry-over effect and the instant effect of electrical stimulation during gait were investigated.

  8. [Transesophageal electric stimulation of the left atrium in the diagnosis of ischemic heart disease].

    Science.gov (United States)

    Liakishev, A A; Kozlov, S G; Grosu, A A; Kulikova, T V; Sidorenko, B A

    1984-10-01

    The clinical picture and the results of bicycle ergometry and selective coronarography were compared with the findings of electrical stimulation of the left atrium in 24 patients. It was demonstrated that transesophagus electric stimulation of the left atrium may serve as a diagnostic method in coronary heart disease.

  9. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  10. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Directory of Open Access Journals (Sweden)

    Yao-xian Xiang

    2015-01-01

    Full Text Available Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-and interleukin- 6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor- and interleukin-6 expression.

  11. electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-inlfammatory mechanism

    Institute of Scientific and Technical Information of China (English)

    Yao-xian Xiang; Wen-xin Wang; Zhe Xue; Lei Zhu; Sheng-bao Wang; Zheng-hui Sun

    2015-01-01

    Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimula-tion (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes) 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-α and in-terleukin-6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor-α and interleukin-6 expression.

  12. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: an update.

    Science.gov (United States)

    Klomjai, W; Lackmy-Vallée, A; Roche, N; Pradat-Diehl, P; Marchand-Pauvert, V; Katz, R

    2015-09-01

    Stroke is a leading cause of adult motor disability. The number of stroke survivors is increasing in industrialized countries, and despite available treatments used in rehabilitation, the recovery of motor functions after stroke is often incomplete. Studies in the 1980s showed that non-invasive brain stimulation (mainly repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]) could modulate cortical excitability and induce plasticity in healthy humans. These findings have opened the way to the therapeutic use of the 2 techniques for stroke. The mechanisms underlying the cortical effect of rTMS and tDCS differ. This paper summarizes data obtained in healthy subjects and gives a general review of the use of rTMS and tDCS in stroke patients with altered motor functions. From 1988 to 2012, approximately 1400 publications were devoted to the study of non-invasive brain stimulation in humans. However, for stroke patients with limb motor deficit, only 141 publications have been devoted to the effects of rTMS and 132 to those of tDCS. The Cochrane review devoted to the effects of rTMS found 19 randomized controlled trials involving 588 patients, and that devoted to tDCS found 18 randomized controlled trials involving 450 patients. Without doubt, rTMS and tDCS contribute to physiological and pathophysiological studies in motor control. However, despite the increasing number of studies devoted to the possible therapeutic use of non-invasive brain stimulation to improve motor recovery after stroke, further studies will be necessary to specify their use in rehabilitation.

  13. Magnetic and electric stimulation to elicit the masseteric exteroceptive suppression period

    DEFF Research Database (Denmark)

    Komiyama, Osamu; Wang, Kelun; Svensson, Peter

    2010-01-01

    and RS for the early and late ES (ES1 and ES2, respectively). RESULTS: ES2 had a lower RT and RS compared to ES1 in electric and magnetic stimulation. Significantly lower NRS values at RT and RS were found with painless magnetic stimulation compared to electric stimulation (p...: In contrast to electrical stimulation, both ES1 and ES2 appeared and saturated with painless magnetic stimuli. SIGNIFICANCE: The present results indicate that both ES1 and ES2 have a non-nociceptive origin. Painless magnetic stimuli will be an advantage in ES reflex examinations for various orofacial pain...

  14. Transcutaneous electrical nerve stimulation (TENS) in angina pectoris.

    Science.gov (United States)

    Mannheimer, C; Carlsson, C A; Vedin, A; Wilhelmsson, C

    1986-09-01

    The aim of this study was to determine the efficacy of transcutaneous electrical nerve stimulation (TENS) in the treatment of chronic stable severe angina pectoris. In a short-term study the effect of TENS was studied in 10 male patients with angina pectoris (functional class III and IV). All patients had previously been stabilized on long-term maximal oral treatment. The effects of the treatment were measured by means of repeated bicycle ergometer tests. All patients had an increased working capacity (16-85%), decreased ST segment depression and reduced recovery time during TENS. No adverse effects were observed. A long-term study of TENS on similarly selected patients showed beneficial effects in terms of pain reduction, reduced frequency of anginal attacks, increased physical activity and increased working capacity during bicycle ergometer tests. An invasive study was carried out with respect to systemic and coronary hemodynamics and myocardial metabolism during pacing provoked myocardial ischemia in 13 patients. The results showed that TENS led to an increased tolerance to pacing, improved lactate metabolism, less pronounced ST segment depression. A drop in systolic blood pressure during TENS treatment at identical pacing rates indicated a decreased afterload. An increased coronary flow to ischemic areas in the myocardium was supported by the fact that the rate pressure product during anginal pain increased during TENS.

  15. Electrical stimulation (ES counteracts muscle decline in seniors

    Directory of Open Access Journals (Sweden)

    Helmut eKern

    2014-07-01

    Full Text Available The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are all marks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise.We addressed whether electrical stimulation (ES is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function.We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity.ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis.Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.

  16. Functional electrical stimulation in spinal cord injury respiratory care.

    Science.gov (United States)

    Jarosz, Renata; Littlepage, Meagan M; Creasey, Graham; McKenna, Stephen L

    2012-01-01

    The management of chronic respiratory insufficiency and/or long-term inability to breathe independently has traditionally been via positive-pressure ventilation through a mechanical ventilator. Although life-sustaining, it is associated with limitations of function, lack of independence, decreased quality of life, sleep disturbance, and increased risk for infections. In addition, its mechanical and electronic complexity requires full understanding of the possible malfunctions by patients and caregivers. Ventilator-associated pneumonia, tracheal injury, and equipment malfunction account for common complications of prolonged ventilation, and respiratory infections are the most common cause of death in spinal cord-injured patients. The development of functional electric stimulation (FES) as an alternative to mechanical ventilation has been motivated by a goal to improve the quality of life of affected individuals. In this article, we will review the physiology, types, characteristics, risks and benefits, surgical techniques, and complications of the 2 commercially available FES strategies - phrenic nerve pacing (PNP) and diaphragm motor point pacing (DMPP).

  17. Percutaneous electrical stimulation in strength training: an update.

    Science.gov (United States)

    Requena Sánchez, Bernardo; Padial Puche, Paulino; González-Badillo, Juan José

    2005-05-01

    Numerous studies have used percutaneous electrical stimulation (PES) in the context of training programs to develop strength and physical performance in healthy populations (sedentary or trained). Significant increases in muscle and fiber cross-sectional area, isokinetic peak torque, maximal isometric and dynamic strength, and motor performance skills have been found after PES training. These strength gains are explained on the basis of the characteristics of PES motor units (MUs) recruitment: (a) a continuous and exhausting contractile activity in the same pool of MUs during the entire exercise period, (b) a supramaximal temporal recruitment imposed by the high frequency chosen (up to 40 Hz), and (c) a synchronous recruitment of neighboring fibers. The PES training method is complementary to voluntary training, mainly because the application of PES causes an unconventional spatial recruitment of MUs that, depending on the muscular topography, may entail the preferential recruitment of the fast-twitch MUs. In addition, the method does not specifically develop elasticity in skeletal muscle, and it must be accompanied by a technical workout.

  18. Transcranial Electric Stimulation Can Impair Gains during Working Memory Training and Affects the Resting State Connectivity.

    Science.gov (United States)

    Möller, Annie; Nemmi, Federico; Karlsson, Kim; Klingberg, Torkel

    2017-01-01

    Transcranial electric stimulation (tES) is a promising technique that has been shown to improve working memory (WM) performance and enhance the effect of cognitive training. However, experimental set up and electrode placement are not always determined based on neurofunctional knowledge about WM, leading to inconsistent results. Additional research on the effects of tES grounded on neurofunctional evidence is therefore necessary. Sixty young, healthy, volunteers, assigned to six different groups, participated in 5 days of stimulation or sham treatment. Twenty-five of these subjects also participated in MRI acquisition. We performed three experiments: In the first one, we evaluated tES using either direct current stimulation (tDCS) with bilateral stimulation of the frontal or parietal lobe; in the second one, we used the same tDCS protocol with a different electrode placement (i.e., supraorbital cathode); in the third one, we used alternating currents (tACS) of 35 Hz, applied bilaterally to either the frontal or parietal lobes. The behavioral outcome measure was the WM capacity (i.e., number of remembered spatial position) during the 5 days of training. In a subsample of subjects we evaluated the neural effects of tDCS by measuring resting state connectivity with functional MRI, before and after the 5 days of tDCS and visuo-spatial WM training. We found a significant impairment of WM training-related gains associated with parietal tACS and frontal tDCS. Five days of tDCS stimulation was also associated with significant change in resting state connectivity revealed by multivariate pattern analysis. None of the stimulation paradigms resulted in improved WM performance or enhanced WM training gains. These results show that tES can have negative effects on cognitive plasticity and affect resting-state functional connectivity.

  19. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.

    Science.gov (United States)

    Rivera-Urbina, Guadalupe Nathzidy; Batsikadze, Giorgi; Molero-Chamizo, Andrés; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2015-03-01

    The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.

  20. Videoradiography at submental electrical stimulation during apnea in obstructive sleep apnea syndrome; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Hillarp, B.; Rosen, I.; Wickstroem, O. (Malmoe Allmaenna Sjukhus (Sweden). Dept. of Diagnostic Radiology Malmoe Allmaenna Sjukhus (Sweden). Dept. of Clinical Neurophysiology)

    1991-05-01

    Percutaneous submental electrical stimulation during sleep may be a new therapeutic method for patients with obstructive sleep apnea syndrome (OSAS). Electrical stimulation to the submental region during obstructive apnea is reported to break the apnea without arousal and to diminish apneic index, time spent in apnea, and oxygen desaturation. The mode of breaking the apnea by electrical stimulation has not yet been shown. However, genioglossus is supposed to be the muscle responsible for breaking the apnea by forward movement of the tongue. To visualize the effect of submental electrical stimulation, one patient with severe OSAS has been examined with videoradiography. Submental electrical stimulation evoked an immediate complex muscle activity in the tongue, palate, and hyoid bone. This was followed by a forward movement of the tongue which consistently broke obstructive apnea without apparent arousal. Time spent in apnea was diminished but intervals between apnea were not affected. (orig.).

  1. Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation.

    Science.gov (United States)

    Dean, J C; Yates, L M; Collins, D F

    2008-08-01

    Neuromuscular electrical stimulation can generate contractions through both peripheral and central mechanisms. The peripheral mechanism involves the direct activation of motor axons, while the central mechanism involves the activation of sensory axons that recruit spinal neurons through a reflex pathway. For use in functional electrical stimulation. One must have control over turning the central mechanism on and off. We investigated whether inhibition developed through antagonist muscle (tibialis anterior, TA) contractions elicited by electrical stimulation or by volition can turn off the central mechanism in triceps surae. Both electrical stimulation and voluntary contractions of TA reduced or eliminated plantar flexion torque produced by the central mechanism, indicating that inhibition induced via these contractions can effectively turn off the central contribution to force. These findings suggest that patterns of electrical stimulation may be able to generate periodic muscle contractions by turning the central contribution to muscular contractions on and off.

  2. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Electroconvulsive therapy in the presence of deep brain stimulation implants: electric field effects.

    Science.gov (United States)

    Deng, Zhi-De; Hardesty, David E; Lisanby, Sarah H; Peterchev, Angel V

    2010-01-01

    The safety of electroconvulsive therapy (ECT) in patients who have deep brain stimulation (DBS) implants represents a significant clinical issue. A major safety concern is the presence of burr holes and electrode anchoring devices in the skull, which may alter the induced electric field distribution in the brain. We simulated the electric field using finite-element method in a five-shell spherical head model. Three DBS electrode anchoring techniques were modeled, including ring/cap, microplate, and burr-hole cover. ECT was modeled with bilateral (BL), right unilateral (RUL), and bifrontal (BF) electrode placements and with clinically-used stimulus current amplitude. We compared electric field strength and focality among the DBS implantation techniques and ECT electrode configurations. The simulation results show an increase in the electric field strength in the brain due to conduction through the burr holes, especially when the burr holes are not fitted with nonconductive caps. For typical burr hole placement for subthalamic nucleus DBS, the effect on the electric field strength and focality is strongest for BF ECT, which runs contrary to the belief that more anterior ECT electrode placements are safer in patients with DBS implants.

  4. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation?

    Science.gov (United States)

    Lee, Minji; Kim, Yun-Hee; Im, Chang-Hwan; Kim, Jung-Hoon; Park, Chang-hyun; Chang, Won Hyuk; Lee, Ahee

    2015-01-01

    Transcranial direct current stimulation (tDCS) non-invasively modulates brain function by inducing neuronal excitability. The conventional hot spot for inducing the highest current density in the hand motor area may not be the optimal site for effective stimulation. In this study, we investigated the influence of the center position of the anodal electrode on changes in motor cortical excitability. We considered three tDCS conditions in 16 healthy subjects: (i) real stimulation with the anodal electrode located at the conventional hand motor hot spot determined by motor evoked potentials (MEPs); (ii) real stimulation with the anodal electrode located at the point with the highest current density in the hand motor area as determined by electric current simulation; and (iii) sham stimulation. Motor cortical excitability as measured by MEP amplitude increased after both real stimulation conditions, but not after sham stimulation. Stimulation using the simulation-derived anodal electrode position, which was found to be posterior to the MEP hot spot for all subjects, induced higher motor cortical excitability. Individual positioning of the anodal electrode, based on the consideration of anatomical differences between subjects, appears to be important for maximizing the effects of tDCS.

  5. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.

    Science.gov (United States)

    Horne, Colin D F; Sumner, Christian J; Seeber, Bernhard U

    2016-01-01

    We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  6. The use of transcutaneous electrical nerve stimulation (tens in the treatment of the spasticity - a review

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  7. Augmented visual feedback counteracts the effects of surface muscular functional electrical stimulation on physiological tremor.

    Science.gov (United States)

    Grimaldi, Giuliana; Fernandez, Alfredo; Manto, Mario

    2013-09-24

    Recent studies suggest that surface muscular functional electrical stimulation (FES) might suppress neurological upper limb tremor. We assessed its effects on upper limb physiological tremor, which is mainly driven by mechanical-reflex oscillations. We investigated the interaction between FES and augmented visual feedback, since (a) most daily activities are performed using visual cues, and (b) augmented visual feedback exacerbates upper limb tremor. 10 healthy subjects (23.4 ± 7.7 years) performed 2 postural tasks with combinations of FES (4 sites; frequency of stimulation: 30 Hz; pulse width: 300 microsec; range of current delivered 10-34 mAmp) and augmented visual feedback. Spectral analysis of tremor showed a decrease of power spectral density to 62.18% (p = 0.01), of the integral in the 8-12 Hz frequency band to 57.67% (p = 0.003), and of tremor root mean square (RMS) to 57.16% (p = 0.002) during FES, without any changes in tremor frequency. Augmented visual feedback blocked the beneficial effect of FES, as confirmed by power spectral analysis (p = 0.01). We found a statistically significant interaction between augmented visual feedback and electrical stimulation (p = 0.039). Augmented visual feedback antagonizes the effects of FES on physiological tremor. The absence of changes of peak frequency argues against an effect of FES on mechanical properties of the upper limb.

  8. Updates on gastric electrical stimulation to treat obesity: Systematic review and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Ryan; Cha; Jacques; Marescaux; Michele; Diana

    2014-01-01

    AIM: To evaluate the current state-of-the-art of gastric electrical stimulation to treat obesity. METHODS: Systematic reviews of all studies have been conducted to evaluate the effect of different types of gastric electrical stimulation(GES) on obesity.RESULTS: Thirty-one studies consisting of a total of 33 different trials were included in the systematic review for data analysis. Weight loss was achieved in most studies, especially during the first 12 mo, but only very few studies had a follow-up period longer than 1 year. Among those that had a longer follow-up period, many were from the Transcend(Implantable Gastric Stimulation) device group and maintained significant weight loss. Other significant results included changes in appetite/satiety, gastric emptying rate, blood pressure and neurohormone levels or biochemical markers such as ghrelin or HbA1 c respectively. CONCLUSION: GES holds great promises to be an effective obesity treatment. However, stronger evidence is required through more studies with a standardized way of carrying out trials and reporting outcomes, to determine the long-term effect of GES on obesity.

  9. Prevention of Staphylococcus epidermidis biofilm formation using electrical current.

    Science.gov (United States)

    Del Pozo, Jose L; Rouse, Mark S; Euba, Gorane; Greenwood-Quaintance, Kerryl E; Mandrekar, Jayawant N; Steckelberg, James M; Patel, Robin

    2014-09-05

    A technique for the prevention of staphylococcal adhesion by electrical current exposure was investigated. Teflon coupons were exposed to a continuous flow of 103 cfu/ml Staphylococcus epidermidis with or without 2000 microA DC electrical current delivered by electrodes on opposite sides of a coupon, touching neither each other nor the coupon. A mean 3.46 (SD, 0.20) and 5.70 (SD, 1.03) log10 cfu/cm2 were adhered to the non-electrical current exposed coupons after 4 h and 24 h, respectively. A mean 2.46 (SD, 0.31) and 1.47 (SD, 0.73) log10 cfu/cm2 were adhered after 4 h and 24 h with exposure to 2000 microA electrical current delivered by graphite electrodes. A mean 2.21 (SD, 0.14) and 0.55 (SD, 0.00) log10 cfu/cm2 were adhered after 4 h and 24 h with exposure to 2000 microA electrical current delivered by stainless steel electrodes. Electrical current may be useful in the prevention of staphylococcal adhesion to biomaterials.

  10. Simultaneous application of slow-oscillation transcranial direct current stimulation and theta burst stimulation prolongs continuous theta burst stimulation-induced suppression of corticomotor excitability in humans.

    Science.gov (United States)

    Doeltgen, Sebastian H; McAllister, Suzanne M; Ridding, Michael C

    2012-09-01

    The objective of this study was to assess whether the simultaneous application of slow-oscillation transcranial direct current stimulation enhances the neuroplastic response to transcranial magnetic theta burst stimulation. Motor evoked potential amplitude was assessed at baseline and at regular intervals up to 60 min following continuous theta burst stimulation, slow-oscillation transcranial direct current stimulation, and the simultaneous application of these paradigms. In addition, the electroencephalographic power spectra of slow and fast delta, and theta frequency bands recorded over the motor cortex were analyzed prior to and up to 5 min following each intervention. There was longer-lasting motor evoked potential suppression following the simultaneous application of continuous theta burst stimulation and slow-oscillation transcranial direct current stimulation compared with when continuous theta burst stimulation was applied alone. Slow-oscillation transcranial direct current stimulation applied alone did not modulate the motor evoked potential amplitude. No significant changes in spectral power were observed following slow-oscillation transcranial direct current stimulation. Simultaneous application of continuous theta burst stimulation and slow-oscillation transcranial direct current stimulation may provide an approach to prolong the induction of neuroplastic changes in motor cortical circuits by repetitive transcranial magnetic brain stimulation.

  11. Routing Physarum with electrical flow/current

    CERN Document Server

    Tsuda, Soichiro; Adamatzky, Andrew; Mills, Jonathan

    2012-01-01

    Plasmodium stage of Physarum polycephalum behaves as a distributed dynamical pattern formation mechanism who's foraging and migration is influenced by local stimuli from a wide range of attractants and repellents. Complex protoplasmic tube network structures are formed as a result, which serve as efficient `circuits' by which nutrients are distributed to all parts of the organism. We investigate whether this `bottom-up' circuit routing method may be harnessed in a controllable manner as a possible alternative to conventional template-based circuit design. We interfaced the plasmodium of Physarum polycephalum to the planar surface of the spatially represented computing device, (Mills' Extended Analog Computer, or EAC), implemented as a sheet of analog computing material whose behaviour is input and read by a regular 5x5 array of electrodes. We presented a pattern of current distribution to the array and found that we were able to select the directional migration of the plasmodium growth front by exploiting pla...

  12. Electric field stimulation can increase protein synthesis in articular cartilage explants.

    Science.gov (United States)

    MacGinitie, L A; Gluzband, Y A; Grodzinsky, A J

    1994-03-01

    It has been hypothesized that the electric fields associated with the dynamic loading of cartilage may affect its growth, remodeling, and biosynthesis. While the application of exogenous fields has been shown to modulate cartilage biosynthesis, it is not known what range of field magnitudes and frequencies can alter biosynthesis and how they relate to the magnitudes and frequencies of endogenous fields. Such information is necessary to understand and identify mechanisms by which fields may act on cartilage metabolism. In this study, incorporation of 35S-methionine was used as a marker for electric field-induced changes in chondrocyte protein synthesis in disks of cartilage from the femoropatellar groove of 1 to 2-week-old calves. The cartilage was stimulated sinusoidally at 1, 10, 100, 10(3), and 10(4) Hz with current densities of 10-30 mA/cm2. Incorporation was assessed in control disks maintained in the absence of applied current at 37, 41, and 43 degrees C. The possibility that applied currents would induce synthesis of the same stress proteins that are caused by heating or other mechanisms was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and examination of gel fluorographs. Total radiolabel incorporation in cartilage that had been stimulated relative to incorporation in the controls increased with current density magnitudes greater than 10 mA/cm2. The increase was greatest at 100 Hz and 1 kHz, and it depended on the position on the joint surface from which the cartilage samples were taken. Together, these results suggest that endogenous electric fields could affect cartilage biosynthesis. Stress proteins were not induced at any current density when the electrodes were electrically connected but chemically isolated from the media by agarose bridges. Stress proteins were observed for disks incubated at temperatures greater than 39 degrees C (no field) and when the stimulating platinum electrodes were in direct contact with the media

  13. Dosage considerations for transcranial direct current stimulation in children: a computational modeling study.

    Directory of Open Access Journals (Sweden)

    Sudha Kilaru Kessler

    Full Text Available Transcranial direct current stimulation (tDCS is being widely investigated in adults as a therapeutic modality for brain disorders involving abnormal cortical excitability or disordered network activity. Interest is also growing in studying tDCS in children. Limited empirical studies in children suggest that tDCS is well tolerated and may have a similar safety profile as in adults. However, in electrotherapy as in pharmacotherapy, dose selection in children requires special attention, and simple extrapolation from adult studies may be inadequate. Critical aspects of dose adjustment include 1 differences in neurophysiology and disease, and 2 variation in brain electric fields for a specified dose due to gross anatomical differences between children and adults. In this study, we used high-resolution MRI derived finite element modeling simulations of two healthy children, ages 8 years and 12 years, and three healthy adults with varying head size to compare differences in electric field intensity and distribution. Multiple conventional and high-definition tDCS montages were tested. Our results suggest that on average, children will be exposed to higher peak electrical fields for a given applied current intensity than adults, but there is likely to be overlap between adults with smaller head size and children. In addition, exposure is montage specific. Variations in peak electrical fields were seen between the two pediatric models, despite comparable head size, suggesting that the relationship between neuroanatomic factors and bioavailable current dose is not trivial. In conclusion, caution is advised in using higher tDCS doses in children until 1 further modeling studies in a larger group shed light on the range of exposure possible by applied dose and age and 2 further studies correlate bioavailable dose estimates from modeling studies with empirically tested physiologic effects, such as modulation of motor evoked potentials after stimulation.

  14. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.

    Science.gov (United States)

    Woo, Jihwan; Miller, Charles A; Abbas, Paul J

    2009-05-01

    The Hodgkin-Huxley (HH) model does not simulate the significant changes in auditory nerve fiber (ANF) responses to sustained stimulation that are associated with neural adaptation. Given that the electric stimuli used by cochlear prostheses can result in adapted responses, a computational model incorporating an adaptation process is warranted if such models are to remain relevant and contribute to related research efforts. In this paper, we describe the development of a modified HH single-node model that includes potassium ion ( K(+)) concentration changes in response to each action potential. This activity-related change results in an altered resting potential, and hence, excitability. Our implementation of K(+)-related changes uses a phenomenological approach based upon K(+) accumulation and dissipation time constants. Modeled spike times were computed using repeated presentations of modeled pulse-train stimuli. Spike-rate adaptation was characterized by rate decrements and time constants and compared against ANF data from animal experiments. Responses to relatively low (250 pulse/s) and high rate (5000 pulse/s) trains were evaluated and the novel adaptation model results were compared against model results obtained without the adaptation mechanism. In addition to spike-rate changes, jitter and spike intervals were evaluated and found to change with the addition of modeled adaptation. These results provide one means of incorporating a heretofore neglected (although important) aspect of ANF responses to electric stimuli. Future studies could include evaluation of alternative versions of the adaptation model elements and broadening the model to simulate a complete axon, and eventually, a spatially realistic model of the electrically stimulated nerve within extracochlear tissues.

  15. Modeling the interaction of electric current and tissue: importance of accounting for time varying electric properties.

    Science.gov (United States)

    Evans, Daniel J; Manwaring, Mark L

    2007-01-01

    Time varying computer models of the interaction of electric current and tissue are very valuable in helping to understand the complexity of the human body and biological tissue. The electrical properties of tissue, permittivity and conductivity, are vital to accurately modeling the interaction of the human tissue with electric current. Past models have represented the electric properties of the tissue as constant or temperature dependent. This paper presents time dependent electric properties that change as a result of tissue damage, temperature, blood flow, blood vessels, and tissue property. Six models are compared to emphasize the importance of accounting for these different tissue properties in the computer model. In particular, incorporating the time varying nature of the electric properties of human tissue into the model leads to a significant increase in tissue damage. An important feature of the model is the feedback loop created between the electric properties, tissue damage, and temperature.

  16. A Novel In Vitro System for Comparative Analyses of Bone Cells and Bacteria under Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Josef Dauben

    2016-01-01

    Full Text Available Electrical stimulation is a promising approach to enhance bone regeneration while having potential to inhibit bacterial growth. To investigate effects of alternating electric field stimulation on both human osteoblasts and bacteria, a novel in vitro system was designed. Electric field distribution was simulated numerically and proved by experimental validation. Cells were stimulated on Ti6Al4V electrodes and in short distance to electrodes. Bacterial growth was enumerated in supernatant and on the electrode surface and biofilm formation was quantified. Electrical stimulation modulated gene expression of osteoblastic differentiation markers in a voltage-dependent manner, resulting in significantly enhanced osteocalcin mRNA synthesis rate on electrodes after stimulation with 1.4VRMS. While collagen type I synthesis increased when stimulated with 0.2VRMS, it decreased after stimulation with 1.4VRMS. Only slight and infrequent influence on bacterial growth was observed following stimulations with 0.2VRMS and 1.4VRMS after 48 and 72 h, respectively. In summary this novel test system is applicable for extended in vitro studies concerning definition of appropriate stimulation parameters for bone cell growth and differentiation, bacterial growth suppression, and investigation of general effects of electrical stimulation.

  17. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long......Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... the output from the switch arrangement and designed such that a high impedance at a frequency range below the switching frequency is obtained, seen from the output terminals. Switches implemented by normally-on-devices are preferred, e.g. in the form of a JFET. The converter circuit may be in different...

  18. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  19. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik;

    2010-01-01

    be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...... with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology....

  20. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    Science.gov (United States)

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics.

  1. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q

    2015-01-01

    Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  2. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Flávia V. A. Medeiros

    2015-12-01

    Full Text Available BACKGROUND: Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES. This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. OBJECTIVE: To investigate the effects of skinfold thickness (SFT on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. METHOD: First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm vs. thinner (n=10; 29.4 mm SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS. RESULTS: NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01 while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01. A positive correlation was found between current intensity and SFT (r=0.540, p=0.017. A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012. No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53. CONCLUSION: These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  3. [Electrical failure with nerve stimulation: cases report and check list for prevention].

    Science.gov (United States)

    Choquet, O; Feugeas, J-L; Capdevila, X; Manelli, J-C

    2007-03-01

    Functionality of the nerve stimulator and integrity of the electrical circuit should be verified and confirmed before performing peripheral nerve blockade. The clinical cases reported here demonstrate that electrical disconnection or malfunction during nerve localization can unpredictably occur and a checklist is described to prevent the unknown electrical circuit failure.

  4. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B; Blicher, Jakob Udby

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...... cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore...... aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible...

  5. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; James, Aaron W; Huang, Zubin; Prinz, Fritz B; Longaker, Michael T

    2010-03-01

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fields in concert with and without osteogenic factors, we demonstrated increased early osteoblast-specific markers. We were also able to establish that commonly reported artifacts of electric field stimulation are not the primary mediators of the observed effects. The electric fields caused marked changes in the cytoskeleton. We used atomic force microscopy-based force spectroscopy to record an increase in the cytoskeletal tension after treatment with electric fields. We abolished the increased cytoskeletal stresses with the rho-associated protein kinase inhibitor, Y27632, and did not see any decrease in osteogenic gene expression, suggesting that the pro-osteogenic effects of the electric fields are not transduced via cytoskeletal tension. Electric fields may show promise as candidate enhancers of osteogenesis of ASCs and may be incorporated into cell-based strategies for skeletal regeneration.

  6. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation.

    Science.gov (United States)

    Pedrotty, Dawn M; Koh, Jennifer; Davis, Bryce H; Taylor, Doris A; Wolf, Patrick; Niklason, Laura E

    2005-04-01

    Immature skeletal muscle cells, or myoblasts, have been used in cellular cardiomyoplasty in attempts to regenerate cardiac muscle tissue by injection of cells into damaged myocardium. In some studies, muscle tissue within myoblast implant sites may be morphologically similar to cardiac muscle. We hypothesized that identifiable aspects of the cardiac milieu may contribute to growth and development of implanted myoblasts in vivo. To test this hypothesis, we designed a novel in vitro system to mimic some aspects of the electrical and biochemical environment of native myocardium. This system enabled us to separate the three-dimensional (3-D) electrical and biochemical signals that may be involved in myoblast proliferation and plasticity. Myoblasts were grown on 3-D polyglycolic acid mesh scaffolds under control conditions, in the presence of cardiac-like electrical current fluxes, or in the presence of culture medium that had been conditioned by mature cardiomyocytes. Cardiac-like electrical current fluxes caused increased myoblast number in 3-D culture, as determined by DNA assay. The increase in cell number was due to increased cellular proliferation and not differences in apoptosis, as determined by proliferating cell nuclear antigen and TdT-mediated dUTP nick-end labeling. Cardiomyocyte-conditioned medium also significantly increased myoblast proliferation. Expression of transcription factors governing differentiation along skeletal or cardiac lineages was evaluated by immunoblotting. Although these assays are qualitative, no changes in differentiation state along skeletal or cardiac lineages were observed in response to electrical current fluxes. Furthermore, from these experiments, conditioned medium did not appear to alter the differentiation state of skeletal myoblasts. Hence, cardiac milieu appears to stimulate proliferation but does not affect differentiation of skeletal myoblasts.

  7. An electrical muscle stimulation suit for increasing blood pressure.

    Science.gov (United States)

    Balldin, Ulf; Annicelli, Lance; Gibbons, John; Kisner, James

    2008-09-01

    Electrical muscle stimulation (EMS) is used to strengthen muscles in rehabilitation of patients and for training of athletes. Voluntary muscle straining and an inflated anti-G suit increase the arterial blood pressure (BP) and give a pilot G protection during increased +Gz. This study's aim was to measure whether BP also increases with EMS of lower body muscles. A suit with new cloth electrodes sewn into the garment was developed. There were 12 subjects who were tested in sitting position during 3 conditions with 10 consecutive periods of EMS, inflated anti-G suit (GS), or lower body muscle anti-G straining maneuvers (AGSM). BP was continuously measured noninvasively. The means of the baseline systolic BP, before each of the test conditions, were 127 +/- 16, 128 +/- 1, and 145 +/- 14 mmHg for GS, AGSM, and EMS, respectively. During inflation of the GS, execution of the AGSM, and EMS, mean systolic BP during the first 10 s was 143 +/- 15, 146 +/- 13, and 150 +/- 13 mmHg, respectively, with no statistical difference between the conditions. The corresponding mean resting heart rate before each test was 57-63 bpm for all conditions. During the test periods with GS, AGSM, and EMS, heart rate was 59 +/- 11, 79 +/- 16, and 61 +/- 15 bpm, respectively, with statistical differences (P < 0.001) between AGSM and the other two conditions. EMS created similar BP as GS and AGSM at 1 G and also had higher pre- and post-control values. Further studies are required to evaluate if this principle may be used for G protection of pilots.

  8. Transcranial direct current stimulation and repetitive transcranial magnetic stimulation in consultation-liaison psychiatry

    Directory of Open Access Journals (Sweden)

    L.C.L. Valiengo

    2013-10-01

    Full Text Available Patients with clinical diseases often present psychiatric conditions whose pharmacological treatment is hampered due to hazardous interactions with the clinical treatment and/or disease. This is particularly relevant for major depressive disorder, the most common psychiatric disorder in the general hospital. In this context, nonpharmacological interventions could be useful therapies; and, among those, noninvasive brain stimulation (NIBS might be an interesting option. The main methods of NIBS are repetitive transcranial magnetic stimulation (rTMS, which was recently approved as a nonresearch treatment for some psychiatric conditions, and transcranial direct current stimulation (tDCS, a technique that is currently limited to research scenarios but has shown promising results. Therefore, our aim was to review the main medical conditions associated with high depression rates, the main obstacles for depression treatment, and whether these therapies could be a useful intervention for such conditions. We found that depression is an important and prevalent comorbidity in a variety of diseases such as epilepsy, stroke, Parkinson's disease, myocardial infarction, cancer, and in other conditions such as pregnancy and in patients without enteral access. We found that treatment of depression is often suboptimal within the above contexts and that rTMS and tDCS therapies have been insufficiently appraised. We discuss whether rTMS and tDCS could have a significant impact in treating depression that develops within a clinical context, considering its unique characteristics such as the absence of pharmacological interactions, the use of a nonenteral route, and as an augmentation therapy for antidepressants.

  9. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    Directory of Open Access Journals (Sweden)

    Takeshi Morimoto

    Full Text Available Transcorneal electrical stimulation (TES activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all. The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  10. Brain electric stimulation in treatment of epilepsy%神经电刺激技术在癫痫治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    杨辉

    2012-01-01

    The treatment of patients with refractory epilepsy has always been challenging. Despite the availability of multiple antiepileptic drugs, approximately 20% - 30% of patients continue to have seizures, and many are not candidates for epilepsy surgery. Currently available treatment options for these unfortunate patients are limited. Brain electric stimulation provides a nondestructive treatment for these patients. Studies of electrical stimulation of the brain in epilepsy treatment begin with the research on cerebellar stimulation. Until now, the potential targets have increased over the years, including cortex, cranial nerve and multiple brain nuclei. With the development of therapeutic brain devices for epilepsy, it is convinced that the brain electric stimulation will become more widely applied in treatment of epilepsy. This overview, combining with literatures and our experiences, briefly summarizes the application of brain electric stimulation in the treatment of epilepsy.

  11. Electrical synapses and synchrony: the role of intrinsic currents.

    Science.gov (United States)

    Pfeuty, Benjamin; Mato, Germán; Golomb, David; Hansel, David

    2003-07-16

    Electrical synapses are ubiquitous in the mammalian CNS. Particularly in the neocortex, electrical synapses have been shown to connect low-threshold spiking (LTS) as well as fast spiking (FS) interneurons. Experiments have highlighted the roles of electrical synapses in the dynamics of neuronal networks. Here we investigate theoretically how intrinsic cell properties affect the synchronization of neurons interacting by electrical synapses. Numerical simulations of a network of conductance-based neurons randomly connected with electrical synapses show that potassium currents promote synchrony, whereas the persistent sodium current impedes it. Furthermore, synchrony varies with the firing rate in qualitatively different ways depending on the intrinsic currents. We also study analytically a network of quadratic integrate-and-fire neurons. We relate the stability of the asynchronous state of this network to the phase-response function (PRF), which characterizes the effect of small perturbations on the firing timing of the neurons. In particular, we show that the greater the skew of the PRF toward the first half of the period, the more stable the asynchronous state. Combining our simulations with our analytical results, we establish general rules to predict the dynamic state of large networks of neurons coupled with electrical synapses. Our work provides a natural explanation for surprising experimental observations that blocking electrical synapses may increase the synchrony of neuronal activity. It also suggests different synchronization properties for LTS and FS cells. Finally, we propose to further test our predictions in experiments using dynamic clamp techniques.

  12. Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis

    Directory of Open Access Journals (Sweden)

    Na Han

    2015-01-01

    Full Text Available Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β (an indicator of tissue fibrosis decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.

  13. Pain and soreness associated with a percutaneous electrical stimulation muscle cramping protocol.

    Science.gov (United States)

    Miller, Kevin C; Knight, Kenneth L

    2007-11-01

    Muscle cramps are difficult to study scientifically because of their spontaneity and unpredictability. Various laboratory techniques to induce muscle cramps have been explored but the best technique for inducing cramps is unclear. Electrical stimulation appears to be the most reliable, but there is a perception that it is extremely painful. Data to support this perception are lacking. We hypothesized that electrical stimulation is a tolerable method of inducing cramps with few side effects. We measured cramp frequency (HZ), pain during electrical stimulation, and soreness before, at 5 s, and 30, 60, and 90 min after cramp induction using a 100-mm visual analog scale. Group 1 received tibial nerve stimulation on 5 consecutive days; Group 2 received it on alternate days for five total treatments. Pain and soreness were mild. The highest ratings occurred on Day 1 and decreased thereafter. Intersession reliability was high. Our study showed that electrical stimulation causes little pain or soreness and is a reliable method for inducing cramps.

  14. Electric Current Induced Light Emission from C60

    NARCIS (Netherlands)

    Palstra, T.T.M.; Haddon, R.C.; Lyons, K.B.

    1997-01-01

    We report the luminescence of C60 crystals and films due to the passage of an electrical current. The current-voltage behavior is highly non-linear with light-emission beyond a threshold voltage. The emission spectrum is featureless and resembles black-body radiation with an effective temperature on

  15. The problem of introducing an electrical current into liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Yavoyskiy, V.I.; Khanov, V.K.; Kovalev, P.I.; Povkh, I.L.

    1984-01-01

    The question of introducing an electrical current into a liquid metal by means of steel electrode plates mounted in the walls of groove fettling is examined. The contact between the electrodes and the liquid cast iron and steel was accomplished through openings in the fettling. The supply of current was accomplished through a circuit in which an electrical current, which traveled along the electrode downward and then through the openings in the fettling into the liquid metal, is fed to the upper part of the electrode. The results are of interest for studies of liquid metallic magnetohydrodynamic installations.

  16. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.

    Science.gov (United States)

    You, Mengxian; Mou, Zongxia

    2017-07-01

    This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).

  17. Is Coronal X-ray Emission Energized By Electric Currents?

    Science.gov (United States)

    Ishibashi, Kazunori; Metcalf, T.; Lites, B.

    2007-05-01

    We examine the spatial correlation between coronal X-ray emission observed with the Hinode X-Ray Telescope and electric currents observed with the Hinode Solar Optical Telescope Spectro-polarimeter. We determine to what extent the X-ray brightness is correlated with electric current density and hence to what extent the hot corona is energized by electric currents which flow through the photosphere. We will also consider whether the currents reach the corona to heat the coronal plasma or whether they predominantly close below the corona. Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, development and operation of the mission.

  18. Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation.

    Science.gov (United States)

    Forlim, Caroline Garcia; Pinto, Reynaldo Daniel; Varona, Pablo; Rodríguez, Francisco B

    2015-01-01

    In this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation. The activity-dependent stimulation protocol explores different stimulus delivery delays relative to the fish's own electric discharges. We show that there is a critical time delay in this closed-loop interaction, as the largest changes in inter pulse intervals occur when the stimulation delay is below 100 ms. We also discuss the implications of these findings in the context of information processing in weakly electric fish.

  19. Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study

    DEFF Research Database (Denmark)

    Jønsson, Iben; Hagstrøm, Søren; Siggaard, Charlotte

    Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study......Transcutaneus electrical nerve stimulation for overactive bladder increases rectal motor activity in children: a randomized controlled study...

  20. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    Science.gov (United States)

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all PStimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture.

    Science.gov (United States)

    Berger, H J; Prasad, S K; Davidoff, A J; Pimental, D; Ellingsen, O; Marsh, J D; Smith, T W; Kelly, R A

    1994-01-01

    To model with greater fidelity the electromechanical function of freshly isolated heart muscle cells in primary culture, we describe a technique for the continual electrical stimulation of adult myocytes at physiological frequencies for several days. A reusable plastic cover was constructed to fit standard, disposable 175-cm2 tissue culture flasks and to hold parallel graphite electrodes along the long axis of each flask, which treated a uniform electric field that resulted in a capture efficiency of ventricular myocytes of 75-80%. Computer-controlled amplifiers were designed to be capable of driving a number of flasks concurrently, each containing up to 4 x 10(6) myocytes, over a range of stimulation frequencies (from 0.1 to 7.0 Hz) with reversal of electrode polarity after each stimulus to prevent the development of pH gradients around each electrode. Unlike quiescent, unstimulated myocytes, the amplitude of contraction, and velocities of shortening and relaxation did not change in myocytes paced at 3-5 Hz for up to 72 h. The maintenance of normal contractile function in paced myocytes required mechanical contraction per se, since paced myocytes that remained quiescent due to the inclusion of 2.5 microM verapamil in the culture medium for 48 h also exhibited a decline in contractility when paced after verapamil removal. Similarly, pacing increased peak calcium current compared with quiescent cells that had not been paced. Thus myocyte contraction at physiological frequencies induced by continual uniform electric field stimulation in short-term primary culture in defining medium maintains some biophysical parameters of myocyte phenotype that are similar to those observed in freshly isolated adult ventricular myocytes.

  2. Novel methods to optimize the effects of transcranial direct current stimulation: a systematic review of transcranial direct current stimulation patents.

    Science.gov (United States)

    Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.

  3. Electrophysiological and morphological maturation of murine fetal cardiomyocytes during electrical stimulation in vitro.

    Science.gov (United States)

    Baumgartner, Sven; Halbach, Marcel; Krausgrill, Benjamin; Maass, Martina; Srinivasan, Sureshkumar Perumal; Sahito, Raja Ghazanfar Ali; Peinkofer, Gabriel; Nguemo, Filomain; Müller-Ehmsen, Jochen; Hescheler, Jürgen

    2015-01-01

    The aim of this study was to investigate whether continuous electrical stimulation affects electrophysiological properties and cell morphology of fetal cardiomyocytes (FCMs) in culture. Fetal cardiomyocytes at day 14.5 post coitum were harvested from murine hearts and electrically stimulated for 6 days in culture using a custom-made stimulation chamber. Subsequently, action potentials of FCM were recorded with glass microelectrodes. Immunostainings of α-Actinin, connexin 43, and vinculin were performed. Expression of ion channel subunits Kcnd2, Slc8a1, Cacna1, Kcnh2, and Kcnb1 was analyzed by quantitative reverse-transcriptase polymerase chain reaction. Action potential duration to 50% and 90% repolarization (APD50 and APD90) of electrically stimulated FCMs were significantly decreased when compared to nonstimulated control FCM. Alignment of cells was significantly higher in stimulated FCM when compared to control FCM. The expression of connexin 43 was significantly increased in stimulated FCM when compared to control FCM. The ratio between cell length and cell width of the stimulated FCM was significantly higher than in control FCM. Kcnh2 and Kcnd2 were upregulated in stimulated FCM when compared to control FCM. Expression of Slc8a1, Cacna1c, and Kcnb1 was not different in stimulated and control FCMs. The decrease in APD50 observed after electrical stimulation of FCM in vitro corresponds to the electrophysiological maturation of FCM in vivo. Expression levels of ion channels suggest that some important but not all aspects of the complex process of electrophysiological maturation are promoted by electrical stimulation. Parallel alignment, increased connexin 43 expression, and elongation of FCM are signs of a morphological maturation induced by electrical stimulation. © The Author(s) 2014.

  4. Rethinking Sediment Biogeochemistry After the Discovery of Electric Currents

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through......The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted...... from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most...

  5. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    ][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric......Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these /`cable bacteria/' establish and sustain electric...... conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total...

  6. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these /`cable bacteria/' establish and sustain electric...... conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total......][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric...

  7. Rethinking sediment biogeochemistry after the discovery of electric currents.

    Science.gov (United States)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through April 2014, with an emphasis on general trends, thought-provoking consequences, and new questions to address.

  8. Transcranial Direct Current Stimulation: Five Important Issues We Aren’t Discussing (But Probably Should Be

    Directory of Open Access Journals (Sweden)

    Jared Cooney Horvath

    2014-01-01

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulatory device often publicized for its ability to enhance cognitive and behavioral performance. These enhancement claims, however, are predicated upon electrophysiological evidence and descriptions which are far from conclusive. In fact, a review of the literature reveals a number of important experimental and technical issues inherent with this device that are simply not being discussed in any meaningful manner. In this paper, we will consider five of these topics. The first, inter-subject variability, explores the extensive between- and within-group differences found within the tDCS literature and highlights the need to properly examine stimulatory response at the individual level. The second, intra-subject reliability, reviews the lack of data concerning tDCS response reliability over time and emphasizes the importance of this knowledge for appropriate stimulatory application. The third, sham stimulation and blinding, draws attention to the importance (yet relative lack of proper control and blinding practices in the tDCS literature. The fourth, motor and cognitive interference, highlights the often overlooked body of research that suggests typical behaviors and cognitions undertaken during or following tDCS can impair or abolish the effects of stimulation. Finally, the fifth, electric current influences, underscores several largely ignored variables (such as hair thickness and electrode attachments methods influential to tDCS electric current density and flow.Through this paper, we hope to increase awareness and start an ongoing dialogue of these important issues which speak to the efficacy, reliability, and mechanistic foundations of tDCS.

  9. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability.

    Science.gov (United States)

    Bocci, Tommaso; Marceglia, Sara; Vergari, Maurizio; Cognetto, Valeria; Cogiamanian, Filippo; Sartucci, Ferdinando; Priori, Alberto

    2015-07-01

    This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.

  10. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Science.gov (United States)

    Mathur, Vinay; Tanger, Ramesh; Gupta, Arun Kumar

    2016-01-01

    Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation. PMID:27170922

  11. Succession of cable bacteria and electric currents in marine sediment

    OpenAIRE

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U.; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these ‘cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established through...

  12. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Directory of Open Access Journals (Sweden)

    Aditya Pratap Singh

    2016-04-01

    Full Text Available Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation.

  13. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    Science.gov (United States)

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  14. A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe.

    Science.gov (United States)

    Berryhill, Marian E; Wencil, Elaine B; Branch Coslett, H; Olson, Ingrid R

    2010-08-02

    The role of the posterior parietal cortex in working memory (WM) is poorly understood. We previously found that patients with parietal lobe damage exhibited a selective WM impairment on recognition but not recall tasks. We hypothesized that this dissociation reflected strategic differences in the utilization of attention. One concern was that these findings, and our subsequent interpretation, would not generalize to normal populations because of the patients' older age, progressive disease processes, and/or possible brain reorganization following injury. To test whether our findings extended to a normal population we applied transcranial direct current stimulation (tDCS) to right inferior parietal cortex. tDCS is a technique by which low electric current applied to the scalp modulates the resting potentials of underlying neural populations and can be used to test structure-function relationships. Eleven normal young adults received cathodal, anodal, or sham stimulation over right inferior posterior parietal cortex and then performed separate blocks of an object WM task probed by recall or recognition. The results showed that cathodal stimulation selectively impaired WM on recognition trials. These data replicate and extend our previous findings of preserved WM recall and impaired WM recognition in patients with parietal lobe lesions. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Semiconditional electrical stimulation of pudendal nerve afferents stimulation to manage neurogenic detrusor overactivity in patients with spinal cord injury.

    Science.gov (United States)

    Lee, Young-Hee; Kim, Jung Moon; Im, Hyung Tae; Lee, Kye-Wook; Kim, Sung Hoon; Hur, Dong Min

    2011-10-01

    To evaluate the effect of semiconditional electrical stimulation of the pudendal nerve afferents for the neurogenic detrusor overactivity in patients with spinal cord injury. Forty patients (36 males, 4 males) with spinal cord injury who had urinary incontinence and frequency, as well as felt bladder contraction with bladder filling sense or autonomic dysreflexic symptom participated in this study. Patients with neurogenic detrusor overactivity were subdivided into complete injury and incomplete injury groups by ASIA classification and subdivided into tetraplegia and paraplegia groups by neurologic level of injury. Bladder function, such as bladder volumes infused to the bladder until the first occurrence of neurogenic detrusor overactivity (V(ini)) and the last contraction suppressed by electrical stimulation (V(max)) was measured by water cystometry (CMG) and compared with the results of each subgroup. Among the 40 subjects, 35 patients showed neurogenic detrusor overactivity in the CMG study. Among these 35 patients, detrusor overactivity was suppressed effectively by pudendal nerve afferent electrical stimulation in 32 patients. The infusion volume until the occurrence of the first reflex contraction (V(ini)) was 99.4±80.3 ml. The volume of saline infused to the bladder until the last contraction suppressed by semiconditional pudendal nerve stimulation (V(max)) was 274.3±93.2 ml, which was significantly greater than V(ini). In patients with good response to the pudendal nerve afferent stimulation, the bladder volume significantly increased by stimulation in all the patients. In this study, semiconditional electrical stimulation on the dorsal penile afferent nerve could effectively inhibit neurogenic detrusor overactivity and increase bladder volume in patients with spinal cord injury.

  16. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  17. Effect of intravaginal electrical stimulation on pelvic floor muscle strength.

    Science.gov (United States)

    Amaro, João Luiz; Gameiro, Mônica Orsi; Padovani, Carlos Roberto

    2005-01-01

    The aim of this study was to evaluate the effect of intravaginal electrical stimulation (IES) on pelvic floor muscle (PFM) strength in patients with mixed urinary incontinence (MUI). Between January 2001 and February 2002, 40 MUI women (mean age: 48 years) were studied. Urge incontinence was the predominant symptom; 92.5% also presented mild stress urinary incontinence (SUI). Selection criteria were clinical history and urodynamics. Pre-treatment urodynamic study showed no statistical differences between the groups. Ten percent of the women in each group had involuntary detrusor contractions. Patients were randomly distributed, in a double-blind study, into two groups. Group G1 (n=20), effective IES, and group G2 (n=20), sham IES, with follow-up at 1 month. The following parameters were studied: (1) clinical questionnaire, (2) examiner's evaluation of perineal muscle strength, (3) objective evaluation of perineal muscle by perineometry, (4) vaginal weight test, and (5) urodynamic study. The IES protocol consisted of three 20-min sessions per week over a 7-week period using a Dualpex Uro 996 at 4 Hz. There was no statistically significant difference in the demographic data of both groups. The number of micturitions per 24 h after treatment was reduced significantly in both groups. Urge incontinence, present in all patients before treatment, was reduced to 15% in G1 and 31.5% in G2 post-treatment. The subjective evaluation of PFM strength demonstrated a significant improvement in G1. Objective evaluation of PFM force by perineometer showed a significant improvement in maximum peak contraction post-treatment in both groups. In the vaginal weight test, there was a significant increase in average number of cone retentions post-treatment in both groups. With regard to satisfaction level, after treatment, 80% of the patients in G1 and 65% of the patients in G2 were satisfied. There was no statistically significant difference between the groups. There was a significant

  18. The endogenous opioids related with antinociceptive effects induced by electrical stimulation into the amygdala.

    Science.gov (United States)

    Nakamura, Takami; Tomida, Mihoko; Yamamoto, Toshiharu; Ando, Hiroshi; Takamata, Tetsuya; Kondo, Eiji; Kurasawa, Ikufumi; Asanuma, Naokazu

    2013-01-01

    Pain relief is necessary and essential for dental treatments. Recently, the relationships of pain and emotion were studied, and electrical stimulation applied to the amygdala depressed the nociceptive response in the anterior cingulate cortex (ACC). Thus, the antinociceptive effects of the amygdala are elucidated, but its mechanism is not yet clarified. The present study was performed to investigate whether endogenous opioid system is related to the depression, and the quantitative changes of endogenous opioids induced by electrical stimulation to the amygdala. We investigated immunohistologically c-Fos expression to confirm the activated neurons, as well as the distribution and the amount of endogenous opioids (β-endorphin, enkephalin and dynorphin A) in the brain using male Wistar rats, when electrical stimulation was applied to the central nucleus of the amygdala (CeA) or noxious stimulation was delivered to the peripheral tissue. c-Fos expression in the ipsilateral ACC was increased by electrical stimulation to the CeA. However, only a small amount of endogenous opioids was observed in the ACC when noxious stimulation or electrical stimulation was applied. In contrast, the amount of dynorphin A in the periaqueductal gray (PAG) was increased by electrical stimulation to the CeA, and the amount of β-endorphin in the PAG was increased by noxious stimulation to the peripheral tissue. The results suggest that dynorphin A in the PAG induced by electrical stimulation to the CeA activate the descending antinociceptive system, and suggest that the nociceptive response in the ACC is depressed indirectly.

  19. Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Correia, L [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Salvador, R [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Basser, P J [Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD 20892-1428 (United States)

    2007-09-21

    We investigate the heterogeneity of electrical conductivity as a new mechanism to stimulate excitable tissues via applied electric fields. In particular, we show that stimulation of axons crossing internal boundaries can occur at boundaries where the electric conductivity of the volume conductor changes abruptly. The effectiveness of this and other stimulation mechanisms was compared by means of models and computer simulations in the context of transcranial magnetic stimulation. While, for a given stimulation intensity, the largest membrane depolarization occurred where an axon terminates or bends sharply in a high electric field region, a slightly smaller membrane depolarization, still sufficient to generate action potentials, also occurred at an internal boundary where the conductivity jumped from 0.143 S m{sup -1} to 0.333 S m{sup -1}, simulating a white-matter-grey-matter interface. Tissue heterogeneity can also give rise to local electric field gradients that are considerably stronger and more focal than those impressed by the stimulation coil and that can affect the membrane potential, albeit to a lesser extent than the two mechanisms mentioned above. Tissue heterogeneity may play an important role in electric and magnetic 'far-field' stimulation.

  20. Repetitive electric brain stimulation reduces food intake in humans

    National Research Council Canada - National Science Library

    Jauch-Chara, Kamila; Kistenmacher, Alina; Herzog, Nina; Schwarz, Marianka; Schweiger, Ulrich; Oltmanns, Kerstin M

    2014-01-01

    ...)) from 20 to 25 were examined during 8 d of daily tDCS or a sham stimulation. After tDCS or sham stimulation on the first and the last day of both experimental conditions, participants consumed food ad libitum from a standardized test buffet...

  1. Can preoperative electrical nociceptive stimulation predict acute pain after groin herniotomy?

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Hansen, Jeanette Birch; Kehlet, Henrik

    2008-01-01

    groin hernia repair. The correlation between the pain data for electrical stimulation was compared with the postoperative pain during the first week in 165 patients, whereof 3 were excluded. Preoperative electrical pain detection threshold and electrical pain tolerance threshold did not correlate...... to postoperative pain (rho = -0.13, P = .09, and rho = -1.2, P = .4, respectively. PERSPECTIVE: Although preoperative electrical nociceptive stimulation may predict patients at risk of high-intensity acute pain after other surgical procedures, this was not the case in groin hernia repair patients receiving...

  2. Stimulating Music: The Pleasures and Dangers of “Electric Music,” 1750–1900

    Science.gov (United States)

    Kennaway, James

    2014-01-01

    Far from being a purely modern idea, the notion of “electric music” was already common in the eighteenth and nineteenth centuries. The shift in thinking about music from cosmic harmony to nervous stimulation made metaphors and speculative theories relating music and electricity irresistible. This essay considers the development of the idea of electric music, looking at its associations with a sexual “body electric.” It will then examine how this conception of music went from being the subject of sympathy to becoming part of a medical critique of music as a dangerous stimulant, with echoes in music criticism and beyond. PMID:24587689

  3. Efeitos da estimulação com corrente elétrica contínua pulsátil sobre as propriedades eletrofisiológicas atriais: estudo experimental da fibrilação atrial em cães Effects of stimulation with pulsatile continuous electrical current on atrial electrophysiological properties: experimental study of atrial fibrillation in dogs

    Directory of Open Access Journals (Sweden)

    Dalmo Antonio Ribeiro Moreira

    2004-12-01

    Full Text Available OBJETIVO: Avaliar se a estimulação atrial com corrente elétrica contínua pulsátil induz fibrilação atrial e os seus efeitos sobre as propriedades eletrofisiológicas atriais e as alterações histológicas atriais. MÉTODOS: Foram submetidos à toracotomia lateral direita 22 cães e implantados eletrodos de marcapasso no sulcus terminalis (ST, apêndice atrial direito (ADb e na região póstero-inferior do átrio esquerdo (AE; um par de eletrodos foi suturado na auriculeta direita para estimulação com bateria alcalina de 9 Volts conectada a uma sistema (LM 555 que transforma a energia contínua linear da bateria em corrente contínua pulsátil, durante 60 min. A biópsia epicárdica atrial foi realizada antes e após a estimulação atrial. RESULTADOS: Não foram observadas diferenças nas durações dos períodos refratários efetivos atriais. Os tempos de condução intra-atrial, interatrial, bem como dos extra-estímulos atriais também prolongaram-se. A duração dos eletrogramas atriais prolongou-se durante ritmo sinusal e estimulação atrial programada; em 68% dos cães a fibrilação atrial foi induzida e sustentou-se. Foram observados edema intersticial e bandas de contração celular no subepicárdio à microscopia óptica, e intensa desorganização miofibrilar e aumento do tamanho das mitocôndrias à microscopia eletrônica. CONCLUSÃO: Esta técnica de estimulação atrial induz fibrilação atrial e provoca modificações atriais que aumentam sua vulnerabilidade para o surgimento de fibrilação atrial.OBJECTIVE: To assess whether atrial stimulation with pulsatile continuous electrical current induces atrial fibrillation and to evaluate its effects on atrial electrophysiological properties as well as the atrial histological alterations. METHODS: Twenty-two dogs underwent right lateral thoracotomy and implantation of pacemaker electrodes in the sulcus terminalis (ST, in the right atrial appendix (RAb, and in the

  4. Electrical stimulation at distinct peripheral sites in spinal nerve injured rats leads to different afferent activation profiles.

    Science.gov (United States)

    Yang, Fei; Chung, Chih-Yang; Wacnik, Paul W; Carteret, Alene F; McKelvy, Alvin D; Meyer, Richard A; Raja, Srinivasa N; Guan, Yun

    2011-11-07

    The neurophysiological basis by which neuromodulatory techniques lead to relief of neuropathic pain remains unclear. We investigated whether electrical stimulation at different peripheral sites induces unique profiles of A-fiber afferent activation in nerve-injured rats. At 4-6weeks after subjecting rats to L5 spinal nerve injury (SNL) or sham operation, we recorded the orthodromic compound action potential (AP) at the ipsilateral L4 dorsal root in response to (1) transcutaneous electrical nerve stimulation (TENS, a patch electrode placed on the dorsum of the foot), (2) subcutaneous electrical stimulation (SQS, electrode inserted subcutaneously along the dorsum of the foot), (3) peroneal nerve stimulation (PNS, electrode placed longitudinally abutting the nerve), and (4) sciatic nerve stimulation (SNS). The area under the Aα/β compound AP was measured as a function of the bipolar, constant-current stimulus intensity (0.02-6.0 mA, 0.2 ms). In both nerve-injured and sham-operated groups, the stimulus-response (S-R) functions of the Aα/β compound APs differed substantially with the stimulation site; SNS having the lowest threshold and largest compound AP waveform, followed by PNS, SQS, and TENS. The S-R function to PNS was shifted to the right in the SNL group, compared to that in the sham-operated group. The Aα/β-threshold to PNS was higher in the SNL group than in the sham-operated group. The S-R functions and Aα/β-thresholds to TENS and SQS were comparable between the two groups. Electrical stimulation of different peripheral targets induced distinctive profiles of A-fiber afferent activation, suggesting that the neuronal substrates for the various forms of peripheral neuromodulatory therapies may differ. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  6. Theoretical study of rectangular pulse electrical stimulation (RPES) onskin cells (in vivo) under conforming electrodes.

    Science.gov (United States)

    Cheng, K; Tarjan, P P; Mertz, P M

    1993-01-01

    Our previous in vivo experimental results have shown RPES can enhance skin wound healing by using conforming electrodes. Based on an equation of polarization transmembrane voltage [Cole, K. S. 1972], two equations were derived to describe the peak RPES intensity on skin cells in vivo: (1) U = 1.5 a J/sigma, (2) Jm = 1.5 a (J/sigma) (Cm/tau). Where U: polarization transmembrane voltage. a: radius (R) for spherical cells or semi-length (L) for long fibers parallel to the electrical field. J: external imposed pulse current density under the electrode. sigma: average conductivity of skin tissue. Jm: transmembrane displacement current density. Cm: membrane capacitance per unit area and tau: time constant. Calculations indicated that the sensory fibers (SF) would receive the strongest stimulation compared to other cells in skin since generally LSF > or = 100 R. The sensitivity of SF to the stimulation could enhance skin wound healing as well as protect normal skin cells from harmful electroporation. From these theoretical calculations. We proposed a theoretical range of the pulse current density as: U1 sigma/(1.5 L) < or = J < or = U2 sigma/(1.5 L), where U1 and U2 are the excitation threshold voltage (about 0.01 V) and polarization electroporation voltage (about 0.1 V) for a SF respectively, for RPES to enhance skin wound healing.

  7. Improving Myoelectric Control for Amputees through Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Pan, Lizhi; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2015-08-01

    Most prosthetic myoelectric control studies have shown good performance for unimpaired subjects. However, performance is generally unacceptable for amputees. The primary problem is the poor quality of electromyography (EMG) signals of amputees compared with healthy individuals. To improve clinical performance of myoelectric control, this study explored transcranial direct current stimulation (tDCS) to modulate brain activity and enhance EMG quality. We tested six unilateral transradial amputees by applying active and sham anodal tDCS separately on two different days. Surface EMG signals were acquired from the affected and intact sides for 11 hand and wrist motions in the pre-tDCS and post-tDCS sessions. Autoregression coefficients and linear discriminant analysis classifiers were used to process the EMG data for pattern recognition of the 11 motions. For the affected side, active anodal tDCS significantly reduced the average classification error rate (CER) by 10.1%, while sham tDCS had no such effect. For the intact side, the average CER did not change on the day of sham tDCS but increased on the day of active tDCS. These results demonstrated that tDCS could modulate brain function and improve EMG-based classification performance for amputees. It has great potential in dramatically reducing the length of learning process of amputees for effectively using myoelectrically controlled multifunctional prostheses.

  8. Enhancing the mirror illusion with transcranial direct current stimulation.

    Science.gov (United States)

    Jax, Steven A; Rosa-Leyra, Diana L; Coslett, H Branch

    2015-05-01

    Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Thermally stimulated depolarization current studies of sulfonated polystyrene ionomers

    Science.gov (United States)

    Carvalho, Antonio José Felix; Viana, Vicente Galber Freitas; Faria, Roberto Mendonça

    2009-12-01

    A detailed study of thermally stimulated depolarization current (TSDC) was carried out to investigate dipolar relaxation and the charge storage phenomenon in films of sulfonated polystyrene (SPS) ionomers having lithium or potassium as counterions. Differential scanning calorimetry measurements were also applied as a complementary technique, mainly to follow the change of the glass transition temperature with the amount of sulfonated groups. It was observed that, since the glass transition does not change significantly with the amount of sulfonated groups, a cluster of multiplets is expected not to be formed in the range used in this work. TSDC of SPS samples polarized at temperatures higher than the glass transition temperature showed three peaks: one at lower temperature (peak β), an intermediate peak (peak α), and a third that appeared at a temperature coincident with the polarization temperature (peak ρ). Quantitative information about trapping-detrapping and dipolar relaxation and their corresponding activation energies was determined by fittings of the deconvoluted peaks with kinetic relaxation processes.

  10. Thermally stimulated depolarization current studies of sulfonated polystyrene ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Antonio Jose Felix [Universidade Federal de Sao Carlos, Laboratory of Polymers and Renewable Materials, Sorocaba, SP (Brazil); Viana, Vicente Galber Freitas [Universidade Federal do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil); Faria, Roberto Mendonca [USP, Instituto de Fisica de Sao Carlos, SP (Brazil)

    2009-12-15

    A detailed study of thermally stimulated depolarization current (TSDC) was carried out to investigate dipolar relaxation and the charge storage phenomenon in films of sulfonated polystyrene (SPS) ionomers having lithium or potassium as counterions. Differential scanning calorimetry measurements were also applied as a complementary technique, mainly to follow the change of the glass transition temperature with the amount of sulfonated groups. It was observed that, since the glass transition does not change significantly with the amount of sulfonated groups, a cluster of multiplets is expected not to be formed in the range used in this work. TSDC of SPS samples polarized at temperatures higher than the glass transition temperature showed three peaks: one at lower temperature (peak {beta}), an intermediate peak (peak {alpha}), and a third that appeared at a temperature coincident with the polarization temperature (peak {rho}). Quantitative information about trapping-detrapping and dipolar relaxation and their corresponding activation energies was determined by fittings of the deconvoluted peaks with kinetic relaxation processes. (orig.)

  11. Pressure stimulated currents in rocks and their correlation with mechanical properties

    Directory of Open Access Journals (Sweden)

    I. Stavrakas

    2004-01-01

    Full Text Available The spontaneous electrification of marble samples was studied while they were subjected to uniaxial stress. The Pressure Stimulated Current (PSC technique was applied to measure the charge released from compressed Dionysos marble samples, while they were subjected to cyclic loading. The experimental results demonstrate that, in the linear elastic region of the sample, no PSC is recorded, while beyond the stress limit (s>0.60, observable variations appear, which increase considerably in the vicinity of sample failure, reaching a maximum value just before the failure. The emitted current is reduced on each loading cycle and it has a reciprocal dependence to the normalized Young modulus. The MCD model, applied out of the vicinity of sample failure explains successfully the above findings. The existence of a 'memory-like' behavior of the sample, could justify the weakness or absence of electrical earthquake precursors, during an aftershock sequence.

  12. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Török, T.; Titov, V. S.; Mikić, Z. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Archontis, V. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Linton, M. G. [U.S. Naval Research Lab, 4555 Overlook Avenue, SW Washington, DC 20375 (United States); Dalmasse, K.; Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Kliem, B. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  13. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here.

  14. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients

    DEFF Research Database (Denmark)

    Maffiuletti, Nicola A.; Roig, Marc; Karatzanos, Eleftherios

    2013-01-01

    Background: Neuromuscular electrical stimulation (NMES) therapy may be useful in early musculoskeletal rehabilitation during acute critical illness. The objective of this systematic review was to evaluate the effectiveness of NMES for preventing skeletal-muscle weakness and wasting in critically...

  15. Single Pulse Electrical Stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses

    NARCIS (Netherlands)

    Mouthaan, B.E.; van 't Klooster, M.A.; Keizer, D.; Hebbink, Gerrit Jan; Leijten, F.S.; Ferrier, C.H.; van Putten, Michel Johannes Antonius Mari