WorldWideScience

Sample records for current density sensors

  1. Magnetic current sensor

    Science.gov (United States)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  2. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  3. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  4. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001

    2010-01-01

    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  5. Kernel current source density method.

    Science.gov (United States)

    Potworowski, Jan; Jakuczun, Wit; Lȩski, Szymon; Wójcik, Daniel

    2012-02-01

    Local field potentials (LFP), the low-frequency part of extracellular electrical recordings, are a measure of the neural activity reflecting dendritic processing of synaptic inputs to neuronal populations. To localize synaptic dynamics, it is convenient, whenever possible, to estimate the density of transmembrane current sources (CSD) generating the LFP. In this work, we propose a new framework, the kernel current source density method (kCSD), for nonparametric estimation of CSD from LFP recorded from arbitrarily distributed electrodes using kernel methods. We test specific implementations of this framework on model data measured with one-, two-, and three-dimensional multielectrode setups. We compare these methods with the traditional approach through numerical approximation of the Laplacian and with the recently developed inverse current source density methods (iCSD). We show that iCSD is a special case of kCSD. The proposed method opens up new experimental possibilities for CSD analysis from existing or new recordings on arbitrarily distributed electrodes (not necessarily on a grid), which can be obtained in extracellular recordings of single unit activity with multiple electrodes.

  6. Ocean current mapping using networked distributed sensors

    Science.gov (United States)

    Huang, Chen-Fen; Yang, T. C.; Liu, Jin-Yuan; Burchfield, Tom; Schindall, Jeff

    2012-11-01

    Distributed underwater sensors are expected to provide environmental (oceanographic) monitoring over large areas. As fabrication technology advances, low cost sensors will be available for many applications. The sensors communicate to each other and are networked using acoustic communications. This paper proposes a method for ocean current tomography using distributed networked sensors and presents preliminary experimental results by this approach. Conventional acoustic tomography uses the acoustic sensors distributed on the periphery of an area of interest. Environmental reconstruction requires solving a challenging high dimensional inverse problem, typically requiring substantial computational effort. Given distributed sensors, currents can be constructed locally based on data from neighboring sensors. It is shown using simulated data that results obtained by the proposed method are similar to those obtained by a conventional tomographic method based on peripheral sensors. In addition, one finds that the distributed sensors consume much less energy than that by the conventional tomographic approach. An acoustic communication and networking experiment was conducted near the Sizihwan Bay in Kaohsiung, Taiwan, in May 2011. The communication signals are analyzed to measure currents as a function of space and time. The procedure is simple and can be implemented in real-time using in-buoy processing.

  7. Sensor-Free Surface Density Detector

    Science.gov (United States)

    Wu, Huixuan

    2016-11-01

    We have developed an optical-based method to measure the absolute air density on a wall surface in compressible turbulent boundary layers. The temporal resolution can be higher than 1MHz, and the spatial resolution can research 10 micron. For isothermal flows, our system can also be used to obtain the wall pressure distributions or volume-ratio of two-species gas. It is a powerful tool for observing turbulent fluctuations and flow separations in sub-, trans-, and supersonic airflows. The working principle of our method is to detect the air density by measuring the refractive index, which linearly depends on density and determines the transmission coefficient at the interface. For single- or multiple-point measurements, we do not need to install sensors on the wall surface, which is a big advantage compared to conventional methods. In 2D cases, a layer of anti-reflection coating is needed. The optical measurement range is not limited by the surface material or sensor. These advantages make our method a good complement or better alternative to the other approaches, such as focused laser differential interferometry technique, which provides density gradient, and pressure (temperature) sensitive paints, which depends significantly on the material properties.

  8. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  9. Non-contact current and voltage sensor

    Science.gov (United States)

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  10. Current Trends in Wireless Sensor Network Design

    OpenAIRE

    Neha Jain; Agrawal, Dharma P.

    2005-01-01

    The self-organizing nature of sensor networks, their autonomous operation and potential architectural alternatives make them suitable for different data-centric applications. Their wider acceptance seems to be rising on the horizon. In this article, we present an overview of the current state of the art in the field of wireless sensor networks. We also present various open research issues and provide an insight about the latest developments that need to be explored in greater depth that could...

  11. A SQUID series array dc current sensor

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J; Drung, D [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)], E-mail: joern.beyer@ptb.de, E-mail: dietmar.drung@ptb.de

    2008-09-15

    Superconducting quantum interference device (SQUID) sensors are used to sense changes in various physical quantities, which can be transformed into changes in the magnetic flux threading the SQUID loop. We have developed a novel SQUID array dc current sensor. The device is based on a series array of identical dc SQUIDs. An input signal current to be measured is coupled tightly but non-uniformly to the SQUID array elements. The input signal coupling to the individual array elements is chosen such that a single-valued, non-periodic overall voltage response is obtained. Flux offsets in the individual SQUIDs which would compromise the sensor voltage response are avoided or can be compensated. We present simulations and experimental results on the SQUID Array for Dc (SQUAD) current sensor current sensor performance. A dc current resolution of <1 nA in a measurement bandwidth of 0-25 Hz is achieved for an input inductance of L{sub In}<3 nH.

  12. Program Calculates Current Densities Of Electronic Designs

    Science.gov (United States)

    Cox, Brian

    1996-01-01

    PDENSITY computer program calculates current densities for use in calculating power densities of electronic designs. Reads parts-list file for given design, file containing current required for each part, and file containing size of each part. For each part in design, program calculates current density in units of milliamperes per square inch. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19588). PC version of program (NPO-19171).

  13. Critical current densities in superconducting materials

    Indian Academy of Sciences (India)

    P Chaddah

    2003-02-01

    We discuss recent research in the area of critical current densities $(J_C)$ in superconductors. This shall cover recent work on newly discovered superconductors, as well as on the magnetic-field dependence of $J_C$.

  14. Burnout current density of bismuth nanowires

    Science.gov (United States)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  15. MAC Support for High Density Wireless Sensor Networks

    NARCIS (Netherlands)

    Taddia, C.; Meratnia, Nirvana; van Hoesel, L.F.W.; Mazzini, G.; Havinga, Paul J.M.

    Large scale and high density networks of tiny sensor nodes offer promising solutions for event detection and actuating applications. In this paper we address the effect of high density of wireless sensor network performance with a specific MAC protocol, the Lightweight Medium Access Control (LMAC).

  16. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  17. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...... equation that represents the boundary condition which the potential distributions in the adjoining media must fulfill. The volume current may be small in comparison to the surface current, and consequently in deriving the potential solutions the first term in this equation can sometimes be neglected....

  18. Current Developments in Nuclear Density Functional Methods

    CERN Document Server

    Dobaczewski, J

    2010-01-01

    Density functional theory (DFT) became a universal approach to compute ground-state and excited configurations of many-electron systems held together by an external one-body potential in condensed-matter, atomic, and molecular physics. At present, the DFT strategy is also intensely studied and applied in the area of nuclear structure. The nuclear DFT, a natural extension of the self-consistent mean-field theory, is a tool of choice for computations of ground-state properties and low-lying excitations of medium-mass and heavy nuclei. Over the past thirty-odd years, a lot of experience was accumulated in implementing, adjusting, and using the density-functional methods in nuclei. This research direction is still extremely actively pursued. In particular, current developments concentrate on (i) attempts to improve the performance and precision delivered by the nuclear density-functional methods, (ii) derivations of density functionals from first principles rooted in the low-energy chromodynamics and effective th...

  19. Multiple Traffic Control Using Wireless Sensor and Density Measuring Camera

    Directory of Open Access Journals (Sweden)

    Amrita RAI

    2008-07-01

    Full Text Available In the present scenario vehicular travel is increasing all over the world, especially in large urban areas. Therefore for simulating and optimizing traffic control to better accommodate this increasing demand is arises. In this paper we studied the optimization of traffic light controller in a City using wireless sensor and CCTV (Camera. We have proposed a traffic light controller and simulator that allows us to study different situation of traffic density in City and controlling the traffic of entire City by visual monitoring using CCTV. Using wireless sensor we can easily senses the density of traffic because the general architecture of wireless sensor network is an infrastructure less communication network.

  20. Temperature compensated and self-calibrated current sensor using reference current

    Science.gov (United States)

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2008-01-22

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference electrical current carried by a conductor positioned within the sensing window of the current sensor is used to correct variations in the output signal due to temperature variations and aging.

  1. Critical current density: Measurements vs. reality

    Science.gov (United States)

    Pan, A. V.; Golovchanskiy, I. A.; Fedoseev, S. A.

    2013-07-01

    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements.

  2. Stray Capacitances of an Air-Cored Eddy Current Sensor

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2009-12-01

    Full Text Available Stray capacitance of an air-cored eddy current sensor is one of the most crucial issues for successful development of an eddy current based residual stress assessment technology at frequency above 50 MHz. A two dimensional finite element model and an equivalent lumped capacitance network have been developed to accurately quantify overall stray capacitances of an air-cored eddy current sensor with specimen being tested. A baseline model was used to evaluate sensor design parameters, including the effects of pitch distance, trace width, trace thickness, number of turns, inner diameter, substrate thickness, lift-off distance, and dielectric constant of shim on the stray capacitances of the sensor. The results clearly indicate that an appropriate sensor design parameters could reduce the stray capacitance and improve the sensor performance. This research opens up a new design space to minimize stray capacitance effect and improve the sensor sensitivity and its lift-off uncertainty at elevated high frequencies.

  3. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  4. Particle Image Velocimetry Study of Density Current Fronts

    Science.gov (United States)

    Martin, Juan Ezequiel

    2009-01-01

    Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…

  5. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  6. A Passive Optical Fiber Current Sensor Based on YIG

    Institute of Scientific and Technical Information of China (English)

    Jing Shao; Wen Liu; Cui-Qing Liu; Duan Xu

    2008-01-01

    A research on passive optical fiber current sensor based on magneto-optical crystal and a new design of light path of the sensor head are presented. Both methods of dual-channel optical detection of the polarization state of the output light and signal processing are proposed. Signal processing can obtain the linear output of the current measurement of the wire more conveniently. Theoretical analysis on the magneto-optical fiber current sensor is given, followed by experiments. After that, further analysis is made according to the results, which leads to clarifying the exiting problems and their placements.

  7. Magnetostrictive-piezoelectric magnetic sensor with current excitation

    CERN Document Server

    Prieto, J L; López, E; Sanchez, M C; Sanchez, P

    2000-01-01

    A new working configuration for magnetostrictive-piezoelectric magnetic sensors is presented. In this configuration, the excitation is caused using an electrical current flowing through the ferromagnetic sample and the induced signal is sensed in the piezoelectric support as an electrical voltage. This new idea allows a magnetic field detection without any coil and opens a possibility for a future miniaturisation of the sensor.

  8. Low Cost Sensors-Current Capabilities and Gaps

    Science.gov (United States)

    1. Present the findings from the a recent technology review of gas and particulate phase sensors 2. Focus on the lower-cost sensors 3. Discuss current capabilities, estimated range of measurement, selectivity, deployment platforms, response time, and expected range of acceptabl...

  9. Fermion N-representability for prescribed density and paramagnetic current density

    OpenAIRE

    Tellgren, Erik I; Kvaal, Simen; Helgaker, Trygve

    2014-01-01

    The $N$-representability problem is the problem of determining whether or not there exists $N$-particle states with some prescribed property. Here we report an affirmative solution to the fermion $N$-representability problem when both the density and paramagnetic current density are prescribed. This problem arises in current-density functional theory and is a generalization of the well-studied corresponding problem (only the density prescribed) in density functional theory. Given any density ...

  10. Low-Power Magnetic Current Sensor

    Science.gov (United States)

    Mclyman, W. T.

    1989-01-01

    Direct current sensed via saturable-core reactor. Transducer senses direct current magnetically, providing isolation between input and output. Detecting-and-isolating element saturable reactor, where input current passes through one-turn control coil. Provides output of 0 to 3 Vdc for input current of 0 to 15 Adc and consumes power of 22 mW at 10 Adc input. Input sensed magnetically, output electrically isolated from input.

  11. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid

  12. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from

  13. Bifurcation of Vortex Density Current in Trapped Bose Condensates

    Institute of Scientific and Technical Information of China (English)

    XU Tao; ZHANG ShengLi

    2002-01-01

    Vortex density current in the Gross-Pitaevskii theory is studied. It is shown that the inner structure of the topological vortices can be classified by Brouwer degrees and Hopf indices of φ-mapping. The dynamical equations of vortex density current have been given. The bifurcation behavior at the critical points of the current is discussed in detail.

  14. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection

    Directory of Open Access Journals (Sweden)

    Chaofeng Ye

    2016-09-01

    Full Text Available In eddy current non-destructive testing of a multi-layered riveted structure, rotating current excitation, generated by orthogonal coils, is advantageous in providing sensitivity to defects of all orientations. However, when used with linear array sensors, the exciting magnetic flux density ( B x of the orthogonal coils is not uniform over the sensor region, resulting in an output signal magnitude that depends on the relative location of the defect to the sensor array. In this paper, the rotating excitation coil is optimized to achieve a uniform B x field in the sensor array area and minimize the probe size. The current density distribution of the coil is optimized using the polynomial approximation method. A non-uniform coil design is derived from the optimized current density distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM model. The signal magnitude for an optimized coil is seen to be more robust with respect to offset of defects from the coil center. A novel multilayer coil structure, fabricated on a multi-layer printed circuit board, is used to build the optimized coil. A prototype probe with the optimized coil and 32 giant magnetoresistive (GMR sensors is built and tested on a two-layer riveted aluminum sample. Experimental results show that the optimized probe has better defect detection capability compared with a conventional non-optimized coil.

  15. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  16. Three Magnetic Direct-Current Sensors

    Science.gov (United States)

    Sullender, Craig C.; Stagg, David A.

    1994-01-01

    Three direct-current-measuring circuits based on magnetic (transformer) coupling, with periodic reset of magnetic flux to reverse saturation. Unidirectional and bidirectional versions demonstrated. Offers greater realibility and lower power consumption.

  17. A new solution to wireless sensor network density control problem

    Institute of Scientific and Technical Information of China (English)

    SHI Jian; JIA Yu-fu; DONG Tian-lin; LI Jiang

    2006-01-01

    In this paper,we proposed a scheme based on Monte Carlo algorithm to test whether or not the nodes are redundant for realizing the node density control in the sensor network.The computational complexity is only O(n).We also established the coverage collision detection and back-off mechanism applied in the wireless sensor network.The simulation results show that the system can cover all the interested area with the smallest number of nodes and a coverage void will not appear during the course of state-transition.The coverage collision detection and back-off mechanism proposed in this article can be applied when the nodes have either synchronous or asynchronous mechanism.It also provides a stable stage with the length of the time that can be adjusted.

  18. Lightning Current Measurement with Fiber-Optic Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  19. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  20. Current Mode Data Converters for Sensor Systems

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger

    This thesis is mainly concerned with data conversion. Especially data conversion using current mode signal processing is treated.A tutorial chapter introducing D/A conversion is presented. In this chapter the effects that cause static and dynamic nonlinearities are discussed along with methods to...

  1. A novel carbon nanotubefet based bulk built-in current sensor for single event upset detection

    Indian Academy of Sciences (India)

    T R RAJALAKSHMI; R SUDHAKAR

    2016-05-01

    The continuous scaling down of circuits has resulted in the development of carbon nanotubes (CNT) which provides a better alternative of silicon. High device packing densities is one of the advantageous factors of CNTFET compared to CMOS technology. This paper describes the new bulk current based built-in current sensor (BBICS) for the detection of single event upset (SEU) in CNTFET SRAM with less number of transistors compared to previous designs. The advantage of it is that its ability to detect low ranges of microcurrent. The complete circuit, both SRAM and Sensor are built with CNTFET. This also possesses the advantage of being used in the detection of negative current pulses with the addition of an inverter circuit. This circuitoperates best for two different technology nodes. This built-in current sensor is connected to the bulk terminal of the CNTFET SRAM. PVT analysis and power dissipation analysis were done for the proposed circuit.

  2. Design and optimization of a flexible arrayed eddy current sensor

    Science.gov (United States)

    Sun, Zhenguo; Cai, Dong; Zou, Cheng; Zhang, Wenzeng; Chen, Qiang

    2017-04-01

    The inspection of the hollow axle inner surfaces is a key process to guarantee the safety of high-speed trains. A novel flexible arrayed eddy current sensor was developed to improve the reliability of the non-destructive testing of the hollow axle inner surfaces, whose main innovative aspect was the new design of excitation/sensing traces to achieve a differential and arrayed configuration. Only two independent excitation traces were used in the sensor to induce eddy currents, which can be detected by 16 differential sensing elements. The lift-off effects and the influence of the excitation frequency and geometrical parameters of the proposed sensor was investigated and presented in this paper. Finite element models were built to analyze the effects of each parameter on the sensor response amplitude. Experimental validations were conducted using a representative set of sensors. Results from experiments and simulations were consistent with each other, which showed that the sensor design can substantially suppress the lift-off effects and modifications of the studied parameters can substantially improve the sensor performance.

  3. Effect of current density on the morphology of Zn electrodeposits

    Institute of Scientific and Technical Information of China (English)

    Ailing Fan; Wenhuai Tian; M. Kurosaki

    2004-01-01

    The effect of current density on the morphology of Zn electrodeposits prepared by a flow-channel cell was investigated by scanning electron microscopy (SEM). It was found that the morphology of Zn electrodeposits evolves from thin-layered hexagonal η-phase crystals to pyramidal η-phase particles with increasing the current density. The morphological evolution at various flow rates was also examined and the results show that the morphological evolution at a lower flow rate is more remarkable than that at a higher flow rate with increasing the current density. To reveal the mechanism of the morphological evolution in detail, the atomic configuration on both (0001)η and { 1100 }η planes under different current densities was investigated, it was noted that a specify current density could provide a good condition for the layered epitaxial growth of hexagonal η-phase.

  4. Intelligent Current Sensors as Part of Smart Grid Network

    Directory of Open Access Journals (Sweden)

    Andrzej Nowakowski

    2015-06-01

    Full Text Available The continuous development of the ITC systems, especially industrial Ethernet network using the IEC 61850 protocol allows to building a distributed sensor networks for control and monitor temporary states of the power infrastructure. In the paper the construction of the intelligent current sensors, Measurement Units (MU for the Smart Grid network has been presented. In the paper the circuit diagram of sensor and synchronization method of the analog to digital converter based on the UTC timestamps has been described. The presented method allows to synchronize intelligent current sensors with an accuracy better than 1 μs. The presented innovative synchronization method is characterized by a high level of resistance to disappearance and attack of the reference time signal. The measuring device MU design is based on the embedded Linux-platform and as a sensing element used air core current transducers based on Rogowski coil. The connection between the current transducers and the central unit is made using a fiber optic link. Built-in IEC-61850 server provides a real-time measurement value of the True RMS, harmonics spectrum and samples value. The intelligent current transducers in addition to being used in the MUs create also new possibilities in the substation construction like the possibility to place the Autonomous Sensors in large distance from Intelligent Electronic Devices that are located in the substation.

  5. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production.

    Science.gov (United States)

    Soma, Yuki; Hanai, Taizo

    2015-07-01

    Chemicals production by engineered microorganisms often requires induction of target gene expression at an appropriate cell density to reduce conflict with cell growth. The lux system in Vibrio fischeri is a well-characterized model for cell density-dependent regulation of gene expression termed quorum sensing (QS). However, there are currently no reports for application of the lux system to microbial chemical production. Here, we constructed a synthetic lux system as a tunable cell density sensor-regulator using a synthetic lux promoter and a positive feedback loop in Escherichia coli. In this system, self-induction of a target gene expression is driven by QS-signal, and its threshold cell density can be changed depending on the concentration of a chemical inducer. We demonstrate auto-redirection of metabolic flux from central metabolic pathways toward a synthetic isopropanol pathway at a desired cell density resulting in a significant increase in isopropanol production.

  6. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  7. Utilization of Faraday Mirror in Fiber Optic Current Sensors

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2008-12-01

    Full Text Available Fiber optic sensors dispose of some advantages in the field of electrical current and magnetic field measurement, like large bandwidth, linearity, light transmission possibilities. Unfortunately, they suffer from some parasitic phenomena. The crucial issue is the presence of induced and latent linear birefringence, which is imposed by the fiber manufacture imperfections as well as mechanical stress by fiber bending. In order to the linear birefringence compensation a promising method was chosen for pulsed current sensor design. The method employs orthogonal polarization conjugation by the back direction propagation of the light wave in the fiber. The Jones calculus analysis presents its propriety. An experimental fiber optic current sensor has been designed and realized. The advantage of the proposed method was proved considering to the sensitivity improvement.

  8. Analytical Modeling for the Grating Eddy Current Displacement Sensors

    Directory of Open Access Journals (Sweden)

    Lv Chunfeng

    2015-02-01

    Full Text Available As a new type of displacement sensor, grating eddy current displacement sensor (GECDS combines traditional eddy current sensors and grating structure in one. The GECDS performs a wide range displacement measurement without precision reduction. This paper proposes an analytical modeling approach for the GECDS. The solution model is established in the Cartesian coordinate system, and the solving domain is limited to finite extents by using the truncated region eigenfunction expansion method. Based on the second order vector potential, expressions for the electromagnetic field as well as coil impedance related to the displacement can be expressed in closed-form. Theoretical results are then confirmed by experiments, which prove the suitability and effectiveness of the analytical modeling approach.

  9. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  10. Determining the Limiting Current Density of Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Jen-Yu Chen

    2014-09-01

    Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.

  11. A Novel Interface for Eddy Current Displacement Sensors

    NARCIS (Netherlands)

    Nabavi, M.R.; Nihtianov, S.

    2009-01-01

    In this paper, we propose a novel interface concept for eddy current displacement sensors. A measurement method and a new front-end circuit are also proposed. The front-end circuit demonstrates excellent thermal stability, high resolution, and low-power consumption. The proposed idea is analytically

  12. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  13. DISCONTINUOUS FLOW OF TURBID DENSITY CURRENTS Ⅱ. INTERNAL HYDRAULIC JUMP

    Institute of Scientific and Technical Information of China (English)

    Jiahua FAN

    2005-01-01

    Traveling and stationary internal hydraulic jumps in density currents with positive or negative entrainment coefficients were analyzed based on simple assumptions. An expression of internal hydraulic jumps with entrainment coefficients was derived. Experimental data, published in literature, of stationary internal hydraulic jumps in turbid, thermal and saline density currents including measured values of water entrainment were used to compare with theory. Comparison was also made of traveling internal hydraulic jumps between measured data and theory.

  14. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  15. Bare PCB inspection system with SV-GMR sensor eddy-current testing probe

    OpenAIRE

    Chomsuwan, K.; Yamada, Sotoshi; Iwahara, Masayoshi

    2007-01-01

    This paper describes bare printed circuit board (PCB) inspection based on eddy-current testing (ECT) technique with high scanning speed. A high-frequency ECT probe composed of a meander coil as an exciting coil and the spin-valve giant magnetoresistance (SV-GMR) sensor was fabricated and is proposed. The ECT probe was designed based on crack inspection over flat surface, especially suitable for microdefect detection on high-density bare PCB. The ECT signal detected by the SV-GMR sensor was ac...

  16. Josephson effects in an alternating current biased transition edge sensor

    CERN Document Server

    Gottardi, Luciano; Akamatsu, Hiroki; van der Kuur, Jan; Bruijn, Marcel P; Hartog, Roland H den; Hijmering, Richard; Khosropanah, Pourya; Lambert, Colin; van der Linden, Anton J; Ridder, Marcel L; Suzuki, Toyo; Gao, Jan R

    2016-01-01

    We report the experimental evidence of the ac Josephson effect in a transition edge sensor (TES) operating in a frequency domain multiplexer and biased by ac voltage at MHz frequencies. The effect is observed by measuring the non-linear impedance of the sensor. The TES is treated as a weakly linked superconducting system and within the resistively shunted junction model framework. We provide a full theoretical explanation of the results by finding the analytic solution of the non-inertial Langevian equation of the system and calculating the non-linear response of the detector to a large ac bias current in the presence of noise.

  17. Reflective all-fiber current sensor based on magnetic fluids

    Science.gov (United States)

    Li, Lin; Han, Qun; Liu, Tiegen; Chen, Yaofei; Zhang, Rongxiang

    2014-08-01

    A reflective all-fiber current sensor based on magnetic fluid (MF) is reported. The MF is used as the cladding of a piece of no-core fiber which is spliced between two sections of singlemode fiber to form a singlemode-multimode-singlemode structure. An intensity based interrogation scheme with a superluminescent diode as the light source and the dual-balanced detection method is used in the sensing system. The influence of the direction of the magnetic field on the sensitivity of the sensor is also experimentally investigated and analyzed.

  18. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  19. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C.T.; Berg, van den Albert; Lucklum, F.; Verpoorte, E.; Rooij, de Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  20. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachin

  1. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  2. Casimir effect for scalar current densities in topologically nontrivial spaces

    Science.gov (United States)

    Bellucci, S.; Saharian, A. A.; Saharyan, N. A.

    2015-08-01

    We evaluate the Hadamard function and the vacuum expectation value (VEV) of the current density for a charged scalar field, induced by flat boundaries in spacetimes with an arbitrary number of toroidally compactified spatial dimensions. The field operator obeys the Robin conditions on the boundaries and quasiperiodicity conditions with general phases along compact dimensions. In addition, the presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on the VEVs. There is a region in the space of the parameters in Robin boundary conditions where the vacuum state becomes unstable. The stability condition depends on the lengths of compact dimensions and is less restrictive than that for background with trivial topology. The vacuum current density is a periodic function of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux quantum. It is explicitly decomposed into the boundary-free and boundary-induced contributions. In sharp contrast to the VEVs of the field squared and the energy-momentum tensor, the current density does not contain surface divergences. Moreover, for Dirichlet condition it vanishes on the boundaries. The normal derivative of the current density on the boundaries vanish for both Dirichlet and Neumann conditions and is nonzero for general Robin conditions. When the separation between the plates is smaller than other length scales, the behavior of the current density is essentially different for non-Neumann and Neumann boundary conditions. In the former case, the total current density in the region between the plates tends to zero. For Neumann boundary condition on both plates, the current density is dominated by the interference part and is inversely proportional to the separation.

  3. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  4. An ink-jet printed eddy current position sensor.

    Science.gov (United States)

    Jeranče, Nikola; Bednar, Nikola; Stojanović, Goran

    2013-04-18

    An eddy current sensor with an ink-jet printed flexible inductor has been designed and fabricated. The inductor has been designed by means of software developed in-house. It has been fabricated by ink-jet printing with silver ink on a flexible substrate. The inductor is a part of the oscillator circuit whose oscillating frequency is measured by a microcontroller. The sensor characteristics have been analyzed for two types of application. The first considered application is the displacement of a large conductive target in a direction perpendicular to the inductor plane. The second considered application is the displacement of a small steel ball parallel to the inductor plane. Inductance and oscillating frequency have been measured in order to completely characterize the sensor. The obtained results validate the use of the sensor for both considered applications, and are in good agreement with the simulations. The advantages of this type of sensor are low cost, the possibility for the inductor to match any curved surface and flexibility and precision of the inductor design.

  5. An Ink-Jet Printed Eddy Current Position Sensor

    Directory of Open Access Journals (Sweden)

    Goran Stojanović

    2013-04-01

    Full Text Available An eddy current sensor with an ink-jet printed flexible inductor has been designed and fabricated. The inductor has been designed by means of software developed in-house. It has been fabricated by ink-jet printing with silver ink on a flexible substrate. The inductor is a part of the oscillator circuit whose oscillating frequency is measured by a microcontroller. The sensor characteristics have been analyzed for two types of application. The first considered application is the displacement of a large conductive target in a direction perpendicular to the inductor plane. The second considered application is the displacement of a small steel ball parallel to the inductor plane. Inductance and oscillating frequency have been measured in order to completely characterize the sensor. The obtained results validate the use of the sensor for both considered applications, and are in good agreement with the simulations. The advantages of this type of sensor are low cost, the possibility for the inductor to match any curved surface and flexibility and precision of the inductor design.

  6. Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted

    Science.gov (United States)

    2016-09-16

    all orientations. However, when used with linear array sensors, the exciting magnetic flux density (Bx) of the orthogonal coils is not uniform over...array sensors, the exciting magnetic flux density (Bx) of the orthogonal coils is not uniform over the sensor region, resulting in an output signal...of the y-direction coil. The magnetic flux density components, Bx, generated by the y-direction coil, is not uniform over the sensor region, which

  7. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  8. Superconducting toroidal field coil current densities for the TFCX

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.

  9. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    Science.gov (United States)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.; Beggan, C.; Olsen, N.; Spain, T.; Aruliah, A.

    2013-09-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data. Zonal current density from sources in only the region between the two satellites is estimated for the first time. Six years of mutually available vector magnetic data allows overlaps spanning the full 24 h range of local time twice. Solutions are computed on an event-by-event basis after correcting for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications remains an open issue. We compare our results with current density predictions made by the Coupled Thermosphere-Ionosphere-Plasmasphere model, a self-consistent, first-principles, three-dimensional numerical dynamic model of ionospheric composition and temperatures. This independent validation of our current density estimates highlights good agreement in the broad spatiotemporal trends we identify, which increases confidence in our results.

  10. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  11. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  12. Numeral eddy current sensor modelling based on genetic neural network

    Institute of Scientific and Technical Information of China (English)

    Yu A-Long

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.

  13. Current drive at plasma densities required for thermonuclear reactors.

    Science.gov (United States)

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  14. Scaling rules for critical current density in anisotropic biaxial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingxu, E-mail: yingxuli@swjtu.edu.cn [Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Kang, Guozheng [Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-06-15

    Recent researches highlight the additional anisotropic crystallographic axis within the superconducting plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS is better understood in the biaxial frame than the previous uniaxial coordinates within the superconducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to account for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a system of random uncorrected point defects, the field dependence of the critical current density is described by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained angular dependence of the critical current density depicts the main features of experimental observations, considering possible corrections due to the strong-pinning interaction.

  15. Study of a fibre optics current sensor for the measurement of plasma current in ITER

    Science.gov (United States)

    Wuilpart, Marc; Vanus, Benoit; Andrasan, Alina; Gusarov, Andrei; Moreau, Philippe; Mégret, Patrice

    2016-05-01

    In this article, we study the feasibility of using a fibre-optics current sensor (FOCS) for the measurement of plasma current in the future fusion reactor ITER. The sensor is based on a classical FOCS interrogator involving the measurement of the state of polarization rotation undergone by the light in presence of a magnetic field (Faraday effect) in an optical fibre surrounding the current and terminated by a Faraday mirror. We considered a uniformly spun optical fibre as the sensing element and we used the Stokes formalism to simulate the sensor. The objective of the simulations is to quantify the ratio LB/SP (beat length over the spun period of the spun fibre) enabling a measurement error in agreement with the ITER specifications. The simulator takes into account the temperature variations undergone by the measurement system under ITER operation. The simulation work showed that a LB/SP ratio of 19.2 is adequate.

  16. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  17. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  18. A Monotonic Precise Current DAC for Sensor Applications

    Directory of Open Access Journals (Sweden)

    P. Horsky

    2008-12-01

    Full Text Available In this paper a 17 bit monotonic precise current DAC for sensor applications is described. It is working in a harsh automotive environment in a wide temperature range with high output voltage swing and low current consumption. To guarantee monotonicity current division and segmentation techniques are used. To improve the output impedance, the accuracy and the voltage compliance of the DAC, two active cascoding loops and one follower loop are used. The resolution of the DAC is further increased by applying pulse width modulation to one fine LSB current. To achieve low power consumption unused coarse current sources are switched off. Several second order technological effects influencing final performance and circuits dealing with them are discussed.

  19. Engineering Critical Current Density Improvement in Ag- Bi-2223 Tapes

    DEFF Research Database (Denmark)

    Wang, W. G.; Seifi, Behrouz; Eriksen, Morten;

    2000-01-01

    Ag alloy sheathed Bi-2223 multifilament tapes were produced by the powder-in-tube method. Engineering critical current density improvement has been achieved through both enhancement of critical current density by control of the thermal behavior of oxide powder and by an increase of the filling...... the superconductor composite sustaining large proportional oxide ceramics in the composite during drawing and rolling process. By optimization of the thermal and mechanical process, a Je of 12 kA/cm2 has been achieved in a 0.183.1 mm2 size tape which carried 67 A...

  20. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  1. Eddy-Current Sensors with Asymmetrical Point Spread Function

    Directory of Open Access Journals (Sweden)

    Janusz Gajda

    2016-10-01

    Full Text Available This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution, is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.

  2. Current Density Imaging through Acoustically Encoded Magnetometry: A Theoretical Exploration

    CERN Document Server

    Sheltraw, Daniel J

    2014-01-01

    The problem of determining a current density confined to a volume from measurements of the magnetic field it produces exterior to that volume is known to have non-unique solutions. To uniquely determine the current density, or the non-silent components of it, additional spatial encoding of the electric current is needed. In biological systems such as the brain and heart, which generate electric current associated with normal function, a reliable means of generating such additional encoding, on a spatial and temporal scale meaningful to the study of such systems, would be a boon for research. This paper explores a speculative method by which the required additional encoding might be accomplished, on the time scale associated with the propagation of sound across the volume of interest, by means of the application of a radially encoding pulsed acoustic spherical wave.

  3. Path to Efficient Lower Hybrid Current Drive at High Density

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  4. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data....... Zonal current density from sources in only the region between the two satellites is estimated for the first time. Six years of mutually available vector magnetic data allows overlaps spanning the full 24 h range of local time twice. Solutions are computed on an event-by-event basis after correcting...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...

  5. The density matrix picture of laser coherent control current

    Institute of Scientific and Technical Information of China (English)

    SHOU Qian; ZHANG Haichao; LIU Luning; LIN Weizhu

    2004-01-01

    The physical substance of the coherent control current and the optical rectification have been analyzed based on density matrix perturbation theory. The analytical results demonstrate that they arise from the real and virtual manifestations of the same nonlinear process associated with diagonal and non-diagonal density matrix.And in terms of polarization, they respectively arise from the intraband and interband polarizations. Both the evolution of the coherent control current exited by ultrafast laser pulse and its dependence on frequency have been studied in time and frequency domains. In order to get an explicit knowledge of intraband polarization and the origination of the coherent control current, we have investigated the initial photo-carriers momentum distribution. The ultrafast decay of the polar momentum population in order of tens of femtosends is given to illustrate its instantaneous optical response.

  6. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  7. Low density lipoproteins as circulating fast temperature sensors.

    Directory of Open Access Journals (Sweden)

    Ruth Prassl

    Full Text Available BACKGROUND: The potential physiological significance of the nanophase transition of neutral lipids in the core of low density lipoprotein (LDL particles is dependent on whether the rate is fast enough to integrate small (+/-2 degrees C temperature changes in the blood circulation. METHODOLOGY/PRINCIPAL FINDINGS: Using sub-second, time-resolved small-angle X-ray scattering technology with synchrotron radiation, we have monitored the dynamics of structural changes within LDL, which were triggered by temperature-jumps and -drops, respectively. Our findings reveal that the melting transition is complete within less than 10 milliseconds. The freezing transition proceeds slowly with a half-time of approximately two seconds. Thus, the time period over which LDL particles reside in cooler regions of the body readily facilitates structural reorientation of the apolar core lipids. CONCLUSIONS/SIGNIFICANCE: Low density lipoproteins, the biological nanoparticles responsible for the transport of cholesterol in blood, are shown to act as intrinsic nano-thermometers, which can follow the periodic temperature changes during blood circulation. Our results demonstrate that the lipid core in LDL changes from a liquid crystalline to an oily state within fractions of seconds. This may, through the coupling to the protein structure of LDL, have important repercussions on current theories of the role of LDL in the pathogenesis of atherosclerosis.

  8. Casimir effect for scalar current densities in topologically nontrivial spaces

    CERN Document Server

    Bellucci, S; Saharyan, N A

    2015-01-01

    We evaluate the Hadamard function and the vacuum expectation value (VEV) of the current density for a charged scalar field, induced by flat boundaries in spacetimes with an arbitrary number of toroidally compactified spatial dimensions. The field operator obeys the Robin conditions on the boundaries and quasiperiodicity conditions with general phases along compact dimensions. In addition, the presence of a constant gauge field is assumed. The latter induces Aharonov-Bohm-type effect on the VEVs. There is a region in the space of the parameters in Robin boundary conditions where the vacuum state becomes unstable. The stability condition depends on the lengths of compact dimensions and is less restrictive than that for background with trivial topology. The vacuum current density is a periodic function of the magnetic flux, enclosed by compact dimensions, with the period equal to the flux quantum. It is explicitly decomposed into the boundary-free and boundary-induced contributions. In sharp contrast to the VEVs...

  9. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  10. Magnetic topology and current channels in plasmas with toroidal current density inversions

    Science.gov (United States)

    Ciro, D.; Caldas, I. L.

    2013-10-01

    The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is considered. Previous works have shown that internal regions with negative current density lead to non-nested magnetic surfaces inside the plasma. Following these results, we derive a general expression relating the positive and negative currents inside the non-nested surfaces. This is done in terms of an anisotropy parameter that is model-independent and is based in very general properties of the magnetic field. We demonstrate that the positive currents in axisymmetric islands screen the negative one in the plasma center by reaching about twice its magnitude. Further, we illustrate these results by developing a family of analytical local solutions for the poloidal magnetic field in a region of interest that contains the inverted current. These local solutions exhibit non-nested magnetic surfaces with a combined current of at least twice the magnitude of the negative one, as prescribed from the topological arguments, and allow to study topological transitions driven by geometrical changes in the current profile. To conclude, we discuss the signatures of internal current density inversions in a confinement device and show that magnetic pitch measurements may be inappropriate to differentiate current reversals and small current holes in plasmas.

  11. Electrochemical impedance spectroscopy analysis of porous silicon prepared by photo-electrochemical etching: current density effect

    Science.gov (United States)

    Husairi, F. S.; Rouhi, J.; Eswar, K. A.; Zainurul, A. Z.; Rusop, M.; Abdullah, S.

    2014-09-01

    Electrical impedance characteristics of porous silicon nanostructures (PSiNs) in frequency function were studied. PSiNs were prepared through photo-electrochemical etching method at various current densities (15-40 mA/cm2) and constant etching time. The atomic force microscope images of PSiNs show that pore diameter and roughness increase when current density increases to 35 mA/cm2. The surface roughness subsequently decreases because of continuous etching of pillars, and a second etching process occurs. Photoluminescence spectra show blue and red shift with increasing applied current density that is attributed to PSiNs size. Variations of electrical resistance and capacitance values of PSiNs were measured using electrochemical impedance spectroscopy analysis. These results indicate that PSiNs prepared at 20 mA/cm2 current density have uniform porous structures with a large number of pillars. Furthermore, this PSiNs structure influences large values of charge transfer resistance and double layer capacitance, indicating potential application in sensors.

  12. Morphology and Density Structure of Post-CME Current Sheets

    Science.gov (United States)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  13. Cheap DECAF: Density Estimation for Cetaceans from Acoustic Fixed Sensors Using Separate, Non-Linked Devices

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Cheap DECAF: Density Estimation for Cetaceans from... cetaceans using passive fixed acoustics rely on large, dense arrays of cabled hydrophones and/or auxiliary information from animal tagging projects...estimating cetacean density. Therefore, the goal of Cheap DECAF is to focus on the development of cetacean density estimation methods using sensors that

  14. Clustering Based on Node Density in Heterogeneous Under-Water Sensor Network

    Directory of Open Access Journals (Sweden)

    Sharad Saxena

    2013-06-01

    Full Text Available An underwater sensor network comprise of sensors and vehicles to perform numerous tasks. In underwater ad-hoc sensor network acoustic signals are transmitted through multi-hop sequence so as to save sensors’ energy and to achieve longer life time. Re-charging batteries of deep water deployed sensors is practically not feasible. Clustering is the best strategy to achieve efficient multi-hopping, where cluster head is made responsible to collect local data and forward it to the sink. Cluster-head selection is the challenging job in a cluster, as it loses its energy in transmitting its own data and aggregated data, as compared to other sensors. In this paper we have proposed an Under Water Density Based Clustered Sensor Network (UWDBCSN scheme using heterogeneous sensors. The scheme utilizes two types of sensors: one having high energy capacity, working as cluster head, having small quantity and other are ordinary sensors in huge quantity. Further cluster-head selection is based on node degree i.e. the density of the sensors in a region. The proposed scheme is found to be more energy efficient helps in extending the life time of underwater sensor networks.

  15. A low light level sensor with dark current compensating pixels

    Science.gov (United States)

    Perley, Mitchell; Baxter, Patrick; Raynor, Jeffrey M.; Renshaw, David

    2008-09-01

    In ultra-low light conditions the presence of dark current becomes a major source of noise for a CMOS sensor. Standard dark current compensation techniques, such as using a dark reference frame, bring significant improvements to dark noise in typical applications. However, applications requiring long integration times mean that such techniques cannot always be used. This paper presents a differential dark current compensating pixel. The pixel is made up of a differential amplifier and two photodiodes: one light shielded photodiode connected to the non-inverting input of the opamp and a light detecting photodiode connected to the inverting input of the opamp. An integrating capacitor is used in the feedback loop to convert photocurrent to voltage, and a switched capacitor network is present in parallel with the light shielded pixel, which is used to satisfy the output equation to compensate the dark current. The pixel uses 150 μm x 150 μm photodiodes and is fabricated in a standard 0.18 μm, 6M1P, CMOS process. The results show that the pixel is light sensitive and has a linear output as expected. However, the dark current is not predictably controlled. Further work will be carried out on the pixel design, and particularly the switched capacitor circuit, to determine the cause of the non-predictability of the pixel output.

  16. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    Energy Technology Data Exchange (ETDEWEB)

    Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-05-15

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.

  17. Simulation of Current Measurement Using Magnetic Sensor Arrays and Its Error Model

    Institute of Scientific and Technical Information of China (English)

    WANGJing; YAOJian-jun; WANGJian-hua

    2004-01-01

    Magnetic sensor arrays are proposed to measure electric current in a non-contac tway. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.

  18. Nanoscale Imaging of Current Density with a Single-Spin Magnetometer.

    Science.gov (United States)

    Chang, K; Eichler, A; Rhensius, J; Lorenzelli, L; Degen, C L

    2017-03-24

    Charge transport in nanostructures and thin films is fundamental to many phenomena and processes in science and technology, ranging from quantum effects and electronic correlations in mesoscopic physics, to integrated charge- or spin-based electronic circuits, to photoactive layers in energy research. Direct visualization of the charge flow in such structures is challenging due to their nanometer size and the itinerant nature of currents. In this work, we demonstrate noninvasive magnetic imaging of current density in two-dimensional conductor networks including metallic nanowires and carbon nanotubes. Our sensor is the electronic spin of a diamond nitrogen-vacancy center attached to a scanning tip and operated under ambient conditions. Using a differential measurement technique, we detect DC currents down to a few μA with a current density noise floor of ∼2 × 10(4) A/cm(2). Reconstructed images have a spatial resolution of typically 50 nm, with a best-effort value of 22 nm. Current density imaging offers a new route for studying electronic transport and conductance variations in two-dimensional materials and devices, with many exciting applications in condensed matter physics and materials science.

  19. Stochastic Time-Dependent Current-Density Functional Theory

    Science.gov (United States)

    D'Agosta, Roberto

    2008-03-01

    Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.

  20. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Østerberg, Frederik Westergaard

    2015-01-01

    , thus the heat conductance is proportional to the sensor area and inversely proportional to the oxide thickness. This simple heat conductance determines the relationship between bias current and sensor temperature, and we show that View the MathML source25μm wide sensor on a View the MathML source1μm......We investigate the self-heating of magnetoresistive sensors used for measurements on magnetic beads in magnetic biosensors. The signal from magnetic beads magnetized by the field due to the sensor bias current is proportional to the bias current squared. Therefore, we aim to maximize the bias....... The measured temperature increase is in good agreement with a finite element model and a simple analytical thermal model. The heat conductance of our system is limited by the View the MathML source1μm thick electrically insulating silicon dioxide layer between the sensor stack and the underlying silicon wafer...

  1. Self-amplified CMOS image sensor using a current-mode readout circuit

    Science.gov (United States)

    Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick

    2014-05-01

    The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.

  2. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  3. Emergent loop current order from pair density wave superconductivity

    Science.gov (United States)

    Kashyap, Manoj; Melchert, Drew; Agterberg, Daniel

    2015-03-01

    In addition to charge density wave (CDW) order, there is evidence that the pseudogap phase in the cuprates breaks time reversal symmetry. Here we show that pair density wave (PDW) states give rise to a translational invariant non-superconducting order parameter that breaks time reversal and parity symmetries, but preserves their product. This secondary order parameter has a different origin, but shares the same symmetry properties as a magnetoelectric loop current order that has been proposed earlier in the context of the cuprates to explain the appearance of intra-cell magnetic order. We further show that, due to fluctuations, this secondary loop current order, which represents the breaking of discrete symmetries, can preempt PDW order, which breaks both continuous and discrete symmetries. In such a phase, the emergent loop current order coexists with spatial short range CDW and short range superconducting order. Finally, we propose a PDW phase that accounts for intra-cell magnetic order and the Kerr effect, has CDW order consistent with x-ray scattering and nuclear magnetic resonance observations, and quasi-particle properties consistent with angle resolved photoemission scattering. We acknowledge support from NSF Grant No. DMR-1335215

  4. The current density in quantum electrodynamics in external potentials

    Energy Technology Data Exchange (ETDEWEB)

    Schlemmer, Jan, E-mail: jan.schlemmer@univie.ac.at [Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090 Wien (Austria); Zahn, Jochen, E-mail: jochen.zahn@itp.uni-leipzig.de [Institut für Theoretische Physik, Universität Leipzig, Brüderstr. 16, 04103 Leipzig (Germany)

    2015-08-15

    We review different definitions of the current density for quantized fermions in the presence of an external electromagnetic field. Several deficiencies in the popular prescription due to Schwinger and the mode sum formula for static external potentials are pointed out. We argue that Dirac’s method, which is the analog of the Hadamard point-splitting employed in quantum field theory in curved space–times, is conceptually the most satisfactory. As a concrete example, we discuss vacuum polarization and the stress–energy tensor for massless fermions in 1+1 dimension. Also a general formula for the vacuum polarization in static external potentials in 3+1 dimensions is derived.

  5. Discretizing Transient Current Densities in the Maxwell Equations

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M L

    2008-11-25

    We will briefly discuss a technique for applying transient volumetric current sources in full-wave, time-domain electromagnetic simulations which avoids the need for divergence cleaning. The method involves both 'edge-elements' and 'face-elements' in conjunction with a particle-in-cell scheme to track the charge density. Results from a realistic, 6.7 million element, 3D simulation are shown. While the author may have a finite element bias the technique should be applicable to finite difference methods as well.

  6. Reversible Electrochemical Sensor for Detection of High-Charge Density Polyanion Contaminants in Heparin.

    Science.gov (United States)

    Lester, Jacob; Chandler, Timothy; Gemene, Kebede L

    2015-11-17

    We present a simple, rapid, and inexpensive electrochemical sensor based on a reversible pulsed chronopotentiometric polyanion-selective membrane electrode for the detection and quantification of oversulfated chondroitin sulfate (OSCS) and other high charge-density polyanions that could potentially be used to adulterate heparin. The membrane is free of ion exchanger and is formulated with plasticized poly(vinyl chloride) (PVC) and an inert lipophilic salt, tridodecylmethylammonium-dinonylnaphthaline sulfonate (TDMA-DNNS). The neutral salt is used to reduce membrane resistance and to ensure reversibility of the sensor. More importantly, TDMA(+) is used as the recognition element for the polyanions. Here an anodic galvanostatic current pulse is applied across the membrane to cause the extraction of the polyanions from the sample into the membrane and potential is measured at the sample-membrane interface. The measured electromotive force (emf) is proportional to the concentration and the charge density of the polyanions. High charge-density polyanion contaminants and impurities in heparin can be detected using this method since the overall equilibrium potential response of polyions increases with increasing charge density of the polyions. Here, first the potential response of pure heparin is measured at a saturation concentration, the concentration beyond which further addition of heparin does not produce a change in potential response. Then the potential response of heparin tainted with different quantities of the high charge-density contaminant is measured at a fixed total polyion concentration (heparin concentration + contaminant concentration). The latter gives a greater negative potential response due to the presence of the high charge-density contaminant. The increase in the negative potential response can be used for detection and quantification of high charge-density contaminants in heparin. We demonstrate here that 0.3% (w/w) OSCS as well as 0.1% (w

  7. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  8. On the theory of the electric field and current density in a superconductor carrying transport current

    Energy Technology Data Exchange (ETDEWEB)

    Carr, W.J. [LEI 700 Technology Dr., Pittsburgh, PA 15219 (United States)]. E-mail: wjamescarrjr@att.net

    2005-09-15

    A theory is given to explain the physics behind the flow of low-frequency ac transport current around a closed superconducting circuit, where the circuit consists of two long, straight, parallel, uniform conductors, connected to each other at one end and to an applied emf at the other end. Thus one conductor is the return path for the other. A question of interest is what drives the current at any given point in the circuit. The answer given here is a surface charge, where the purpose of the surface charge is to spread the local emf around the circuit, so that at each point in the conductor it produces, together with the electric field of the vector potential, the electric field necessary for the current to flow. But it is then necessary to explain how the surface charge gets there, which is the central problem of the present analysis. The conclusion is that the total current density consists of the superposition of a large transport current and a very much smaller current system of a different symmetry. The transport current density is defined as a two-dimensional current density with no divergence. It flows uniformly along the conductor length, but can vary over the cross-section. The small additional current density has a much different symmetry, being three-dimensional and diverging at the surface of the conductor. Based on a slightly modified Bean model the transport current is treated as supercurrent having the value {+-}J {sub c}, while the small additional system of current is like normal current, with a density given by the electric field divided by a resistivity. The electric field is computed from the sum of the negative time derivative of the vector potential and the negative gradient of the scalar potential due to the surface charge. It has components parallel and perpendicular to the long axis of the conductor. Thus the small normal current density has a perpendicular component which flows into or out of the surface thereby creating the surface charge

  9. Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density

    Science.gov (United States)

    Jiang, J.; Starch, W. L.; Hannion, M.; Kametani, F.; Trociewitz, U. P.; Hellstrom, E. E.; Larbalestier, D. C.

    2011-08-01

    We have recently shown that the gas present in the only ~ 70% dense filaments of as-drawn Bi-2212 wire agglomerates into large bubbles that fill the entire filament diameter during the melt phase of the heat treatment. Once formed, these bubbles never disappear, although they can be bridged by 2212 grains formed on cooling. In order to test the effect of these bubbles on the critical current Ic, we increased the density of the filaments after drawing using 2 GPa of cold isostatic pressure, finding that the bubble density and size were greatly reduced and that Ic could be at least doubled. We conclude that enhancement of the filament packing density is of great importance for making major Ic improvements in this very useful, round superconducting wire.

  10. Lower hybrid counter current drive for edge current density modification in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E.; Nevins, W.M. [Lawrence Livermore National Lab., CA (US); Porkolab, M.; Bonoli, P.T. [Massachusetts Inst. of Technology, Cambridge, MA (US). Plasma Fusion Center; Harvey, R.W. [General Atomics, San Diego, CA (US)

    1993-07-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g. with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results are presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n{sub e} and T{sub e}, and launched wave spectrum is also shown.

  11. Tokamak equilibria with strong toroidal current density reversal

    Science.gov (United States)

    Ludwig, G. O.; Rodrigues, Paulo; Bizarro, João P. S.

    2013-05-01

    The equilibrium of large magnetic islands in the core of a tokamak under conditions of strong toroidal current density reversal is investigated by a new method. The method uses distinct spectral representations to describe each simply connected region as well as the containing shell geometry. This ideal conducting shell may substitute for the plasma edge region or take a virtual character representing the external equilibrium field effect. The internal equilibrium of the islands is solved within the framework of the variational moment method. Equivalent surface current densities are defined on the boundaries of the islands and on the thin containing shell, giving a straightforward formulation to the interaction between regions. The equilibrium of the island-shell system is determined by matching moments of the Dirichlet boundary conditions. Finally, the macroscopic stability against a class of tilting displacements is examined by means of an energy principle. It is found out that the up-down symmetric islands are stable to this particular perturbation and geometry but the asymmetric system presents a bifurcation in the equilibrium.

  12. Energy Aware Self-Organizing Density Management in Wireless Sensor Networks

    CERN Document Server

    Merrer, Erwan Le; Kermarrec, Anne-Marie; Viana, Aline; Bertier, Marin

    2008-01-01

    Energy consumption is the most important factor that determines sensor node lifetime. The optimization of wireless sensor network lifetime targets not only the reduction of energy consumption of a single sensor node but also the extension of the entire network lifetime. We propose a simple and adaptive energy-conserving topology management scheme, called SAND (Self-Organizing Active Node Density). SAND is fully decentralized and relies on a distributed probing approach and on the redundancy resolution of sensors for energy optimizations, while preserving the data forwarding and sensing capabilities of the network. We present the SAND's algorithm, its analysis of convergence, and simulation results. Simulation results show that, though slightly increasing path lengths from sensor to sink nodes, the proposed scheme improves significantly the network lifetime for different neighborhood densities degrees, while preserving both sensing and routing fidelity.

  13. Magnetization of a Current-Carrying Superconducting Disk with B-Dependent Critical Current Density

    Science.gov (United States)

    Sohrabi, Mahdi; Babaei-Brojeny, Ali A.

    2010-11-01

    In the frame work of the critical state model (CSM), the magnetic response of a thin type-II superconducting disk that carries a radial transport current and is subjected to an applied magnetic field have been studied. To this end, we have studied the process of the magnetic flux-penetration. For a disk initially containing no magnetic flux but carrying a radial current, when a perpendicular magnetic field is applied, magnetic flux-penetration occurs in three stages: (1) the magnetic flux gradually penetrates from the edges of the disk until an instability occurs, (2) there is a rapid inflow of magnetic flux into the disk’s central region, which becomes resistive, and (3) magnetic flux continues to enter the disk, while persistent azimuthal currents flow in an outer annular region where the net current density is equal to J c . Also the behavior of a current-carrying disk subjected to an AC magnetic field is calculated. The magnetic flux, the current profiles and the magnetization hysteresis loops are calculated for several commonly used J c ( B) dependences. Finally, the results of the applications of the local field-dependent of the critical current density J c ( B) are compared with those obtained from the Bean model.

  14. Hydraulic jumps within pyroclastic density currents and their sedimentary record

    Science.gov (United States)

    Douillet, G.; Mueller, S.; Kueppers, U.; Dingwell, D. B.

    2013-12-01

    This contribution presents a complete and comprehensive formulation of the hydraulic jump phenomenon and reviews sedimentary structures that may be associated with them. Beginning from the general fluid phenomenon, we then focus on examples from pyroclastic density currents in order to infer dynamic parameters on the parent flows. A hydraulic jump is a fluid dynamics phenomenon that corresponds to the sudden increase of the thickness of a flow accompanied by a decrease of its velocity and/or density. A hydraulic jump is the expression of the transition of the flow from two different flow regimes: supercritical to subcritical. This entrains a change in the energy balance between kinetic energy and gravity potential energy. Recently, the terms of 'pneumatic jumps' have been used for similar phenomenon driven within a gas phase, and granular jumps for dense granular flows. It is thought that such strong changes in the flow conditions may leave characteristic structures in the sedimentary record. Indeed, the main variables influencing the sedimentation rate are the flow velocity, particle concentration and turbulence level, all of them strongly affected by a hydraulic jump. Structures deposited by hydraulic/pneumatic jumps have been called cyclic steps and chute and pool structures. Chute and pools represent the record of a single supercritical to subcritical transition, whereas cyclic steps are produced by stable trains of hydraulic jumps and subsequent re-accelerations. Pyroclastic density currents (PDCs) are gas and pyroclasts flows. As such, they can be subjected to granular and pneumatic jumps and their deposit have often been interpreted as containing records of jumps. Steep sided truncations covered by lensoidal layers have been interpreted as the record of internal jumps within density stratified flows. Fines-depleted breccias at breaks in slope are thought to result from the enhanced turbulence at a jump of the entire flow. Sudden increases in thickness of

  15. Cardiac activation mapping using ultrasound current source density imaging (UCSDI).

    Science.gov (United States)

    Olafsson, Ragnar; Witte, Russell S; Jia, Congxian; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2009-03-01

    We describe the first mapping of biological current in a live heart using ultrasound current source density imaging (UCSDI). Ablation procedures that treat severe heart arrhythmias require detailed maps of the cardiac activation wave. The conventional procedure is time-consuming and limited by its poor spatial resolution (5-10 mm). UCSDI can potentially improve on existing mapping procedures. It is based on a pressure-induced change in resistivity known as the acousto-electric (AE) effect, which is spatially confined to the ultrasound focus. Data from 2 experiments are presented. A 540 kHz ultrasonic transducer (f/# = 1, focal length = 90 mm, pulse repetition frequency = 1600 Hz) was scanned over an isolated rabbit heart perfused with an excitation-contraction decoupler to reduce motion significantly while retaining electric function. Tungsten electrodes inserted in the left ventricle recorded simultaneously the AE signal and the low-frequency electrocardiogram (ECG). UCSDI displayed spatial and temporal patterns consistent with the spreading activation wave. The propagation velocity estimated from UCSDI was 0.25 +/- 0.05 mm/ms, comparable to the values obtained with the ECG signals. The maximum AE signal-to-noise ratio after filtering was 18 dB, with an equivalent detection threshold of 0.1 mA/ cm(2). This study demonstrates that UCSDI is a potentially powerful technique for mapping current flow and biopotentials in the heart.

  16. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae.

    Science.gov (United States)

    Jia, Fei; Kacira, Murat; Ogden, Kimberly L

    2015-09-02

    A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L(-1) (1.51 × 10⁸ cells·mL(-1)) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency.

  17. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae

    Science.gov (United States)

    Jia, Fei; Kacira, Murat; Ogden, Kimberly L.

    2015-01-01

    A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640

  18. Critical state model with anisotropic critical current density

    CERN Document Server

    Bhagwat, K V; Ravikumar, G

    2003-01-01

    Analytical solutions of Bean's critical state model with critical current density J sub c being anisotropic are obtained for superconducting cylindrical samples of arbitrary cross section in a parallel geometry. We present a method for calculating the flux fronts and magnetization curves. Results are presented for cylinders with elliptical cross section with a specific form of the anisotropy. We find that over a certain range of the anisotropy parameter the flux fronts have shapes similar to those for an isotropic sample. However, in general, the presence of anisotropy significantly modifies the shape of the flux fronts. The field for full flux penetration also depends on the anisotropy parameter. The method is extended to the case of anisotropic J sub c that also depends on the local field B, and magnetization hysteresis curves are presented for typical values of the anisotropy parameter for the case of |J sub c | that decreases exponentially with |B|.

  19. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  20. Critical current densities in Bi-2223 sinter forgings.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Fisher, B. L.; Goretta, K. C.; Harris, N. C.; Murayama, N.

    1999-07-23

    (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) bars, prepared by sinter forging, exhibited good phase purity and strong textures with the c axes of the Bi-2223 grains parallel to the forging direction. The initial zero-field critical current density (J{sub c}) of the bars was 10{sup 3} A/cm{sup 2}, but because the forged bars were uncoated, this value decreased with repeated thermal cycling. J{sub c} as a function of applied magnetic field magnitude and direction roughly followed the dependencies exhibited by Ag-sheathed Bi-2223 tapes, but the forged bars were more strongly dependent on field strength and less strongly dependent on field angle.

  1. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  2. Design and theoretical analysis of a resonant sensor for liquid density measurement.

    Science.gov (United States)

    Zheng, Dezhi; Shi, Jiying; Fan, Shangchun

    2012-01-01

    In order to increase the accuracy of on-line liquid density measurements, a sensor equipped with a tuning fork as the resonant sensitive component is designed in this paper. It is a quasi-digital sensor with simple structure and high precision. The sensor is based on resonance theory and composed of a sensitive unit and a closed-loop control unit, where the sensitive unit consists of the actuator, the resonant tuning fork and the detector and the closed-loop control unit comprises precondition circuit, digital signal processing and control unit, analog-to-digital converter and digital-to-analog converter. An approximate parameters model of the tuning fork is established and the impact of liquid density, position of the tuning fork, temperature and structural parameters on the natural frequency of the tuning fork are also analyzed. On this basis, a tuning fork liquid density measurement sensor is developed. In addition, experimental testing on the sensor has been carried out on standard calibration facilities under constant 20 °C, and the sensor coefficients are calibrated. The experimental results show that the repeatability error is about 0.03% and the accuracy is about 0.4 kg/m(3). The results also confirm that the method to increase the accuracy of liquid density measurement is feasible.

  3. Identifying Distinguishing Characteristics of Secondary Pyroclastic Density Currents

    Science.gov (United States)

    Isom, S. L.; Brand, B. D.

    2014-12-01

    Pyroclastic density currents (PDCs) are ground-hugging mixtures of volcanic particles and gas that travel down the slopes of erupting volcanoes. The combination of high velocities, high bulk densities (due to particles in the current) and high temperatures make PDCs the most dangerous and deadly hazard associated with explosive volcanism. Secondary explosive phenomenon associated with PDCs, such as inland-directed surges (e.g., Montserrat, 2003) and phreatic explosions (e.g., Mt St Helens 1980) can increase the area affected and duration of the hazard. However, little work has been done on distinguishing the deposits of secondary explosive phenomenon from primary phenomenon. Samples have been acquired from the 1980 Mt St Helens phreatic explosion crater deposits and the 2003 eruptive event at Montserrat where a PDC flowed into the ocean, causing an inland-directed surge (Edmonds and Herd, 2005. Geology 33.4:245-248). The samples will be analyzed via depositional characteristics, granulometry, componentry, microscopic analysis and scanning electron microscope imaging. We hypothesize that thermal cracking or vesicle distortion (e.g., compression or hindered expansion) may occur in hot pyroclasts that enter a body of water, leading to a difference between the ash textures of primary PDCs, phreatic surges and inland-directed surge deposits. Analyzing granulometry and componentry from parent flows and secondary flows may also reveal distinguishing characteristics that will allow us to constrain differences in segregation mechanisms of particles for each phenomenon. Determining distinguishing depositional characteristics of these secondary phenomena is important for assessing their occurrence during past eruptions and identifying conditions conducive to the formation of secondary explosions. This will result in the ability to make more accurate hazard maps for volcanoes prone to explosive activity.

  4. Design and Development of a Low-Cost Optical Current Sensor

    Directory of Open Access Journals (Sweden)

    Gaizka Durana

    2013-10-01

    Full Text Available In this paper we demonstrate the design of a low-cost optical current sensor. The sensor principle is the Faraday rotation of a light beam through a magneto-optical material, SF2, when a magnetic field is present. The prototype has a high sensitivity and a high linearity for currents ranging from 0 up to 800 A. The error of the optical fibre sensor is smaller than 1% for electric currents over 175 A.

  5. Design and development of a low-cost optical current sensor.

    Science.gov (United States)

    Zubia, Joseba; Casado, Luciano; Aldabaldetreku, Gotzon; Montero, Alfonso; Zubia, Eneko; Durana, Gaizka

    2013-10-10

    In this paper we demonstrate the design of a low-cost optical current sensor. The sensor principle is the Faraday rotation of a light beam through a magneto-optical material, SF2, when a magnetic field is present. The prototype has a high sensitivity and a high linearity for currents ranging from 0 up to 800 A. The error of the optical fibre sensor is smaller than 1% for electric currents over 175 A.

  6. A Low Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    Science.gov (United States)

    Bright, V.; Mead, M. I.; Popoola, O. A.; Baron, R. P.; Saffell, J.; Stewart, G.; Kaye, P.; Jones, R.

    2012-12-01

    Atmospheric composition within urban areas has a direct effect on the air quality of an environment in which a large majority of people live and work. Atmospheric pollutants including ozone (O3), nitrogen dioxide (NO2), volatile organic compounds (VOCs) and particulate matter (PM) can have a significant effect on human health. As such it is important to determine the potential exposure of individuals to these atmospheric constituents and investigate the processes that lead to the degradation of air quality within the urban environment. Whilst modelled pollutant levels on the local scale often suggest high degrees of spatial and temporal variability, the relatively sparse fixed site automated urban networks only provide low spatial resolution data that do not appear adequate in detecting such small scale variability. In this paper we demonstrate that measurements can now be made using networks of low-cost sensors that utilise a variety of techniques, including electrochemical and optical, to measure concentrations of atmospheric species. Once equipped with GPS and GPRS to determine position and transmit data respectively, these networks have the potential to provide valuable insights into pollutant variability inherent on the local or micro-scale. The methodology has been demonstrated successfully in field campaigns carried out in cities including London and Valencia, and is now being deployed as part of the Sensor Networks for Air Quality currently deployed at London Heathrow airport (SNAQ-Heathrow) which is outlined in the partner paper presented by Mead et al. (this conference). The SNAQ-Heathrow network of 50 sensor nodes will provide an unprecedented data set that includes measurements of O3, NO, NO2, CO, CO2, SO2, total VOCs, size-speciated PM as well as meteorological variables that include temperature, relative humidity, wind speed and direction. This network will provide high temporal (20 second intervals) and spatial (50 sites within the airport area

  7. Current-Induced Transistor Sensorics with Electrogenic Cells.

    Science.gov (United States)

    Fromherz, Peter

    2016-04-25

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand-activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  8. High current density sheet-like electron beam generator

    Science.gov (United States)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  9. High current density contacts for photoconductive semiconductor switches

    Energy Technology Data Exchange (ETDEWEB)

    Baca, A.G.; Hjalmarson, H.P.; Loubriel, G.M.; McLaughlin, D.L.; Zutavern, F.J.

    1993-08-01

    The current densities implied by current filaments in GaAs photoconductive semiconductor switches (PCSS) are in excess of 1 MA/cm{sup 2}. As the lateral switches are tested repeatedly, damage accumulates at the contacts until electrical breakdown occurs across the surface of the insulating region. In order to improve the switch lifetime, the incorporation of n- and p-type ohmic contacts in lateral switches as well as surface geometry modifications have been investigated. By using p-type AuBe ohmic contacts at the anode and n-type AuGe ohmic contacts at the cathode, contact lifetime improvements of 5--10x were observed compared to switches with n-type contacts at both anode and cathode. Failure analysis on samples operated for 1--1,000 shots show that extensive damage still exists for at least one contact on all switches observed and that temperatures approaching 500{degrees}C are can be reached. However, the n-type AuGe cathode is often found to have no damage observable by scanning electron microscopy (SEM). The observed patterns of contact degradation indicate directions for future contact improvements in lateral switches.

  10. The EMOSFET as an oxygen sensor: constant current potentiometry

    NARCIS (Netherlands)

    Hendrikse, J.; Olthuis, W.; Bergveld, P.

    1999-01-01

    In a previous paper, a novel type of potentiometric dissolved oxygen sensor was introduced. The transduction principle of the sensor is based on the modulation of the work function of an iridium oxide film by the ratio of IrIII/IrIV oxide in the film. This ratio depends on the oxygen concentration i

  11. Orbital functionals in density-matrix- and current-density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, N.

    2006-05-15

    Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized

  12. High current density stability of ohmic contacts to silicon carbide

    Science.gov (United States)

    Downey, Brian P.

    The materials properties of SiC, such as wide bandgap, high breakdown electric field, and good thermal conductivity, make it an appealing option for high temperature and high power applications. The replacement of Si devices with SiC components could lead to a reduction in device size, weight, complexity, and cooling requirements along with an increase in device efficiency. One area of concern under high temperature or high current operation is the stability of the ohmic contacts. Ohmic contact degradation can cause an increase in parasitic resistance, which can diminish device performance. While contact studies have primarily focused on the high temperature stability of ohmic contacts to SiC, different failure mechanisms may arise under high current density stressing due to the influence of electromigration. In addition, preferential degradation may occur at the anode or cathode due to the directionality of current flow, known as a polarity effect. The failure mechanisms of ohmic contacts to p-type SiC under high current density stressing are explored. Complementary materials characterization techniques were used to analyze contact degradation, particularly the use of cross-sections prepared by focused ion beam for imaging using field emission scanning electron microscopy and elemental analysis using Auger electron spectroscopy. Initially the degradation of commonly studied Ni and Al-based contacts was investigated under continuous DC current. The contact metallization included a bond pad consisting of a TiW diffusion barrier and thick Au overlayer. The Ni contacts were found to degrade due to the growth of voids within the ohmic contact layer, which were initially produced during the high temperature Ni/SiC ohmic contact anneal. The Al-based contacts degraded due to the movement of Al from the ohmic contact layer to the surface of the Au bond pad, and the movement of Au into the ohmic contact layer from the bond pad. The inequality of Al and Au fluxes generated

  13. Piezoelectric layer embedded-microdiaphragm sensors for the determination of blood viscosity and density

    Science.gov (United States)

    Kim, Hye Jin; Kim, Jinsik; Zandieh, Omid; Chae, Myung-Sic; Kim, Tae Song; Lee, Jeong Hoon; Park, Jung Ho; Kim, Seonghwan; Hwang, Kyo Seon

    2014-10-01

    We introduce a lead zirconate titanate [PZT; Pb(Zr0.52Ti0.48)O3] microdiaphragm resonating sensor packaged in a polydimethylsiloxane chip. The proposed sensor can measure the density and viscosity of a liquid that is within the density and viscosity regime of blood (1.060 × 103 kg/m3, 3-4 cP). To verify the basic characteristics of the sensor, viscous solutions were prepared from glycerol and deionized water with a density in the range from 0.998 to 1.263 × 103 kg/m3 and a viscosity in the range from 1 to 1414 cP. We measured the frequency responses of the sensor before and after injecting the viscosity- and density-controlled liquid under the bottom of the microdiaphragm. The resonant frequencies in the (1,1) and (2,2) modes decreased linearly as a function of the liquid density in the range from 0.998 to 1.146 × 103 kg/m3 with a sensitivity of 28.03 Hz/kg.m-3 and 81.85 Hz/kg.m-3, respectively. The full width at half maximum had a logarithmic relationship with the liquid viscosity in the viscosity range from 1 to 8.4 cP. The quality factor (Q-factor) for the 50% glycerol/water mixture was determined to be greater than 20 for both the (1,1) and the (2,2) modes, indicating that the microdiaphragm resonating sensor is suitable for measuring the density and viscosity of a liquid within a density range from 0.998 to 1.1466 × 103 kg/m3 and a viscosity range from 1 to 8.4 cP. These density and viscosity ranges span the regime of possible changes of blood characteristics. The microdiaphragm resonating sensors were also tested with a real human serum to verify that the sensor is suitable for measuring the viscosity and density of blood. Therefore, the PZT microdiaphragm resonating sensor could be utilized for early diagnosis of diseases associated with changes in the physical properties of blood.

  14. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  15. Correlation of Critical Current Density with Cu3+ Concentration and Density in YBa2Cu3O7-x

    Science.gov (United States)

    Dou, S. X.; Liu, H. K.; Zhou, J. P.; Bourdillon, A. J.; Savvides, N.; Apperley, M.; Gouch, A.; Sorrell, C. C.

    Superconducting YBa2Cu3O7 wires and tapes were fabricated by cold drawing, rolling and extrusion processes. It was found that the critical current density, after O2 equilibration, correlates both with density and Cu3+ concentration. Full density was achieved by using a special heat treatment, but the critical current density was low owing to the low Cu3+ concentration present in this heavily twinned material. The best critical current density results were obtained for material with density of 92-95% of the theoretical value. The low critical current density of the porous specimens is attributed not only to a poor connectivity between grains but also to a low Cu3+ concentration due to the instability of Cu3+ at crystallite surfaces which increase in area with specimen porosity.

  16. Comparison of current density profiles based on particle orbit-driven current in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Md Mahbub, E-mail: m.alam@triam.kyushu-u.ac.jp [IGSES, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Nakamura, Kazuo [RIAM, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Xia, Fan [CFS, SWIP, P.O. Box 432, 610041 Chengdu (China); Mitarai, Osamu [Tokai University, Kumamoto 862-8652 (Japan); Hasegawa, Makoto; Tokunaga, Kazutoshi; Araki, Kuniaki; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki; Nagata, Takahiro [RIAM, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2016-11-01

    Highlights: • Electron cyclotron resonance heating (ECRH) of QUEST. • Particle guiding center orbit calculation. • Orbit-driven current density profile. • Hollow current density. • Equilibrium condition for steady-state operation of QUEST. - Abstract: In the present RF-driven divertor plasma of QUEST, it has been observed that orbit-driven current flows in the open magnetic surfaces outside of the closed magnetic surfaces. To observe this phenomenon and the characteristics of the orbit-driven current, current density profiles have been calculated on two different equilibrium conditions. We calculated current density profiles from particle guiding center orbits both for the fundamental and the second harmonic resonances for the 8.2 GHz electron cyclotron current drive. From this calculation, hollow current density profiles have been obtained with significant characteristics on both conditions. Only positive current distribution has been observed in the open magnetic surfaces outside of the closed magnetic surfaces.

  17. An Integrated Network of In situ and Remote Sensors to Characterize the Somali Current

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Integrated Network of In situ and Remote Sensors ...circulation, i.e. Ekman pumping resulting from the wind curl associated with local and seasonal monsoonal forcing. Use in situ sensors deployed in...surface waves in the context of wave-current interactions during monsoonal forcing of the Somali Current • Assess new in situ and remote sensor

  18. High-density matter: current status and future challenges

    Science.gov (United States)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  19. High-density matter: current status and future challenges

    Directory of Open Access Journals (Sweden)

    Stone J. R.

    2015-01-01

    Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  20. Vibration effect on magnetization and critical current density of superconductors

    Science.gov (United States)

    Golovchanskiy, Igor A.; Pan, Alexey V.; George, Jonathan; Wells, Frederick S.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2016-07-01

    In this work the effect of vibrations on critical current density (J c ) of superconductors has been studied. The vibrations are shown to affect J c of all types of superconductors during their measurements, employing a vibrating sample magnetometer (VSM). Increasing vibration frequency (f) and/or amplitude (A) leads to progressive reduction of J c as a function of magnetic field (B a ). The effect of vibrations is substantially stronger in thin films. It leads to development of unexpected kinks on {J}c({B}a) curves. Analysis of magnetization loops and relaxation of magnetization in YBCO films revealed that the vibration effect can be treated as the effective reduction of pinning potential. The asymmetry of the vibration effect in ascending and descending B a is observed, indicating differences in free energy of the corresponding vortex structures. Thermal effects induced by vibrations with large f and A are shown to have rather insignificant influence, while the vibrational vortex dynamics exhibit a strong impact. The irreversibility field ({B}{{irr}}) is shown to be instrumentally defined, and its value depends on VSM settings. In addition, the practical importance of {B}{{irr}} for J c modeling is demonstrated.

  1. Investigation of heavy current discharges with high initial gas density

    Energy Technology Data Exchange (ETDEWEB)

    Budin, A.; Bogomaz, A.; Kolikov, V.; Kuprin, A.; Leontiev, V.; Rutberg, P.; Shirokov, N. [Institute of Problems of Electrophysics of Russian Academy of Sciences, Dvortsovayanab., 18, St. Petersburg, 191065 (Russia)

    1996-05-01

    Piezoelectric pressure transducers, with noise immunity and time resolution of 0,5 {mu}s were used to measure pulse pressures of 430 MPa along the axis of an electrical discharge channel. Initial concentration of He was 2,7{center_dot}10{sup 21}cm{sup {minus}3}, dI/dt=6{center_dot}10{sup 11}A/s, and I{sub max}=560kA. Shock waves with amplitudes exceeding the pressure along the axis, were detected by a pressure transducer on the wall of the discharge chamber. Typical shock velocities were 2{center_dot}4km/s. Average pressure measurements along the discharge axis at different radii were used to estimate the current density distribution along the canal radius. The presence of the shock waves, promoting the additional hydrogen heating in the discharge chamber, has been registered during the discharge in hydrogen for I{sub max}{approximately}1MA and an initial concentration of 10{sup 21}cm{sup {minus}3}. {copyright} {ital 1996 American Institute of Physics.}

  2. Fiber optic sensors current status and future possibilities

    CERN Document Server

    Ikezawa, Satoshi; Corres, Jesus

    2017-01-01

    This book describes important recent developments in fiber optic sensor technology and examines established and emerging applications in a broad range of fields and markets, including power engineering, chemical engineering, bioengineering, biomedical engineering, and environmental monitoring. Particular attention is devoted to niche applications where fiber optic sensors are or soon will be able to compete with conventional approaches. Beyond novel methods for the sensing of traditional parameters such as strain, temperature, and pressure, a variety of new ideas and concepts are proposed and explored. The significance of the advent of extended infrared sensors is discussed, and individual chapters focus on sensing at THz frequencies and optical sensing based on photonic crystal structures. Another important topic is the resonances generated when using thin films in conjunction with optical fibers, and the enormous potential of sensors based on lossy mode resonances, surface plasmon resonances, and long-range...

  3. Ultra-Thin Flexible Eddy Current Sensor Array for Gap Measurements

    Institute of Scientific and Technical Information of China (English)

    丁天怀; 陈祥林; 黄毅平

    2004-01-01

    An ultra-thin flexible eddy current proximity sensor array was developed for online measurements of tiny gaps between large smooth metallic and nonmetallic surfaces of arbitrary shapes. The probe of the flexible eddy current sensor array, which includes a set of sensor coils, is fabricated on a thin flexible substrate using the flexible printed circuit board process which allows the probe to be very thin and flexible so that it can conform to the surface geometry of the measured objects. The sensor coils are connected to an inductance-capacitance oscillator, which converts the distance between the sensor coil and the metallic target to a frequency output. Experimental results show that the measurement accuracy of the sensor system can reach ±0.5% for a 2-mm gap and the sensor system is suitable for online gap measurements.

  4. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  5. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    infer full- water column density profiles (&p/&z), and horizontal gradients in -r have been used to infer velocity-shear using the thermal wind...sit on the seafloor in a rigid anchor stand in water depths D ranging between 500 and 6700 m. The current sensor is tethered to the glass sphere...reflectors are detected (e.g., the air-sea interface is detected, whereas the pycnocline within the water column is not). Subsurface echoes that arrive

  6. Calculation of Skin Depths and Eddy-Current Power Losses for Magnetic Position Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current ex citation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.

  7. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  8. A Smart Eddy Current Sensor Dedicated to the Nondestructive Evaluation of Carbon Fibers Reinforced Polymers.

    Science.gov (United States)

    Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin

    2017-08-31

    This paper propose a new concept of an eddy current (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.

  9. Realizing life-scalable experimental pyroclastic density currents

    Science.gov (United States)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting

  10. Evaluation of ion current density distribution on an extraction electrode of a radio frequency ion thruster

    Science.gov (United States)

    Masherov, P.; Riaby, V.; Abgaryan, V.

    2017-01-01

    The radial distributions of ion current density on an ion extracting electrode of a radio frequency (RF) ion thruster (RIT) with an inductive plasma source were obtained using probe diagnostics of the RF xenon plasma. Measurements were carried out using a plane wall probe simulator and the VGPS-12 Probe System of Plasma Sensors Co. At xenon flow rate q  =  2 sccm plasma pressure was 2 · 10-3 Torr, incident RF generator power varied in the range P g  =  50-250 W with RF power absorbed by plasma up to P p  =  220 W. Ion current densities were determined using semi- and double-logarithmic probe characteristics by linear extrapolations of their ion branches to probe floating potentials. The same parameters were also measured in undisturbed plasma by a classic cylindrical probe. They exceeded plane probe data by more than two times, showing the effectiveness of plasma sheath reproduction of the RIT ion extracting electrode by the plane wall probe simulator. Slight non-uniformity of the resulting plasma distributions and simplified RIT model design showed that the studied device with flat antenna coil and ferrite core could be considered as a promising prospect for RITs of new generation.

  11. Design of a CMOS temperature sensor with current output

    NARCIS (Netherlands)

    Kolling, A.; Kölling, Arjan; Bak, Frans; Bergveld, Piet; Seevinck, E.; Seevinck, Evert

    1990-01-01

    In this paper a CMOS temperature-to-current converter is presented of which the output current is the difference between a PTC current and an NTC current. The PTC current is derived from a PTAT cell, while the NTC current is derived from a threshold voltage reference source. It is shown that this

  12. Current distribution and enhancement of the engineering critical current density in multifilament Bi-2223 tapes

    DEFF Research Database (Denmark)

    Wang, W.G.; Jensen, M.B.; Kindl, B.;

    2000-01-01

    The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... this tendency to the stress-strain experienced in the tape during the rolling process. Jc of 50 kA/cm2 and Jeof 18 kA/cm2 was measured at the centre part (185 μm wide and 200 μm thick) of a tape cut from a 500 meters long tape (average Je of 8 kA/cm2). The low Jc of the edge part is a result of the porous...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...

  13. Experimental and theoretical analysis of an optical current sensor for high power systems

    Science.gov (United States)

    Brigida, A. C. S.; Nascimento, I. M.; Mendonça, S.; Costa, J. C. W. A.; Martinez, M. A. G.; Baptista, J. M.; Jorge, P. A. S.

    2013-03-01

    A magneto-optical sensor, using a dual quadrature polarimetric processing scheme, was evaluated for current metering and protection applications in high voltage lines. Sensor calibration and resolution were obtained in different operational conditions using illumination in the 1550-nm band. Results obtained indicated the feasibility of interrogating such sensor via the optical ground wire (OPGW) link installed in standard high power grids. The polarimetric bulk optical current sensor also was theoretically studied, and the effects of different sources of error considering practical deployment were evaluated. In particular, the interference from external magnetic fields in a tree-phase system was analyzed.

  14. Wireless sensor networks current status and future trends

    CERN Document Server

    Khan, Shafiullah

    2012-01-01

    Wireless sensor networks (WSNs) utilize fast, cheap, and effective applications to imitate the human intelligence capability of sensing on a wider distributed scale. But acquiring data from the deployment area of a WSN is not always easy and multiple issues arise, including the limited resources of sensor devices run with one-time batteries. Additional WSN concerns include the external environment, routing, data aggregation, and ensuring quality of service (QoS) and security. Solutions have been developed for various types of application scenarios, but many problems still remain as open resear

  15. The Wireless Sensor Networks Base Layout and Density Optimization Oriented towards Traffic Information Collection

    Directory of Open Access Journals (Sweden)

    Musong Gu

    2015-01-01

    Full Text Available Wireless sensor networks (WSN are applied in Intelligent Transport System for data collection. For the low redundancy rate of the wireless sensor networks nodes of traffic information collection, the senor nodes should be deployed reasonably for the WSN nodes to work effectively, and, thus, the base network structure and the density optimization of the sensor network are one of the main problems of WSN application. This paper establishes the wireless sensor networks design optimization model oriented to the traffic information collection, solving the design optimization model with the chemical reaction optimization (CRO algorithm. The experimental results show that CRO algorithm outperforms the traditional particle swarm optimization (PSO in solving the wireless sensor network design optimization oriented to the traffic information collection, capable of optimizing the wireless sensor network deployment of traffic information collection to contribute to the great improvement of the comprehensive value of the network performance. The reasonable design of the wireless sensor network nodes has great significance for the information collection, post-maintenance-and-extension, and cost saving of a monitoring system.

  16. New Leakage Current Particulate Matter Sensor for On-Board Diagnostics

    Directory of Open Access Journals (Sweden)

    Jiawei Wang

    2016-01-01

    Full Text Available Structure and principle of the new leakage current particulate matter (PM sensor are introduced and further study is performed on the PM sensor with the combination of numerical simulation and bench test. High voltage electrode, conductive shell, and heaters are all built-in. Based on the principle of Venturi tube and maze structure design, this sensor can detect transient PM concentrations. Internal flow field of the sensor and distribution condition of PM inside the sensor are analyzed through gas-solid two-phase flow numerical simulation. The experiment was also carried out on the whole sensor system (including mechanical and electronic circuit part and the output signals were analyzed. The results of simulation and experiment reveal the possibility of PM concentration (mass detection by the sensor.

  17. Clast comminution during pyroclastic density current transport: Mt St Helens

    Science.gov (United States)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  18. Status of the halo current sensor project for JET-EP

    Energy Technology Data Exchange (ETDEWEB)

    Sonato, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy); Baker, W.R. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy); Beaumont, P. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Damiani, C. [EFDA-JET-CSU Enhancement Department, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Fiorentin, P. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy); Guigon, A. [EFDA-JET-CSU Enhancement Department, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Fullard, K. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Goodyear, A. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Grando, L. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy); Huntley, S. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lam, N. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lioure, A. [EFDA-JET-CSU Enhancement Department, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Loving, A. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Marcuzzi, D. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)]. E-mail: diego.marcuzzi@igi.cnr.it; Mills, S. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Peruzzo, S.; Pomaro, N. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy); Riccardo, V.; Way, M. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2005-11-15

    Halo currents (HCs), flowing through the plasma and the vacuum vessel during plasma disruptive events, induce severe mechanical stresses in the plasma facing components and in the vessel, and are a major concern for present and future fusion experiments like ITER. The new system of halo current sensors (HCS) designed for JET-EP (enhanced performance, EP) should help to evaluate HC density distribution, localization and rotation as well as toroidal and poloidal current asymmetries. The HCS system will include four identical mechanical structures each including eight Rogowski coils and two toroidal pick-up coils. The Rogowski coils will measure directly the current flowing through some of the tiles of the upper dump plate. The toroidal field pick-up coils will estimate the total poloidal HC. The coil assemblies are installed at the top of the vessel close to secondary X-point in four octants equally spaced along the toroidal coordinate. In the paper, the design and the manufacturing of the HCS system are presented in detail.

  19. Optimal Geometry of CMOS Voltage-Mode and Current-Mode Vertical Magnetic Hall Sensors

    OpenAIRE

    2015-01-01

    Four different geometries of a vertical Hall sensor\\ud are presented and studied in this paper. The current spinning\\ud technique compensates for the offset and the sensors, driven in\\ud current-mode, provide a differential signal current for a possible\\ud capacitive integration over a defined time-slot. The sensors have\\ud been fabricated using a 6-metal 0.18-μm CMOS technology and\\ud fully experimentally tested. The optimal solution will be further\\ud investigated for bendable electronics. ...

  20. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Directory of Open Access Journals (Sweden)

    Hyeonseok Yoon

    2013-08-01

    Full Text Available Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

  1. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  2. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  3. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y., E-mail: rlai2@unl.edu

    2014-01-31

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg{sup 2+}) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg{sup 2+} rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg{sup 2+}, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.

  4. A Multi-Point Sensor Based on Optical Fiber for the Measurement of Electrolyte Density in Lead-Acid Batteries

    Science.gov (United States)

    Cao-Paz, Ana M.; Marcos-Acevedo, Jorge; del Río-Vázquez, Alfredo; Martínez-Peñalver, Carlos; Lago-Ferreiro, Alfonso; Nogueiras-Meléndez, Andrés A.; Doval-Gandoy, Jesús

    2010-01-01

    This article describes a multi-point optical fiber-based sensor for the measurement of electrolyte density in lead-acid batteries. It is known that the battery charging process creates stratification, due to the different densities of sulphuric acid and water. In order to study this process, density measurements should be obtained at different depths. The sensor we describe in this paper, unlike traditional sensors, consists of several measurement points, allowing density measurements at different depths inside the battery. The obtained set of measurements helps in determining the charge (SoC) and state of health (SoH) of the battery. PMID:22319262

  5. An Assessment of Reservoir Density Currents and Inflow Processes

    Science.gov (United States)

    1983-07-01

    are defined once where used in the main text and appendices and, for convience , are listed and redefined in Appendix D. Unless specifically stated...techniques are described hereafter and sample applications are presented in Appendix B. Overflows 118. Overflows occur when the inflowing water density is

  6. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    Science.gov (United States)

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-01

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  7. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors

    Science.gov (United States)

    Chander, G.; Markham, B.L.; Helder, D.L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  8. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors

    Science.gov (United States)

    Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.

    2009-01-01

    This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.

  9. Reconstruction of conductivity and current density images using only one component of magnetic field measurements.

    Science.gov (United States)

    Seo, Jin Keun; Yoon, Jeong-Rock; Woo, Eung Je; Kwon, Ohin

    2003-09-01

    Magnetic resonance current density imaging (MRCDI) is to provide current density images of a subject using a magnetic resonance imaging (MRI) scanner with a current injection apparatus. The injection current generates a magnetic field that we can measure from MR phase images. We obtain internal current density images from the measured magnetic flux densities via Ampere's law. However, we must rotate the subject to acquire all of the three components of the induced magnetic flux density. This subject rotation is impractical in clinical MRI scanners when the subject is a human body. In this paper, we propose a way to eliminate the requirement of subject rotation by careful mathematical analysis of the MRCDI problem. In our new MRCDI technique, we need to measure only one component of the induced magnetic flux density and reconstruct both cross-sectional conductivity and current density images without any subject rotation.

  10. Comparison of exact-exchange calculations for solids in current-spin-density- and spin-density-functional theory

    DEFF Research Database (Denmark)

    Sharma, S.; Pittalis, S.; Kurth, S.;

    2007-01-01

    The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co...

  11. High Temperature, Through the Case Eddy Current Sensor for Blade Vibration Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary results have shown that low temperature eddy current sensors can provide excellent resolution for blade tip timing, and have the ability to see ?through...

  12. Theoretical Modeling of Internal Hydraulic Jump in Density Currents

    CERN Document Server

    Firoozabadi, Bahar; Aryanfar, Asghar; Afshin, Hossein

    2013-01-01

    In this paper, we propose an analytical framework for internal hydraulic jumps. Density jumps or internal hydraulic jumps occur when a supper critical flow of water discharges into a stagnant layer of water with slightly different density. The approach used here is control volume method which is also used to analyze ordinary hydraulic jumps. The important difference here is that entrainment is taken into account. Using conservation equations with the aid of some simplifying assumptions we come to an equation that gives jump downstream height as function of jump upstream characteristics and the entrainment. To determine the magnitude of downstream height we use an experimental equation for calculating the entrainment. Finally we verify our framework by comparing the height that we gain from the derived equation with some experimental data.

  13. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E. [Lawrence Livermore National Lab., CA (United States); Porkolab, M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1993-08-04

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients.

  14. Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.

    Science.gov (United States)

    Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan

    2016-07-01

    The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.

  15. Characteristics analysis and parameters optimization for the grating eddy current displacement sensor

    Institute of Scientific and Technical Information of China (English)

    Hong-li QI; Hui ZHAO; Wei-wen LIU

    2009-01-01

    The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.

  16. FARADAY PLASMA CURRENT SENSOR WITH COMPENSATION FOR RECIPROCAL BIREFRINGENCE INDUCED BY MECHANICALPERTURBATIONS

    Directory of Open Access Journals (Sweden)

    Y. O. Barmenkov

    2003-07-01

    Full Text Available A Faraday fiber-optic current sensor was employed to measure the tokamak plasma current. In order todecrease the influence of mechanical perturbations on the sensor sensitivity, a two-pass optical scheme witha variable Faraday mirror at the fiber end is proposed. A decrease, by two orders of magnitude, in theinfluence of the linear birefringence produced by an external piezoceramic fiber modulator was experimentallyobserved.

  17. Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Oh In

    2007-06-01

    Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.

  18. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    Science.gov (United States)

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. DISCONTINUOUS FLOW OF TURBID DENSITY CURRENTS I. CHANNEL EXPANSION AND CONTRACTION

    Institute of Scientific and Technical Information of China (English)

    Jiahua FAN

    2005-01-01

    Laboratory experiments on turbid density currents were conducted to observe the flow features of these currents with abrupt contracted and expanded reaches. Experimental data were used to determine water entrainment coefficients for both channel expansion and contraction. Expressions for turbid density currents with water entrainment coefficients in abrupt contracted and expanded reaches were derived,and compared with experimental data.

  20. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Jorge Marcos-Acevedo

    2012-08-01

    Full Text Available In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product ( of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for  measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  1. Projected current density comparison in tDCS block and smooth FE modeling.

    Science.gov (United States)

    Indahlastari, Aprinda; Chauhan, Munish; Sadleir, Rosalind J

    2016-08-01

    Current density distribution and projected current density calculation following transcranial direct current stimulation (tDCS) forward model in a human head were compared between two modeling pipelines: block and smooth. Block model was directly constructed from MRI voxel resolution and simulated in C. Smooth models underwent a boundary smoothing process by applying recursive Gaussian filters and simulated in COMSOL. Three smoothing levels were added to determine their effects on current density distribution compared to block models. Median current density percentage differences were calculated in anterior superior temporal gyrus (ASTG), hippocampus (HIP), inferior frontal gyrus (IFG), occipital lobes (OCC) and precentral gyrus (PRC) and normalized against a baseline value. A maximum of + 20% difference in median current density was found for three standard electrode montages: F3-RS, T7-T8 and Cz-Oz. Furthermore, median current density percentage differences in each montage target brain structures were found to be within + 7%. Higher levels of smoothing increased median current density percentage differences in T7-T8 and Cz-Oz target structures. However, while demonstrating similar trends in each montage, additional smoothing levels showed no clear relationship between their smoothing effects and calculated median current density in the five cortical structures. Finally, relative L2 error in reconstructed projected current density was found to be 17% and 21% for block and smooth pipelines, respectively. Overall, a block model workflow may be a more attractive alternative for simulating tDCS stimulation because involves a shorter modeling time and independence from commercial modeling platforms.

  2. Current capability of a matured disposable acoustic sensor network

    Science.gov (United States)

    Beale, D. A. R.; Geddes, N. J., II; Hume, A.; Gray, A. J.

    2006-05-01

    In response to the needs of the UK MOD QinetiQ have designed, developed and trialled an ad-hoc, self organising network of acoustic nodes for in-depth deployment that can detect and track military targets in a range of environments and for all types of weapon locating. Research conducted has shown that disposable technologies are sufficiently mature to provide a useful military capability. Work this year has included a 3 month series of trials to exercise the prototype equipment and has provided an indication of in-service capability across a broad range of environments. This paper will discuss the scientific approach that was applied to the development of the equipment, from early laboratory development through to the prototype sensor network deployment in operationally representative environments. Highlights from the trials have been provided. New findings from the fusion of a low cost thermal imager that can be cued by the acoustic network are also discussed.

  3. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    Science.gov (United States)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  4. Dependence of the critical current density on the first matching field density

    Energy Technology Data Exchange (ETDEWEB)

    Obaidat, I.M. [Department of Physics, United Arab Emirates University, Al-Ain 17551 (United Arab Emirates)], E-mail: iobaidat@uaeu.ac.ae; Benkraouda, M.; Khawaja, U. Al [Department of Physics, United Arab Emirates University, Al-Ain 17551 (United Arab Emirates)

    2008-10-01

    Molecular dynamic simulations were carried out to investigate the properties of the critical depinning force in high temperature superconductors at several vortex densities at the first matching field. The study was conducted on samples with periodic square arrays of vortices and pinning sites. The variables in the simulations were the vortex density, the pinning sites density, the temperature, the pinning strength, the size of pinning sites. The critical depinning force is found to decrease with temperature for all first matching field densities. The rate of this decrease was found to be slower as the pinning strength and size of pinning site gets larger. At low temperatures and for large pinning strengths, the critical depinning force was found to decrease with increasing the first matching field density. But very interesting results were obtained at moderate temperatures where the critical depinning force was found to increase as the first matching field density increases. The same behavior of the critical depinning force was found at low temperatures, for small pinning strengths. These unexpected results were attributed to a vortex structural phase transition from a disordered state to an ordered state.

  5. Influence of Jet Angle and Ion Density of Cathode Side on Low Current Vacuum Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; JIA Shenli; SHI Zongqian

    2008-01-01

    In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.

  6. Engineering Critical Current Density Improvement in Ag- Bi-2223 Tapes

    DEFF Research Database (Denmark)

    Wang, W. G.; Seifi, Behrouz; Eriksen, Morten

    2000-01-01

    round wire as a preform prior to the flat rolling that achieved more homogenous filament distribution. Filament geometry and density were simulated by Finite Element Modeling. The tapes with large filling factor up to 45 % have been produced with a hard metal outer sheath, which facilitates...... the superconductor composite sustaining large proportional oxide ceramics in the composite during drawing and rolling process. By optimization of the thermal and mechanical process, a Je of 12 kA/cm2 has been achieved in a 0.183.1 mm2 size tape which carried 67 A...... factor of the tapes. Phase evolution at initial sintering stage has been studied by a quench experiment in Ag-Bi-2223 tapes. The content, texture, and microstructure of various phases were determined by XRD and SEM. A novel process approach has been invented in which square wire was chosen rather than...

  7. Direct Torque Control in presence of Current sensor failure in Variable Speed Wind System: Effect analysis, detection and control reconfiguration

    Directory of Open Access Journals (Sweden)

    A. J. Arbi

    2008-03-01

    Full Text Available This paper presents a study of current sensor failure in a Direct Torque Control applied to a Double Fed Induction Generator based Variable Speed Wind System. The effect of scaling and offset current sensor errors is discussed through sensibility analysis. A control reconfiguration is then proposed to remedy this sensor failure. Simulation results emphasize the good performances of the proposed current sensor fault tolerant control

  8. Development of a Magnetostrictive FeNi Coated Surface Acoustic Wave Current Sensor

    Directory of Open Access Journals (Sweden)

    Jie Tong

    2017-07-01

    Full Text Available A magnetostrictive FeNi-coated surface acoustic wave (SAW-based current sensor was proposed in this work. The weak remanence and hysteresis effect of the FeNi itself contributes to suppress the asymmetry in sensor response at increasing and decreasing current. The sensor response was simulated by solving the coupled electromechanical field equation in layered structure considering the magnetostrictive effect and an approach of effective dielectric constant. The effects from the aspect ratio and thickness of the FeNi film on sensor response were analyzed to determine the optimal design parameters. Differential oscillation structure was used to form the sensor, in which, the FeNi thin film was deposited along the SAW propagation of the sensor chip by using RF magnetron sputtering. The magnetostrictive effect of the FeNi coating induced by the magnetic loading generates the perturbation in SAW velocity, and corresponding oscillation frequency. High sensitivity of 10.7 KHz/A, good linearity and repeatability, lower hysteresis error of 0.97% were obtained from the developed prototype 150 MHz SAW FeNi coated current sensor.

  9. Peltier effect in multilayered nanopillars under high density charge current

    Science.gov (United States)

    Gravier, L.; Fukushima, A.; Kubota, H.; Yamamoto, A.; Yuasa, S.

    2006-12-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  10. Peltier effect in multilayered nanopillars under high density charge current

    Energy Technology Data Exchange (ETDEWEB)

    Gravier, L [Institut de Physique des Nanostructures, Ecole Polytechnique Federale de Lausanne (EPFL), EPFL-SB-IPN station 3, 1015 Lausanne (Switzerland); Fukushima, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Kubota, H [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yamamoto, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2006-12-21

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  11. Equilibria and Stability of JET Discharges with Zero Core Current Density

    Energy Technology Data Exchange (ETDEWEB)

    B.C. Stratton; N.C. Hawkes; G.T.A. Huysmans; J.A. Breslau; L.E. Zakharov; B. Alper; R.V. Budny; C.D. Challis; R. Deangelis; V. Drozdov; C. Fenzi; C. Giroud; T.C. Hender; J. Hobirk; S.C. Jardin; E. Joffrin; P.J. Lomas; P. Lotte; J. Mailloux; W. Park; E. Rachlew; S. Reyes-Cortes; E. Solano; T. Tala; K-D. Zastrow; JET-EFDA Contributors

    2002-10-15

    Injection of Lower Hybrid Heating and Current Drive (LHCD) into the current ramp-up phase of JET [Joint European Torus] discharges can produce extremely reversed q-profiles characterized by a core region of near zero current density (within Motional Stark Effect diagnostic measurement errors). Non-inductive, off-axis co-current drive induces a back electromotive force inside the non-inductive current radius that drives a negative current in the plasma core. The core current density does not go negative, although current diffusion calculations indicate that there is sufficient LHCD to cause this. The clamping of the core current density near zero is consistent with n=0 reconnection events redistributing the core current soon after it goes negative. This is seen in reduced MHD simulations and in nonlinear resistive MHD simulations which predict that these discharges undergo n=0 reconnection events that clamp the core current near zero.

  12. Proton currents constrain structural models of voltage sensor activation

    Science.gov (United States)

    Randolph, Aaron L; Mokrab, Younes; Bennett, Ashley L; Sansom, Mark SP; Ramsey, Ian Scott

    2016-01-01

    The Hv1 proton channel is evidently unique among voltage sensor domain proteins in mediating an intrinsic ‘aqueous’ H+ conductance (GAQ). Mutation of a highly conserved ‘gating charge’ residue in the S4 helix (R1H) confers a resting-state H+ ‘shuttle’ conductance (GSH) in VGCs and Ci VSP, and we now report that R1H is sufficient to reconstitute GSH in Hv1 without abrogating GAQ. Second-site mutations in S3 (D185A/H) and S4 (N4R) experimentally separate GSH and GAQ gating, which report thermodynamically distinct initial and final steps, respectively, in the Hv1 activation pathway. The effects of Hv1 mutations on GSH and GAQ are used to constrain the positions of key side chains in resting- and activated-state VS model structures, providing new insights into the structural basis of VS activation and H+ transfer mechanisms in Hv1. DOI: http://dx.doi.org/10.7554/eLife.18017.001 PMID:27572256

  13. A Canopy Density Model for Planar Orchard Target Detection Based on Ultrasonic Sensors.

    Science.gov (United States)

    Li, Hanzhe; Zhai, Changyuan; Weckler, Paul; Wang, Ning; Yang, Shuo; Zhang, Bo

    2016-12-24

    Orchard target-oriented variable rate spraying is an effective method to reduce pesticide drift and excessive residues. To accomplish this task, the orchard targets' characteristic information is needed to control liquid flow rate and airflow rate. One of the most important characteristics is the canopy density. In order to establish the canopy density model for a planar orchard target which is indispensable for canopy density calculation, a target density detection testing system was developed based on an ultrasonic sensor. A time-domain energy analysis method was employed to analyze the ultrasonic signal. Orthogonal regression central composite experiments were designed and conducted using man-made canopies of known density with three or four layers of leaves. Two model equations were obtained, of which the model for the canopies with four layers was found to be the most reliable. A verification test was conducted with different layers at the same density values and detecting distances. The test results showed that the relative errors of model density values and actual values of five, four, three and two layers of leaves were acceptable, while the maximum relative errors were 17.68%, 25.64%, 21.33% and 29.92%, respectively. It also suggested the model equation with four layers had a good applicability with different layers which increased with adjacent layers.

  14. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... for modeling Sun sensor output by incorporating the Earth albedo model is presented. This model utilizes the directional information of in the Earth albedo model, which is achieved by Earth surface partitioning. This allows accurate simulation of the Sun sensor output and the results are consistent with Ørsted...... and useful for space environment simulations, and may be utilized to improve attitude estimation algorithms applying Sun sensor vector observations....

  15. Development of an electrical current sensor prototype for applications in high-power lines

    Science.gov (United States)

    Nascimento, I. M.; Brígida, A. C. S.; Baptista, J. M.; Costa, J. C. W. A.; Martinez, M. A. G.; Jorge, P. A. S.

    2013-11-01

    A magneto-optical current sensor, based on a low birefringence SF57 glass prism, using a dual quadrature polarimetric configuration was implemented and tested aiming its application in high voltage power lines. Sensor operation is characterized and compared using distinct Super Luminescent Diodes as optical sources, with emission at 650 nm, 830 nm and 1550 nm. Calibration and resolution are obtained in the different operating conditions using a DAQ board and full digital control for signal acquisition and processing. In particular, the sensor was tested in the range from 0 to 1 kA at 50 Hz. Also, operation at different frequencies from 50 Hz to 400 Hz was compared. A robust casing was fabricated in Nylon material enabling the portability of the sensor and its application in different types of conductors. Preliminary results indicate the feasibility of using the sensor both for metering and protection applications in high-power lines with interrogation via the OPGW cable.

  16. Density-Driven Currents and Deposition of Fine Materials

    DEFF Research Database (Denmark)

    Saremi, Sina

    Dredging is a key element in river, ports, coastal and offshore development. In general dredging is conducted for excavation at the river,lake or seabed, relocation of the material, maintenance of the navigation channels, mining underwater deposits, land reclamation or cleaning up the environment....... Dredging activities always make changes to the environment, such as alteration of the coastal or river morphology, currents and wave climates, and water quality. Such changes may be considered improving or degrading to the environment. The type of material being dredged, type of the dredging equipment...... and type of sediments change along and into the seabed. Variations in the material entering the hopper have been studied by assuming fluctuating inflow concentrations. The fluctuations impose a mean net change on the overflow concentrations. In the third part of this study, the above described CFD model...

  17. A Catalytic Sensor for Measurement of Radical Density in CO2 Plasmas

    Directory of Open Access Journals (Sweden)

    Alenka Vesel

    2012-11-01

    Full Text Available A catalytic sensor for the measurement of radical density in weakly ionized CO2 plasmas, created in a low-pressure electrodeless discharge, is presented. The CO2 plasma was created in a 4 cm wide borosilicate glass tube inside a copper coil connected to a radio frequency generator operating at 27.12 MHz with a nominal power of 250 W. The dissociation fraction of the CO2 molecules was measured in the early afterglow at pressures ranging from 10 Pa to 100 Pa, and at distances of up to 35 cm along the gas stream from the glowing plasma. The radical density peaked (2 × 1020 m–3 at 80 Pa. The density quickly decreased with increasing distance from the glowing plasma despite a rather large drift velocity. The dissociation fraction showed similar behavior, except that the maximum was obtained at somewhat lower pressure. The results were explained by rather intense surface recombination of radicals.

  18. MEMS sensor for in situ TEM-nanoindentation with simultaneous force and current measurements

    Science.gov (United States)

    Nafari, A.; Angenete, J.; Svensson, K.; Sanz-Velasco, A.; Enoksson, P.

    2010-06-01

    A capacitive force sensor for in situ transmission electron microscope (TEM)-nanoindentation with simultaneous force and current measurement has been developed. The sensor was fabricated using bulk micro machining methods such as deep reactive ion etch, thermal oxidation, metal deposition and anodic bonding. Two different geometries of the sensor were designed to allow in situ TEM electromechanical experiments in the most common TEM instruments. Electrical probing is enabled by an on-chip insulator, electrically separating the indenter tip and the capacitor used for force measurements. The sensor was designed for the force range of 0 to 4.5 mN. Finally, we demonstrate for the first time in situ TEM-nanoindentation with simultaneous force and current measurements.

  19. Study of eddy current power loss from outer-winding coils of a magnetic position sensor

    CERN Document Server

    Liu, C P; Chang, Y H; Yu, C S; Wu, K T; Wang, S J; Ying, T F; Huang, D R

    2000-01-01

    The present analysis is concerned with eddy current power loss of a magnetic position sensor, which arises from a non-uniform flux linkage distribution between magnetic material and position sensor. In the paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar, and developed a numerical model to compute the electrical characteristics by an excited current source. According to the simulated and measured data in this proposed model from 2.52 to 11.37 Oes, eddy current power losses of conducting material have a variation of 6.1% and 9.77%, respectively. Finally, the phases of waveform of the induced output voltage will also be obtained in the conducting material, and have a variation of 3.68% obtained by using the current source in the proposed model.

  20. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  1. Current Fluctuation Measurements of Amperometric Gas Sensors Constructed with Three Different Technology Procedures

    Directory of Open Access Journals (Sweden)

    Sedlak Petr

    2016-12-01

    Full Text Available Electrochemical amperometric gas sensors represent a well-established and versatile type of devices with unique features: good sensitivity and stability, short response/recovery times, and low power consumption. These sensors operate at room temperature, and therefore have been applied in monitoring air pollutants and detection of toxic and hazardous gases in a number of areas. Some drawbacks of classical electrochemical sensors are overcome by the solid polymer electrolyte (SPE based on ionic liquids. This work presents evaluation of an SPE-based amperometric sensor from the point of view of current fluctuations. The sensor is based on a novel three-electrode sensor platform with solid polymer electrolytes containing ionic liquid for detection of nitrogen dioxide − a highly toxic gas that is harmful to the environment and presenting a possible threat to human health even at low concentrations. The paper focuses on using noise measurement (electric current fluctuation measurement for evaluation of electrochemical sensors which were constructed by different fabrication processes: (i lift-off and drop-casting technology, (ii screen printing technology on a ceramic substrate and (iii screen printing on a flexible substrate.

  2. Smartphone Applications with Sensors Used in a Tertiary Hospital—Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Yu Rang Park

    2015-04-01

    Full Text Available Smartphones have been widely used recently to monitor heart rate and activity, since they have the necessary processing power, non-invasive and cost-effective sensors, and wireless communication capabilities. Consequently, healthcare applications (apps using smartphone-based sensors have been highlighted for non-invasive physiological monitoring. In addition, several healthcare apps have received FDA clearance. However, in spite of their potential, healthcare apps with smartphone-based sensors are mostly used outside of hospitals and have not been widely adopted for patient care in hospitals until recently. In this paper, we describe the experience of using smartphone apps with sensors in a large medical center in Korea. Among >20 apps developed in our medical center, four were extensively analyzed (“My Cancer Diary”, “Point-of-Care HIV Check”, “Blood Culture” and “mAMIS”, since they use smartphone-based sensors such as the camera and barcode reader to enter data into the electronic health record system. By analyzing the usage patterns of these apps for data entry with sensors, the current limitations of smartphone-based sensors in a clinical setting, hurdles against adoption in the medical center, benefits of smartphone-based sensors and potential future research directions could be evaluated.

  3. AN INDUCTION SENSOR FOR MEASURING CURRENTS OF NANOSECOND RANGE

    Directory of Open Access Journals (Sweden)

    S. P. Shalamov

    2016-11-01

    Full Text Available Purpose. A current meter based on the principle of electromagnetic induction is designed to register the current flowing in the rod lightning. The aim of the article is to describe the way of increasing the sensitivity of the converter by means of their serial communication. Methodology. The recorded current is in the nanosecond range. If compared with other methods, meters based on the principle of electromagnetic induction have several advantages, such as simplicity of construction, reliability, low cost, no need in a power source, relatively high sensitivity. Creation of such a meter is necessary, because in some cases there is no possibility to use a shunt. Transient properties of a meter are determined by the number of turns and the constant of integration. Sensitivity is determined by measuring the number of turns, the coil sectional area, the core material and the integration constant. For measuring the magnetic field pulses with a rise time of 5 ns to 50 ns a meter has turns from 5 to 15. The sensitivity of such a meter is low. When the number of turns is increased, the output signal and the front increase. Earlier described dependencies were used to select the main parameters of the converter. It was based on generally accepted and widely known equivalent circuit. The experience of created earlier pulse magnetic field meters was considered both for measuring the magnetic fields, and large pulse current. Originality. Series connection of converters has the property of a long line. The level of the transient response of the meter is calculated. The influence of parasitic parameters on the type of meter transient response is examined. The shown construction was not previously described. Practical value. The results of meter implementation are given. The design peculiarities of the given measuring instruments are shown.

  4. 3D, Flash, Induced Current Readout for Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Sherwood I. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  5. Enhanced sensitivity of temperature-compensated SAW-based current sensor using the magnetostrictive effect

    Science.gov (United States)

    Wang, Wen; Jia, Yana; Liu, Xinlu; Liang, Yong; Xue, Xufeng; Du, Zaofu

    2017-02-01

    A temperature-compensated surface acoustic wave (SAW)-based current sensor was proposed in this contribution, composed of a sensor chip made by SAW delay line patterns on a SiO2/128° YX LiNbO3 piezoelectric substrate, a magnetostrictive FeCo film deposited on the SAW propagation path, and a corresponding differential oscillation configuration. The FeCo coating produced magnetostrictive strain under the magnetic field generated by the applied current, leading to linearity changes in the SAW propagation in the form of velocity change. The corresponding differential oscillation frequency shift was used to evaluate the tested current. By solving the coupled electromechanical field equation in a layered structure while considering the magnetostrictive effect, the optimal FeCo film thickness, and sensor operation frequency yielding high current sensitivity, were determined, and then confirmed experimentally by evaluating the developed SAW current sensor system utilizing a Helmholtz coil. A high sensitivity of 16.6 KHz A-1 (8.3 KHz m-1 T-1), excellent linearity, and lower detection limit (˜0.2 mA) were achieved with our 300 MHz SAW sensor with a 500 nm FeCo coating and aspect ratio of 2:1.

  6. Physical and Mechanical Characterization of Electrodeposited Nickel Nanowires -- Influence of Current Density and External Magnetic Field

    Science.gov (United States)

    Samykano, Mahendran

    Magnetic 1-D nanostructures have received great interest due to their various applications including high-density magnetic storage, sensors, drug delivery, and NEMS/MEMS systems. Among different 1-D nanostructures, magnetic nickel (Ni) nanowires with their ferromagnetic properties are of interest in such applications due to their lower cost, and they can be consistently synthesized via electrodeposition. While physical properties are influenced by processing parameters during electrodeposition of Ni nanowires, understanding of their influence on the mechanical properties is still not available. This is primarily due to the following challenges: tediousness involved in experimental techniques for mechanical characterization at nanoscale; sophisticated and careful experimentation required to be performed with advanced microscopy systems (SEM, AFM); robust nanoscale manipulators needed to place a single nanowire within the device; and difficulty in correctly loading and obtaining data for stress-strain within high powered microscopy environments. All of these factors pose significant challenges, limiting the current state of the art in mechanical characterization to its infancy, with wide differences in characterization curves and reported properties in this field. The present research and dissertation focuses on: 1. Experimental synthesis of electrodeposited Ni nanowires at different current densities and external magnetic fields, 2. Physical properties characterization of the synthesized nanowires to understand their morphology, structural and crystallographic properties, 3. Mechanical properties characterization of synthesized Ni nanowires through careful experiments within scanning electron microscope (SEM) based on uni-axial MEMS tensile loading device, 4. Data analysis to understand the process, physical and mechanical property interrelationship and to obtain insights on tensile deformation and failure modes observed in the Ni nanowires studied. Key research

  7. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  8. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    Science.gov (United States)

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  9. Non-perturbative calculation of molecular magnetic properties within current-density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-01-21

    We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  10. Variation of Eddy Current Density Distribution and its Effect on Crack Signal in Eddy Current Non-Destructive of Testing

    Directory of Open Access Journals (Sweden)

    Ladislav Janousek

    2006-01-01

    Full Text Available The paper deals with variation of eddy current density distribution along material depth and investigates an effect of the variation on a crack signal in eddy current non-destructive testing. Four coaxial rectangular tangential coils are used to induce eddy currents in a tested conductive object. The exciting coils are driven independently by phase-shifted AC currents; a ratio of amplitudes of the exciting currents is continuously changed to vary the distribution of eddy current density along material depth under a circular pick-up coil positioned in centre between the exciting coils. Dependences of a crack signal amplitude and its phase on the ratio are evaluated and special features are extracted. It is revealed that the dependences are strongly influenced by depth of a crack, and thus the extracted features can enhance evaluation of a detected crack.

  11. Distributed Density Estimation Based on a Mixture of Factor Analyzers in a Sensor Network

    Directory of Open Access Journals (Sweden)

    Xin Wei

    2015-08-01

    Full Text Available Distributed density estimation in sensor networks has received much attention due to its broad applicability. When encountering high-dimensional observations, a mixture of factor analyzers (MFA is taken to replace mixture of Gaussians for describing the distributions of observations. In this paper, we study distributed density estimation based on a mixture of factor analyzers. Existing estimation algorithms of the MFA are for the centralized case, which are not suitable for distributed processing in sensor networks. We present distributed density estimation algorithms for the MFA and its extension, the mixture of Student’s t-factor analyzers (MtFA. We first define an objective function as the linear combination of local log-likelihoods. Then, we give the derivation process of the distributed estimation algorithms for the MFA and MtFA in details, respectively. In these algorithms, the local sufficient statistics (LSS are calculated at first and diffused. Then, each node performs a linear combination of the received LSS from nodes in its neighborhood to obtain the combined sufficient statistics (CSS. Parameters of the MFA and the MtFA can be obtained by using the CSS. Finally, we evaluate the performance of these algorithms by numerical simulations and application example. Experimental results validate the promising performance of the proposed algorithms.

  12. Analysis of errors induced by λ/4 wave plate in fiber-optic current sensor system

    Institute of Scientific and Technical Information of China (English)

    杨瑞峰

    2008-01-01

    1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.

  13. Current-biased Transition-edge Sensors Based on Re-entrant Superconductors

    Science.gov (United States)

    Gulian, A.; Nikoghosyan, V.; Tollaksen, J.; Vardanyan, V.; Kuzanyan, A.

    Transition-edge sensors are widely recognized as one of the most sensitive tools for the photon and particles detection in many areas, from astrophysics to quantum computing. Their application became practical after understanding that rather than being biased in a constant current mode, they should be biased in a constant voltage mode. Despite the methods of voltage biasing of these sensors are well developed since then, generally the current biasing is more convenient for superconducting circuits. Thus transition-edge sensors designed inherently to operate in the current-biased mode are desirable. We developed a design for such detectors based on re-entrant superconductivity. In this case constant current biasing takes place in the normal state, below the superconducting transition, so that following the absorption of a photon it does not yield a latching. Rather, the sensor gains energy and shifts towards the lower resistant (e.g., superconducting) state, and then cools down faster (since Joule heating is now reduced), and resets in a natural way to be able to detect the next photon. We prototyped this kind of transition edge sensors and tested them operational in accordance with the outlined physics. The samples used in experiments were modified compositions of YBCO-superconductors in a ceramic form (which, as we discovered, reproducibly demonstrates re-entrant superconductivity). In this presentation we report their composition, methods of preparation, and the detection results. This approach, in some areas, may have practical advantage over the traditional voltage-biased devices.

  14. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Shan X. Wang

    2012-11-01

    Full Text Available Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  15. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  16. An SV-GMR Needle Sensor-Based Estimation of Volume Density of Magnetic Fluid inside Human Body

    Directory of Open Access Journals (Sweden)

    C. P. Gooneratne

    2008-01-01

    Full Text Available A spin-valve giant magneto-resistive (SV-GMR sensor of needle-type configuration is reported to estimate the volume density of magnetic fluid inside human body. The magnetic fluid is usually injected into human body to kill cancerous cell using hyperthermia-based treatment. To control the heat treatment, a good knowledge of temperature is very much essential. The SV-GMR-based needle-type sensor is used to measure the magnetic flux density of the magnetic fluid inside the human body from which the temperature is estimated. The needle-type sensor provides a semi-invasive approach of temperature determination.

  17. A Review of Current Neuromorphic Approaches for Vision, Auditory, and Olfactory Sensors.

    Science.gov (United States)

    Vanarse, Anup; Osseiran, Adam; Rassau, Alexander

    2016-01-01

    Conventional vision, auditory, and olfactory sensors generate large volumes of redundant data and as a result tend to consume excessive power. To address these shortcomings, neuromorphic sensors have been developed. These sensors mimic the neuro-biological architecture of sensory organs using aVLSI (analog Very Large Scale Integration) and generate asynchronous spiking output that represents sensing information in ways that are similar to neural signals. This allows for much lower power consumption due to an ability to extract useful sensory information from sparse captured data. The foundation for research in neuromorphic sensors was laid more than two decades ago, but recent developments in understanding of biological sensing and advanced electronics, have stimulated research on sophisticated neuromorphic sensors that provide numerous advantages over conventional sensors. In this paper, we review the current state-of-the-art in neuromorphic implementation of vision, auditory, and olfactory sensors and identify key contributions across these fields. Bringing together these key contributions we suggest a future research direction for further development of the neuromorphic sensing field.

  18. The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process

    Institute of Scientific and Technical Information of China (English)

    王庆; 王永富; 巴德纯; 岳向吉

    2012-01-01

    The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density as functions of discharge power, gas pressure and positions was measured. A double-hump shape was found in ion current density curve after the analysis of the effects of power and pressure. The data demonstrate that ion current density increases with the increase in gas pressure in spite of slightly at the double-hump site, sharply at wave-trough and side positions. Simultaneously, the ion current density increases upon increase in power. Es- pecially, the ion current density steeply increases at the double-hump site. The highest energy of the secondary electrons arising from Larmor precession was found at the double-hump position, which results in high ion density. The target was etched seriously at the double-hump position due to the high ion density there. The data indicates that the increase in power can lead to a high sputtering speed rate.

  19. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... data, showing significant improvement in the Earth albedo induced current estimates. Additionally an algorithm for utilizing the Earth albedo model in obtaining a vector observation pair which is superior to the solar line of sight vector pair. It is concluded that the Earth albedo model is valid...

  20. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    Science.gov (United States)

    Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D. M. S.; Zorzi, N.

    2016-09-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  1. Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihua; Zhao Qitao [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States); Guan Xiyun, E-mail: xguan@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2010-08-24

    Nanopore stochastic sensor works by monitoring the ionic current modulations induced by the passage of analytes of interest through a single pore, which can be obtained from a biological ion channel by self-assembly or artificially fabricated in a solid-state membrane. In this minireview, we overview the use of biological nanopores and artificial nanopores for the detection of terrorist agents including explosives, organophosphorus nerve agents, nitrogen mustards, organoarsenic compounds, toxins, and viruses. We also discuss the current challenge in the development of deployable nanopore sensors for real-world applications.

  2. Design, Fabrication and Temperature Sensitivity Testing of a Miniature Piezoelectric-Based Sensor for Current Measurements

    Directory of Open Access Journals (Sweden)

    Steven B. Lao

    2014-07-01

    Full Text Available Grid capacity, reliability, and efficient distribution of power have been major challenges for traditional power grids in the past few years. Reliable and efficient distribution within these power grids will continue to depend on the development of lighter and more efficient sensing units with lower costs in order to measure current and detect failures across the grid. The objective of this paper is to present the development of a miniature piezoelectric-based sensor for AC current measurements in single conductors, which are used in power transmission lines. Additionally presented in this paper are the thermal testing results for the sensor to assess its robustness for various operating temperatures.

  3. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  4. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  5. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  6. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    Science.gov (United States)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM, temperature, relative humidity, wind speed and direction. The network incorporates existing

  7. Vortex-lattice pinning and critical current density in anisotropic high-temperature superconductors

    Science.gov (United States)

    Li, Yingxu; Li, Xiangyu; Kang, Guozheng; Gao, Yuanwen

    2016-10-01

    The anisotropy of critical current density is an impressive manifestation in the physics of high-temperature superconductors. We develop an analytical characterization of anisotropic flux-lattice pinning and critical current density in a system of random point defects. The effect of superconducting anisotropy on the pinning force and critical current density is formulated. The in-plane/out-of-plane anisotropy and microscopic characteristic lengths are incorporated in the field and angular dependence of the critical current density. This is helpful in understanding the physical essence of the scaling behavior in the experiments for critical current anisotropy. We discuss the role of strong and weak point defects in the anisotropic flux-lattice pinning. Relevance of the theory to the critical-state model is dictated as well.

  8. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  9. Current density and conductivity through modified gravity in the graphene with defects

    CERN Document Server

    Sepehri, Alireza; Bamba, Kazuharu; Capozziello, Salvatore; Saridakis, Emmanuel N

    2016-01-01

    We propose a model describing the evolution of the free electron current density in graphene. Based on the concept of Mp-branes, we perform the analysis using the difference between curvatures of parallel and antiparallel spins. In such a framework an effective graviton emerges in the form of gauge field exchange between electrons. In a plain graphene system, the curvatures produced by both kinds of spins neutralize each other. However, in the presence of defects, the inequality between curvatures leads to the emergence of current density, modified gravity and conductivity. Depending on the type of the defects, the resulting current density can be negative or positive.

  10. Depairing current density through a low-angle grain boundary in a superconducting film

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2016-05-01

    Full Text Available In this paper, the effect of a grain boundary (GB on the depairing current density of a high-temperature superconducting film is investigated. The modified effective free energy is proposed by considering the interaction of the superconducting condensate with the deformation of the superconductor due to the dislocations which constitute a grain boundary. After the elastic strain field of the dislocation is obtained, we analyzed the depress effect of the GB on the depairing current density of a superconducting film. The results are qualitatively agreement with the classic exponential relationship with the misorientation angles of the critical current density of high-temperature superconductors.

  11. Effects of Electron Flow Current Density on Flow Impedance of Magnetically Insulated Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    HE Yong; ZOU Wen-Kang; SONG Sheng-Yi

    2011-01-01

    @@ In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load.The circuit parameters of MITLs are well understood by employing the concept of Sow impedance derived from Maxwell's equations and pressure balance across the flow.However, the electron density in an MITL is always taken as constant in the application of flow impedance.Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected.We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other.It is found that the assumption of constant electron density profile in the calculation of the Sow impedance is not always valid.The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL.The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly experiments and theories in the future.

  12. Monolithic integration of GMR sensors for standard CMOS-IC current sensing

    Science.gov (United States)

    De Marcellis, A.; Reig, C.; Cubells-Beltrán, M.-D.; Madrenas, J.; Santos, J. D.; Cardoso, S.; Freitas, P. P.

    2017-09-01

    In this work we report on the development of Giant Magnetoresistive (GMR) sensors for off-line current measurements in standard integrated circuits. An ASIC has been specifically designed and fabricated in the well-known AMS-0.35 μm CMOS technology, including the electronic circuitry for sensor interfacing. It implements an oscillating circuit performing a voltage-to-frequency conversion. Subsequently, a fully CMOS-compatible low temperature post-process has been applied for depositing the GMR sensing devices in a full-bridge configuration onto the buried current straps. Sensitivity and resolution of these sensors have been investigated achieving experimental results that show a detection sensitivity of about 100 Hz/mA, with a resolution of about 5 μA.

  13. A low-cost sensor for high density urban CO2 monitoring

    Science.gov (United States)

    Zeng, N.; Martin, C.

    2015-12-01

    The high spatial-termporal variability of greenhouse gases and other pollution sources in an urban environment can not be easily resolved with current high-accuracy but expensive instruments. We have tested a small, low-cost NDIR CO2 sensor designed for potential use. It has a manufacturer's specified accuracy of +- 30 parts per million (ppm). However, initial results running parallel with a research-grade greenhouse gas analyzer have shown that the absolute accuracy of the sensor is within +-5ppm, suggesting their utility for sensing ambient air variations in carbon dioxide. Through a multivariate analysis, we have determined a correction procedure that when accounting for environmental temperature, humidity, air pressure, and the device's span and offset, we can further increase the accuracy of the collected data. We will show results from rooftop measurements over a period of one year and CO2 tracking data in the Washington-Baltimore Metropolitan area.

  14. Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainville's beaked whales.

    Science.gov (United States)

    Marques, Tiago A; Thomas, Len; Ward, Jessica; DiMarzio, Nancy; Tyack, Peter L

    2009-04-01

    Methods are developed for estimating the size/density of cetacean populations using data from a set of fixed passive acoustic sensors. The methods convert the number of detected acoustic cues into animal density by accounting for (i) the probability of detecting cues, (ii) the rate at which animals produce cues, and (iii) the proportion of false positive detections. Additional information is often required for estimation of these quantities, for example, from an acoustic tag applied to a sample of animals. Methods are illustrated with a case study: estimation of Blainville's beaked whale density over a 6 day period in spring 2005, using an 82 hydrophone wide-baseline array located in the Tongue of the Ocean, Bahamas. To estimate the required quantities, additional data are used from digital acoustic tags, attached to five whales over 21 deep dives, where cues recorded on some of the dives are associated with those received on the fixed hydrophones. Estimated density was 25.3 or 22.5 animals/1000 km(2), depending on assumptions about false positive detections, with 95% confidence intervals 17.3-36.9 and 15.4-32.9. These methods are potentially applicable to a wide variety of marine and terrestrial species that are hard to survey using conventional visual methods.

  15. Electromigration in Sn–Ag solder thin films under high current density

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Kotadia, H. [Physics Department, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Xu, S. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kow-loon Tong, Hong Kong (China); Lu, H. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Mannan, S.H. [Physics Department, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Bailey, C. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kow-loon Tong, Hong Kong (China)

    2014-08-28

    The electro-migration behavior of a Sn–Ag solder thin film stripe that is deposited on a glass substrate has been investigated under a high current density in the absence ofthermo-migration. The distribution of voids and hillocks at current densities of 4.4–6.0 × 10{sup 4} A/cm{sup 2} has been analyzed optically and using electron microscopy. The voids mainly formed at the cathode side of the stripe where maximum current density was predicted but voids also formed along a line that crosses the stripe. This was explained in terms of the initial voids forming at locations of maximum current density concentration, altering these locations, and then expanding into them. The movement of the maximum current density location is caused by redistribution of current as the voids form. An atomic migration model has been developed and used in this work. It was found that if thermal gradients were completely neglected, the model was unable to account for the divergence of atomic flux density which is necessary for void nucleation. However, the temperature dependence of the diffusivity of atoms is sufficient to account for void nucleation within the timescale of the experiments. - Highlights: • Experimental and computational study of electron migration in a SnAg film • The calculated atomic flux divergence has been used to predict void formation. • Voids caused by electromigration observed at current crowding sites and in other regions.

  16. Definition of current density in the presence of a non-local potential.

    Science.gov (United States)

    Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian

    2008-04-16

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.

  17. A novel method for sensing rotational speed, linear displacement and current using superconducting BPSCCO magnetic sensor

    Indian Academy of Sciences (India)

    T K Dey; A Ray; S K Ghatak

    2002-11-01

    For many decades, magnetic sensors have been of great assistance to mankind in variety of functions that include simple compass based navigational systems to devices that monitor the invisible biological activities. In industries magnetic sensors are in great demand for control and measurement of linear and rotary position sensing etc, because of its non destructive and contact less way of detection. Consequently, newer, smarter and cheaper materials are continuously being explored to suit the varied needs of technological requirements. In the present communication, the characteristics of a magnetic sensor, based on the non linear electromagnetic response of the weak links present in the polycrystalline BPSCCO superconductor are reported. The second harmonic response of sintered superconducting BPSCCO pellet in an alternating magnetic field at 40 kHz and 77 K being a strong linear function of low d.c. magnetic field has been utilized for the development of highly sensitive magnetic field sensors. The noise limited resolution of the sensor is found to be 3.16 × 10–9 T/√ Hz for $H_{a.c.}$ = 16 Oe and frequency 40 kHz. We further demonstrate that such HTSC based magnetic sensors are capable of sensing the rotational speed, small displacement and direct current with good resolution. The experimental methods and results obtained are discussed.

  18. Ion density and dielectric breakdown in the afterglow of a high-current arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Verhagen, F.C.M.; De Zeeuw, W.A.

    1984-01-01

    The ion density in the afterglow of a high-current atmospheric arc-discharge and electrical breakdown have been investigated in atomic (argon), molecular (nitrogen) and electronegative (carbon dioxide) media. From the decay with time of the ion density, effective recombination coefficients can be calculated. When the ion density is reduced to values below 2 x 10/sup 17/m/sup -3/, the afterglow plasma changes from a resistive into a dielectric medium. (J.C.R.)

  19. An Optical Fiber Sensor and Its Application in UAVs for Current Measurements

    Directory of Open Access Journals (Sweden)

    Felipe S. Delgado

    2016-10-01

    Full Text Available In this paper, we propose and experimentally investigate an optical sensor based on a novel combination of a long-period fiber grating (LPFG with a permanent magnet to measure electrical current in unmanned aerial vehicles (UAVs. The proposed device uses a neodymium magnet attached to the grating structure, which suffers from an electromagnetic force produced when the current flows in the wire of the UAV engine. Therefore, it causes deformation on the sensor and thus, different shifts occur in the resonant bands of the transmission spectrum of the LPFG. Finally, the results show that it is possible to monitor electrical current throughout the entire operating range of the UAV engine from 0 A to 10 A in an effective and practical way with good linearity, reliability and response time, which are desirable characteristics in electrical current sensing.

  20. A Galvanostatic Modeling for Preparation of Electrodeposited Nanocrystalline Coatings by Control of Current Density

    Institute of Scientific and Technical Information of China (English)

    Ali Mohammad Rashidi

    2012-01-01

    The correlation between the grain size of electrodeposited coatings and the current densities was modeled by considering galvanostatic conditions. In order to test the model by experimental results, nanocrystalline (NC) nickel samples were deposited at different current densities using a Watts bath. The grain size of the deposits was evaluated by X-ray diffraction (XRD) technique. Model predictions were validated by finding a curve being the best-fit to the experimental results which were gathered from literature for different NC coatings in addition to those data measured in this research for NC nickel coatings. According to our model, the variation of grain size with the reciprocal of the current density follows a power law. A good agreement between the experimental results and model predictions was observed which indicated that the derived analytical model is applicable for producting the nanocrystalline electrodeposits with the desired grain size by controling current density.

  1. Flux quantum tunneling effect and its influence on the experimental critical current density

    Institute of Scientific and Technical Information of China (English)

    闻海虎; 赵忠贤; GriessenR.

    1995-01-01

    By using magnetic sweeping method, the temperature and magnetic field dependencies of the experimental current density and the normalized relaxation rate have been obtained. The true critical current density corresponding to the zero activation energy has been carried out based on the collective-pinning and the thermally-activated flux motion models, and therefore the influences of the quantum tunneling effect and the thermal activation effect on the experimental critical current density are distinguished. It is found that, with temperature lower than 10 K, the relaxation rate will not drop to zero when T approaches zero K because of the occurrence of the flux quantum tunneling. This additional flux motion further reduces the experimental critical current density j making it saturated with lowering temperature.

  2. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  3. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-02-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  4. Fresh water-salt water density currents, a major cause of siltation in estuaries

    National Research Council Canada - National Science Library

    Schultz, E.A; Simmons, H.B

    1957-01-01

    ... the effects of changing the upland discharge into estuaries, rivers, and harbours where the fresh water-salt water density currents are present in some degree, and in some cases are the major cause of siltation; and 4...

  5. Effect of coating current density on the wettability of electrodeposited copper thin film on aluminum substrate

    Directory of Open Access Journals (Sweden)

    Arun Augustin

    2016-09-01

    Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.

  6. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles

    Science.gov (United States)

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-01-01

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183

  7. A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles.

    Science.gov (United States)

    Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang

    2016-08-19

    Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.

  8. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    Directory of Open Access Journals (Sweden)

    Ruifang Xie

    2015-12-01

    Full Text Available The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM, the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  9. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bast, Radovan; Juselius, Jonas [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway); Saue, Trond [Institut de Chimie de Strasbourg, CNRS et Universite Louis Pasteur, Laboratoire de Chimie Quantique, 4, rue Blaise Pascal, BP 1032, F-67070 Strasbourg (France)], E-mail: tsaue@chimie.u-strasbg.fr

    2009-02-17

    We present a 4-component relativistic implementation for calculating the magnetically induced current density within Hartree-Fock and Kohn-Sham linear response theory using a common gauge origin. We demonstrate how the current density can be decomposed into paramagnetic and diamagnetic contributions by calculating separately the contributions from rotations between positive-energy orbitals and contributions from rotations between the occupied positive-energy orbitals and the virtual negative-energy orbitals, respectively. This methodology is applied to the study of the magnetically induced current density in benzene and the group 15 heteroaromatic compounds C{sub 5}H{sub 5}E (E = N, P, As, Sb, Bi). Quantitative values for the magnetically induced ring currents are obtained by numerical integration over the current flow. We have found that the diatropic ring current is sustained for the entire series of the group 15 heteroaromatic compounds-the induced ring current susceptibility of bismabenzene being 76% of the benzene result. Having employed two hybrid and two nonhybrid generalized gradient approximation functionals, the results are found to be rather insensitive to the choice of the density functional approximation. The relativistic effect is relatively small, reaching its maximum of 8% for bismabenzene. The presented 4-component relativistic methodology opens up the possibility to visualize magnetically induced current densities of aromatic heavy-element systems with both scalar relativistic and spin-orbit effects included.

  10. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    Energy Technology Data Exchange (ETDEWEB)

    You, Chun-Yeol [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  11. Study of the origin and structure of a nocturnal atmospheric density current from observations and numerical simulations

    Science.gov (United States)

    Ander Arrillaga, Jon; Yagüe, Carlos; Román-Cascón, Carlos; Sastre, Mariano

    2016-04-01

    Density currents are flows generated when a dense fluid passes through a less dense surrounding, under the influence of gravity. They usually appear as a consequence of sea-breeze circulations, thunderstorm outflows or katabatic flows. Density currents acquire a particular relevance during nocturnal stable situations, as their onset causes a significant turbulence increase (both from buoyancy and shear) and they occasionally produce turbulence intermittency through the formation of gravity waves. In this work, the arrival of a density current on 23 September 2015 is analysed in the CIBA site (Spain), which is located in the Spanish Northern Plateau, approximately 200 km away from the sea and 100 km away from the closest mountain ranges. Previous studies at this location associated similar nocturnal events with daytime sea breeze in the eastern Cantabrian coast [1]. Micrometeorological measurements from sonic anemometers and different sensors at multiple levels up to 100 m agl provide a solid database. In this specific case, the outbreak of the density current occurs 2 hours after sunset, causing an abrupt increase of the wind speed and a significant weakening of the surface-based thermal inversion. Besides, turbulent parameters and fluxes such as the friction velocity, the sensible heat flux and the Turbulent Kinetic Energy (TKE) are sharply altered with its arrival. The latter, indeed, increases by two orders of magnitude and the Multi Resolution Flux Decomposition (MRFD) of this and other turbulent variables gives the approximate size of the contributing eddies. Furthermore, simulations with the WRF model, which is tested for different Planetary Boundary Layer (PBL) schemes and the topo_wind option for complex topography [2], give meaningful information about the vertical structure and origin of this density current. [1] Udina, M., Soler, M.R., Viana, S. & Yagüe, C. (2013). Model simulation of gravity waves triggered by a density current. Q J R Meteorol Soc, 139

  12. Influence of current density on microstructure of pulse electrodeposited tin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ashutosh; Bhattacharya, Sumit; Sen, Ranjan; Reddy, B.S.B. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur-721302 (India); Fecht, H.-J. [Institut fuer Mikro- und Nanomaterialien, Universitaet Ulm, D-89081 Ulm (Germany); Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur-721302 (India); Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur-721302 (India)

    2012-06-15

    Pulse electrodeposited tin coatings on copper substrate have been synthesized from an aqueous solution containing sodium stannate (Na{sub 2}SnO{sub 3}.3H{sub 2}O) and sodium hydroxide (NaOH). The effect of current density on surface morphology of the deposits has been investigated. As deposited coatings are characterized by X-ray diffraction, scanning electron microscopy, electron backscatter diffraction, and line profile analysis. The X-ray diffraction analysis shows that the deposits consist of tetragonal ({beta}-Sn) structure with microcrystalline grains. The deposits plated at lower current density exhibit (110) texture which decreases with increasing current densities. The effects of current density on Cu-Sn diffusion and whisker growth of the electrodeposited tin coatings are also reported here. - Highlights: Black-Right-Pointing-Pointer Pulse electrodeposition of Sn from aqueous alkaline solution without adding any organic additive. Black-Right-Pointing-Pointer Effect of current density on morphology and whisker growth in tin coatings aged for 1 year. Black-Right-Pointing-Pointer Solution bath is stable and can be operated over a wide range of current density.

  13. Experimental study of the velocity of density currents in convergent and divergent channels

    Institute of Scientific and Technical Information of China (English)

    Hasan Torabi POUDEH; Samad EMAMGHOLIZADEH; Manoocher Fathi-MOGHADAM

    2014-01-01

    The head velocity of the density current in the convergent and divergent channel is a key parameter for evaluating the extent to which suspended material travels, and for determining the type and distribution of sediment in the water body. This study experimentally evaluated the effects of the reach degree of convergence and divergence on the head velocity of the density current. Experiments were conducted in the flume with 6.0 m long, 0.72 m width and 0.6 m height. The head velocity was measured at three convergent degrees (-8o;-12o;-26o), at three divergent degrees (8o; 12o; 26o) and two slopes (0.009, 0.016) for various discharges. The measured head velocity of the density current is compared with the head velocity of the density current in the constant cross section channel. Based on non-dimensional and statistical analysis, relations as linear multiple regression are offered for predicting head velocity of the density current in the convergent, divergent and constant cross section channel. Also the results of this research show that for the same slope and discharge, the head velocity of the density current in the convergent and divergent channel are greater and less than the head velocity of the constant cross section, respectively.

  14. High Dynamic Magnetic Beam Current Measurements by Means of Optimised Magneto-Resistance (MR) Sensor Engineering

    CERN Document Server

    Hape, M; Ricken, W

    2005-01-01

    The GSI-FAIR project (facility for antiprotons and ion research) will comprehend DC currents up to around 5 A in the SIS 100 synchrotron and after bunch compression down to 50 ns pulse length the peak currents will reach up to 100 A. To meet these higher demands of beam current measurements new sensor techniques are foreseen. The measurement device itself will be designed in form of a clip-on ampere-meter. The air gap of the flux concentrator is assumed to be around 5 mm and thus, the estimated maximum field therein is around 30 mT for a beam current of 100 A peak. The resolution of this device is aimed to be 1 mA in beam current, corresponding to a system dynamic of around 105. This high demands of beam current measurement require more sophisticated sensor types than just using a Hall probe. The characteristics of AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance) and GMI (giant magneto-impedance) sensors like hysteresis, linearity and sensitivity have been measured within the magnetic fiel...

  15. Numerical Simulation of Current Density Distribution in Keyhole Double-Sided Arc Welding

    Institute of Scientific and Technical Information of China (English)

    Junsheng SUN; Chuansong WU; Min ZHANG; Houxiao WANG

    2004-01-01

    In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process.Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.

  16. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii

    Science.gov (United States)

    Gurioli, Lucia; Pareschi, M. Teresa; Zanella, Elena; Lanza, Roberto; Deluca, Enrico; Bisson, Marina

    2005-06-01

    Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.

  17. A carbon nanotube field emission cathode with high current density and long-term stability

    Science.gov (United States)

    Calderón-Colón, Xiomara; Geng, Huaizhi; Gao, Bo; An, Lei; Cao, Guohua; Zhou, Otto

    2009-08-01

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  18. Design and development of DC high current sensor using Hall-Effect method

    Science.gov (United States)

    Dewi, Sasti Dwi Tungga; Panatarani, C.; Joni, I. Made

    2016-02-01

    This paper report a newly developed high DC current sensor by using a Hall effect method and also the measurement system. The Hall effect sensor receive the magnetic field generated by a current carrying conductor wire. The SS49E (Honeywell) magnetoresistive sensor was employed to sense the magnetic field from the field concentrator. The voltage received from SS49E then converted into digital by using analog to digital converter (ADC-10 bit). The digital data then processed in the microcontroller to be displayed as the value of the electric current in the LCD display. In addition the measurement was interfaced into Personal Computer (PC) using the communication protocols of RS232 which was finally displayed in real-time graphical form on the PC display. The performance test on the range ± 40 Ampere showed that the maximum relative error is 5.26%. It is concluded that the sensors and the measurement system worked properly according to the design with acceptable accuracy.

  19. MOS-FET as a Current Sensor in Power Electronics Converters.

    Science.gov (United States)

    Pajer, Rok; Milanoviĉ, Miro; Premzel, Branko; Rodiĉ, Miran

    2015-07-24

    This paper presents a current sensing principle appropriate for use in power electronics' converters. This current measurement principle has been developed for metal oxide semiconductor field effect transistor (MOS-FET) and is based on U(DS) voltage measurement. In practice, shunt resistors and Hall effect sensors are usually used for these purposes, but the presented principle has many advantages. There is no need for additional circuit elements within high current paths, causing parasitic inductances and increased production complexity. The temperature dependence of MOS-FETs conductive resistance R(DS-ON) is considered in order to achieve the appropriate measurement accuracy. The "MOS-FET sensor" is also accompanied by a signal acquisition electronics circuit with an appropriate frequency bandwidth. The obtained analogue signal is therefore interposed to an A-D converter for further data acquisition. In order to achieve sufficient accuracy, a temperature compensation and appropriate approximation is used (R(DS-ON) = R(DS-ON)(θj)). The MOS-FET sensor is calibrated according to a reference sensor based on the Hall-effect principle. The program algorithm is executed on 32-bit ARM M4 MCU, STM32F407.

  20. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Science.gov (United States)

    Wei, Hsien-Chin; Huang, Su-Hua; Jiang, Joe-Air; Lee, Yeun-Chung

    2017-01-01

    Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES) array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA) platform. An adjustable microampere constant-current (AMCC) source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives. PMID:28165412

  1. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  2. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)

    2015-12-15

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  3. Current density imaging using directly measured harmonic Bz data in MREIT.

    Science.gov (United States)

    Park, Chunjae; Kwon, Oh In

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the reconstruction procedure for the internal current density, we directly measure the second derivative of Bz data from the measured k-space data, from which we can avoid a tedious phase unwrapping to obtain the phase signal of Bz . We determine optimal weighting factors to combine the derivatives of magnetic flux density data, [Symbol: see text](2) Bz , measured using the multi-echo train. The proposed method reconstructs the internal current density using the relationships between the induced internal current and the measured [Symbol: see text](2) Bz data. Results from a phantom experiment demonstrate that the proposed method reduces the scanning time and provides the internal current density, while suppressing the background field inhomogeneity. To implement the real experiment, we use a phantom with a saline solution including a balloon, which excludes other artifacts by any concentration gradient in the phantom.

  4. Hall current sensor IC with integrated Co-based alloy thin film magnetic concentrator

    Science.gov (United States)

    Palumbo, V.; Marchesi, M.; Chiesi, V.; Paci, D.; Iuliano, P.; Toia, F.; Casoli, F.; Ranzieri, P.; Albertini, F.; Morelli, M.

    2013-01-01

    This work deals with a cobalt-based alloy thin film magnetic concentrator (MC) which is fully integrated on a Hall sensor integrated circuit (IC) developed in the 0.35 µm Bipolar CMOS DMOS (BCD) technology on 8" silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field Hc<10A/m and saturation magnetization (µ0MS) of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.

  5. Hall current sensor IC with integrated Co-based alloy thin film magnetic concentrator

    Directory of Open Access Journals (Sweden)

    Albertini F.

    2013-01-01

    Full Text Available This work deals with a cobalt-based alloy thin film magnetic concentrator (MC which is fully integrated on a Hall sensor integrated circuit (IC developed in the 0.35 µm Bipolar CMOS DMOS (BCD technology on 8” silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field Hc<10A/m and saturation magnetization (µ0MS of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.

  6. Modeling of current consumption in 802.15.4/ZigBee sensor motes.

    Science.gov (United States)

    Casilari, Eduardo; Cano-García, Jose M; Campos-Garrido, Gonzalo

    2010-01-01

    Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data.

  7. An adaptive finite element approach to modelling sediment laden density currents

    Science.gov (United States)

    Parkinson, S.; Hill, J.; Allison, P. A.; Piggott, M. D.

    2012-04-01

    Modelling sediment-laden density currents at real-world scales is a challenging task. Here we present Fluidity, which uses dynamic adaptive re-meshing to reduce computational costs whilst maintaining sufficient resolution where and when it is required. This allows small-scale processes to be captured in large scale simulations. Density currents, also known as gravity or buoyancy currents, occur wherever two fluids with different densities meet. They can occur at scales of up to hundred kilometres in the ocean when continental shelves collapse. This process releases large quantities of sediment into the ocean which increase the bulk density of the fluid to form a density current. These currents can carry sediment hundreds of kilometres, at speeds of up to a hundred kilometres per hour, over the sea bed. They can be tsunamigenic and they have the potential to cause significant damage to submarine infrastructure, such as submarine telecommunications cables or oil and gas infrastructure. They are also a key process for movement of organic material into the depths of the ocean. Due to this, they play an important role in the global carbon cycle on the Earth, forming a significant component of the stratigraphic record, and their deposits can form useful sources of important hydrocarbons. Modelling large scale sediment laden density currents is a very challenging problem. Particles within the current are suspended by turbulence that occurs at length scales that are several orders of magnitude smaller than the size of the current. Models that resolve the vertical structure of the flow require a very large, highly resolved mesh, and substantial computing power to solve. Here, we verify our adaptive model by comparison with a set of laboratory experiments by Gladstone et al. [1998] on the propagation and sediment deposition of bidisperse gravity currents. Comparisons are also made with fixed mesh solutions, and it is shown that accuracy can be maintained with fewer elements

  8. Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Ohin; Woo, Eung Je

    2007-02-01

    Magnetic resonance electrical impedance tomography (MREIT) measures induced magnetic flux densities subject to externally injected currents in order to visualize conductivity distributions inside an electrically conducting object. Injection currents induce magnetic flux densities that appear in phase parts of acquired MR image data. In the conventional current injection method, we inject currents during the time segment between the end of the first RF pulse and the beginning of the reading gradient in order to ensure the gradient linearity. Noting that longer current injections can accumulate more phase changes, we propose a new pulse sequence called injection current nonlinear encoding (ICNE) where the duration of the injection current pulse is extended until the end of the reading gradient. Since the current injection during the reading gradient disturbs the gradient linearity, we first analyze the MR signal produced by the ICNE pulse sequence and suggest a novel algorithm to extract the induced magnetic flux density from the acquired MR signal. Numerical simulations and phantom experiments show that the new method is clearly advantageous in terms of the reduced noise level in measured magnetic flux density data. The amount of noise reduction depends on the choice of the data acquisition time and it was about 24% when we used a prolonged data acquisition time of 10.8 ms. The ICNE method will enhance the clinical applicability of the MREIT technique when it is combined with an appropriate phase artefact minimization method.

  9. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    NARCIS (Netherlands)

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W. A.; Bultinck, Patrick

    2016-01-01

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is us

  10. An eddy-current-based sensor for preventing knots in metallic wire drawing processes

    Science.gov (United States)

    Esteban, Bernat; Riba, Jordi-Roger; Baquero, Grau; Ferrater, Cèsar

    2011-06-01

    During metallic wire drawing processes, the presence of knots and the failure to detect them can lead to long production interruptions, significant economic losses and a lower quality of final product. Consequently, there is a pressing need to develop methods for real-time detection and prevention of this fault. In this paper, a sensor to prevent the formation of knots during the metallic wire drawing process is presented and evaluated by means of experimental data. This fast, inexpensive, non-contact sensor is based on electromagnetic principles such as eddy current induction, magnetic reluctance variations and magnetic coupling. The proposed sensor without direct contact can detect knots in a target metallic wire by measuring the impedance variations of a calibrated sensing coil caused by either a knot or an unwound loop rising from a wire rod. The incorporation of this type of sensor into a wire-drawing machine can avoid the tightening of the knot, thereby reducing downtime and increasing the security and reliability of the process. Experiments were conducted using a scale model of the above proposed system. This allowed highlighting the sensor's potential by carrying out an automatic, real-time knot detection during steel wire drawing.

  11. A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces

    Directory of Open Access Journals (Sweden)

    Zhenguo Sun

    2016-06-01

    Full Text Available A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.

  12. Calculations of current densities for neutral and doubly charged persubstituted benzenes using effective core potentials.

    Science.gov (United States)

    Rauhalahti, Markus; Taubert, Stefan; Sundholm, Dage; Liégeois, Vincent

    2017-03-08

    Magnetically induced current density susceptibilities and ring-current strengths have been calculated for neutral and doubly charged persubstituted benzenes C6X6 and C6X6(2+) with X = F, Cl, Br, I, At, SeH, SeMe, TeH, TeMe, and SbH2. The current densities have been calculated using the gauge-including magnetically induced current (GIMIC) method, which has been interfaced to the Gaussian electronic structure code rendering current density calculations using effective core potentials (ECP) feasible. Relativistic effects on the ring-current strengths have been assessed by employing ECP calculations of the current densities. Comparison of the ring-current strengths obtained in calculations on C6At6 and C6At6(2+) using relativistic and non-relativistic ECPs show that scalar relativistic effects have only a small influence on the ring-current strengths. Comparisons of the ring-current strengths and ring-current profiles show that the C6I6(2+), C6At6(2+), C6(SeH)6(2+), C6(SeMe)6(2+), C6(TeH)6(2+), C6(TeMe)6(2+), and C6(SbH2)6(2+) dications are doubly aromatic sustaining spatially separated ring currents in the carbon ring and in the exterior of the molecule. The C6I6(+) radical cation is also found to be doubly aromatic with a weaker ring current than obtained for the dication.

  13. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate

    KAUST Repository

    Ren, Lijiao

    2014-08-05

    © 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic

  14. Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate

    Institute of Scientific and Technical Information of China (English)

    Burning CHEN; Zhongcheng GUO; Hui HUANG; Xianwan YANG; Yuandong CAO

    2009-01-01

    The α-PbO_2 electrodes are prepared by anodic electrodeposition on Al/conductive coating electrode from alkaline plumbite solutions in order to investigate the effect of the different current densities on the properties of α-PbO_2 electrodes. The physic-ochemical properties of the α-PbO_2 electrodes are analyzed by using SEM, EDS, XRD, Tafel plot, linear sweep voltammetry (LSV) and A.C. Impedance. A compact and uniform layer of lead dioxide was obtained at the current density of 3 mA-cm~(-2) . A further increase in current density results in smaller particles with high porosity. EDS and XRD analyses have shown that the PbO_2 deposited in alkaline conditions is highly non stoichiometric, and the PbO impurities are formed on the surface layer besides the α-PbO_2. The corrosion resistance of α-PbO_2 at the low current density is superior to that of the high current density. It can be attributed to a porous layer of deposited films at high current densities. When used as anodes for oxygen evolution in aqueous Zn~(2+) 50 g·L~(-1), H_2SO_4 150 g·L~(-1), the Al/conductive coating/α-PbO_2 exhibits lower potential compared to Pb electrode. Al/conductive coating/α-PbO_2 electrode with the best electrocatalytic activity was obtained at current density of 1 mA·cm~(-2). The lowest roughness factor was obtained at 1 mA·cm~(-2).

  15. Transport critical-current density of superconducting films with hysteretic ferromagnetic dots

    Directory of Open Access Journals (Sweden)

    Nuria Del-Valle

    2012-06-01

    Full Text Available Superconductor-ferromagnet hybrids present a rich and complex phenomenology. Particularly, a hysteretic behavior on the transport critical-current density, as a function of a uniform perpendicular applied field, has been experimentally found in superconducting films with some embedded ferromagnets. Here we analyze the interaction superconductor-ferromagnets by means of an iterative model based on the critical-state model with field-dependent internal critical-current density and compare the results with actual transport measurements. By using arguments of field compensation, we show how the change in the magnetization of the ferromagnetic inclusions is responsible for the observed hysteresis on the transport critical current.

  16. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons.

    Science.gov (United States)

    Turrigiano, G; LeMasson, G; Marder, E

    1995-05-01

    We study the electrical activity patterns and the expression of conductances in adult stomatogastric ganglion (STG) neurons as a function of time in primary cell culture. When first plated in culture, these neurons had few active properties. After 1 d in culture they produced small action potentials that rapidly inactivated during maintained depolarization. After 2 d in culture they fired large action potentials tonically when depolarized, and their properties resembled very closely the properties of STG neurons pharmacologically isolated in the ganglion. After 3-4 d in culture, however, their electrical properties changed and they fired in bursts when depolarized. We characterized the currents expressed by these neurons in culture. They included two TTX-sensitive sodium currents, a calcium current, a delayed-rectifier-like current, a calcium-dependent potassium current, and two A-type currents. The changes in firing properties with time in culture were accompanied by an increase in inward and decrease in outward current densities. A single-compartment conductance-based model of an STG neuron was constructed by fitting the currents measured in the biological neurons. When the current densities in the model neuron were matched to those measured for the biological neurons in each activity state, the model neuron closely reproduced each state, indicating that the changes in current densities are sufficient to account for the changes in intrinsic properties. These data indicate that STG neurons isolated in culture change their intrinsic electrical properties by selectively adjusting the magnitudes of their ionic conductances.

  17. Gauge-Origin Independent Calculations of the Anisotropy of the Magnetically Induced Current Densities.

    Science.gov (United States)

    Fliegl, Heike; Jusélius, Jonas; Sundholm, Dage

    2016-07-21

    Gauge-origin independent current density susceptibility tensors have been computed using the gauge-including magnetically induced current (GIMIC) method. The anisotropy of the magnetically induced current density (ACID) functions constructed from the current density susceptibility tensors are therefore gauge-origin independent. The ability of the gauge-origin independent ACID function to provide quantitative information about the current flow along chemical bonds has been assessed by integrating the cross-section area of the ACID function in the middle of chemical bonds. Analogously, the current strength susceptibility passing a given plane through the molecule is obtained by numerical integration of the current flow parallel to the normal vector of the integration plane. The cross-section area of the ACID function is found to be strongly dependent on the exact location of the integration plane, which is in sheer contrast to the calculated ring-current strength susceptibilities that are practically independent of the chosen position of the integration plane. The gauge-origin independent ACID functions plotted for different isosurface values show that a visual assessment of the current flow and degree of aromaticity depends on the chosen isosurface. The present study shows that ACID functions are not an unambiguous means to estimate the degree of molecular aromaticity according to the magnetic criterion and to determine the current pathway of complex molecular rings.

  18. Direct mapping of local redox current density on a monolith electrode by laser scanning.

    Science.gov (United States)

    Lee, Seung-Woo; Lopez, Jeffrey; Saraf, Ravi F

    2013-09-15

    An optical method of mapping local redox reaction over a monolith electrode using simple laser scanning is described. As the optical signal is linearly proportional to the maximum redox current that is measured concomitantly by voltammetry, the optical signal quantitatively maps the local redox current density distribution. The method is demonstrated on two types of reactions: (1) a reversible reaction where the redox moieties are ionic, and (2) an irreversible reaction on two different types of enzymes immobilized on the electrode where the reaction moieties are nonionic. To demonstrate the scanning capability, the local redox behavior on a "V-shaped" electrode is studied where the local length scale and, hence, the local current density, is nonuniform. The ability to measure the current density distribution by this method will pave the way for multianalyte analysis on a monolith electrode using a standard three-electrode configuration. The method is called Scanning Electrometer for Electrical Double-layer (SEED).

  19. Measurement of local current density of all-vanadium redox flow batteries

    Science.gov (United States)

    Hsieh, Wen-Yen; Leu, Chih-Hsing; Wu, Chun-Hsing; Chen, Yong-Song

    2014-12-01

    This article presents a preliminary study of the measurement of local current density in all-vanadium redox flow batteries. Two batteries are designed and manufactured in this study, and the experimental results are compared. In the first cell, the current collector is divided into 25 segments, and the flow field plate is not segmented, whereas in the other cell, the flow field plate is segmented. The effects of the electrolyte flow rate on the battery efficiencies and the local current density variation are investigated. The experimental results show that the current density near the outlet significantly decreases when the discharge capacity approaches zero. In addition, the battery has a larger discharge depth at a higher electrolyte flow rate.

  20. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor

    National Research Council Canada - National Science Library

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    .... Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  1. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  2. Fault-tolerant control for current sensors of doubly fed induction generators based on an improved fault detection method

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    Fault-tolerant control of current sensors is studied in this paper to improve the reliability of a doubly fed induction generator (DFIG). A fault-tolerant control system of current sensors is presented for the DFIG, which consists of a new current observer and an improved current sensor fault...... detection algorithm, and fault-tolerant control system are investigated by simulation. The results indicate that the outputs of the observer and the sensor are highly coherent. The fault detection algorithm can efficiently detect both soft and hard faults in current sensors, and the fault-tolerant control...... system can effectively tolerate both types of faults. © 2013 Published by Elsevier Ltd. All rights reserved....

  3. A novel hybrid FEM-BEM method for 3D eddy current field calculation using current density J

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhizhen(刘志珍); WANG; Yanzhang(王衍章); JIA; Zhiping(贾智平); SUN; Yingming(孙英明)

    2003-01-01

    This paper introduces a novel hybrid FEM-BEM method for calculating 3D eddy current field. In the eddy current region, the eddy current density J is solved by the finite element method (FEM) which is discretized by brick finite element mesh, while in the eddy current free region, the magnetic field intensity H is solved by the boundary element method (BEM) which is discretized by rectangular boundary element mesh. Under the boundary conditions, an algebraic equation group is obtained that only includes J by eliminating H. This method has many advantages over traditional ones, such as fewer variables, more convenient coupling between the FEM and the BEM and wider application to multiply-connected regions. The calculated values of two models are in good agreement with experimental results. This shows the validity of our method.

  4. A Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport

    Science.gov (United States)

    Popoola, Olalekan; Mead, Iq; Bright, Vivien; Baron, Ronan; Saffell, John; Stewart, Gregor; Kaye, Paul; Jones, Roderic

    2013-04-01

    Outdoor air quality and its impact on human health and the environment have been well studied and it has been projected that poor air quality will surpass poor sanitation as the major course of environmental premature mortality by 2050 (IGAC / IGBP, release statement, 2012). Transport-related pollution has been regulated at various levels by enactment of legislations at local, national, regional and global stages. As part of the mitigation measures, routine measurements of atmospheric pollutants such as carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO2) have to be established in areas where air quality problems are identified. In addition, emission inventories are also generated for different atmospheric environments including urban areas and airport environments required for air quality models. Whilst recognising that most of the existing sparse monitoring networks provide high temporal measurements, spatial data of these highly variable pollutants are not captured, making it difficult to adequately characterise the highly heterogeneous air quality. Spatial information is often obtained from model data which can only be constrained using measurements from the sparse monitoring networks. The work presented here shows the application of low-cost sensor networks aimed at addressing this missing spatial information. We have shown in previous studies the application of low-cost electrochemical sensor network instruments in monitoring road transport pollutants including CO, NO and NO2 in an urban environment (Mead et. al. 2012, accepted Atmospheric Environment). Modified versions of these instruments which include additional species such as O3, SO2, VOCs and CO2 are currently deployed at London Heathrow Airport (LHR) as part of the Sensor Network for Air Quality (SNAQ) project. Meteorology data such as temperature, relative humidity, wind speed and direction are also measured as well as size-speciated particulates (0.38 to 17.4 µm). A network of 50

  5. LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tomohiro Miyanishi

    Full Text Available INTRODUCTION: Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN, by using low-resolution brain electromagnetic tomography (LORETA, and neuropsychological performance in subjects with early schizophrenia. METHODS: Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J. RESULTS: Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. CONCLUSIONS: This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.

  6. Induced fermionic charge and current densities in two-dimensional rings

    CERN Document Server

    Bellucci, S; Grigoryan, A Kh

    2016-01-01

    For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...

  7. High Field Emission Current Density from Patterned Carbon Nanotube Field Emitter Arrays with Random Growth.

    Science.gov (United States)

    Khaneja, Mamta; Ghosh, Santanu; Gautam, Seema; Kumar, Prashant; Rawat, J S; Chaudhury, P K; Vankar, V D; Kumar, Vikram

    2015-05-01

    High field emission (FE) current density from carbon nanotube (CNT) arrays grown on lithographically patterned silicon substrates is reported. A typical patterned field emitter array consists of bundles of nanotubes separated by a fixed gap and spread over the entire emission area. Emission performance from such an array having randomly oriented nanotube growth within each bundle is reported for different bundle sizes and separations. One typical sample with aligned CNTs within the bundle is also examined for comparison. It is seen that the current density from an array having random nanotube growth within the bundles is appreciably higher as compared to its aligned counterpart. The influence of structure on FE current densities as revealed by Raman spectroscopy is also seen. It is also observed that current density depends on edge length and increases with the same for all samples under study. Highest current density of -100 mA cm(-2) at an applied field of 5 V/μm is achieved from the random growth patterned sample with a bundle size of 2 μm and spacing of 4 μm between the bundles.

  8. Effect of Applied Current Density on Morphological and Structural Properties of Electrodeposited Fe-Cu Films

    Institute of Scientific and Technical Information of China (English)

    Umut Sarac; M. Celalettin Baykul

    2012-01-01

    A detailed study has been carried out to investigate the effect of applied current density on the composition, crystallographic structure, grain size, and surface morphology of Fe-Cu films. X-ray diffraction (XRD) results show that the films consist of a mixture of face-centered cubic (fcc) Cu and body centered cubic (bcc) ~-Fe phases. The average crystalline size of both Fe and Cu particles decreases as the applied current density becomes more negative. Compositional analysis of Fe-Cu films indicates that the Fe content within the films increases with decreasing current density towards more negative values. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to investigate the surface morphology of Fe-Cu films. It is observed that the surface morphology of the films changes from dendritic structure to a cauliflower structure as the applied current density becomes more negative. The surface roughness and grain size of the Fe-Cu films decrease with decreasing applied current density towards more negative values.

  9. Electromagnetic modeling of an eddy-current position sensor for use in a fast reactor

    Science.gov (United States)

    Wu, Tao; Bowler, John R.

    2017-02-01

    In this article, we proposed a novel theoretical electromagnetic model of an eddy current probe used as a position sensor with respect to a tube in a fast reactor under standby conditions. In these circumstances the coil position cannot be guided by optical aids but electromagnetic sensing can be used. Initially, we derived analytical expressions for the quasi-static time-harmonic electromagnetic field of a circular current filament via the transverse magnetic potential expressed in terms of a single layer potential. This is then used to deduce the field of a circular sensor coil near a conductive tube, the axis of the coil having an arbitrary direction with respect to that of the tube. The fields for an external coil have been determined and can be used to deduce coil impedance variations with frequency, location and orientation. The model predictions can be used to guide the probe to a desire position with respect to the tube.

  10. A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor

    Institute of Scientific and Technical Information of China (English)

    Along Yu; Zheng Li

    2006-01-01

    In this paper, we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method,the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line scaling and high precision. The maximum nonlinearity error can be reduced to 0.037% using GNN. However, the maximum nonlinearity error is 0.075% using least square method (LMS).

  11. Current Status and Applications of MEMS Sensors%MEMS传感器现状及应用

    Institute of Scientific and Technical Information of China (English)

    王淑华

    2011-01-01

    MEMS传感器种类繁多,发展迅猛,应用广泛.首先,简单介绍了MEMS传感器的分类和典型应用.其次,对MEMS压力传感器、加速度计和陀螺仪三种最典型的MEMS传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况.介绍MEMS压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况.最后,从新材料、加工和组装技术方面对MEMS传感器的发展趋势进行了展望.%MEMS sensors feature great varieties, rapid development and wide applications. Firstly, the categories and typical applications of MEMS sensors are introduced briefly. Then three typical MEMS sensors, I. E. The pressure sensor, accelerometer and gyroscope are illustrated in detail, including the subdivision, current technical capability and performance index, latest research progress, products and their applications. Besides that, the research status of the MEMS pressure sensor using new materials for the extreme environment at home and abroad is presented. Finally, development trends of MEMS sensors are predicted in terms of new materials, processing and assembling technology.

  12. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    Science.gov (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  13. Effects of discharge current and voltage on the high density of metastable helium atoms

    Institute of Scientific and Technical Information of China (English)

    FengXian-Ping; DAndruczyk; BWJames; KTakiyama; SNamba; TOda

    2003-01-01

    Both hollow-cathode and Penning-type discharges were adopted toexcite helium atoms to a metastable state. Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium hean for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma. The metastable density increases with increasing helium gas pressure in the range of 1.33×10-2-66.7Pa. The highest metastable density of 3.8×1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.

  14. Effects of discharge current and voltage on the high density of metastable helium atoms

    Institute of Scientific and Technical Information of China (English)

    Feng Xian-Ping(冯贤平); D Andruczyk; B W James; K Takiyama; S Namba; T Oda

    2003-01-01

    Both hollow-cathode and Penning-type discharges were adopted to excite helium atoms to a metastable state.Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium beam for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma.The metastable density increases with increasing helium gas pressure in the range of 1.33× 10-2-66.7Pa. The highest metastable density of 3.8 × 1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.

  15. Effects of Current Density on Microstructure of Titania Coatings by Micro-arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yue Yang; Hua Wu

    2012-01-01

    In the present study, titania coatings were prepared under different current density conditions in micro-arc oxidation (MAO) process on titanium alloy in NaAlO2 solution. The aim of this work was to study the effects of current density on the microstructure of titania coatings. The morphology and phase composition of the coatings were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectra. The thickness and surface roughness of the coatings were characterized by confocal laser Scanning Microscopy (CLSM). The results showed that the coatings were composed of crystalline anatase and rutile phases of TiO2, and contain a network of evenly distributed small pores. It has also shown that an increase in current density leads to an increase in rutile content.

  16. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming;

    High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural......, microstructure evolution of the Ni-yttria stabilized zirconia (YSZ) is followed as a function of galvanostatic steam electrolysis testing at current densities between -0.5 and -1.0 A cm-2 for periods of up to 750 hours at 800 °C. The volume fraction and size of the percolating Ni particles was statistically...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  17. MOS-FET as a Current Sensor in Power Electronics Converters

    Directory of Open Access Journals (Sweden)

    Rok Pajer

    2015-07-01

    Full Text Available This paper presents a current sensing principle appropriate for use in power electronics’ converters. This current measurement principle has been developed for metal oxide semiconductor field effect transistor (MOS-FET and is based on UDS voltage measurement. In practice, shunt resistors and Hall effect sensors are usually used for these purposes, but the presented principle has many advantages. There is no need for additional circuit elements within high current paths, causing parasitic inductances and increased production complexity. The temperature dependence of MOS-FETs conductive resistance RDS−ON is considered in order to achieve the appropriate measurement accuracy. The “MOS-FET sensor” is also accompanied by a signal acquisition electronics circuit with an appropriate frequency bandwidth. The obtained analogue signal is therefore interposed to an A-D converter for further data acquisition. In order to achieve sufficient accuracy, a temperature compensation and appropriate approximation is used (RDS−ON = RDS−ON(Vj. The MOS-FET sensor is calibrated according to a reference sensor based on the Hall-effect principle. The program algorithm is executed on 32-bit ARM M4 MCU, STM32F407.

  18. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    Science.gov (United States)

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-05-11

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  19. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    Directory of Open Access Journals (Sweden)

    Gang Huang

    2015-05-01

    Full Text Available This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  20. SOL plasma measurements during high density and long duration current drive on TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Takeharu; Kawasaki, Shoji; Jotaki, Eriko; Makino, Ken-ichi; Sakamoto, Mizuki; Nakamura, Kazuo; Nakamura, Yukio; Itoh, Sanae; Itoh, Satoshi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1997-02-01

    In the superconducting, strong magnetic field tokamak, TRIAM-1M, for the purpose of maintaining high density plasma for long time, the current drive experiment using 8.2 GHz lower hybrid wave has been carried out. For maintaining high density plasma for long time, it is indispensable to control gas puff and recycling from wall, as these are closely related to the structure and characteristics of boundary plasma including scrape-off layer (SOL). In this study, in the high density, long time current drive using 8.2 GHz lower hybrid wave, the electron density and electron temperature of SOL plasma were measured by using double probe, and the z-direction distribution and the toroidal magnetic field dependence of the electron density and electron temperature of SOL plasma were examined and compared with OH discharge. Also the dependence of the electron density of SOL plasma on the phase difference in a adjoining waveguide tubes was examined. The experimental setup and the double probe theory are explained. The experimental results of the change with time lapse, the z-direction distribution and the magnetic field dependence of the electron density and electron temperature of SOL plasma are reported. (K.I.)

  1. The importance of current contributions to shielding constants in density-functional theory.

    Science.gov (United States)

    Reimann, Sarah; Ekström, Ulf; Stopkowicz, Stella; Teale, Andrew M; Borgoo, Alex; Helgaker, Trygve

    2015-07-28

    The sources of error in the calculation of nuclear-magnetic-resonance shielding constants determined by density-functional theory are examined. Highly accurate Kohn-Sham wave functions are obtained from coupled-cluster electron density functions and used to define accurate-but current independent-density-functional shielding constants. These new reference values, in tandem with high-accuracy coupled-cluster shielding constants, provide a benchmark for the assessment of errors in common density-functional approximations. In particular the role of errors arising in the diamagnetic and paramagnetic terms is investigated, with particular emphasis on the role of current-dependence in the latter. For carbon and nitrogen the current correction is found to be, in some cases, larger than 10 ppm. This indicates that the absence of this correction in general purpose exchange-correlation functionals is one of the main sources of error in shielding calculations using density functional theory. It is shown that the current correction improves the shielding performance of many popular approximate DFT functionals.

  2. Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

    Directory of Open Access Journals (Sweden)

    V.I. Voznyi

    2012-10-01

    Full Text Available A radio-frequency (RF inductive ion source at 27.12 MHz is investigated. With a global model of the argon discharge, plasma density, electron temperature and ion current density of the ion source is calculated in relation to absorbed RF power and gas pressure as a discharge chamber size changes. It is found that ion beam current density grows as the discharge chamber size decreases. Calculations show that in the RF source with a discharge chamber 30 mm in diameter and 35 mm long the ion current density is 40 mA/cm2 at 100 W of absorbed RF power and 7 mTorr of pressure, and agrees well with experimentally measured value of 43 mA/cm2. With decreasing discharge chamber diameter to 15 mm ion current density can reach 85 mA/cm2 at absorbed RF power of 100 W.

  3. Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm.

    Science.gov (United States)

    Sadowski, Lukasz; Nikoo, Mehdi

    2014-01-01

    This study attempted to predict corrosion current density in concrete using artificial neural networks (ANN) combined with imperialist competitive algorithm (ICA) used to optimize weights of ANN. For that reason, temperature, AC resistivity over the steel bar, AC resistivity remote from the steel bar, and the DC resistivity over the steel bar are considered as input parameters and corrosion current density as output parameter. The ICA-ANN model has been compared with the genetic algorithm to evaluate its accuracy in three phases of training, testing, and prediction. The results showed that the ICA-ANN model enjoys more ability, flexibility, and accuracy.

  4. Limitations of absolute current densities derived from the Semel & Skumanich method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Semel and Skumanich proposed a method to obtain the absolute electric current density, |Jz|, without disambiguation of 180° in the transverse field directions. The advantage of the method is that the uncertainty in the determination of the ambiguity in the magnetic azimuth is removed. Here, we investigate the limits of the calculation when applied to a numerical MHD model. We have found that the combination of changes in the magnetic azimuth with vanishing horizontal field component leads to errors, where electric current densities are often strong. Where errors occur, the calculation gives |Jz| too small by factors typically 1.2 - 2.0.

  5. Realization and optimization of bus bar current transducers based on Hall effect sensors

    Science.gov (United States)

    Blagojević, Marjan; Jovanović, Uglješa; Jovanović, Igor; Mančić, Dragan; Popović, Radivoje S.

    2016-06-01

    In this paper the realization and optimization of two coreless open-loop bus bar current transducers based on a Hall effect sensor are presented. Two types of bus bar are evaluated: flat rectangular and rectangular with a restrictive region in the middle. Both realized transducers are capable of measuring AC and DC currents up to 300 A and 10 kHz frequency with nonlinearity less than 0.3% in the entire range. Several methods for resolving issues with the skin effect and stray magnetic fields are presented along with the experimental test results. Some of the presented methods are novel and have never been evaluated.

  6. Modelling of Current Density Redistribution in Hollow Needle to Plate Electrical Discharge Designed for Ozone Generation

    Science.gov (United States)

    Kriha, Vitezslav

    2003-10-01

    Non-thermal plasma of atmospheric pressure electrical discharges in flowing air can be used to generation of ozone. We have been observed two modes of discharge burning in a hollow needle to plane electrodes configuration studied in the ozone generation experiments: A low current diffuse mode is characterized by increasing of the ozone production with the discharge current; a high current filamentary mode is disadvantageous for the ozone generation(the ozone production decreases when the discharge current increases). A possible interpretation of this effect is following: The filamentary mode discharge current density is redistributed and high current densities in filaments cores lead to degradation of the ozone generation. Local fields in the discharge can be modified by charged metallic and/or dielectric components (passive modulators) in the discharge space. An interactive numerical model has been developed for this purpose. This model is based on Ferguson's polynomial objects for both the discharge chamber scene modelling and the discharge fields analyzing. This approach allows intuitive modifications of modulators shapes and positions in 3D scene followed by quantitative comparison of the current density distribution with previous configurations.

  7. The electrical current density vector in the inner penumbra of a Sunspot

    CERN Document Server

    Puschmann, K G; Pillet, V Martínez

    2010-01-01

    We determine the entire electrical current density vector in a geometrical 3D volume of the inner penumbra of a sunspot from an inversion of spectropolarimetric data obtained with Hinode/SP. Significant currents are seen to wrap around the hotter, more elevated regions with lower and more horizontal magnetic field that harbor strong upflows and radial outflows (the intraspines). The horizontal component of the current density vector is 3-4 times larger than the vertical; nearly all previous studies only obtain the vertical component and thus strongly underestimate the current density. The current density and the magnetic field vectors form an angle of about 20 degrees. The plasma beta at the 0 km level is larger than 1 in the intraspines and is one order of magnitude lower in the background component of the penumbra (spines). At the 200 km level, the plasma beta is below 0.3 nearly everywhere. The plasma beta surface as well as the surface optical depth unity are very corrugated. At the borders of intraspines...

  8. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    Science.gov (United States)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these

  9. Expanding the reduced-current approach for thermoelectric generators to achieve higher volumetric power density

    DEFF Research Database (Denmark)

    Wijesooriyage, Waruna Dissanayaka; Rosendahl, Lasse

    2015-01-01

    Thermoelectrics are candidate niche electrical generator devices for energy management. At present, scientists are more focused on thermoelectric (TE) material development, but the TE module design procedure is still in a relatively virgin state. One of the most well-known methods is the reduced...... current approach (RCA) for TE module design, where the same current is induced through the p and n legs of the thermoelectric generator (TEG). The current density of each element is manipulated by changing the area of both legs. This technique leads to a TE module architecture based on the most efficient...... configuration of both p and n legs. In the current paper, we apply an extended version of this technique, to show how a TE module with a higher volumetric power density can be designed, compared to the original RCA. Our studies indicate that for some combinations of p and n material properties, optima yielding...

  10. Effect of current density on distribution coefficient of solute at solid-liquid interface

    Institute of Scientific and Technical Information of China (English)

    常国威; 王自东; 吴春京; 胡汉起

    2003-01-01

    When current passes through the solid-liquid interface, the growth rate of crystal, solid-liquid interfaceenergy and radius of curvature at dendritic tip will change. Based on this fact, the theoretical relation between thedistribution of solute at solid-liquid interface and current density was established, and the effect of current on thedistribution coefficient of solute through effecting the rate of crystal growth, the solid-liquid interface energy and theradius of curvature at the dendritic tip was discussed. The results show that as the current density increases, thedistribution coefficient of solute tends to rise in a whole, and when the former is larger than about 400 A/cm2 , thelatter varies significantly.

  11. [Heart current density as the most important biological parameter of electrocution in the bathtub].

    Science.gov (United States)

    Fechner, G; Brinkmann, B; Heckmann, M

    1990-01-01

    The most important factor during electrocution in a bathtub is the amount of current flowing through a body, not the amount of voltage. A method of measurement is introduced which--under simulation of various electrical situations--provides the possibility to measure the current flowing through the heart and to determine it's direction and density in the tissue. Hereby a ranking of the different factors influencing electrocution can be set up.

  12. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from ...... indicating that in addition to linear defects also the twin boundaries are very important flux pinning sites. (c) 2005 Elsevier B.V. All rights reserved....

  13. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  14. Research on zero-sum magnetic field integral technology of optical current sensors

    Science.gov (United States)

    Li, Shen-wang; Yu, Wen-bin; Zhang, Guo-qing; Guo, Zhi-zhong; Shen, Yan

    2013-10-01

    An architecture based on the Faraday effect to minimize the crosstalk effect in optical current sensors (OCSs) is proposed. It was demonstrated that the magnetic field integral along a discrete loop can meet Ampere's law under certain conditions, and the mathematical model of zero-sum points was given. Based on it, a zero-sum OCS (ZOCS) was proposed, which consists of several OCSs forming a symmetrical discrete loop. Ideally, the currents that flow outside the ZOCS do not contribute to the measurement of the currents inside it. The experimental results showed that the magnetic crosstalk-induced errors of ZOCS were less than 0.2%, and the influence of external current was reduced one order compared with conventional OCSs.

  15. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  16. Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density.

    Science.gov (United States)

    Perissinotti, Paula P; Ethington, Elizabeth G; Cribbs, Leanne; Koob, Michael D; Martin, Jody; Piedras-Rentería, Erika S

    2014-05-01

    The actin-binding protein Kelch-like 1 (KLHL1) can modulate voltage-gated calcium channels in vitro. KLHL1 interacts with actin and with the pore-forming subunits of Cav2.1 and CaV3.2 calcium channels, resulting in up-regulation of P/Q and T-type current density. Here we tested whether endogenous KLHL1 modulates voltage gated calcium currents in cultured hippocampal neurons by down-regulating the expression of KLHL1 via adenoviral delivery of shRNA targeted against KLHL1 (shKLHL1). Control adenoviruses did not affect any of the neuronal properties measured, yet down-regulation of KLHL1 resulted in HVA current densities ~68% smaller and LVA current densities 44% smaller than uninfected controls, with a concomitant reduction in α(1A) and α(1H) protein levels. Biophysical analysis and western blot experiments suggest Ca(V)3.1 and 3.3 currents are also present in shKLHL1-infected neurons. Synapsin I levels, miniature postsynaptic current frequency, and excitatory and inhibitory synapse number were reduced in KLHL1 knockdown. This study corroborates the physiological role of KLHL1 as a calcium channel modulator and demonstrates a novel, presynaptic role.

  17. OLEDs under high current densities. Transient electroluminescence turn-on peaks and singlet-triplet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Kasemann, Daniel

    2012-02-27

    This work focuses on a better understanding of the behavior of organic light emitting devices (OLEDs) under intense electrical excitation. Attaining high exciton densities in organic semiconductors by electrical excitation is of special interest for the field of organic semiconductor lasers (OSLs). In these devices, the high singlet exciton density needed in the active layer to obtain population inversion is easily created by pulsed optical pumping, but direct electrical pumping has not been achieved yet. First, the steps necessary to achieve stable high current densities in organic semiconductors are discussed. After determining the optimal excitation scheme using single p-doped transport layers, the device complexity is increased up to full p-i-n OLEDs with their power dependent emission spectra. For this purpose, two exemplary emitter systems are chosen: the fluorescent laser dye 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) doped into Aluminum(III)bis (2-methyl-8-quinolinato)-4-phenylphenolate (Alq{sub 3}) and the efficient phosphorescent emitter system N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine (alpha-NPD) doped by Iridium(III) bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate) (Ir(MDQ){sub 2}(acac)). For pulsed excitation using 50 ns pulses and a repetition rate of 1 kHz, single 100 nm thin p- and n-doped transport layers sustain current densities of over 6 kA/cm{sup 2}. While the maximum current density decreases with increasing device thickness, the full OLEDs still sustain current densities beyond 800 A/cm{sup 2} and exhibit a continuously increasing emission intensity with increasing input power. Next, the time-resolved emission behavior of the singlet and triplet emitter device at high excitation densities is analyzed on the nanosecond scale. Here, the peak emission intensity of the phosphorescent emitter system is found to be more than eight times lower than for the singlet emitter system at comparable current

  18. Interpretation of very low frequency electromagnetic measurements in terms of normalized current density over variable topography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2016-10-01

    A 2D inversion approach is developed to interpret VLF electromagnetic measurement recorded over variable topography. To depict the variable topography accurately, an octree mesh discretization is incorporated. Subsurface structure is modeled in terms of apparent current density distribution and compared with the inversion results for actual resistivity distribution obtained using numerical techniques. The study demonstrates that the results obtained using both approaches (current density and resistivity distribution) are comparable, but due to analytical expression, current density imaging is faster. The conjugate gradient method is used to reduce the computation time and storage space when solving the matrix equations, resulting in feasible and practical imaging inversion of VLF data. The preconditioned matrix, which is determined by the distances between the blocks and observation points, has an important function in improving the resolution. In case of flat earth, preconditioned conjugate gradient inversion of data results in images that are comparable to those obtained using resistivity inversion. We also test whether topography variation in the order of skin depth is significant to incorporate topography in the modeling. The example of a topographical field VLF data inversion shows the efficacy of the presented approach to appraise the subsurface structure in terms of current density.

  19. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    2005-01-01

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both interba

  20. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both

  1. The Keldysh formalism applied to time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Gidopoulos, NI; Wilson, S

    2003-01-01

    In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this

  2. Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days.

    Science.gov (United States)

    Cannon, Rex L; Baldwin, Debora R; Shaw, Tiffany L; Diloreto, Dominic J; Phillips, Sherman M; Scruggs, Annie M; Riehl, Timothy C

    2012-06-14

    There is a growing interest for using quantitative EEG and LORETA current source density in clinical and research settings. Importantly, if these indices are to be employed in clinical settings then the reliability of these measures is of great concern. Neuroguide (Applied Neurosciences) is sophisticated software developed for the analyses of power, and connectivity measures of the EEG as well as LORETA current source density. To date there are relatively few data evaluating topographical EEG reliability contrasts for all 19 channels and no studies have evaluated reliability for LORETA calculations. We obtained 4 min eyes-closed and eyes-opened EEG recordings at 30-day intervals. The EEG was analyzed in Neuroguide and FFT power, coherence and phase was computed for traditional frequency bands (delta, theta, alpha and beta) and LORETA current source density was calculated in 1 Hz increments and summed for total power in eight regions of interest (ROI). In order to obtain a robust measure of reliability we utilized a random effects model with an absolute agreement definition. The results show very good reproducibility for total absolute power and coherence. Phase shows lower reliability coefficients. LORETA current source density shows very good reliability with an average 0.81 for ECB and 0.82 for EOB. Similarly, the eight regions of interest show good to very good agreement across time. Implications for future directions and use of qEEG and LORETA in clinical populations are discussed.

  3. Advanced Tokamak current density profiles for non-inductive Tore Supra operation

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.; Litaudon, X.; Arslanbekov, R.; Bibet, P.; Froissard, P.; Goniche, M.; Hoang, G.T.; Joffrin, E.; Moreau, D.; Peysson, Y.; Rey, G. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1995-12-31

    This document deals with the advanced Tokamak concept concerning self consistent hollow current density profiles. Several Lower Hybrid experiments performed on Tore Supra are presented: the feasibility of the constant-flux operation mode is demonstrated and a new improved confinement regime with a reversed shear has been obtained. (TEC). 12 refs., 5 figs.

  4. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  5. Behaviour of bipolar membranes at high current density. Water diffusion limitation

    NARCIS (Netherlands)

    Krol, J.J.; Jansink, M.G.J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    In this paper the behaviour of bipolar membranes at very high current density is discussed. Current–voltage curves are determined, both for the Tokuyama Soda BP-1 and the WSI Technologies bipolar membrane. The current–voltage curves are characterised by an inflection point at which a drastic

  6. High current density in light-emitting transistors of organic single crystals

    NARCIS (Netherlands)

    Takenobu, Taishi; Bisri, Satria Zulkarnaen; Takahashi, Tetsuo; Yahiro, Masayuki; Adachi, Chihaya; Iwasa, Yoshihiro

    2008-01-01

    We measured the external electroluminescence quantum efficiency (eta(ext)) in light-emitting field-effect transistors (LETs) made of organic single crystals and found that, in the ambipolar transport region, eta(ext) is not degraded up to several hundreds A/cm(2) current-density range, which is 2 or

  7. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  8. Model Predictive Control with Integral Action for Current Density Profile Tracking in NSTX-U

    Science.gov (United States)

    Ilhan, Z. O.; Wehner, W. P.; Schuster, E.; Boyer, M. D.

    2016-10-01

    Active control of the toroidal current density profile may play a critical role in non-inductively sustained long-pulse, high-beta scenarios in a spherical torus (ST) configuration, which is among the missions of the NSTX-U facility. In this work, a previously developed physics-based control-oriented model is embedded in a feedback control scheme based on a model predictive control (MPC) strategy to track a desired current density profile evolution specified indirectly by a desired rotational transform profile. An integrator is embedded into the standard MPC formulation to reject various modeling uncertainties and external disturbances. Neutral beam powers, electron density, and total plasma current are used as actuators. The proposed MPC strategy incorporates various state and actuator constraints directly into the control design process by solving a constrained optimization problem in real-time to determine the optimal actuator requests. The effectiveness of the proposed controller in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Supported by the US DOE under DE-AC02-09CH11466.

  9. Dissipative particle dynamics simulation for the density currents of polymer fluids

    Science.gov (United States)

    Li, Yanggui; Geng, Xingguo; Liu, Zhijun; Liu, Qingsheng; Ouyang, Jie

    2016-11-01

    In this work, the two-dimensional lock-exchange density currents of polymer fluids are numerically investigated using dissipative particle dynamics (DPD) at the mesoscale particle level. A modified finitely extensible nonlinear elastic (FENE) chain model is chosen to describe the polymer system, which perfectly depicts not only the elastic tension but also the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Through the model and numerical simulation, we analyze the dynamics behavior of the density currents of polymer fluids. A comparison with its Newtonian counterpart suggests that the interface between two polymer fluids is more smoothed, and the front structure is different from the Newtonian case because the Kelvin-Helmholtz instability and cleft instability are suppressed by the polymer. Besides, we also probe the influences of polymer volume concentration, chain length and extensibility on the density currents. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the inhibiting effect of polymer on the density currents becomes more significant.

  10. Contributions for the modelling of submarine cables – current density and simplified modelling of wired layers

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Ebdrup, Thomas

    2015-01-01

    This article researches two topics relevant for the development of accurate formulae able to estimate the ampacity of HVAC submarine cables. Simplified formulae for estimating the current density distribution, which can be used for theoretical analyses, are developed and compared with the exact...

  11. Investigation of the Critical Current Density of YBaCuO high-temperature Superconductor Ceramic

    OpenAIRE

    METSKHVARISHVILI, I. R.; KEKELIDZE, N. P.; METSKHVARISHVILI, M. R.

    2002-01-01

    The method of high harmonics is used to investigate penetration of low magnetic fields within the Y1Ba2Cu3O7 high-temperature superconductor ceramic. Given experimental results are explained by the modal dependencies between the value of critical current density and the magnetic induction B: jc(B) = jc(0){\\frac{{B02}} {{B02 + B2}}}.

  12. Influence of electropolishing current densities on sulfur generation at niobium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P.V., E-mail: tyagipv@ornl.gov [The Graduate University for Advanced Studies, Tsukuba, Ibaraki (Japan); Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2013-11-15

    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm{sup 2}) and low (≈30 mA/cm{sup 2}) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  13. Electrical safety in spinal cord stimulation: current density analysis by computer modeling

    NARCIS (Netherlands)

    Wesselink, W.A.; Holsheimer, J.

    1995-01-01

    The possibility of tissue damage in spinal cord stimulation was investigated in a computer modeling study. A decrease of the electrode area in monopolar stimulation resulted in an increase of the current density at the electrode surface. When comparing the modeling results with experimental data

  14. The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianni [State key Laboratory for Mechanical Behavior of Materials of Xi' an Jiaotong University, Xi' an 710014 (China); SMRC, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Zhang, Cuiping [SMRC, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Guo, Shengwu [State key Laboratory for Mechanical Behavior of Materials of Xi' an Jiaotong University, Xi' an 710014 (China); Wu, Yifang [State key Laboratory for Mechanical Behavior of Materials of Xi' an Jiaotong University, Xi' an 710014 (China); SMRC, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Li, Chengshan, E-mail: csli368@126.com [SMRC, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Zhou, Lian [State key Laboratory for Mechanical Behavior of Materials of Xi' an Jiaotong University, Xi' an 710014 (China); SMRC, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China)

    2015-12-15

    Highlights: • Ca substituting Yb element in Bi-2212 single crystal. • The critical current density of this sample is the highest without the optimal Tc value. • The Cu–O{sub 2} and Ca–O layers in pure and doping samples are observed using HRTEM. • The optimal defect density is calculated. - Abstract: Bi{sub 2}Sr{sub 2}Ca{sub 1−x}Yb{sub x}Cu{sub 2}O{sub 8+δ} (Bi-2212) single crystals with x = 0.000, 0.005, 0.010 and 0.020 have been prepared by self-flux method. The influences of Yb doping on the formation of the dislocations in the lattice structures, as well as the related current carrying capability are investigated. Due to the SQUID measurement and the Bean model calculation, the maximum critical current density (Jc) is obtained when the Yb doping content is x = 0.010, though the Tc and the carrier concentration are not in the optimal region. Based on the HRTEM analyses of the Ca–O and Cu–O{sub 2} layers, the optimal dislocation density in the Cu–O{sub 2} layers is deduced according to the number of the dislocations per unit area. Besides, the sizes of the dislocations also prove the effectiveness of Yb substitution on the enhancement of the current carrying capability in Bi-2212 single crystals.

  15. Faraday-effect polarimeter-interferometer system for current density measurement on EAST.

    Science.gov (United States)

    Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Zou, Z Y; Li, W M; Wang, Z X; Qian, J P; Yang, Y; Zeng, L; Lan, T; Wei, X C; Li, G S; Hu, L Q; Wan, B N

    2014-11-01

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10(16) m(-2) (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  16. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  17. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  18. Laboratory study of magnetic reconnection with a density asymmetry across the current sheet.

    Science.gov (United States)

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E; Chen, Li-Jen

    2014-08-29

    The effects of a density asymmetry across the current sheet on anti-parallel magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant density ratio of up to 10, the in-plane magnetic field profile is not significantly changed. On the other hand, the out-of-plane Hall magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to quadrupolar in structure with the symmetric configuration. Moreover, the ion stagnation point is shifted to the low-density side, and the electrostatic potential profile also becomes asymmetric with a deeper potential well on the low-density side. Nonclassical bulk electron heating together with electromagnetic fluctuations in the lower hybrid frequency range is observed near the low-density-side separatrix. The dependence of the ion outflow and reconnection electric field on the density asymmetry is measured and compared with theoretical expectations. The measured ion outflow speeds are about 40% of the theoretical values.

  19. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography.

    Science.gov (United States)

    Oh, Suk Hoon; Lee, Byung Il; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun

    2003-10-07

    Magnetic resonance electrical impedance tomography (MREIT) is to provide cross-sectional images of the conductivity distribution sigma of a subject. While injecting current into the subject, we measure one component Bz of the induced magnetic flux density B = (Bx, By, Bz) using an MRI scanner. Based on the relation between (inverted delta)2 Bz and inverted delta sigma, the harmonic Bz algorithm reconstructs an image of sigma using the measured Bz data from multiple imaging slices. After we obtain sigma, we can reconstruct images of current density distributions for any given current injection method. Following the description of the harmonic Bz algorithm, this paper presents reconstructed conductivity and current density images from computer simulations and phantom experiments using four recessed electrodes injecting six different currents of 26 mA. For experimental results, we used a three-dimensional saline phantom with two polyacrylamide objects inside. We used our 0.3 T (tesla) experimental MRI scanner to measure the induced Bz. Using the harmonic Bz algorithm, we could reconstruct conductivity and current density images with 82 x 82 pixels. The pixel size was 0.6 x 0.6 mm2. The relative L2 errors of the reconstructed images were between 13.8 and 21.5% when the signal-to-noise ratio (SNR) of the corresponding MR magnitude images was about 30. The results suggest that in vitro and in vivo experimental studies with animal subjects are feasible. Further studies are requested to reduce the amount of injection current down to less than 1 mA for human subjects.

  20. Explanatory models for a tactile resonance sensor system-elastic and density-related variations of prostate tissue in vitro.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2008-07-01

    Tactile sensors based on piezoelectric resonance have been adopted for medical applications. The sensor consists of an oscillating piezoelectric sensor-circuit system, and a change in resonance frequency is observed when the sensor tip contacts a measured object such as tissue. The frequency change at a constant applied force or mass load is used as a stiffness-sensitive parameter in many applications. Differential relations between force and frequency have also been used for monitoring intraocular pressure and stiffness variations in prostate tissue in vitro. The aim of this study was to relate the frequency change (Deltaf), measured force (F) and the material properties, density and elasticity to an explanatory model for the resonance sensor measurement principle and thereby to give explanatory models for the stiffness parameters used previously. Simulations of theoretical equations were performed to investigate the relation between frequency change and contact impedance. Measurements with a resonance sensor system on prostate tissue in vitro were used for experimental validation of the theory. Tissue content was quantified with a microscopic-based morphometrical method. Simulation results showed that the frequency change was dependent upon density (rho) and contact area (S) according to Deltaf proportional, variant rhoS(3/2). The experiments followed the simulated theory at small impression depths. The measured contact force followed a theoretical model with the dependence of the elastic modulus (E) and contact area, F proportional, variant ES(3/2). Measured density variations related to histological variations were statistically weak or non-significant. Elastic variations were statistically significant with contributions from stroma and cancer relative to normal glandular tissue. The theoretical models of frequency change and force were related through the contact area, and a material-dependent explanatory model was found as Deltaf proportional, variant rhoE(-1

  1. High temperature and current density induced degradation of multi-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baoming; Haque, M. A., E-mail: mah37@psu.edu [Mechanical and Nuclear Engineering, The Pennsylvania State University, 314, Leonhard Building, University Park, Pennsylvania 16802 (United States); Mag-isa, Alexander E.; Kim, Jae-Hyun [Korea Institute of Machinery and Materials, 156 Gajungbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Lee, Hak-Joo [Korea Institute of Machinery and Materials, 156 Gajungbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Center for Advanced Meta-Materials (CAMM), 156 Gajungbuk-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-10-19

    We present evidence of moderate current density, when accompanied with high temperature, promoting migration of foreign atoms on the surface of multi-layer graphene. Our in situ transmission electron microscope experiments show migration of silicon atoms at temperatures above 800 °C and current density around 4.2 × 10{sup 7} A/cm{sup 2}. Originating from the micro-machined silicon structures that clamp the freestanding specimen, the atoms are observed to react with the carbon atoms in the multi-layer graphene to produce silicon carbide at temperatures of 900–1000 °C. In the absence of electrical current, there is no migration of silicon and only pyrolysis of polymeric residue is observed.

  2. Effects of current density on preparation of grainy electrolytic manganese dioxide

    Institute of Scientific and Technical Information of China (English)

    GUO Hua-jun; ZHU Bing-quan; LI Xin-hai; ZHANG Xin-ming; WANG Zhi-xing; PENG Wen-jie; LIU Lu-ping

    2005-01-01

    Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/L H2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm 2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 μm.

  3. Transport, deposition, and liftoff in laboratory density currents composed of hot particles in air

    Science.gov (United States)

    Andrews, B. J.; Manga, M.

    2010-12-01

    Understanding the dynamics of transport, deposition, and air entrainment in pyroclastic density currents (PDCs) is required for accurate predictions of future current behaviors and interpretations of ancient deposits, but directly observing the interiors of natural PDCs is effectively impossible. We model PDCs with scaled, hot, particle-laden density currents generated in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. Comparison of relevant scaling between our experiments and natural PDCs indicates that we are accurately capturing much of the dynamics of dilute PDCs: * Reynolds numbers of our experiments are lower than natural currents, 10^3 compared to 10^6, but still fully turbulent; * Densimetric and Thermal Richardson numbers are of O(1) in both natural and modeled currents; * Stokes and settling numbers for particles in the experiments fall within the expected range for natural PDCs. Conditions within the tank are monitored with temperature and humidity probes. Experiments are illuminated with sheet lighting, and recorded with high-definition video cameras. In general, currents have average velocities of 10-20 cm/s, initial thicknesses of 10-20 cm (although thickness greatly increases as currents entrain and expand air), and run out or lift off distances of 3-5 m. Large Kelvin-Helmholtz type eddies usually form along the top of the current immediately behind the head; these vortices are similar in size to the total current thickness. In currents that lift off, the distal current end typically retreats with time. Preliminary results suggest that lift off distance decreases with increasing thermal Richardson number. Analysis of turbulent structures indicates that the current heads are dominated by large coherent structures with length scales, L, comparable to the current thickness. Within 5-10 L of the current fronts, sequences of similar large eddies often occur. At greater distances behind the current fronts, turbulent structures become smaller and less

  4. Role of head of turbulent 3-D density currents in mixing during slumping regime

    Science.gov (United States)

    Bhaganagar, Kiran

    2017-02-01

    A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that

  5. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  6. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  7. Modeling and Controller Design of PV Micro Inverter without Using Electrolytic Capacitors and Input Current Sensors

    Directory of Open Access Journals (Sweden)

    Faa Jeng Lin

    2016-11-01

    Full Text Available This paper outlines the modeling and controller design of a novel two-stage photovoltaic (PV micro inverter (MI that eliminates the need for an electrolytic capacitor (E-cap and input current sensor. The proposed MI uses an active-clamped current-fed push-pull DC-DC converter, cascaded with a full-bridge inverter. Three strategies are proposed to cope with the inherent limitations of a two-stage PV MI: (i high-speed DC bus voltage regulation using an integrator to deal with the 2nd harmonic voltage ripples found in single-phase systems; (ii inclusion of a small film capacitor in the DC bus to achieve ripple-free PV voltage; (iii improved incremental conductance (INC maximum power point tracking (MPPT without the need for current sensing by the PV module. Simulation and experimental results demonstrate the efficacy of the proposed system.

  8. Comparison between the magnetic and transport critical current densities in high critical current density melt-textured yttrium barium copper-oxide

    Science.gov (United States)

    Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.

    1991-01-01

    Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.

  9. A Novel Transient Fault Current Sensor Based on the PCB Rogowski Coil for Overhead Transmission Lines.

    Science.gov (United States)

    Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen

    2016-05-21

    The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB) Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB) Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices.

  10. A Novel Transient Fault Current Sensor Based on the PCB Rogowski Coil for Overhead Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yadong Liu

    2016-05-01

    Full Text Available The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices.

  11. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current

    Science.gov (United States)

    Derrida, Bernard

    2007-07-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.

  12. Simulation of Eddy-Current Corrosion Detection Using a Sensor Array

    Science.gov (United States)

    Katyal, V.; Bowler, J. R.

    2003-03-01

    A computer simulation has been developed to evaluate eddy-current probes containing magnetic field sensor arrays for the detection and evaluation of hidden corrosion. The simulation is used to assess probes that incorporate magneto-resistive or Hall devices in a closely-spaced, linear array. These probes will allow rapid data acquisition over a track width determined by the length of the array. The benefit of the simulation is that adjustments to the virtual probe parameters are easily made allowing improvements in sensitivity, imaging capability and resolution. A number of probe designs have been studied in this way including the "racetrack" probe.

  13. Discriminating hand gesture motor imagery tasks using cortical current density estimation.

    Science.gov (United States)

    Edelman, Bradley; Baxter, Bryan; He, Bin

    2014-01-01

    Current EEG based brain computer interface (BCI) systems have achieved successful control in up to 3 dimensions; however the current paradigm may be unnatural for many rehabilitative and recreational applications. Therefore there is a great need to find motor imagination (MI) tasks that are realistic for output device control. In this paper we present our results on classifying hand gesture MI tasks, including right hand flexion, extension, supination and pronation using a novel EEG inverse imaging approach. By using both temporal and spatial specificity in the source domain we were able to separate MI tasks with up to 95% accuracy for binary classification of any two tasks compared to a maximum of only 79% in the sensor domain.

  14. Use of catalytic anodes for zinc electrowinning at high current densities from purified electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Bestetti, M.; Ducati, U. [Polytechnic of Milan, Dept. of Applied Physical Chemistry, Milan (Italy); Kelsall, G.H. [T.H. Huxley School, Imperial College, London (United Kingdom); Li, G. [Cominco Research, Cominco Limited, Trail, British Columbia (Canada); Guerra, E. [Univ. of British Columbia, Dept. of Metals and Materials Engineering, Victoria, British Columbia (Canada)

    2001-07-01

    Substantial energy savings are possible in zinc electrowinning by substituting catalytic oxygen evolution anodes for conventional lead-silver anodes. However, it is well known that the harmful effects of impurities usually present in zinc electrolyte solutions limit the service life of catalytic anodes, though their purification by solvent extraction could obviate such problems. Laboratory-scale zinc deposition experiments, with synthetic electrolytes have been performed to determine the effects of current density, temperature, and electrolyte composition on cell voltages and current efficiencies. These data sets were used in an assessment of the optimum design parameters of the tank house. Zinc electrowinning at high current densities (higher than 2000 A/m{sup 2}) using catalytic anodes and purified solutions (e.g., by solvent extraction), is proposed as an alternative to the conventional process, which is based on lead-silver anodes working at relatively low current densities (ca. 500 A/m{sup 2}). Finally, a system for continuous deposition and stripping of the metal is discussed. (author)

  15. Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector

    Directory of Open Access Journals (Sweden)

    Batool Eneaze B. Al-Jumaili

    2016-01-01

    Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.

  16. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    Science.gov (United States)

    Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  17. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  18. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  19. Towards time-dependent current-density-functional theory in the non-linear regime.

    Science.gov (United States)

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  20. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition

    Science.gov (United States)

    Gurioli, L.; Zanella, E.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.

  1. The current density in quantum electrodynamics in time-dependent external potentials and the Schwinger effect

    CERN Document Server

    Zahn, Jochen

    2015-01-01

    In the framework of quantum electrodynamics (QED) in external potentials, we introduce a method to compute the time-dependence of the expectation value of the current density for time-dependent homogeneous external electric fields. We apply it to the so-called Sauter pulse. For late times, our results agree with the asymptotic value due to electron-positron pair production. For sub-critical peak field strengths, or results agree very well with the general expression derived by Serber for the linearization in the external field. In particular, the expectation value of the current density at intermediate times can be much greater than at asymptotic times. We comment on consequences of these findings for recent proposals to test the Schwinger effect with high intensity lasers using processes at intermediate times.

  2. Two-dimensional simulations of temperature and current-density distribution in electromigrated structures

    Science.gov (United States)

    Kießig, Birgit; Schäfer, Roland; von Löhneysen, Hilbert

    2014-01-01

    We report on the application of a feedback-controlled electromigration technique for the formation of nanometre-sized gaps in mesoscopic gold wires and rings. The effect of current density and temperature, linked via Joule heating, on the resulting gap size is investigated. Our experiments include in situ measurements of the evolution of the electrical resistance and of the structure of the device during electromigration. Experimentally, a good thermal coupling to the substrate turned out to be crucial to reach electrode spacings below 10 nm and to avoid overall melting of the nanostructures. This finding is supported by numerical calculations of the current-density and temperature profiles for structure layouts subjected to electromigration. The numerical method can be used for optimizing the layout so as to predetermine the location where electromigration leads to the formation of a gap.

  3. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  4. Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters

    Directory of Open Access Journals (Sweden)

    Zbigniew A. Styczynski

    2013-07-01

    Full Text Available This paper presents in situ measurements of a newly developed current density measurement system for proton exchange membrane fuel cells (PEMFC. While the functional principle and technical evaluation of the measurement system were presented in a previous paper, this paper analyzes the influence of various operation parameters, including multiple start-stop operation, at the anode, cathode and cooling locations on the distribution and long-term development of the current density. The system was operated for 500 h over two years with long periods of inactivity between measurements. The measurement results are evaluated and provide additional information on how to optimize the operation modes of fuel cells, including the start and stop of such systems as well as the water balance.

  5. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    Science.gov (United States)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  6. Current densities of thin filament MgB2/Ti/GlidCop® wire

    Science.gov (United States)

    Kováč, P.; Hušek, I.; Melišek, T.; Kopera, L.

    2011-10-01

    Fine-filamentary MgB2/Ti/GlidCop wire has been produced by an in situ process. Hydrostatic extrusion, drawing and two-axis rolling were used for wire deformation up to the size of 0.2 × 0.2 mm2. An averaged filament size of 7.6-14 µm was obtained for two-axis rolled wire and tape, which are the smallest MgB2 filaments known so far. Very short annealing periods (3-7 min) were used for the thinnest filaments, resulting in a critical current density of ≈12 000 A cm - 2 at 8 T and 4.2 K. The results presented demonstrate the ability to prepare uniform ≈10 µm size and high current density filamentary MgB2 wires in nonmagnetic sheaths, which can be applied for DC and AC coils.

  7. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  8. Predicting size effect on diffusion-limited current density of oxygen reduction by copper wire

    Institute of Scientific and Technical Information of China (English)

    LU Yonghong; XU Haibo; WANG Jia; ZHONG Lian

    2011-01-01

    The size effect of copper wire radius (0.04鈥?.82 mm) on the diffusion-limited current density of an oxygen reduction reaction in stagnant simulated seawater (naturally aerated 0.5 mol/L NaCl) is investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) and compared with the results obtained in 0.5 mol/L H2SO4. In the oxygen diffusion-limited range, size effect is found to occur independent of electrolytes, which is attributed to non-linear diffusion. Additionally, to satisfy application in a marine setting, an empirical equation correlating oxygen diffusion-limited current density to copper wire radius is proposed by fitting experimental data.

  9. Strong critical current density enhancement in NiCu/NbN superconducting nanostripes for optical detection

    Science.gov (United States)

    Marrocco, N.; Pepe, G. P.; Capretti, A.; Parlato, L.; Pagliarulo, V.; Peluso, G.; Barone, A.; Cristiano, R.; Ejrnaes, M.; Casaburi, A.; Kashiwazaki, N.; Taino, T.; Myoren, H.; Sobolewski, Roman

    2010-08-01

    We present measurements of ferromagnet/superconductor (NiCu/NbN) and plain superconducting (NbN) nanostripes with the linewidth ranging from 150 to 300 nm. The NiCu (3 nm)/NbN (8 nm) bilayers, as compared to NbN (8 nm), showed a up to six times increase in their critical current density, reaching at 4.2 K the values of 5.5 MA/cm2 for a 150 nm wide nanostripe meander and 12.1 MA/cm2 for a 300 nm one. We also observed six-time sensitivity enhancement when the 150 nm wide NiCu/NbN nanostripe was used as an optical detector. The strong critical current enhancement is explained by the vortex pinning strength and density increase in NiCu/NbN bilayers and confirmed by approximately tenfold increase in the vortex polarizability factor.

  10. Real-time identification of the current density profile in the JET Tokamak: method and validation

    CERN Document Server

    Mazon, Didier; Boulbe, Cédric; Faugeras, Blaise; Boboc, A; Brix, M; De Vries, P; Sharapov, S; Zabeo, L

    2009-01-01

    The real-time reconstruction of the plasma magnetic equilibrium in a Tokamak is a key point to access high performance regimes. Indeed, the shape of the plasma current density profile is a direct output of the reconstruction and has a leading effect for reaching a steady-state high performance regime of operation. In this paper we present the methodology followed to identify numerically the plasma current density in a Tokamak and its equilibrium. In order to meet the real-time requirements a C++ software has been developed using the combination of a finite element method, a nonlinear fixed point algorithm associated to a least square optimization procedure. The experimental measurements that enable the identification are the magnetics on the vacuum vessel, the interferometric and polarimetric measurements on several chords and the motional Stark effect. Details are given about the validation of the reconstruction on the JET tokamak, either by comparison with ?off-line' equilibrium codes or real time software ...

  11. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    Science.gov (United States)

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  12. New theorem of classical electromagnetism: equilibrium magnetic field and current density are zero inside ideal conductors

    CERN Document Server

    Fiolhais, Miguel C N; Providencia, C; Nordmark, Arne B

    2010-01-01

    We prove a theorem on the magnetic energy minimum in a system of perfect, or ideal, conductors. It is analogous to Thomson's theorem on the equilibrium electric field and charge distribution in a system of conductors. We first prove Thomson's theorem using a variational principle. Our new theorem is then derived by similar methods. We find that magnetic energy is minimized when the current distribution is a surface current density with zero interior magnetic field; perfect conductors are perfectly diamagnetic. The results agree with currents in superconductors being confined near the surface. The theorem implies a generalized force that expels current and magnetic field from the interior of a conductor that loses its resistivity. Examples of solutions that obey the theorem are presented.

  13. Influence of Fast Neutron Irradiation on Critical Current Densities of Bi-2223/Ag Tape

    Institute of Scientific and Technical Information of China (English)

    Duan Zhenzhong

    2004-01-01

    Experimental results on the magnetic field behavior of the critical current in silver sheathed Bi-2223 tapes are presented. The experiments consist of transport and magnetic measurements in a wide temperature range and in external magnetic field up to 6 T. Significant enhancement of the intragrain critical current densities Jc are observed after irradiation with fast neutron. This is attributed to an improvement of flux pinning capability by the neutron induced defects, but the weak link structure is somewhat damaged as evidenced by the small degradation of transport critical current at low field. According to the measurement of remanent magnetic moment before and after irradiation with fast neutron, the connectivity in Bi-2223 tapes is reduced by 50% after irradiated to a fluence of 2 × 1021 m-2, which resulted in the critical currents degradated by a factor of 10%.

  14. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    Directory of Open Access Journals (Sweden)

    Elsa Vaz Pereira

    2009-10-01

    Full Text Available This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 ºC has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  15. A galvanic sensor for monitoring the corrosion condition of the concrete reinforcing steel: relationship between the galvanic and the corrosion currents.

    Science.gov (United States)

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, I(gal), and the corrosion currents, I(corr), estimated from the polarization resistance, R(p). Sensors have been tested in saturated Ca(OH)(2) aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O(2). For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the R(p) values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the I(gal), indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  16. Accurate Prediction of Transimpedances and Equivalent Input Noise Current Densities of Tuned Optical Receiver Front Ends

    DEFF Research Database (Denmark)

    Liu, Qing Zhong

    1991-01-01

    Novel analytical expressions have been derived for calculating transimpedances and equivalent input noise current densities of five tuned optical receiver front ends based on PIN diode and MESFETs or HEMTs. Miller's capacitance, which has been omitted in previous studies, has been taken into acco...... into account. The accuracy of the expressions has been verified by using Touchstone simulator. The agreement between the calculated and simulated front end performances is very good....

  17. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    Science.gov (United States)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m-2 & 3.09  ±  0.04 W m-2 and 17.7  ±  0.03 A m-2 & 7.72  ±  0.09 W m-2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  18. Non equilibrium steady states: fluctuations and large deviations of the density and of the current

    OpenAIRE

    Derrida, B.

    2007-01-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow to calculate the fluctuations and large deviations of the density and of the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (fo...

  19. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    Science.gov (United States)

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies.

  20. Divergence of the axial current and fermion density in Gross-Neveu models

    CERN Document Server

    Karbstein, Felix

    2007-01-01

    The divergence of the axial current is used to relate the spatial derivative of the fermion density to the bare fermion mass and scalar/pseudoscalar condensates in 1+1 dimensional Gross-Neveu models. This serves as a novel test of known results, to explain simple features of the continuous chiral model and to resolve a conflict concerning the assignment of baryon number to certain multi-fermion bound states.

  1. Influence of the anodic etching current density on the morphology of the porous SiC layer

    Directory of Open Access Journals (Sweden)

    Anh Tuan Cao

    2014-03-01

    Full Text Available In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.

  2. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    Science.gov (United States)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed.

  3. Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

    Directory of Open Access Journals (Sweden)

    Gian Carlo Gazzadi

    2015-06-01

    Full Text Available Suspended nanowires (SNWs have been deposited from Co–carbonyl precursor (Co2(CO8 by focused electron beam induced deposition (FEBID. The SNWs dimensions are about 30–50 nm in diameter and 600–850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC and hexagonal close-packed (HCP Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM analysis and by energy-dispersive X-ray (EDX spectroscopy, respectively. Current (I–voltage (V measurements with current densities up to 107 A/cm2 determine different structural transitions in the SNWs, depending on the I–V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 107 A/cm2. The role played by resistive heating and electromigration in these transitions is discussed.

  4. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    Science.gov (United States)

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  5. Energy transportation via MITL by the linear current flow density up to 7 MA/cm

    Science.gov (United States)

    Korolev, V. D.; Bakshaev, Yu. L.; Bartov, A. V.; Blinov, P. I.; Bryzgunov, V. A.; Chernenko, A. S.; Dan'ko, S. A.; Kalinin, Yu. G.; Kingsep, A. S.; Kazakov, E. D.; Smirnov, V. P.; Smirnova, E. A.; Ustroev, G. I.

    2006-10-01

    The transmission properties of the magnetically self-insulated vacuum transporting line (MITL) were studied on the S-300 pulsed power machine (3 MA, 100 ns) at the high linear current flow density up to dI/db = 7 MA/cm. Experiments were carried out with the short line sections with 10 ÷ 15 mm length and 3 ÷ 5 mm vacuum gap. For measuring of the plasma parameters, the frame ICT photography with the nanosecond temporal resolution in the SXR range and ICT (Image Converter Tube) chronography in visible range were used. The X-ray radiation in various ranges was recorded by the XRD with thin filters (SXR) and by the semiconductor detectors (HXR). The information about current transmission efficiency was obtained by means of magnetic loops and low-inductance shunt. It was determined that dense plasma arose on both anode and cathode when the linear current flow density was low enough, dI/db ≤ 1 MA/cm. A dense plasma moves across the vacuum gap with the velocity (1 ÷ 2) × 106 cm/s. By recording the current and hard X-ray radiation it was found that electron losses in the current front did not exceed 10 ÷ 100 kA. Under strong magnetization of electrons r H = mvc/eB Conceptual Project of fusion reactor on the base of fast Z-pinch has been brought about.

  6. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; von Goeler, S.; Bernabei, S.; Kaita, R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Rimini, F. [JET Joint Undertaking, Abingdon (United Kingdom)

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ``hollow`` profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m{sup 2}/sec.

  7. Single-current-sensor-based active front-end-converter-fed four quadrants induction motor drive

    Indian Academy of Sciences (India)

    JOSEPH KIRAN BANDA; AMIT KUMAR JAIN

    2017-08-01

    Induction motor (IM) is a workhorse of the industry, whose dynamics can be modified close to that of a separately excited DC machine by field-oriented control technique, which is commonly known as vector control of induction machine. This paper presents a complete performance of the field-oriented control of IM drive in all four quadrants with a single-current-sensor-based active front end converter whose work is to regulate DC link voltage, draw pure sinusoidal currents at unity power factor and to facilitate bi-directional power flow between the grid and the drive. The entire system is completely modelled in MATLAB/SIMULINK and the results are discussed in detail. The vector control analogy of the back to back converters is highlighted along with the experimental results of field-oriented control of induction machine using a dsPIC30F6010A digital signal controller.

  8. Limiting current density in bis(trifluoromethylsulfonyl)amide-based ionic liquid for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun-Woo; Yoshida, Kazuki; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2011-02-15

    The physicochemical and electrochemical properties of the binary ionic liquid (IL), lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) dissolved in N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)amide (DEMETFSA), were investigated. The ionic conductivity of the binary IL decreased with an increase in LiTFSA concentration. The self-diffusion coefficients of Li{sup +}, DEME{sup +}, and TFSA{sup -} dissolved in the IL were measured by using the pulsed-field-gradient spin-echo (PGSE) NMR method. The self-diffusion coefficient of each ionic species was also found to decrease with increasing concentration of LiTFSA. The limiting current density in the IL electrolyte was evaluated by chronoamperometry using symmetric Li vertical stroke IL vertical stroke Li cell. The results suggest that the diffusion process of Li(I) in the IL dominates the limiting current density in the cell. The highest limiting current density is achieved at a concentration of 0.64 mol dm{sup -3} of LiTFSA. (author)

  9. Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Góral, Anna, E-mail: a.goral@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Nowak, Marek [Institute of Non-Ferrous Metals Gliwice, Light Metals Division Skawina, 19 Pilsudskiego St., 32-050 Skawina (Poland); Berent, Katarzyna; Kania, Bogusz [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland)

    2014-12-05

    Highlights: • Current density of the electrodeposition affects the incorporation of Al{sub 2}O{sub 3} in Ni matrix. • Ni/Al{sub 2}O{sub 3} composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al{sub 2}O{sub 3} coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al{sub 2}O{sub 3} nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al{sub 2}O{sub 3} particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix.

  10. On the study of phase formation and critical current density in superconducting MgB2

    Indian Academy of Sciences (India)

    Suchitra Rajput; Sujeet Chaudhary; Subhash C Kashyap; Pankaj Srivastava

    2006-06-01

    Superconducting bulk MgB2 samples have been synthesized by employing sintering technique without using any additional process steps, generally undertaken in view of the substantial loss of magnesium, during heat treatment. Starting with Mg rich powders having different atomic ratios of Mg : B, as against the nominally required Mg : B = 1 : 2 ratio, we have obtained superconducting MgB2 samples of different characteristics. The effect of excess Mg in the starting mixture and processing temperature on the phase-formation, transition temperature (C) and critical current density (C) have been investigated by electrical transport and a.c. susceptibility measurements. The X-ray diffraction and X-ray photoelectron spectroscopic analyses of MgB2 bulk samples have been carried out to understand the role of excess Mg and the effect of processing temperature. It is established that MgB2 samples with high critical current density can be synthesized from a Mg rich powder having Mg : B in 2 : 2 ratio, at temperatures around 790°C. Critical current density has been found to vary systematically with processing temperature.

  11. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  12. Iontophoretic Permeation of Lisinopril at Different Current Densities and Drug Concentrations

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-08-01

    Full Text Available Purpose: The purpose of the present work was to assess iontophoretic permeation of Lisinopril at different current densities and concentrations for development of patient-controlled active transdermal system. Methods: In vitro iontophoretic transdermal delivery of Lisinopril across the pigskin was investigated at three different drug concentrations and three different current densities (0.25- 0.75 mA/cm2 in the donor cell of the diffusion apparatus, using cathodal iontophoresis along with the passive controls. Results: For passive permeation, the steady state flux significantly increased with the increasing of donor drug concentration. At all concentration levels, iontophoresis considerably increased the permeation rate compared to passive controls. Iontophoretic transport of Lisinopril was to be found increase with current densities. Flux enhancement was highest at the lowest drug load and lowest at the highest drug load. Conclusion: The obtained results indicate that permeation rate of Lisinopril across the pigskin can be considerably enhanced, controlled or optimized by the use of Iontophoresis technique.

  13. Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses

    Directory of Open Access Journals (Sweden)

    Mali Vyacheslav

    2011-01-01

    Full Text Available Abstract We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification. PACS: 81; 81.05.Bx; 81.05.Kf.

  14. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  15. High-Density Fiber Optical Sensor and Instrumentation for Gas Turbine Operation Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Hua Xia

    2013-01-01

    Full Text Available Gas turbine operation control is normally based on thermocouple-measured exhaust temperatures. Due to radiation shielding and bulky package, it is difficult to provide high spatial resolution for measuring can-to-can combustion temperature profile at the exhaust duct. This paper has demonstrated that wavelength-division-multiplexing-based fiber Bragg grating sensors could provide high spatial resolution steady and dynamic temperature measurements. A robust sensor package can be designed with either circumferential sensing cable or radial sensing rake for quasi-distributing multiple fiber sensors in the gas turbine environment. The field validations have demonstrated that quasi-distributed fiber sensors have not only demonstrated its temperature measurement accuracy compared to existing thermocouple sensors but also shown its unique dynamic response amplitude and power spectra that could be utilized for gas turbine transient operation condition monitoring and diagnostics.

  16. Visinin-like neuronal calcium sensor proteins regulate the slow calcium-activated afterhyperpolarizing current in the rat cerebral cortex

    Science.gov (United States)

    Villalobos, Claudio; Andrade, Rodrigo

    2010-01-01

    Many neurons in the nervous systems express afterhyperpolarizations that are mediated by a slow calcium-activated potassium current. This current shapes neuronal firing and is inhibited by neuromodulators, suggesting an important role in the regulation of neuronal function. Surprisingly, very little is currently known about the molecular basis for this current or how it is gated by calcium. Recently, the neuronal calcium sensor protein hippocalcin was identified as a calcium sensor for the slow afterhyperpolarizing current in the hippocampus. However, while hippocalcin is very strongly expressed in the hippocampus, this protein shows a relatively restricted distribution in the brain. Furthermore, the genetic deletion of this protein only partly reduces the slow hyperpolarizing current in hippocampus. These considerations question whether hippocalcin can be the sole calcium sensor for the slow afterhyperpolarizing current. Here we use loss of function and overexpression strategies to show that hippocalcin functions as a calcium sensor for the slow afterhyperpolarizing current in the cerebral cortex, an area where hippocalcin is expressed at much lower levels than in hippocampus. In addition we show that neurocalcin δ, but not VILIP-2, can also act as a calcium sensor for the slow afterhyperpolarizing current. Finally we show that hippocalcin and neurocalcin δ both increase the calcium sensitivity of the afterhyperpolarizing current but do not alter its sensitivity to inhibition by carbachol acting through the Gαq-11-PLCβ signaling cascade. These results point to a general role for a subgroup of visinin-like neuronal calcium sensor proteins in the activation of the slow calcium-activated afterhyperpolarizing current. PMID:20980592

  17. Ultrasonic density sensor for liquids - its potentials and limits; Ultraschall-Dichtesensor fuer Fluessigkeiten - Eigenschaften und Grenzen

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, N.; Schoenfelder, G.; Hauptmann, P. [Magdeburg Univ. (Germany)

    2002-03-01

    On-line density measurement of liquids is a requirement in many applications of chemical, pharmaceutical, and food industry. A newly developed ultrasonic sensor gives an alternative to existing Coriolis and vibrating tube measurement principles. This sensor features advantages especially for large tube diameters and for media with gas bubbles or temperature gradients. As a result the investigations show a good long term stability and good dynamic properties. Our study includes tests of the chemical resistance and investigation of influences of sediments, thin layers on the sensor surface, and gas bubbles in the liquid. (orig.) [German] Die On-line-Dichtebestimmung von fluessigen Medien ist wichtig fuer die Automatisierung von Prozessen in der chemischen, pharmazeutischen und Lebensmittelindustrie. Ein neu entwickelter Ultraschallsensor bietet eine Alternative zu den hauptsaechlich am Markt vorhandenen Coriolis- oder Biegeschwingermessprinzipien. Besonders bei groesseren Rohrquerschnitten und dem Auftreten von Gasblasen sowie starken Temperaturgradienten im fliessenden Medium werden die Vorteile dieses Sensors sichtbar. Die Untersuchungen zeigen, dass der Sensor neben einer guten Langzeitstabilitaet auch gute dynamische Eigenschaften aufweist. Betrachtungen zur chemischen Bestaendigkeit und zum Einfluss von Ablagerung und Gasblasen runden die Untersuchung der Eigenschaften ab. (orig.)

  18. Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ashutosh; Bhattacharya, Sumit; Das, Siddhartha; Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.in

    2014-01-30

    Bulk polycrystalline tin films have been processed by pulse electrodeposition technique from a simple solution containing triammonium citrate and stannous chloride. The cathodic investigations have been carried out by galvanostatic methods. As deposited samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis of the deposited films shows microcrystalline grains having β-Sn form. The surface morphology is very rough at lower current density, but becomes smooth at higher current density, and exhibits pyramid type morphology at all the current densities. The effect of current density on microhardness, melting behavior, and electrical resistivity are also reported here.

  19. Effect of a pinning field on the critical current density for current-induced domain wall motion in perpendicular magnetic anisotropy nanowires.

    Science.gov (United States)

    Ooba, Ayaka; Fujimura, Yuma; Takahashi, Kota; Komine, Takashi; Sugita, Ryuji

    2012-09-01

    In this study, the effect of a pinning field on the critical current density for current-induced domain wall motion in nanowires with perpendicular magnetic anisotropy was investigated using micromagnetic simulations. In order to estimate the pinning field in notched nanowires, we conducted wall energy calculations for nanowires with various saturation magnetizations. The pinning field increased as the notch size increased. The pinning field decreased as the saturation magnetization decreased. As a result, the decreased in the pinning field causes the reduction of the critical current density. Therefore, a significant reduction of the critical current density can be obtained by decreasing the saturation magnetization, even if wall pinning occurs.

  20. Power lateral pnp transistor operating with high current density in irradiated voltage regulator

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2013-01-01

    Full Text Available The operation of power lateral pnp transistors in gamma radiation field was examined by detection of the minimum dropout voltage on heavily loaded low-dropout voltage regulators LM2940CT5, clearly demonstrating their low radiation hardness, with unacceptably low values of output voltage and collector-emitter voltage volatility. In conjunction with previous results on base current and forward emitter current gain of serial transistors, it was possible to determine the positive influence of high load current on a slight improvement of voltage regulator LM2940CT5 radiation hardness. The high-current flow through the wide emitter aluminum contact of the serial transistor above the isolation oxide caused intensive annealing of the positive oxide-trapped charge, leading to decrease of the lateral pnp transistor's current gain, but also a more intensive recovery of the small-signal npn transistors in the control circuit. The high current density in the base area of the lateral pnp transistor immediately below the isolation oxide decreased the concentration of negative interface traps. Consequently, the positive influence of the reduced concentration of the oxide-trapped charge on the negative feedback reaction circuit, together with the favourable effect of reduced interface traps concentration, exceeded negative influence of the annealed oxide-trapped charge on the serial pnp transistor's forward emitter current gain.

  1. Persistent current and Drude weight of one-dimensional interacting fermions on imperfect ring from current lattice density functional theory

    Science.gov (United States)

    Akande, Akinlolu; Sanvito, Stefano

    2016-11-01

    We perform a numerical study of interacting one-dimensional Hubbard rings with a single impurity potential and pierced by a magnetic flux. Our calculations are carried out at the level of current lattice density functional theory (CLDFT) for the Hubbard model and compared to known results obtained in the thermodynamical limit from the Bethe ansatz. In particular, we investigate the effects of disorder and Coulomb interaction on the persistent current (PC) and the Drude weight. It is found that CLDFT is able to accurately describe qualitative and quantitative features of these ground state properties in the presence of disorder and electronic interaction. When the impurity potential is switched off, the CLDFT approach describes well the velocity of the Luttinger liquid excitations as a function of both interaction strength and electron filling. Then, when the impurity scattering potential is finite, we find the PC to vanish as {{L}-{{α\\text{B}}-1}} for large L and independent on the strength of the scattering potential, in good agreement with Luttinger liquid theory.

  2. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.

    Science.gov (United States)

    Brady, Gerald J; Way, Austin J; Safron, Nathaniel S; Evensen, Harold T; Gopalan, Padma; Arnold, Michael S

    2016-09-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.

  3. Amplification of current density modulation in a FEL with an infinite electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  4. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    Science.gov (United States)

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  5. Analysis of nanosecond breaking of a high-density current in SOS diodes

    Science.gov (United States)

    Grekhov, I. V.; Lyublinskii, A. G.; Smirnova, I. A.

    2015-11-01

    Effect of a sharp (nanosecond) breaking of the reverse current with a density on the order of 103-104 A/cm2 in a silicon diode upon switching from direct to reverse bias voltage (so-called silicon opening switch, or SOS effect) is widely used in nanosecond technologies of gigawatt powers. For detailed analysis of the SOS effect, we constructed a special setup with small stray inductance, which makes it possible to test single SOS diodes with a working area of 1-2 mm2 in a wide range of current densities. Our experiments show, in particular, that the numerical model of the SOS effect developed at the Institute of Electrophysics, Ural Branch, Russian Academy of Sciences successfully described the experimental results. It is also shown that the charge extracted from the diode structure by the reverse current exceeds the charge introduced by a direct current pulse by not more than 10%, indicating a relatively small role of ionization processes. The possibility to carry out experiments on single samples with a small surface area allows us to study the SOS effect and considerably facilitates investigations aimed at the perfection of the design of SOS diodes.

  6. Micromagnetic model for studies on Magnetic Tunnel Junction switching dynamics, including local current density

    Energy Technology Data Exchange (ETDEWEB)

    Frankowski, Marek, E-mail: mfrankow@agh.edu.pl; Czapkiewicz, Maciej; Skowronski, Witold; Stobiecki, Tomasz

    2014-02-15

    We present a model introducing the Landau–Lifshitz–Gilbert equation with a Slonczewski's Spin-Transfer-Torque (STT) component in order to take into account spin polarized current influence on the magnetization dynamics, which was developed as an Object Oriented MicroMagnetic Framework extension. We implement the following computations: magnetoresistance of vertical channels is calculated from the local spin arrangement, local current density is used to calculate the in-plane and perpendicular STT components as well as the Oersted field, which is caused by the vertical current flow. The model allows for an analysis of all listed components separately, therefore, the contribution of each physical phenomenon in dynamic behavior of Magnetic Tunnel Junction (MTJ) magnetization is discussed. The simulated switching voltage is compared with the experimental data measured in MTJ nanopillars.

  7. Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    WU Gang; HUANG Cong-xin; TANG Yan-hong; JIANG Hong; WAN Jun; CHEN Hui; XIE Qiang; HUANG Zheng-rong

    2005-01-01

    Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice. Chronic atrial fibrillation (CAF) is associated with ionic remodeling. However, little is known about the activity of ATP-sensitive potassium current (IK,ATP) during CAF. So we studied the changes of IK,ATP density and allosteric modulation of ATP-sensitivity by intracellular pH during CAF.Methods Myocardium samples were obtained from the right auricular appendage of patients with rheumatic heart disease complicated with valvular disease in sinus rhythm (SR) or CAF. There were 14 patients in SR group and 9 patients in CAF group. Single atrial cells were isolated using an enzyme dispersion technique. IK,ATP was recorded using the whole-cell and inside-out configuration of voltage-clamp techniques. In whole-cell model, myocytes of SR and CAF groups were perfused with simulated ischemic solution to elicit IK,ATP. In inside-out configuration, the internal patch membranes were exposed to different ATP concentrations in pH 7.4 and 6.8.Results Under simulated ischemia, IK,ATP current density of CAF group was significantly higher than in SR group [(83.5±10.8) vs. (58.7±8.4) pA/pF, P<0.01]. IK,ATP of the two groups showed ATP concentration-dependent inhibition. The ATP concentration for 50% current inhibition (IC50) for the SR group was significantly different in pH 7.4 and pH 6.8 (24 vs. 74 μmol/L, P<0.01). The IC50 did not change significantly in CAF group when the pH decreased from 7.4 to 6.8.Conclusions During CAF, IK,ATP current density was increased and its allosteric modulation of ATP-sensitivity by intracellular pH was diminished.

  8. Current Density-Functional Theory using meta-Generalized Gradient Exchange--Correlation Functionals

    CERN Document Server

    Furness, James W; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-01-01

    We present the self-consistent implementation of current-dependent (hybrid) meta generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn--Sham current density-functional theory (KS-CDFT). A unique feature of the non-perturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. ($\\sim 235000$T) in strength. CDFT functionals based on the TPSS and B98 forms are investigated and their performance is assessed by comparison with accurate CCSD(T) data. In the weak field regime magnetic properties such as magnetizabilities and NMR shielding constants show modest but systematic improvements over GGA functionals. However, in strong field regime the mGGA based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T...

  9. Three-Dimensional Nanometer Features of Direct Current Electrical Trees in Low-Density Polyethylene.

    Science.gov (United States)

    Pallon, Love K H; Nilsson, Fritjof; Yu, Shun; Liu, Dongming; Diaz, Ana; Holler, Mirko; Chen, Xiangrong R; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2017-03-08

    Electrical trees are one reason for the breakdown of insulating materials in electrical power systems. An understanding of the growth of electrical trees plays a crucial role in the development of reliable high voltage direct current (HVDC) power grid systems with transmission voltages up to 1 MV. A section that contained an electrical tree in low-density polyethylene (LDPE) has been visualized in three dimensions (3D) with a resolution of 92 nm by X-ray ptychographic tomography. The 3D imaging revealed prechannel-formations with a lower density with the width of a couple of hundred nanometers formed around the main branch of the electrical tree. The prechannel structures were partially connected with the main tree via paths through material with a lower density, proving that the tree had grown in a step-by-step manner via the prestep structures formed in front of the main channels. All the prechannel structures had a size well below the limit of the Paschen law and were thus not formed by partial discharges. Instead, it is suggested that the prechannel structures were formed by electro-mechanical stress and impact ionization, where the former was confirmed by simulations to be a potential explanation with electro-mechanical stress tensors being almost of the same order of magnitude as the short-term modulus of low-density polyethylene.

  10. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    Science.gov (United States)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  11. Power backup Density based Clustering Algorithm for Maximizing Lifetime of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    WSNs consists several nodes spread over experimental fields for specific application temporarily. The spatially distributed sensor nodes sense and gather the information for intended parameters like temperature, sound, vibrations, etc for the particular application. In this paper, we evaluate the...

  12. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  13. Water Dissociation Phenomena on a Bipolar Membrane——Current-voltage Curve in Relation with Ionic Transport and Limiting Current Density

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage;while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ- Ⅴ in the two directions were compared with the theoretical calculations. It is demonstrated that above the limiting current density, the experimental results,either in the L-H direction or in the H-L direction, are consistent with the theoretical calculations; below the limiting current density, a slight deviation exists between the experimental and the theoretical results, and between the experimental results in the two directions. The change in Donnan potential due to the asymmetry of the mono-layers and the changes of ionic composition in the two directions is possibly responsible for this deviation.

  14. Force-free collisionless current sheet models with non-uniform temperature and density profiles

    Science.gov (United States)

    Wilson, F.; Neukirch, T.; Allanson, O.

    2017-09-01

    We present a class of one-dimensional, strictly neutral, Vlasov-Maxwell equilibrium distribution functions for force-free current sheets, with magnetic fields defined in terms of Jacobian elliptic functions, extending the results of Abraham-Shrauner [Phys. Plasmas 20, 102117 (2013)] to allow for non-uniform density and temperature profiles. To achieve this, we use an approach previously applied to the force-free Harris sheet by Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)]. In one limit of the parameters, we recover the model of Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)], while another limit gives a linear force-free field. We discuss conditions on the parameters such that the distribution functions are always positive and give expressions for the pressure, density, temperature, and bulk-flow velocities of the equilibrium, discussing the differences from previous models. We also present some illustrative plots of the distribution function in velocity space.

  15. Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition

    CERN Document Server

    Kauffmann, Steven Kenneth

    2013-01-01

    The quantum mechanics status of the probability vector current density has long seemed to be marginal. On one hand no systematic prescription for its construction is provided, and the special examples of it that are obtained for particular types of Hamiltonian operator could conceivably be attributed to happenstance. On the other hand this concept's key physical interpretation as local average particle flux, which flows from the equation of continuity that it is supposed to satisfy in conjunction with the probability scalar density, has been claimed to breach the uncertainty principle. Given the dispiriting impact of that claim, we straightaway point out that the subtle directional nature of the uncertainty principle makes it consistent with the measurement of local average particle flux. We next focus on the fact that the unique closed-form linear-superposition quantization of any classical Hamiltonian function yields in tandem the corresponding unique linear-superposition closed-form divergence of the proba...

  16. One-dimensional transport of interacting particles: currents, density profiles, phase diagrams, and symmetries.

    Science.gov (United States)

    Dierl, Marcel; Einax, Mario; Maass, Philipp

    2013-06-01

    Driven lattice gases serve as canonical models for investigating collective transport phenomena and properties of nonequilibrium steady states. Here we study one-dimensional transport with nearest-neighbor interactions both in closed bulk systems and in open channels coupled to two particle reservoirs at the ends of the channel. For the widely employed Glauber rates we derive an exact current-density relation in the bulk for unidirectional hopping. An approach based on time-dependent density functional theory provides a good description of the kinetics. For open systems, the system-reservoir couplings are shown to have a striking influence on boundary-induced phase diagrams. The role of particle-hole symmetry is discussed, and its consequence for the topology of the phase diagrams. It is furthermore demonstrated that systems with weak bias can be mapped onto systems with unidirectional hopping.

  17. Density effect on critical current density and flux pinning properties of polycrystalline SmFeAsO1 - xFx superconductor

    Science.gov (United States)

    Ding, Y.; Sun, Y.; Zhuang, J. C.; Cui, L. J.; Shi, Z. X.; Sumption, M. D.; Majoros, M.; Susner, M. A.; Kovacs, C. J.; Li, G. Z.; Collings, E. W.; Ren, Z. A.

    2011-12-01

    A series of polycrystalline SmFeAs1 - xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting volume fraction, the critical current densities Jcm and the flux pinning force densities Fp were estimated from the magnetization measurements. Experimental results show that: (1) the superconducting volume fraction increases with the increasing of sample density; (2) the Jcm values have a similar trend except for the sample with very high density due to different connectivity and pinning mechanisms, moreover, the Jcm(B) curve develops a peak effect at approximately the same field at which the high density sample shows a kink; (3) the Fp(B) curve of the high density sample shows a low-field peak and a high-field peak at several temperatures, which can be explained by improved intergranular current, while only one peak can be observed in Fp(B) of the low density samples. Based on the scaling behaviour of flux pinning force densities, the main intragranular pinning is normal point pinning.

  18. High-current-density gun with a LaB6 cathode

    Science.gov (United States)

    Ebihara, K.; Hiramatsu, S.

    1996-08-01

    To develop a high-current electron gun for an induction linac, a prototype of a Pierce-type electron gun using planar 12-mm-diam lanthanum hexaboride (LaB6) is studied as a thermionic emitter at high current densities. The cathode is heated up to temperatures of 1750 °C by electron bombardment and thermal radiation from a tungsten heater. The heater that has the highest temperature in the gun is thermally isolated from the outer vacuum chamber with heat shields. The bombardment voltage of ˜1 kV is typically applied to a gap between the cathode and the heater. The gun has been operated up to voltages of 55 kV, obtaining a maximum current density of 20 A/cm2 with a pulse width of 250 ns at a cathode temperature of 1600 °C. High-voltage pulsing results show that the gun, with applied voltages of over 40 kV, is operated in space-charge-limited region at temperatures of over 1600 °C; also it is operated in a temperature-limited region at temperatures of less than 1500 °C. An effective work function of 2.68 eV is obtained. The cathode, when heated up to 1600 °C, emits over 7 A of electrons with a ˜20% reduction after 850 h of continuous operation. These measurements were made between vacuum pressures of 10-6 and 10-7 Torr.

  19. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    Science.gov (United States)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  20. The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping

    Science.gov (United States)

    Lu, Tianni; Zhang, Cuiping; Guo, Shengwu; Wu, Yifang; Li, Chengshan; Zhou, Lian

    2015-12-01

    Bi2Sr2Ca1-xYbxCu2O8+δ (Bi-2212) single crystals with x = 0.000, 0.005, 0.010 and 0.020 have been prepared by self-flux method. The influences of Yb doping on the formation of the dislocations in the lattice structures, as well as the related current carrying capability are investigated. Due to the SQUID measurement and the Bean model calculation, the maximum critical current density (Jc) is obtained when the Yb doping content is x = 0.010, though the Tc and the carrier concentration are not in the optimal region. Based on the HRTEM analyses of the Ca-O and Cu-O2 layers, the optimal dislocation density in the Cu-O2 layers is deduced according to the number of the dislocations per unit area. Besides, the sizes of the dislocations also prove the effectiveness of Yb substitution on the enhancement of the current carrying capability in Bi-2212 single crystals.

  1. Quasi-1D van der Waals materials as high current-density local interconnects (Conference Presentation)

    Science.gov (United States)

    Stolyarov, Maxim; Aytan, Ece; Bloodgood, Matthew; Salguero, Tina T.; Balandin, Alexander A.

    2016-09-01

    The continuous downscaling of interconnect dimensions in combination with the introduction of low-k dielectrics has increased the number of heat dissipation, integration and reliability challenges in modern electronics. As a result, there is a strong need for new materials that have high current-carrying capacity for applications as nanoscale interconnects. In this presentation, we show that quasi-one-dimensional (1D) van der Waals metals such as TaSe3 have excellent breakdown current density exceeding that of 5 MA/cm2. This value is above that currently achievable in conventional copper or aluminum wires. The quasi-1D van der Waals materials are characterized by strong bonds along one dimension and weak van der Waals bonds along two other dimensions. The material for this study was grown by the chemical vapor transport (CVT) method. Both mechanical and chemical exfoliation methods were used to fabricate nanowires with lateral dimensions below 100 nm. The dimensions of the quasi-1D nanowires were verified with scanning electron microscopy (SEM) and atomic force microscopy (AFM). The metal (Ti/Au) contacts for the electrical characterization were deposited using electron beam evaporation (EBE). The measurements were conducted on a number of prototype interconnects with multiple electric contacts to ensure reproducibility. The obtained results suggest that quasi-1D van der Waals metals present a feasible alternative to conventional copper interconnects in terms of the current-carrying capacity and the breakdown current-density. This work was supported, in part, by the SRC and DARPA through STARnet Center for Function Accelerated nanoMaterial Engineering (FAME).

  2. Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging.

    Science.gov (United States)

    Murakami, Shingo; Okada, Yoshio

    2015-05-01

    Although anatomical constraints have been shown to be effective for MEG and EEG inverse solutions, there are still no effective physiological constraints. Strength of the current generator is normally described by the moment of an equivalent current dipole Q. This value is quite variable since it depends on size of active tissue. In contrast, the current dipole moment density q, defined as Q per surface area of active cortex, is independent of size of active tissue. Here we studied whether the value of q has a maximum in physiological conditions across brain structures and species. We determined the value due to the primary neuronal current (q primary) alone, correcting for distortions due to measurement conditions and secondary current sources at boundaries separating regions of differing electrical conductivities. The values were in the same range for turtle cerebellum (0.56-1.48 nAm/mm(2)), guinea pig hippocampus (0.30-1.34 nAm/mm(2)), and swine neocortex (0.18-1.63 nAm/mm(2)), rat neocortex (~2.2 nAm/mm(2)), monkey neocortex (~0.40 nAm/mm(2)) and human neocortex (0.16-0.77 nAm/mm(2)). Thus, there appears to be a maximum value across the brain structures and species (1-2 nAm/mm(2)). The empirical values closely matched the theoretical values obtained with our independently validated neural network model (1.6-2.8 nAm/mm(2) for initial spike and 0.7-3.1 nAm/mm(2) for burst), indicating that the apparent invariance is not coincidental. Our model study shows that a single maximum value may exist across a wide range of brain structures and species, varying in neuron density, due to fundamental electrical properties of neurons. The maximum value of q primary may serve as an effective physiological constraint for MEG/EEG inverse solutions.

  3. Standard practice for characterization of coatings using conformable Eddy-Current sensors without coating reference standards

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the use of conformable eddy-current sensors for nondestructive characterization of coatings without standardization on coated reference parts. It includes the following: (1) thickness measurement of a conductive coating on a conductive substrate, (2) detection and characterization of local regions of increased porosity of a conductive coating, and (3) measurement of thickness for nonconductive coatings on a conductive substrate or on a conductive coating. This practice includes only nonmagnetic coatings on either magnetic (μ ≠ μ0) or nonmagnetic (μ = μ0) substrates. This practice can also be used to measure the effective thickness of a process-affected zone (for example, shot peened layer for aluminum alloys, alpha case for titanium alloys). For specific types of coated parts, the user may need a more specific procedure tailored to a specific application.

  4. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Science.gov (United States)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  5. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  6. Planar gradient coil design by scaling the spatial frequencies of minimum-inductance current density.

    Science.gov (United States)

    Lee, S Y; Park, B S; Yi, J H; Yi, W

    1997-11-01

    Gradient coil inductance has been remarkably reduced by the minimum-inductance design technique, which minimizes the magnetic energy stored by the gradient coil. The planar gradient coil designed by this technique, however, often has poor magnetic field linearity. Scaling the spatial frequencies of the current density function derived by this method, the magnetic field linearity of the planar gradient coil can be greatly improved with a small sacrifice of gradient coil inductance. A figure of merit of the planar gradient coil has been found to be improved by scaling the spatial frequencies.

  7. Correlations of the density and of the current in non-equilibrium diffusive systems

    Science.gov (United States)

    Sadhu, Tridib; Derrida, Bernard

    2016-11-01

    We use fluctuating hydrodynamics to analyze the dynamical properties in the non-equilibrium steady state of a diffusive system coupled with reservoirs. We derive the two-time correlations of the density and of the current in the hydrodynamic limit in terms of the diffusivity and the mobility. Within this hydrodynamic framework we discuss a generalization of the fluctuation dissipation relation in a non-equilibrium steady state where the response function is expressed in terms of the two-time correlations. We compare our results to an exact solution of the symmetric exclusion process. This exact solution also allows one to directly verify the fluctuating hydrodynamics equation.

  8. Density and current profiles in Uq (A2(1)) zero range process

    Science.gov (United States)

    Kuniba, A.; Mangazeev, V. V.

    2017-09-01

    The stochastic R matrix for Uq (An(1)) introduced recently gives rise to an integrable zero range process of n classes of particles in one dimension. For n = 2 we investigate how finitely many first class particles fixed as defects influence the grand canonical ensemble of the second class particles. By using the matrix product stationary probabilities involving infinite products of q-bosons, exact formulas are derived for the local density and current of the second class particles in the large volume limit.

  9. A class of vector identities relevant to the representation of the electric current density

    CERN Document Server

    Bornatici, M

    2007-01-01

    A rigorous mathematical proof is given of a class of vector identities that provide a way to separate an arbitrary vector field (over a linear space) into the sum of a radial (i.e., pointing toward the radial unit vector) vector field, minus the divergence of a tensor plus the curl of an axial vector. Such a separation is applied to the representation of electric current densities yielding a specific form of the effective polarization and magnetization fields which is also discussed in some details.

  10. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    Science.gov (United States)

    Saptono Duryat, Rahmat; Kim, Choong-Un

    2016-04-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces.

  11. Analysis of reliability metrics and quality enhancement measures in current density imaging.

    Science.gov (United States)

    Foomany, F H; Beheshti, M; Magtibay, K; Masse, S; Foltz, W; Sevaptsidis, E; Lai, P; Jaffray, D A; Krishnan, S; Nanthakumar, K; Umapathy, K

    2013-01-01

    Low frequency current density imaging (LFCDI) is a magnetic resonance imaging (MRI) technique which enables calculation of current pathways within the medium of study. The induced current produces a magnetic flux which presents itself in phase images obtained through MRI scanning. A class of LFCDI challenges arises from the subject rotation requirement, which calls for reliability analysis metrics and specific image registration techniques. In this study these challenges are formulated and in light of proposed discussions, the reliability analysis of calculation of current pathways in a designed phantom and a pig heart is presented. The current passed is measured with less than 5% error for phantom, using CDI method. It is shown that Gauss's law for magnetism can be treated as reliability metric in matching the images in two orientations. For the phantom and pig heart the usefulness of image registration for mitigation of rotation errors is demonstrated. The reliability metric provides a good representation of the degree of correspondence between images in two orientations for phantom and pig heart. In our CDI experiments this metric produced values of 95% and 26%, for phantom, and 88% and 75% for pig heart, for mismatch rotations of 0 and 20 degrees respectively.

  12. Effects on magnetic reconnection of a density asymmetry across the current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2008-08-01

    Full Text Available The magnetopause (MP reconnection is characterized by a density asymmetry across the current sheet. The asymmetry is expected to produce characteristic features in the reconnection layer. Here we present a comparison between the Cluster MP crossing reported by Retinò et al. (2006 and virtual observations in two-dimensional particle-in-cell simulation results. The simulation, which includes the density asymmetry but has zero guide field in the initial condition, has reproduced well the observed features as follows: (1 The prominent density dip region is detected at the separatrix region (SR on the magnetospheric (MSP side of the MP. (2 The intense electric field normal to the MP is pointing to the center of the MP at the location where the density dip is detected. (3 The ion bulk outflow due to the magnetic reconnection is seen to be biased towards the MSP side. (4 The out-of-plane magnetic field (the Hall magnetic field has bipolar rather than quadrupolar structure, the latter of which is seen for a density symmetric case. The simulation also showed rich electron dynamics (formation of field-aligned beams in the proximity of the separatrices, which was not fully resolved in the observations. Stepping beyond the simulation-observation comparison, we have also analyzed the electron acceleration and the field line structure in the simulation results. It is found that the bipolar Hall magnetic field structure is produced by the substantial drift of the reconnected field lines at the MSP SR due to the enhanced normal electric field. The field-aligned electrons at the same MSP SR are identified as the gun smokes of the electron acceleration in the close proximity of the X-line. We have also analyzed the X-line structure obtained in the simulation to find that the density asymmetry leads to a steep density gradient in the in-flow region, which may lead to a non-stationary behavior of the X-line when three-dimensional freedom is taken into account.

  13. Scanning Hall-probe microscopy system for two-dimensional imaging of critical current density in RE-123 coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Higashikawa, K., E-mail: kohei@super.ees.kyushu-u.ac.jp [Department of Electrical Engineering, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T. [Department of Electrical Engineering, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Iijima, Y.; Kakimoto, K.; Saitoh, T. [Material Technology Laboratory, Fujikura, 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan); Izumi, T. [Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2011-11-15

    Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 {mu}m in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.

  14. First test of BNL electron beam ion source with high current density electron beam

    Science.gov (United States)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  15. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  17. Frequency spectra from current vs. magnetic flux density measurements for mobile phones and other electrical appliances.

    Science.gov (United States)

    Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild; Wilén, Jonna

    2007-10-01

    The frequency spectra of electromagnetic fields have to be determined to evaluate human exposure in accordance to ICNIRP guidelines. In the literature, comparisons with magnetic field guidelines have been performed by using the frequency distribution of the current drawn from the battery. In the present study we compared the frequency spectrum in the range 217 Hz to 2.4 kHz of the magnetic flux density measured near the surface of a mobile phone with the frequency spectrum of the supply current. By using the multiple frequency rule, recommended in the ICNIRP guidelines, we estimated the magnetic field exposure in the two cases. Similar measurements and estimations were done for an electric drill, a hair dryer, and a fluorescent desk lamp. All the devices have a basic frequency of 50 Hz, and the frequency spectra were evaluated up to 550 Hz. We also mapped the magnetic field in 3D around three mobile phones. The frequency distributions obtained from the two measurement methods are not equal. The frequency content of the current leads to an overestimation of the magnetic field exposure by a factor up to 2.2 for the mobile phone. For the drill, the hair dryer, and the fluorescent lamp, the supply current signal underestimated the exposure by a factor up to 2.3. In conclusion, an accurate exposure evaluation requires the magnetic flux density spectrum of the device to be measured directly. There was no indication that the devices studied would exceed the reference levels at the working distances normally used.

  18. Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.

    Science.gov (United States)

    Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset

  19. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.

    Science.gov (United States)

    Kamousi, Baharan; Amini, Ali Nasiri; He, Bin

    2007-06-01

    The goal of the present study is to employ the source imaging methods such as cortical current density estimation for the classification of left- and right-hand motor imagery tasks, which may be used for brain-computer interface (BCI) applications. The scalp recorded EEG was first preprocessed by surface Laplacian filtering, time-frequency filtering, noise normalization and independent component analysis. Then the cortical imaging technique was used to solve the EEG inverse problem. Cortical current density distributions of left and right trials were classified from each other by exploiting the concept of Von Neumann entropy. The proposed method was tested on three human subjects (180 trials each) and a maximum accuracy of 91.5% and an average accuracy of 88% were obtained. The present results confirm the hypothesis that source analysis methods may improve accuracy for classification of motor imagery tasks. The present promising results using source analysis for classification of motor imagery enhances our ability of performing source analysis from single trial EEG data recorded on the scalp, and may have applications to improved BCI systems.

  20. Reconstructing cortical current density by exploring sparseness in the transform domain.

    Science.gov (United States)

    Ding, Lei

    2009-05-07

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  1. Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

    Science.gov (United States)

    Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G

    2001-04-01

    There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus).

  2. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters.

    Science.gov (United States)

    Bovery, Caitlin M; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.

  3. Seasonal Variation in Sea Turtle Density and Abundance in the Southeast Florida Current and Surrounding Waters

    Science.gov (United States)

    Bovery, Caitlin M.; Wyneken, Jeanette

    2015-01-01

    Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species. PMID:26717520

  4. Critical current density measurement of thin films by AC susceptibility based on the penetration parameter h

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaofen, E-mail: xiaofenli@gmail.com [Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Grivel, Jean-Claude; Abrahamsen, Asger B.; Andersen, Niels H. [Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2012-07-15

    We have numerically proved that the dependence of AC susceptibility {chi} of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical current density J{sub c} of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of J{sub c} from a normally applied {chi}(T) measurement. A fitting equation J{sub c} = 1.9H{sub a} Divides {chi} Prime Divides {sup 0.69}/d, -0.4 < {chi} Prime < -0.001 derived from the critical state case (Bean model) can be used in most situations, where H{sub a} is the amplitude of the applied AC field, {chi} Prime is the real part of the normalized susceptibility and d is the thickness of the film. The method is valid for the cases where the film is fully penetrated. We also discuss how the finite London penetration depth affects the susceptibility when the film is screened. Measurements with varying T, H{sub a} and DC background field H{sub dc} are performed to support the arguments.

  5. Critical current density measurement of thin films by AC susceptibility based on the penetration parameter h

    Science.gov (United States)

    Li, Xiao-Fen; Grivel, Jean-Claude; Abrahamsen, Asger B.; Andersen, Niels H.

    2012-07-01

    We have numerically proved that the dependence of AC susceptibility χ of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical current density Jc of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of Jc from a normally applied χ(T) measurement. A fitting equation Jc = 1.9Ha∣χ‧∣0.69/d, -0.4 Bean model) can be used in most situations, where Ha is the amplitude of the applied AC field, χ‧ is the real part of the normalized susceptibility and d is the thickness of the film. The method is valid for the cases where the film is fully penetrated. We also discuss how the finite London penetration depth affects the susceptibility when the film is screened. Measurements with varying T, Ha and DC background field Hdc are performed to support the arguments.

  6. A new method for estimating the critical current density of a superconductor from its hysteresis loop

    Energy Technology Data Exchange (ETDEWEB)

    Lal, Ratan, E-mail: rlal_npl_3543@yahoo.i [Superconductivity Division, National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2010-02-15

    The critical current density J{sub c} of some of the superconducting samples, calculated on the basis of the Bean's model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim's expression of the critical current density, J{sub c} = k/(H{sub 0} + H), where J{sub c} has positive curvature for all H, has been employed by connecting the positive constants k and H{sub 0} with the features of the hysteresis loop of a superconductor. A relation between the full penetration field H{sub p} and the magnetic field H{sub min}, at which the magnetization is minimum, is obtained from the Kim's theory. Taking the value of J{sub c} at H = H{sub p} according to the actual loop width, as in the Bean's theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H{sub 0} are obtained in terms of the magnetization values M{sup +}(-H{sub min}), M{sup -}(H{sub min}), M{sup +}(H{sub p}) and M{sup -}(H{sub p}). The resulting method of estimating J{sub c} from the hysteresis loop turns out to be as simple as the Bean's method.

  7. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, D-79110 Freiburg (Germany)

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  8. Determination of Defect Densities in High Electron Mobility Transistors Using Current Transient DLTS

    Science.gov (United States)

    Palma, John; Mil'shtein, Samson

    2011-12-01

    Since its introduction, Deep Level Transient Spectroscopy (DLTS) has become the preferred tool for investigating semiconductor defects. The limitations of measuring the small changes in gate capacitance in transistors led to the advent of current transient DLTS where the defects manifest themselves as a small change in drain current. However, this method was introduced at a time when heterostructure devices, such as High Electron Mobility Transistors (HEMTs), were non-existent and fails in determining defect concentrations in these modern devices. This study establishes a method by which defect concentrations can be determined in HEMT structures using current transient DLTS. First, the relationship between the change in the trap charge and the transistor drain current is established. Then, a computer aided technique is described which determines the volume within the device where the Fermi level crosses the trap energy. The result is that trap densities and their locations can be determined. DLTS measurements revealed two traps with ET = 0.43 and Nt = 1.1×1017cm-3, and ET = 0.19 and Nt = 3.1×1017 cm-3 for a tested HEMT.

  9. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  10. Improved critical current density of MgB2--carbon nanotubes composite.

    Science.gov (United States)

    Shekhar, Chandra; Giri, Rajiv; Malik, S K; Srivastav, O N

    2007-06-01

    In the present study, we report a systematic study of doping/admixing of carbon nanotubes (CNTs) in different concentrations in MgB2. The composite material corresponding to MgB2-x at.% CNTs (35 at.% > or = x > or = 0 at.%) have been prepared by solid-state reaction at ambient pressure. All the samples in the present investigation have been subjected to structural/microstructural characterization employing XRD, Scanning electron microscopic (SEM), and Transmission electron microscopic (TEM) techniques. The magnetization measurements were performed by Physical property measurement system (PPMS) and electrical transport measurements have been done by the four-probe technique. The microstructural investigations reveal the formation of MgB2-carbon nanotube composites. A CNT connecting the MgB2 grains may enhance critical current density due to its size (approximately 5-20 nm diameter) compatible with coherence length of MgB2 (approximately 5-6 nm) and ballistic transport current carrying capability along the tube axis. The transport critical current density (Jct) of MgB2 samples with varying CNTs concentration have been found to vary significantly e.g., Jct of the MgB2 sample with 10 at.% CNT addition is approximately 2.3 x 10(3) A/cm2 and its value for MgB2 sample without CNT addition is approximately 7.2 x 102 A/cm2 at 20 K. In order to study the flux pinning effect of CNTs doping/ admixing in MgB2, the evaluation of intragrain critical current density (JJ) has been carried out through magnetic measurements on the fine powdered version of the as synthesized samples. The optimum result on Jc is obtained for 10 at.% CNTs admixed MgB2 sample at 5 K, the Jc reaches approximately 5.2 x 10(6) A/cm2 in self field, -1.6 x 10(6) A/cm2 at 1 T, approximately 2.9 x 10(5) A/cm2 at 2.6 T, and approximately 3.9 x 10(4) A/cm2 at 4 T. The high value of intragrain Jc in 10 at.% CNTs admixed MgB2 superconductor has been attributed to the incorporation of CNTs into the crystal matrix of

  11. A modular, extendible and field-tolerant multichannel vector magnetometer based on current sensor SQUIDs

    Science.gov (United States)

    Storm, J.-H.; Drung, D.; Burghoff, M.; Körber, R.

    2016-09-01

    We present the prototype module of our extendible and robust multichannel SQUID magnetometer system. A large multi-module arrangement can be implemented by using up to 7 modules. The system is intended for high-precision measurements of biomagnetism and spin precession. Further demanding applications are magnetorelaxometry and ultra-low-field nuclear magnetic resonance (ULF NMR), where pulsed magnetic fields of up to 100 mT are typically applied. The system is operated inside the Berlin magnetically shielded room (BMSR-2) and equipped with 18 magnetometers consisting of niobium (Nb) wire-wound pick-up coils. A total of 16 small pick-up coils with 17.1 mm diameter form a regular grid with individual channels arranged to ensure system sensitivity covers all three orthogonal spatial directions. Two large hexagonal pick-up coils with an equivalent diameter of 74.5 mm sensitive in z-direction surround the grid at two different heights and are suitable for the detection of deep sources. Each pick-up coil is connected to the input of a thin-film Nb SQUID current sensor via a detachable superconducting contact. The SQUIDs are equipped with integrated input current limiters. Feedback into the pick-up coils is employed to minimise crosstalk between channels. The current sensor chip package includes a superconducting shield of Nb. The field distortion of the prototype and a multi-module arrangement was analysed by numerical simulation. The measured noise of the small magnetometers was between 0.6 and 1.5 fT {{Hz}}-1/2, and well below 1 fT {{Hz}}-1/2 for the large ones. Using a software gradiometer, we achieved a minimum noise level of 0.54 fT {{Hz}}-1/2. We performed ULF NMR experiments, verifying the system’s robustness against pulsed fields, and magnetoencephalographgy (MEG) on somatosensory evoked neuronal activity. The low noise performance of our 18-channel prototype enabled the detection of high-frequency components at around 1 kHz by MEG.

  12. A fast, calibrated model for pyroclastic density currents kinematics and hazard

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Orsucci, Simone; Cornolti, Fulvio

    2016-11-01

    Multiphase flow models represent valuable tools for the study of the complex, non-equilibrium dynamics of pyroclastic density currents. Particle sedimentation, flow stratification and rheological changes, depending on the flow regime, interaction with topographic obstacles, turbulent air entrainment, buoyancy reversal, and other complex features of pyroclastic currents can be simulated in two and three dimensions, by exploiting efficient numerical solvers and the improved computational capability of modern supercomputers. However, numerical simulations of polydisperse gas-particle mixtures are quite computationally expensive, so that their use in hazard assessment studies (where there is the need of evaluating the probability of hazardous actions over hundreds of possible scenarios) is still challenging. To this aim, a simplified integral (box) model can be used, under the appropriate hypotheses, to describe the kinematics of pyroclastic density currents over a flat topography, their scaling properties and their depositional features. In this work, multiphase flow simulations are used to evaluate integral model approximations, to calibrate its free parameters and to assess the influence of the input data on the results. Two-dimensional numerical simulations describe the generation and decoupling of a dense, basal layer (formed by progressive particle sedimentation) from the dilute transport system. In the Boussinesq regime (i.e., for solid mass fractions below about 0.1), the current Froude number (i.e., the ratio between the current inertia and buoyancy) does not strongly depend on initial conditions and it is consistent to that measured in laboratory experiments (i.e., between 1.05 and 1.2). For higher density ratios (solid mass fraction in the range 0.1-0.9) but still in a relatively dilute regime (particle volume fraction lower than 0.01), numerical simulations demonstrate that the box model is still applicable, but the Froude number depends on the reduced

  13. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  14. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  15. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    Science.gov (United States)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  16. Plasma Shape and Current Density Profile Control in Advanced Tokamak Operating Scenarios

    Science.gov (United States)

    Shi, Wenyu

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion has sufficient energy density to potentially supply the world population with its increasing energy demands. The tokamak is a magnetic confinement device used to achieve controlled fusion reactions. Experimental fusion technology has now reached a level where tokamaks are able to produce about as much energy as is expended in heating the fusion fuel. The next step towards the realization of a nuclear fusion tokamak power plant is ITER, which will be capable of exploring advanced tokamak (AT) modes, characterized by a high fusion gain and plasma stability. The extreme requirements of the advanced modes motivates researchers to improve the modeling of the plasma response as well as the design of feedback controllers. This dissertation focuses on several magnetic and kinetic control problems, including the plasma current, position and shape control, and data-driven and first-principles-driven modeling and control of plasma current density profile and the normalized plasma pressure ratio betaN. The plasma is confined within the vacuum vessel by an external electromagnetic field, produced primarily by toroidal and poloidal field coils. The outermost closed plasma surface or plasma boundary is referred to as the shape of the plasma. A central characteristic of AT plasma regimes is an extreme elongated shape. The equilibrium among the electromagnetic forces acting on an elongated plasma is unstable. Moreover, the tokamak performance is improved if the plasma is located in close proximity to the torus wall, which guarantees an efficient use of available volume. As a consequence, feedback control of the plasma position and shape is necessary. In this dissertation, an Hinfinity-based, multi-input-multi-output (MIMO) controller for the National Spherical Torus Experiment (NSTX) is developed, which is used to control the plasma position, shape, and X

  17. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-05-01

    Full Text Available High resolution direct numerical simulations (DNS are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.

  18. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    Science.gov (United States)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of

  19. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    Science.gov (United States)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  20. Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare

    Science.gov (United States)

    Kang, Jihye; Magara, Tetsuya; Inoue, Satoshi; Kubo, Yuki; Nishizuka, Naoto

    2016-10-01

    In this paper we investigate the distribution characteristics of the coronal electric current density in a flare-producing active region (AR12158; SOL2014-09-10) by reconstructing nonlinear force-free (NLFF) fields from photospheric magnetic field data. A time series of NLFF fields shows the spatial distribution and its temporal development of coronal current density in this active region. A fractal dimensional analysis shows that a concentrated coronal current forms a structure of fractal spatiality. Furthermore, the distribution function of coronal current density is featured with a double power-law profile, and the value of electric current density at the breaking point of a double power-law fitting function shows a noticeable time variation toward the onset of an X-class flare. We discuss that this quantity will be a useful indicator for the occurrence of a flare.

  1. Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare

    Science.gov (United States)

    Kang, Jihye; Magara, Tetsuya; Inoue, Satoshi; Kubo, Yuki; Nishizuka, Naoto

    2016-12-01

    In this paper we investigate the distribution characteristics of the coronal electric current density in a flare-producing active region (AR12158; SOL2014-09-10) by reconstructing nonlinear force-free (NLFF) fields from photospheric magnetic field data. A time series of NLFF fields shows the spatial distribution and its temporal development of coronal current density in this active region. A fractal dimensional analysis shows that a concentrated coronal current forms a structure of fractal spatiality. Furthermore, the distribution function of coronal current density is featured with a double power-law profile, and the value of electric current density at the breaking point of a double power-law fitting function shows a noticeable time variation toward the onset of an X-class flare. We discuss that this quantity will be a useful indicator for the occurrence of a flare.

  2. Excessive magnetic field flux density distribution from overhead isolated powerline conductors due to neutral line current.

    Science.gov (United States)

    Netzer, Moshe

    2013-06-01

    Overhead isolated powerline conductors (hereinafter: "OIPLC") are the most compact form for distributing low voltage currents. From the known physics of magnetic field emission from 3-phase power lines, it is expected that excellent symmetry of the 120° shifted phase currents and where compact configuration of the 3-phase+neutral line exist, the phase current vectorial summation of the magnetic field flux density (MFFD) is expected to be extremely low. However, despite this estimation, an unexpectedly very high MFFD was found in at least three towns in Israel. This paper explains the reasons leading to high MFFD emissions from compact OIPLC and the proper technique to fix it. Analysis and measurement results had led to the failure hypothsis of neutral line poor connection design and poor grounding design of the HV-LV utility transformers. The paper elaborates on the low MFFD exposure level setup by the Israeli Environmental Protection Office which adopted a rather conservative precaution principal exposure level (2 mG averaged over 24 h).

  3. Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density.

    Science.gov (United States)

    Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K

    2010-12-01

    Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

  4. Large critical current density improvement in Bi-2212 wires through the groove-rolling process

    Science.gov (United States)

    Malagoli, A.; Bernini, C.; Braccini, V.; Romano, G.; Putti, M.; Chaud, X.; Debray, F.

    2013-04-01

    Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density JC and on the microstructure. In particular, groove-rolled multifilamentary wires show a JC increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper.

  5. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans.

    Science.gov (United States)

    Parazzini, Marta; Rossi, Elena; Ferrucci, Roberta; Liorni, Ilaria; Priori, Alberto; Ravazzani, Paolo

    2014-03-01

    Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    Science.gov (United States)

    Akune, Tadahiro; Sakamoto, Nobuyoshi

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  7. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    Energy Technology Data Exchange (ETDEWEB)

    Akune, Tadahiro; Sakamoto, Nobuyoshi, E-mail: akune@te.kyusan-u.ac.j [Department of Electrical Engineering and Information Technology, Kyushu Sangyo University, 2-3-1 Matsukadai, Fukuoka 813-8503 (Japan)

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-T{sub c} superconductor. The critical current densities of the proximity-induced superconducting matrix J{sub cm} can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain J{sub cm}, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of J{sub cm} estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  8. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    Directory of Open Access Journals (Sweden)

    Subedi BH

    2014-04-01

    Full Text Available Bishnu H Subedi,1,2 Parag H Joshi,1 Steven R Jones,1 Seth S Martin,1 Michael J Blaha,1 Erin D Michos1 1Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, 2Greater Baltimore Medical Center, Baltimore, MD, USA Abstract: Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD is low high-density lipoprotein cholesterol (HDL-C. Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. Keywords: high-density lipoprotein, lipids, cholesterol, atherosclerosis, cardiovascular disease, therapy

  9. High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2.

    Science.gov (United States)

    Mleczko, Michal J; Xu, Runjie Lily; Okabe, Kye; Kuo, Hsueh-Hui; Fisher, Ian R; Wong, H-S Philip; Nishi, Yoshio; Pop, Eric

    2016-08-23

    Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal.

  10. Scalp current density mapping in the analysis of mismatch negativity paradigms.

    Science.gov (United States)

    Giard, Marie-Hélène; Besle, Julien; Aguera, Pierre-Emmanuel; Gomot, Marie; Bertrand, Olivier

    2014-07-01

    MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)-or surface Laplacian-computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.

  11. Current source density estimation and interpolation based on the spherical harmonic Fourier expansion.

    Science.gov (United States)

    Pascual-Marqui, R D; Gonzalez-Andino, S L; Valdes-Sosa, P A; Biscay-Lirio, R

    1988-12-01

    A method for the spatial analysis of EEG and EP data, based on the spherical harmonic Fourier expansion (SHE) of scalp potential measurements, is described. This model provides efficient and accurate formulas for: (1) the computation of the surface Laplacian and (2) the interpolation of electrical potentials, current source densities, test statistics and other derived variables. Physiologically based simulation experiments show that the SHE method gives better estimates of the surface Laplacian than the commonly used finite difference method. Cross-validation studies for the objective comparison of different interpolation methods demonstrate the superiority of the SHE over the commonly used methods based on the weighted (inverse distance) average of the nearest three and four neighbor values.

  12. Current-source density analysis of slow brain potentials during time estimation.

    Science.gov (United States)

    Gibbons, Henning; Rammsayer, Thomas H

    2004-11-01

    Two event-related potential studies were conducted to investigate differential brain correlates of temporal processing of intervals below and above 3-4 s. In the first experiment, 24 participants were presented with auditorily marked target durations of 2, 4, and 6 s that had to be reproduced. Timing accuracy was similar for all three target durations. As revealed by current-source density analysis, slow-wave components during both presentation and reproduction were independent of target duration. Experiment 2 examined potential modulating effects of type of interval (filled and empty) and presentation mode (randomized and blocked presentation of target durations). Behavioral and slow-wave findings were consistent with those of Experiment 1. Thus, the present findings support the notion of a general timing mechanism irrespective of interval duration as proposed by scalar timing theory and pacemaker-counter models of time estimation.

  13. Estimation of population firing rates and current source densities from laminar electrode recordings.

    Science.gov (United States)

    Pettersen, Klas H; Hagen, Espen; Einevoll, Gaute T

    2008-06-01

    This model study investigates the validity of methods used to interpret linear (laminar) multielectrode recordings. In computer experiments extracellular potentials from a synaptically activated population of about 1,000 pyramidal neurons are calculated using biologically realistic compartmental neuron models combined with electrostatic forward modeling. The somas of the pyramidal neurons are located in a 0.4 mm high and wide columnar cylinder, mimicking a stimulus-evoked layer-5 population in a neocortical column. Current-source density (CSD) analysis of the low-frequency part (estimates of the true underlying CSD. The high-frequency part (>750 Hz) of the potentials (multi-unit activity, MUA) is found to scale approximately as the population firing rate to the power 3/4 and to give excellent estimates of the underlying population firing rate for trial-averaged data. The MUA signal is found to decay much more sharply outside the columnar populations than the LFP.

  14. Current density in generalized Fibonacci superlattices under a uniform electric field.

    Science.gov (United States)

    Panchadhyayee, P; Biswas, R; Khan, Arif; Mahapatra, P K

    2008-07-09

    We present an exhaustive study on tunneling and electrical conduction in an electrically biased GaAs-Al(y)Ga(1-y)As generalized Fibonacci superlattice. The study is based on transfer matrix formalism using an Airy function approach and provides an exact calculation of the current density in the case of quasi-periodic multibarrier systems. The results suggest the use of such quasi-periodic systems in perfect band-pass or band-eliminator (of extremely low width) circuitry. We have clearly demonstrated the resonance-type peaks and negative differential conductivity regimes in such systems. It has also been found that quasi-periodicity favors sharp negative differential conductivity peaks compared to those in periodic superlattices and thus have profound importance in device applications.

  15. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  16. An unusually energetic basaltic phreatomagmatic eruption: Using deposit characteristics to constrain dilute pyroclastic density current dynamics

    Science.gov (United States)

    Brand, Brittany D.; Clarke, Amanda B.

    2012-10-01

    Multiple, highly erosive base surges of the Table Rock Complex tuff ring (TRC2), Oregon, produced dune-bedded deposits with crest to crest bedform wavelengths up to 200 m, which are amongst the largest ever recognized in the deposits of pyroclastic density currents. Here we use bedform wavelength, surmounted obstacles, and a large chute-and-pool feature to estimate near-source velocities (118-233 m s- 1), lower-bound velocities at radial distances of 1.6, 2 and 4.7 km from source (34, 29 and 20 m s- 1, respectively), and corresponding column collapse heights (up to 2.8 km). This paper represents one of the few studies that attempt to quantify flow characteristics, such as emplacement velocities at different distances from source, eruption column collapse height, and eruptive energy, based on deposit characteristics.

  17. Fracture behaviors of thin superconducting films with field-dependent critical current density

    Science.gov (United States)

    He, An; Xue, Cun; Yong, Huadong; Zhou, Youhe

    2013-09-01

    The fracture behaviors under electromagnetic force with field-dependent critical current density in thin superconducting film are investigated. Applying finite element method, the energy release rates and stress intensity factors of one central crack versus applied field and crack length are obtained for the Bean model and Kim model. It is interesting that the profile of the stress intensity factor is generally the same as the magnetostrictive behavior during one full cycle applied field. Furthermore, the crack problem of two collinear cracks with respect to crack length and distance is also researched for the Kim model. The results show that the energy release rates and stress intensity factors of the two collinear cracks at left tip and right tip are remarkably different for relatively small crack distance and long crack length. This work can offer good estimations and provide a basis for interpretation of cracking and mechanical failure of HTS thin films in numerous real situations.

  18. Higher critical current density achieved in Bi-2223 High-Tc superconductors

    Directory of Open Access Journals (Sweden)

    M.S. Shalaby

    2016-07-01

    Full Text Available Bi2Sr2Ca2Cu3Ox (Bi-2223 were prepared using a solid state reaction method at different sintering times and temperatures. Structural phase identifications have been done using X-Ray analysis and refinement by Reitveld method which proves the coexistence of Bi-2223 and Bi-2212 phases. The critical transition temperature Tc and critical current density Jc values were measured using superconducting quantum interference device magnetometer (SQUID and by the magneto-optics technique. A remarkable rapid decrease to the diamagnetic signal in the magnetization versus temperature M(T at 110 K and Jc around 1.2 × 107 A/m2 at 5 K are confirmed for the Bi-2223 compound.

  19. High critical current densities in industrial scale composites made from high homogeneity NB 46. 5 TI

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, D.C.; Hemachalam, K.; Lee, P.; McDonald, W.K.; O' Larey, P.; Scanlan, R.; Starch, W.; Taylor, C.; Warnes, W.; West, A.W.; Zeitlin, B.

    1985-03-01

    Recent work in our group on the fabricationmicrostructure-superconducting properties of composites of Nb-Ti has produced much new information about the precipitate morphology and origins of high critical current density (J /SUB c/ ) in these materials./sup 1 -4/ Precipitation of Ti-rich phase is seen to commence as a grain boundary film 2 - 4 nm thick, the film then developing into approximately equiaxed particles of ..cap alpha..-Ti at the boundary triple points. The typical size of such precipitates is 50 - 100 nm. Controlled drawing of such a structure produces an array of locally ordered ribbon precipitates. These precipitates are typically 3 - 5 nm thick by 100 - 300 nm long (when observed in transverse section). Their length in longitudinal section appears to be several hundred nm, indicating great ductility in these small ..cap alpha..-Ti precipitates. The typical separation of the precipitates is 20 - 30 nm. Thus the dimensions of the precipitate array are quite comparable to that of the flux lattice since the fluxoid separation is 22 nm at 5 T and the fluxoid diameter of Nb 46.5 wt% Ti is approximately 10 nm. The flux pinning behavior of these precipitate structures is expected to be complex: /SUP 2.4/ the defect density is very high, the precipitate morphology has a very high aspect ratio and the extreme thinness of the precipitates must permit some superconductivity to be induced in them by the proximity effect./sup 5/

  20. Fluorescent BINOL-based sensor for thorium recognition and a density functional theory investigation.

    Science.gov (United States)

    Wen, Jun; Dong, Liang; Tian, Jie; Jiang, Tao; Yang, Yan-Qiu; Huang, Zeng; Yu, Xiao-Qi; Hu, Chang-Wei; Hu, Sheng; Yang, Tong-Zai; Wang, Xiao-Lin

    2013-12-15

    A novel 1,1'-bi-2-naphthol (BINOL) derivative fluorescence sensor L-1 for the recognition of thorium ion with a fluorescence quench response. This ligand showed high selectivity and sensitivity for thorium ion recognition. Coordination effects were investigated by DFT calculations, and the coordination modes and sites were confirmed. Moreover, the coordination abilities of the L-1 ligand with Th(4+) and UO2(2+) were evaluated.

  1. Density estimation of Yangtze finless porpoises using passive acoustic sensors and automated click train detection.

    Science.gov (United States)

    Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki

    2010-09-01

    A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.

  2. Critical current densities in Ag-added bulk MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M., E-mail: miryala1@shibaura-it.ac.jp [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Inoue, K. [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan); Koblischka, M.R. [Experimental Physics, Saarland University, Campus C 6 3, 66123 Saarbrücken (Germany); Murakami, M. [Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548 (Japan)

    2015-11-15

    Highlights: • Bulk MgB{sub 2} samples with Ag contents of 0–10 wt% were sintered at 775 °C for 3 h. • Magnetization measurements showed a sharp superconducting transition with T{sub c} (onset) around 38.5–38.7 K. • Atomic force microscopy indicated that Ag-based MgB{sub 2} particles are of nanometer size. • The sample with 4 wt% Ag addition exhibited the highest J{sub c} of 400 kA/cm{sup 2} at 10 K and self field. - Abstract: In previous studies, we found that bulk MgB{sub 2} contained numerous voids in various shapes and sizes. With the aim of improving the critical current density as well as the mechanical performance of the disk-shaped MgB{sub 2} bulk superconductors, we added Ag and optimized the processing conditions. The samples with varied Ag content from 0, 2, 4, 6, to 10 wt% were synthesized in pure Ar atmosphere. Microstructural observation by scanning electron microscopy confirmed that metallic Ag particles are embedded in the void regions. Furthermore, atomic force microscopy indicated that silver-based MgB{sub 2} particles are of nanometer size. As a result, the critical current density (J{sub c}) values were improved with Ag addition as compared to pure MgB{sub 2} bulk. The sample with 4 wt% Ag addition exhibited the highest J{sub c} of 293 kA/cm{sup 2} at 20 K and self field. The respective J{sub c} values at 10 K were 400 kA/cm{sup 2}, 300 kA/cm{sup 2}, and 100 kA/cm{sup 2} in self field, 1 T and 2 T. These values are the highest record values so far reported in bulk MgB{sub 2} materials.

  3. Analysis of plasma equilibrium based on orbit-driven current density profile in steady-state plasma on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others

    2016-11-01

    Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.

  4. Status Epilepticus Induced Spontaneous Dentate Gyrus Spikes: In Vivo Current Source Density Analysis.

    Science.gov (United States)

    Flynn, Sean P; Barriere, Sylvain; Barrier, Sylvain; Scott, Rod C; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L

    2015-01-01

    The dentate gyrus is considered to function as an inhibitory gate limiting excitatory input to the hippocampus. Following status epilepticus (SE), this gating function is reduced and granule cells become hyper-excitable. Dentate spikes (DS) are large amplitude potentials observed in the dentate gyrus (DG) of normal animals. DS are associated with membrane depolarization of granule cells, increased activity of hilar interneurons and suppression of CA3 and CA1 pyramidal cell firing. Therefore, DS could act as an anti-excitatory mechanism. Because of the altered gating function of the dentate gyrus following SE, we sought to investigate how DS are affected following pilocarpine-induced SE. Two weeks following lithium-pilocarpine SE induction, hippocampal EEG was recorded in male Sprague-Dawley rats with 16-channel silicon probes under urethane anesthesia. Probes were placed dorso-ventrally to encompass either CA1-CA3 or CA1-DG layers. Large amplitude spikes were detected from EEG recordings and subject to current source density analysis. Probe placement was verified histologically to evaluate the anatomical localization of current sinks and the origin of DS. In 9 of 11 pilocarpine-treated animals and two controls, DS were confirmed with large current sinks in the molecular layer of the dentate gyrus. DS frequency was significantly increased in pilocarpine-treated animals compared to controls. Additionally, in pilocarpine-treated animals, DS displayed current sinks in the outer, middle and/or inner molecular layers. However, there was no difference in the frequency of events when comparing between layers. This suggests that following SE, DS can be generated by input from medial and lateral entorhinal cortex, or within the dentate gyrus. DS were associated with an increase in multiunit activity in the granule cell layer, but no change in CA1. These results suggest that following SE there is an increase in DS activity, potentially arising from hyperexcitability along the

  5. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Directory of Open Access Journals (Sweden)

    S. D. Parkinson

    2014-09-01

    Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.

  6. Direct numerical simulations of particle-laden density currents with adaptive, discontinuous finite elements

    Science.gov (United States)

    Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.

    2014-09-01

    High-resolution direct numerical simulations (DNSs) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.

  7. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    Science.gov (United States)

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  8. Status Epilepticus Induced Spontaneous Dentate Gyrus Spikes: In Vivo Current Source Density Analysis.

    Directory of Open Access Journals (Sweden)

    Sean P Flynn

    Full Text Available The dentate gyrus is considered to function as an inhibitory gate limiting excitatory input to the hippocampus. Following status epilepticus (SE, this gating function is reduced and granule cells become hyper-excitable. Dentate spikes (DS are large amplitude potentials observed in the dentate gyrus (DG of normal animals. DS are associated with membrane depolarization of granule cells, increased activity of hilar interneurons and suppression of CA3 and CA1 pyramidal cell firing. Therefore, DS could act as an anti-excitatory mechanism. Because of the altered gating function of the dentate gyrus following SE, we sought to investigate how DS are affected following pilocarpine-induced SE. Two weeks following lithium-pilocarpine SE induction, hippocampal EEG was recorded in male Sprague-Dawley rats with 16-channel silicon probes under urethane anesthesia. Probes were placed dorso-ventrally to encompass either CA1-CA3 or CA1-DG layers. Large amplitude spikes were detected from EEG recordings and subject to current source density analysis. Probe placement was verified histologically to evaluate the anatomical localization of current sinks and the origin of DS. In 9 of 11 pilocarpine-treated animals and two controls, DS were confirmed with large current sinks in the molecular layer of the dentate gyrus. DS frequency was significantly increased in pilocarpine-treated animals compared to controls. Additionally, in pilocarpine-treated animals, DS displayed current sinks in the outer, middle and/or inner molecular layers. However, there was no difference in the frequency of events when comparing between layers. This suggests that following SE, DS can be generated by input from medial and lateral entorhinal cortex, or within the dentate gyrus. DS were associated with an increase in multiunit activity in the granule cell layer, but no change in CA1. These results suggest that following SE there is an increase in DS activity, potentially arising from

  9. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    Science.gov (United States)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  10. Propagation and deposition mechanisms of dense pyroclastic density currents: insights from analogue laboratory experiments. (Invited)

    Science.gov (United States)

    Roche, O.; Montserrat, S.; Niño, Y.; Tamburrino, A.

    2010-12-01

    Analogue laboratory experiments on air-particle flows represent a useful tool to investigate the mechanisms of propagation and deposition of dense (or the dense part of) pyroclastic density currents. In this context, we carried out experiments in the dam-break configuration and studied the emplacement processes of analogue biphasic currents generated from the quasi-instantaneous release of fluidized columns of fine (80 µm) particles. The low permeability of the granular material permitted relatively slow diffusion of the initial pore pressure within the flows until they came to halt. Analysis of the flow kinematics and comparison with flows of water in the same apparatus revealed that the air-particle currents propagated in two distinct stages. They behaved as their inertial water counterparts for most their emplacement, as both types of flows had the same morphology and propagated at constant front velocity U~√(2gh), h being the initial height of the granular column. This occurred as long as the height of the collapsing fluidized columns was higher than the that of the resultant flows, thus generating a driving pressure gradient. This fluid-inertial behavior suggested that the pore fluid pressure was high during propagation of the mixture. In order to check this hypothesis, we carried out non invasive measurements of the pore fluid pressure at the base of the air-particle flows and made correlation of the pressure signal with the flow structure from analyses of high speed videos. The flow structure consisted of a sliding head that caused underpressure relative to ambient conditions and whose magnitude correlated with the flow velocity. The flow head was followed by a body that generated overpressure and at the base of which a deposit aggraded at a nearly constant rate. Both the flow head and body were sheared pervasively as the internal velocity increased upwards. The combination of pressure advection from the source and relatively slow pressure diffusion

  11. An Elimination Method of Temperature-Induced Linear Birefringence in a Stray Current Sensor

    Directory of Open Access Journals (Sweden)

    Shaoyi Xu

    2017-03-01

    Full Text Available In this work, an elimination method of the temperature-induced linear birefringence (TILB in a stray current sensor is proposed using the cylindrical spiral fiber (CSF, which produces a large amount of circular birefringence to eliminate the TILB based on geometric rotation effect. First, the differential equations that indicate the polarization evolution of the CSF element are derived, and the output error model is built based on the Jones matrix calculus. Then, an accurate search method is proposed to obtain the key parameters of the CSF, including the length of the cylindrical silica rod and the number of the curve spirals. The optimized results are 302 mm and 11, respectively. Moreover, an effective factor is proposed to analyze the elimination of the TILB, which should be greater than 7.42 to achieve the output error requirement that is not greater than 0.5%. Finally, temperature experiments are conducted to verify the feasibility of the elimination method. The results indicate that the output error caused by the TILB can be controlled less than 0.43% based on this elimination method within the range from −20 °C to 40 °C.

  12. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2012-07-01

    Full Text Available A novel three-point method using a grating eddy current absolute position sensor (GECS for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.

  13. Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †

    Directory of Open Access Journals (Sweden)

    M. W. C. Dharma-wardana

    2016-03-01

    Full Text Available Finite-temperature density functional theory (DFT has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM.Warm-dense matter (WDM, ultra-fast matter (UFM, and high-energy density matter (HEDM may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degeneracies are found in these systems where the electron temperature Te is comparable to the electron Fermi energy EF. Thus, many electrons are in continuum states which are partially occupied. The ion subsystem may be solid, liquid or plasma, with many states of ionization with ionic charge Zj. Quasi-equilibria with the ion temperature Ti ≠ Te are common. The ion subsystem in WCM can no longer be treated as a passive “external potential”, as is customary in T = 0 DFT dominated by solid-state theory or quantum chemistry. Many basic questions arise in trying to implement DFT for WCM. Hohenberg-Kohn-Mermin theory can be adapted for treating these systems if suitable finite-T exchange-correlation (XC functionals can be constructed. They are functionals of both the one-body electron density ne and the one-body ion densities ρj. Here, j counts many species of nuclei or charge states. A method of approximately but accurately mapping the quantum electrons to a classical Coulomb gas enables one to treat electron-ion systems entirely classically at any temperature and arbitrary spin polarization, using exchange-correlation effects calculated in situ, directly from the pair-distribution functions. This eliminates the need for any XC-functionals. This classical map has been used to calculate the equation of state of WDM systems, and construct a finite-T XC functional that is found to be in close agreement with recent quantum path-integral simulation data. In this review, current developments and concerns in finite-T DFT, especially in the context of non-relativistic warm

  14. A Novel High Sensitivity Sensor for Remote Field Eddy Current Non-Destructive Testing Based on Orthogonal Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xiaojie Xu

    2014-12-01

    Full Text Available Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors’ disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted.

  15. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    Science.gov (United States)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  16. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  17. Behavior of a DC zero-flux current sensor; Magnetic field analysis and comparison with experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Campostrini, P.; Sonato, P. (Istituto Gas Ionizzati del CNR, Padova (IT))

    1991-09-01

    In this paper the magnetic section of the finite-element ANSYS code, and in particular its optimization feature has been used to predict the behaviour of a zero-flux current sensor, briefly described, which is intended to be used in a fusion experiment to measure pulsed currents up to 50 kA, over a bandwidth from DC to 10 k Hz. The computed results fit well with those coming from experimental tests performed on a prototype.

  18. Current Sensor Based on Magnetic Sensor MMC212xMG%基于MMC212xMG的电流传感器

    Institute of Scientific and Technical Information of China (English)

    熊显名; 莫荣军

    2012-01-01

    针对传统电流测量方法精度不高、工艺复杂等问题,利用各向异性磁阻传感器MMC212xMG优异的磁场测量性能设计了一种高精度非接触式电流传感器.该电流传感器以磁场传感器MMC212xMG作为核心检测部件,ATmega32微控制器作为主控器,实时测量磁场数据,对数据进行滤波和计算后显示电流值.被测电流与磁场传感器MMC212xMG都处在密闭的坡莫合金屏蔽体内,有效避免外界磁场对电流磁检测过程的干扰.实验结果表明,该电流传感器具有精度高、非接触式测量、稳定性好、体积小等特点.%For the accuracy of conventional current measurement methods is not high and their processes are complex,in the basis of the excellent magnetic field measurement performance of anisotropic magnetoresistive sensors MMC212xMG,one high-precision non-contact current sensor was designed. Taking the magnetic field sensor MMC212xMG as a core detecting component and ATmega32 microcontroller as a master,the sensor system detected magnetic field data in real-time,filtered the data and displayed the current value after mathematical operation. The measured current and magnetic field sensor MMC212xMG were in sealed permalloy shielding body to avoid the interference of external magnetic field on current magnetic detection process effectively. Experimental results show that the system has the characteristics of high accuracy, non-contact measurement, good stability, and small size.

  19. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films.

    Science.gov (United States)

    Eom, C B; Lee, M K; Choi, J H; Belenky, L J; Song, X; Cooley, L D; Naus, M T; Patnaik, S; Jiang, J; Rikel, M; Polyanskii, A; Gurevich, A; Cai, X Y; Bu, S D; Babcock, S E; Hellstrom, E E; Larbalestier, D C; Rogado, N; Regan, K A; Hayward, M A; He, T; Slusky, J S; Inumaru, K; Haas, M K; Cava, R J

    2001-05-31

    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7 T at liquid helium temperature (4.2 K), significantly lower than about 10 T for Nb-Ti (ref. 6) and approximately 20 T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2 K greater than 14 T. In addition, very high critical current densities at 4.2 K are achieved: 1 MA cm-2 at 1 T and 105 A cm-2 at 10 T. These results demonstrate that MgB2 has potential for high-field superconducting applications.

  20. Experimental determination of two-dimensional critical current density distribution in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, Naoyuki; Shinkai, Yoshichika [Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama (Japan); Iijima, Yasuhiro; Kakimoto, Kazuomi; Takeda, Kaoru [Materials Research Laboratory, Fujikura Ltd., Kiba, Koto, Tokyo (Japan)

    2001-08-01

    The critical current density (J{sub c}) distribution in YBCO coated conductors is attracting interest from the viewpoint of its influence on their AC loss characteristics as well as from material science and process engineering. A two-dimensional J{sub c} distribution in a YBCO coated conductor made by the IBAD (ion-beam assisted deposition) and the PLD (pulse-laser deposition) method can be determined by the magnetic-knife method with spatial resolutions of 0.2 mm lateral and 10 mm longitudinal directions, respectively. In an up-to-date 80A-class YBCO coated conductor, the J{sub c} is relatively uniform in the central part and reaches mbox{l_brace}7$x$10{sup 9} A m{sup -2}, {r_brace} while the J{sub c} fluctuates spatially in the central part of a tape fabricated earlier and with less critical current. Near the edges of the tapes, the J{sub c} is higher or lower than in the central part and the experimentally determined J{sub c} distributions are far from uniform. This suggests that a presumption of a uniform J{sub c} for AC loss estimations is not always reasonable and can lead to a large error in the estimated AC losses. (author)