WorldWideScience

Sample records for current disposal practice

  1. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals

  2. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  3. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  4. Current status of high level radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Tanabe, Hiromi; Inagaki, Yusuke; Ishida, Hisahiro; Kato, Osamu; Kurata, Mitsuyuki; Yamachika, Hidehiko

    2002-01-01

    At a time point of 2002, there is no country actually disposing high level radioactive wastes into grounds, but in most of countries legislative preparation and practicing agents are carried out and site selection is promoted together with energetic advancement of its R and Ds. As disposal methods of the high level radioactive wastes, various methods such as space disposal, oceanic bottom disposal, ice bed disposal, ground disposal, and so on have been examined. And, a processing technology called partitioning and transmutation technology separating long-lived radionuclides from liquid high level radioactive waste and transmutation into short-lived or harmless radionuclides has also been studied. Here was introduced their wrestling conditions in Japan and main foreign countries, as a special issue of the Current status of high level radioactive waste disposal in Japan and foreign countries'. The high level radioactive wastes (glassification solids or spent nuclear fuels) are wastes always formed by nuclear power generation and establishment of technologies is an important subject for nuclear fuel cycle. (G.K.)

  5. Radioactive waste disposal : policies and practices in New Zealand

    International Nuclear Information System (INIS)

    Robertson, M.K.

    1996-01-01

    The management of radioactive waste and its ultimate dispoal have been a significant problem for the nuclear industry. A lot of resources have been devoted to developing management and dispoal systems. As well as being one of the major technical problems, it has been a very significant public relations issue. Public concern about risks associated with disposal of radioactive waste has been on a global scle. It has focused on local issues in some countries, but generl attitudes have been common worldwide. Great differences exist between countries in the scale and aspects of nuclear technoloy in use. In particular the presence or absence of a nuclear power programme, and to a lesser extent of any nuclear reactors, greatly influence the magnitude of the waste disposal problem. Nevertheless, public perceptions of the problem are to some degree independent of these differences. What radioactive wastes are there in New Zealand? Is there a hazard to the New Zealand public or the New Zealand environment from current radioactive waste disposal practices? What policies are in place to control these practices? This report seeks to provide some information on these questions. It also brings together in one document the waste disposal policies followed by the National Radiation Laboratory for different uses of radioactive mateials. Except for some small quantities which are exempt from most controls, radioactive material can be used in New Zealand only under the control of a person holding a licence under the Radiation Protection Act 1965. All requirements of the Radiation Protection Regulations 1982 must also be observed. More detailed safety advice and further mandatory requirements are contained in codes of safe practice. Compliance with one of these is a condition on most licencees. These provisions are administered by the National Radiation Laboratory (NRL) of the Ministry of Health. (author). 7 refs., 2 tabs., 1 fig

  6. Management and disposal of alpha-contaminated wastes. A survey of current practices, strategies and R and D activities in some EC countries and the USA

    International Nuclear Information System (INIS)

    Mannone, F.

    1983-01-01

    In view of the rationalization of radwaste treatment, conditioning and storage procedures so far applied at the Ispra Establishment, a survey of alpha-waste management practices and strategies currently in use or under development in some EC countries and in the USA has been carried out. In considering radwastes arising at nuclear research centres and nuclear plants, the most importance has been attached here to their alpha- rather than to their beta- or gamma-contamination degree. Various process technologiques currently practised for pre-treatment, conditioning, storage and/or disposal of alpha-waste at several European nuclear centres and plants, as well as at some US DOE laboratories, have been scrutinized, including also process operations aimed at recovering Pu, both for economical and ecological reasons. The present alpha-waste management and disposal scenario has been completed by the survey of research, development and demonstration work underway in Europe and in the USA in this field. Finally, national organizations, policies and strategies for radwastes management and disposal have been briefly outlined. As main source of information, the proceeding of several technical seminars, symposia, meetings and conferences, individually and jointly organized by the NEA (OECD), IAEA, CEC and published during about the last 20 years have been utilized. This report is intended to give the necessary background for the critical review of waste management practices so far applied at the Ispra Establisment, as well as for their possible modifications according to more up-to-date management schemes

  7. Radioactive waste disposal in Slovakia: Current practice and development

    International Nuclear Information System (INIS)

    Salzer, P.; Hanusik, V.; Ehn, L.

    2002-01-01

    The paper describes activities concerning the disposal of radioactive waste in the Slovak Republic. For disposal of the low and intermediate short-lived radioactive waste, the National radioactive waste repository Mochovce (near surface type) was put into operation in 1999. History and approaches to repository development, siting and construction are briefly described. Recent activities regarding the repository are concerning on the safety re-assessment and re-derivation of coherent waste acceptance criteria, studies of repository covering and possible enlargement. In the second part, attention is given to the Slovak deep geological repository development programme, which has been under way since 1996. Most of the results were obtained from the siting part of the programme, where four localities (six sites) were identified as prospective for next investigation. The paper also gives an overview on next two routes of deep repository development programme: studies resulted later in performance assessment and general activities, i.e. design studies, analysis of legislative and infrastructure conditions, planning and evaluation of works. (author)

  8. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  9. Perspectives on past and present waste disposal practices: a community-based participatory research project in three Saskatchewan first nations communities.

    Science.gov (United States)

    Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita

    2011-04-28

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities.

  10. Public practice regarding disposal of unused medicines in Ireland.

    Science.gov (United States)

    Vellinga, Akke; Cormican, Sarah; Driscoll, Jacqueline; Furey, Michelle; O'Sullivan, Mai; Cormican, Martin

    2014-04-15

    Over recent years, a global increase in the use of pharmaceutical products has been observed. EU directives state that "Member states shall ensure that appropriate collection systems are in place for medicinal products that are unused or have expired" (Directive 2001/83/EC and Directive 2004/27/EC). There is no published data on how people in Ireland dispose of unused medicines; therefore the purpose of this study is to establish baseline information on storage and disposal of medicines. Data was collected over two 2-week periods a year apart. People in the streets of Galway and Cork were approached randomly and invited to participate by filling out a questionnaire. The questionnaire was completed by 398 individuals (207 in Galway and 191 in Cork). Unused medicines were kept in the home by 88% of the respondents. The most cited reason for keeping unused medicines was "in case they are needed later" (68%). Of the respondents who had disposed of medicine in the past, 72% had done so inappropriately. Environmentally inappropriate disposal methods were through general waste disposal and via the sewage system. Interestingly, of the people who had received advice on disposal practices from a healthcare professional, 75% disposed of their medicine appropriately. There is little awareness among members of the public regarding appropriate ways to dispose of unused medicines. Our findings suggest that effective communication and established protocols will promote appropriate disposal practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Optimization of uranium mill tailings disposal practices

    International Nuclear Information System (INIS)

    Richardson, Allan C.B.; Rowe, William D.

    1984-01-01

    So far as we have been to discern, no uranium mill tailings pile has yet been properly stabilized for long-term disposal. And although considerable effort is now being directed at developing practical solutions and at establishing standards for permanent disposal, the difficulties in application are diverse. They arise from the variety of environments in which milling is conducted, the significant costs associated with disposing of the large volumes of materials involved, the diverse nature of the hazards to be protected against, and uncertainties in both performance of controls and in how to determine societal responsibilities for management of the long term hazards to human populations from uranium tailings. There are 24 uranium tailings piles in the United States which no longer have responsible owners, and must now be disposed of by the U.S. Government in order to protect public health

  12. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    Directory of Open Access Journals (Sweden)

    Rebecca Zagozewski

    2011-01-01

    Full Text Available The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities.

  13. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  14. International low level waste disposal practices and facilities

    International Nuclear Information System (INIS)

    Nutt, W.M.

    2011-01-01

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  15. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  16. Perspectives on past and Present Waste Disposal Practices: A community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    OpenAIRE

    Rebecca Zagozewski; Ian Judd-Henrey; Suzie Nilson; Lalita Bharadwaj

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatche...

  17. Perspectives on Past and Present Waste Disposal Practices: A Community-Based Participatory Research Project in Three Saskatchewan First Nations Communities

    OpenAIRE

    Rebecca Zagozewski; Ian Judd-Henrey; Suzie Nilson; Lalita Bharadwaj

    2011-01-01

    The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatche...

  18. Waste reuse and disposal practices in milk production in Paraná

    Directory of Open Access Journals (Sweden)

    Ferenc Istvan Bánkuti

    2012-12-01

    Full Text Available Brazil is among the six largest producers of milk cow in the world. In 2010, Brazilian milk production reached 30.7 billion liters, corresponding to 4.8% of total world production, according to official data from IBGE. As stated by an IPARDES report in 2010, Paraná state has 114,488 milk producers, being responsible for an increased production of 71% between 1997 and 2006. Besides such remarkable figures, there are still important challenges to be surpassed in milk chain, which includes environmental adequation of livestock production. According to a study published by Banco do Brasil Foundation and Interamerican Institute for Agricultural Cooperation – IICA in 2010, social and environmental sustainability are among factors restricting milk chain competitiveness. The aim of this paper is to verify waste reuse and disposal in dairy cattle farming in Paraná. Methodological procedures in this research comprised: (a literature review on milk agribusiness system and environmental adequation; (b formulation of semi-structured questionnaires, including questions about environmental practices in 2011; (c data analysis through descriptive statistics. Random sampling included milk producers in Santa Izabel do Oeste and Marechal Candido Rondon, in southwestern Paraná. Eighty producers were interviewed, equally sampled in both places, resulting in 79 valid interviews. As results, 79.4% of milk producers informed they have day-to-day practices to reuse wastes internally produced in farming. Main practice highlighted was the use of manure waste in agriculture. Only one producer in the sample adopted the use of poultry manure. Considering correct disposal of pesticide packaging, 84.4% of producers are in accordance to legal requirements; 10.1% of total interviewed producers do not follow legal requirement for packaging disposal, and 5% do not use pesticides at all, so not being concerned to that practice. Concerning appropriate disposal of medical

  19. Knowledge and practice of sewage disposal in Abattoir community ...

    African Journals Online (AJOL)

    Knowledge and practice of sewage disposal in Abattoir community of Jos South LGA, Plateau State, Nigeria. ... Conclusion: Despite the commendable findings in this community, the community is still at risk due to the poor practices of a few that were persisting in the community. Both government and community efforts are ...

  20. Current R and D Status on High-Level Radioactive Waste Disposal in Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Hwang, Yong Soo

    2008-11-15

    Current R and D status of such countries moving forward as the United States, Sweden, France, Japan and a few other countries for high-level radioactive waste (HLW) disposal in deep geological formation has been reviewed. Even though no HLW repositories have not practically constructed nor operated yet, lots of related R and D are being proceeded in many countries as well as in Korea. Through this brief review further progress is anticipated in this related R and D area in Korea.

  1. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    Science.gov (United States)

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  2. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    Science.gov (United States)

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  3. KS 2031 Radioactive waste - Disposal by the user - Code of practice

    International Nuclear Information System (INIS)

    Mayaka, Edward E.

    2017-01-01

    Sources of ionizing radiation are widely used in Medicine, Agriculture, Industry, Research and Education, and Security checks. The purpose of this code of practice is to recommend practices which are helpful in achieving the ALARA principle for small quantities of radioactive waste and which will ensure a degree of uniformity in radioactive waste disposal procedures. It has been prepared to supplement the radiation control legislation implemented by the Radiation Protection Board. It is possible to carry out a formal radiological hazard assessment of any proposed radioactive waste disposal activity that provides estimates of the risk to a population that is potentially exposed to ionising radiation as a result of the activity

  4. The land disposal of organic materials in radioactive wastes: international practice and regulation

    International Nuclear Information System (INIS)

    Hooper, A.J.

    1988-01-01

    World-wide practice and regulation with regard to organic materials in radioactive wastes for land disposal have been examined with a view to establishing, where possible, their scientific justification and their relevance to disposal of organic-bearing wastes in the UK. (author)

  5. Disposal practices of unused and expired pharmaceuticals among general public in Kabul

    Directory of Open Access Journals (Sweden)

    Mohammad Bashaar

    2017-01-01

    Full Text Available Abstract Background Most of the medicine users remain unaware about the disposal of unused or expired medicines. The aim of this study was to know the disposal practices of unused and expired medicines among the general public in Kabul. Methods This was a descriptive, cross-sectional survey, conducted through face-to-face interviews using prevalidated structured questionnaire. Returned questionnaires were double-checked for accuracy. Statistical Package for Social Science (SPSS version 23 was used for statistical analysis. Results Total of 301 valid questionnaires were returned with a response rate of 100% in which 73.4% men and 26.6% women participated. More than half of the respondents were university graduates. Interestingly, 83.4% of the interviewees purchased medicines on the prescription of which 47.2% were university graduates, while 14.6% purchased medicine over the counter. Among the respondents, 46.5/100 purchased antibiotics and the remaining purchased NSAIDs, anti-hypertensive and anti-diabetic medicines. Significantly, 97/100 checked the expiry date of medicine before buying. Majority (95.3% of the respondents’ stored medicines at home. 77.7% of the respondents discarded the expired medicines in household trash. Majority of respondents held government responsible for creation of awareness for proper medicine disposal. Almost entire sample (98% felt that improper disposal of unused and expired medicines can affect the environment and health. Conclusion Gaps exist in practices, therefore robust, safe and cost-effective pharmaceutical waste management program supported with media campaign is needed. Healthcare practitioners and community pharmacists should offer training to educate customers on standard medicine disposal practices.

  6. Disposal practices of unused and expired pharmaceuticals among general public in Kabul.

    Science.gov (United States)

    Bashaar, Mohammad; Thawani, Vijay; Hassali, Mohamed Azmi; Saleem, Fahad

    2017-01-07

    Most of the medicine users remain unaware about the disposal of unused or expired medicines. The aim of this study was to know the disposal practices of unused and expired medicines among the general public in Kabul. This was a descriptive, cross-sectional survey, conducted through face-to-face interviews using prevalidated structured questionnaire. Returned questionnaires were double-checked for accuracy. Statistical Package for Social Science (SPSS) version 23 was used for statistical analysis. Total of 301 valid questionnaires were returned with a response rate of 100% in which 73.4% men and 26.6% women participated. More than half of the respondents were university graduates. Interestingly, 83.4% of the interviewees purchased medicines on the prescription of which 47.2% were university graduates, while 14.6% purchased medicine over the counter. Among the respondents, 46.5/100 purchased antibiotics and the remaining purchased NSAIDs, anti-hypertensive and anti-diabetic medicines. Significantly, 97/100 checked the expiry date of medicine before buying. Majority (95.3%) of the respondents' stored medicines at home. 77.7% of the respondents discarded the expired medicines in household trash. Majority of respondents held government responsible for creation of awareness for proper medicine disposal. Almost entire sample (98%) felt that improper disposal of unused and expired medicines can affect the environment and health. Gaps exist in practices, therefore robust, safe and cost-effective pharmaceutical waste management program supported with media campaign is needed. Healthcare practitioners and community pharmacists should offer training to educate customers on standard medicine disposal practices.

  7. Code of practice for the disposal of radioactive waste by the user

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Code is to recommend practices for the Safe disposal of small quantities of radioactive waste so that the exposure of persons to radiation is as low as reasonably achievable and below prescribed limits. The areas covered are: radiological hazard assessments; waste forms; responsibilities of statutory authorities, users and tip and incinerator operators; transport of radioactive waste; mechanisms of disposal, including municipal tips, incineration, sewerage, disposal to the atmosphere and interim storage. Guidelines are given for the packaging and transport of radioactive waste

  8. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  9. U.S. policy and current practices for blending low-level radioactive waste for disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-09-15

    In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented.

  10. U.S. policy and current practices for blending low-level radioactive waste for disposal

    International Nuclear Information System (INIS)

    Kessel, David S.; Kim, Chang Lak

    2016-01-01

    In the near future, many countries, including the Republic of Korea, will face a significant increase in low level radioactive waste (LLW) from nuclear power plant decommissioning. The purpose of this paper is to look at blending as a method for enhancing disposal options for low-level radioactive waste from the decommissioning of nuclear reactors. The 2007 U.S. Nuclear Regulatory Commission strategic assessment of the status of the U.S. LLW program identified the need to move to a risk-informed and performance-based regulatory approach for managing LLW. The strategic assessment identified blending waste of varying radionuclide concentrations as a potential means of enhancing options for LLW disposal. The NRC's position is that concentration averaging or blending can be performed in a way that does not diminish the overall safety of LLW disposal. The revised regulatory requirements for blending LLW are presented in the revised NRC Branch Technical Position for Concentration Averaging and Encapsulation (CA BTP 2015). The changes to the CA BTP that are the most significant for NPP operation, maintenance and decommissioning are reviewed in this paper and a potential application is identified for decommissioning waste in Korea. By far the largest volume of LLW from NPPs will come from decommissioning rather than operation. The large volumes in decommissioning present an opportunity for significant gains in disposal efficiency from blending and concentration averaging. The application of concentration averaging waste from a reactor bio-shield is also presented

  11. Child feces disposal practices in rural Orissa: a cross sectional study.

    Directory of Open Access Journals (Sweden)

    Fiona Majorin

    Full Text Available BACKGROUND: An estimated 2.5 billion people worldwide lack access to improved sanitation facilities. While large-scale programs in some countries have increased latrine coverage, they sometimes fail to ensure optimal latrine use, including the safe disposal of child feces, a significant source of exposure to fecal pathogens. We undertook a cross-sectional study to explore fecal disposal practices among children in rural Orissa, India in villages where the Government of India's Total Sanitation Campaign had been implemented at least three years prior to the study. METHODS AND FINDINGS: We conducted surveys with heads of 136 households with 145 children under 5 years of age in 20 villages. We describe defecation and feces disposal practices and explore associations between safe disposal and risk factors. Respondents reported that children commonly defecated on the ground, either inside the household (57.5% for pre-ambulatory children or around the compound (55.2% for ambulatory children. Twenty percent of pre-ambulatory children used potties and nappies; the same percentage of ambulatory children defecated in a latrine. While 78.6% of study children came from 106 households with a latrine, less than a quarter (22.8% reported using them for disposal of child feces. Most child feces were deposited with other household waste, both for pre-ambulatory (67.5% and ambulatory (58.1% children. After restricting the analysis to households owning a latrine, the use of a nappy or potty was associated with safe disposal of feces (OR 6.72, 95%CI 1.02-44.38 though due to small sample size the regression could not adjust for confounders. CONCLUSIONS: In the area surveyed, the Total Sanitation Campaign has not led to high levels of safe disposal of child feces. Further research is needed to identify the actual scope of this potential gap in programming, the health risk presented and interventions to minimize any adverse effect.

  12. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  13. Current status and new trends in the methodology of safety assessment for near surface disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Danchiv, Alexandru

    2008-01-01

    The main goal of this paper is to present the status of the safety assessment methodology at the end of IAEA CRP 'Application of Safety Assessment Methodology for Near-Surface Radioactive Waste Disposal Facilities (ASAM)', and the new trends outlined at the launch of the follow-up project 'Practical Implementation of Safety Assessment Methodologies in a Context of Safety Case of Near-Surface Facilities (PRISM)'. Over the duration of the ASAM project, the ISAM methodology was confirmed as providing a good framework for conducting safety assessment calculations. In contrast, ASAM project identified the limitations of the ISAM methodology as currently formulated. The major limitations are situated in the area of the use of safety assessment for informing practical decisions about alternative waste and risk management strategies for real disposal sites. As a result of the limitation of the ISAM methodology, the PRISM project is established as an extension of the ISAM and ASAM projects. Based on the outcomes of the ASAM project, the main objective of the PRISM project are: 1 - to develop an overview of what constitutes an adequate safety case and safety assessment with a view to supporting decision making processes; 2 - to provide practical illustrations of how the safety assessment methodology could be used for addressing some specific issues arising from the ASAM project and national cases; 3 - to support harmonization with the IAEA's international safety standards. (authors)

  14. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  15. Disposal practices of unused and expired pharmaceuticals among general public in Kabul

    OpenAIRE

    Bashaar, Mohammadk; Thawani, Vijay; Hassali, Mohamed Azmi; Saleem, Fahad

    2017-01-01

    Abstract Background Most of the medicine users remain unaware about the disposal of unused or expired medicines. The aim of this study was to know the disposal practices of unused and expired medicines among the general public in Kabul. Methods This was a descriptive, cross-sectional survey, conducted through face-to-face interviews using prevalidated structured questionnaire. Returned questionnaires were double-checked for accuracy. Statistical Package for Social Science (SPSS) version 23 wa...

  16. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  17. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  18. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  19. The effect of young children's faeces disposal practices on child growth: evidence from 34 countries.

    Science.gov (United States)

    Bauza, Valerie; Guest, Jeremy S

    2017-10-01

    To characterize the relationship between child faeces disposal and child growth in low- and middle-income countries. We analysed caregiver responses and anthropometric data from Demographic and Health Surveys (2005-2014) for 202 614 children under five and 82 949 children under two to examine the association between child faeces disposal and child growth. Child faeces disposal in an improved toilet was associated with reduced stunting for children under five [adjusted prevalence ratio (aPR) = 0.90, 95% confidence interval (CI) 0.89-0.92] and a 0.12 increase in height-for-age z-score (HAZ; 95% CI: 0.10-0.15) among all households. Among households with improved sanitation access, practicing improved child faeces disposal was still associated with a decrease in stunting (aPR = 0.94, 95% CI: 0.91-0.96) and a 0.09 increase in HAZ (95% CI: 0.06-0.13). Improved child faeces disposal was also associated with reductions in underweight and wasting, and an increase in weight-for-age z-score (WAZ), but not an increase in weight-for-height z-score (WHZ). Community coverage level of improved child faeces disposal was also associated with stunting, with 75-100% coverage associated with the greatest reduction in stunting. Child faeces disposal in an unimproved toilet was associated with reductions in underweight and wasting, but not stunting. Improved child faeces disposal practices could achieve greater reductions in child undernutrition than improving toilet access alone. Additionally, the common classification of child faeces disposal as 'safe' regardless of the type of toilet used for disposal may underestimate the benefits of disposal in an improved toilet and overestimate the benefits of disposal in an unimproved toilet. © 2017 John Wiley & Sons Ltd.

  20. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Waste Acceptance Criteria. The disposal operations previously mentioned take place at the NTS in two disposal facilities. The isolation protection and overall performance of the two LLW disposal facilities at the NTS transcend those of any federal radioactive waste disposal site in the United States. The first of the two disposal sites is the Area 5 Radioactive Waste Management Site (RWMS) which is situated on alluvial fan deposits in the Frenchman Flat basin, approximately 770 feet (235 meters) above the water table. The Area 5 RWMS utilizes a combination of engineered shallow land disposal cells and deep augured shafts for the disposal of a variety of waste streams. Fifteen miles (24 kilometers) north of the Area 5 RWMS is the Area 3 RWMS located approximately 1,600 feet (488 meters) above the water table in Yucca Flat. Disposal activities at the Area 3 RWMS center around the placement of bulk LLW in subsidence craters formed from underground testing of nuclear weapons. Native alluvium soil is used to cover waste placed in the disposal cells at both facilities. In addition, information on the technical attributes, facility performance, updates on waste disposal volumes and capabilities, and current and future disposal site requirements will also be described. (authors)

  1. A review of the justification for exemption orders, and for other low-level radioactive waste disposal practices

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Sweeney, B.J.

    1987-04-01

    The historical background and philosophy underlying the Radioactive Substances Act (RSA) and the system of Authorisation and Exemption is examined and the radiological protection criteria contemporary with the introduction of the RSA and those now current are reviewed. The potential radiological impact (maximum individual doses and collective doses to disposal workers and to members of the public) from ''dustbin limit'' disposals, special precautions burial, disposal of demolition wastes, incineration of H-3 and C-14 and from disposals under each of the current Exemption Orders with waste disposal implications are calculated. (author)

  2. Radioactive waste sea disposal practices and the need for international regulations

    International Nuclear Information System (INIS)

    Reyners, P.

    1975-01-01

    Radioactive waste is mainly disposed of as liquid releases in coastal waters or as solid wastes dumped in the high seas. The Geneva Convention on the high seas which lays down that Contracting States should not, by unilateral measures, pollute the seas by dumping radioactive wastes, and Article 37 of the Euratom Treaty on the Commission's control over radioactive waste disposal plans by Member States constitute the principal legal basis for such activities at international level. The competent international organisations, IAEA and the OECD Nuclear Energy Agency (NEA), have both made detailed studies on the scientific, technical and legal aspects of sea disposal of radioactive wastes. Following consideration of the possibilities of waste dumping in the Atlantic and the related hazard assessment, at its Member State's request, NEA in 1967 undertook an initial experimental packaged waste disposal operation in the high seas. This operation's technical success encouraged Member States to undertake further operations in subsequent years under NEA international control. At present, in view of the entry into force of the London Convention on prevention of marine pollution by dumping of wastes, it seems desirable that the international character of such operations be preserved and all countries concerned be encouraged to adopt an international code of practice for sea disposal of radioactive wastes [fr

  3. A review of the disposal of miscellaneous radioactive wastes in the United Kingdom

    International Nuclear Information System (INIS)

    Hookway, B.

    1980-01-01

    Current practices in the United Kingdom for waste disposal from ''minor users'' of radioactive materials are reviewed. The regulation of the disposal of solid, liquid and airborne wastes is discussed. (H.K.)

  4. Waste management and disposal in Czechoslovakia: Practices and proposals

    International Nuclear Information System (INIS)

    Marek, J.

    1984-01-01

    An overview is presented on the actual practices and planning for the management of radioactive wastes in Czechoslovakia. Types and specific arisings of wastes, applied immobilization processes, and the planning for disposal of reactor wastes are outlined. A comprehensive R and D programme is focussed on the management of reactor wastes, as the spent fuel is returned to the Sovjet Union after a 10 year cooling time. (orig.)

  5. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    This study examines the patterns and correlations of solid waste disposal practices among households in urbanized and populated Dar es Salaam city in Tanzania. The Tanzanian Household Budget Survey (HBS) data covering many households' characteristics was used. Multinomial Logit (MNL) model was applied to ...

  6. Patients’ Knowledge of and Practices Relating to the Disposal of Used Insulin Needles

    Directory of Open Access Journals (Sweden)

    Kerri T. Musselman, PharmD

    2010-01-01

    Full Text Available Objective: To determine (1 how patients currently dispose of used insulin needles, (2 whether patients were educated about disposal of their used insulin needles, and (3 who educated patients about the disposal of their used insulin needles.Methods: A self-administered questionnaire was designed for this study. The survey assessed patient knowledge about disposal of used insulin needles and the patient-reported source and location of education about disposal techniques. The questionnaire was administered to a convenience sample of patients from four locations in Richmond, Virginia. Any patient who used insulin, was at least 18 years old, and was willing to complete the survey was eligible for inclusion.Results: Fifty responses were received with 40% indicating that education had been received on the disposal of used needles. From that 40%, nurses were identified as the source of education 60% of the time and pharmacists 25% of the time. Approximately 50% of the respondents reported disposing of used needles directly in the trash when at home. While away from home, 22% reported placing used needles in the trash, and 38% took them home for disposal.Conclusion: Patients are not consistently educated regarding the proper disposal of used needles. Health care practitioners should play a larger role in educating patients about the potential risks of inappropriate needle disposal and appropriate disposal methods. Future research is still needed to understand fully the magnitude of the problems associated with inappropriate needle disposal by patients.

  7. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  8. Knowledge and Self-Reported Practice of Insulin Injection Device Disposal among Diabetes Patients in Gondar Town, Ethiopia: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Abebe Basazn Mekuria

    2016-01-01

    Full Text Available Background. Incorrect sharp disposal practices may expose the public to needle-stick injuries. The present study aimed at assessing the knowledge and practice of diabetic patients towards insulin injection device disposal in Gondar town, Ethiopia. Methods. A cross-sectional study was employed on insulin requiring diabetes patients who visited the diabetes clinic at Gondar University Referral Hospital (GURH from February 1 to March 28, 2016. Frequencies, percentages, and ANOVA (analysis of variance and Student’s t-test were used to analyze variables. Results. About half of the participants (49.5% had poor knowledge towards safe insulin injection waste disposal. More than two-thirds (80.7% of respondents had poor practice and 64.3% of respondents did not put insulin needle and lancets into the household garbage. 31% of respondents threw sharps on street when they travel outside. Respondents living in urban areas had a higher mean of knowledge and practice score than those who live in rural area. Conclusions. This study revealed that knowledge and practice of diabetic patients were low towards safe insulin injection waste disposal in study area. Healthcare providers should also be aware of safe disposing system and counsel patients on appropriate disposal of used syringes.

  9. Oil-tanker waste-disposal practices: A review

    International Nuclear Information System (INIS)

    1992-01-01

    In the spring of 1991, the Environmental Protection Agency, Region 10 (EPA), launched an investigation into tanker waste disposal practices for vessels discharging ballast water at the Alyeska Pipeline Services Company's Ballast Water Treatment (BWT) facility and marine terminal in Valdez, Alaska. It had been alleged that the Exxon Shipping Company was transferring 'toxic wastes originating in California' to Valdez. In response, EPA decided to examine all waste streams generated on board and determine what the fate of these wastes were in addition to investigating the Exxon specific charges. An extensive Information Request was generated and sent to the shipping companies that operate vessels transporting Alaska North Slope Crude. Findings included information on cargo and fuel tank washings, cleaning agents, and engine room waste

  10. Knowledge and practices about hospital waste disposal and universal safety precautions in class IV employee.

    Science.gov (United States)

    Megha, Khobragade; Daksha, Pandit

    2013-01-01

    Norms and guidelines are formed for safe disposal of hospital waste but question is whether these guidelines are being followed and if so, to what extent. Hence, this study was conducted with objective to study the knowledge and practices about hospital waste disposal and universal safety precautions in class IV employee and to study its relationship with education, occupation and training. A cross-sectional study was carried out in a teaching hospital in Mumbai using semi-structured questionnaire in which Class IV employee were included. Questionnaire was filled by face to face interview. Data were analyzed using SPSS. 48.7% Class IV employee were not trained. More than 40% were following correct practices about disinfection of infectious waste. None of the respondents were using protective footwear while handling hospital waste. Only 25.5% were vaccinated for hepatitis B. 16% had done HIV testing due to contact with blood, body fluid, needle stick injury. Knowledge and practices about hospital waste disposal and universal precaution were statistically significant in trained respondents. Training of employees should be given top priority; those already in service should be given on the job training at the earliest.

  11. A summary of radiological waste disposal practices in the United States and the United Kingdom - 16379

    International Nuclear Information System (INIS)

    Maranville, Victoria M.; McGrath, Richard

    2009-01-01

    A systematic review of near-surface repositories for radioactive waste in the United States (US) was conducted. The main focus of the review consisted of a literature search of available documents and other published sources on low level radioactive waste (LLRW) disposal practices, remediation of LLRW sites in the US, and public participation for remediation efforts of near-surface radiological waste disposal sites in the US. This review was undertaken to provide background information in support of work by the United Kingdom's (UK) Low Level Waste Repository (LLWR) and to aid in optimizing the future management of this site. The review contained a summary of the US and UK radiological waste classification requirements including a discussion of the waste types, disposal requirements, and the differences between US and UK disposal practices. A regulatory overview and evolution of regulatory requirements in the US is presented. The UK regulatory environment is also discussed and contrasted to the US process. The public participation, as part of the US regulatory process, is provided and the mechanism for stakeholder identification and involvement is detailed. To demonstrate how remediation of radiologically impacted sites is implemented in the US, existing US case studies, in which remediation activities were carried out, were reviewed. The following information was compiled: type of wastes disposed of to US shallow ground facilities [with comparison with UK classifications], facility designs (with special emphasis on those directly comparable to the subsurface conditions in the UK), and deficiencies identified in operation or in demonstrating safe post closure; and processes and difficulties in remedial actions encountered at the selected sites. Stakeholder involvement is discussed within the case studies. Publicly available information related to radiological waste management and disposal practices were reviewed. Two sites are presented in this publication for

  12. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    International Nuclear Information System (INIS)

    Lau, Winifred Ka-Yan; Chung, Shan-Shan; Zhang, Chan

    2013-01-01

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced

  13. A material flow analysis on current electrical and electronic waste disposal from Hong Kong households

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Winifred Ka-Yan [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Chung, Shan-Shan, E-mail: sschung@hkbu.edu.hk [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Zhang, Chan [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2013-03-15

    Highlights: ► Most household TWARC waste is sold directly to private e-waste collectors in HK. ► The current e-waste recycling network is popular with HK households. ► About 80% of household generated TWARC is exported overseas each year. ► Over 7000 tonnes/yr of household generated TWARC reach landfills. ► It is necessary to upgrade safety and awareness in HK’s e-waste recycling industry. - Abstract: A material flow study on five types of household electrical and electronic equipment, namely television, washing machine, air conditioner, refrigerator and personal computer (TWARC) was conducted to assist the Government of Hong Kong to establish an e-waste take-back system. This study is the first systematic attempt on identifying key TWARC waste disposal outlets and trade practices of key parties involved in Hong Kong. Results from two questionnaire surveys, on local households and private e-waste traders, were used to establish the material flow of household TWARC waste. The study revealed that the majority of obsolete TWARC were sold by households to private e-waste collectors and that the current e-waste collection network is efficient and popular with local households. However, about 65,000 tonnes/yr or 80% of household generated TWARC waste are being exported overseas by private e-waste traders, with some believed to be imported into developing countries where crude recycling methods are practiced. Should Hong Kong establish a formal recycling network with tight regulatory control on imports and exports, the potential risks of current e-waste recycling practices on e-waste recycling workers, local residents and the environment can be greatly reduced.

  14. Current status of the Demonstration Test of Underground Cavern-Type Disposal Facilities

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2011-01-01

    In Japan, the underground cavern-type disposal facilities for low-level waste (LLW) with relatively high radioactivity, mainly generated from power reactor decommissioning, and for certain transuranic (TRU) waste, mainly from spent fuel reprocessing, are designed to be constructed in a cavern 50-100 m underground and to employ an engineered barrier system (EBS) made of bentonite and cement materials. To advance a disposal feasibility study, the Japanese government commissioned the Demonstration Test of Underground Cavern-Type Disposal Facilities in fiscal year (FY) 2005. Construction of a full-scale mock-up test facility in an actual subsurface environment started in FY 2007. The main test objective is to establish the construction methodology and procedures that ensure the required quality of the EBS on-site. A portion of the facility was constructed by 2010, and the test has demonstrated both the practicability of the construction and the achievement of quality standards: low permeability of less than 5x10 -13 m/s and low-diffusion of less than 1x10 -12 m 2 /s at the completion of construction. This paper covers the test results from the construction of certain parts using bentonite and cement materials. (author)

  15. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  16. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  17. Current practices of construction waste reduction through 3R practice among contractors in malaysia: Case study in penang

    Science.gov (United States)

    Ng, L. S.; Tan, L. W.; Seow, T. W.

    2017-11-01

    The effectiveness of the implementation of construction waste reduction through 3R reflects the sustainability in construction waste management. Weak implementation of construction waste reduction through 3R among contractors will lead to unsustainable construction waste management. Increase in construction waste on landfills is critical especially on islands where land is very limited for solid waste disposal. This aim of this paper is to investigate current practice of construction waste reduction through 3R practice among contractors in Penang, Malaysia. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 in Penang and experts from Penang Local Authority, CIDB in Penang and its Headquarters, National Solid Waste Management Department, and Headquarters of Solid Waste and Public Cleansing Management Corporation. Interviews and questionnaire surveys have been found that 3R practice is not mandatory in construction waste management in Penang. Only 39.8% construction contractors practiced 3R in managing their waste. Therefore, 3R practices should be emphasized in construction industry. Reducing wastes through 3R practices in construction industry is a way forward towards sustainable construction waste management especially in expanding the lifetime of landfill.

  18. Principal prerequisites and practice for using deep aquifers for disposal of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1977-01-01

    One of the most promising methods of safe disposal of liquid radioactive wastes in the USSR is the creation of storage places in deep aquifers in zones of stagnant regime or the slow exchange of underground water. The results of investigations and disposal practices testify to the safety and efficiency of such a method of final waste disposal which fulfils the main requirements for protecting the environment. Geological formations and stratum-collectors may be studied and selected to secure localization of liquid radioactive wastes injected into them for many tens and even hundreds of thousand years. The main requirements and criteria which must be met by geological structures and stratum-collectors to ensure safe disposal of wastes are formulated. Waste disposal is realized only after a thorough scientific appreciation of health and safety of present and future generations with regard to the regime of disposal and physico-chemical processes depending on the compatibility of the wastes with rocks and stratal waters as well as on the period of time of waste exposure up to the maximum permissible concentrations. Positive and negative factors of the method are analysed. Methods of preparing waste for disposal and chemical methods of restoring the response of the holes, ways of effective remote control of disposal and environment, etc., are briefly discussed. The results of 10-12 years experimental and industrial exploitation of storage places for liquid radioactive wastes of low- and medium-level activity are presented. The results of enlarged field tests on disposal of high-level activity liquid wastes are described. Preliminary prediction calculations are shown to be confirmed with sufficient accuracy by the data on exploitation. (author)

  19. Determining ''Best Practicable Environmental Options'' for final waste disposal of radioactive waste

    International Nuclear Information System (INIS)

    Smith, Graham

    1999-01-01

    This presentation discusses some ideas on what the Best Practical Environmental Option (BPEO) process should include. A BPEO study to help develop a radioactive waste management strategy should not only look at post-closure safety of a facility. In the UK there was a 1986 Study of BPEOs for management of low and intermediate level radioactive wastes. This study tried to answer important questions such as (1) What are the practical options, (2) Which wastes should go to shallow burial, (3) Which wastes should go to sea disposal, (4) How does storage compare with disposal and (5) What are the cost and environmental trade-offs. The presentation discusses what was done to answer the questions. The BPEO Study resulted in major improved effort to characterise waste, much greater quantitative understanding of where and when the real costs, and environmental and radiological impacts arise. All options would be useful within a national strategy. But there was clearly a need for resolution of political acceptance problems, integration of policy with other hazardous waste management, and stronger legal framework

  20. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  1. Statutory compliance in assets disposal practices in the public sector: Evidence from Ghana

    Directory of Open Access Journals (Sweden)

    Oswald Atiga

    2015-03-01

    Full Text Available Background: This article examined the unserviceable assets disposal practices of five polytechnics (tertiary educational institutions in Ghana. Objectives: The aim was to determine the extent of statutory compliance, and the degree to which value for money was achieved in actual disposal. Method: A survey was conducted using interviewer-administered questionnaires containing five-point likert scale test items. Descriptive statistics and a one-way analysis of variance (ANOVA were employed to analyse the data. Results: The study results showed that a limited number of polytechnics had internal policies to operationalise statutory procurement legislation. Top management demonstrated very clear understanding of procurement legislation whilst senior-level managers displayed mixed levels of understanding. The section of the legislation dealing with disposals and the procedures pertaining thereto is perceived to be difficult to implement and does not promote value for money. Top management’s interference in auctions was the toughest challenge in the process, whilst public auction was the predominant method used in assets disposal. Research limitations: The research was carried out in only five polytechnics. This study could be replicated in other tertiary institutions or in other sectors outside higher education.

  2. Siting history and current construction status of disposal facility for low and intermediate level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Kikuchi, Saburo; Maruyama, Masakatsu

    2008-01-01

    Korean government decided disposal site for low and intermediate level radioactive waste (LILW), which is located at coastal area near the Wolsong nuclear power plants in Gyeong-Ju city in December. 2005, based on the result of votes of residents in four candidate sites. Since then, Korea Hydro and Nuclear Power Co., Ltd (KHNP), which is the management company of the LILW disposal facility, has carried out the preparation for construction of disposal facility and its licensing process. At the first phase, 100 thousand drums in 200 liter are planned to be disposed of in the rock cavern type disposal facility located at the depth from 80m to 130m below the sea level, and finally 800 thousand drums in 200 liter are planned to be disposed of in the site. This report shows the history of siting for the LILW disposal, the outline of design of disposal facility and current status of its construction, based on the information which was obtained mainly during our visit to the disposal site in Korea. (author)

  3. Prevention of healthcare-associated infections in general practice: Current practice and drivers for change in a French study

    Directory of Open Access Journals (Sweden)

    M Gignon

    2012-01-01

    Full Text Available Purpose: The fight against Healthcare-associated infections is a public health priority and a major challenge for the safety and quality of care. The objective was to assess hygiene in general practitioners′ (GPs′ office and identify barriers to and drivers for better practice. Materials and Methods: We performed a cross-sectional study in which a questionnaire was sent to a randomly selected, representative sample of 800 GPs. We used a self-administered questionnaire. The first part assessed current practice and the second part focused on barriers and motivating factors for better practice. We performed a descriptive statistical analysis of the responses to closed questions and a qualitative analysis of the responses to open-ended questions. Results: Only a third of the GPs were aware of the current guidelines. Disposable equipment was used by 31% of the GPs. For the remainder, only 38% complied with the recommended procedures for sterilisation or disinfection. Seventy-two percent of the GPs washed their hands between consultations in the office. A significant minority of physicians disregarded the guidelines by never wearing gloves to perform sutures (11%, treat wounds (10%, fit intrauterine devices (18% or perform injections (18%. The main barriers to good practice were the high cost of modifications and lack of time/space. Two third of the GPs did not intend to change their practices. The drivers for change were pressure from patients (4.8 on a scale of 1 to 7, inspection by the health authorities (4.8 and the fear of legal action (4.4. Conclusions: Our results show that there are significant differences between current practice and laid-down professional guidelines. Policies for improvement of hygiene must take into account barriers and motivating factors.

  4. The Evolution of Low-Level Radioactive Waste (LLW) Disposal Practices at the Savannah River Site Coupled with Vigorous Stakeholder Interaction

    International Nuclear Information System (INIS)

    Goldston, W. T.; Wilhite, E. L.; Cook, J. R.; Sauls, V. W.

    2002-01-01

    Low-level radioactive waste (LLW) disposal practices at SRS evolved from trench disposal with little long-term performance basis to disposal in robust concrete vaults, again without modeling long-term performance. Now, based on an assessment of long-term performance of various waste forms and methods of disposal, the LLW disposal program allows for a ''smorgasbord'' of various disposal techniques and waste forms, all modeled to ensure long-term performance is understood. New disposal techniques include components-in-grout, compaction/volume reduction prior to disposal, and trench disposal of extremely low activity waste. Additionally, factoring partition coefficient (Kd) measurements based on waste forms has been factored into performance models. This paper will trace the development of the different disposal methods, and the extensive public communications effort that resulted in endorsement of the changes by the SRS Citizens Advisory Board

  5. Disposal - practical problems

    International Nuclear Information System (INIS)

    Hycnar, J.; Pinko, L.

    1995-01-01

    Most Polish power plants have stockyards for storage of fly ash and slag. This paper describes the: methods of fly ash and slag storage used, methods of conveying the waste to the stockpiles (by railway cars, trucks, belt conveyors or hydraulically); construction of wet stockyards and dry stockyards and comparison of the ash dumped, development of methods of ash disposal in mine workings; composition and properties of fly ash and slag from hard coal; and the effects of ash storage yards on the environment (by leaching of trace elements, dust, effect on soils, and noise of machinery). 16 refs., 3 figs., 6 tabs

  6. Determining how much mixed waste will require disposal

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1990-01-01

    Estimating needed mixed-waste disposal capacity to 1995 and beyond is an essential element in the safe management of low-level radioactive waste disposal capacity. Information on the types and quantities of mixed waste generated is needed by industry to allow development of treatment facilities and by states and others responsible for disposal and storage of this type of low-level radioactive waste. The design of a mixed waste disposal facility hinges on a detailed assessment of the types and quantities of mixed waste that will ultimately require land disposal. Although traditional liquid scintillation counting fluids using toluene and xylene are clearly recognized as mixed waste, characterization of other types of mixed waste has, however, been difficult. Liquid scintillation counting fluids comprise most of the mixed waste generated and this type of mixed waste is generally incinerated under the supplemental fuel provisions of the Resource Conservation and Recovery Act (RCRA) Because there are no Currently operating mixed waste land disposal facilities, it is impossible to make projections of waste requiring land disposal based on a continuation of current waste disposal practices. Evidence indicates the volume of mixed waste requiring land disposal is not large, since generators are apparently storing these wastes. Surveys conducted to date confirm that relatively small volumes of commercially generated mixed waste volume have relied heavily oil generators' knowledge of their wastes. Evidence exists that many generators are confused by the differences between the Atomic Energy Act and the Resource Conservation and Recovery Act (RCRA) on the issue of when a material becomes a waste. In spite of uncertainties, estimates of waste volumes requiring disposal can be made. This paper proposes an eight-step process for such estimates

  7. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.

    Science.gov (United States)

    Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba

    2014-07-08

    Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.

  8. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra

    Science.gov (United States)

    2014-01-01

    Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728

  9. Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook

    International Nuclear Information System (INIS)

    Reijonen, H.M.; Russel, A.W.

    2015-01-01

    The practice of utilising natural analogues in assessing the long-term behaviour of various components of geological repositories for radioactive waste is already well established in most disposal programmes. Numerous studies on bentonites, focussing on bentonite interaction with other components of the engineered barrier system and a range of host rock environments, are present in the literature. In this article, recent bentonite natural analogue studies are briefly reviewed, and gaps in the current literature identified, with the aim of (1) suggesting where relevant new information could be obtained by data mining published bentonite natural analogue studies with a new focus on current safety case requirements, (2) collecting relevant information by revisiting known bentonite analogue sites and conducting investigations with more appropriate analytical techniques, and (3) identifying novel study sites where, for example, bentonite longevity in very dilute to highly saline groundwater conditions can be studied. It must be noted that the use of natural analogues in safety case development is likely to be site and repository design-specific in nature and thus emphasis is placed on the appropriate use of relevant natural analogue data on bentonite longevity. (authors)

  10. Bentonite analogue research related to geological disposal of radioactive waste: current status and future outlook

    Energy Technology Data Exchange (ETDEWEB)

    Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland)

    2015-06-15

    The practice of utilising natural analogues in assessing the long-term behaviour of various components of geological repositories for radioactive waste is already well established in most disposal programmes. Numerous studies on bentonites, focussing on bentonite interaction with other components of the engineered barrier system and a range of host rock environments, are present in the literature. In this article, recent bentonite natural analogue studies are briefly reviewed, and gaps in the current literature identified, with the aim of (1) suggesting where relevant new information could be obtained by data mining published bentonite natural analogue studies with a new focus on current safety case requirements, (2) collecting relevant information by revisiting known bentonite analogue sites and conducting investigations with more appropriate analytical techniques, and (3) identifying novel study sites where, for example, bentonite longevity in very dilute to highly saline groundwater conditions can be studied. It must be noted that the use of natural analogues in safety case development is likely to be site and repository design-specific in nature and thus emphasis is placed on the appropriate use of relevant natural analogue data on bentonite longevity. (authors)

  11. Knowledge, attitude, and practices on usage, disposal, and effect of plastic bags on sheep and goats.

    Science.gov (United States)

    Otsyina, H R; Nguhiu-Mwangi, J; Mogoa, E G M; Mbuthia, P G; Ogara, W O

    2018-02-08

    The objective of this study was to evaluate knowledge, attitudes, and practices of people in the Nairobi and Kajiado Counties, Kenya, on the usage, disposal, and effect of plastic waste on sheep and goats (shoats). A semi-structured questionnaire was used to collect data from 384 respondents in four communities in the two counties. Most of the people irrespective of their age, occupation, and educational status used plastic bags of some type on a daily basis. A high proportion of the respondents (37.0%, 142) used plastic bags because of the low cost. Approximately, 79.1% (304) disposed used plastic bags in open dumps. A total of 147 (38.3%) households kept shoats. Out of these, 38.1% (56) purchased feed and also allowed their animals to roam. Most of them (45.3%, 174) thought that lack of feed for the animals was the main reason why shoats roam and scavenge at refuse dump sites and road sides. A large proportion of the respondents (44.5%, 143) mentioned death of animals as the ultimate consequence of ingestion of waste plastic bags. Though, the respondents were aware that indiscriminate disposal of used plastic bags could result in death of the animals from which they derive their livelihoods, they nevertheless continued with the practice. There is a need for a paradigm shift in the way and manner plastic bags are used and disposed.

  12. Unused Medications Disposal Practice: The case of Patients Visiting University of Gondar Specialized Teaching Hospital, Gondar, Ethiopia

    OpenAIRE

    Tadele Atinafu; Abayneh Takele; Adeladlew Kassie; Adane Yehualaw; Getu Tesfaw; Tesfanesh Desseno; Tadesse Mekonnen; Mulugeta Fentie

    2014-01-01

    Background: The disposal of unwanted medications has been a concern in many countries, as pharmaceutical waste enters the ecosystem, ultimately having an effect on human health and environment. The main objective of this study was to assess unused medications disposal practice of patients Method: Institution based cross sectional study was used. Patients were systematically selected and interviewed using structured questionnaires. The Data was analyzed using SPSS version 20. Result: Out of...

  13. Environmental stewardship practices of veterinary professionals and educators related to use and disposal of pharmaceuticals and personal care products.

    Science.gov (United States)

    Lam, Jennifer; Chan, Samuel S; Conway, Flaxen D L; Stone, David

    2018-03-01

    OBJECTIVE To document the environmental stewardship practices (decisions and actions regarding use and disposal) of pet and human pharmaceuticals and personal care products (PPCPs) among pet-owning veterinary-care professionals (practicing veterinarians, veterinary students, and veterinary technicians and trainees) and environmental educators. DESIGN Internet-based cross-sectional survey. SAMPLE 191 pet owners (103 veterinary-care professionals and 88 environmental educators). PROCEDURES Study participants were recruited by means of a 2-part internet survey distributed to veterinary-care professional and environmental educator networks of individuals residing in Washington state, Oregon, and southern California. Survey questions addressed motivators for environmental stewardship practices (ie, decisions and actions regarding use and disposal of pet and human PPCPs). RESULTS Data were collected from 191 respondents; the response rate for individuals who self-selected to opt in was 78% (191/246). Of the 191 respondents, 42 (22%) stored pet pharmaceuticals indefinitely. The most common disposal method was the garbage (88/191 [46%]). Veterinary-care professionals counseled clients infrequently regarding environmental stewardship practices for PPCPs. Fifty-five percent (105/191) of all respondents preferred more environmentally friendly and clinically effective PPCPs. CONCLUSIONS AND CLINICAL RELEVANCE Results of the present survey emphasized the urgent need for improved educational resources to minimize environmental contamination from improper disposal of PPCPs. Environmental and economic motivations among pet owners in the veterinary-care and education professions indicate further opportunities for outreach and institutional support.

  14. Sharps disposal practices among diabetic patients using insulin ...

    African Journals Online (AJOL)

    ... disposal by the dispensing institutions. Patients should also be educated regarding health risks associated with used needles. The South African Metabolic and Endocrine (SEMDSA) Guidelines and the South African Standard Treatment Guidelines (STG) should also give clear guidance on the safe disposal of needles.

  15. Practical evaluations of low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1989-01-01

    In general, there have been about four main tools that have been used to assist in selecting a disposal technology and in evaluating that technology: Legislative direction; Operator selection; Multiattribute utility estimation; and Risk assessment and cost benefit evaluation. The first technique, legislative direction, is an important factor in determining the range of disposal technologies that may be considered. Some host state entities have chosen not to participate in the disposal technology selection, but will let the facility operator propose and defend his preferred facility concept in the license application. Multiattribute utility estimation is a widely used tool for evaluating technologies, particularly in the preliminary stages of selecting a disposal technology when significant technical and institutional information is missing. Many factors, including a range of technical, safety, environmental, societal, political, and economic concerns must be considered in the selection process. Many of these are hard to quantify and not all are of equal importance. Multiattrubute utility estimation allows for these factors to be considered in selecting a technology with incomplete information. This chapter provides description of two analysis techniques: multiattribute utility estimation and cost benefit evaluation. Both can be used to help profile disposal alternatives in relation to specific factors or criteria

  16. Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1993-08-01

    Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States

  17. Current safety issues in the development of geological disposal of radioactive waste in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Deep geological disposal of high level and medium level long-lived waste in France is one of the three research paths defined by the law of 30th December 1991 on radioactive waste management. Research should be undertaken on: separation and transmutation of long-lived radionuclides in these waste; reversible or non reversible disposal in deep geological layers supported by investigations in underground laboratories; processes for conditioning and long term surface storage of these waste. In 2006, a global evaluation report on this research should be established by the Government and sent to the French Parliament. On this basis the Parliament should promulgate a law providing new objectives for the research and possibly presenting a framework for a deep disposal process. The French Nuclear Safety Authority has the responsibility to license the underground laboratories foreseen in the second research path and the nuclear facilities involved in the first and third research paths and make sure that existing high level and medium level long-lived waste currently produced are properly managed. It will give its advice on the safety aspects associated to the envisaged future management options. Its main concern is that results obtained in 2006 will be conclusive enough to take decisions for future orientations. Concerning the deep disposal option, under the responsibility of ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), the construction of an underground laboratory has been authorized on the Bure site, in eastern France, and the shafts are under construction. The main issue is the level of investigations that may be performed in the host rock in order to support the feasibility study of a disposal concept on this site. Other issues are the elaboration of new safety standards to set a framework for a safety assessment of a disposal concept, the specifications for acceptance of waste packages in a future deep disposal, and relation of safety matters with

  18. Subproject L-045H 300 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    1991-06-01

    The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The ''300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations

  19. Economic analysis of alternative LLW disposal methods

    International Nuclear Information System (INIS)

    Foutes, C.E.; Queenan, C.J. III

    1987-01-01

    The Environmental Protection Agency (EPA) has evaluated the costs and benefits of alternative disposal technologies as part of its program to develop generally applicable environmental standards for the land disposal of low-level radioactive waste (LLW). Costs, population health effects and Critical Population Group (CPG) exposures resulting from alternative waste treatment and disposal methods were evaluated both in absolute terms and also relative to a base case (current practice). Incremental costs of the standard included costs for packaging, processing, transportation, and burial of waste. Benefits are defined in terms of reductions in the general population health risk (expected fatal cancers and genetic effects) evaluated over 10,000 years. A cost-effectiveness ratio, defined as the incremental cost per avoided health effect, was calculated for each alternative standard. The cost-effectiveness analysis took into account a number of waste streams, hydrogeologic and climatic region settings, and waste treatment and disposal methods. This paper describes the alternatives considered and preliminary results of the cost-effectiveness analysis. 15 references, 7 figures, 3 tables

  20. Status and current spent fuel storage practices in the United States

    International Nuclear Information System (INIS)

    Lake, W.H.

    1999-01-01

    Brief discussions are presented on the history and state of spent fuel generation by utilities that comprise the United States commercial nuclear power industry, the current situation regarding the Federal government's nuclear waste policy, and evolving spent fuel storage practices. These evolving spent fuel storage practices are the result of private sector initiatives, but appear to be influenced by various external factors. The paper is not intended to provide a comprehensive appraisal of the storage initiatives being conducted by the private sector. The focus, instead, is on the Federal government's role and activities related to spent fuel management. Although the Federal government has adopted a policy calling for deep geological disposal of spent fuel, the US Congress has recently begun to consider expanding that policy to include a centralized interim storage facility. In the absence of such an expanded policy, the Department of Energy has performed some preliminary activities that would expedite development of a centralized interim storage facility, if Congress were to enact such a policy. The Department's current activities with regard to developing a centralized interim storage facility, which are consistent with the current policy, are described in the paper. The paper also describes two important technical development activities that have been conducted by the Department of Energy to support improved efficiency in spent fuel management. The Department's activities regarding development of a burnup credit methodology, and a dry transfer system are summarized. (author)

  1. Unreviewed Disposal Question Evaluation: Impact of New Information since 2008 PA on Current Low-Level Solid Waste Operations

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

    2014-10-06

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: New Kd values for iodine, radium and uranium; Elimination of cellulose degradation product (CDP) factors; Updated radionuclide data; Changes in transport behavior of mobile radionuclides; Potential delay in interim closure beyond 2025; and Component-in-grout (CIG) plume interaction correction. Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0

  2. Current waste management practices at PINSTECH

    International Nuclear Information System (INIS)

    Ul Haq, E.; Aslam, M.; Orfi, S.D.

    2002-01-01

    The waste being generated at PINSTECH is of the intermediate and low level Category that is in the form of gas, liquid and solids. It is collected, monitored, segregated, treated, packed and immobilized for its final disposal. Basic concepts of delay decay, disposal and containment of radioactive waste are followed to prevent its direct contact with human and its environment. PINSTECH follows shallow ground disposal in the restricted area. The disposal site has favorable characteristics e.g. sun shine dry climate and high evaporation rate. The gaseous waste is directed towards stack, where it passes through charcoal and HEPA filters and then released to the atmosphere. Post disposal monitoring of the disposal area is performed to check leaching/migration of radionuclides from disposal locations to the surrounding environment. No migration of radioactivity has been detected indicating satisfactory performance of the waste management system. (author)

  3. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  4. Study of deep ocean currents near the 3800-M low-level radioactive waste disposal site. May 1984-May 1986. Final report

    International Nuclear Information System (INIS)

    Casagrande, C.; Hamilton, P.

    1988-06-01

    The report presents the results of a two-year study of a U.S. 3800-m low-level radioactive waste-disposal site near the mouth of the Hudson Canyon. The program objectives were to describe the currents, including their source and variability, and deduce from the data the potential for, and direction of, transport of contaminants from the disposal area. The results show that the currents in the disposal area range in strength from a few to 62 cm/sec and are principally due to the presence of low-frequency topographic Rossby waves having periods of approximately two to four weeks. The currents generally flow towards the southwest, in line with the general topography of the mid-Atlantic region. The canyon acts to distort the southwest flow, resulting in currents below the canyon rim which are aligned with the canyon onshore-offshore axis. The direction of currents along the canyon axis appears to be determined by the proximity of both the Gulf Stream and the Western Boundary Undercurrent

  5. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  6. Frequency of unsafe storage, use, and disposal practices of opioids among cancer patients presenting to the emergency department.

    Science.gov (United States)

    Silvestre, Julio; Reddy, Akhila; de la Cruz, Maxine; Wu, Jimin; Liu, Diane; Bruera, Eduardo; Todd, Knox H

    2017-12-01

    Approximately 75% of prescription opioid abusers obtain the drug from an acquaintance, which may be a consequence of improper opioid storage, use, disposal, and lack of patient education. We aimed to determine the opioid storage, use, and disposal patterns in patients presenting to the emergency department (ED) of a comprehensive cancer center. We surveyed 113 patients receiving opioids for at least 2 months upon presenting to the ED and collected information regarding opioid use, storage, and disposal. Unsafe storage was defined as storing opioids in plain sight, and unsafe use was defined as sharing or losing opioids. The median age was 53 years, 55% were female, 64% were white, and 86% had advanced cancer. Of those surveyed, 36% stored opioids in plain sight, 53% kept them hidden but unlocked, and only 15% locked their opioids. However, 73% agreed that they would use a lockbox if given one. Patients who reported that others had asked them for their pain medications (p = 0.004) and those who would use a lockbox if given one (p = 0.019) were more likely to keep them locked. Some 13 patients (12%) used opioids unsafely by either sharing (5%) or losing (8%) them. Patients who reported being prescribed more pain pills than required (p = 0.032) were more likely to practice unsafe use. Most (78%) were unaware of proper opioid disposal methods, 6% believed they were prescribed more medication than required, and 67% had unused opioids at home. Only 13% previously received education about safe disposal of opioids. Overall, 77% (87) of patients reported unsafe storage, unsafe use, or possessed unused opioids at home. Many cancer patients presenting to the ED improperly and unsafely store, use, or dispose of opioids, thus highlighting a need to investigate the impact of patient education on such practices.

  7. KS 20322007 Near-Surface Disposal Radioactive Waste - Code Of Practice

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    To provide a basis for the near-surface disposal of solid radioactive waste to ensures that there is no unacceptable risk to humans, other biota or the environment. Near-Surface Disposal is the disposal of radioactive waste in below or above the natural ground surface, within app. 30 m. The code deals with management aspects associated with radioactive waste disposal only, and is not intended to cover issues related to the production and use of radionuclides. The objective of waste disposal is to isolate radioactive waste in order to ensure that there is no unacceptable health risk to humans and no long-term unacceptable effect to the environment. Radiation protection annual effective dose for exposure of members of the public should not exceed 1 mSv/year and occupational exposure of 20 mSv/year

  8. Uranium mill tailings storage, use, and disposal problems

    International Nuclear Information System (INIS)

    Hendricks, D.W.

    1977-01-01

    Solid and liquid residues (tailings) containing substantial quantities of naturally occurring radionuclides are produced and stored at all US uranium mill sites. These radioactive wastes are a potential health hazard with the degree of hazard depending largely on the tailings management practices at the individual sites. The principal pathways of potential radiation exposure to man are discussed. A description is presented of some past and current tailings storage practices together with a description of some of the possible problems associated with various stabilization and disposal options. 16 figures

  9. Current status and future plans of R and D on geological disposal of HLW in Japan

    International Nuclear Information System (INIS)

    Sasaki, Noriaki

    1994-01-01

    As to the final disposal of HLW, it is considered highly important to provide a clear distinction between implementation of disposal and the research and development as independent processes, and to increase the transparency of the overall disposal program by defining concrete schedules and the roles and responsibilities of the organizations involved. The Power Reactor and Nuclear Fuel Development Corporation (PNC) has being conducted research and development on the geological disposal of HLW, as the leading organization. The responsibility of PNC is to ensure smooth progress of research and development project and to carry out studies of geological environment. The role of the Japanese government is to take overall responsibilities for appropriate and steady implementations of the program, as well as enacting any laws or policies required. On the other hand, electricity supply utilities are responsible to secure necessary funds for disposal, and in accordance with their role as waste producers, they are expected to cooperate even at the stage of research and development. Fundamental features of research and development of PNC carried out at this stage are as follows; (1) Generic research and development, (2) To establish scientific and technical bases of geological isolation of HLW in Japan, (3) About 15 years program from 1989 with documentation of progress reports, (4) Approach from near-field to far-field. PNC summarized the findings obtained by 1991, and submitted a document (H3 Report) in September 1992 as the first progress report. H3 Report is the first and comprehensive technical report on geological disposal of HLW in Japan, and provides information for the public to find out the current status of the research and development. This paper reviews the conclusions of H3 Report, overall procedures and schedule for implementing geological disposal, and future plans of R and D in PNC. (J.P.N.)

  10. Disposal of radioactive waste. An overview of the principles involved

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive waste management strategies and practices have been reviewed in many publications. By and large these documents are technical in nature and they do not normally discuss the motives that determine which course of action should be taken. The present document concentrates on these less well defined aspects and is intended to provide a review of the philosophy underlying the current technical approach to the disposal of radioactive waste. Disposal is the final step in waste management and may be simply defined as a method of dealing with wastes for which there is no intention of retrieval

  11. Current practices and options for confinement of uranium mill tailings

    International Nuclear Information System (INIS)

    1981-01-01

    At the United Nations Conference on the Human Environment, which took place in Stockholm from 4 to 6 June 1972, national governments were asked to explore, with the International Atomic Energy Agency and other appropriate international organizations, international co-operation on radioactive waste matters including those of mining and tailings disposal. Since that time the IAEA has been active in the field of uranium and thorium mill tailings management. As part of this activity, the present report describes current practices and options for confinement of uranium mill tailings. It is addressed to technical and administrative personnel who are involved in planning and implementing national and industrial programmes on the management of such tailings. In 1974 and 1975 the IAEA convened meetings of experts to review matters of interest and importance in the management of uranium and thorium mine and mill tailings. These activities led to the publication in 1976 of Management of Wastes from the Mining and Milling of Uranium and Thorium Ores, a Code of Practice and Guide to the Code, IAEA Safety Series No. 44. As a continuation of this activity, the IAEA is here dealing more specifically with the design and siting considerations for the management of uranium mill tailings

  12. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  13. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  14. Management options for food production systems affected by a nuclear accident. Task 5: disposal of waste milk to sea

    International Nuclear Information System (INIS)

    Wilkins, B.; Woodman, R.; Nisbet, A.; Mansfield, P.

    2001-11-01

    In emergency exercises, discharge to sea is often put forward as a disposal option for waste milk, the intention being to use the outfalls for coolant water or liquid effluent at nuclear installations. However, so far the legislative constraints and the practical and scientific limitations of this option have not been fully considered. This report sets out the current legal position and evaluates the practicability of transporting milk from an affected farm to a suitable coastal facility for disposal. The effect of discharging milk into coastal water bodies has also been considered, bearing in mind that after a serious accident disposals could continue for several weeks

  15. Current Best Practices for Preventing Asbestos Exposure Among Brake and Clutch Repair Workers

    Science.gov (United States)

    Covers concerns about asbestos exposure for mechanics, how to tell if asbestos brake or clutch components contain asbestos, work practices to follow, protecting yourself for home mechanics, disposal of waste that contains asbestos.

  16. Solid medical waste: a cross sectional study of household disposal practices and reported harm in Southern Ghana.

    Science.gov (United States)

    Udofia, Emilia Asuquo; Gulis, Gabriel; Fobil, Julius

    2017-05-18

    Solid medical waste (SMW) in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar waste in households is often untreated and co-mingled with household waste which ends up in landfills and open dumps in many African countries. In Ghana, the management of this potentially hazardous waste stream at household and community level has not been widely reported. The objective of this study was to investigate household disposal practices and harm resulting from SMW generated in households and the community. A cross-sectional questionnaire survey of 600 households was undertaken in Ga South Municipal Assembly in Accra, Ghana from mid-April to June, 2014. Factors investigated included socio-demographic characteristics, medication related practices, the belief that one is at risk of diseases associated with SMW, SMW disposal practices and reported harm associated with SMW at home and in the community. Eighty percent and 89% of respondents discarded unwanted medicines and sharps in household refuse bins respectively. A corresponding 23% and 35% of respondents discarded these items without a container. Harm from SMW in the household and in the community was reported by 5% and 3% of respondents respectively. Persons who believed they were at risk of diseases associated with SMW were nearly three times more likely to report harm in the household (OR 2.75, 95%CI 1.15-6.54). The belief that one can be harmed by diseases associated with SMW influenced reporting rates in the study area. Disposal practices suggest the presence of unwanted medicines and sharps in the household waste stream conferring on it hazardous properties. Given the low rates of harm reported, elimination of preventable harm might justify community intervention.

  17. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    Marchant, J.K.; Nisbet, A.F.

    2002-01-01

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  18. Environmental risk assessment: its contribution to criteria development for HLW disposal

    International Nuclear Information System (INIS)

    Smith, G.M.; Little, R.H.; Watkins, B.M.

    1999-01-01

    Principles for radioactive waste management have been provided by the International Atomic Energy Agency in Safety Series No.111-F, which was published in 1995. This has been a major step forward in the process of achieving acceptance for proposals for disposal of radioactive waste, for example, for High Level Waste disposal in deep repositories. However, these principles have still to be interpreted and developed into practical radiation protection criteria. Without prejudicing final judgements on the acceptability of waste proposals, an important aspect is that practical demonstration of compliance (or the opposite) with these criteria must be possible. One of the IAEA principles requires that radioactive waste shall be managed in such a way as to provide an acceptable level of protection of the environment. There has been and continues to be considerable debate as to how to demonstrate compliance with such a principle. This paper briefly reviews the current status and considers how experience in other areas of environmental protection could contribute to criteria development for HLW disposal

  19. 21 CFR 110.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 110.5 Section...) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PACKING, OR HOLDING HUMAN FOOD General Provisions § 110.5 Current good manufacturing practice. (a) The criteria and...

  20. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    Science.gov (United States)

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is

  1. Overprescription of postoperative narcotics: a look at postoperative pain medication delivery, consumption and disposal in urological practice.

    Science.gov (United States)

    Bates, Cory; Laciak, Robert; Southwick, Andrew; Bishoff, Jay

    2011-02-01

    Prescription narcotic abuse is a significant social problem. Surplus medication following surgery is 1 source of prescription diversion. We assessed prescribing practices, consumption and disposal of prescribed narcotics after urological surgery. Surveys were administered to a 3-month consecutive sample of adult patients who underwent surgery performed by full and adjunct University of Utah Urology faculty. Surveys were performed 2 to 4 weeks postoperatively. With the exception of the investigators, prescribing physicians had no prior knowledge of the study. Data collected included perception of pain control, type and quantity of medication prescribed, quantity of leftover medication, refills needed, disposal instructions and surplus medication disposition. Overall 47% of 586 patients participated in the study. Hydrocodone was prescribed most commonly (63%), followed by oxycodone (35%), and 86% of the patients were satisfied with pain control. Of the dispensed narcotics 58% was consumed and 12% of patients requested refills. A total of 67% of patients had surplus medication from the initial prescription and 92% received no disposal instructions for surplus medication. Of those patients with leftover medication 91% kept the medication at home while 6% threw it in the trash, 2% flushed it down the toilet and less than 1% returned it to a pharmacy. Overprescription of narcotics is common and retained surplus medication presents a readily available source of opioid diversion. It appears that no entity on the prescribing or dispensing ends of prescription opioid delivery is fulfilling the responsibility to accurately educate patients on proper surplus medication disposal. Surgeons should analyze prescribing practices and consider decreasing the quantity of postoperative narcotics prescribed. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. 21 CFR 225.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Current good manufacturing practice. 225.1 Section...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR MEDICATED FEEDS General Provisions § 225.1 Current good manufacturing practice. (a) Section 501(a)(2)(B) of the Federal Food, Drug, and Cosmetic Act...

  3. 21 CFR 226.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Current good manufacturing practice. 226.1 Section...) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR TYPE A MEDICATED ARTICLES General Provisions § 226.1 Current good manufacturing practice. (a) The criteria in §§ 226.10 through 226.115, inclusive...

  4. Waste management and the land disposal restriction storage prohibition

    International Nuclear Information System (INIS)

    1992-05-01

    RCRA Sect. 3004(j) prohibits storage of wastes that have been prohibited from land disposal, unless that storage is for the purpose of accumulating sufficient quantities of hazardous wastes to facilitate proper recovery, treatment, or disposal. This requirement was incorporated as part of the Land Disposal Restriction (LDR) regulations. Under the LDR storage prohibition, facilities may only store restricted wastes in containers and tanks. As stated in the Third LDR rule, storage of prohibited waste is only allowed in non-land based storage units since land-based storage is a form of disposal. The EPA has recognized that generators and storers of radioactive mixed waste (RMW) may find it impossible to comply with storage prohibition in cases where no available treatment capacity exists. Additionally, under the current regulatory interpretation, there is no provision that would allow for storage of wastes for which treatment capacity and capability are not available, even where capacity is legitimately being developed. Under the LDR program, restricted wastes that are disposed of, or placed into storage before an LDR effective date, are not subject to the LDR requirements. However, if such wastes are removed from a storage or disposal site after the effective date, such wastes would be subject to LDR requirements. The purpose of this information brief is to clarify what waste management practices constitute removal from storage

  5. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  6. Aspects of governance in the practical implementation of the concept of reversibility for deep geological disposal. Report no. 308

    International Nuclear Information System (INIS)

    Reaud, C.; Schieber, C.; Schneider, T.; Gadbois, S.; Heriard Dubreuil, G.

    2010-01-01

    The European project COWAM in Practice (CIP) was aimed to lead for three years (2007-2009) a process of monitoring, analyzing and evaluating the governance linked with radioactive waste management. This project, in cooperation with a research group and stakeholders, was conducted in parallel in 5 European countries (Spain, France, United Kingdom, Romania, Slovenia). In France, the issue of reversibility for a deep geological disposal was introduced in the Act of December 30, 1991 on the possible options to manage radioactive waste. The Act of June 28, 2006 relative to sustainable management of materials and radioactive waste confirmed the option, by calling for a reversible waste disposal facility in a deep geological formation to be designed. The main issue is no longer to justify the adoption of reversibility, but to investigate the practical procedures for its implementation. The French stakeholder Group 4 involved in the European project COWAM In Practice (CIP) had identified several subjects for investigation: - The different aspects associated with the practical implementation of reversible disposal: technical aspects, and aspects relative to monitoring, safety and expertise, in terms of legal, financial, administrative and political, etc. responsibility related to the notion of reversibility. - The stakes of governance related to the processes of assessment and decision-making - The roles of local stakeholders in these processes. The analysis conducted by CEPN in cooperation with the French stakeholder group, facilitated by Mutadis, showed that the practical implementation of reversibility aims to maintain a capacity of choice between three options: to continue to maintain the reversibility, to retrieve packages or to initiate the closure of all or part the disposal facility. Maintaining this choice in the long term implies setting up specific institutional, financial and decision-making systems,etc,. that need to be jointly developed in advance by all the

  7. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  8. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  9. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong.

    Science.gov (United States)

    Yu, Ann T W; Poon, C S; Wong, Agnes; Yip, Robin; Jaillon, Lara

    2013-01-01

    Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C&D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C&D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C&D waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Assessing farmers' practices on disposal of pesticide waste after use

    International Nuclear Information System (INIS)

    Damalas, Christos A.; Telidis, Georgios K.; Thanos, Stavros D.

    2008-01-01

    Common practices of farmers on disposal of pesticide waste after use were surveyed in five regions of the rural area of Pieria in northern Greece using a structured questionnaire administered via personal interviews. Concerning leftover spray solutions, most farmers reported that they normally re-spray the treated field area until the spraying tank is empty (54.9%) or they apply the leftover spray solutions to another crop listed on the product label (30.2%). A minority of the farmers (4.3%) mentioned that they often release the leftover spray solutions near or into irrigation canals and streams. As regards rinsates generated from washing the application equipment, most farmers reported that they release the rinsates over a non-cropped area (45.7%) or they drop the rinsates near or into irrigation canals and streams (40.7%). Moreover, a great proportion of the farmers stated that they dump the empty containers by the field (30.2%) or they throw them near or into irrigation canals and streams (33.3%). Burning the empty containers in open fire (17.9%) or throwing the empty containers in common waste places (11.1%) was also reported. Several farmers stated that they continue to use old pesticides for spraying (35.8%). Training programs which raise awareness of farmers of the potential hazards of pesticide use and particularly of the proper management of waste products, recycling programs and collection systems for unwanted agricultural chemicals to prevent inappropriate waste disposal, as well as improving packaging of pesticides to minimize waste production are essential for promoting safety during all phases of pesticide handling

  11. Solid medical waste: a cross sectional study of household disposal practices and reported harm in Southern Ghana

    Directory of Open Access Journals (Sweden)

    Emilia Asuquo Udofia

    2017-05-01

    Full Text Available Abstract Background Solid medical waste (SMW in households is perceived to pose minimal risks to the public compared to SMW generated from healthcare facilities. While waste from healthcare facilities is subject to recommended safety measures to minimize risks to human health and the environment, similar waste in households is often untreated and co-mingled with household waste which ends up in landfills and open dumps in many African countries. In Ghana, the management of this potentially hazardous waste stream at household and community level has not been widely reported. The objective of this study was to investigate household disposal practices and harm resulting from SMW generated in households and the community. Methods A cross-sectional questionnaire survey of 600 households was undertaken in Ga South Municipal Assembly in Accra, Ghana from mid-April to June, 2014. Factors investigated included socio-demographic characteristics, medication related practices, the belief that one is at risk of diseases associated with SMW, SMW disposal practices and reported harm associated with SMW at home and in the community. Results Eighty percent and 89% of respondents discarded unwanted medicines and sharps in household refuse bins respectively. A corresponding 23% and 35% of respondents discarded these items without a container. Harm from SMW in the household and in the community was reported by 5% and 3% of respondents respectively. Persons who believed they were at risk of diseases associated with SMW were nearly three times more likely to report harm in the household (OR 2.75, 95%CI 1.15–6.54. Conclusion The belief that one can be harmed by diseases associated with SMW influenced reporting rates in the study area. Disposal practices suggest the presence of unwanted medicines and sharps in the household waste stream conferring on it hazardous properties. Given the low rates of harm reported, elimination of preventable harm might justify community

  12. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  13. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  14. 50 CFR 12.33 - Disposal.

    Science.gov (United States)

    2010-10-01

    ... other equipment), except wildlife or plants, in accordance with current Federal Property Management..., TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS SEIZURE AND FORFEITURE PROCEDURES Disposal of Forfeited or Abandoned Property § 12.33 Disposal. (a) The Director shall...

  15. 21 CFR 120.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 120.5 Section... Provisions § 120.5 Current good manufacturing practice. Part 110 of this chapter applies in determining whether the facilities, methods, practices, and controls used to process juice are safe, and whether the...

  16. 21 CFR 129.1 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 129.1 Section... Current good manufacturing practice. The applicable criteria in part 110 of this chapter, as well as the..., methods, practices, and controls used in the processing, bottling, holding, and shipping of bottled...

  17. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.

    Science.gov (United States)

    Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar

    2004-08-01

    Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.

  18. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  19. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  20. 21 CFR 113.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 113.5 Section... CONTAINERS General Provisions § 113.5 Current good manufacturing practice. The criteria in §§ 113.10, 113.40..., methods, practices, and controls used by the commercial processor in the manufacture, processing, or...

  1. Conditioning of disused sealed sources in countries without disposal facility: Short term gain - long term pain

    International Nuclear Information System (INIS)

    Benitez-Navarro, J.C.; Salgado-Mojena, M.

    2002-01-01

    Owing to the considerable development in managing disused sealed radioactive sources (DSRS), the limited availability of disposal practices for them, and the new recommendations for the use of borehole disposal concept, it was felt that a paper reviewing the existing recommendations could be a starting point of discussion on the retrievability of the sources. Even when no international consensus exists as to an acceptable solution for the challenge of disposal of disused sealed sources, the 'Best Available Technology' for managing most of them, recommended for developing countries, included the cementation of the sources. The waste packages prepared in such a way do not allow any flexibility to accommodate possible future disposal requirements. Therefore, the 'Wait and See' approach could be also recommended for managing not only the sources with long-live radionuclides and high activity, but probably for all kind of existing disused sealed sources. The general aim of the current paper is to identify and review the current recommendations for managing disused sealed sources and to meditate on the most convenient management schemes for disused sealed radioactive sources in Member States without disposal capacities (Latin America, Africa). The risk that cemented DSRS could be incompatible with future disposal requirements was taken into account. (author)

  2. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  3. Radioactive waste disposal and political aspects

    International Nuclear Information System (INIS)

    Blanc, M.

    1992-01-01

    The difficulties presented by the current atomic energy law for the nuclear waste disposal in Switzerland are shown. It is emphasised how important scientific information is in the political solutions for nuclear disposal

  4. Current status of radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Yamamoto, Masahumi; Inagaki, Yusuke; Kurata, Mitsuyuki; Tanabe, Hiromi

    2002-01-01

    Various kinds of wastes are generated from operation and decommissioning of nuclear facilities such as a nuclear power plant, a reprocessing plant and so on. These wastes contain radionuclides and are called 'Radioactive Waste'. The radionuclides in the wastes vary considerably in amount from small to large and their half-lives differ in length from short-lived to long-lived. The safety principle for radioactive waste management is to prevent human beings and the environment from receiving radiation exposure over the level which the safety authority in each country approve based on the recommendations by international organizations such as the International Commission on Radiation Protection (ICRP). To assure the conformity to this safety principle, each country has examined the safety measures to dispose of radioactive wastes on the basis of their own condition. For example, high-level radioactive waste (H LW) from reprocessing plant or spent fuel designated as waste and intermediate-and low-level long-lived radioactive wastes, which contain large quantity of long-lived radionuclides, will be disposed of into a deep stable geological formation. The intermediate-and low-level short-lived radioactive wastes, which mainly contain short-lived radionuclides with limited quantity of long-lived radionuclides, have been disposed of in a controlled surface disposal facility or in a rock cavern in the depth of 50-100 m. Clearance level has been considered to be applied for the wastes, which contain very small amount of radionuclides and those wastes bellow clearance level will cause negligible hazards only even without taking any radiation control measures. Such wastes could be reused, recycled or disposed of in the same manner as general wastes from the industries, etc. (author)

  5. Deep injection disposal of liquid radioactive waste in Russia

    International Nuclear Information System (INIS)

    Foley, M.G.; Ballou, L.; Rybal'chenko, A.I.; Pimenov, M.K.; Kostin, P.P.

    1998-01-01

    Originally published in Russian, Deep Injection Disposal is the most comprehensive account available in the West of the Soviet and Russian practice of disposing of radioactive wastes into deep geological formations. It tells the story of the first 40 years of work in the former Soviet Union to devise, test, and execute a program to dispose by deep injection millions of cubic meters of liquid radioactive wastes from nuclear materials processing. The book explains decisions involving safety aspects, research results, and practical experience gained during the creation and operation of disposal systems. Deep Injection Disposal will be useful for studying other problems worldwide involving the economic use of space beneath the earth's surface. The material in the book is presented with an eye toward other possible applications. Because liquid radioactive wastes are so toxic and the decisions made are so vital, information in this book will be of great interest to those involved in the disposal of nonradioactive waste

  6. Trench design and construction techniques for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Tucker, P.G.

    1983-02-01

    This document provides information on trench design and construction techniques which can be used in the disposal of LLW by shallow land burial. It covers practices currently in use not only in the LLW disposal field, but also methods and materials being used in areas of hazardous and municipal waste disposal which are compatible with the performance objectives of 10 CFR Part 61. The complexity of a disposal site and its potential problems dictate the use of site-specific characteristics when designing a LLW disposal trench. This report presents the LLW disposal trench as consisting of various elements or unit processes. The term unit processes is used as it more fully relays the impact of the designer's choice of methods and materials. When choosing a material to fulfill the function of a certain trench element, the designer is also stipulating a portion of his operational procedure which must be compatible with the disposal operation as a whole. Information is provided on the properties, selection, and installation of various materials such as bentonite, soil-cement, polymeric materials, asphaltic materials, and geotechnical fabrics. This is not intended to outline step-by-step procedures. Basically, three time frames are addressed with respect to construction techniques; preoperational, operational, and postoperational. Within each of these time frames there are certain construction techniques which can be employed by the designer to enhance the overall ease of construction and ultimate success of the disposal facility. Among the techniques presented are precontouring the disposal area, alignment of the trench axis, sloping the trench bottom, incremental excavation, and surface water (runoff) management

  7. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  8. 21 CFR 1271.150 - Current good tissue practice requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Current good tissue practice requirements. 1271... HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.150 Current good tissue practice requirements. (a) General. This subpart D and subpart C of this part set...

  9. A review of current practices and the future for deep well injection in the upper Miocene Stevens sand, Kern County, California

    International Nuclear Information System (INIS)

    Kiser, S.C.; Chenot, D.W.

    1991-01-01

    Waste-water disposal is a major concern of the petroleum business, especially because of complications associated with many produced-water surface-impoundment percolation facilities. In the San Joaquin Valley, California, the current environmental regulations protecting the potentially usable groundwaters are stringent. the Stevens has significant potential as a disposal zone that may offer considerable capacity when the project is designed using proper geologic and engineering studies. The Stevens sands are well known for their oil-producing capabilities, however, not much has been published regarding its suitability as a zone for deep well injection. Conditions that make the Stevens potentially suitable include (1) adequate confinement providing geologic separation from the groundwater sources in the basin, (2) storage capacity, and (3) large areal extent. Because the search for acceptable disposal options is becoming critical, the current class II disposal options is becoming critical, the current class II disposal activities in the Stevens sands were reviewed and the areas offering the greatest future potential were identified. The authors then discuss class II disposal projects in Stevens sands in the West Bellevue and Midway Sunset oil fields and estimate the ultimate basin-wide disposal capacity of the Stevens

  10. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  11. Minipool Caprylic Acid Fractionation of Plasma Using Disposable Equipment: A Practical Method to Enhance Immunoglobulin Supply in Developing Countries

    Science.gov (United States)

    El-Ekiaby, Magdy; Vargas, Mariángela; Sayed, Makram; Gorgy, George; Goubran, Hadi; Radosevic, Mirjana; Burnouf, Thierry

    2015-01-01

    Background Immunoglobulin G (IgG) is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need. Methodology/Principal Findings IgG was purified from 10 consecutive minipools of 20 plasma donations collected in Egypt using single-use equipment. Plasma donations in their collection bags were subjected to 5%-pH5.5 caprylic acid treatment for 90 min at 31°C, and centrifuged to remove the precipitate. Supernatants were pooled, then dialyzed and concentrated using a commercial disposable hemodialyzer. The final preparation was filtered online by gravity, aseptically dispensed into storage transfusion bags, and frozen at 5 logs reduction of HIV, BVDV, and PRV infectivity in less than 15 min of caprylic acid treatment. Conclusions/Significance 90% pure, virally-inactivated immunoglobulins can be prepared from plasma minipools using simple disposable equipment and bag systems. This easy-to-implement process could be used to produce immunoglobulins from local plasma in developing countries to treat immunodeficient patients. It is also relevant for preparing hyperimmune IgG from convalescent plasma during infectious outbreaks such as the current Ebola virus episode. PMID:25719558

  12. Minipool caprylic acid fractionation of plasma using disposable equipment: a practical method to enhance immunoglobulin supply in developing countries.

    Directory of Open Access Journals (Sweden)

    Magdy El-Ekiaby

    2015-02-01

    Full Text Available Immunoglobulin G (IgG is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need.IgG was purified from 10 consecutive minipools of 20 plasma donations collected in Egypt using single-use equipment. Plasma donations in their collection bags were subjected to 5%-pH5.5 caprylic acid treatment for 90 min at 31°C, and centrifuged to remove the precipitate. Supernatants were pooled, then dialyzed and concentrated using a commercial disposable hemodialyzer. The final preparation was filtered online by gravity, aseptically dispensed into storage transfusion bags, and frozen at 5 logs reduction of HIV, BVDV, and PRV infectivity in less than 15 min of caprylic acid treatment.90% pure, virally-inactivated immunoglobulins can be prepared from plasma minipools using simple disposable equipment and bag systems. This easy-to-implement process could be used to produce immunoglobulins from local plasma in developing countries to treat immunodeficient patients. It is also relevant for preparing hyperimmune IgG from convalescent plasma during infectious outbreaks such as the current Ebola virus episode.

  13. Communication of Energy Efficiency Information to Remodelers: Lessons From Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Liaukus, C.

    2012-10-01

    The effective communication of energy efficiency and building science information to remodeling contractors is achieved through varying formats, timelines, and modes depending on who is delivering the information, who is intended to receive it, and what technical, intellectual,and time resources the recipients have at their disposal. Determining what type of communication is effective does not lend itself to a clearly quantifiable test but rather a qualitative one. That qualitative judgment can be supported by the research of current practices deemed effective for one or more of the following reasons: it has led to the successful completion of a certifying test or other evaluation, it has been widely used for the remodeling industry, it has been considered effective by a sampling of remodeling contractors, and/or it has proven effective in the field for the BARA team. These criteria were used to create a select list of communications to be further analyzed to determine why they are effective and how less successful formats or strategies can be revised for greater effectiveness.

  14. NUMO-RMS: a practical requirements management system for the long-term management of the deep geological disposal project - 16304

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Suzuki, Satoru; Ishiguro, Katsuhiko; Oyamada, Kiyoshi; Yashio, Shoko; White, Matt; Wilmot, Roger

    2009-01-01

    NUMO (Nuclear Waste Management Organization of Japan) has the responsibility for implementing deep geological disposal of high-level (HLW) and transuranic (TRU) radioactive waste from the Japanese nuclear programme. A formal Requirements Management System (RMS) is planned to efficiently and effectively support the computerised implementation of the management strategy and the methodology required to drive the step-wise siting processes, and the following repository operational phase,. The RMS will help in the comprehensive management of the decision-making processes in the geological disposal project, in change management as the disposal system is optimised, in driving projects such as the R and D programme efficiently, and in maintaining structured records regarding past decisions, all of which lead to soundness of the project in terms of long-term continuity. The system is planned to have information handling and management functions using a database that includes the decisions/requirements in the programme under consideration, the way in which these are structured in terms of the decision-making process and other associated information. A two-year development programme is underway to develop and enhance an existing trial RMS to a practical system. Functions for change management, history management and association with the external timeline management system are being implemented in the system development work. The database format is being improved to accommodate the requirements management data relating to the facility design and to safety assessment of the deep geological repository. This paper will present an outline of the development work with examples to demonstrate the system's practicality. In parallel with the system/database developments, a case research of the use of requirements management in radioactive waste disposal projects was undertaken to identify key issues in the development of an RMS for radioactive waste disposal and specify a number of

  15. Biological studies of the U.S. subseabed disposal program

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.; Jackson, D.W.

    1980-01-01

    The Subseabed Disposal Program (SDP) of the U.S. is assessing the feasibility of emplacing high level radioactive wastes (HLW) within deep-sea sediments and is developing the means for assessing the feasibility of the disposal practices of other nations. This paper discusses the role and status of biological research in the SDP. Studies of the disposal methods and of the conceived barriers (canister, waste form and sediment) suggest that biological knowledge will be principally needed to address the impact of accidental releases of radionuclides. Current experimental work is focusing on the deep-sea ecosystem to determine: (1) the structure of benthic communities, including their microbial component; (2) the faunal composition of deep midwater nekton; (3) the biology of deep-sea amphipods; (4) benthic community metabolism; (5) the rates of bacterial processes; (6) the metabolism of deep-sea animals, and (7) the radiation sensitivity of deep-sea organisms. A multi-compartment model is being developed to assess quantitatively, the impact (on the environment and on man) of releases of radionuclides into the sea

  16. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  17. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  18. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  19. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    International Nuclear Information System (INIS)

    Yu, Ann T.W.; Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara

    2013-01-01

    Highlights: ► A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. ► However, the reduction cannot be sustained. ► Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006–2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

  20. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk [Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

  1. Ethical aspects of long-lived waste disposal

    International Nuclear Information System (INIS)

    McCombie, C.

    1996-01-01

    Independent of the long debate on the use of nuclear power, waste management specialists have a clear, unassailable set of environmental goals aimed at protecting the public and workers from any unjustifiable exposure to radiation. It is recognized that releases to the environment must be minimized, operational doses from waste handling kept low, and storage facilities constructed and operated with very high levels of safety. A philosophy of how to make best use of the available resources is embedded into the established principles of the ICRP, requiring justification of practices, limitation of doses and optimization. The situation is different when we consider the particular case of disposal of long-lived radioactive waste. Properly designed and sited repositories will present only low levels of risk - but these risks are predicted to peak only after many thousands of years. It is obvious, therefore, that this disposal involves the present and immediately following generations investing resources into the protection of far-future individuals. Attention has focused upon this intergeneration issue in recent years, leading to intensified debate on all ethical aspects of waste disposal. In this paper, I will try to provide a short overview of recent relevant work, to indicate the ethical principles agreed upon and to highlight the currently most controversial issues. (author)

  2. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  3. Current researches on safety assessment of radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Tasaka, Hiroshi; Kiyose, Ryohei

    1980-01-01

    Recently, the problem of safe disposal of radioactive waste generated from nuclear fuel cycle becomes more important in Japan. On the other hand, many researches on shallow land burial of low-level wastes and geologic isolation of high-level wastes have been carried out in the United States of America. In this report, the researches on the safety assessment of radioactive waste disposal in the United States of America were briefly introduced with emphasis on the studies on behavior and migration of radionuclide from disposed waste in geosphere. (author)

  4. When is a medicine unwanted, how is it disposed, and how might safe disposal be promoted? Insights from the Australian population.

    Science.gov (United States)

    Bettington, Emilie; Spinks, Jean; Kelly, Fiona; Gallardo-Godoy, Alejandra; Nghiem, Son; Wheeler, Amanda J

    2017-12-19

    Objective The aim of the present study was to explore disposal practices of unwanted medicines in a representative sample of Australian adults, compare this with previous household waste surveys and explore awareness of the National Return and Disposal of Unwanted Medicines (RUM) Project. Methods A 10-min online survey was developed, piloted and conducted with an existing research panel of adult individuals. Survey questions recorded demographics, the presence of unwanted medicines in the home, medicine disposal practices and concerns about unwanted medicines. Descriptive statistical analyses and rank-ordered logit regression were conducted. Results Sixty per cent of 4302 respondents reported having unwanted medicines in their household. Medicines were primarily kept just in case they were needed again and one-third of these medicines were expired. Two-thirds of respondents disposed of medicines with the household garbage and approximately one-quarter poured medicines down the drain. Only 17.6% of respondents had heard of the RUM Project, although, once informed, 91.7% stated that they would use it. Respondents ranked the risk of unintended ingestion as the most important public health message for future social marketing campaigns. Conclusions Respondents were largely unaware of the RUM Project, yet were willing to use it once informed. Limited awareness could lead to environmental or public health risks, and targeted information campaigns are needed. What is known about the topic? There is a growing international evidence base on how people dispose of unwanted medicines and the negative consequences, particularly the environmental effects of inappropriate disposal. Although insight into variation in disposal methods is increasing, knowledge of how people perceive risks and awareness of inappropriate disposal methods is more limited. What does this paper add? This study provides evidence of inappropriate medicines disposal and potential stockpiling of medicines in

  5. Labelling of electronic cigarettes: regulations and current practice.

    Science.gov (United States)

    Buonocore, Federico; Marques Gomes, Ana C N; Nabhani-Gebara, Shereen; Barton, Stephen J; Calabrese, Gianpiero

    2017-01-01

    Over the past decade e-cigarettes have established themselves in the global market. E-cigarettes triggered much interest in relation to their content and efficacy as smoking cessation tools, but less attention has been paid to users and environmental safety warnings and guidance. Several regulations have been introduced to promote their safe handling and disposal. From May 2016, liquids and cartridges will be regulated by European Community Directives (ECDs) 2001/83/EC and 93/42/EEC, or 2014/40/EU if marketed as tobacco-related products. Currently, manufacturers and distributors must abide by the Chemical (Hazard Information and Packaging for Supply) Regulations 2009 (CHIP) or Classification, Labelling and Packaging Regulations (CLP), the latter replacing CHIP in June 2015. In this work, the compliance of marketed e-liquids and e-cigarettes with current European Union and UK legislations is assessed. E-liquids and e-cigarettes (21 and 9 brands, respectively) were evaluated. Evidence of non-compliance was found in relation to the CHIP/CLP toxic (13%) and environmental (37%) pictograms, tactile warning (23%), nominal amount of solution (30%), supplier contact telephone number and address (40%). None of the evaluated e-cigarettes displayed information on the correct disposal/recycling of batteries in line with the ECD 2006/66/EC. More stringent enforcement of regulations is needed to ensure not only the user's safety and awareness, but also the safeguarding of the environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Design, development and safety assessment of the IRUS repository for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Hardy, D.G.; Philipose, K.E.; Jarvis, R.G.

    1988-01-01

    This paper reports on a program underway at the Chalk River Nuclear Laboratories (CRNL) to proceed from the current practice of storage of low-level radioactive wastes (LLRW) to permanent disposal. The strategy involved is to sort the LLRW into broad categories based on the duration of their hazard and to match each category to an appropriate disposal technology. Initially, work is concentrating on the development of a belowground vault, labeled as the intrusion-resistant underground structure (IRUS), suitable for wastes with a hazardous lifetime of 500 years or less

  7. Current status of radiation safety of disposal facility in the Republic of Moldova and measures of its improvement

    International Nuclear Information System (INIS)

    Zaharia, G.

    2000-01-01

    The infrastructure and waste management safety in the Republic of Moldova is presented. The current situation in the waste disposal facility is described. The radioactive waste inventory shows a total activity of 16.4 TBq. The radiological survey of soils at the CRWDF show a significant increase of the contamination by 226 Ra and 90 Sr at depths 3 - 5.5 m, considered as an accidental situation provoked by the disintegration of the facility protective walls. Measures for the prevention of further contamination and ground water are discussed. Construction of a new radioactive waste shallow land disposal facility on the site combined with some engineering improvements of the site is considered the best solution. Some problems of the waste management in the country are presented

  8. 21 CFR 123.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 123.5 Section...) FOOD FOR HUMAN CONSUMPTION FISH AND FISHERY PRODUCTS General Provisions § 123.5 Current good manufacturing practice. (a) Part 110 of this chapter applies in determining whether the facilities, methods...

  9. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  10. Current Risk Management Practices in Psychotherapy Supervision.

    Science.gov (United States)

    Mehrtens, Ilayna K; Crapanzano, Kathleen; Tynes, L Lee

    2017-12-01

    Psychotherapy competence is a core skill for psychiatry residents, and psychotherapy supervision is a time-honored approach to teaching this skill. To explore the current supervision practices of psychiatry training programs, a 24-item questionnaire was sent to all program directors of Accreditation Council for Graduate Medical Education (ACGME)-approved adult psychiatry programs. The questionnaire included items regarding adherence to recently proposed therapy supervision practices aimed at reducing potential liability risk. The results suggested that current therapy supervision practices do not include sufficient management of the potential liability involved in therapy supervision. Better protections for patients, residents, supervisors and the institutions would be possible with improved credentialing practices and better documentation of informed consent and supervision policies and procedures. © 2017 American Academy of Psychiatry and the Law.

  11. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  12. Management and disposal of disused sealed radioactive sources in Europe

    International Nuclear Information System (INIS)

    Wells, D.A.; Angus, M.J.; Cecille, L.

    2001-01-01

    by using questionnaires to act as study guides and by conducting face-to-face discussions with representatives of the regulatory bodies, source users, original equipment manufacturers (OEMs), distributors, source manufacturers and waste management organisations. Information was obtained regarding the sealed source market in each country, the legislation and the way it is applied in practice, options for the disposal of SSRS and information on sources lost from regulatory control. All of the countries studied operate regulatory systems which require each user of sealed sources to hold a licence. In principle, there are many similarities between these systems. In practice, however, there are also many differences. In some cases, most regulatory attention is paid to assessing the competence of the prospective user before issuing a licence and thereafter, the amount of attention paid is limited. In other cases, regulatory control is applied throughout the source life-cycle, with particular attention being paid to approval of individual source transfers. The regulatory structures also vary considerably. In some countries, a single regulator is responsible for all aspects of the use and disposal of sealed sources. In other countries there are a number of regulatory bodies sharing responsibilities on a regional or functional basis. Despite these differences, there is no evidence for any link between the regulatory system and the number of sources lost from regulatory control. All regulatory bodies were of the opinion that their current regulatory system was adequate, but there was some acknowledgement of room for improvement. Some of the C and EE countries are quite newly independent and their regulatory system functions adequately, but is still under development. In most European countries there are regional or centralised interim stores able to receive most types of SSRS. They are operated by a variety of state owned bodies and commercial organisations. In a few countries

  13. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  14. Environmentally Sustainable Apparel Acquisition and Disposal Behaviours among Slovenian Consumers

    Directory of Open Access Journals (Sweden)

    Žurga Zala

    2015-12-01

    Full Text Available Fibre production and textile processing comprise various industries that consume large amounts of energy and resources. Textiles are a largely untapped consumer commodity with a strong reuse and recycling potential, still fibres and fibre containing products ends up in landfill sites or in waste incinerators to a large extent. Reuse and recycle of waste clothing results in reduction in the environmental burden. Between 3% and 4% of the municipal solid waste stream in Slovenia is composed of apparel and textiles. This exploratory study examines consumer practices regarding purchase and the disposal of apparel in Slovenia. Data were collected through structured online survey from a representative random sample of 535 consumers. Responses to online questionnaire indicated the use of a variety of textile purchase and disposal methods. The influence of different sociodemographic variables on apparel purchase, disposal and recycling behaviour was examined. Moreover, the differences in the frequency of apparel recycling between consumers with and without an apparel bank available nearby were explored. This research was conducted, since it is crucial to analyse the means by which consumers are currently disposing their textile waste in order to plan the strategies that would encourage them to further reduce the amount of apparel sent to landfills.

  15. 21 CFR 114.5 - Current good manufacturing practice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Current good manufacturing practice. 114.5 Section...) FOOD FOR HUMAN CONSUMPTION ACIDIFIED FOODS General Provisions § 114.5 Current good manufacturing practice. The criteria in §§ 114.10, 114.80, 114.83, 114.89, and 114.100, as well as the criteria in part...

  16. Current economic trends in equine practice.

    Science.gov (United States)

    Clark, Andrew R

    2009-12-01

    Current economic trends in equine practice are trends of weakness. Most practices, after a decade of double-digit growth, have migrated to survival mode within a few months. Understanding that all regions and disciplines are affected differently, using the Porter five forces model, we can identify changes that must be made in our business models first to survive and then to position ourselves to prosper when the recession ends. If we are to avoid long-term damage to our practices, we must use cost control and work efficiency in addition to price concessions.

  17. Current construction status of Korea Wolsong Nuclear Environment Management Center (low and intermediate level radioactive waste disposal facility)

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    2010-01-01

    Through the RANDEC delegation tour to Korea in Nov. 2009, we have earned new information on recent development of the radioactive waste management in Korea. In this report, we will introduce such development in Korea, focusing on the current construction status of Korean LILW (low and intermediate level radioactive waste) disposal site, now called, Wolsong Nuclear Environment Management Center. (author)

  18. Investigating sources of pharmaceutical pollution: Survey of over-the-counter and prescription medication purchasing, use, and disposal practices among university students.

    Science.gov (United States)

    Vatovec, Christine; Van Wagoner, Emily; Evans, Corey

    2017-08-01

    Pharmaceutical pollution in surface waters poses a range of risks to public health and aquatic ecosystems. Consumers contribute to pharmaceutical pollution via use and disposal of medications, though data on such behaviors is limited. This paper investigates the purchasing, use, and disposal practices among a population that has been researched only minimally to date, yet will determine pharmaceutical pollution for decades to come: young adults represented by a university student population. We employed an online, 21-question survey to examine behaviors related to pharmaceuticals among students at the University of Vermont (n = 358). Results indicate that the majority of respondents had purchased medications in the previous 12 months (94%), and had leftover drugs (61%). Contrary to previous studies of older populations, only a small proportion of students had disposed of drugs (18%); municipal trash was the primary route of drug disposal (25%), and very few students disposed drugs via flushing (1%). Less than a quarter of students were aware of drug take-back programs (24%), and only 4% had ever used take-back services. These findings indicate that the university student population may be storing a large volume of unused drugs that will require future disposal. Increasing awareness of, access to, and participation in pro-environment pharmaceutical behaviors, such as purchasing over-the-counter medication in smaller quantities and utilizing drug take-back programs, could minimize future pharmaceutical pollution from this population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Disposal of disused sealed sources and approach for safety assessment of near surface disposal facilities (national practice of Ukraine)

    International Nuclear Information System (INIS)

    Alekseeva, Z.; Letuchy, A.; Tkachenko, N.V.

    2003-01-01

    The main sources of wastes are 13 units of nuclear power plants under operation at 4 NPP sites (operational wastes and spent sealed sources), uranium-mining industry, area of Chernobyl exclusion zone contaminated as a result of ChNPP accident, and over 8000 small users of sources of ionising radiation in different fields of scientific, medical and industrial applications. The management of spent sources is carried out basing on the technology from the early sixties. In accordance with this scheme accepted sources are disposed of either in the near surface concrete vaults or in borehole facilities of typical design. Radioisotope devices and gamma units are placed into near surface vaults and sealed sources in capsules into borehole repositories respectively. Isotope content of radwaste in the repositories is multifarious including Co-60, Cs-137, Sr-90, Ir-192, Tl-204, Po-210, Ra-226, Pu-239, Am-241, H-3, Cf-252. A new programme for waste management has been adopted. It envisions the modifying of the 'Radon' facilities for long-term storage safety assessment and relocation of respective types of waste in 'Vector' repositories.Vector Complex will be built in the site which is located within the exclusion zone 10Km SW of the Chernobyl NPP. In Vector Complex two types of disposal facilities are designed to be in operation: 1) Near surface repositories for short lived LLRW and ILRW disposal in reinforced concrete containers. Repositories will be provided with multi layer waterproofing barriers - concrete slab on layer composed of mixture of sand and clay. Every layer of radwaste is supposed to be filled with 1cm clay layer following disposal; 2) Repositories for disposal of bulky radioactive waste without cans into concrete vaults. Approaches to safety assessment are discussed. Safety criteria for waste disposal in near surface repositories are established in Radiation Protection Standards (NRBU-97) and Addendum 'Radiation protection against sources of potential exposure

  20. Control and tracking arrangements for solid low-level waste disposals to the UK Drigg disposal site

    International Nuclear Information System (INIS)

    Elgie, K.G.; Grimwood, P.D.

    1993-01-01

    The Drigg disposal site has been the principal disposal site for solid low-level radioactive wastes (LLW) in the United Kingdom since 1959. It is situated on the Cumbrian coast, some six kilometers to the south of the Sellafield nuclear reprocessing site. The Drigg site receives LLW from a wide range of sources including nuclear power generation, nuclear fuel cycle activities, defense activities, isotope manufacture, universities, hospitals, general industry and clean-up of contaminated sites. This LLW has been disposed of in a series of trenches cut into the underlying clay layer of the site, and, since 1988, also into concrete lined vault. The total volume of LLW disposed of at Drigg is at present in the order of 800,000m 3 , with disposals currently approximately 25,000m 3 per year. British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site. To meet operational and regulatory requirements, BNFL needs to ensure the acceptability of the disposed waste and be able to track it from its arising point to its specific disposal location. This paper describes the system that has been developed to meet these requirements

  1. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  2. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  3. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  4. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  5. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  6. Single-use disposable technologies for biopharmaceutical manufacturing.

    Science.gov (United States)

    Shukla, Abhinav A; Gottschalk, Uwe

    2013-03-01

    The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Disposal of infective waste: demonstrated information and actions taken by nursing and medical students

    Directory of Open Access Journals (Sweden)

    Adenícia Custodia Silva Souza

    2015-03-01

    Full Text Available The inappropriate disposal of infectious waste generates occupational and environmental risks, representing the main cause of accidents with biological material. The aim of the present study was to verify the knowledge and the practice regarding the disposal of infectious waste among nursing and medical undergraduate students at a public university in the state of Goiás. Data were collected with the application of a questionnaire. The respondent students were observed in their practice and data were recorded in a checklist. Nursing students presented greater knowledge than medical students on the disposal of contaminated gloves (x²; p<0.001, as well as on the disposal of sharp cutting instruments (p=0.001. Contaminated gloves were disposed of into bags for common waste both by the nursing and the medical students. Results evidenced that the knowledge of students on the disposal of infectious waste was poor and insufficient to ensure its application to practice.

  8. Study on retrievability of waste package in geological disposal

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Noda, Masaru

    2002-02-01

    Retrievability of waste packages in geological disposal of high-level radioactive waste has been investigated from a technical aspect in various foreign countries, reflecting a social concern while retrievability is not provided as a technical requirement. This study investigates the concept of reversibility and retrievability in foreign countries and a technical feasibility on retrievability of waste packages in the geological disposal concept shown in the H12 report. The conclusion obtained through this study is as follows: 1. Concept of reversibility and retrievability in foreign countries. Many organizations have reconsidered the retrievability as one option in the geological disposal to improve the reversibility of the stepwise decision-making process and provide the flexibility, even based upon the principle of the geological disposal that retrieval of waste from the repository is not intended. 2. Technical feasibility on the retrievability in disposal concept in the H12 report. It is confirmed to be able to remove the buffer and to retrieve the waste packages by currently available technologies even after the stages following emplacement of the buffer. It must be noted that a large effort and expense would be required for some activities such as the reconstruction of access route if the activities started after a stage of backfilling disposal tunnels. 3. Evaluation of feasibility on the retrievability and extraction of the issues. In the near future, it is necessary to study and confirm the practical workability and economical efficiency for the retrieving method of waste packages proposed in this study, the handling and processing method of removed buffer materials, and the retrieving method of waste packages in the case of degrading the integrity of waste packages or not emplacing the waste packages in the assumed attitude, etc. (author)

  9. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  10. 78 FR 4307 - Current Good Manufacturing Practice Requirements for Combination Products

    Science.gov (United States)

    2013-01-22

    ...-2009-N-0435] Current Good Manufacturing Practice Requirements for Combination Products AGENCY: Food and...) is issuing this regulation on the current good manufacturing practice (CGMP) requirements applicable... this subpart? (Sec. 4.2) D. What current good manufacturing practice requirements apply to my...

  11. A program for evolution from storage to disposal of radioactive wastes at CRNL

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1985-10-01

    This report reviews past and current radioactive waste management practices at the Chalk River Nuclear Laboratories (CRNL) and outlines the proposed future program. For nearly 40 years, radioactive wastes have been generated at CRNL and have also been received there on a continuing basis from hospitals, industries, universities and miscellaneous other sources across Canada. The solid wastes now at CRNL have been either stored or buried and their total consolidated volume is approaching 50 000 m 3 . Much of that waste will require disposal as will the future wastes of similar character. The waste management program plan describes the proposed development of safe disposal facilities which could be built on site to accommodate most, if not all, of the radioactive wastes for which CRNL has responsibility. Three reference disposal concepts, each potentially capable of accepting a portion of the wastes, are described. One of these, the intrusion-resistant shallow land burial (SLB) concept, could be suitable for disposal of most of the CRNL wastes. It is proposed that a prototype SLB facility be designed, constructed and operated on the CRNL property and filled by 1992 to provide a focus for disposal research and development programs and to accumulate experience in all aspects of waste management. 53 refs

  12. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  13. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    Energy Technology Data Exchange (ETDEWEB)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  14. Assessment of Insulin Injection Practice among Diabetes Patients in a Tertiary Healthcare Centre in Nepal: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Ramesh Sharma Poudel

    2017-01-01

    Full Text Available Introduction. Proper insulin injection practice is essential for better diabetic control. This study aims to assess the insulin injection practice of patients with diabetes. Materials and Methods. A cross-sectional study was conducted at Chitwan Medical College Teaching Hospital, Bharatpur, Nepal, from February 2017 to May 2017. Patients injecting insulin through insulin pens (n=43 for a minimum of 4 weeks were consecutively recruited. Patients’ baseline characteristics, current insulin injection technique, insulin transportation practice, complications of insulin injection, disposal practice of used needle, and acceptability of insulin were recorded. Descriptive statistics were performed using IBM-SPSS 20.0. Results. The insulin injection technique of patients and their relatives was inadequate. The majority of patients and their relatives (25, 58.1% mentioned that they transport their insulin cartridge without maintaining cold chain. Thirteen patients (30.2%, n=43 reported complications of insulin injection and the most common complication among those patients was bruising (10, 76.9%, n=13. Almost all patients disposed the used needle improperly, and the common method was disposing the needle in a dustbin and then transferring to municipal waste disposal vehicle. Insulin was accepted by just 16 (37.2% patients. Conclusion. There was a significant gap between the insulin delivery recommendation through insulin pen and current insulin injection practice.

  15. Greater Confinement Disposal trench and borehole operations status

    International Nuclear Information System (INIS)

    Harley, J.P. Jr.; Wilhite, E.L.; Jaegge, W.J.

    1987-01-01

    Greater Confinement Disposal (GCD) facilities have been constructed within the operating burial ground at the Savannah River Plant (SRP) to dispose of the higher activity fraction of SRP low-level waste. GCD practices of waste segregation, packaging, emplacement below the root zone, and waste stabilization are being used in the demonstration. 2 refs., 2 figs., 2 tabs

  16. User's guide to the 'DISPOSALS' model

    International Nuclear Information System (INIS)

    Groom, M.S.; James, A.R.; Laundy, R.S.

    1984-03-01

    This report provides a User's Guide to the 'DISPOSALS' computer model and includes instructions on how to set up and run a specific problem together with details of the scope, theoretical basis, data requirements and capabilities of the model. The function of the 'DISPOSALS' model is to make assignments of nuclear waste material in an optimum manner to a number of disposal sites each subject to a number of constraints such as limits on the volume and activity. The user is able to vary the number of disposal sites, the range and limits of the constraints to be applied to each disposal site and the objective function for optimisation. The model is based on the Linear Programming technique and uses CAP Scientific's LAMPS and MAGIC packages. Currently the model has been implemented on CAP Scientific's VAX 11/750 minicomputer. (author)

  17. Radioactive waste management and disposal strategies in the European community

    International Nuclear Information System (INIS)

    Orlowski, S.

    1986-01-01

    This paper presents an overview of the various radioactive waste management strategies, as they are defined, or even envisaged, in the EC Member States committed to nuclear power. The two main components of these strategies are looked at: content and basic supporting choices; and schedule of implementation. Most EC Countries currently have in common a nuclear history of several decades. Early approaches and local practices are progressively replaced by centralised management systems and by strategies making the best use of many years of research and technological development. All these strategies are aiming at a safe management of all waste types up to, and including, their final disposal. The various management steps are well in hand and very similar in the EC Countries. However, the final step ''disposal'', has been implemented only for low-level waste, and remains to be demonstrated for long lived and high level waste (or spent fuel)

  18. Feasible research on VLLW disposal in control area of nuclear installation

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2013-01-01

    Based on the basic requirements on the VLLW landfill disposal specified by the national codes and standards, a on-site disposal of VLLW in the control area of nuclear installation was proposed. A detail analysis of the advantages and disadvantages about the disposal method and the problem to be solved were described. Results showed that the on-site disposal of VLLW in the control area of nuclear installation was feasible in practice. (authors)

  19. Recommendations on waste disposal of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Valentin, J.

    1999-01-01

    current ICRP policy of radiological protection, in particular as regards public exposure, and aims to clarify the practical application of that policy to the disposal of radioactive waste. The report discusses the justification of a practice, the optimisation of protection, the use of collective dose assessed over long distances and times, the implications of potential exposure, and the distinction between practices and intervention. The use of collective dose to large populations from very small doses and from doses occurring over very long periods of time has been much debated in recent years. The report emphasises that the presentation of collective dose contributed to by very wide ranges of individual dose should be separated into blocks of limited ranges of dose and time. However, a collective dose should not be ignored on the sole ground that the individual doses contributing to the collective dose are small. Estimation of collective dose over long periods is uncertain, and forecasts of dose over longer times than several thousand years should be examined critically. Specific questions with respect to the disposal of solid long-lived radioactive waste were addressed in ICRP Publication 46. The advice in that report is still regarded as valid, but there is a need to consider its overall usefulness to decision-makers. A Task Group is preparing an amendment to Publication 46, considering particularly potential exposures from long-lived wastes, protection objectives in the long-term, the weight to be given to future doses, and the application of optimisation of protection. Several other Publications of the Commission are also of relevance, notably those dealing with optimisation, with potential exposure, with protection of the general public, and with protection of workers

  20. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    Science.gov (United States)

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  1. Current status of spent fuel disposal program in Taiwan, Republic of China

    International Nuclear Information System (INIS)

    Soong, K.L.; Liu, S.J.

    1989-01-01

    In the year of 1988, Taiwan has completed a two-year preliminary study and began in late 1988 a second term for the final disposal of spent fuel program. The research conducted in the first phase was mainly concentrated on the reviews of international studies and domestic geological literatures, set-up of siting criteria, and pertinent engineering analysis of a repository. Taiwan is an area of complex and unstable geological structures, abundant ground water and high density of population. Favorable host rocks under consideration for permanent waste disposal are thick shales and mudstones, metamorphosed rocks of mesozoic basement, solidified quartzite and mesozoic granitic gneiss. The analysis of heat transfer for hypothetical case studies indicate that the temperature rises in the repository systems would be well below the proposed maximum admissible temperatures. The repository size would be less than 2 km 2 when appropriate period for surface storage of spent fuel is satisfied. A probabilistic risk analysis also demonstrates that the presence of faulting and other tectonic instabilities characterize Taiwan's disadvantages for geological disposal of nuclear waste

  2. Licensing of alternative methods of disposal of low-level radioactive waste: Branch technical position, Low-Level Waste Licensing Branch

    International Nuclear Information System (INIS)

    Higginbotham, L.B.; Dragonette, K.S.; Pittiglio, C.L. Jr.

    1986-12-01

    This branch technical position statement identifies and describes specific methods of disposal currently being considered as alternatives to shallow land burial, provides general guidance on these methods of disposal, and recommends procedures that will improve and simplify the licensing process. The statement provides answers to certain questions that have arisen regarding the applicability of 10 CFR 61 to near-surface disposal of waste, using methods that incorporate engineered barriers or structures, and other alternatives to conventional shallow land burial disposal practices. This position also identifies a recently published NRC contractor report that addresses the applicability of 10 CFR 61 to a range of generic disposal concepts and which provides technical guidance that the staff intends to use for these concepts. This position statement combined with the above-mentioned NRC contractor report fulfills the requirements of Section 8(a) of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985

  3. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a ''practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs

  4. Phased reversibility under the current French disposal concept

    International Nuclear Information System (INIS)

    Hoorelbeke, J.-M.

    2000-01-01

    The French law of 30 December 1991 and the implementing decrees provide for taking into account the reversibility in the study of geological disposal. This takes place within the framework of a 15 year research program. The research in this field implies both the assessment of technological possibilities for retrieving waste packages safely from the repository and the assessment of the consequence of delaying the closure of the repositories on the long term safety. This research program aims at proposing to the decision makers, by the year 2006, an open range of relevant options with regards to reversibility. (author)

  5. 7 CFR 3015.168 - Disposal of equipment.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Property § 3015.168 Disposal of equipment. When original or replacement equipment is no longer to be used in projects or programs currently or... 7 Agriculture 15 2010-01-01 2010-01-01 false Disposal of equipment. 3015.168 Section 3015.168...

  6. Advances in poultry litter disposal technology--a review.

    Science.gov (United States)

    Kelleher, B P; Leahy, J J; Henihan, A M; O'Dwyer, T F; Sutton, D; Leahy, M J

    2002-05-01

    The land disposal of waste from the poultry industry and subsequent environmental implications has stimulated interest into cleaner and more useful disposal options. The review presented here details advances in the three main alternative disposal routes for poultry litter, specifically in the last decade. Results of experimental investigations into the optimisation of composting, anaerobic digestion and direct combustion are summarised. These technologies open up increased opportunities to market the energy and nutrients in poultry litter to agricultural and non-agricultural uses. Common problems experienced by the current technologies are the existence and fate of nitrogen as ammonia, pH and temperature levels, moisture content and the economics of alternative disposal methods. Further advancement of these technologies is currently receiving increased interest, both academically and commercially. However, significant financial incentives are required to attract the agricultural industry.

  7. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  8. Radioactive waste disposal into the ground

    International Nuclear Information System (INIS)

    1965-01-01

    Disposal into ground has sometimes proved to be an expedient and simple method. Where ground disposal has become an established practice, the sites have so far been limited to those remote from population centres; but in other respects, such as in climate and soil conditions, their characteristics vary widely. Experience gained at these sites has illustrated the variety of problems in radioactive waste migration and the resulting pollution and environmental radiation levels that may reasonably be anticipated at other sites, whether remote from population centres or otherwise.

  9. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  10. The recycling and disposal of electrical and electronic waste in China-legislative and market responses

    International Nuclear Information System (INIS)

    Hicks, C.; Dietmar, R.; Eugster, M.

    2005-01-01

    The development of new legislation on collection, recycling and disposal of waste electrical and electronic equipment (WEEE) as well as the scaling-up and privatisation of the WEEE processing industry, are indications of major changes for WEEE management in China. However, China's attempts to regulate the industry and establish a financially viable, environmentally benign and safe WEEE management system are facing significant challenges. The existence of an extensive informal sector, combined with a lack of environmental awareness among WEEE collectors, recyclers and consumers, are contributing to China's difficulties in developing a financially and environmentally sound recycling and disposal system. This paper discusses the current status of WEEE recycling and disposal in China, and its impacts on the environment, human health, and the economy. It also examines the legislative and market responses to the WEEE issue, and how these will be affected by Chinese attitudes and practices towards WEEE recycling

  11. Direct disposal of spent nuclear fuel. The current status of technology January 1987

    International Nuclear Information System (INIS)

    Wheelton, I.S.; Kelly, B.R.; Wood, E.

    1987-02-01

    The Study assesses the degree and status of research and development worldwide on Direct Disposal of Spent Nuclear Fuel. It is limited to technological, radiological and waste management aspects appertaining to Light Water and AGR Reactor Systems and reviews the 'State of the Art' in terms of applicability to the United Kingdom. The report concludes that much technology exists both at National and International level which the UK can apply to the subject of Direct Disposal. (author)

  12. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)

  13. Evaluation of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.; Wehmann, G.; Thamer, B.J.; Card, D.H.

    1979-07-01

    A comparative analysis of the most viable alternatives for disposal of solid low-level radioactive wastes is presented to aid in evaluating national waste management options. Four basic alternative methods are analyzed and compared to the present practice of shallow land burial. These include deeper burial, disposal in mined cavities, disposal in engineered structures, and disposal in the oceans. Some variations in the basic methods are also presented. Technical, socio-political, and economic factors are assigened relative importances (weights) and evaluated for the various alternatives. Based on disposal of a constant volume of waste with given nuclear characteristics, the most desirable alternatives to shallow land burial in descending order of desirability appear to be: improving present practices, deeper burial, use of acceptable abandoned mines, new mines, ocean dumping, and structural disposal concepts. It must be emphasized that the evaluations reported here are generic, and use of other weights or different values for specific sites could change the conclusions and ordering of alternatives determined in this study. Impacts and costs associated with transportation over long distances predominate over differences among alternatives, indicating the desireability of establishing regional waste disposal locations. The impacts presented are for generic comparisons among alternatives, and are not intended to be predictive of the performance of any actual waste disposal facility

  14. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  15. Practical and safe implementation of disposal with prefabricated EBS modules

    International Nuclear Information System (INIS)

    Kawamura, Hideki; McKinley, Ian G.; Neall, Fiona B.

    2008-01-01

    The use of prefabricated EBS modules ('PEMs') to minimise the problems involved with handling compacted bentonite and ensuring that it is emplaced to established quality levels has been investigated in various national programmes for disposal of both HLW and SF. To date, however, this has tended to be decoupled from studies of related operational aspects such as assessing / minimising the consequences of use of concrete for support structures, ensuring ease of tele-operated reversal of waste packages during emplacement (e.g. in the event of operational disturbances) / retrieval at a later time, logistical optimisation (especially for programmes with large waste inventories) and cost minimisation. It is clear that specific aspects of operational safety and practicality can be considerably enhanced if designs are modified with a focus on them. It is trickier to provide optimised solutions, which simultaneously address all these critical points. Nevertheless, with a bit of lateral thinking, it appears possible to devise options that may not only ease the operational phase, but may also actually improve post-closure safety case robustness - although improved, more realistic performance assessment codes and databases will be needed to demonstrate this rigorously. To illustrate this approach, an example will be presented based of disposal of vitrified HLW in a fractured hard rock; the general principles involved are, however, also applicable to other higher activity wastes and other host rocks. Key aspects of the design are: Optimisation of PEM design for both short-term and long-term performance; Development of a rail emplacement system which eases remote handled emplacement / recovery; Large diameter, lined emplacement tunnels to ensure operational robustness; Use of multi-package overpacks (e.g. 6 HLW containers in each PEM) and short tunnels to ease emplacement logistics; and Backfilling with a non-swelling sacrificial pH buffer (eases handling and improves

  16. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    Science.gov (United States)

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  17. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  18. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  19. Impacts on non-human biota from a generic geological disposal facility for radioactive waste: some key assessment issues.

    Science.gov (United States)

    Robinson, C A; Smith, K L; Norris, S

    2010-06-01

    This paper provides an overview of key issues associated with the application of currently available biota dose assessment methods to consideration of potential environmental impacts from geological disposal facilities. It explores philosophical, methodological and practical assessment issues and reviews the implications of test assessment results in the context of recent and on-going challenges and debates.

  20. Impacts on non-human biota from a generic geological disposal facility for radioactive waste: some key assessment issues

    International Nuclear Information System (INIS)

    Robinson, C A; Smith, K L; Norris, S

    2010-01-01

    This paper provides an overview of key issues associated with the application of currently available biota dose assessment methods to consideration of potential environmental impacts from geological disposal facilities. It explores philosophical, methodological and practical assessment issues and reviews the implications of test assessment results in the context of recent and on-going challenges and debates.

  1. Ethical aspects in connection with the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Boetsch, W.

    2003-01-01

    The progress of modern natural and technological science and their far-reaching consequences affecting the distant future require increasingly practice-oriented ethical concepts. In the discussions about responseable acting, the question of the ethical tenability of nuclear energy nowadays takes a special position. Above all the problem of the disposal of radioactive wastes - the effects of which on the distant future have to be prognosticated - is controversially discussed in society. The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) commissioned Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS) in the context of the project ''Disposal of radioactive wastes in the context of ethical objectives'' to summarise the current national and international status of ethical aspects in connection with the disposal of radioactive wastes. One aim of this report is to derive criteria to form the basis of a comprehensive discussion of the ethical aspects of the disposal of radioactive wastes. These criteria are to describe, as far as possible, all content-related aspects that result from radioactive waste disposal. The issues in this report resulting from the opinions, comments and publications presented are to serve as a basis for an experts' meeting at which the important ethical criteria concerning the responsible management of radioactive waste disposal are to be discussed at an interdisciplinary level with all those involved. The results of this report are based on an investigation which gathered the available national and international statements, principles, and criteria relating to the ethical aspects of the disposal of radioactive wastes and to sustainable development in the context of the technological impact assessment up to beginning of 2000. In the meantime, the debate in Germany has become somewhat more pragmatic, i. a. due to the work of the research group ''Arbeitskreis Auswahlverfahren Endlagerstandorte (AkEnd)'' and

  2. Psychological impact of colostomy pouch change and disposal.

    Science.gov (United States)

    McKenzie, Frances; White, Craig A; Kendall, Sally; Finlayson, Aileen; Urquhart, Mary; Williams, Isabel

    This article presents some of the findings from a multicentre cross-sectional correlational study to evaluate the relationship between colostomy pouch change and disposal practices and the patient's psychological wellbeing. Five questionnaires were used in a one-off interview with 86 patients. Patients were assessed at between one and four months postoperatively. Results from the Pouch Change and Disposal questionnaire showed that only 25% of patients found disposal of used appliances the most difficult part of their pouch change and disposal routine. Half felt that their body was out of their control and 33% reported avoiding social and leisure activities due to what was involved in their pouch change and disposal routine. Patients cited several factors, such as minimizing odour and having an appliance that could flush away, as factors which would help them to stop avoiding these activities. Stoma care nurses have a unique opportunity to improve the psychological wellbeing of their patients by considering the aspects of pouch change and disposal that pose the greatest challenge to individuals. Use of a modified version of the Pouch Change and Disposal questionnaire may be a useful tool in identifying those at risk of impaired quality of life.

  3. Revised user's guide to the 'DISPOSALS' model

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.; LeJeune, S.R.

    1985-04-01

    This report provides a User's Guide to the 'DISPOSALS' computer model and includes instructions on how to set up and run a specific problem together with details of the scope, theoretical basis, data requirements and capabilities of the model. The function of the 'DISPOSALS' model is to make assignments of nuclear waste material in an optimum manner to a number of disposal sites each subject to a number of constraints such as limits on the volume and activity. The user is able to vary the number of disposal sites, the range and limits of the constraints to be applied to each disposal site and the objective function for optimisation. The model is based on the Linear Programming technique and uses CAP Scientific's LAMPS and MAGIC packages. Currently the model has been implemented on CAP Scientific's VAX 11/750 minicomputer. (author)

  4. China's current status and long-term outlook of nuclear power and radioactive waste disposal management

    International Nuclear Information System (INIS)

    Li, Zhidong

    2015-01-01

    This study identified the current status and long-term outlook of China's nuclear power development and radioactive waste disposal management after the 3.11 FUKUSHIMA accidents. China strengthened the actions for achieving nuclear power safety and cost efficiency as well as safety management of radioactive waste. It is a hard work to expand the capacity to 58 GW, the governmental target in 2020. The long-term development will strongly depend on the progress in safety management of nuclear power and radioactive waste and economic competitiveness. (author)

  5. Liquid metal coolant disposal from UKAEA reactors at Dounreay

    International Nuclear Information System (INIS)

    Adam, E.R.

    1997-01-01

    As part of the United Kingdom's Fast Reactor Development programme two reactors were built and operated at Dounreay in the North of Scotland. DFR (Dounreay Fast Reactor) was operated from 1959-1977 and PFR (Prototype Fast Reactor) was operated from 1974-1994. Both reactors are currently undergoing Stage 1 Decommissioning and are installing plant to dispose of the bulk coolant (DFR ∼ 60 tonne; PFR ∼ 1500 tonne). The coolant (NaK) remaining at DFR is mainly in the primary circuit which contains in excess of 500 TBq of Cs137. Disposal of 40 tonnes of secondary coolant has already been carried out. The paper will describe the processes used to dispose of this secondary circuit coolant and how it is intended the remaining primary circuit coolant will be handled. The programme to process the primary coolant will also be described which involves the conversion of the liquid metal to caustic and its decontamination. No PFR coolant Na has been disposed off to date. The paper will describe the current decommissioning programme activities relating to liquid metal disposal and treatment describing the materials to be disposed of and the issue of decontamination of the effluents. (author)

  6. DOE's planning process for mixed low-level waste disposal

    International Nuclear Information System (INIS)

    Case, J.T.; Letourneau, M.J.; Chu, M.S.Y.

    1995-01-01

    A disposal planning process was established by the Department of Energy (DOE) Mixed Low-Level Waste (MLLW) Disposal Workgroup. The process, jointly developed with the States, includes three steps: site-screening, site-evaluation, and configuration study. As a result of the screening process, 28 sites have been eliminated from further consideration for MLLW disposal and 4 sites have been assigned a lower priority for evaluation. Currently 16 sites are being evaluated by the DOE for their potential strengths and weaknesses as MLLW disposal sites. The results of the evaluation will provide a general idea of the technical capability of the 16 disposal sites; the results can also be used to identify which treated MLLW streams can be disposed on-site and which should be disposed of off-site. The information will then serve as the basis for a disposal configuration study, which includes analysis of both technical as well as non-technical issues, that will lead to the ultimate decision on MLLW disposal site locations

  7. Curating research data a handbook of current practice

    CERN Document Server

    Johnston, Lisa R

    2017-01-01

    Curating Research Data, Volume Two: A Handbook of Current Practice guides you across the data lifecycle through the practical strategies and techniques for curating research data in a digital repository setting. The data curation steps for receiving, appraising, selecting, ingesting, transforming, describing, contextualizing, disseminating, and preserving digital research data are each explored, and then supplemented with detailed case studies written by more than forty international practitioners from national, disciplinary, and institutional data repositories. The steps in this volume detail the sequential actions that you might take to curate a data set from receiving the data (Step 1) to eventual reuse (Step 8). Data curators, archivists, research data management specialists, subject librarians, institutional repository managers, and digital library staff will benefit from these current and practical approaches to data curation.

  8. Disposal of solid radioactive waste of nuclear power plant

    International Nuclear Information System (INIS)

    YU Shichen.

    1986-01-01

    The contaminations of marine enviroment by the disposal of radwastes should not been expected, then ocean disposal has been stoped in some countries, and land disposal of solid radwastes should been a better method for mankind and environment protection. Ground burial near the surface is currently considered to be feasible. Storage in spent pit or in plant area also should been adapted in several countries

  9. Talk about disposal for very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2008-01-01

    This paper describes the significance of segregation of very low level waste (VLLW), the current VLLW-definition and its limit value, and presents an introduction of four VLLW-disposing approaches operated world wide, as well as disposal of VLLW in China are also briefly discussed and suggested. (authors)

  10. Review and evaluation of principles used in the estimation of radiation doses associated with the practice of deepsea disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Baker, D.A.; Templeton, W.L.; Soldat, J.K.

    1985-09-01

    The relevant national and international guidance concerning the estimation of radiological doses from the practice of deepsea disposal of radioactive waste was reviewed. The review includes the dose limitation guidance of the various national and international bodies, especially that of the International Commission on Radiological Protection (ICRP). Pathway modeling is discussed as well as the oceanographic models of the International Atomic Energy Agency (IAEA). Included in the discussion are the recommendations for the definition of high-level waste by the IAEA for use by the London Dumping Convention (LDC) in setting limits for ocean disposal of waste. An assessment of the ICRP's radiological protection system using the effective whole-body dose methodology is made. Present models, which should continue to be improved as the research data becomes available, do provide an adequate basis for regulatory authorities to decide whether authorization for a proposed disposal can be granted, since they provide a means of indicating whether maximum individual (critical groups) exposure limits are likely to be exceeded. However, new models and information are continuously being developed by the international community to assess ocean disposal of radioactive waste in comparison to land disposal and to compare one site against another. 47 refs., 2 figs., 4 tabs

  11. Review of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    Regardless of future nuclear policy, a nuclear waste disposal problem does exist and must be dealt with. Even a moratorium on new nuclear plants leaves us with the wastes already in existence and wastes yet to be generated by reactors in operation. Thus, technologies to effectively dispose of our current waste problem must be researched and identified and, then, disposal facilities built. The magnitude of the waste disposal problem is a function of future nuclear policy. There are some waste disposal technologies that are suitable for both forms of HLW (spent fuel and reprocessing wastes), whereas others can be used with only reprocessed wastes. Therefore, the sooner a decision on the future of nuclear power is made the more accurately the magnitude of the waste problem will be known, thereby identifying those technologies that deserve more attention and funding. It is shown that there are risks associated with every disposal technology. One technology may afford a higher isolation potential at the expense of increased transportation risks in comparison to a second technology. Establishing the types of risks we are willing to live with must be resolved before any waste disposal technology can be instituted for widespread commercial use

  12. Basic reasons and the practice of using deep water-bearing levels for liquid radioactive waste disposal

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1978-01-01

    Speculations are presented on the development and organization of liquid radioactive waste underground disposal in deep water-bearing levels completely isolated from other levels and the surface. Major requirements are formulated that are laid down to low-, moderate-and high-radioactive wastes subject to the disposal. Geological and hydrological conditions as well as the scheme and design features of pilot field facilities are described, where works on high-active waste disposal were started in 1972. In 1972 and 1973 450 and 1050 m 3 of the wastes (7.5 and 53 MCi) respecrespectively were disposed. The first results of the pilot disposal and the 3-year surveillance over the plate-collector condition and the performance of the facilities have reaffirmed the feasibility, medical and radiation safety and economic attractiveness of the disposal of wastes with up to 10-25 Ci/l specific activity

  13. Draft Geologic Disposal Requirements Basis for STAD Specification

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  14. Radioactive waste disposal in UK: progress to date

    International Nuclear Information System (INIS)

    Folger, Michael

    1995-01-01

    In this paper, originally presented at a conference organised by the Financial Times, three main topics are covered. First, the current disposal strategies for different classes of waste, taking account of the Government's Consultative Document published recently. Second, an update on site characterisation at Sellafield and on the deep repository programme which will follow if Nirex's work confirms the site can support the demanding safety case disposal of intermediate level waste. Third, comments on costs of various options for waste disposal. (author)

  15. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  16. The industrial facility for Grouping, Storage and Disposal

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-07-01

    The industrial facility for grouping, storage and disposal (called Cires in French), in the Aube district, is run by Andra. The facility is licensed to dispose of very-low-level waste, to collect non-nuclear-power radioactive waste and to provide storage for some of the waste for which a final management solution has not yet been found. The Cires facility is located a few kilometers from the Aube disposal facility (CSA), another of Andra's waste disposal facilities, currently dealing with low- and intermediate-level, short-lived waste. Contents: Andra in the Aube district, an exemplary industrial operator - The industrial facility for grouping, storage and disposal (Cires); Disposal of very-low-level waste (VLLW); The journey taken by VLL waste; Grouping of non-nuclear-power waste; Storage of non-nuclear-power waste; The journey taken by non-nuclear-power waste; Protecting present and future generations

  17. Disposal facility data for the interim performance

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1995-01-01

    The purpose of this report is to identify and provide information on the waste package and disposal facility concepts to be used for the low-level waste tank interim performance assessment. Current concepts for the low-level waste form, canister, and the disposal facility will be used for the interim performance assessment. The concept for the waste form consists of vitrified glass cullet in a sulfur polymer cement matrix material. The waste form will be contained in a 2 x 2 x 8 meter carbon steel container. Two disposal facility concepts will be used for the interim performance assessment. These facility concepts are based on a preliminary disposal facility concept developed for estimating costs for a disposal options configuration study. These disposal concepts are based on vault type structures. None of the concepts given in this report have been approved by a Tank Waste Remediation Systems (TWRS) decision board. These concepts will only be used in th interim performance assessment. Future performance assessments will be based on approved designs

  18. Developments in support of low level waste disposal at BNFL's Drigg Site

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1988-01-01

    The continued upgrading of low-level waste pretreatment and disposal practices related to the United Kingdom Drigg disposal site is described, noting the need to take into account operational safety, long term post-closure safety, regulatory and public acceptance factors

  19. Control of radioactive waste disposal into the marine environment

    International Nuclear Information System (INIS)

    1983-01-01

    The body of this publication is intended to provide adequate information on the broad aspects of radioactive waste disposal into the sea. The introduction of radionuclides into the sea from uncontrollable sources, such as weapons test explosions, is outside the scope of this publication, as are releases of radionuclides from nuclear-powered vessels. It should be stressed that agreements on practices for the marine disposal of wastes are being developed and the understanding of oceanographic processes is rapidly progressing; therefore, the conclusions presented here should always be considered in the context of changes in both knowledge and practice that occur subsequent to the completion of this text

  20. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  1. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  2. The Management System for the Development of Disposal Facilities for Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    Currently, many Member States are safely operating near surface disposal facilities and some are in the initial or advanced stages of planning geological repositories. As for other nuclear facilities and their operational phase, all activities associated with the disposal of radioactive waste need to be carefully planned and systematic actions undertaken in order to maintain adequate confidence that disposal systems will meet performance as well as prescribed safety requirements and objectives. The effective development and application of a management system (integrating requirements for safety, protection of health and the environment, security, quality and economics into one coherent system) which addresses every stage of repository development is essential. It provides assurance that the objectives for repository performance and safety, as well as environmental and quality criteria, will be met. For near surface repositories, a management system also provides the opportunity to re-evaluate existing disposal systems with respect to new safety, environmental or societal requirements which could arise during the operational period of a facility. The topic of waste management and disposal continues to generate public interest and scrutiny. Implementation of a formal management system provides documentation, transparency and accountability for the various activities and processes associated with radioactive waste disposal. This information can contribute to building public confidence and acceptance of disposal facilities. The objective of this report is to provide Member States with practical guidance and relevant information on management system principles and expectations for management systems that can serve as a basis for developing and implementing a management system for three important stages; the design, construction/upgrading and operation of disposal facilities. To facilitate the understanding of management system implementation at the different stages of a

  3. 40 CFR 503.24 - Management practices.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Management practices. 503.24 Section... FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Surface Disposal § 503.24 Management practices. (a) Sewage... the permitting authority that through management practices public health and the environment are...

  4. Depleted uranium storage and disposal trade study: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  5. Depleted uranium storage and disposal trade study: Summary report

    International Nuclear Information System (INIS)

    Hightower, J.R.; Trabalka, J.R.

    2000-01-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options)

  6. Patterns and correlates of solid waste disposal practices in Dar es ...

    African Journals Online (AJOL)

    USER

    collection. Key words: Solid waste, garbage, waste disposal, waste management, Multinomial Logit model. INTRODUCTION. Urbanization introduces society to a new, modern way of ..... Multinomial logistic estimation. .... The trend of using.

  7. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    International Nuclear Information System (INIS)

    Oldenburg, C.; Birkholzer, J.T.

    2010-01-01

    Aside from the target storage regions being underground, geologic carbon sequestration and radioactive waste disposal share little in common in North America. The large volume of carbon dioxide (CO 2 ) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste. There is well-documented capacity in North America for 100 years or more of sequestration of CO 2 from coal-fired power plants. Aside from economics, the challenges of geologic carbon sequestration include lack of fully established legal and regulatory framework for ownership of injected CO 2 , the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for radioactive waste, the U.S. has proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level radioactive waste disposal site. The Canadian radioactive waste program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the U.S. and Canada have established legal and regulatory frameworks for radioactive waste disposal. The most challenging technical issue for radioactive waste disposal is the need to predict repository performance on extremely long time scales (10 4 - 10 6 years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening radioactive waste repositories. Because of the many significant differences between radioactive waste disposal and geologic carbon sequestration, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both geologic carbon sequestration and radioactive waste disposal

  8. Disposal approach for long-lived low and intermediate-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Joo Wan; Kim, Chang Lak

    2005-01-01

    There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste

  9. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  10. Household recycling behaviour and attitudes towards the disposal of small electrical and electronic equipment

    Energy Technology Data Exchange (ETDEWEB)

    Darby, Lauren; Obara, Louise [ESRC Centre for BRASS, Cardiff University, 54 Park Place, Cardiff, Wales CF10 3AT (United Kingdom)

    2005-04-01

    Waste electrical and electronic equipment (WEEE) is recognised as the fastest growing waste stream in the European Union (EU), with estimates of up to 20kg per person per annum. A wide variety of WEEE is discarded by consumers, often in different ways depending on size with small items (e.g. toasters) being easier to dispose of than larger ones (e.g. washing machines). Currently, small WEEE is not treated as a priority waste stream in the UK as in order to meet targets under the WEEE Directive (CEC, 2003c) it makes more sense to focus on larger items for which collection, reuse and recycling systems already exist, but small items need to be tackled for a number of reasons, including the long term strategic development of infrastructure. In light of this, the paper will assess consumer attitudes towards the disposal of small WEEE, and identify key problems raised by the implementation of the WEEE Directive in relation to these small product groups. The findings from a large scale postal questionnaire, and semi-structured interviews conducted in Cardiff, Wales will be used, and key literature and research carried out to date on the disposal of WEEE, and household attitudes to waste and recycling will be assessed. It will also look at how the implementation of the WEEE Directive 'fits in' with the current transition in the UK towards more sustainable waste management practices at the household level, and then explore the most effective ways of engaging householders in the recycling of small WEEE. Key recommendations will then be outlined concerning the future strategic development and practical implementation of the WEEE Directive in relation to consumer involvement and small product types.

  11. 21 CFR 212.2 - What is current good manufacturing practice for PET drugs?

    Science.gov (United States)

    2010-04-01

    ..., holding, or distribution of PET drugs intended for human use. Current good manufacturing practice is... 21 Food and Drugs 4 2010-04-01 2010-04-01 false What is current good manufacturing practice for... HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR POSITRON EMISSION...

  12. Waste management in ancient Greece from the Homeric to the Classical period: concepts and practices of waste, dirt, recycling and disposal

    OpenAIRE

    Lindenlauf, A.

    2000-01-01

    This doctoral thesis has two purposes. First, it develops a universally applicable model for the analysis of waste disposal and recycling practices. This model synthesises Schiffer's behavioural analysis of the formation processes of the archaeological record with the history, sociology and anthropology of conceptualisations of dirt. Second, it shows how this model may be applied to ancient Greece. In the tradition of material culture studies, it aims to challenge the entrenche...

  13. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  14. Summary of the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1994-01-01

    This is the Summary of the Environmental Impact Statement (EIS) prepared by Atomic Energy of Canada Limited (AECL) on the concept for disposal of Canada's nuclear fuel waste. The proposed concept is a method for geological disposal, based on a system of natural and engineered barriers. The EIS provides information requested by the Environmental Assessment Panel reviewing the disposal concept and presents AECL's case for the acceptability of the concept. The introductory chapter of this Summary provides background information on several topics related to nuclear fuel waste, including current storage practices for used fuel, the need for eventual disposal of nuclear fuel waste, the options for disposal, and the reasons for Canada's focus on geological disposal. Chapter 2 describes the concept for disposal of nuclear fuel waste. Because the purpose of implementing the concept would he to protect human health and the natural environment far into the future, we discuss the long-term performance of a disposal system and present a case study of potential effects on human health and the natural environment after the closure of a disposal facility. The effects and social acceptability of disposal would depend greatly on how the concept was implemented. Chapter 3 describes AECL's proposed approach to concept implementation. We discuss how the public would be involved in implementation; activities that would be undertaken to protect human health, the natural environment, and the socio-economic environment; and a case study of the potential effects of disposal before the closure of a disposal facility. The last chapter presents AECL's Conclusion, based on more than 15 years of research and development, that implementation of the disposal concept represents a means by which Canada can safely dispose of its nuclear fuel waste. This chapter also presents AECL's recommendation that Canada progress toward disposal of its nuclear fuel waste by undertaking the first stage of concept

  15. Australian survey on current practices for breast radiotherapy.

    Science.gov (United States)

    Dundas, Kylie L; Pogson, Elise M; Batumalai, Vikneswary; Boxer, Miriam M; Yap, Mei Ling; Delaney, Geoff P; Metcalfe, Peter; Holloway, Lois

    2015-12-01

    Detailed, published surveys specific to Australian breast radiotherapy practice were last conducted in 2002. More recent international surveys specific to breast radiotherapy practice include a European survey conducted in 2008/2009 and a Spanish survey conducted in 2009. Radiotherapy techniques continue to evolve, and the utilisation of new techniques, such as intensity-modulated radiation therapy (IMRT), is increasing. This survey aimed to determine current breast radiotherapy practices across Australia. An online survey was completed by 50 of the 69 Australian radiation therapy treatment centres. Supine tangential beam whole breast irradiation remains the standard of care for breast radiotherapy in Australia. A growing number of institutions are exploring prone positioning and IMRT utilisation. This survey demonstrated a wide variation in the benchmarks used to limit and report organ at risk doses, prescribed dose regimen, and post-mastectomy bolus practices. This survey also indicated, when compared with international literature, that there may be less interest in or uptake of external beam partial breast irradiation, prone positioning, simultaneous integrated boost and breath hold techniques. These are areas where further review and research may be warranted to ensure Australian patients are receiving the best care possible based on the best evidence available. This survey provides insight into the current radiotherapy practice for breast cancer in Australia. © 2015 The Royal Australian and New Zealand College of Radiologists.

  16. Co-disposal of mixed waste materials

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal

  17. The waste disposal facility in the Aube District

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-06-01

    The waste disposal facility in the Aube district is the second surface waste disposal facility built in France. It is located in the Aube district, and has been operated by Andra since 1992. With a footprint of 95 hectares, it is licensed for the disposal of 1 million cubic meters of low- and intermediate-level, short-lived waste packages. The CSA is located a few kilometers away another Andra facility, currently in operation for very-low-level waste, and collection and storage of non-nuclear power waste (the Cires). Contents: Andra in the Aube district, an exemplary industrial operator - The waste disposal facility in the Aube district (CSA); Low- and intermediate-level, short-lived radioactive waste (LILW-SL); The LILW-SL circuit; Protecting present and future generations

  18. Disposal and reclamation of southwestern coal and uranium wastes

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1979-01-01

    The types of solid wastes and effluents produced by the southwestern coal and uranium mining and milling industries are considered, and the current methods for the disposal and reclamation of these materials discussed. The major means of disposing of the solid wastes from both industries is by land fill or in some instances ponding. Sludges or aqueous wastes are normally discharged into settling and evaporative ponds. Basic reclamation measures for nearly all coal and uranium waste disposal sites include solids stabilization, compacting, grading, soil preparation, and revegetation. Impermeable liners and caps are beginning to be applied to disposal sites for some of the more harmful coal and uranium waste materials

  19. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  20. Leachate migration from a solid waste disposal facility near Biscayne National Park, South Florida

    International Nuclear Information System (INIS)

    Waller, B.G.; Labowski, J.L.

    1987-01-01

    Leachate from the Dade County Solid Waste Disposal Facility (SWDF) is migrating to the east (seaward) and to the south from the currently active disposal cell. Water levels and ground-water flow directions are strongly influenced by water-management practices, especially in the Black Creek Canal and structure S-21 to the north of the SWDF. Ground-water flow is initially to the south, from Black Creek Canal, and then to the east through the disposal area. The SWDF is constructed over the salt-intruded part of the highly transmissive Biscayne aquifer and because of this, chloride ion concentrations and specific conductance levels could not be used as indicators of leachate concentrations. Water-quality indicators used to identify leachate migration were primarily ammonium, organic nitrogen, phenols, and chemical oxygen demand with cadmium, chromium, and lead used as auxiliary indicator constituents. Leachate was detected in multi-depth wells located 75 meters to the south and 20 meters to the east of the active cell. Concentrations of water-quality indicators had mean concentrations generally 2 to 10 times higher than baseline conditions. Leachate was not detected in any of the other ground-water, canal water, or Biscayne Bay sampling sites. Primary controls over leachate movement in the SWDF are water-management practices in the Black Creek and Gould Canals, configuration and integrity of the liner beneath the active cell, and low hydraulic gradients in the landfill area

  1. Teaching Math Online: Current Practices in Turkey

    Science.gov (United States)

    Akdemir, Omur

    2011-01-01

    Changing nature of student population, developments in technology, and insufficient number of traditional universities have made online courses popular around the globe. This study was designed to investigate the current practices of teaching mathematics online in Turkish Universities through a qualitative inquiry. The snowball sampling method was…

  2. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    criteria for disposal of radioactive wastes to near surface facilities. These criteria are qualitative in nature and, for example, they do not address limitations on radionuclide content of waste, waste packages or the facility as a whole. This publication is to present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and to illustrate its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in near surface disposal facilities. The approach makes use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities both during the operational and post-closure periods. The scope of this publication covers the use of safety assessment methodology to calculate total and specific activities limits for radioactive waste in near surface disposal facilities. It is used to evaluate the potential operational and post-closure radiological impact of solid and solidified radioactive waste in near surface facilities. The radioactive waste types used to illustrate the approach range from waste containing radionuclides used for medical, industrial and research purposes to waste arising from nuclear fuel cycle activities. They also include waste arising from the decommissioning of nuclear facilities. The focus of the publication is on using of safety assessment methodology in derivation of quantitative radioactivity limits. This report deals with the role of activity limits in disposal system safety (Section 2), the relevant radiation protection criteria (Section 3), the approach to derive activity limits (Section 4), illustrations of the application of this approach (Section 5), and guidance on the use of the approach (Section 6)

  3. Greater confinement disposal program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.; Towler, O.A.; Peterson, D.L.; Johnson, G.M.; Helton, B.D.

    1984-01-01

    The first facility to demonstrate Greater Confinement Disposal (GCD) in a humid environment in the United States has been built and is operating at the Savannah River Plant. GCD practices of waste segregation, packaging, emplacement below the root zone, and waste stabilization are being used in the demonstration. Activity concentrations to select wastes for GCD are based on a study of SRP burial records, and are equal to or less than those for Class B waste in 10CFR61. The first disposal units to be constructed are 9-foot diameter, thirty-foot deep boreholes which will be used to dispose of wastes from production reactors, tritiated wastes, and selected wastes from off-site. In 1984 an engineered GCD trench will be constructed for disposal of boxed wastes and large bulky items. 2 figures, 1 table

  4. Assessment of DOE low-level radioactive solid waste disposal storage activities: task 103. Final report

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    From a survey of DOE sites, facilities, and practices for the disposal/storage of low-level radioactive solid waste, the following can be summarized: (1) No health hazard has been reported. (2) Some burial grounds are releasing small quantities of radionuclides to the immediate environment. These releases are well within release limits at all sites with the exception of on-site concentrations at ORNL. At ORNL, concentrations in the Clinch River are less than 1% of the release limits. (3) Many practices have been instituted in the last few years which have improved disposal/storage operations considerably. The most notable are: (a) improved record keeping and a centralized computer data file, (b) improved burial site surface maintenance and drainage control, (c) initiation of the use of waste compactors and current plans for their use at most burial sites, (d) initiation of studies at major sites for evaluation of the long-term impact of buried waste, (e) improvement of modeling/monitoring programs at all major sites, (f) initiation of studies to provide engineering methods of reducing burial ground discharges at ORNL, and (g) initiation of the shallow land burial technologoy program.Overall, the low-level waste is being disposed of and stored in a safe and orderly manner. Recent and planned improvements will provide increased environmental protection. The only unsatisfactory area involves record keeping. Records of waste buried years ago are either poor or nonexistent. This makes it very difficult to evaluate the total impact of some 30 years of disposal operations. While some of this important history is lost forever, projects now under way should be able to reconstruct most of it

  5. Progress toward disposal of LLRW in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Charlesworth, D. H.

    1989-08-15

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety.

  6. Progress toward disposal of LLRW in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1989-08-01

    Low-level radioactive wastes are managed in Canada currently by interim storage methods operated by the major generators of the wastes. The potential benefits of permanent disposal have led Atomic Energy of Canada Limited to undertake a development and demonstration program to make the transition from storage to disposal at its Chalk River Nuclear Laboratories. The first stages of the demonstration are based on an enhanced version of shallow land burial for the least hazardous wastes, and a unique design of a belowground concrete vault. The program includes the development and testing of the auxiliary equipment, processes and procedures necessary to support the disposal system, as well as the performance assessment methods and information needed to assure its safety

  7. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  8. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  9. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    Energy Technology Data Exchange (ETDEWEB)

    Toran, L.E.; Hopper, C.M.; Naney, M.T. [and others

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  10. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    International Nuclear Information System (INIS)

    Toran, L.E.; Hopper, C.M.; Naney, M.T.

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to 235 U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices

  11. Sea disposal of radioactive wastes: The London Convention 1972

    International Nuclear Information System (INIS)

    Sjoeblom, K.L.; Linsley, G.

    1994-01-01

    For many years the oceans were used for the disposal of industrial wastes, including radioactive wastes. In the 1970s, the practice became subject to an international convention which had the aim of regularizing procedures and preventing activities which could lead to marine pollution. This article traces the history of radioactive waste disposal at sea from the time when it first came within the view of international organizations up to the present. 2 figs, 2 tabs

  12. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  13. HLW disposal in Germany - R and D achievements and outlook

    International Nuclear Information System (INIS)

    Steininger, W.

    2006-01-01

    The paper gives a brief overview of the status of R and D on HLW disposal. Shortly addressed is the current nuclear policy. After describing the responsibilities regarding R and D for disposing of heat-generating high-level (HLW) waste (vitrified waste and spent fuel), selected projects are mentioned to illustrate the state of knowledge in disposing of waste in rock salt. Participation in international projects and programs is described to illustrate the value for the German concepts and ideas for HLW disposal in different rock types. Finally, a condensed outlook on future activities is given. (author)

  14. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  15. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  16. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  17. Practical Modeling of aluminum species in high-pH waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1995-10-01

    One of the main components of the nuclear waste stored at the Hanford Site is aluminum. As efforts are made to dispose of the waste, the need to predict the various phases of the aluminum becomes important for modeling of the disposal processes. Current databases of the aluminum species are not adequate as they stand. This study is not an attempt to present a rigorous discussion of aluminum chemistry, but to approach aluminum solubility as a practical application. The approach considers two different forms of aluminate; Al(OH) 4 - and AlO 2 - . By taking both of these forms of aluminate into consideration, a workable system of aluminium chemistry is formed that can be used to model the various waste disposal processes

  18. Professional courtesy--current practices and attitudes.

    Science.gov (United States)

    Levy, M A; Arnold, R M; Fine, M J; Kapoor, W N

    1993-11-25

    Physicians have long provided care free of charge or at a reduced rate as a professional courtesy to other physicians and their families. We conducted a stratified national mail survey to assess the extent to which this practice has changed in recent years. Using the American Medical Association's 1991 master list of physicians, we selected a random sample of 4800 practicing physicians from 12 direct-care specialties. These physicians were asked about their current policy and opinions regarding professional courtesy. Of the 2224 respondents, 2127 (96 percent) offered professional courtesy, defined as providing free or discounted health care to physicians and their families. Psychiatrists were less likely to offer professional courtesy than physicians in any of the other specialties (80 percent vs. 91 to 99 percent, P courtesy included billing only the insurance company (75 percent), providing care at no charge (49 percent), and giving a partial discount (23 percent). Twenty-three percent of the respondents reported that they had changed their policy regarding professional courtesy since starting to practice. Among those who had changed their policy, the most common changes were to increase the practice of billing only the insurance company (67 percent) and to provide care at no charge less often (58 percent). The majority of physicians responding to the survey thought that professional courtesy solidified bonds between physicians (79 percent) and was sound business practice (62 percent); 12 percent believed that it was too expensive to offer free or discounted care as a professional courtesy, and 14 percent thought that the practice had negative effects on the physician-patient interaction. Our survey of physicians involved in direct patient care indicates that, with the exception of psychiatrists, almost all American physicians offer free or discounted care as a professional courtesy and support the practice.

  19. EIA systems in Nigeria: evolution, current practice and shortcomings

    International Nuclear Information System (INIS)

    Ogunba, Olusegun A.

    2004-01-01

    Amidst mounting criticism of Environmental Impact Assessments (EIAs) carried out in Nigeria under the three independent EIA systems--the EIA Decree 86 (1992), the Town and Country Planning Decree 88 (1992) and the Petroleum Act (1969)--the paper traces the evolution of Nigeria's systems and appraises current practice and shortcomings. The path of development of the systems was traced within the framework of Gibson's model of EIA evolution [Impact Assess. Proj. Apprais., 20 (3) 2002, 151-159], while current practice and shortcomings were explored in random interview surveys of consultant firms, approval authorities and the academia. It was seen that Gibson's four-stage model is not exactly representative of the Nigerian situation, and a more appropriate six-stage model was developed. It was also established that the current practices of the three EIA systems were at different stages of evolution: one of the EIA schemes (the Town and Country Planning Decree) has not evolved satisfactorily, while the other two EIA systems have produced intricate legislations and guidelines, but fall short of first-rate practice. The other discovery was that the simultaneous use of three independent systems creates unnecessary duplication of EIA preparation with considerable time and money costs. The paper advises that Nigeria can make substantial progress along the evolutionary path through a correction of observed system shortcomings and a merger of the three systems

  20. Underground disposal of radioactive waste regulations in The Netherlands

    International Nuclear Information System (INIS)

    Cornelis, J.C.

    1978-01-01

    The only method of final disposal of radioactive waste currently envisaged in the Netherlands is disposal in rock-salt. This question is at present being studied by governmental authorities, and a public discussion is foreseen for the near future. Various Ministries, as well as local authorities at both provincial and municipal levels, are involved in the licensing and control of waste disposal. The principal stages are site selection (including that for test-drilling), construction of the mine, and supervision of the repository. These activities are governed by the legislation on mining as well as by nuclear regulations. One matter still to be decided is the nature of the body to be responsible for conducting the disposal operations. (NEA) [fr

  1. Northeast Regional environmental impact study: Waste disposal technical report

    Science.gov (United States)

    Saguinsin, J. L. S.

    1981-04-01

    The potential for cumulative and interactive environmental impacts associated with the conversion of multiple generating stations in the Northeast is assessed. The estimated quantities and composition of wastes resulting from coal conversion, including ash and SO2 scrubber sludge, are presented. Regulations governing the use of ash and scrubber sludge are identified. Currently available waste disposal schemes are described. The location, capacity, and projected life of present and potential disposal sites in the region are identified. Waste disposal problems, both hazardous and nonhazardous, are evaluated. Environmental regulations within the region as they pertain to coal conversion and as they affect the choice of conversion alternatives are discussed. A regional waste management strategy for solid waste disposal is developed.

  2. Influences of engineered barrier systems on low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Buckley, L.P.

    1987-09-01

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described

  3. Influences of engineered barrier systems on low-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L. P.

    1987-09-15

    There are major differences between the current practices of shallow land burial and alternative concepts for the disposal of low-level radioactive wastes. Additional protection provided with engineered barrier systems can overcome major concerns the public has with shallow land burial: subsidence; percolating ground waters; radionuclide migration; and the vulnerability of shallow trenches to intrusion. The presence of a variety of engineered barriers to restrict water movement, retain radionuclides and to prevent plant animal or human intrusion leads to significant changes to input data for performance assessment models. Several programs which are underway to more accurately predict the long-term performance of engineered barriers for low-level waste will be described.

  4. The treatment and packaging of waste plutonium and waste actinides for disposal

    International Nuclear Information System (INIS)

    Taylor, R.F.

    1988-07-01

    The objectives of this work have been to review the current state of knowledge on the treatment and packaging of unusable or surplus plutonium and other waste actinides for disposal and to identify any gaps in data essential for the development of a preferred route. The exercise was based on published data which said the quantity currently to be disposed of was 50 tonnes in oxide form. A literature review over the period 1978 to 1988 was carried out and a computerised database specific to the exercise was created. From this it is concluded that there are no insuperable problems to the formulation of a disposal route although there is none currently proven. The preferred wasteform would be a glass or synthetic rock. The major complication lies in the fissile nature of plutonium which dictates limits to the package size and places restrictions on the production and disposal routes. Additional work necessary to permit a final decision is listed. (author)

  5. Wastewater Characteristics, Treatment and Disposal

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Wastewater Characteristics, Treatment and Disposal is the first volume in the series Biological Wastewater Treatment, presenting an integrated view of water quality and wastewater treatment. The book covers the following topics: wastewater characteristics (flow and major constituents) impact of wastewater discharges to rivers and lakes overview of wastewater treatment systems complementary items in planning studies. This book, with its clear and practical approach, lays the foundations f...

  6. How Advertising History Helps Explain Current Practices.

    Science.gov (United States)

    Lanfranco, Leonard W.

    Students majoring in advertising can benefit from a study of that field in its historical context because such study helps them to understand current practices and to foresee future developments. One model of teaching advertising history within a required course about advertising and society begins with some basic definitions of the advertising…

  7. Radioactive waste disposal on a non-industrial scale

    International Nuclear Information System (INIS)

    1990-01-01

    A 13 minute videotape deals with the following points: 1) Exposure pathways for solid, liquid and gaseous effleunt; 2) Critical pathways; 3) Critical groups; 4) Controlling authorities; 5) Principles of disposal, including a) concentrate and contain or b) delay and decay or c) dilute and disperse and 6) record keeping. The possible effects on Man and the Environment, of the release of radioactive wastes are discussed, and the principles underlying safe disposal of such wastes are explained. There are illustrations of procedures used in Imperial College for dealing with both high and low activity waste, and methods suitable for disposal of solid, liquid and gaseous forms are described. The programme gives a useful introduction to an important aspect of work with radioactive materials, but is only intended as a supplement to practical training. (author)

  8. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  9. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  10. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  11. High integrity container evaluation for solid waste disposal burial containers

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1996-01-01

    In order to provide radioactive waste disposal practices with the greatest measure of public protection, Solid Waste Disposal (SWD) adopted the Nuclear Regulatory Commission (NRC) requirement to stabilize high specific activity radioactive waste prior to disposal. Under NRC guidelines, stability may be provided by several mechanisms, one of which is by placing the waste in a high integrity container (HIC). During the implementation process, SWD found that commercially-available HICs could not accommodate the varied nature of weapons complex waste, and in response developed a number of disposal containers to function as HICs. This document summarizes the evaluation of various containers that can be used for the disposal of Category 3 waste in the Low Level Burial Grounds. These containers include the VECTRA reinforced concrete HIC, reinforced concrete culvert, and the reinforced concrete vault. This evaluation provides justification for the use of these containers and identifies the conditions for use of each

  12. A Threat to the Environment from Practice of Drug Disposal in Thailand

    Directory of Open Access Journals (Sweden)

    Wiwat Arkaravichien

    2014-01-01

    Full Text Available Medicine contains active pharmaceutical ingredients which may do harm to the environment when dispersed into the environment. Once people have leftover medicines, if they discard them incorrectly, these medicines will contaminate the environment. This study determined how Thai villagers stored and disposed their medicines. A survey study of 331 subjects was conducted in 4 villages of Khon Kaen suburb by interviewing about what medications they stored, how they stored and how they managed their leftover medicines. The study showed that 89.4% of people kept some kind of drugs in their houses. Neuromuscular drugs were the most common group. The study revealed that there were leftover medicines at homes and they discarded them when unwanted. The most common method of discard was trashing in to rubbish bin. This method accounted for 81.4%, 64.6% and 66.6% of solid dosage form, liquid dosage form and external use drugs respectively. Liquid dosage forms were also put into the drainage system (7.4%. These disposal methods are discussed as non environmental friendly methods as the active pharmaceutical ingredients could eventually get into surface water and then may unconsciously get back to people through tap water and drinking water. This study alerts the concern for more appropriate means of drug disposal in Thailand.

  13. Sewage sludge treatment and disposal. Experiences and perspectives; Klaerschlammbehandlung und -entsorgung. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N.; Mueller, J. [comps.] [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1997-09-01

    Topics of the proceedings are: sewage sludge treatment and sewage sludge disposal by means of: thermal treatment, fermentation, composting, wet oxidation, hydrolysis, disposal in agriculture, economical aspects of sewage sludge treatment. This book deals with theoretical aspects and practical examples. (SR)

  14. Benefit-cost-risk analysis of alternatives for greater-confinement disposal of radioactive waste

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Peterson, J.M.

    1983-01-01

    Seven alternatives are included in the analysis: near-surface disposal; improved waste form; below-ground engineered structure; augered shaft; shale fracturing; shallow geologic repository; and high-level waste repository. These alternatives are representative generic facilities that span the range from low-level waste disposal practice to high-level waste disposal practice, tentatively ordered according to an expected increasing cost and/or effectiveness of confinement. They have been chosen to enable an assessment of the degree of confinement that represents an appropriate balance between public health and safety requirements and costs rather than identification of a specific preferred facility design. The objective of the analysis is to provide a comparative ranking of the alternatives on the basis of benefit-cost-risk considerations

  15. Ethical aspects of final disposal. Final report

    International Nuclear Information System (INIS)

    Baltes, B.; Leder, W.; Achenbach, G.B.; Spaemann, R.; Gerhardt, V.

    2003-01-01

    In fulfilment of this task the Federal Environmental Ministry has commissioned GRS to summarise the current national and international status of ethical aspects of the final disposal of radioactive wastes as part of the project titled ''Final disposal of radioactive wastes as seen from the viewpoint of ethical objectives''. The questions arising from the opinions, positions and publications presented in the report by GRS were to serve as a basis for an expert discussion or an interdisciplinary discussion forum for all concerned with the ethical aspects of an answerable approach to the final disposal of radioactive wastes. In April 2001 GRS held a one-day seminar at which leading ethicists and philosophers offered statements on the questions referred to above and joined in a discussion with experts on issues of final disposal. This report documents the questions that arose ahead of the workshop, the specialist lectures held there and a summary of the discussion results [de

  16. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China.

    Science.gov (United States)

    Cheng, Hefa; Hu, Yuanan

    2010-06-01

    With rapid economic growth and massive urbanization, China faces the problem of municipal solid waste (MSW) disposal and the pressing need for development of alternative energy. Waste-to-energy (WTE) incineration, which recovers energy from discarded MSW and produces electricity and/or steam for heating, is recognized as a renewable source of energy and is playing an increasingly important role in MSW management in China. This article provides an overview of the WTE industry, discusses the major challenges in expanding WTE incineration in China, namely, high capital and operational costs, equipment corrosion, air pollutant emissions, and fly ash disposal. A perspective on MSW as a renewable energy source in China is also presented. Currently, only approximately 13% of MSW generated in China is disposed in WTE facilities. With the significant benefits of environmental quality, the reduction of greenhouse gas (GHG) emissions, and government policies and financial incentives as a renewable energy source, WTE incineration industry is expected to experience significant growth in the coming decade and make greater contribution to supplying renewable energy in China. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Screening of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.J.; Thamer, B.J.; Christensen, D.E.; Wehmann, G.

    1978-10-01

    A systematic method for categorizing these disposal alternatives which provides assurance that no viable alternatives are overlooked is reported. Alternatives are categorized by (1) the general media in which disposal occurs, (2) by whether the disposal method can be considered as dispersal, containment or elimination of the wastes, and (3) by the applicability of the disposal method to the possible physical waste forms. A literature survey was performed and pertinent references listed for the various alternatives discussed. A bibliography is given which provides coverage of published information on low-level radioactive waste management options. The extensive list of disposal alternatives identified was screened and the most viable choices were selected for further evaluation. A Technical Advisory Panel met and reviewed the results. Suggestions from that meeting and other comments are discussed. The most viable options selected for further evaluation are: (1) improving present shallow land burial practices; (2) deeper depth burial; (3) disposal in cavities; (4) disposal in exposed or buried structures; and (5) ocean disposal. 42 references

  18. Savannah River Site - Salt-stone Disposal Facility Performance Assessment Update

    International Nuclear Information System (INIS)

    Newman, J.L.

    2009-01-01

    The Savannah River Site (SRS) Salt-stone Facility is currently in the midst of a Performance Assessment revision to estimate the effect on human health and the environment of adding new disposal units to the current Salt-stone Disposal Facility (SDF). These disposal units continue the ability to safely process the salt component of the radioactive liquid waste stored in the underground storage tanks at SRS, and is a crucial prerequisite for completion of the overall SRS waste disposition plan. Removal and disposal of low activity salt waste from the SRS liquid waste system is required in order to empty tanks for future tank waste processing and closure operations. The Salt-stone Production Facility (SPF) solidifies a low-activity salt stream into a grout matrix, known as salt-stone, suitable for disposal at the SDF. The ability to dispose of the low-activity salt stream in the SDF required a waste determination pursuant to Section 3116 of the Ronald Reagan National Defense Authorization Act of 2005 and was approved in January 2006. One of the requirements of Section 3116 of the NDAA is to demonstrate compliance with the performance objectives set out in Subpart C of Part 61 of Title 10, Code of Federal Regulations. The PA is the document that is used to ensure ongoing compliance. (authors)

  19. Study of physical resistance of the disposal facility for accidental artificial event in LLW disposal facility

    International Nuclear Information System (INIS)

    Ogawa, Suihei; Irie, Masaaki; Uchida, Masahiro

    2013-11-01

    This report refer to results of examine what follows for structural stability evaluation for the LLW disposal facility in depth over general human activity in underground. Study of physically resistance on the facility for accidental artificial event, namely tunneling an operation facing the disposal facility in future. Physically resistance to excavation of tunneling etc. in disposal facility is studied based on supposing of Tunnel Boring Machine as an excavator, paying attention to reinforcement bar in concrete and steel plate of waste package, as feature of strength in these material differs from rock strength. And it is examined not only resistibility on excavation but also about hard situations of excavation in tunneling works, and namely give thorough consideration to critical quantity of cutting to reinforcement bar and steel plate that could keep resistibility on excavation based on tunneling velocity and limits time furthermore. It requests necessity of evaluation in consider with metal corrosion that status alteration on disposal facility is considered with on timescale. Period of keep on the physically resistance is estimated by velocity of metal corrosion consequently. The physically resistance is kept until metal corrosion reach remaining its material, giving a limits of the physically resistance on inside of facility. Main point of physically resistance in the report will be made the good use of a practice to physically resistance evaluation of in safety assessment. (author)

  20. The current state of abortion law and practice in Northern Ireland.

    Science.gov (United States)

    Daniels, Pauline; Campbell, Patricia; Clinton, Alison

    This paper reviews current abortion law and practice in Northern Ireland (NI). It explores the origins of NI's abortion law and its complexity in relation to current practice. It reviews issues relating to women seeking terminations in NI and Great Britain and reviews attempts by the Family Planning Association in NI to require the Department of Health, Social Services and Public Safety NI to clarify the current legal basis for termination of pregnancy and to provide guidance for health professionals engaged in this practice. The paper also discusses some of the issues surrounding abortion in NI and seeks to explain why this subject is causing controversy and debate, especially following a judicial review in February and Marie Stopes opening a termination service in Belfast.

  1. Waste characterization practices: summary paper

    International Nuclear Information System (INIS)

    Logan, J.A.

    1987-01-01

    Recent reviews of the records on disposal waste at several DOE sites have indicated that records still contain little information practical to waste management. Much of the disposed waste is identified by vague terms, i.e., general plant waste. Attached to this paper is a new waste characterization code devised by the Idaho National Engineering Laboratory to aid in waste volume reduction and stabilization. It is recommended that every facility involved in waste generation and disposal needs to be detailing its wastes to support upgrading of waste management practices. 1 table

  2. Managing Uncertainties Associated With Radioactive Waste Disposal: Task Group 4 Of The IAEA PRISM Project

    International Nuclear Information System (INIS)

    Seitz, R.

    2011-01-01

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest in the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.

  3. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  4. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  5. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  6. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  7. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  8. Execution techniques for high-level radioactive waste disposal. 2. Fundamental concept of geological disposal and implementing approach of disposal project

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Komada, Hiroya; Tsuchino, Susumu; Shiozaki, Isao; Kitayama, Kazumi; Akasaka, Hidenari; Inagaki, Yusuke; Kawamura, Hideki

    1999-01-01

    The making high activity of the high-level radioactive waste disposal business shall be fully started after establishing of the implementing organization which is planned around 2000. Considering each step of disposal business, in this study, the implementation procedure for a series of disposal business such as the selection of the disposal site, the construction and operation of the disposal facility, the closure and decommissioning of the disposal facility and the management after closure, which are carried forward by the implementation body is discussed in detail from the technical viewpoint and an example of the master schedule is proposed. Furthermore, we investigate and propose the concept of the geological disposal which becomes important in carrying forward to making of the business of the disposal, such as the present site selection smoothly, the fundamental idea of the safe securing for disposal, the basic idea to get trust to the disposal technique and the geological environmental condition which is the basic condition of this whole study for the disposal business making. (author)

  9. Modularized system for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.; DiSibio, R.

    1985-01-01

    A modularized system for the disposal of low-level radioactive waste is presented that attempts to overcome the past problems with shallow land burial and gain public acceptance. All waste received at the disposal site is packaged into reinforced concrete modules which are filled with grout, covered and sealed. The hexagonal shape modules are placed in a closely packed array in a disposal unit. The structural stability provided by the modules allow a protective cover constructed of natural materials to be installed, and the disposal units are decommissioned as they are filled. The modules are designed to be recoverable in the event remedial action is necessary. The cost of disposal with a facility of this type is comparable to current prices of shallow land burial facilities. The system is intended to address the needs of generators, regulators, communities, elected officials, licensees and future generations

  10. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  11. Disposal of pesticide waste from agricultural production in the Al-Batinah region of Northern Oman

    Energy Technology Data Exchange (ETDEWEB)

    Al Zadjali, Said [Ministry of Environment and Climate Affairs, P O Box 321 Muscat 100 (Oman); Centre for Environmental Strategy, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7JH (United Kingdom); Morse, Stephen; Chenoweth, Jonathan [Centre for Environmental Strategy, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7JH (United Kingdom); Deadman, Mike, E-mail: mikedeadman59@gmail.com [Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P O Box 34, Al Khod 123 (Oman)

    2013-10-01

    examination of pesticide waste disposal practices on over 150 farms in Northern Oman • Identification of gaps in current government policy towards waste disposal • Identification of mechanisms of knowledge diffusion within the farming community concerning waste disposal practices • Contrasting behaviour between farmers within a local association and those not in the association • Weakness of the local state extension service is bridged by the activities of the farmers association.

  12. Disposal of pesticide waste from agricultural production in the Al-Batinah region of Northern Oman

    International Nuclear Information System (INIS)

    Al Zadjali, Said; Morse, Stephen; Chenoweth, Jonathan; Deadman, Mike

    2013-01-01

    examination of pesticide waste disposal practices on over 150 farms in Northern Oman • Identification of gaps in current government policy towards waste disposal • Identification of mechanisms of knowledge diffusion within the farming community concerning waste disposal practices • Contrasting behaviour between farmers within a local association and those not in the association • Weakness of the local state extension service is bridged by the activities of the farmers association

  13. Approaches to LLW disposal site selection and current progress of host states

    International Nuclear Information System (INIS)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref

  14. Greater confinement disposal program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Peterson, D.L.; Reddick, J.A.

    1984-01-01

    A facility to demonstrate Greater Confinement Disposal (GCD) of low-level solid radioactive waste in a humid environment has been built and is operating at the Savannah River Plant (SRP). GCD practices of waste segregation into high and low activity concentrations, emplacement of waste below the root zone, waste stabilization, and capping are being used in the demonstration. Activity concentrations to select wastes for GCD are based on the volume/activity distribution of low-level solid wastes as obtained from SRP burial records, and are equal to or less than those for Class B waste in 10 CFR 61. The first disposal units constructed are twenty 9-ft-diam, 30-ft-deep boreholes. These holes will be used to dispose of wastes from the production reactors, tritiated wastes, and selected wastes from offsite. In 1984, construction will begin on an engineered GCD trench for disposal of boxed waste and large bulky items that meet the activity concentration criteria. 4 references, 5 figures, 2 tables

  15. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  16. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chai Hong; Seong, Jin Sil [Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy.

  17. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    International Nuclear Information System (INIS)

    Rim, Chai Hong; Seong, Jin Sil

    2016-01-01

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy

  18. Health physics aspects in disposal of self powered neutron detectors

    International Nuclear Information System (INIS)

    Deokar, D.V.; Tibrewala, S.K.; Singh, K.K.; Purohit, R.G.; Tripathi, R.M.

    2014-01-01

    Self Powered Neutron Detectors (SPNDs) are being used in reactor core for neutron flux measurement at Nuclear Power Plants. After their useful life, SPNDs are replaced and are disposed off in Tile holes. The Cobalt SPNDs having activity in the range of 35 to 160 TBq were encompassed in carbon steel canister. The canister having dose 25 to 50 Sv/h at 1 meter were transported in shielded flask for disposal in specially designed Tile hole at Solid Waste Management Facility (SWMF) at Tarapur. To keep personal exposures As Low As Reasonably Achievable (ALARA) the disposal operation was carried out remotely from a shielded cabin placed at a distance of 50 meter from the disposal site. During the disposal radiation measurements were carried out remotely by installing radiations monitors at a distance of 10 m, 25 m, and 50 m from the Tile hole. Estimations of radiation levels were carried out before jobs were taken up. Disposal of 70 numbers of Cobalt SPNDs was carried out by implementing ALARA. The decrease in collective dose is achieved due to improved operational practices, mock-up trials, effective monitoring program and safety compliance at various stages of operation

  19. Evaluation of Proposed New LLW Disposal Activity Disposal of Compacted Job Control Waste, Non-compactible, Non-incinerable Waste, And Other Wasteforms In Slit Trenches

    International Nuclear Information System (INIS)

    WILHITE, ELMER L.

    2000-01-01

    The effect of trench disposal of low-level wasteforms that were not analyzed in the original performance assessment for the E-Area low-level waste facility, but were analyzed in the revised performance assessment is evaluated. This evaluation was conducted to provide a bridge from the current waste acceptance criteria, which are based on the original performance assessment, to those that will be developed from the revised performance assessment. The conclusion of the evaluation is that any waste except for materials that would retain radionuclides more strongly than soil that meets the radionuclide concentration of package limits for trench burial based on the revised performance assessment, and presented in Table 1 of this document, is suitable for trench disposal; provided that, for cellulosic material the current 40 percent restriction is retained. Table 2 of this document lists materials acceptable for trench disposal

  20. Low level waste disposal regulatory issues in the US - 59311

    International Nuclear Information System (INIS)

    James, David; Kalinowski, Thomas; Edwards, Lisa

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The United States led the international efforts to define disposal requirements for low level radioactive wastes with the publication of US Regulations governing the disposal of such wastes. The requirements were based on a system of waste classification based on the concentrations of certain radionuclides considered problematic for the protection of future generations from radiation exposure. The regulation, itself, was based on a process for the development of new disposal sites defined by the US congress to provide an equitable distribution of burden to various regions of the US. This process has met with little success in the almost 30 years since its initiation leaving only an incomplete patchwork of disposal options which are primarily dependant on the same options that existed before the act and regulations were initiated. There is currently a new focus on the basis for some of the regulatory requirements derived from advances in the understanding of dose impacts from certain radionuclides, improvements in performance assessment methodologies, the increased use of engineered barriers, the reality of current disposal economies, along with the failure of the act to conform to expectations. This paper will provide an update on the discussion taking place with a focus on the technical considerations. (authors)

  1. Bimodal Programming: A Survey of Current Clinical Practice.

    Science.gov (United States)

    Siburt, Hannah W; Holmes, Alice E

    2015-06-01

    The purpose of this study was to determine the current clinical practice in approaches to bimodal programming in the United States. To be specific, if clinicians are recommending bimodal stimulation, who programs the hearing aid in the bimodal condition, and what method is used for programming the hearing aid? An 11-question online survey was created and sent via email to a comprehensive list of cochlear implant programming centers in the United States. The survey was sent to 360 recipients. Respondents in this study represented a diverse group of clinical settings (response rate: 26%). Results indicate little agreement about who programs the hearing aids, when they are programmed, and how they are programmed in the bimodal condition. Analysis of small versus large implant centers indicated small centers are less likely to add a device to the contralateral ear. Although a growing number of cochlear implant recipients choose to wear a hearing aid on the contralateral ear, there is inconsistency in the current clinical approach to bimodal programming. These survey results provide evidence of large variability in the current bimodal programming practices and indicate a need for more structured clinical recommendations and programming approaches.

  2. Comparison of decontamination and melting with direct disposal

    International Nuclear Information System (INIS)

    Janberg, K.G.; Rittscher, D.

    1990-01-01

    This report is an up-date and extension of the author's publication EUR 11149 of 1987 and refers to the currently preferred practices in the Federal Republic of Germany. The main changes since then are concerned with the strongly reduced ''de minimis''-level and the increased demands placed on waste documentation. Furthermore, the schedule for start-up of the final disposal mine KONRAD has slipped by more than two years since 1987. All these factors together strongly increase the interest in direct melting in the FRG, making it the main route to go. In the beginning direct melting was also considered by some only under the goal of volume reduction. Today, however, definite preference is given to recycling within the nuclear industry. This leads to the need to find more applications within this industry as the scrap metal arising is increasing. (author)

  3. The case for deep-sea disposal of low-level solid radioactive wastes

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1983-01-01

    The scientific justification for the sea disposal of low-level solid radioactive wastes is summarized and the relevant national and international codes of practice and legislation are outlined. It is concluded that, since the amount of radioactivity disposed of in the oceans is very small compared with the natural radioactivity, the environmental hazard is small and sea dumping could be increased. (U.K.)

  4. Importance of patient education on home medical care waste disposal in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yukihiro, E-mail: yuyu@med.kindai.ac.jp

    2014-07-15

    Highlights: • Attached office nurses more recovered medical waste from patients’ homes. • Most nurses educated their patients on how to store home medical care waste in their homes and on how to separate them. • Around half of nurses educated their patients on where to dispose of their home medical care waste. - Abstract: To determine current practices in the disposal and handling of home medical care (HMC) waste, a questionnaire was mailed to 1965 offices nationwide. Of the office that responded, 1283 offices were analyzed. Offices were classified by management configuration: those attached to hospitals were classified as ”attached offices” and others as “independent offices”. More nurses from attached offices recovered medical waste from patients’ homes than those from independent offices. Most nurses educated their patients on how to store HMC waste in their homes (79.3% of total) and on how to separate HMC waste (76.5% of total). On the other hand, only around half of nurses (47.3% from attached offices and 53.2% from independent offices) educated their patients on where to dispose of their HMC waste. 66.0% of offices replied that patients had separated their waste appropriately. The need for patient education has emerged in recent years, with education for nurses under the diverse conditions of HMC being a key factor in patient education.

  5. Importance of patient education on home medical care waste disposal in Japan

    International Nuclear Information System (INIS)

    Ikeda, Yukihiro

    2014-01-01

    Highlights: • Attached office nurses more recovered medical waste from patients’ homes. • Most nurses educated their patients on how to store home medical care waste in their homes and on how to separate them. • Around half of nurses educated their patients on where to dispose of their home medical care waste. - Abstract: To determine current practices in the disposal and handling of home medical care (HMC) waste, a questionnaire was mailed to 1965 offices nationwide. Of the office that responded, 1283 offices were analyzed. Offices were classified by management configuration: those attached to hospitals were classified as ”attached offices” and others as “independent offices”. More nurses from attached offices recovered medical waste from patients’ homes than those from independent offices. Most nurses educated their patients on how to store HMC waste in their homes (79.3% of total) and on how to separate HMC waste (76.5% of total). On the other hand, only around half of nurses (47.3% from attached offices and 53.2% from independent offices) educated their patients on where to dispose of their HMC waste. 66.0% of offices replied that patients had separated their waste appropriately. The need for patient education has emerged in recent years, with education for nurses under the diverse conditions of HMC being a key factor in patient education

  6. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  7. Continuous infusion in haemophilia: current practice in Europe

    NARCIS (Netherlands)

    Batorova, A.; Holme, P.; Gringeri, A.; Richards, M.; Hermans, C.; Altisent, C.; Lopez-Fernández, M.; Fijnvandraat, K.

    2012-01-01

    . Continuous infusion (CI) of factor VIII (FVIII) is an effective method for replacement therapy in haemophilia. Recently, concerns have been raised regarding association of CI with the development of inhibitors. The aim of this study was to gain information on the current practices in Europe

  8. ICU nurses' oral-care practices and the current best evidence.

    Science.gov (United States)

    DeKeyser Ganz, Freda; Fink, Naomi Farkash; Raanan, Ofra; Asher, Miriam; Bruttin, Madeline; Nun, Maureen Ben; Benbinishty, Julie

    2009-01-01

    The purpose of this study was to describe the oral-care practices of ICU nurses, to compare those practices with current evidence-based practice, and to determine if the use of evidence-based practice was associated with personal demographic or professional characteristics. A national survey of oral-care practices of ICU nurses was conducted using a convenience sample of 218 practicing ICU nurses in 2004-05. The survey instrument included questions about demographic and professional characteristics and a checklist of oral-care practices. Nurses rated their perceived level of priority concerning oral care on a scale from 0 to 100. A score was computed representing the sum of 14 items related to equipment, solutions, assessments, and techniques associated with the current best evidence. This score was then statistically analyzed using ANOVA to determine differences of EBP based on demographic and professional characteristics. The most commonly used equipment was gauze pads (84%), followed by tongue depressors (55%), and toothbrushes (34%). Chlorhexidine was the most common solution used (75%). Less than half (44%) reported brushing their patients' teeth. The majority performed an oral assessment before beginning oral care (71%); however, none could describe what assessment tool was used. Only 57% of nurses reported documenting their oral care. Nurses rated oral care of intubated patients with a priority of 67+/-27.1. Wide variations were noted within and between units in terms of which techniques, equipment, and solutions were used. No significant relationships were found between the use of an evidence-based protocol and demographic and professional characteristics or with the priority given to oral care. While nurses ranked oral care a high priority, many did not implement the latest evidence into their current practice. The level of research utilization was not related to personal or professional characteristics. Therefore attempts should be made to encourage all

  9. Proceedings of the 1996 international conference on deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 September International Conference on Deep Geological Disposal of Radioactive Waste was held in Winnipeg, Canada. Speakers from many countries that have or are developing geological disposal technologies presented the current research and implementation strategies for the deep geological disposal of radioactive wastes. Special sessions focused on International Trends in Geological Disposal and Views on Confidence Building in Radioactive Waste Management; Excavation Disturbed Zone (EDZ) Workshop; Educator's Program and Workshop and a Roundtable on Social Issues in Siting

  10. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  11. Status of US program for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Smith, R.I.

    1991-04-01

    In this paper, a brief history of the United States' program for the disposal of spent nuclear fuel (SNF) and the legislative acts that have guided the program are discussed. The current plans and schedules for beginning acceptance of SNF from the nuclear utilities for disposal are described, and some of the development activities supporting the program are discussed. And finally, the viability of the SNF disposal fee presently paid into the Nuclear Waste Fund by the owners/generators of commercial SNF and high-level waste (HLW) is examined. 12 refs., 9 figs

  12. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  13. Current Practices in the Delivery of Undergraduate Exercise Physiology Content

    Science.gov (United States)

    Fisher, Michele M.

    2013-01-01

    The purpose of this study was to identify current practices for the delivery of exercise physiology content at the undergraduate level. An anonymous 22-item survey was sent to instructors of exercise physiology to collect information concerning the structure of course offerings and instructional practices. One hundred ten instructors responded to…

  14. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  15. Retrievability in the Deep Geological Disposal motivation and implications

    International Nuclear Information System (INIS)

    Fernandez Polo, J. J.; Aneiros, J. M.; Alonso, J.

    2000-01-01

    The final disposal of High Level Wastes (HLW) in a repository without the intention of retrieval has been the conceptual basis used by most countries to define their deep geological disposal concepts. As a result, current disposal concepts allow, but do not facilitate, the retrieval of the waste. The concept of retrievability has been introduced in the stepwise development process of the deep geological disposal for a series of ethical, socio-political, and technological reasons, which have structured a great deal of attention in the international community. At present, although no clear definition has been given to the term retrievability there seems to be a general consensus in respect of its interpretation as the capacity to retrieve waste from the underground facilities of the repository up to several years after its closure. The retrieval of the HLW packages from the disposal cells entails tackling a series of technological and operational constraints stemming, on the one hand, from the configuration and state of the repository at the time of retrieval and, on the other, from the environmental conditions of temperature and radiation in which such operations have to be carried out. Most countries, Spain included, are assessing the technical feasibility of retrieving waste during the different stages of the repository lifetime, exploring at the same time the possibility of implementing some changes in the repository's design, construction and operation without affecting its long-term safety. The purpose of this paper is three-fold (1) to identify the motivations that have led the international community to consider retrievability in the repository's stepwise development process, (2) to analyse, qualitatively, the different implications this has on current repository concepts, and (3) to state the current Spanish position. (Author)

  16. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  17. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  18. Disposal of mixed radioactive and chemical waste

    International Nuclear Information System (INIS)

    Moghissi, A.A.

    1986-01-01

    The treatment of waste by dilution was practiced as long as nature provided sufficient unpolluted air, water, and land. The necessity for treatment, including containment and disposal of wastes is, however, relatively new. Initially, waste products from manufacturing processes were looked upon as a potential resource. The industries of Western Europe, short of raw materials, tried to recover as many chemical compounds as possible from industrial waste. However, the availability of abundant and cheap petroleum during the fifties changes this practice, at least for a short period

  19. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  20. Home Sewage Disposal. Special Circular 212.

    Science.gov (United States)

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction…

  1. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  2. Remediation in Practicing Physicians: Current and Alternative Conceptualizations.

    Science.gov (United States)

    Bourgeois-Law, Gisèle; Teunissen, Pim W; Regehr, Glenn

    2018-04-24

    Suboptimal performance in practicing physicians is a decades-old problem. The lack of a universally accepted definition of remediation, the paucity of research on best remediation practices, and the ongoing controversy regarding the institutional responsibility for enacting and overseeing this activity suggests that the remediation of physicians is not merely a difficult problem to solve, but a problem that the community does not grapple with meaningfully. Undoubtedly, logistical and political considerations contribute to this state of affairs; however, other underlying conceptual issues may also play a role in the medical profession's difficulties in engaging with the challenges around remediation.Through a review of the medical education and other literatures, the authors examined current conceptualizations of both remediation itself and the individual being remediated, as well as how the culture of medicine influences these conceptions. The authors explored how conceptualizations of remediation and the surrounding culture might affect not only the medical community's ability to support, but also its willingness to engage with physicians in need of remediation.Viewing remediation as a means of supporting practice change-rather than as a means of redressing gaps in knowledge and skill-might be a useful alternative conceptualization, providing a good place to start exploring new avenues of research. However, moving forward will require more than simply a reconceptualizion of remediation; it will also necessitate a change in how the community views its struggling members and a change in the medical culture that currently positions professional autonomy as the foundational premise for individual practice improvement.

  3. Hospital Workers' Awareness of Health and Environmental Impacts of Poor Clinical Waste Disposal in the Northwest Region of Cameroon

    DEFF Research Database (Denmark)

    Mochungong, Peter I K; Gulis, Gabriel; Sodemann, Morten

    2010-01-01

    a survey to evaluate hospital workers' awareness of health and environmental impacts of poor clinical waste disposal in Cameroon. We randomly distributed 500 questionnaires to hospital workers in three hospitals in the Northwest Region of Cameroon in April 2008. In addition, we observed collection......Due to the infectious nature of some clinical waste, poor disposal practices have sparked concern regarding the impact on public health and the environment. Lack of sufficient knowledge of the associated risks may be a strong factor contributing to inadequate disposal practices. We conducted......, segregation, transportation, and disposal of clinical waste at the three hospitals. Of 475 total respondents, most lacked sufficient awareness of any environmental or public health impacts of poor clinical waste disposal and had never heard of any policy--national or international--on safe clinical waste...

  4. Safety regulation of geological disposal of radioactive waste: progress since Cordoba and remaining challenges

    International Nuclear Information System (INIS)

    Duncan, A.; Pescatore, C.

    2010-01-01

    Claudio Pescatore, Deputy Division Head (NEA) presented a paper, the purpose of which was to recall where we stood at the time of the Cordoba Workshop (1997) on the regulation of disposal of long-lived radioactive waste, to review developments since then, to present the key existing issues, and reflect on the remaining challenges and possible responses. The overview study on progress in regulation for geological disposal since the Cordoba workshop [NEA/RWMC/RF(2008)6], provides a good list of references regarding the first two issues. The presentation of the existing issues takes advantage of the synthesis of the responses to a questionnaire completed by the regulatory organisations in preparation for this workshop. It warns regulators and implementers that international work to date seems to have created an expectation in the mind of the public and in some organisations that nothing less than a guarantee by the regulator is needed of maintaining current levels of protection of both individuals and populations practically forever, regardless of the impracticality of this. This expectation needs to be replaced with a carefully and clearly explained understanding of the choices involved in dealing with long-lived radioactive waste against a background of our responsibilities to both current and future generations and our practical capacity to deliver them. Concerning the current major challenges faced in regulation, the paper comes back to the issue of the 'guarantee' by the regulator and it observes that there is no doubt that there is a willingness to do the best to comply with the principle of protection and that we are broadly convinced that current concepts for geological disposal, supported by multiple lines of reasoning and application of best available techniques (BAT) will meet that principle. However, we do not have the capacity to prove or guarantee this, nor do we believe that it is possible in practice. Although we are advised that it is neither

  5. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  6. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  7. Greater-Than-Class C Low Level Radioactive Waste Characteristics and Disposal Aspects

    International Nuclear Information System (INIS)

    Arlt, Hans D.; Brimfield, Terrence; Grossman, Chris

    2016-01-01

    Conclusions • Due to the way LLRW is defined in the US, there is a category of LLRW (i.e., GTCC waste) that was categorized in the 1980’s and is similar to ILW and not generally acceptable for near-surface disposal. • Three decades later, it cannot be excluded that future NRC analyses may find some GTCC waste type suitable for near-surface disposal, and a proposed rule may be developed for licensing the disposal of such waste. • Current regulations only allow individual proposals for GTCC LLRW disposal to be evaluated on a case-by-case basis to determine the acceptability of land disposal other than in a geologic repository • Based on current regulations, the variability and diversity of FEPs associated with such safety cases is theoretically large: - The range of activity concentrations, half-lives, and volumes of GTCC waste types is large; - The range of physical forms is large: metal pieces to soils and sludges; - The range of potential disposal methods is large: trench, vault, landfill, shaft, borehole; - The range of potential disposal environments is large: arid vs. humid, unsaturated vs. saturated, sediment vs. rock, nearsurface to intermediate; - The stability and past natural history of a specific disposal site must also be adequately known. • Examples of potential site-specific cases designed to demonstrate the acceptability of GTCC LLRW land disposal other than deep geologic: - Proposals for disposal could entail concepts that have been relatively well assessed by NRC staff in the past; e.g., trench disposal of a moderate volume of GTCC Other Waste in an arid, unsaturated, near-surface environment; - Proposals for disposal could also entail concepts that have been less frequently assessed; e.g., borehole disposal of higher activity sealed sources in a humid, saturated, intermediate depth environment. • However, if one potential site and design was under consideration, the variability and diversity of FEPs associated with that site

  8. Demonstration test of underground cavern-type disposal facilities, fiscal 2010 status - 59180

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2012-01-01

    A test to demonstrate practical construction technology for underground cavern-type disposal facilities is currently underway. Cavern-type disposal facilities are a radioactive waste repository excavated to a depth of 50 to 100 m below ground and constructed with an engineered barrier system (EBS) that is a combination of low-permeable bentonite material and low-diffusive cementitious material. The disposed materials are low-level radioactive waste with relatively high radioactivity, mainly generated from power reactor decommissioning, and certain transuranic wastes that are mainly generated from spent fuel reprocessing. The project started in fiscal 2005*, and since fiscal 2007 a full-scale mock-up of a disposal facility has been constructed in an actual sub-surface environment. The main objective of the demonstration test is to establish construction procedures and methods which ensure the required quality of an EBS on-site. Certain component parts of the facility had been constructed in an underground cavern by fiscal 2010, and tests so far have demonstrated both the practicability of the construction and the achievement of the required quality. This paper covers the project outline and the test results obtained by the construction of certain EBS components. The following results were obtained from the construction test of EBS in the test cavern: 1) The dry density of bentonite buffer at the lower layer constructed by vibratory compaction shows that 95% of core samples have densities within the target range. 2) The specified mix for the low-diffusion layer has uniform density and crack-control properties, and meets the requirements for diffusion performance. 3) The specified mix of the concrete pit has sufficient passing ability through congested reinforcement and meets the requirements of strength performance. 4) The dry density of the bentonite buffer at the lateral layer constructed by the spraying method shows that 65% of the core samples are within the

  9. Surveys of Current Teaching and Practice for Impressions for Complete Dentures.

    Science.gov (United States)

    Hussain, N; Jabbar, H; Hayati, M; Wu, J; Hyde, T P

    2018-03-08

    The 3 objectives are to assess current preferences for impressions for complete dentures, audit practice and compare practice to current UK teaching. Three surveys where undertaken; a survey of GDPs preferences, an audit of practice and a survey of teaching in UK dental schools. UK Universities advocate border moulded custom trays. In stated preferences, 99% of practitioners used custom trays for private practice; 67% for NHS work. In actual use, the audit found 91% practitioners in private practice used custom trays; in NHS practice 78% did so. The most widely taught materials were silicone (43%), alginate (29%), & zinc oxide eugenol paste (19%). In practitioners stated preferences, 97% of NHS and 53% of private dentists listed alginate as an option; however the audit showed only 74% (NHS) and 52% (private) actually used alginate, with 20% (NHS) and 48% (private) using silicone. Definitive impressions in custom trays are used by GDPs for both private and NHS work; they are universally taught at UK dental schools. Alginate is popular in NHS practice; however, silicone is more widely taught in UK Universities. The use of silicone materials for definitive impressions has increased since 1999. In UK private practice silicone usage is aligned in popularity with alginate. Copyright© 2018 Dennis Barber Ltd.

  10. Disposal of hazardous wastes in Canada's Northwest Territories

    International Nuclear Information System (INIS)

    Henney, P.L.; Heinke, G.W.

    1991-01-01

    In the past decade, many jurisdictions have attempted to estimate quantities and types of hazardous wastes generated within their boundaries. Similar studies done in the Northwest Territories (NWT) are out-of-date, incomplete or specific to only one type of waste or geographical location. In 1990, an industry, business and community survey was conducted to determine types and quantities of hazardous wastes generated in the NWT and currently used disposal methods for these wastes. The survey revealed that 2,500 tons of hazardous wastes were generated each year, including waste oil and petroleum products, fuel tank sludges, acid batteries, spent solvents, antifreeze an waste paint. In many regions, disposal of these wastes may be routine, but waste disposal in arctic and subarctic regions presents unique difficulties. Severe climate, transportation expense, isolation and small quantities of waste generated can make standard solutions expensive, difficult or impossible to apply. Unique solutions are needed for northern waste disposal. The aim of this paper is to give an overview of low-cost, on-site or local hazardous wastes disposal options which can be applied in Canada's NWT and also in other arctic, remote or less-developed regions

  11. Underground disposal of hazardous waste - state of the art and R and D projects

    International Nuclear Information System (INIS)

    Pitterich, H.; Brueckner, C.

    1998-01-01

    The project management group Entsorgung (PTE) coordinates R and D activities on deep geological disposal of hazardous waste besides other activities in the field of nuclear disposal. R and D projects aim at the improvement of tools used to predict the long-term behaviour of underground disposal facilities and the threat for man and environment associated with these facilities. The current German situation on deep geological disposal of hazardous waste is described and some results from the fields waste-anaylsis, geochemical modelling and geotechnical barriers for the sealing of waste disposal sites are presented. (orig.)

  12. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  13. The effect of alternative constraints in radioactive waste disposal on minimum cost scenarios

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.

    1985-01-01

    The purpose of this report is to describe the results of a set of assessments of the optimum waste assignment and disposal schedule for intermediate and low level radioactive wastes using the DISPOSALS Linear Programming Model developed by CAP Scientific. The main purpose of the present study is to demonstrate the applicability of the DISPOSALS model to the field of radioactive waste management. The results presented provide a good indication of the practicability and usefulness of the model and also provide a number of detailed conclusions regarding specific cases. (author)

  14. NRC perspective on alternative disposal methods

    International Nuclear Information System (INIS)

    Pittiglio, C.L.; Tokar, M.

    1987-01-01

    In this paper is discussed an NRC staff strategy for the development of technical criteria and procedures for the licensing of various alternatives for disposal of low-level radioactive waste. Steps taken by the staff to identify viable alternative disposal methods and to comply with the requirements of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985 are also discussed. The strategy proposed by the NRC staff is to focus efforts in FY 87 on alternative concepts that incorporate concrete materials with soil or rock cover (e.g., below ground vaults and earth-mounded concrete bunkers), which several State and State Compacts have identified as preferred disposal options. While the NRC staff believes that other options, such as above ground vaults and mined cavities, are workable and licensable, the staff also believes, for reasons addressed in the paper, that it is in the best interest of the industry and the public to encourage standardization and to focus limited resources on a manageable number of alternative options. Therefore, guidance on above ground vaults, which are susceptible to long-term materials degradation due to climatological effects, and mined cavities, which represent a significant departure from the current experience base for low-level radioactive waste disposal, will receive minimal attention. 6 references

  15. Current trends in endodontic practice: emergency treatments and technological armamentarium.

    Science.gov (United States)

    Lee, Michelle; Winkler, Johnathon; Hartwell, Gary; Stewart, Jeffrey; Caine, Rufus

    2009-01-01

    The current clinical practice of endodontics includes the utilization of a variety of new technological advances and materials. The last comprehensive survey that compared treatment modalities used in endodontic practices was conducted in 1990. The purpose of the current survey was to determine the frequency with which these new endodontic technologies and materials are being used in endodontic practices today. An e-mail questionnaire was sent to the 636 active diplomates of the American Board of Endodontics with current e-mail addresses. Two hundred thirty-two diplomates responded for a response rate of 35%. Calcium hydroxide was found to be the most frequently used intracanal medicament for all cases diagnosed with necrotic pulps. Ibuprofen was the most frequently prescribed medication for pain, and penicillin was the most frequently prescribed antibiotic when an active infection was present. Eighty-two percent of the respondents are still incorporating hand files in some fashion during the cleansing and shaping phase of treatment. Lateral condensation and continuous wave were the most common methods used for obturation. Digital radiography was reported as being used by 72.5% of the respondents, whereas 45.3% reported using the microscope greater than 75% of the patient treatment. Ultrasonics was used by 97.8% of the respondents. It appears from the results that new endodontic technology is currently being used in the endodontic offices of those who responded to the survey.

  16. Quality of the current low power and shutdown PSA practice

    International Nuclear Information System (INIS)

    Jang, Seung Cheol; Park, Jin Hee; Lim, Ho Gon; Kim, Tae Woon

    2004-01-01

    A probabilistic safety assessment (PSA) for the low-power and shutdown (LPSD) modes in a Korea standard nuclear power plant (KSNP) has been performed for the purpose of estimating the LPSD risk and identifying the vulnerabilities of LPSD operations. Both the operational experience and PSA results indicate that the risks from LPSD operations could be comparable with those from power operations. However, the application of the LPSD risk insights to risk-informed decision making has been slow to be adopted in practice. It is largely due to the question of whether the current LPSD PSA practice is appropriate for application to risk-informed decision making or not. Such a question has to do with the quality of the current LPSD PSA practice. In this paper, we have performed self-assessment of the KSNP LPSD PSA quality based on the ANS Standard (draft as of 13 Sep. 2002). The aims of the work are to find the LPSD PSA technical areas insufficient for application to risk-informed decision making and to efficiently allocate the limited research resources to improve the LPSD PSA model quality. Many useful findings regarding the current LPSD PSA quality are presented in this paper

  17. Current earthquake engineering practice for Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Park, Y.J.; Costello, J.F.

    1992-01-01

    This paper provides a brief overview of seismic research being conducted in Japan and describes USNRC efforts to understand Japanese seismic practice. Current earthquake engineering practice for Japanese nuclear power plants is descried in JEAG 4601-1987, ''Technical Guidelines for Aseismic Design of Nuclear Power Plants.'' The USNRC has sponsored BNL to translate this document into English. Efforts are underway to study and understand JEAG 4601-1987 and make the translation more readily available in the United States

  18. Equity and nuclear waste disposal

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1994-01-01

    Following the recommendations of the US National Academy of Sciences and the mandates of the 1987 Nuclear Waste Policy Amendments Act, the US Department of Energy has proposed Yucca Mountain, Nevada as the site of the world's first permanent repository for high-level nuclear waste. The main justification for permanent disposal (as opposed to above-ground storage) is that it guarantees safety by means of waste isolation. This essay argues, however, that considerations of equity (safer for whom?) undercut the safety rationale. The article surveys some prima facie arguments for equity in the distribution of radwaste risks and then evaluates four objections that are based, respectively, on practicality, compensation for risks, scepticism about duties to future generations, and the uranium criterion. The conclusion is that, at least under existing regulations and policies, permanent waste disposal is highly questionable, in part, because it fails to distribute risk equitably or to compensate, in full, for this inequity

  19. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Results: Safe injection procedures regarding final waste disposal were sufficiently adopted, while measures regarding disposable injection equipment, waste containers, hand hygiene, as well as injection practices were inadequately carried out. Lack of job aid posters that promote safe injection and safe disposal of ...

  20. Methodology of safety assessment for radioactive waste disposal

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Kimura, Hideo

    1991-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting an extensive R and D program to develop a safety assessment methodology to evaluate environmental consequences associated with geological disposal of a high-level radioactive waste, and also to elucidate a generic feasibility of the geological disposal in Japan. The paper describes the current R and D activities in the JAERI to develop an interim version of the methodology based on a normal evolution scenario, and also to validate models used in the methodology. (author)

  1. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Science.gov (United States)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  2. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  3. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  4. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  5. Waste Incidental to Reprocessing Evaluation for Disposing Saltcake to Saltstone

    International Nuclear Information System (INIS)

    Jones, R.T.

    2002-01-01

    This Waste Incidental to Reprocessing Evaluation is performed in accordance with Department of Energy Order 435.1, Radioactive Waste Management. This evaluation is performed in order to determine whether saltcake currently stored in the Tank Farms, when separated from supernate, meets WIR requirements and can therefore be managed as Low Level Waste and disposed in the Saltstone Production and Disposal Facility in Z-Area

  6. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  7. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  8. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  9. Research oil guidelines for safety review of category 2 waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Safety confirmation items and monitoring items for engineered barriers were compiled, considering the current technical status and monitoring plan for the simulated subsurface disposal and its test facilities. In order to develop the guidelines of the safety review for the disposal of LLW generated from RI facilities and research facilities, technical issues relating toxic substances were surveyed. (author)

  10. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  11. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  12. INEEL special case waste storage and disposal alternatives

    International Nuclear Information System (INIS)

    Larson, L.A.; Bishop, C.W.; Bhatt, R.N.

    1997-07-01

    Special case waste is historically defined as radioactive waste that does not have a path forward or fit into current Department of Energy management plans for final treatment or disposal. The objectives of this report, relative to special case waste at the Idaho National Engineering and Environmental Laboratory, are to (a) identify its current storage locations, conditions, and configuration; (b) review and verify the currently reported inventory; (c) segregate the inventory into manageable categories; (d) identify the portion that has a path forward or is managed under other major programs/projects; (e) identify options for reconfiguring and separating the disposable portions; (f) determine if the special case waste needs to be consolidated into a single storage location; and (g) identify a preferred facility for storage. This report also provides an inventory of stored sealed sources that are potentially greater than Class C or special case waste based on Nuclear Regulatory Commission and Site-Specific Waste Acceptance Criteria

  13. German concept and status of the disposal of spent fuel elements from German research reactors

    International Nuclear Information System (INIS)

    Komorowski, K.; Storch, S.; Thamm, G.

    1995-01-01

    Eight research reactors with a power ≥ 100 kW are currently being operated in the Federal Republic of Germany. These comprise three TRIGA-type reactors (power 100 kW to 250 kW), four swimming-pool reactors (power 1 MW to 10 MW) and one DIDO type reactor (power 23 MW). The German research reactors are used for neutron scattering for basic research in the field of solid state research, neutron metrology, for the fabrication of isotopes and for neutron activation analysis for medicine and biology, for investigating the influence of radiation on materials and for nuclear fuel behavior. It will be vital to continue current investigations in the future. Further operation of the German research reactors is therefore indispensable. Safe, regular disposal of the irradiated fuel elements arising now and in future operation is of primary importance. Furthermore, there are several plants with considerable quantities of spent fuel, the safe disposal of which is a matter of urgency. These include above all the VKTA facilities in Rossendorf and also the TRIGA reactors, where disposal will only be necessary upon decommissioning. The present paper report is concerned with the disposal of fuel from the German research reactors. It briefly deals with the situation in the USA since the end of 1988, describes interim solutions for current disposal requirements and then mainly concentrates on the German disposal concept currently being prepared. This concept initially envisages the long-term (25--50 years) dry interim storage of fuel elements in special containers in a central German interim store with subsequent direct final disposal without reprocessing of the irradiated fuel

  14. Transportation and disposal configuration for DOE-managed low-level and mixed low-level waste

    International Nuclear Information System (INIS)

    Johnsen, T.

    1993-06-01

    This report briefly examines the current U.S. Department of Energy complex-wide configuration for transportation and disposal of low-level and mixed low-level waste, and also retraces the historical sequence of events and rationale that has guided its development. The study determined that Nevada Test Site and the Hanford Site are the only two sites that currently provide substantial disposal services for offsite low-level waste generators. It was also determined that mixed low-level waste shipments are infrequent and are generally limited to shipments to offsite commercial treatment facilities or other Department of Energy sites for storage. The current alignment of generator to disposal site for low-level waste shipments is generally consistent with the programmatic mission of the generator; that is, defense-generated waste is shipped to the Nevada Test Site and research-generated waste is transported to the Hanford Site. The historical development of the current configuration was resurrected by retrieving Department of Energy documentation and interviewing both current and former department and contractor personnel. According to several accounts, the basic framework of the system was developed during the late 1970s, and was reportedly based on the ability of the disposal site to manage a given waste form. Documented evidence to support this reasoning, however, could not be uncovered

  15. The disposal of radioactive waste in Sweden, West Germany and France

    International Nuclear Information System (INIS)

    1987-01-01

    Representatives from Humberside, Lincolnshire and Bedford County Councils have visited radioactive waste disposal sites in Sweden (Forsmak), West Germany (Konrad) and France (Centre de la Manche). The British regions are those in which there are sites which NIREX (Nuclear Industry Radioactive Waste Executive) have been investigating with a view to disposing of low and intermediate level radioactive waste. The sites, methods of disposal, cost and radiation levels are detailed for the three countries visited and compared with the NIREX proposals for shallow trench disposal for wastes at low and intermediate levels. The general findings were that the three countries visited are more advanced in the development of policies and practices for radioactive waste disposal with better technical alternatives to the NIREX proposals. Secondly, that the overall cost may be greater than for a shallow repository but would still be less than 1% of the nuclear electricity generation cost. Thirdly, the need to gain and sustain public acceptance for what was being done was more clearly understood and acted on than in the UK. (U.K.)

  16. Determining the future for irradiated graphite disposal

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Wickham, A.J.; Hacker, P.J.

    2000-01-01

    In recent years, proposals have been made for the long-term treatment of radioactive graphite waste which have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe storage' within the original reactor containment. Nuclear regulators are challenging the proposed length of 'safe storage' on the basis that essential knowledge may be lost. More recently, political constraints have further complicated the issue by eliminating disposal at sea and imposing a 'near-zero release' philosophy, while public opinion is opposed to land-based disposal and has induced a continual drive towards minimizing radioactivity release to the environment from disposal. This paper proposes that, despite various international agreements, it is time to review technically all options for disposal of irradiated graphite waste as a framework for the eventual decision-making process. It is recognized that the socio-economic and political pressures are high and therefore, given that all currently identified options satisfy the present safety limits, the need to minimize the objective risk is shown to be a minor need in comparison to the public's want of demonstrable control, responsiveness and ability to reverse/change the disposal options in the future. Further, it is shown that the eventual decision-making process for a post-dismantling option for graphite waste must optimize the beneficial attributes of subjective risk experienced by the general public. In addition, in advocating and preferred option to the general public, it is recommended that the industry should communicate at a level commensurate with the public understanding and initiate a process of facilitation which enables the public to arrive at their own solution and constituting a social exchange. Otherwise it is concluded that if the indecision over disposal options is allowed to continue then, by default, graphite will remain in long-term supervised storage. (author)

  17. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  18. Specialization and the Current Practices of General Surgeons

    Science.gov (United States)

    Decker, Marquita R; Dodgion, Christopher M; Kwok, Alvin C; Hu, Yue-Yung; Havlena, Jeff A; Jiang, Wei; Lipsitz, Stuart R; Kent, K Craig; Greenberg, Caprice C

    2014-01-01

    Background The impact of specialization on the practice of general surgery has not been characterized. Our goal was to assess general surgeons’ operative practices to inform surgical education and workforce planning. Study Design We examined the practices of general surgeons identified in the 2008 State Inpatient and Ambulatory Surgery Databases of the Healthcare Cost and Utilization Project (HCUP) for three US states. Operations were identified using ICD-9 and CPT codes linked to encrypted physician identifiers. For each surgeon, total operative volume and the percentage of practice comprised of their most common operation were calculated. Correlation was measured between general surgeons’ case volume and the number of other specialists in a health service area. Results There were 1,075 general surgeons who performed 240,510 operations in 2008. The mean operative volume for each surgeon was 224 annual procedures. General surgeons performed an average of 23 different types of operations. For the majority of general surgeons, their most common procedure comprised no more than 30% of total practice. The most common operations, ranked by the frequency that they appeared as general surgeons’ top procedure, included: cholecystectomy, colonoscopy, endoscopy, and skin excision. The proportion of general surgery practice comprised of endoscopic procedures inversely correlated with the number of gastroenterologists in the health service area (Rho = - 0.50, p = 0.005). Conclusions Despite trends toward specialization, the current practices of general surgeons remain heterogeneous. This indicates a continued demand for broad-based surgical education to allow future surgeons to tailor their practices to their environment. PMID:24210145

  19. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  20. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    International Nuclear Information System (INIS)

    1996-11-01

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas

  1. Financial provisions for decommissioning and disposal: the operators' view

    International Nuclear Information System (INIS)

    Mueller-Dehn, C.

    2008-01-01

    The German system of making provisions for nuclear power has been the subject of frequent examinations, and has been approved in each case - by the German federal government, the European Commission, the Court of First Instance of the European Communities and, recently, also by the European Court of Justice. The article describes the basic legal principles entailing the obligation to make financial provisions for decommissioning and disposal by setting aside the required funds in line with current practice. The management of the assets balancing the provisions, the system of controls, the economic strength of the firms involved and, especially, the demand for the product they sell, i.e. electricity, ensure permanent availability of these funds. Numerous subsidiary legal provisions ensure transparency of these financial provisions. The external fund model analyzed as an alternative is the rejected both on account of drawbacks in its contents and for legal reasons. Attention is paid to the recommendation by the European Commission of October 2006 about financial provisions for decommissioning and disposal, to which the German system conforms and which does not require the establishment of external funds either. As the system of financial provisions has been operated successfully and reliably in Germany since the beginnings of the use of nuclear power, a plea is made in favor of upholding its structures and functions. (orig.)

  2. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  3. Human Factors Engineering: Current Practices and Development Needs in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Savioja, Paula; Norros, Leena; Liinasuo, Marja; Laarni, Jari [VTT Technical Research Centre of Finland, Finland (Finland)

    2011-08-15

    This paper describes initial findings from a study concerning the practices and development needs of Human Factors Engineering (HFE) in Finland. HFE is increasing in importance as the Radiation and Nuclear Safety Authority Finland (STUK) is renewing the regulatory guidelines and the intention is to include requirements concerning HFE. The motivation for the paper is to discover how HFE is conducted currently in order to envision what should be aimed at when modifying requirements for design practices. In an interview with STUK it was discovered that current HFE practices encompass mainly activities related to control room modifications and as such namely verification and validation of new designs. The adoption of the entire HFE process in design and modification projects requires changes that include better integration of technical and Human Factors Engineering approaches. Boundary objects that mediate between different design disciplines are needed in order to enforce the stronger integration. Concept of operations (CONOPS) is suggested as a such boundary object.

  4. 78 FR 11611 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-02-19

    ... related to the proposed rule on ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based... . All comments should be identified with the title ``Current Good Manufacturing Practice and Hazard... rulemaking to modernize the regulation for ``Current Good Manufacturing Practice In Manufacturing, Packing...

  5. Guidelines on current good radiopharmacy practice (cGRPP) in the preparation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Dumas, Cecile

    2010-07-01

    Preparation of radiopharmaceuticals for injection involves adherence to regulations on radiation protection as well as to appropriate rules of working under aseptic conditions, which are covered by these guidelines on Good Radiopharmacy Practice (GRPP). The handling of radiopharmaceuticals is potentially hazardous. The level of risk depends in particular upon the types of radiation emitted and the half-lives of the radioactive isotopes. Particular attention must be paid to the prevention of cross-contamination, and to waste disposal. A continuous assessment of the effectiveness of the Quality Assurance system is essential to prove that the procedures applied in the Radiopharmacy Department lead to the expected quality. Clinical trials with new radiopharmaceuticals should follow these regulations on cGRPP as well as the Guideline on Good Clinical Practice. As there is a considerable difference in complexity in preparing 'classical' radiopharmaceuticals in 'kit' procedures and producing radiopharmaceuticals by distinct chemical procedures (Positron Emission Tomography (PET) Radiopharmaceuticals, in house prepared radiopharmaceuticals including in house prepared kits) these guidelines have been divided in two parts (A and B) respecting these differences

  6. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  7. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  8. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  9. Difficulties are multiplying - topical legal issues relating to nuclear waste disposal

    International Nuclear Information System (INIS)

    Strassburg, W.

    1985-01-01

    The report points out topical legal issues relating to nuclear waste disposal, yet leaves no doubt that the technical-scientific concept for nuclear waste disposal incorporated into the nuclear energy law in 1976 was a success. Nonetheless it is desirable that there should be persistent efforts especially on the part of parliament when issuing legislation or statutory orders to reach greater clearness and thus predictability in areas where technology has been proven by many years of practice. (orig./HSCH) [de

  10. 78 FR 48636 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-08-09

    ... collection related to the proposed rule, ``Current Good Manufacturing Practice and Hazard Analysis and Risk... period. These two proposals are related to the proposed rule ``Current Good Manufacturing Practice and... final extension of the comment period for the ``Current Good Manufacturing Practice and Hazard Analysis...

  11. The diversity of waste disposal planning in Switzerland

    International Nuclear Information System (INIS)

    McCombie, C.

    1989-01-01

    In this overview of radioactive waste disposal planning in Switzerland, emphasis is placed upon describing the diversity of the planning and explaining the strategic thinking which has resulted in this diversity. Although Switzerland is a small country and has only a modest nuclear programme in absolute terms, planning and preparation for final disposal projects has been progressing for the last 10 or more years on a very broad front. The reasons for this breadth of approach are partly technical and partly determined by political and public pressures. Following a summary of the requirements for disposal and of the relevant boundary conditions, the resulting concepts are described and the controversial issue of repository siting is discussed. The current status of projects for disposal of low and intermediate-level wastes (L/ILW) and of high-level wastes (HLW) is noted; we conclude with some remarks on the advantages and disadvantages from the side of the organization responsible for implementation of repository projects of proceeding on such a broad technical front. (aughor). 2 figs.; 1 tab

  12. Safeguarding of spent fuel conditioning and disposal in geological repositories

    International Nuclear Information System (INIS)

    Forsstroem, H.; Richter, B.

    1997-01-01

    Disposal of spent nuclear fuel in geological formations, without reprocessing, is being considered in a number of States. Before disposal the fuel will be encapsulated in a tight and corrosion resistant container. The method chosen for disposal and the design of the repository will be determined by the geological conditions and the very strict requirements on long-term safety. From a safeguards perspective spent fuel disposal is a new issue. As the spent fuel still contains important amounts of material under safeguards and as it can not be considered practicably irrecoverable in the repository, the IAEA has been advised not to terminate safeguards, even after closure of the repository. This raises a number of new issues where there could be a potential conflict of interests between safety and safeguards demands, in particular in connection with the safety principle that burdens on future generations should be avoided. In this paper some of these issues are discussed based on the experience gained in Germany and Sweden about the design and future operation of encapsulation and disposal facilities. The most important issues are connected to the required level of safeguards for a closed repository, the differences in time scales for waste management and safeguards, the need for verification of the fissile content in the containers and the possibility of retrieving the fuel disposed of. (author)

  13. Methane emissions from natural gas pipelines - current estimates, technologies and practices

    International Nuclear Information System (INIS)

    Lang, M.C.; Crook, L.

    1997-01-01

    Methane is the major component of natural gas. World-wide methane emissions from gas systems is estimated to be between 50 and 25 tera grams or about 5 percent of the world-wide total of anthropogenic methane emissions. Technologies and practices are described that are currently being used or are planned to be used in the US to both measure and/or reduce methane emissions from natural gas pipelines. One of the technologies that is described includes a high flow sampling instrument. One of the practices that is described is the current voluntary program conducted by the US Environmental Protection Agency called the Natural Gas Star program. This program supports research into best management practices, information sharing and technology transfer to promote methane emissions reductions profitably. (R.P.)

  14. Disposal of radioactive wastes into rivers, lakes and estuaries

    International Nuclear Information System (INIS)

    1971-01-01

    The purpose of this report is to present, in the light of the information and experience accumulated to date, those principles and practices which, if applied to the disposal of radioactive wastes into inland surface and estuarial waters will ensure that man will not experience radiation exposures that are above the limits recommended by the International Commission for Radiation Protection (ICRP); and further, that radiation exposures are kept as far below those limits as is practicable. Disposal into sub-surface waters has not been specifically considered as this topic has been covered in another International Atomic Energy Agency publication. The report discusses the mechanisms and parameters which affect and control the fate of radionuclides introduced into fresh waters; it discusses the concepts of ''critical nuclide'', ''critical pathway'' and ''critical population group'' and demonstrates how the use of these concepts provides a sound, convenient and economical means for setting discharge limits and maintaining a continuing surveillance. It offers practical advice on the use of these concepts; gives some detailed information on uptake and dispersion mechanisms; and offers instruction on how to use this information and these concepts to estimate potential radiation doses and thus establish discharge limits.

  15. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    International Nuclear Information System (INIS)

    Al Yaqout, Anwar F.

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14±1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85±0.19 million t representing 37.22±6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait

  16. Disposal of radioactive waste: can long-term safety be evaluated

    International Nuclear Information System (INIS)

    1991-01-01

    The long-term safety of any hazardous waste disposal system must be convincingly shown prior to its implementation. For radioactive wastes, safety assessments over timescales far beyond the normal horizon of social and technical planning have already been conducted in many countries. These assessments provide the principal means to investigate, quantify, and explain long-term safety of each selected disposal concept and site for the appropriate authorities and the public. Such assessments are based on four main elements: definition of the disposal system and its environment, identification of possible processes and events that may affect the integrity of the disposal system, quantification of the radiological impact by predictive modelling, and description of associated uncertainties. The NEA Radioactive Waste Management Committee and the IAEA International Radioactive Waste Management Advisory Committee have carefully examined the current scientific methods for safety assessments of radioactive waste disposal systems, as briefly summarized in this report. The Committees have also reviewed the experience now available from using safety assessment methods in many countries, for different disposal concepts and formations, and in the framework of both nationally and internationally conducted studies, as referenced in this report [fr

  17. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  18. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  19. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  20. 77 FR 16158 - Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs...

    Science.gov (United States)

    2012-03-20

    .... FDA-1997-N-0518] (formerly 97N-0300) Current Good Manufacturing Practice in Manufacturing, Processing... labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and... GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS 0 1. The authority citation for 21 CFR part...

  1. Challenges associated with extending spent fuel storage until reprocessing or disposal

    International Nuclear Information System (INIS)

    Carlsen, Brett; Saegusa, Toshiari; Wasinger, Karl; Grahn, Per; Wolff, Dietmar; Waters, Michael; Bevilacqua, Arturo

    2014-01-01

    Existing spent fuel storage (SFS) practices are the result of the past presumptions that an end point, e.g. sufficient reprocessing and/or disposal capacity, would be available within the short term (approximately 50 years). Consequently, long term storage (between approximately 50 and 100 years) considerations have not been included in planning the back end of the nuclear fuel cycle. The present reality shows that no country has yet neither licensed nor built nor operated a deep geological repository for spent fuel (SF) and/or high level waste (HLW). Further, present and projected SF generation rates - more than 10 000 metric tons of heavy metal (MTHM) a year - far exceed the current capacity for disposal - 0 MTHM - or reprocessing - 4 800 MTHM a year - and will continue to do so for the rest of this decade. As a result, the SFS periods will extend. Moreover, as the SFM end point - reprocessing and/or disposal - is not presently defined with certainty in most countries, SFS periods will extend over periods within or beyond the long term in those countries. The IAEA has started in October 2010 a programmatic activity to consider challenges associated with extending SFS durations. After four consultants meetings and two technical meetings, a need has been identified for a SFS framework based on renewable storage periods - with as many renewals as may be needed - to ensure safe and secure SFS until sufficient reprocessing and/or disposal capacity is implemented. Over the course of the technical meetings, the consultants have worked with delegates of 36 Member States and 2 International Organizations to emphasize the importance of establishing programs that can provide sufficient confidence that age-related degradation will be recognized and addressed to effectively prevent unacceptable consequences. This paper considers a number of topics from the perspective of assuring safe and effective SFS as storage periods extend including: SFS concepts, packaging of SF

  2. Disposal Options for Low and Intermediate-Level Radioactive Waste: Comparative Study

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    This study presents the status of current disposal options for Low and Intermediate- Level Radioactive Waste (LILRW) generated in different countries and outlines the potential for future disposal option/s of these wastes in Egypt. Since approaches used in other countries may provide useful lessons for managing Egyptian radioactive wastes. This study was based on data for19 countries repositories and we focused on 6 countries, which considered as leaders in the field of disposal of rad waste. Several countries have plans for repositories which are sufficiently advanced that it was based on their own of their extensive experience with nuclear power generation and with constructing and operating LLRW disposal facilities. On the other hand, our programme for site selection and host rock characterization for low and intermediate level radioactive waste disposal is under study. We are preparing our criteria for selecting a national repository for LIL rad waste.

  3. Foreign experience in alpha-contaminated waste disposal

    International Nuclear Information System (INIS)

    Lakey, P.

    1982-01-01

    The European presentations provided some useful comparisons with the situation int he United States regarding the transuranic (TRU) waste limit. First, in Europe, there appears to be a more moderate view on intrusion compared to the preoccupation in United States with this issue. Second, and superficially, in the United Kingdom and France, the working limit for near-surface disposal is greater than 10 nCi/g and more like 100 nCi/g. Looking beneath the superficial, however, the important difference is that their limits are working limits; they are not cast in bronze like the 10 nCi/g US value is not perceived to be. Europeans seem to have a more flexible and practical view of the issue and have reserved for its solution a rather large middle ground that appears to be lacking in the US position. For example, the United Kingdom is moving actively toward a version of greater confinement disposal or engineered disposal at a greater depth (with plutonium numbers like 10 4 nCi/g projected) and then moving on to the modified mine with limits like 10 5 nCi/g. From the French presentations, limits like 10 3 nCi/g were discussed. As we debate the TRU limit issue, what we seem to hear is an argument between the advocates of a generic limit of perhaps 100 nCi/g and the arguments for site-specific limits. This debate clouds perhaps the more basic issue of the need for a middle ground disposal approach between the extremes of a room trash limit and geologic disposal

  4. Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    Lee, Chang-Ju; Lee, Kun Jai

    2006-01-01

    The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If we take various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering specific systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, we believe that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this paper proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. We developed and verified an approximate probabilistic inference program for the specific Bayesian network using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a model for uncertainty propagation of relevant parameters were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, we could connect the results of probabilistic inference from the Bayesian network with the consequence

  5. The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

    1997-01-01

    For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors' offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ''performance evaluations'' for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE's MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues

  6. Siting Criteria for Low and Intermediate Level Radioactive Waste Disposal in Egypt (Proposal approach)

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods and suitable criteria. Near surface disposal method has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. Establishing site criteria is the first step in the sitting process to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  7. International Collaboration Activities in Different Geologic Disposal Environments

    International Nuclear Information System (INIS)

    Birkholzer, Jens

    2015-01-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  8. International Collaboration Activities in Different Geologic Disposal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  9. Disposal and re-use of TENORM - legal limitations and obstacles

    International Nuclear Information System (INIS)

    Weiss, D.; Ettenhuber, E.

    2004-01-01

    While implementing EURATOM guideline 96/29 in the German legislation, in June of 2001 an essential pre-condition was created for re-use or disposal of TENORM. An essential progress has been achieved allowing to re-use TENORM or to dump it together with other residues and waste, if the specific activity does not exceed the limits defined in the radiation protection ordinance (StrlSchV). Otherwise, if the specified limits in terms of concentration or radiation dose are exceeded, than these materials must remain under radiological protection. A practical application of the new German regulation turns out to be difficult especially for disposal together with other waste and for re-use as backfilling material in mines taking into account problems arising from adaptation of the respective legislation on radiation protection, soil protection, waste management and shipment of dangerous goods. The report tackles obstacles for re-use and disposal of TENORM together with garbage and toxic waste arising from the new legislation. Otherwise, proposals will be given how obstacles of selected options for re-use and disposal can be overcome. (orig.)

  10. 40 CFR 229.3 - Transportation and disposal of vessels.

    Science.gov (United States)

    2010-07-01

    ... procedures; (iv) Information on the potential effect of the vessel disposal on the marine environment; and (v... practicable all materials which may degrade the marine environment, including without limitation (i) emptying... and tanks are essentially free of petroleum, and (ii) removing from the hulls other pollutants and all...

  11. Concierge and Second-Opinion Radiology: Review of Current Practices.

    Science.gov (United States)

    Shaikh, Shehbaz; Bafana, Rounak; Halabi, Safwan S

    2016-01-01

    Radiology's core assets include the production, interpretation, and distribution of quality imaging studies. Second-opinion services and concierge practices in radiology aim to augment traditional services by providing patient-centered and physician-centered care, respectively. Patient centeredness enhances patients' understanding and comfort with their radiology tests and procedures and allows them to make better decisions about their health care. As the fee-for-service paradigm shifts to value-based care models, radiology practices have begun to diversify imaging service delivery and communication to coincide with the American College of Radiology Imaging 3.0 campaign. Physician-centered consultation allows for communication of evidence-based guidelines to assist referring physicians and other providers in making the most appropriate imaging or treatment decision for a specific clinical condition. There are disparate practice models and payment schema for the various second-opinion and concierge practices. This review article explores the current state and payment models of second-opinion and concierge practices in radiology. This review also includes a discussion on the benefits, roadblocks, and ethical issues that surround these novel types of practices. Copyright © 2015 Mosby, Inc. All rights reserved.

  12. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  13. Engineered barrier durability: An issue for disposal near populated areas

    International Nuclear Information System (INIS)

    Porter, C.L.

    1995-01-01

    Under the current national policy for disposal of low-level radioactive waste (LLW) in the United States of America, each State is required to provide disposal capacity for the LLW generated within its borders. The formation of ''Compacts'' of several States is allowed if approved by Congress. Such forced regionalization of disposal facilities based on State boundaries results in some disposal facilities being sited near populated areas at locations with less than optimum site characteristics from a disposal standpoint. To compensate for this engineered barriers are included in the proposed designs. Portland cement based concrete (PCC), which is the dominant material for disposal vault designs, is degraded via many mechanisms, most of which are related to its permeability. The numerous uncertainties associated with the long-term performance of PCC has lead to many unsuccessful attempts to obtain public acceptance of proposed disposal facilities. These unsuccessful efforts have delayed establishing disposal capacity to the point that a crisis is looming on the horizon. This paper investigates the results of on-going research into the viability of commercially available, impermeable, mass-poured construction materials as an alternative to PCC in LLW disposal vaults. The results from testing and research on two such materials, concrete made from sulfur polymer cement (SPC) and ICOM (an epoxy based concrete) are reported. Material properties and test results include strength parameters, chemical resistance, porosity, permeability, deconability, radiation damage resistance, and biodegradation. The data indicates that with these alternative materials the uncertainties in predicting service life of an engineered barrier can be reduced

  14. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.; Torres-Vidal, C.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators

  15. A quantitative analysis of municipal solid waste disposal charges in China.

    Science.gov (United States)

    Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue

    2015-03-01

    Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.

  16. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  17. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  18. Thai pediatricians' current practice toward childhood asthma.

    Science.gov (United States)

    Kamalaporn, Harutai; Chawalitdamrong, Pongpan; Preutthipan, Aroonwan

    2018-04-01

    Childhood asthma is a substantial health burden in Thailand. Due to a lack of pediatric respiratory specialists (pediatric pulmonologists and allergists; RS), most Thai children are cared for by general pediatricians (pediatric primary care providers (PCP)). We investigated whether current practices of Thai pediatricians complied with asthma guidelines and compared practices (diagnosis and treatments) provided by PCP and RS. A cross-sectional study was conducted using electronic surveys including four case scenarios of different asthma phenotypes distributed to Thai pediatricians. Asthma diagnosis and management were evaluated for compliance with standard guidelines. The practices of PCP and RS were compared. From 800 surveys distributed, there were 405 respondents (51%). Most respondents (81%) were PCP, who preferred to use clinical diagnosis rather than laboratory investigations to diagnose asthma. For acute asthmatic attacks, 58% of the pediatricians prescribed a systemic corticosteroid. For uncontrolled asthma, 89% of the pediatricians prescribed at least one controller. For exercise-induced bronchospasm, 55% of the pediatricians chose an inhaled bronchodilator, while 38% chose a leukotriene receptor antagonist (LTRA). For virus-induced wheeze, 40% of the respondents chose an LTRA, while 15% chose inhaled corticosteroids (ICS). PCP prescribed more oral bronchodilators (31% vs. 18%, p = 0.02), antibiotics (20% vs. 6%, p attack. Most of the Thai pediatricians' practices toward diagnosis and treatment of acute asthmatic attack and uncontrolled asthma conform to the guidelines. PCP prescribed more oral bronchodilators, antibiotics, and antihistamines than RS.

  19. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  20. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  1. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  2. Disposal of Draeger Tubes at Savannah River Site

    International Nuclear Information System (INIS)

    Malik, N.P.

    2000-01-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed

  3. Survey of Current Best Practices for Diving in Contaminated Water

    National Research Council Canada - National Science Library

    Steigleman, W

    2002-01-01

    .... Navy divers operating in contaminated water. This survey attempted to identify the current best practices and equipment for diving in contaminated water, including personal protective equipment as well as hazard identification, diver training...

  4. An industry perspective on commercial radioactive waste disposal conditions and trends.

    Science.gov (United States)

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  5. EVALUATION OF BIOMEDICAL WASTE MANAGEMENT PRACTICES IN MULTI-SPECIALITY TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Shalini Srivastav

    2010-06-01

    Full Text Available Background: Biomedical Waste (BMW, collection and proper disposal has become a significant concern for both the medical and the general community The scientific “Hospital waste Management “is of vital importance as its improper management poses risks to the health care workers ,waste handlers patients, community in general and largely the environment. Objectives: (i To assess current practices of Bio-medical Waste management including generation, collection, transportation storage, treatment and disposal technologies in tertiary health care center. (ii To assess health andsafetypracticesfor the health care personnel involved in Bio-Medical waste Management. Materials and Methods: Waste management practices in tertiary care-centre was studied during May 2010 June 2010. The information/data regarding Bio-Medical Waste Management practices and safety was collected by way of semi structured interview, proforma being the one used for WASTE AUDITING QUESTIONNAIRE. The information collected was verified by personal observations of waste management practices in each ward of hospital. Results : SRMS-IMS generates 1. 25Kgs waste per bed per day and maximum waste is generated in wards. The institute has got separate color coded bins in each ward for collection of waste but segregation practices needs to be more refined. The safety measures taken by health care workers was not satisfactory it was not due to unavailability of Personal protective measures but because of un-awareness of health hazards which may occur due to improper waste management practices. Thus it is concluded that there should be strict implementation of a waste management policy set up in the institute, training and motivation must be given paramount importance to meet the current needs and standard of bio-medical waste management.

  6. Status of the high-level nuclear waste disposal program in Japan

    International Nuclear Information System (INIS)

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  7. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  8. Current practice in transvenous lead extraction

    DEFF Research Database (Denmark)

    Bongiorni, Maria Grazia; Blomström-Lundqvist, Carina; Kennergren, Charles

    2012-01-01

    AIM: Current practice with regard to transvenous lead extraction among European implanting centres was analysed by this survey. METHODS AND RESULTS: Among all contacted centres, 164, from 30 countries, declared that they perform transvenous lead extraction and answered 58 questions...... with a compliance rate of 99.9%. Data from the survey show that there seems to be an overall increasing experience of managing various techniques of lead extraction and a widespread involvement of cardiac centres in this treatment. Results and complication rates seem comparable with those of main international...... registries. CONCLUSION: This survey gives an interesting snapshot of lead extraction in Europe today and gives some clues for future research and prospective European registries....

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  10. Risk assessment of nonhazardous oil-field waste disposal in salt caverns

    International Nuclear Information System (INIS)

    Elcock, D.

    1998-01-01

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  11. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  12. Survey of waste disposal methods in Awka metropolis | Bill | Journal ...

    African Journals Online (AJOL)

    Waste disposal methods commonly practiced in Awka metropolis, Anambra state were investigated from August to October, 2013. Data was analyzed with both descriptive statistics of frequency and percentages, and alternate hypotheses were tested using Analysis of Variance (ANOVA) at a significance level of 0.05.

  13. Addressing Prediabetes in Childhood Obesity Treatment Programs: Support from Research and Current Practice

    Science.gov (United States)

    Grow, H. Mollie; Fernandez, Cristina; Lukasiewicz, Gloria J.; Rhodes, Erinn T.; Shaffer, Laura A.; Sweeney, Brooke; Woolford, Susan J.; Estrada, Elizabeth

    2014-01-01

    Abstract Background: Type 2 diabetes mellitus (T2DM) and prediabetes have increased in prevalence among overweight and obese children, with significant implications for long-term health. There is little published evidence on the best approaches to care of prediabetes among overweight youth or the current practices used across pediatric weight management programs. Methods: This article reviews the literature and summarizes current practices for screening, diagnosis, and treatment of prediabetes at childhood obesity treatment centers. Findings regarding current practice were based on responses to an online survey from 28 pediatric weight management programs at 25 children's hospitals in 2012. Based on the literature reviewed, and empiric data, consensus support statements on prediabetes care and T2DM prevention were developed among representatives of these 25 children's hospitals' obesity clinics. Results: The evidence reviewed demonstrates that current T2DM and prediabetes diagnostic parameters are derived from adult-based studies with little understanding of clinical outcomes among youth. Very limited evidence exists on preventing progression of prediabetes. Some evidence suggests that a significant proportion of obese youth with prediabetes will revert to normoglycemia without pharmacological management. Evidence supports lifestyle modification for children with prediabetes, but further study of specific lifestyle changes and pharmacological treatments is needed. Conclusion: Evidence to guide management of prediabetes in children is limited. Current practice patterns of pediatric weight management programs show areas of variability in practice, reflecting the limited evidence base. More research is needed to guide clinical care for overweight youth with prediabetes. PMID:25055134

  14. Hazardous Waste Development, Demonstration, and Disposal (HAZWDDD) Program Plan

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Eisenhower, B.M.; Reeves, M.E.; DePaoli, S.M.; Stinton, L.H.; Harrington, E.H.

    1989-02-01

    The objective of the Hazardous Waste Development, Demonstration and Disposal (HAZWDDD) Program Plan is to ensure that the needs for treatment and disposal of all its hazardous and mixed wastes have been identified and planned for. A multifaceted approach to developing and implementing this plan is given, including complete plans for each of the five installations, and an overall integrated plan is also described in this report. The HAZWDDD Plan accomplishes the following: (1) provides background and organizational information; (2) summarizes the 402 hazardous and mixed waste streams from the five installations by grouping them into 13 general waste categories; (3) presents current treatment, storage, and disposal capabilities within Energy Systems; (4) develops a management strategy by outlining critical issues, presents flow sheets describing management schemes for problem waste streams, and builds on the needs identified; (5) outlines specific activities needed to implement the strategy developed; and (6) presents schedule and budget requirements for the next decade. The HAZWDDD Program addresses current and future technical problems and regulatory issues and uncertainties. Because of the nature and magnitude of the problems in hazardous and mixed waste management, substantial funding will be required. 10 refs., 39 figs., 16 tabs

  15. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  16. Cavern disposal concepts for HLW/SF: assuring operational practicality and safety with maximum programme flexibility

    International Nuclear Information System (INIS)

    McKinley, Ian G.; Apted, Mick; Umeki, Hiroyuki; Kawamura, Hideki

    2008-01-01

    Most conventional engineered barrier system (EBS) designs for HLW/SF repositories are based on concepts developed in the 1970s and 1980s that assured feasibility with high margins of safety, in order to convince national decision makers to proceed with geological disposal despite technological uncertainties. In the interval since the advent of such 'feasibility designs', significant progress has been made in reducing technological uncertainties, which has lead to a growing awareness of other, equally important uncertainties in operational implementation and challenges regarding social acceptance in many new, emerging national repository programs. As indicated by the NUMO repository concept catalogue study (NUMO, 2004), there are advantages in reassessing how previous designs can be modified and optimised in the light of improved system understanding, allowing a robust EBS to be flexibly implemented to meet nation-specific and site-specific conditions. Full-scale emplacement demonstrations, particularly those carried out underground, have highlighted many of the practical issues to be addressed; e.g., handling of compacted bentonite in humid conditions, use of concrete for support infrastructure, remote handling of heavy radioactive packages in confined conditions, quality inspection, monitoring / ease of retrieval of emplaced packages and institutional control. The CAvern REtrievable (CARE) concept reduces or avoids such issues by emplacement of HLW or SF within multi-purpose transportation / storage / disposal casks in large ventilated caverns at a depth of several hundred metres. The facility allows the caverns to serve as inspectable stores for an extended period of time (up to a few hundred years) until a decision is made to close them. At this point the caverns are backfilled and sealed as a final repository, effectively with the same safety case components as conventional 'feasibility designs'. In terms of operational practicality an d safety, the CARE

  17. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  18. Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Lindsay L. Vare

    2018-02-01

    Full Text Available Deep-sea tailings disposal (DSTD and its shallow water counterpart, submarine tailings disposal (STD, are practiced in many areas of the world, whereby mining industries discharge processed mud- and rock-waste slurries (tailings directly into the marine environment. Pipeline discharges and other land-based sources of marine pollution fall beyond the regulatory scope of the London Convention and the London Protocols (LC/LP. However, guidelines have been developed in Papua New Guinea (PNG to improve tailings waste management frameworks in which mining companies can operate. DSTD can impact ocean ecosystems in addition to other sources of stress, such as from fishing, pollution, energy extraction, tourism, eutrophication, climate change and, potentially in the future, from deep-seabed mining. Environmental management of DSTD may be most effective when placed in a broader context, drawing expertise, data and lessons from multiple sectors (academia, government, society, industry, and regulators and engaging with international deep-ocean observing programs, databases and stewardship consortia. Here, the challenges associated with DSTD are identified, along with possible solutions, based on the results of a number of robust scientific studies. Also highlighted are the key issues, trends of improved practice and techniques that could be used if considering DSTD (such as increased precaution if considering submarine canyon locations, likely cumulative impacts, and research needed to address current knowledge gaps.

  19. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed.

  20. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed

  1. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  2. Waste Isolation Pilot Plant remote-handled transuranic waste disposal strategy

    International Nuclear Information System (INIS)

    1995-01-01

    The remote-handled transuranic (RH-TRU) waste disposal strategy described in this report identifies the process for ensuring that cost-effective initial disposal of RH-TRU waste will begin in Fiscal Year 2002. The strategy also provides a long-term approach for ensuring the efficient and sustained disposal of RH-TRU waste during the operating life of WIPP. Because Oak Ridge National Laboratory stores about 85 percent of the current inventory, the strategy is to assess the effectiveness of modifying their facilities to package waste, rather than constructing new facilities. In addition, the strategy involves identification of ways to prepare waste at other sites to supplement waste from Oak Ridge National Laboratory. DOE will also evaluate alternative packagings, modes of transportation, and waste emplacement configurations, and will select preferred alternatives to ensure initial disposal as scheduled. The long-term strategy provides a systemwide planning approach that will allow sustained disposal of RH-TRU waste during the operating life of WIPP. The DOE's approach is to consider the three relevant systems -- the waste management system at the generator/storage sites, the transportation system, and the WIPP disposal system -- and to evaluate the system components individually and in aggregate against criteria for improving system performance. To ensure full implementation, in Fiscal Years 1996 and 1997 DOE will: (1) decide whether existing facilities at Oak Ridge National Laboratory or new facilities to package and certify waste are necessary; (2) select the optimal packaging and mode of transportation for initial disposal; and (3) select an optimal disposal configuration to ensure that the allowable limits of RH-TRU waste can be disposed. These decisions will be used to identify funding requirements for the three relevant systems and schedules for implementation to ensure that the goal of initial disposal is met

  3. Monitoring potential neurotoxic effects of hazardous waste disposal

    OpenAIRE

    Schaumburg, Herbert H.; Spencer, Peter S.; Arezzo, Joseph C.

    1983-01-01

    This report reviews neurotoxicological principles relevant to situations of hazardous waste disposal. Some of the diagnostic techniques currently used for field assessment of nervous system dysfunction are critically evaluated. These include nerve conduction velocity, evoked potentials, neuropsychological testing and use of the Optacon.

  4. Unsafe Disposal of Child Faeces: A Community-based Study in a Rural Block in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Preeti PS

    2016-09-01

    Full Text Available Objectives A clean India is the responsibility of all Indians. One of the objectives of the Swachh Bharat Abhiyan (Clean India Initiative is to bring about behavioural changes regarding healthy sanitation practices. While large-scale programs in India have increased latrine coverage, they have to some extent failed to bring behavioural changes ensuring optimal latrine use, including the safe disposal of child faeces, which is a significant source of exposure to faecal pathogens. Hence, this study was done to explore child faeces disposal practices in rural West Bengal and to elicit the determinants of unhygienic faeces disposal. Methods Data collection was done using an interview method among the mothers of 502 under-5 children, following a pre-designed, semi-structured schedule during house-to-house visits in a set of villages in the Hooghly district of West Bengal. Results The prevalence of unsafe disposal of child faeces was 72.4%, and maternal education, per capita income, and water source were found to be significantly associated with unsafe child faeces disposal. Conclusions This study draws attention to the unsafe disposal of child faeces in this area of India and raises questions about the efficiency of sanitation campaigns in rural India that focus on expanding coverage rather than emphasizing behavioural changes, which are crucial to ensure the safe disposal of child faeces. Thus, it is urgently necessary to strengthen efforts focusing on behavioural changes regarding the safe disposal of child faeces in order to minimise adverse health outcomes.

  5. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  6. E- Waste Disposal in Tanzania: The Implications for Income ...

    African Journals Online (AJOL)

    Because of its fast growth, the ICT industry has generated volumes and volumes of 'e - waste', which in turn, requires mechanisms and skills for disposal, notwithstanding, the necessity to explore means of using the same as a business for income generation. The study set out to investigate the existing practices and levels ...

  7. Environmental hazards of waste disposal patterns--a multimethod study in an unrecognized Bedouin village in the Negev area of Israel.

    Science.gov (United States)

    Meallem, Ilana; Garb, Yaakov; Cwikel, Julie

    2010-01-01

    The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.

  8. Large Item Disposal At The Drigg Low Level Waste Repository, United Kingdom

    International Nuclear Information System (INIS)

    Griffiths, Steve

    2012-01-01

    Currently the UK operates only one repository for low level radioactive waste, the LLWR near Drigg in Cumbria. It is located on the West Cumbrian coast near the village of Drigg. LLWR is designed for the management of solid LLW and has operated as the principal national disposal facility for LLW since 1959. LLWR is managed and operated on behalf of the Nuclear Decommissioning Authority (NDA) by UK Nuclear Waste Management Ltd. (UKNWM), parent body of LLW Repository Ltd. UKNWM is a consortium led by URS, Studsvik and AREVA. Waste is accepted at LLWR based on conditions for acceptance (1). Although there is some history of disposal of non-containerised 'large items' at the Drigg site these are anecdotally described as 'not quite fitting into an ISO container (2)' and enquiries indicate that their disposal was restricted to the legacy times when items were tumble-tipped into open trenches at the site, a practise now long ceased. The feasibility of true single large item disposal at the LLWR presents complex problems arising from the poor suitability of both rail and road infrastructure in UK. LLWR is serviced both by road and rail links. The static weight of large items being taken nominally as up to ∼300 metric tons would not necessarily preclude transportation by rail but the practicalities of this route are limited. The ageing rail infrastructure includes numerous tunnels, bridges and sections of line with overhead electrification. All these would require either careful justification or significant work to ensure the safe transit of large loads. Nuclear facilities in UK are by design in remote locations, not all of which are serviced by rail connections and the rail network itself has evolved to service inter-city transportation rather than heavy freight and as such tends to route through town centres, exacerbating the tunnel, bridge and pantograph concerns already identified. Within only a few miles of the LLWR itself there are requirements to pass both over and

  9. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  10. Greater Confinement Disposal Program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Peterson, D.L.

    1983-01-01

    Plans for improved LLW disposal at the Savannah River Plant include Greater Confinement Disposal (GCD) for the higher activity fractions of this waste. GCD practices will include waste segregation, packaging, emplacement below the root zone, and stabilizing the emplacement with cement. Statistical review of SRP burial records showed that about 95% of the radioactivity is associated with only 5% of the waste volume. Trigger values determined in this study were compared with actual burials in 1982 to determine what GCD facilities would be needed for a demonstration to begin in Fall 1983. Facilities selected include 8-feet-diameter x 30-feet-deep boreholes to contain reactor scrap, tritiated waste, and selected wastes from offsite

  11. Storage and disposal of medical cannabis among patients with cancer: Assessing the risk of diversion and unintentional digestion.

    Science.gov (United States)

    Sznitman, Sharon R; Goldberg, Victoria; Sheinman-Yuffe, Hedva; Flechter, Ezequiel; Bar-Sela, Gil

    2016-11-15

    Increasingly more jurisdictions worldwide are legalizing medical cannabis. Major concerns related to such policies are that improper storage and disposal arrangements may lead to the diversion and unintentional digestion of cannabis. These concerns are particularly acute among patients with cancer because they take home medical cannabis for extended periods and have high rates of treatment termination and mortality shortly after the onset of treatment with medical cannabis. Therefore, leftover cannabis is potentially particularly prevalent, and potentially improperly stored, in households of current and deceased patients with cancer. The current study investigated the risk of medical cannabis diversion and unintentional digestion among oncology patients treated with medical cannabis and caregivers of recently deceased patients who were treated with medical cannabis. A total of 123 oncology patients treated with medical cannabis and 37 caregivers of deceased oncology patients treated with medical cannabis were interviewed regarding practices and the information received concerning the safe storage and disposal of medical cannabis, as well as experiences of theft, diversion, and unintentional digestion. High rates of suboptimal storage were reported and caregivers were found to be particularly unlikely to have received information regarding the safe storage and disposal of medical cannabis. Few incidences of theft, diversion, and unintentional digestion were reported. Oncologists and other health care providers have an important, yet unfilled, role to play with regard to educating patients and caregivers of the importance of the safe storage and disposal of medical cannabis. Interventions designed to alert patients treated with medical cannabis and their caregivers to the problem of diversion, along with strategies to limit it, have the potential to limit diversion and unintentional exposure to medical cannabis. Cancer 2016;122:3363-3370. © 2016 American Cancer

  12. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  13. Disposal of children's stools and its association with childhood diarrhea in India.

    Science.gov (United States)

    Bawankule, Rahul; Singh, Abhishek; Kumar, Kaushalendra; Pedgaonkar, Sarang

    2017-01-05

    Children's stool disposal is often overlooked in sanitation programs of any country. Unsafe disposal of children's stool makes children susceptible to many diseases that transmit through faecal-oral route. Therefore, the study aims to examine the magnitude of unsafe disposal of children's stools in India, the factors associated with it and finally its association with childhood diarrhea. Data from the third round of the National Family Health Survey (NFHS-3) conducted in 2005-06 is used to carry out the analysis. The binary logistic regression model is used to examine the factors associated with unsafe disposal of children's stool. Binary logistic regression is also used to examine the association between unsafe disposal of children's stool and childhood diarrhea. Overall, stools of 79% of children in India were disposed of unsafely. The urban-rural gap in the unsafe disposal of children's stool was wide. Mother's illiteracy and lack of exposure to media, the age of the child, religion and caste/tribe of the household head, wealth index, access to toilet facility and urban-rural residence were statistically associated with unsafe disposal of stool. The odds of diarrhea in children whose stools were disposed of unsafely was estimated to be 11% higher (95% CI: 1.01-1.21) than that of children whose stools were disposed of safely. An increase in the unsafe disposal of children's stool in the community also increased the risk of diarrhea in children. We found significant statistical association between children's stool disposal and diarrhea. Therefore, gains in reduction of childhood diarrhea can be achieved in India through the complete elimination of unsafe disposal of children's stools. The sanitation programmes currently being run in India must also focus on safe disposal of children's stool.

  14. Radioactive waste management policy in the UK of best practicable environmental options for waste disposal and storage

    International Nuclear Information System (INIS)

    Johnson, P.D.; Feates, F.S.

    1986-01-01

    The organisations which produce radioactive waste carry the direct responsibility for safe and effective management of the wastes and for meeting the costs. UK Nirex Ltd., the Nuclear Industry Radioactive Waste Executive, has been set up to develop and operate new disposal facilities. Individual producers of radioactive waste undertake research related to the treatment of their own wastes, and UK Nirex Ltd. commissions research related to the disposal facilities it wishes to develop. Whatever new disposal facilities are developed and used, UK Nirex Ltd. will have to show that any proposed facilities comply with the principles for assessment of proposals for the protection of the human environment issued by the Government Authorising Departments in 1984, and which incorporate basic radiological safety requirements

  15. The disposal of high-level radioactive waste. Vol. 1

    International Nuclear Information System (INIS)

    Parker, F.L.; Broshears, R.E.; Pasztor, J.

    1984-01-01

    The Beijer Institute received request from the Swedish Board for Spent Nuclear Fuel (Naemnden for Anvaent Kaernbraensle - NAK) to undertake an international review of the major programmes which were currently making arrangements for the future disposal of high-level radioactive wastes and spent nuclear fuel. The request was accepted, a detailed proposal was worked out and agreed to by NAK, for a critical technical review which concentrated on the following three main tasks: 1. a 'state-of-the-art' review of selected ongoing disposal programmes, both national and international; 2. an assessment of the scientific and technical controversies involved, and 3. recommendations for further research in this field. This review work was to be built on a survey of the available technical literature which was to serve as a basis for a series of detailed interviews, consultations and discussions with scientific and technical experts in Japan, Canada, USA, Belgium, Federal Republic of Germany, France, Switzerland and the United Kingdom. This first volume contains: disposal options; review of the state-of-the-art (international activities, national programs); analysis of waste disposal systems. (orig./HP)

  16. New York's response to the national LLRW disposal legislation

    International Nuclear Information System (INIS)

    Orazio, A.F.; Schwarz, W.F.; Feeney, A.X.

    1988-01-01

    The Federal Low Level Radioactive Waste Policy Act (LLRWPA) and its amendments brought about a shift from commercial responsibility to state responsibility for low level radioactive waste (LLRW) disposal. This shift required New York to evaluate various policy options for handling its new LLRW disposal responsibility. After passage of the 1980 Federal Act, New York participated in efforts which resulted in a proposed interstate compact in the Northeast. Following a review of the proposed compact, as well as other options, New York decided to assume by itself full responsibility for disposing of its LLRW. In July 1986, New York enacted the New York State LLRW Management Act. This act provides New York with a detailed plan for establishing a LLWR disposal facility by the 1993 federal deadline. This paper consists of two segments. The first describes the major provisions of the State Act assigning responsibilities to the various agencies involved and reports on their progress. The second segment discusses the current activities of those involved in implementing the State Act with an emphasis on the recent and future activities of the Siting Commission

  17. Current practice in airway management: A descriptive evaluation.

    Science.gov (United States)

    Kjonegaard, Rebecca; Fields, Willa; King, Major L

    2010-03-01

    Ventilator-associated pneumonia, a common complication of mechanical ventilation, could be reduced if health care workers implemented evidence-based practices that decrease the risk for this complication. To determine current practice and differences in practices between registered nurses and respiratory therapists in managing patients receiving mechanical ventilation. A descriptive comparative design was used. A convenience sample of 41 registered nurses and 25 respiratory therapists who manage critical care patients treated with mechanical ventilation at Sharp Grossmont Hospital, La Mesa, California, completed a survey on suctioning techniques and airway management practices. Descriptive and inferential statistics were used to analyze the data. Significant differences existed between nurses and respiratory therapists for hyperoxygenation before suctioning (P =.03). In the 2 groups, nurses used the ventilator for hyper-oxygenation more often, and respiratory therapists used a bag-valve device more often (P =.03). Respiratory therapists instilled saline (P <.001) and rinsed the closed system with saline after suctioning (P =.003) more often than nurses did. Nurses suctioned oral secretions (P <.001) and the nose of orally intubated patients (P =.01), brushed patients' teeth with a toothbrush (P<.001), and used oral swabs to clean the mouth (P <.001) more frequently than respiratory therapists did. Nurses and respiratory therapists differed significantly in the management of patients receiving mechanical ventilation. To reduce the risk of ventilator-associated pneumonia, both nurses and respiratory therapists must be consistent in using best practices when managing patients treated with mechanical ventilation.

  18. Mining techniques and some aspects of high-level waste disposal

    International Nuclear Information System (INIS)

    Hoefnagels, J.A.R.

    1980-01-01

    The solutions to many problems of underground waste disposal involve mine engineering. This article attempts to highlight chosen issues and thereby create an overall impression, avoiding emphasis on single-aspect calculation. High level waste (H.L.W.) dominates current radioactive waste studies because of its specific characteristics and is therefore dealt with in this paper. However, depending on the method of disposal the other categories of radio active waste might become problems by themselves because of the relatively large quantities involved. (Auth.)

  19. Quality control of radioactive waste disposal container for borehole project

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail; Suhairy Sani; Azhar Azmi; Ilham Mukhriz Zainal Abidin

    2014-01-01

    This paper explained quality control of radioactive disposal container for the borehole project. Non-destructive Testing (NDT) is one of the quality tool used for evaluating the product. The disposal container is made of 316L stainless steel. The suitable NDT method for this object is radiography, ultrasonic, penetrant and eddy current testing. This container will be filled with radioactive capsules and cement mortar is grouted to fill the gap. The results of NDT measurements are explained and discussed. (author)

  20. Maintenance of records for radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-07-01

    The safety of the radioactive waste disposal concepts does not rely on long term institutional arrangements. However, future generations may need information related to repositories and the wastes confined in them. The potentially needed information therefore has to be identified and collected. A suitable system for the preservation of that information needs to be created as a part of the disposal concept beginning with the planning phase. The IAEA has prepared this technical report to respond to the needs of Member States having repositories or involved in or considering the development of repositories. In many countries policies and systems for record keeping and maintenance of information related to disposal are the subjects of current interest. This report describes the requirements for presenting information about repositories for radioactive waste including long lived and transuranic waste and spent fuel if it is declared as a waste. The report discussed topics of identification, transfer and long term retention of high level information pertaining to the repository in a records management system (RMS) for retrieval if it becomes necessary in the future

  1. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  2. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  3. Alternatives for the disposal of NORM [naturally occurring radioactive materials] wastes in Texas

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Pollard, C.G.

    1989-01-01

    Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios

  4. Current Administrative court practice in the procedure of Public Procurement

    Directory of Open Access Journals (Sweden)

    Silvio Čović

    2017-01-01

    Full Text Available Under the current conditions of complex and difficult economic and social circumstances and given the comparative possibilities and economic effects, the system of public procurement which is firstly at a legal level regulated by the Public Procurement Act 8 (Zakon o javnoj nabavi of 2011 (further referred to as: PPA (ZN, is of particular importance for the entire legal, political and economic system of the Republic of Croatia. Public procurement in essence represents contracting the procurement of goods, works or services. The specifities of that system are comprised, above all, of regulation of entering contractual relations between the public and private sector. Therefore, this system in principle must be formal in order to protect equality of competitors in the public procurement procedure and also in the general interest. Appreciating the legal tradition and indigenous particularities, the author’s fundamental aims consisted of providing and analysing administrative court practice in the context of international legal acquis communautaire showing some legal regulation in practice of disputable aspects of the system of public procurement in Croatia and the doubts emerging from current administrative court practice.

  5. Situation on regulatory aspects of underground disposal of radioactivity wastes in Japan

    International Nuclear Information System (INIS)

    Murano, T.; Asano, T.; Matsubara, N.

    1978-01-01

    At present, in Japan, there exists no law specifically regulating the underground disposal of radioactive wastes although various regulations deal with disposal safety measures in a general way. For the moment, apart from the need to gain public acceptance of such disposal, the problem is essentially one of technical feasibility, and a geological study is currently being undertaken by the Science and Technology Agency. This same Agency is also looking at the problem of a long-term waste management system, but it is the Nuclear Safety Commission, created in 1978, which will be primarily responsible for all regulatory aspects of safety. (NEA) [fr

  6. Low and intermediate level disposal in Spain (El Cabril Facility)

    International Nuclear Information System (INIS)

    Zuloaga, P.

    1997-01-01

    El Cabril disposal facility is located in Southern Spain and was commissioned in October 1992. The main objective of this facility is the disposal of all low- and intermediate-level waste produced in Spain in a disposal system (Figure 1) consisting of concrete overpacks placed in concrete vaults. A drain control system exists in inspection galleries constructed beneath the disposal vaults. The facility also includes : 1) A treatment and conditioning shop (with incineration, non-NPP wastes segregation and conditioning, drum transfer into overpacks, supercompaction, liquid waste collection, and grout preparation and injection) 2) A waste form characterisation laboratory with means for non-destructive radiological characterisation and for destructive tests on the waste forms (specimens extractions, unskinning of drums, mechanical strength, leaching tests on specimens and full size packages) 3) A fabrication shop for overpacks construction 4) Auxiliary systems and buildings in support of operation, maintenance and surveillance of the facility. The paper deals with the design, the operating experience of the facility, the waste packages characterisation and acceptance practice and the reception and transport of the wastes from the producers to facilities. (author). 11 figs

  7. Preliminary environmental impact assessment for the final disposal of vanadium hazardous wastes

    International Nuclear Information System (INIS)

    Leyva Bombuse, D.; Peralta, J.L.; Gil Castillo, R.

    2006-01-01

    The aim of the present paper is the environmental impact assessment for the final management of vanadium wastes. The assessed practice is proposed as a final solution for a real problem in Cuba, related with the combustion fossil fuel burn in the electric generation. The study case, embrace the interim storage of hazardous wastes with high vanadium contents (5.08 T) and other heavy metals traces (Cr, Zn). According to the Cuban conditions (tacking into account the environmental regulations and infrastructure lack for the hazardous wastes disposal), it was decided the terrestrial dilution as a final disposal way. The environmental impact assessment methodology used, take into account, in the analyzed management practice, the actions, factors and environmental impacts. The positives and more relevant impacts were obtained for the socioeconomic means. The negative and irrelevant impacts were associated to the biotic and abiotic means. Socioeconomic factors were the most affected and the biotic and abiotic factors were less affected. The waste handling was the most relevant environmental action. According to the evaluated conditions, the obtained results showed that is feasible the terrestrial dilution as a sustainability way for the final disposal of vanadium hazardous wastes

  8. Semi-solid electrode cell having a porous current collector and methods of manufacture

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  9. Department of Energy report on fee for spent nuclear fuel storage and disposal services

    International Nuclear Information System (INIS)

    1980-10-01

    Since the July 1978 publication of an estimated fee for storage and disposal, several changes have occurred in the parameters which impact the spent fuel fee. DOE has mounted a diversified program of geologic investigations that will include locating and characterizing a number of potential repository sites in a variety of different geologic environments with diverse rock types. As a result, the earliest operation date of a geologic repository is now forecast for 1997. Finally, expanded spent fuel storage capabilities at reactors have reduced the projected quantities of fuel to be stored and disposed of. The current estimates for storage and disposal are presented. This fee has been developed from DOE program information on spent fuel storage requirements, facility availability, facility cost estimates, and research and development programs. The discounted cash flow technique has used the most recent estimates of cost of borrowing by the Federal Government. This estimate has also been used in calculating the Federal charge for uranium enrichment services. A prepayment of a percentage of the storage portion of the fee is assumed to be required 5 years before spent fuel delivery. These funds and the anticipated $300 million in US Treasury borrowing authority should be sufficient to finance the acquisition of storage facilities. Similarly, a prepayment of a percentage of the disposal portion would be collected at the same time and would be used to offset disposal research and development expenditures. The balance of the storage and disposal fees will be collected upon spent fuel delivery. If disposal costs are different from what was estimated, there will be a final adjustment of the disposal portion of the fee when the spent fuel is shipped from the AFR for permanent disposal. Based on current spent fuel storage requirements, at least a 30 percent prepayment of the fee will be required

  10. The management and disposal of radioactive wastes - safety principles and guidelines

    International Nuclear Information System (INIS)

    Linsley, G.; Bell, M.; Saire, D.

    1991-01-01

    This paper describes the current plans for the establishment of the Radioactive Waste Safety Standards (RADWASS), a new series of IAEA documents in the Safety Series category intended to set out internationally agreed approaches to the safe management and disposal or radioactive waste. RADWASS is being implemented to document the harmonization which exists in the approaches to establishing safety in the field of radioactive waste management and disposal at the international level. (au)

  11. Place of the final disposal of short lived dismantling waste; Plats foer slutfoervaring av kortlivat rivningsavfall

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    This report deals with the short-lived low and intermediate level radioactive waste, which will mainly arise from the dismantling of the Swedish nuclear power plants, but also the dismantling of other nuclear facilities. For these installations to be dismantled, there must be the capacity to receive and dispose of dismantling waste. SKB plans to expand the existing final repository for short-lived radioactive waste (SFR) in Forsmark for this purpose. The legislation requires alternatives to the chosen location. The alternate location for the disposal of decommissioning waste SKB has chosen to compare with is a location in the Simpevarp area outside Oskarshamn. There are currently Oskarshamn nuclear power plant and SKB between stock 'CLAB'. The choice of Simpevarp as alternative location is based on that it's one of the places in the country where data on the bedrock is available to an extent that allows an assessment of the prospects for long-term security, such an assessment is actually showing good potential, and that the location provide realistic opportunities to put into practice the disposal of decommissioning waste. At a comparison between the disposal of short-lived decommissioning waste in an extension of SFR with the option to build a separate repository for short-lived decommissioning waste in Simpevarp, the conclusion is that both options offer potentially good prospects for long-term security. The differences still indicated speaks to the Forsmark advantage. Similar conclusions were obtained when comparing the factors of environment, health and social aspects.

  12. Economic and energy analysis about disposal interventions of waste tires produced in Calabria

    International Nuclear Information System (INIS)

    Florio, Gaetano; Cersosimo, Attilio.

    1997-01-01

    The present paper refers to an analysis aimed at researching disposal strategies, for waste tires produced in Calabria, which ensure correct disposal with regard to environmental compatibility and their evaluation in terms of material recovery and energy. The starting point has been an estimate of the quantities of potentially usable waste tires and disposal methods currently employed. It has therefore been possible to identify two specific disposal proposals for which an economic and energy evaluation has been conducted. The last part of the paper has faced the problem of plant location under consideration, with the aim of determining, for both proposal, the cost that each producer must bear to have his waste tires eliminated

  13. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  14. Evaluation of Proposed New LLW Disposal Activity: Disposal of Aqueous PUREX Waste Stream in the Saltstone Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2003-01-01

    The Aqueous PUREX waste stream from Tanks 33 and 35, which have been blended in Tank 34, has been identified for possible processing through the Saltstone Processing Facility for disposal in the Saltstone Disposal Facility

  15. Galileo disposal strategy: stability, chaos and predictability

    Science.gov (United States)

    Rosengren, Aaron J.; Daquin, Jérôme; Tsiganis, Kleomenis; Alessi, Elisa Maria; Deleflie, Florent; Rossi, Alessandro; Valsecchi, Giovanni B.

    2017-02-01

    Recent studies have shown that the medium-Earth orbit (MEO) region of the global navigation satellite systems is permeated by a devious network of lunisolar secular resonances, which can interact to produce chaotic and diffusive motions. The precarious state of the four navigation constellations, perched on the threshold of instability, makes it understandable why all past efforts to define stable graveyard orbits, especially in the case of Galileo, were bound to fail; the region is far too complex to allow for an adoption of the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by ESA's General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic parametric approach and the straightforward maximum-eccentricity method to identify long-term-stable regions, suitable for graveyards, as well as large-scale excursions in eccentricity, which can be used for post-mission deorbiting of constellation satellites. We then apply our new results on the stunningly rich dynamical structure of the MEO region towards the analysis of these disposal strategies for Galileo, and discuss the practical implications of resonances and chaos in this regime. We outline how the identification of the hyperbolic and elliptic fixed points of the resonances near Galileo can lead to explicit criteria for defining optimal disposal strategies.

  16. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  17. Assessment of current cybersecurity practices in the public domain : cyber indications and warnings domain.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Keliiaa, Curtis M.

    2010-09-01

    This report assesses current public domain cyber security practices with respect to cyber indications and warnings. It describes cybersecurity industry and government activities, including cybersecurity tools, methods, practices, and international and government-wide initiatives known to be impacting current practice. Of particular note are the U.S. Government's Trusted Internet Connection (TIC) and 'Einstein' programs, which are serving to consolidate the Government's internet access points and to provide some capability to monitor and mitigate cyber attacks. Next, this report catalogs activities undertaken by various industry and government entities. In addition, it assesses the benchmarks of HPC capability and other HPC attributes that may lend themselves to assist in the solution of this problem. This report draws few conclusions, as it is intended to assess current practice in preparation for future work, however, no explicit references to HPC usage for the purpose of analyzing cyber infrastructure in near-real-time were found in the current practice. This report and a related SAND2010-4766 National Cyber Defense High Performance Computing and Analysis: Concepts, Planning and Roadmap report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.

  18. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  19. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  20. The bricoleur’s figure in artistic practices

    Directory of Open Access Journals (Sweden)

    Mariana Resende Côrrea

    2014-12-01

    Full Text Available Art as process and reflection of the lived moment deals many times with issues that refers to its context and with the available materials in the current scenario. In a society marked by consumption and ephemerality, this article promotes a reflection on the use of disposed and collected products in works of visual artists. The bricoleur appears in this context as a central figure for the understanding and the analysis of some of the many artistic practices realized recently. By bricolage, artists like Joseph Cornell, Farnese de Andrade, Amanda Mei and Courtney Smith performed works with hybrid content that reflect the lived moment and issues contained in the materials available in the current scenario.

  1. Techniques and practices for pretreatment of low and intermediate level solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    1987-01-01

    An overall waste management strategy generally includes several components: pretreatment, treatment, conditioning, transport and disposal. Benefits of pretreatment are improved safety, lower radiation exposures and significantly lower costs in subsequent waste management operations. This publication reviews current practices in the pretreatment of wastes in different countries and may assist the specialist in selection of appropriate pretreatment techniques

  2. Criteria and principles for environmental assessment of disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hill, M.D.

    1989-01-01

    This paper describes the criteria which are used in judging whether methods for the disposal of radioactive wastes are acceptable, from a radiological protection point of view, and the principles used in assessing the radiological impact of waste disposal methods. Gaseous, liquid and solid wastes are considered, and the discussion is relevant to wastes arising from the nuclear power industry, and from medical practices, general industry and research. Throughout the paper, emphasis is given to the general criteria and principles recommended by international organizations rather than to the detailed legislative and regulatory requirements in particular countries

  3. Exposure and risk calculations for disposal of wastes having minimal radioactivity

    International Nuclear Information System (INIS)

    Fields, D.E.

    1984-01-01

    The US Nuclear Regulatory Commission is currently considering revision of rules 10 CFR 20 and 10 CFR 61, which cover disposal of solid wastes containing minimal activity radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. The PRESTO-II methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. The modeling of pathways and processes of migration from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 9 references, 2 figures, 3 tables

  4. 76 FR 38399 - Assessing the Current Research, Policy, and Practice Environment in Public Health Genomics

    Science.gov (United States)

    2011-06-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [Docket Number CDC-2011-0008] Assessing the Current Research, Policy, and Practice Environment in Public Health... information helpful to assess the current research, policy, and practice environment in public health genomics...

  5. Presentation of the Nirex disposal safety research programme

    International Nuclear Information System (INIS)

    1988-01-01

    Implementation of Nirex plans for the disposal of solid low and intermediate level radioactive waste deep underground requires assurances of safety at every stage. This includes assessment of long-term safety, which must be based on an understanding of how the repository and its contents will behave far into the future. This understanding is being provided by the company's substantial disposal research and development programme, currently running at a level of more than Pound 5 million annually. The principal contractor for the work is the UKAEA's Harwell Laboratory, with contributions from experts in universities and industry. Information from other national and international programmes also contributes. This document supports a presentation held at the CEGB Conference Centre, Didcot Power Station, Oxfordshire on 1st November 1988 to outline the scope of the work and its objectives in the context of the Company's plans and the requirements of safety assessments. It summarises the results and understanding being obtained from the current programme. (author)

  6. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.

    2000-01-01

    This report is the first revision to ''Radiological Performance Assessment for the E-Area Vaults Disposal Facility, Revision 0'', which was issued in April 1994 and received conditional DOE approval in September 1994. The title of this report has been changed to conform to the current name of the facility. The revision incorporates improved groundwater modeling methodology, which includes a large data base of site specific geotechnical data, and special Analyses on disposal of cement-based wasteforms and naval wastes, issued after publication of Revision 0

  7. The borehole disposal of spent sources (BOSS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2002-01-01

    is believed to be a more severe test of the disposal concept than any other type of spent source. Phase III, which has as yet not started will, look at developing guidelines for implementation of the concept and will end with a practical demonstration of the concept. (author)

  8. A New Current Drogue System for Remotely Monitoring Shelf Current Circulation

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Davis, G.; Whelan, W.; Tornatore, G.

    1975-01-01

    The author has identified the following significant results. An ocean current drogue system was developed for use in the coastal zone and continental shelf region. The method features an extremely simple radiosonde device whose position is determined from a pair of cooperative shore stations. These ocean sondes follow the tradition of the atmospheric radiosonde in that they are economically disposable at the end of their mission. The system was successfully tested in a number of environments, including the North Atlantic in two winter coastal storms. Tracking to the edge of the Baltimore and Wilmington trenches was achieved. The drogue system is being used in conjunction with remote sensing aircraft and satellites to chart current circulation at ocean waste disposal sites 40 miles off Delaware's coast.

  9. Skin hydration in nursing home residents using disposable bed baths.

    Science.gov (United States)

    Gillis, Katrin; Tency, Inge; Roelant, Ella; Laureys, Sarina; Devriendt, Hendrik; Lips, Dirk

    2016-01-01

    The objective of this study was to evaluate a new way for applying bed baths and reducing the risk for dry skin by comparing the effect of two washing methods on skin hydration. A cluster randomized trial was conducted. Skin hydration was measured before and after implementation of disposable wash gloves, using a MoistureMeter SC at three skin sites. Total skin hydration did not differ between residents at the start of the study in both groups. After implementation, the post minus pre hydration scores were higher for the intervention group than the control group at all skin sites. However, the difference was only significant at cheek site. The use of disposable wash gloves does not increase the risk for dry skin in comparison with traditional washing methods. These results may encourage the introduction of disposable wash gloves as an innovation in daily skin care practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Use of Multimedia for Enhancing Transparency in Radioactive Waste Disposal. Evaluations

    International Nuclear Information System (INIS)

    McNeish, Jerry; Avis, John; Freeze, Geoff; Miller, Debbie; Long, Lori

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste. The project is technically and politically complex, has multiple stakeholders, as well as schedule constraints. All of these factors contribute to a difficult environment in which to provide a transparent (clear and understandable) documentation of the analyses of the site. This paper describes the development and use of multimedia to present a summary of the results of the recent Total System Performance Assessment of the repository system in a transparent fashion, accessible to a variety of audiences. Transparency includes imparting a high level of understanding to the stakeholders, many of whom are not technically sophisticated in the nuances of radioactive waste disposal. The technical complexity of radioactive waste requires evaluation of uncertainties in the processes and rates that will occur in the disposal system in the future. Forecasting the performance of the system with models attempts to establish the limits of the possible performance outcomes of the disposal system. The forecasting is limited by available data and our current ability to assess what might happen to the disposal system through time. Coupled processes add uncertainty to the behavior of the system through time. The overall approach to developing the multimedia summary of the recent TSPA involved coordination of technical specialists, graphic specialists, multimedia experts, and technical editors. The ultimate product is contained on a single CD, with a single entry point, that allows the user full control in navigating through the information

  11. Use of Multimedia for Enhancing Transparency in Radioactive Waste Disposal. Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    McNeish, Jerry; Avis, John; Freeze, Geoff; Miller, Debbie [Duke Engineering and Services, Inc., Las Vegas, NV (United States); Long, Lori [Sean Lemons TRW, Inc, Albuquerque, NM (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste. The project is technically and politically complex, has multiple stakeholders, as well as schedule constraints. All of these factors contribute to a difficult environment in which to provide a transparent (clear and understandable) documentation of the analyses of the site. This paper describes the development and use of multimedia to present a summary of the results of the recent Total System Performance Assessment of the repository system in a transparent fashion, accessible to a variety of audiences. Transparency includes imparting a high level of understanding to the stakeholders, many of whom are not technically sophisticated in the nuances of radioactive waste disposal. The technical complexity of radioactive waste requires evaluation of uncertainties in the processes and rates that will occur in the disposal system in the future. Forecasting the performance of the system with models attempts to establish the limits of the possible performance outcomes of the disposal system. The forecasting is limited by available data and our current ability to assess what might happen to the disposal system through time. Coupled processes add uncertainty to the behavior of the system through time. The overall approach to developing the multimedia summary of the recent TSPA involved coordination of technical specialists, graphic specialists, multimedia experts, and technical editors. The ultimate product is contained on a single CD, with a single entry point, that allows the user full control in navigating through the information.

  12. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  13. 78 FR 64425 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-10-29

    ..., 507, and 579 [Docket No. FDA-2011-N-0922] Current Good Manufacturing Practice and Hazard Analysis and... requirements for current good manufacturing practice and hazard analysis and risk-based preventive controls for..., packing, or holding of animal food in two ways. First, it would create new current good manufacturing...

  14. 78 FR 69604 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-11-20

    ... Federal Register of January 16, 2013 (78 FR 3646), entitled ``Current Good Manufacturing Practice and... a proposed rule entitled ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based..., 114, 117, 120, 123, 129, 179, and 211 [Docket No. FDA-2011-N-0920] RIN 0910-AG36 Current Good...

  15. Ethical aspects in connection with the disposal of radioactive wastes; Ethische Aspekte bei der Endlagerung radioaktiver Abfaelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boetsch, W.

    2003-07-01

    The progress of modern natural and technological science and their far-reaching consequences affecting the distant future require increasingly practice-oriented ethical concepts. In the discussions about responseable acting, the question of the ethical tenability of nuclear energy nowadays takes a special position. Above all the problem of the disposal of radioactive wastes - the effects of which on the distant future have to be prognosticated - is controversially discussed in society. The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) commissioned Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS) in the context of the project ''Disposal of radioactive wastes in the context of ethical objectives'' to summarise the current national and international status of ethical aspects in connection with the disposal of radioactive wastes. One aim of this report is to derive criteria to form the basis of a comprehensive discussion of the ethical aspects of the disposal of radioactive wastes. These criteria are to describe, as far as possible, all content-related aspects that result from radioactive waste disposal. The issues in this report resulting from the opinions, comments and publications presented are to serve as a basis for an experts' meeting at which the important ethical criteria concerning the responsible management of radioactive waste disposal are to be discussed at an interdisciplinary level with all those involved. The results of this report are based on an investigation which gathered the available national and international statements, principles, and criteria relating to the ethical aspects of the disposal of radioactive wastes and to sustainable development in the context of the technological impact assessment up to beginning of 2000. In the meantime, the debate in Germany has become somewhat more pragmatic, i. a. due to the work of the research group &apos

  16. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  17. Radon-222 emissions and control practices for licensed uranium mills and their associated tailings piles. Final report

    International Nuclear Information System (INIS)

    1985-06-01

    The report is organized into five main sections. The conclusions of the effort are summarized in Chapter 2. A general description of current milling and tailings management practices and a summary of the site-specific characteristics of operating and standby uranium mills are contained in Chapter-3. The sources and emission rates of radon-222 at licensed mills and their associated tailings piles are contained in Chapter 4 along with the results of an effort to develop generic procedures to estimate radon-222 emissions for milling operations and tailings disposal. Control practices that are being or could be applied to the milling operation and tailings disposal areas and their estimated cost and effectiveness in reducing radon-222 emissions are presented in Chapter 5. The appendices contain detailed information on mill site data and emission estimates

  18. Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties.

    Science.gov (United States)

    Kavvadias, V; Doula, M K; Komnitsas, K; Liakopoulou, N

    2010-10-15

    The most common practice followed in the Med countries for the management of olive oil mill wastes (OMW) involves disposal in evaporation ponds or direct disposal on soil. So far there is lack of reliable information regarding the long-term effects of OMW application on soils. This study assesses the effects of OMW disposal in evaporation ponds on underlying soil properties in the wider disposal site as well as the impacts of untreated OMW application on agricultural soils. In case of active disposal sites, the carbonate content in most soils was decreased, whereas soil EC, as well as Cl(-), SO(4)(2-), PO(4)(3-), NH(4)(+) and particularly K(+) concentrations were substantially increased. Soil pH was only marginally affected. Phenol, total N, available P and PO(4)(3-) concentrations were considerably higher in the upper soil layers in areas adjacent to the ponds. Available B as well as DTPA extractable Cu, Mn, Zn and Fe increased substantially. Most surface soil parameters exhibited increased values at the inactive site 6 years after mill closure and cease of OMW disposal activities but differences were diminished in deeper layers. It is therefore concluded that long-term uncontrolled disposal of raw OMW on soils may affect soil properties and subsequently enhance the risk for groundwater contamination. 2010 Elsevier B.V. All rights reserved.

  19. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  20. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  1. Lessons Learned from the On-Site Disposal Facility at Fernald Closure Project

    International Nuclear Information System (INIS)

    Kumthekar, U.A.; Chiou, J.D.

    2006-01-01

    The On-Site Disposal Facility (OSDF) at the U.S. Department of Energy's (DOE) Fernald Closure Project near Cincinnati, Ohio is an engineered above-grade waste disposal facility being constructed to permanently store low level radioactive waste (LLRW) and treated mixed LLRW generated during Decommissioning and Demolition (D and D) and soil remediation performed in order to achieve the final land use goal at the site. The OSDF is engineered to store 2.93 million cubic yards of waste derived from the remediation activities. The OSDF is intended to isolate its LLRW from the environment for at least 200 years and for up to 1,000 years to the extent practicable and achievable. Construction of the OSDF started in 1997 and waste placement activities will complete by the middle of April 2006 with the final cover (cap) placement over the last open cell by the end of Spring 2006. An on-site disposal alternative is considered critical to the success of many large-scale DOE remediation projects throughout the United States. However, for various reasons this cost effective alternative is not readily available in many cases. Over the last ten years Fluor Fernald Inc. has cumulated many valuable lessons learned through the complex engineering, construction, operation, and closure processes of the OSDF. Also in the last several years representatives from other DOE sites, State agencies, as well as foreign government agencies have visited the Fernald site to look for proven experiences and practices, which may be adapted for their sites. This paper present a summary of the major issues and lessons leaned at the Fernald site related to engineering, construction, operation, and closure processes for the disposal of remediation waste. The purpose of this paper is to share lessons learned and to benefit other projects considering or operating similar on-site disposal facilities from our successful experiences. (authors)

  2. Current nuclear industry practices with regard to the integration of surveillances

    International Nuclear Information System (INIS)

    Stewart, M.; Smith, C.

    1992-04-01

    Commercial nuclear industry practices regarding the integration of technical specification (TS) surveillance and maintenance activities are identified in this report. A questionnaire was developed and used to obtain current industry practices from NRC Regional personnel and INEL engineers with utility experience. Some of these practices indicate that the scheduling of TS surveillance and maintenance items could be more effectively coordinated. Also, must utilities do not formally consider risk implications when they are scheduling maintenance. Methodologies and approaches for proposing and evaluating changes to improve the integration of TS surveillance and maintenance activities have been identified for planned future work

  3. Risk assessment and reliability for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Gregory, P.O.; Jones, G.A.

    1986-01-01

    The reliability of critical design features at low-level radioactive waste disposal facilities is a major concern in the licensing of these structures. To date, no systematic methodology has been adopted to evaluate the geotechnical reliability of Uranium Mill Tailings Remedial Action (UMTRA) disposal facilities currently being designed and/or constructed. This paper discusses and critiques the deterministic methods currently used to evaluate UMTRA reliability. Because deterministic methods may not be applicable in some cases because of the unusually long design life of UMTRA facilities, it is proposed that a probabilistic risk assessment-based methodology be used as a secondary method to aid in the evaluating of geotechnical reliability of critical items. Similar methodologies have proven successful in evaluating the reliability of a variety of conventional earth structures. In this paper, an ''acceptable'' level of risk for UMTRA facilities is developed, an evaluation method is presented, and two example applications of the proposed methodology are provided for a generic UMTRA disposal facility. The proposed technique is shown to be a simple method which might be used to aid in reliability evaluations on a selective basis. Finally, other possible applications and the limitations of the proposed methodology are discussed

  4. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  5. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  6. Study on the background information for the geological disposal concept

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Murano, Tohru; Hirusawa, Shigenobu; Komoto, Harumi

    1999-11-01

    Japan Nuclear Cycle Development Institute (JNC) has published the first R and D progress report in 1992. In which the fruits of the R and D works were compiled. Since then the next step of R and D has been developing progressively in Japan. Now JNC has a plan to make the second R and D progress report until before 2000, in which information on the geological disposal of high level radioactive waste(HLW) will be presented to show the technical reliability and technical basis to contribute for the site selection or the safety-standard developments. Recognizing the importance of the social consensus to the geological disposal of international discussions in 1990's, understanding and consensus by the society are essential to the development and realization of the geological disposal of HLW. For getting social understanding and consensus, it is quite important to present the broad basis background information on the geological disposal of HLW, together with the technical basis and also the international discussion of the issues. In this report, the following studies have been done to help to prepare the background information for the 2nd R and D progress report, based on the recent informations and research and assessment works of last 2 years. These are, (1) As the part of general discussion, characteristics of HLW disposal and several issues to be considered for establishing the measures of the disposal of HLW were identified and analyzed from both practical and logical points of view. Those issues were the concept and image of the long term safety measures, the concept and criteria of geological disposal, and, safety assessment and performance assessment. (2) As the part of specific discussion, questions and concerns frequently raised by the non-specialists were taken up and 10 topics in relation to the geological disposal have been identified based on the discussion. Scientific and technical facts, consensus by the specialists on the issues, and international

  7. Radiological performance assessment for the E-Area Vaults Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.; Hunt, P.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-04-15

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type.

  8. Radiological performance assessment for the E-Area Vaults Disposal Facility

    International Nuclear Information System (INIS)

    Cook, J.R.; Hunt, P.D.

    1994-01-01

    The E-Area Vaults (EAVs) located on a 200 acre site immediately north of the current LLW burial site at Savannah River Site will provide a new disposal and storage site for solid, low-level, non-hazardous radioactive waste. The EAV Disposal Facility will contain several large concrete vaults divided into cells. Three types of structures will house four designated waste types. The Intermediate Level Non-Tritium Vaults will receive waste radiating greater than 200 mR/h at 5 cm from the outer disposal container. The Intermediate Level Tritium Vaults will receive waste with at least 10 Ci of tritium per package. These two vaults share a similar design, are adjacent, share waste handling equipment, and will be closed as one facility. The second type of structure is the Low Activity Waste Vaults which will receive waste radiating less than 200 mR/h at 5 cm from the outer disposal container and containing less than 10 Ci of tritium per package. The third facility, the Long Lived Waste Storage Building, provides covered, long term storage for waste containing long lived isotopes. Two additional types of disposal are proposed: (1) trench disposal of suspect soil, (2) naval reactor component disposal. To evaluate the long-term performance of the EAVs, site-specific conceptual models were developed to consider: (1) exposure pathways and scenarios of potential importance; (2) potential releases from the facility to the environment; (3) effects of degradation of engineered features; (4) transport in the environment; (5) potential doses received from radionuclides of interest in each vault type

  9. Review of current research into soil decontamination and volume reduction techniques for purposes of transportation and disposal

    International Nuclear Information System (INIS)

    Haywood, F.F.

    1986-01-01

    In recent years, a number of soil decontamination studies have been carried out by investigators in the US and Canada. These investigations have included the segregation of potentially hazardous chemicals from uranium mill tailings, the use of various leaching agents for the selective removal of radium, thorium, and uranium from mine and mill tailings, the study of neutralization, fixation, and conditioning processes for tailings, the separation and removal of transuranium elements from contaminated soil and sediment, and finally studies of the cost effectiveness of various decontamination approaches. Remedial action programs for which soil decontamination may be an attractive alternative are those which include the cleanup of large open land areas since thousands of cubic years of material are generally involved. The practice of decontaminating or otherwise segregating contaminated and uncontaminated soil fractions before shipment to a final disposal site can only be done if it is economical to do so. This paper considers several techniques which have been reported in unclassified literature and includes a comparison of the authors' conclusions regarding the effectiveness of their investigations. The manuscript will include a comprehensive bibliography of references to techniques which appear to be feasible alternatives in remedial action programs

  10. Subsurface waste disposal by means of wells - A selective annotated bibliography

    Science.gov (United States)

    Rima, Donald Robert; Chase, Edith B.; Myers, Beverly M.

    1971-01-01

    Subsurface waste disposal by means of wells is the practice of using drilled wells to inject unwanted substances into underground rock formations. The use of wells for this purpose is not a new idea. As long ago as the end of the last century, it was common practice to drill wells for the express purpose of draining swamps and small lakes to reclaim the land for agricultural purposes. A few decades later in the 1920's and 1930's many oil companies began using injection wells to dispose of oil-field brines and to repressurize oil reservoirs. During World War II, the Atomic Energy Commission began using injection wells to dispose of certain types of radioactive wastes. More recently, injection wells have been drilled to dispose of a variety of byproducts of industrial processes. The number of such wells has increased rapidly since Congress passed the Clean Streams Act of 1966, which restricted the discharge of waste into surface waters.Many scientists and public officials question the propriety of using the term "disposal" when referring to the underground injection of wastes. Their reasons are that underground injection is not, as many advocates claim, "a complete and final answer" to the waste-disposal problem. Rather, it is merely a process wherein the injected wastes are committed to the subsurface with uncertainty as to their ultimate fate or limits of confinement. In effect, the wastes, undiminished and unchanged, are removed from the custody of man and placed in the custody of nature.Although the concept of waste-injection wells is relatively simple, the effects of waste injection can be very complex, particularly when dealing with the exotic and complex components of some industrial wastes. Besides the physical forces of injection, there are many varied interactions between the injected wastes and the materials within the injection zone. Because these changes occur out of sight in the subsurface, they are difficult to assess and not generally understood. In

  11. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    Science.gov (United States)

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG

  12. Uncertainties about the safety of disposal leading to a wish to keep alternatives open. Discussion on the concepts 'storage' ('wait and see') vs. 'disposal' and 'retrievable disposal' vs. 'definitive disposal'

    International Nuclear Information System (INIS)

    Norrby, S.

    2000-01-01

    Uncertainties about the safety of final disposal may lead to unwillingness to take decisions about waste management issues that may seem to be non-reversible. This has lead to proposals that we should wait with decisions on final measures and instead store the waste for some period of time. Also the possibility of retrieval may lead to decisions not to go for permanent disposal but instead to retrievable disposal. These aspects and the pros and cons are discussed both from a more general perspective and also with some reflections from the Swedish programme for nuclear waste management and disposal. (author)

  13. Gender Perspective to Vedic Education: Current Practices in Nepal

    Directory of Open Access Journals (Sweden)

    Rajendra Raj Timilsina

    2016-10-01

    Full Text Available Vedic civilization has seen changes in its history- from Satya Yug to current Kali Yug. There were equal rights and duties of both men and women at the beginning. Interpretations of Veda, brought out of the Puranas and externalities made the status unequal. Sanatan Dharma, which is still mainstream of Hinduism, has been challenged by reformist Arya Samaj. As a result, there are interpretive differences as well as practices. Such differences can be seen in contemporary Nepal for the last 130 years. Continuing the differences, classicism has been reviving in the education. This revival also commenced with the same dualism. In this qualitative approach of exploration, two different gurukuls of girls have been observed and analyzed from the field for the purpose of exploring the recent practices. The observation was based on respective scriptures as well as experts' interviews. These data have analyzed the confronting practices on gender in Veda and rooted ideas in contemporary Nepal.

  14. An overview of microbial research related to high-level nuclear waste disposal with emphasis on the Canadian concept for the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; West, J.M.

    1995-01-01

    Current research on the effects of microbiology on nuclear waste disposal, carried out in a number of countries, is summarized. Atomic Energy of Canada Limited has developed a concept for the permanent disposal of nuclear fuel waste in Canada. A program was initiated in 1991 to address and quantify the potential effects of microbial action on the integrity of the multibarrier system on which the disposal concept is based. This microbial program focuses on answering specific questions in areas such as the survival of bacteria under relevant radiation and desiccation conditions; growth and mobility of microbes in compacted clay buffer materials and the potential consequences for container corrosion and microbial gas production; the presence and activity of microbes in deep granitic groundwaters; and the effects of biofilms on radionuclide migration in the geosphere. (author)

  15. ICRP PUBLICATION 122: radiological protection in geological disposal of long-lived solid radioactive waste.

    Science.gov (United States)

    Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M

    2013-06-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  16. ICRP PUBLICATION 122: Radiological Protection in Geological Disposal of Long-lived Solid Radioactive Waste

    International Nuclear Information System (INIS)

    Weiss, W.; Larsson, C-M.; McKenney, C.; Minon, J-P.; Mobbs, S.; Schneider, T.; Umeki, H.; Hilden, W.; Pescatore, C.; Vesterlind, M.

    2013-01-01

    This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission’s three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that

  17. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  18. SITEX, the European Network of Technical Expertise Organisation for Geological Disposal

    International Nuclear Information System (INIS)

    Pellegrini, D.; Rocher, M.; Bernier, F.; Detilleux, V.; Hériard Dubreuil, G.; Narkuniene, A.; Miksova, J.

    2016-01-01

    Objective: To identify and prioritize the needs for competence and skills development of the Expertise Function, at the international level. Commitments: − The SRA is developed by applying a transparent methodology; − The SRA addresses the needs associated with the different states of advancement of geological disposal (GD) programmes; The concerns of civil society are taken into consideration. Scope of the SRA: ‒ All the topics relevant to the Expertise Function to assess whether geological disposal facilities are developed and will be constructed, operated and closed in a safe manner. ‒ It encompasses all topics relevant to any waste type and spent fuel for which geological disposal is envisaged as a solution for its long-term management. ‒ The following types of activity are considered: • R&D activities; • exchanging on practices and developing common positions; • developing states of the art; • knowledge transfer (e.g. training or tutoring)

  19. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  20. Non-polluting disposal of spent primary batteries. Varta-Spezial-Report

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F

    1982-01-01

    Reflections on non-polluting disposal of spent primary batteries result in the following: Mercury content of battery systems which are either available on or being introduced to the market varies extremely. Coal/zinc cells, i.e. Leclanche cells and lithium cells, contain practically no mercury. A system for collecting and recycling cells with an increased mercury content (HgO/Zn cells) has existed for year. The mercury content of a cell does not mean ony hazard for the user. The following strategy, therefore, appears to be applicable for spent batteries: - collection and recycling of mercury oxide and silver oxide button cells, - disposal of zinc/coal batteries with domestic refuse, - quantitative reduction of alkaline zinc/manganese dioxide cells through substitution.