Current density waves in open mesoscopic rings driven by time-periodic magnetic fluxes
International Nuclear Information System (INIS)
Yan Conghua; Wei Lianfu
2010-01-01
Quantum coherent transport through open mesoscopic Aharonov-Bohm rings (driven by static fluxes) have been studied extensively. Here, by using quantum waveguide theory and the Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic ring threaded by a time-periodic magnetic flux. We predicate that current density waves could be excited along such an open ring. As a consequence, a net current could be generated along the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop driven by the time-dependent flux. These phenomena could be explained by photon-assisted processes, due to the interaction between the transported electrons and the applied oscillating external fields. We also discuss how the time-average currents (along the ring and the lead) depend on the amplitude and frequency of the applied oscillating fluxes.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others
2016-11-01
Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.
Non-inductively driven currents in JET
International Nuclear Information System (INIS)
Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.
1989-01-01
Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs
Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.
1992-07-01
A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
From current-driven to neoclassically driven tearing modes.
Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A
2002-03-11
In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.
Investigation of Current Driven Loudspeakers
DEFF Research Database (Denmark)
Schneider, Henrik; Agerkvist, Finn T.; Knott, Arnold
2015-01-01
Current driven loudspeakers have previously been investigated but the literature is limited and the advantages and disadvantages are yet to be fully identified. This paper makes use of a non-linear loudspeaker model to analyse loudspeakers with distinct non-linear characteristics under voltage an......” woofer where a copper ring in the pole piece has not been implemented to compensate for eddy currents. However the drive method seems to be irrelevant for a 5” woofer where the compliance, force factor as well as the voice coil inductance has been optimized for linearity.......Current driven loudspeakers have previously been investigated but the literature is limited and the advantages and disadvantages are yet to be fully identified. This paper makes use of a non-linear loudspeaker model to analyse loudspeakers with distinct non-linear characteristics under voltage...
Current and noise in driven heterostructures
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Franz
2009-02-18
In this thesis we consider the electron transport in nanoscale systems driven by an external energy source. We introduce a tight-binding Hamiltonian containing an interaction term that describes a very strong Coulomb repulsion between electrons in the system. Since we deal with time-dependent situations, we employ a Floquet theory to take into account the time periodicity induced by different external oscillating fields. For the two-level system, we even provide an analytical solution for the eigenenergies with arbitrary phase shift between the levels for a cosine-shaped driving. To describe time-dependent driven transport, we derive a master equation by tracing out the influence of the surrounding leads in order to obtain the reduced density operator of the system. We generalise the common master equation for the reduced density operator to perform an analysis of the noise characteristics. The concept of Full Counting Statistics in electron transport gained much attention in recent years proven its value as a powerful theoretical technique. Combining its advantages with the master equation approach, we find a hierarchy in the moments of the electron number in one lead that allows us to calculate the first two cumulants. The first cumulant can be identified as the current passing through the system, while the noise of this transmission process is reflected by the second cumulant. Moreover, in combination with our Floquet approach, the formalism is not limited to static situations, which we prove by calculating the current and noise characteristics for the non-adiabatic electron pump. We study the influence of a static energy disorder on the maximal possible current for different realisations. Further, we explore the possibility of non-adiabatically pumping electrons in an initially symmetric system if random fluctuations break this symmetry. Motivated by recent and upcoming experiments, we use our extended Floquet model to properly describe systems driven by
Current interruption by density depression
International Nuclear Information System (INIS)
Wagner, J.S.; Tajima, T.; Akasofu, S.I.
1985-04-01
Using a one-dimensional electrostatic particle code, we examine processes associated with current interruption in a collisionless plasma when a density depression is present along the current channel. Current interruption due to double layers was suggested by Alfven and Carlqvist (1967) as a cause of solar flares. At a local density depression, plasma instabilities caused by an electron current flow are accentuated, leading to current disruption. Our simulation study encompasses a wide range of the parameters in such a way that under appropriate conditions, both the Alfven and Carlqvist (1967) regime and the Smith and Priest (1972) regime take place. In the latter regime the density depression decays into a stationary structure (''ion-acoustic layer'') which spawns a series of ion-acoustic ''solitons'' and ion phase space holes travelling upstream. A large inductance of the current circuit tends to enhance the plasma instabilities
High current density ion source
International Nuclear Information System (INIS)
King, H.J.
1977-01-01
A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table
Current-driven turbulence in plasmas
International Nuclear Information System (INIS)
Kluiver, H. de.
1977-10-01
Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research
Equilibrium of current driven rotating liquid metal
International Nuclear Information System (INIS)
Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.
2006-01-01
In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement
Taylor dispersion in wind-driven current
Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.
2017-12-01
Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.
Stability properties of cold blanket systems for current driven modes
International Nuclear Information System (INIS)
Ohlsson, D.
1977-12-01
The stability problem of the boundary regions of cold blanket systems with induced currents parallel to the lines of force is formulated. Particular interest is focused on two types of modes: first electrostatic modes driven by the combined effects of a transverse resistivity gradient due to a spatially non-uniform electron temperature and a longitudinal current, second electromagnetic kink like modes driven by the torque arising from a transverse current density gradient and magnetic field perturbations. It is found that the combination of various dissipative and neutral gas effects introduces strong stabilizing effects within specific parameter ranges. For particular steady-state models investigated it is shown that these effects become of importance in laboratory plasmas at relatively high densities, low temperatures and moderate magnetic field strengths. Stability diagrams based on specific steady-state cold plasma blanket models will be presented
Light-field-driven currents in graphene
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter
2017-10-01
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in
Selfconsistent RF driven and bootstrap currents
International Nuclear Information System (INIS)
Peysson, Y.
2002-01-01
This important problem selfconsistent calculations of the bootstrap current with RF, taking into account possible synergistic effects, is addressed for the case of lower hybrid (LH) and electron cyclotron (EC) current drive by numerically solving the electron drift kinetic equation. Calculations are performed using a new, fast, and fully implicit code which solves the 3-D relativistic Fokker-Planck equation with quasilinear diffusion. These calculations take into account the perturbations to the electron distribution due to radial drifts induced by magnetic field gradient and curvature. While the synergism between bootstrap and LH-driven current does not seem to exceed 15%, it can reach 30-40% with the EC-driven current for some plasma parameters. In addition, considerable current can be generated by judiciously using ECCD with the Okhawa effect. This is in contrast to the usual ECCD which tries to avoid it. A detailed analysis of the numerical results is presented using a simplified analytical model which incorporates the underlying physical processes. (author)
A quasilinear formulation of turbulence driven current
Energy Technology Data Exchange (ETDEWEB)
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2014-02-15
Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude.
A quasilinear formulation of turbulence driven current
International Nuclear Information System (INIS)
McDevitt, C. J.; Tang, Xian-Zhu; Guo, Zehua
2014-01-01
Non-inductive current drive mechanisms, such as the familiar neoclassical bootstrap current correspond to an essential component to the realization of steady state tokamak operation. In this work, we discuss a novel collisionless mechanism through which a mean plasma current may be driven in the presence of microturbulence. In analogy with the traditional neoclassical bootstrap current drive mechanism, in which the collisional equilibrium established between trapped and passing electrons results in the formation of a steady state plasma current, here we show that resonant scattering of electrons by drift wave microturbulence provides an additional means of determining the equilibrium between trapped and passing electrons. The resulting collisionless equilibrium is shown to result in the formation of an equilibrium current whose magnitude is a function of the thermodynamic forces. A mean field formulation is utilized to incorporate the above components into a unified framework through which both collisional as well as collisionless current drive mechanisms may be self-consistently treated. Utilizing a linearized Fokker-Planck collision operator, the plasma current in the presence of both collisions as well as turbulent stresses is computed, allowing for the relative strength of these two mechanisms to be quantified as a function of collisionality and fluctuation amplitude
Suppression of magnetic islands by rf-driven currents
International Nuclear Information System (INIS)
Reiman, A.H.
1982-06-01
The quasilinear theory for the saturation of nonlinear tearing modes is modified to include rf driven currents. It is shown that the presence of lower hybrid driven currents can strongly suppress the growth of magnetic islands
Artificial cognitive memory—changing from density driven to functionality driven
Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.
2011-03-01
Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.
Enhancing critical current density of cuprate superconductors
Chaudhari, Praveen
2015-06-16
The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.
Spreading of wave-driven currents in a tokamak
International Nuclear Information System (INIS)
Ignat, D.W.; Kaita, R.; Jardin, S.C.; Okabayashi, M.
1996-01-01
Lower hybrid current drive (LHCD) in the tokamak Princeton Beta Experiment-Modification (PBX-M) is computed with a dynamic model in order to understand an actual discharge aimed at raising the central q above unity. Such configurations offer advantages for steady-state operation and plasma stability. For the particular parameters of this PBX-M experiment, the calculation found singular profiles of plasma current density J and safety factor q developing soon after LHCD begins. Smoothing the lower hybrid-driven current and power using a diffusion-Eke equation and a velocity-independent diffusivity for fast-electron current brought the model into reasonable agreement with the measurements if D fast ∼ 1.0 m 2 /s. Such a value for D fast is in the range suggested by other work
A current driven capacitively coupled chlorine discharge
International Nuclear Information System (INIS)
Huang, Shuo; Gudmundsson, J T
2014-01-01
The effect of driving current, driving frequency and secondary electrons on capacitively coupled chlorine discharge is systematically investigated using a hybrid approach consisting of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The driving current is varied from 20 to 80 A m −2 , the driving frequency is varied from 13.56 to 60 MHz and the secondary electron emission coefficient is varied from 0.0 to 0.4. Key plasma parameters including electron energy probability function, electron heating rate, ion energy and angular distributions are explored and their variations with control parameters are analyzed and compared with other discharges. Furthermore, we extend our study to dual-frequency (DF) capacitively coupled chlorine discharge by adding a low-frequency current source and explore the effect of the low-frequency source on the discharge. The low-frequency current density is increased from 0 to 4 A m −2 . The flux of Cl 2 + ions to the surface increases only slightly while the average energy of Cl 2 + ions to the surface increases almost linearly with increasing low-frequency current, which shows possible independent control of the flux and energy of Cl 2 + ions by varying the low-frequency current in a DF capacitively coupled chlorine discharge. However, the increase in the flux of Cl + ions with increasing low-frequency current, which is mainly due to the increased dissociation fraction of the background gas caused by extra power supplied by the low-frequency source, is undesirable. (paper)
Gate-Driven Pure Spin Current in Graphene
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
Current density profile evolution in JET
International Nuclear Information System (INIS)
Stubberfield, P.M.; Balet, B.; Campbell, D.; Challis, C.D.; Cordey, J.G.; O'Rourke, J.; Hammett, G.; Schmidt, G.L.
1989-01-01
Simulation studies have been made of the current density profile evolution in discharges where the bootstrap current is expected to be significant. The changes predicted in the total current profile have been confirmed by comparison with experimental results. (author) 8 refs., 6 figs
Current distribution tomography for determination of internal current density distributions
International Nuclear Information System (INIS)
Gailey, P.C.
1993-01-01
A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields
Current-driven parametric resonance in magnetic multilayers
International Nuclear Information System (INIS)
Wang, C; Seinige, H; Tsoi, M
2013-01-01
Current-induced parametric excitations were observed in point-contact spin-valve nanodevices. Point contacts were used to inject high densities of direct and microwave currents into spin valves, thus producing oscillating spin-transfer and Oersted-field torques on magnetic moments. The resulting magnetodynamics were observed electrically by measuring rectified voltage signals across the contact. In addition to the spin-torque-driven ferromagnetic resonance we observe doubled-frequency signals which correspond to the parametric excitation of magnetic moments. Numerical simulations suggest that while both spin-transfer torque and ac Oersted field contribute to the parametrically excited dynamics, the ac spin torque dominates, and dc spin torque can switch it on and off. The dc bias dependence of the parametric resonance signal enabled the mapping of instability regions characterizing the nonlinearity of the oscillation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Venkattraman, Ayyaswamy [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)
2013-11-15
The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.
International Nuclear Information System (INIS)
Venkattraman, Ayyaswamy
2013-01-01
The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission
Onset of density-driven instabilities in fractured aquifers
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2018-04-01
Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.
Current density fluctuations and ambipolarity of transport
International Nuclear Information System (INIS)
Shen, W.; Dexter, R.N.; Prager, S.C.
1991-10-01
The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range
Surface current density K: an introduction
DEFF Research Database (Denmark)
McAllister, Iain Wilson
1991-01-01
The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...
Limiting density ratios in piston-driven compressions
International Nuclear Information System (INIS)
Lee, S.
1985-07-01
By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)
Currents driven by electron cyclotron waves
International Nuclear Information System (INIS)
Karney, C.F.F.; Fisch, N.J.
1981-07-01
Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the nonlinear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered
Physics of radiation-driven islands near the tokamak density limit
International Nuclear Information System (INIS)
Gates, D.A.; Delgado-Aparicio, L.; White, R.B.
2013-01-01
In previous work (Gates and Delgado-Aparicio 2012 Phys. Rev. Lett. 108 165004), the onset criterion for radiation-driven islands (Rebut et al 1985 Proc. 10th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research 1984 (London, UK, 1984) vol 2 (Vienna: IAEA) p 197) in combination with a simple cylindrical model of tokamak current channel behaviour was shown to be consistent with the empirical scaling of the tokamak density limit (Greenwald et al 1988 Nucl. Fusion 28 2199). A number of the unexplained phenomena at the density limit are consistent with this novel physics mechanism. In this work, a more formal theoretical underpinning, consistent with cylindrical tearing mode theory, is developed for the onset criteria of these modes. The appropriate derivation of the radiation-driven addition to the modified Rutherford equation (MRE) is discussed. Additionally, the ordering of the terms in the MRE is examined in a regime near the density limit. It is hoped that, given the apparent success of this simple model in explaining the observed global scalings, it will lead to a more comprehensive analysis of the possibility that radiation-driven islands are the physics mechanism responsible for the density limit. In particular, with modern diagnostic capabilities detailed measurements of current densities, electron densities and impurity concentrations at rational surfaces should be possible, enabling verification of the concepts described above. (paper)
International Nuclear Information System (INIS)
Bakosi, Jozsef; Ristorcelli, Raymond J.
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Current density and continuity in discretized models
International Nuclear Information System (INIS)
Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.
Intrinsic non-inductive current driven by ETG turbulence in tokamaks
Singh, Rameswar; Kaw, P. K.; Singh, R.; Gürcan, Ã.-. D.
2017-10-01
Motivated by observations and physics understanding of the phenomenon of intrinsic rotation, it is suggested that similar considerations for electron dynamics may result in intrinsic current in tokamaks. We have investigated the possibility of intrinsic non-inductive current in the turbulent plasma of tokamaks. Ohm's law is generalized to include the effect of turbulent fluctuations in the mean field approach. This clearly leads to the identification of sources and the mechanisms of non-inductive current drive by electron temperature gradient turbulence. It is found that a mean parallel electro-motive force and hence a mean parallel current can be generated by (1) the divergence of residual current flux density and (2) a non-flux like turbulent source from the density and parallel electric field correlations. Both residual flux and the non-flux source require parallel wave-number k∥ symmetry breaking for their survival which can be supplied by various means like mean E × B shear, turbulence intensity gradient, etc. Estimates of turbulence driven current are compared with the background bootstrap current in the pedestal region. It is found that turbulence driven current is nearly 10% of the bootstrap current and hence can have a significant influence on the equilibrium current density profiles and current shear driven modes.
Current quantization and fractal hierarchy in a driven repulsive lattice gas.
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Current quantization and fractal hierarchy in a driven repulsive lattice gas
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Lower-hybrid counter current drive for edge current density modification in DIII-D
International Nuclear Information System (INIS)
Fenstermacher, M.E.; Nevins, W.M.; Porkolab, M.; Bonoli, P.T.; Harvey, R.W.
1994-01-01
Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g., with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results will be presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n e and T e , and launched wave spectrum will also be shown
Equilibrium current-driven tearing mode in the hydrodynamic regime
International Nuclear Information System (INIS)
Cozzani, F.; Mahajan, S.
1984-12-01
The effect of the parallel equilibrium current on the linear stability of the drift-tearing mode in the collisional regime is investigated analytically. In the appropriate parameter regime, a new unstable mode, driven by equilibrium current, is found and its relevance to tokamak discharges is discussed
Transversely driven charge density waves in NbSe3
International Nuclear Information System (INIS)
Markovic, N.; Dohmen, M.A.H.; Zant, H.S.J. van der
1999-01-01
We have studied the charge density wave (CDW) transport in the presence of a single-particle current flowing transversely to the sliding direction of the CDW. The depinning threshold field was found to decrease exponentially with the transverse current, allowing the CDWs to slide even at very low bias fields. The CDW transport is ohmic in this novel, nonequilibrium regime. The results from thin NbSe 3 crystals are in excellent agreement with recent theoretical predictions. (orig.)
Onset of current-driven turbulence on application of a low toroidal electric field
International Nuclear Information System (INIS)
Nakamura, Yukio; Watanabe, Takechiyo; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Itoh, Satoshi
1982-01-01
The critical condition for current-driven instability excited in a turbulently-heated TRIAM-1 tokamak plasma is investigated experimentally. A resistive hump in the loop voltage, plasma density fluctuation and rapid increase in electron temperature in the skin layer are simultaneously observed when the electron drift velocity equals the critical drift velocity for low-frequency ion acoustic instability. (author)
Onset of current-driven turbulence on application of a low toroidal electric field
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Yukio; Watanabe, Takechiyo; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1982-06-01
The critical condition for current-driven instability excited in a turbulently-heated TRIAM-1 tokamak plasma is investigated experimentally. A resistive hump in the loop voltage, plasma density fluctuation and rapid increase in electron temperature in the skin layer are simultaneously observed when the electron drift velocity equals the critical drift velocity for low-frequency ion acoustic instability.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O
1982-02-01
Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.
The demography of climate-driven and density-regulated population dynamics in a perennial plant
DEFF Research Database (Denmark)
Dahlgren, Johan; Bengstsson, Karin; Ehrlén, Johan
2016-01-01
Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly...... important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models...... to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses...
Inverse anisotropic conductivity from internal current densities
International Nuclear Information System (INIS)
Bal, Guillaume; Guo, Chenxi; Monard, François
2014-01-01
This paper concerns the reconstruction of a fully anisotropic conductivity tensor γ from internal current densities of the form J = γ∇u, where u solves a second-order elliptic equation ∇ · (γ∇u) = 0 on a bounded domain X with prescribed boundary conditions. A minimum number of n + 2 such functionals known on Y⊂X, where n is the spatial dimension, is sufficient to guarantee a unique and explicit reconstruction of γ locally on Y. Moreover, we show that γ is reconstructed with a loss of one derivative compared to errors in the measurement of J in the general case and no loss of derivatives in the special case where γ is scalar. We also describe linear combinations of mixed partial derivatives of γ that exhibit better stability properties and hence can be reconstructed with better resolution in practice. (paper)
CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES
Energy Technology Data Exchange (ETDEWEB)
Professor Bruce R. Kusse; Professor David A. Hammer
2007-04-18
This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.
Density ratios in compressions driven by radiation pressure
International Nuclear Information System (INIS)
Lee, S.
1988-01-01
It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)
Alpha-Effect, Current and Kinetic Helicities for Magnetically Driven ...
Indian Academy of Sciences (India)
tribpo
Key words. Sun—dynamo, helicity, turbulent convection. Extended abstract. Recent numerical simulations lead to the result that turbulence is much more mag- netically driven than believed. ... positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicity which is negative ...
Controlling chaos in the current-driven ion acoustic instability
International Nuclear Information System (INIS)
Fukuyama, T.; Taniguchi, K.; Kawai, Y.
2002-01-01
Control of intermittent chaos caused by the current-driven ion acoustic instability is attempted and the controlling mechanism is investigated. When a small negative dc voltage is applied to the chaotic system as a perturbation, the system changes from a chaotic state to a periodic state while maintaining the instability, indicating that the chaotic state caused by the ion acoustic instability is well controlled by applying a small negative dc voltage. A hysteresis structure is observed on the V-I curve of the mesh grid to which the negative dc voltage to control is applied. Furthermore, when a negative dc voltage is applied to the state which shows a laminar structure existing under same experimental conditions, the system becomes chaotic via a bifurcation. Driven-chaos is excited when a negative dc voltage is applied to the laminar state. Applying a small negative dc voltage leads to controlling intermittent chaos while exciting driven-chaos
Plasma rotation under a driven radial current in a tokamak
International Nuclear Information System (INIS)
Chang, C.S.
1999-01-01
The neoclassical behaviour of plasma rotation under a driven radial electrical current is studied in a tokamak geometry. An ambipolar radial electric field develops instantly in such a way that the driven current is balanced by a return current j p in the plasma. The j p x B torque pushes the plasma into a new rotation state both toroidally and poloidally. An anomalous toroidal viscosity is needed to avoid an extreme toroidal rotation speed. It is shown that the poloidal rotation relaxes to a new equilibrium speed, which is in general smaller than the E x B poloidal speed, and that the timescale for the relaxation of poloidal rotation is the same as that of toroidal rotation generation, which is usually much longer than the ion-ion collision time. (author)
International Nuclear Information System (INIS)
Stefanovskii, A. M.
2011-01-01
The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.
High current density ion beam measurement techniques
International Nuclear Information System (INIS)
Ko, W.C.; Sawatzky, E.
1976-01-01
High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current
Effect of current density on the anodization of zircaloy-2
International Nuclear Information System (INIS)
Bhaskar Reddy, P.; Panasa Reddy, A.
2005-01-01
The effect of current density on the kinetics of anodization of Zircaloy-2 in 0.1 M potassium tartarate have been studied at various constant current densities ranging from 2 to 10 mA.cm -2 and at room temperature to investigate the exponential dependence of ionic current density on the field across the oxide. The rate of anodic film formation (dV/dt), the current efficiency the differential field of formation (F) and the ionic current density (i i ) were calculated. It was found that all these parameters were increased with increase of current density. The induction period was decreased with the increase of current density. It was also found that the plot of log (ionic current density) vs differential field gave fairly a linear relationship. The kinetic parameters, half jump distance (a) and height of the energy barrier (W) were calculated. (author)
Influence of exchange coupling on current-driven domain wall motion in a nanowire
International Nuclear Information System (INIS)
Komine, Takashi; Takahashi, Kota; Murakami, Hiroshi; Sugita, Ryuji
2010-01-01
In this study, the effect of exchange stiffness constant on current-driven domain wall motion in nanowires with in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) has been investigated using micromagnetic simulation. The critical current density in a nanowire with IMA decreases as the exchange stiffness constant decreases because the domain wall width at the upper edge of the nanowire narrows according to the decrease of the exchange stiffness constant. On the other hand, the critical current density in a nanowire with PMA slightly decreases contrary to that of IMA although the domain wall width reasonably decreases as the exchange stiffness constant decreases. The slight reduction rate of the critical current density is due to the increase of the effective hard-axis anisotropy of PMA nanowire.
Oblique Alfvén instabilities driven by compensated currents
Energy Technology Data Exchange (ETDEWEB)
Malovichko, P. [Main Astronomical Observatory, NASU, Kyiv (Ukraine); Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-01-10
Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.
Oblique Alfvén instabilities driven by compensated currents
International Nuclear Information System (INIS)
Malovichko, P.; Voitenko, Y.; De Keyser, J.
2014-01-01
Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.
Energy confinement in JT-60 lower hybrid current driven plasmas
International Nuclear Information System (INIS)
Ushigusa, K.; Imai, T.; Naito, O.; Ikeda, Y.; Tsuji, S.; Uehara, K.
1990-01-01
The energy confinement in high power lower hybrid current driven (LHCD) plasmas has been studied in the JT-60 tokamak. At a plasma current of 1 MA, the diamagnetically estimated energy confinement time in LHCD plasmas has almost the same value as the confinement time in ohmically heated plasmas at n-bar e ∼ 1.0x10 19 m -3 . The confinement time of high power LHCD plasmas (P LH E varies as to P LH α n e β I p 0 with α + β ∼ -0.3. (author). Letter-to-the-editor. 12 refs, 5 figs
Control of the current density profile with lower hybrid current drive on PBX-M
International Nuclear Information System (INIS)
Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.
1993-07-01
Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1
Coupling of the Okuda-Dawson model with a shear current-driven wave and the associated instability
Masood, W.; Saleem, H.; Saleem
2013-12-01
It is pointed out that the Okuda-Dawson mode can couple with the newly proposed current-driven wave. It is also shown that the Shukla-Varma mode can couple with these waves if the density inhomogeneity is taken into account in a plasma containing stationary dust particles. A comparison of several low-frequency electrostatic waves and instabilities driven by shear current and shear plasma flow in an electron-ion plasma with and without stationary dust is also presented.
First demonstration of HF-driven ionospheric currents
Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.
2011-10-01
The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.
Computer simulation of transport driven current in tokamaks
International Nuclear Information System (INIS)
Nunan, W.J.; Dawson, J.M.
1993-01-01
Plasma transport phenomena can drive large currents parallel to an externally applied magnetic field. The Bootstrap Current Theory accounts for the effect of Banana diffusion on toroidal current, but the effect is not confined to that transport regime. The authors' 2 1/2-D, electromagnetic, particle simulations have demonstrated that Maxwellian plasmas in static toroidal and vertical fields spontaneously develop significant toroidal current, even in the absence of the open-quotes seed currentclose quotes which the Bootstrap Theory requires. Other simulations, in both toroidal and straight cylindrical geometries, and without any externally imposed electric field, show that if the plasma column is centrally fueled, and if the particle diffusion coefficient exceeds the magnetic diffusion coefficient (as is true in most tokamaks) then the toroidal current grows steadily. The simulations indicate that such fueling, coupled with central heating due to fusion reactions may drive all of the tokamak's toroidal current. The Bootstrap and dynamo mechanisms do not drive toroidal current where the poloidal magnetic field is zero. The simulations, as well as initial theoretical work, indicate that in tokamak plasmas, various processes naturally transport current from the outer regions of the plasma to the magnetic axis. The mechanisms which cause this effective electron viscosity include conventional binary collisions, wave emission and reabsorption, and also convection associated with rvec E x rvec B vortex motion. The simulations also exhibit preferential loss of particles carrying current opposing the bulk plasma current. This preferential loss generates current even at the magnetic axis. If these self-seeding mechanisms function in experiments as they do in the simulations, then transport driven current would eliminate the need for any external current drive in tokamaks, except simple ohmic heating for initial generation of the plasma
Method and device for current driven electric energy conversion
DEFF Research Database (Denmark)
2012-01-01
Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...
Current-driven vortex domain wall motion in wire-tube nanostructures
Energy Technology Data Exchange (ETDEWEB)
Espejo, A. P. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Vidal-Silva, N. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); López-López, J. A. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Goerlitz, D.; Nielsch, K. [Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, 9170124 Santiago (Chile)
2015-03-30
We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.
Long-term stability of a one-dimensional current-driven double layer
International Nuclear Information System (INIS)
Hori, N.; Yamamoto, T.
1988-01-01
Long-term (>an electron transit time over the system) stability of a one-dimensional current-driven double layer is studied by numerical experiments using particles. In these experiments, the potential difference across the system is self-consistently determined by the space charge distributions inside the system. Each boundary of the system supplies a nondrifting half-Maxwellian plasma. The current density is increased by increasing the number density of the source plasma at the injection (right) boundary. A double layer can be developed by injection of a sufficiently high current density. For a fixed level of current injection, plasmas carrying no current with various densities (n/sup ts/ 0 ) are loaded on the left side of the system. Whether or not the generated double layer can maintain its potential drop for a long period depends on the density (n/sup ts/ 0 ) relative to the initial density (n/sup */ 0 ) near the injection boundary: (1) the double layer is found to grow when n/sup ts/ 0 = n/sup */ 0 ; (2) the steady double layer is seen for a long period when n/sup ts/ 0 approx. >n/sup */ 0 ; (3) the double layer is found to decay when n/sup ts/ 0 is even higher than n/sup */ 0 . A new concept of the current polarizability P/sub c/ = J/n/sup number/ is introduced for understanding these results, where J is the current density flowing through the double layer and n/sup number/ is the plasma density at the injection front, i.e., the low-potential edge of the double layer
Fast wave current drive above the slow wave density limit
International Nuclear Information System (INIS)
McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.
1989-01-01
Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit
Current Source Density Estimation for Single Neurons
Directory of Open Access Journals (Sweden)
Dorottya Cserpán
2014-03-01
Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.
Heating of plasmas in tokamaks by current-driven turbulence
International Nuclear Information System (INIS)
Kluiver, H. de.
1985-10-01
Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued
Current Density and Plasma Displacement Near Perturbed Rational Surface
International Nuclear Information System (INIS)
Boozer, A.H.; Pomphrey, N.
2010-01-01
The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents. The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude. In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement.
Chemical potential of quasi-equilibrium magnon gas driven by pure spin current.
Demidov, V E; Urazhdin, S; Divinskiy, B; Bessonov, V D; Rinkevich, A B; Ustinov, V V; Demokritov, S O
2017-11-17
Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose-Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.
Density-Driven Currents and Deposition of Fine Materials
DEFF Research Database (Denmark)
Saremi, Sina
Dredging is a key element in river, ports, coastal and offshore development. In general dredging is conducted for excavation at the river,lake or seabed, relocation of the material, maintenance of the navigation channels, mining underwater deposits, land reclamation or cleaning up the environment...... and the local conditions determine the level of environmental interference and the impacts caused by the dredging projects. Sediment spillage from hopper overflow constitutes a source for sediment plumes and can also impact the turbidity of aquatic environments. The overflowing mixture is often different from...... the mixture pumped into the hopper (the inflow), because the mixture undergoes compositional transformation as a result of different timescales in the segregation of the various sediment fractions. A proper description of the compositional transformation during filling and subsequent overflow stages can...
Hysteresis-controlled instability waves in a scale-free driven current sheet model
Directory of Open Access Journals (Sweden)
V. M. Uritsky
2005-01-01
Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.
Discrete changes of current statistics in periodically driven stochastic systems
International Nuclear Information System (INIS)
Chernyak, Vladimir Y; Sinitsyn, N A
2010-01-01
We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)
Diameter dependent failure current density of gold nanowires
International Nuclear Information System (INIS)
Karim, S; Maaz, K; Ali, G; Ensinger, W
2009-01-01
Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 x 10 12 A m -2 before undergoing failure. Possible reasons for these results are discussed in this paper.
Direct-current nanogenerator driven by ultrasonic waves.
Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin
2007-04-06
We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.
A breeze-driven current on sloped littoral waters
Tohidi, A.; Jamali, M.
2017-12-01
Various natural phenomena, e. g. uniform/non-uniform solar radiation and diurnal cycles, affect water circulation patterns through aquatic canopies, that is (usually shallow) shorelines of the rivers, lakes, and lagoons. Amongst these factors is vegetation that, plays a crucial role in conserving and dispersing the nutrients, oxygen, temperature, and generally regulating the life and interactions of organisms with each other (ecology) in aquatic canopies. So far, however, very little attention has been paid to the effects of very low, breeze-like, winds over the water surface in these vegetated regions. In this exploratory study, the evolution of a breeze-driven gravity current traveling up the slope towards the shorelines is shown, experimentally. The flow is characterized using Particle Image Velocimetry (PIV) technique. In addition, a detailed dimensional analysis of the parameter space of the phenomenon is conducted. The results strongly corroborate the experimental observations.
Magnetic Method to Characterize the Current Densities in Breaker Arc
International Nuclear Information System (INIS)
Machkour, Nadia
2005-01-01
The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing
Fundamental properties of field emission-driven direct current microdischarges
International Nuclear Information System (INIS)
Rumbach, Paul; Go, David B.
2012-01-01
For half a century, it has been known that the onset of field emission in direct current microdischarges with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties including ion density, electric field due to space charge, and current-voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that field emission provides an abundance of cathode electrons, which in turn create large ion concentrations through ionizing collisions well before Paschen's criterion for breakdown is met. Breakdown due to ion-enhanced field emission occurs when the electric field due to space charge becomes comparable to the applied electric field. Simple scaling analysis of the 1D Poisson equation demonstrates that an ion density of n + ≈ 0.1V A ε 0 /qd 2 is necessary to significantly distort the electric field. Defining breakdown in terms of this critical ion density leads analytically to a simple, effective secondary emission coefficient γ ′ of the same mathematical form initially suggested by Boyle and Kisliuk [Phys. Rev. 97, 255 (1955)].
Implementation of 252Cf-source-driven power spectrum density measurement system
International Nuclear Information System (INIS)
Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming
2012-01-01
The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)
Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak
International Nuclear Information System (INIS)
Dunne, Michael G.
2014-01-01
The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.
Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak
Energy Technology Data Exchange (ETDEWEB)
Dunne, Michael G.
2014-02-15
The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.
Ultra fast shutter driven by pulsed high current
International Nuclear Information System (INIS)
Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan
2005-01-01
Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5 μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90 kA to 140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities. (authors)
Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept
Pakdeewanich, J.; Onjun, T.; Chatthong, B.
2017-09-01
This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.
Measurement of neoclassically predicted edge current density at ASDEX Upgrade
Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team
2012-12-01
Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.
Measurement of neoclassically predicted edge current density at ASDEX Upgrade
International Nuclear Information System (INIS)
Dunne, M.G.; McCarthy, P.J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.
2012-01-01
Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications. (paper)
Numerical simulations of the radio-frequency-driven toroidal current in tokamaks
International Nuclear Information System (INIS)
Peysson, Y.; Decker, J.
2014-01-01
Radio-frequency (rf) waves are a powerful tool for improving the performance and stability of tokamak plasmas through heating and current drive mechanisms, allowing current density profile control and steady-state operation. From first principles, and taking advantage from the ordering between the various time and space scales, fast and powerful numerical tools have been developed to calculate the rf-driven current. The current drive problem in tokamaks is first introduced with the purpose of maintaining a steady-state self-organized toroidal magnetohydrodynamic equilibrium, such that a minimal amount of the fusion power has to be recycled to control the plasma current. The strict criterion that characterizes a steady-state discharge is derived from the response of the tokamak, considered as a transformer, and of the plasma, when an external source of current is applied. The calculation of a rf-driven source of current requires solving self-consistently a set of equations describing the dynamics of wave fields and charged particles in an inhomogeneous magnetized plasma. The range of applicability of these equations is discussed, as well as numerical methods developed to solve them, such as the ray-tracing code C3PO and the three-dimensional linearized relativistic bounce-averaged electron Fokker-Planck solver LUKE. Simulations of current drive by lower-hybrid waves are presented to illustrate the applications of our numerical tools. Current drive modeling includes the effect of electron density fluctuations at the plasma edge, and the case of electron cyclotron waves used for stabilization of the 3/2 neoclassical tearing modes in ITER is studied in detail. Finally, ongoing developments, including cross effects between momentum and configuration spaces, aiming at improving current drive calculations are discussed. (authors)
Electromagnetic considerations for RF current density imaging [MRI technique].
Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M
1995-01-01
Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.
Urban characteristics attributable to density-driven tie formation
Pan, Wei; Ghoshal, Gourab; Krumme, Coco; Cebrian, Manuel; Pentland, Alex
2013-06-01
Motivated by empirical evidence on the interplay between geography, population density and societal interaction, we propose a generative process for the evolution of social structure in cities. Our analytical and simulation results predict both super-linear scaling of social-tie density and information contagion as a function of the population. Here we demonstrate that our model provides a robust and accurate fit for the dependency of city characteristics with city-size, ranging from individual-level dyadic interactions (number of acquaintances, volume of communication) to population level variables (contagious disease rates, patenting activity, economic productivity and crime) without the need to appeal to heterogeneity, modularity, specialization or hierarchy.
Breaking the current density threshold in spin-orbit-torque magnetic random access memory
Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.
2018-04-01
Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.
Density-Driven segregation in Binary and Ternary Granular Systems
Windows-Yule, Kit; Parker, David
2015-01-01
We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of
Interaction of bootstrap-current-driven magnetic islands
International Nuclear Information System (INIS)
Hegna, C.C.; Callen, J.D.
1991-10-01
The formation and interaction of fluctuating neoclassical pressure gradient driven magnetic islands is examined. The interaction of magnetic islands produces a stochastic region around the separatrices of the islands. This interaction causes the island pressure profile to be broadened, reducing the island bootstrap current and drive for the magnetic island. A model is presented that describes the magnetic topology as a bath of interacting magnetic islands with low to medium poloidal mode number (m congruent 3-30). The islands grow by the bootstrap current effect and damp due to the flattening of the pressure profile near the island separatrix caused by the interaction of the magnetic islands. The effect of this sporadic growth and decay of the islands (''magnetic bubbling'') is not normally addressed in theories of plasma transport due to magnetic fluctuations. The nature of the transport differs from statistical approaches to magnetic turbulence since the radial step size of the plasma transport is now given by the characteristic island width. This model suggests that tokamak experiments have relatively short-lived, coherent, long wavelength magnetic oscillations present in the steep pressure-gradient regions of the plasma. 42 refs
Density Driven Removal of Sediment from a Buoyant Muddy Plume
Rouhnia, M.; Strom, K.
2014-12-01
Experiments were conducted to study the effect of settling driven instabilities on sediment removal from hypopycnal plumes. Traditional approaches scale removal rates with particle settling velocity however, it has been suggested that the removal from buoyant suspensions happens at higher rates. The enhancement of removal is likely due to gravitational instabilities, such as fingering, at two-fluid interface. Previous studies have all sought to suppress flocculation, and no simple model exists to predict the removal rates under the effect of such instabilities. This study examines whether or not flocculation hampers instability formation and presents a simple removal rate model accounting for gravitational instabilities. A buoyant suspension of flocculated Kaolinite overlying a base of clear saltwater was investigated in a laboratory tank. Concentration was continuously measured in both layers with a pair of OBS sensors, and interface was monitored with digital cameras. Snapshots from the video were used to measure finger velocity. Samples of flocculated particles at the interface were extracted to retrieve floc size data using a floc camera. Flocculation did not stop creation of settling-driven fingers. A simple cylinder-based force balance model was capable of predicting finger velocity. Analogy of fingering process of fine grained suspensions to thermal plume formation and the concept of Grashof number enabled us to model finger spacing as a function of initial concentration. Finally, from geometry, the effective cross-sectional area was correlated to finger spacing. Reformulating the outward flux expression was done by substitution of finger velocity, rather than particle settling velocity, and finger area instead of total area. A box model along with the proposed outward flux was used to predict the SSC in buoyant layer. The model quantifies removal flux based on the initial SSC and is in good agreement with the experimental data.
Current driven drift instability in the W VII-A stellarator
International Nuclear Information System (INIS)
Deutsch, R.; Wobig, H.
1978-12-01
The instability region and growth rates of current driven drift modes in the W VII-A stellarator are calculated. Several theoretical results are evaluated for specific temperature and density profiles. It is found that in the outer region of the plasma-column (r > 6 cm) collisional drift waves with wavelengths (k 2 x + K 2 y)sup(-1/2) = 0.13 - 0.3 cm exist. In this region also the electron thermal conductivity determined experimentally appears to be large. (orig./GG) [de
Determining the Limiting Current Density of Vanadium Redox Flow Batteries
Directory of Open Access Journals (Sweden)
Jen-Yu Chen
2014-09-01
Full Text Available All-vanadium redox flow batteries (VRFBs are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model.
International Nuclear Information System (INIS)
Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.
2011-01-01
In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.
Zhang, W.; Wang, S.; Ma, Z. W.
2017-06-01
The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.
DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS
International Nuclear Information System (INIS)
Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.
2010-01-01
Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.
PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES
Energy Technology Data Exchange (ETDEWEB)
Rafikov, Roman R., E-mail: rrr@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)
2016-11-10
Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.
PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES
International Nuclear Information System (INIS)
Rafikov, Roman R.
2016-01-01
Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a
Estimation of current density distribution under electrodes for external defibrillation
Directory of Open Access Journals (Sweden)
Papazov Sava P
2002-12-01
Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.
Rf Gun with High-Current Density Field Emission Cathode
International Nuclear Information System (INIS)
Jay L. Hirshfield
2005-01-01
High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes
Ionospheric midlatitude electric current density inferred from multiple magnetic satellites
DEFF Research Database (Denmark)
Shore, R. M.; Whaler, K. A.; Macmillan, S.
2013-01-01
A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...... implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications...
Magneto-optical imaging of transport current densities in superconductors
International Nuclear Information System (INIS)
Crabtree, G.W.; Welp, U.; Gunter, D.O.; Zhong, W.; Balachandran, U.; Haldar, P.; Sokolowski, R.S.; Vlasko-Vlasov, V.K.; Nikitenko, V.I.
1995-01-01
Direct imaging of the paths of transport currents in superconductors creates many new possibilities for exploring the basic features of vortex pinning mechanisms and for improving the performance of superconducting materials. A technique for imaging the path and magnitude of the transport current density flowing in superconductors is described. Results are given for a 37-filament BSCCO 2223 powder-in-tube wire, showing a highly inhomogeneous current path within the filaments
Superconducting toroidal field coil current densities for the TFCX
International Nuclear Information System (INIS)
Kalsi, S.S.; Hooper, R.J.
1985-04-01
A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm 2 with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm 3 for the nominal design and 50 MW/cm 3 for an advanced design. This study developed justification for these current density and nuclear heat load limits
Regional absolute conductivity reconstruction using projected current density in MREIT
International Nuclear Information System (INIS)
Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In
2012-01-01
Magnetic resonance electrical impedance tomography (MREIT) is a non-invasive technique for imaging the internal conductivity distribution in tissue within an MRI scanner, utilizing the magnetic flux density, which is introduced when a current is injected into the tissue from external electrodes. This magnetic flux alters the MRI signal, so that appropriate reconstruction can provide a map of the additional z-component of the magnetic field (B z ) as well as the internal current density distribution that created it. To extract the internal electrical properties of the subject, including the conductivity and/or the current density distribution, MREIT techniques use the relationship between the external injection current and the z-component of the magnetic flux density B = (B x , B y , B z ). The tissue studied typically contains defective regions, regions with a low MRI signal and/or low MRI signal-to-noise-ratio, due to the low density of nuclear magnetic resonance spins, short T 2 or T* 2 relaxation times, as well as regions with very low electrical conductivity, through which very little current traverses. These defective regions provide noisy B z data, which can severely degrade the overall reconstructed conductivity distribution. Injecting two independent currents through surface electrodes, this paper proposes a new direct method to reconstruct a regional absolute isotropic conductivity distribution in a region of interest (ROI) while avoiding the defective regions. First, the proposed method reconstructs the contrast of conductivity using the transversal J-substitution algorithm, which blocks the propagation of severe accumulated noise from the defective region to the ROI. Second, the proposed method reconstructs the regional projected current density using the relationships between the internal current density, which stems from a current injection on the surface, and the measured B z data. Combining the contrast conductivity distribution in the entire imaging
Voltage-driven versus current-driven spin torque in anisotropic tunneling junctions
Manchon, Aurelien
2011-01-01
Nonequilibrium spin transport in a magnetic tunnel junction comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is studied theoretically. The interfacial SOI generates a spin torque of the form T=T∥ M×(z× M)+T⊥ z× M, even in the absence of an external spin polarizer. For thick and large tunnel barriers, the torque reduces to the perpendicular component T⊥, which can be electrically tuned by applying a voltage across the insulator. In the limit of thin and low tunnel barriers, the in-plane torque T∥ emerges, proportional to the tunneling current density. Experimental implications on magnetic devices are discussed. © 2011 IEEE.
Voltage-driven versus current-driven spin torque in anisotropic tunneling junctions
Manchon, Aurelien
2011-10-01
Nonequilibrium spin transport in a magnetic tunnel junction comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is studied theoretically. The interfacial SOI generates a spin torque of the form T=T∥ M×(z× M)+T⊥ z× M, even in the absence of an external spin polarizer. For thick and large tunnel barriers, the torque reduces to the perpendicular component T⊥, which can be electrically tuned by applying a voltage across the insulator. In the limit of thin and low tunnel barriers, the in-plane torque T∥ emerges, proportional to the tunneling current density. Experimental implications on magnetic devices are discussed. © 2011 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Sulpizio, Roberto; Dellino, Pierfrancesco; Mele, Daniela; La Volpe, Luigi [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy)], E-mail: r.sulpizio@geomin.uniba.it
2008-10-01
Pyroclastic density currents (PDCs) are among the most amazing, complex and dangerous volcanic phenomena. They are moving mixtures of particles and gas that flow across the ground, and originate in different ways and from various sources, during explosive eruptions or gravity-driven collapse of domes. We present results from experimental work to investigate the generation of large-scale, multiphase, gravity-driven currents. The experiments described here are particularly devoted to understanding the inception and development of PDCs under impulsive injection conditions by means of the fast application of a finite stress to a finite mass of pyroclastic particles via expansion of compressed gas. We find that, in summary, PDC generation from collapse of pressure-adjusted or overpressurised pyroclastic jets critically depends on behaviour of injection into the atmosphere, which controls the collapsing mechanisms and then the physical parameters of the initiating current.
The enigmatic ultra-long run-out of seafloor density driven flows
Dorrell, R. M.
2017-12-01
Dilute, particulate-laden, density-driven flows - turbidity currents - are a predominant mechanism for transporting sediment from source to sink in deep marine environments. These flows sculpt channels on the seafloor and, as evidenced by a wealth of bathymetric data, can travel for >1000km, forming some of the largest sedimentary landforms on the planet. For turbidity currents to travel such large dsitances, sediment must be self-maintained in suspension, i.e., be in a state of autosuspension. It has been shown that such self-maintained sediment suspensions can only occur whilst inertial forces are greater than gravitational forces, entailing supercritical flow. This conclusion is paradoxical, as inertia dominated flows rapidly entrain fluid, thereby thickening and slowing to become subcritical. However, current theory can only truly be applied to the proximal upper slope regions of seafloor channels where incised flows are fully confined. This contrasts with the distal reaches of long run out turbidity current systems, where the flow is only partially confined through self-channelization. Here it is shown that overspill of partially confined flow has a significant effect on the hydro- and morphodynamics of turbidity current systems. A new model is derived that shows that channel overspill acts to negate the effects of ambient fluid entrainment: a dynamic balance that limits increases in flow depth and maintains supercritical flow throughout the channel. In the new model mass, momentum and energy conservation is modulated by flow overspill onto channel banks, necessarily requiring description of the vertical structure of the flow. Analysis of continuously stratified steady state flow dynamics shows that the integration of overspill and stratification is necessary to enable maintained autosuspension and thus predict the ultra-long run-out of turbidity currents.
Operation of a semiconductor opening switch at ultrahigh current densities
International Nuclear Information System (INIS)
Lyubutin, S. K.; Rukin, S. N.; Slovikovsky, B. G.; Tsyranov, S. N.
2012-01-01
The operation of a semiconductor opening switch (SOS diode) at cutoff current densities of tens of kA/cm 2 is studied. In experiments, the maximum reverse current density reached 43 kA/cm 2 for ∼40 ns. Experimental data on SOS diodes with a p + -p-n-n + structure and a p-n junction depth from 145 to 180 μm are presented. The dynamics of electron-hole plasma in the diode at pumping and current cutoff stages is studied by numerical simulation methods. It is shown that current cutoff is associated with the formation of an electric field region in a thin (∼45 μm) layer of the structure’s heavily doped p-region, in which the acceptor concentration exceeds 10 16 cm −3 , and the current cutoff process depends weakly on the p-n junction depth.
Engineering Critical Current Density Improvement in Ag- Bi-2223 Tapes
DEFF Research Database (Denmark)
Wang, W. G.; Seifi, Behrouz; Eriksen, Morten
2000-01-01
Ag alloy sheathed Bi-2223 multifilament tapes were produced by the powder-in-tube method. Engineering critical current density improvement has been achieved through both enhancement of critical current density by control of the thermal behavior of oxide powder and by an increase of the filling...... factor of the tapes. Phase evolution at initial sintering stage has been studied by a quench experiment in Ag-Bi-2223 tapes. The content, texture, and microstructure of various phases were determined by XRD and SEM. A novel process approach has been invented in which square wire was chosen rather than...
Critical current density in railgrun accelerators with composite electrodes
International Nuclear Information System (INIS)
Stankevich, S.V.; Shvetsov, G.A.
1995-01-01
The present paper is intended to study the possibilities of increasing the critical current density in railgun accelerators using composite electrodes of various structure. Before proceeding to the analysis this way, it should be noted that the requirements for materials selected for the rails go beyond the values of the current density. In real practice account should be taken of the technological problems concerned with the production of the electrodes, as well as of those concerned with the railgun performance, including the multishot life
International Nuclear Information System (INIS)
Christ-Koch, Sina
2007-01-01
This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)
Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard
2018-05-01
Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.
International Nuclear Information System (INIS)
Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.
1996-01-01
Large pressure gradients and current density at the plasma edge and accompanying edge-localized MHD instabilities are typical for H-mode discharges. Low-n external kink modes are a possible cause of the instabilities. The paper mostly deals with external kink modes driven by a finite current density at the plasma boundary (so called peeling modes). It was shown earlier that for a single axis plasma embedded into vacuum the peeling modes are stabilized when separatrix is approaching the plasma boundary. For doublet configurations a finite current density at the internal separatrix does not necessarily lead to external kink instability when the current density vanishes at the boundary. However, a finite current density at the plasma boundary outside the separatrix can drive outer peeling modes. The stability properties and structure of these modes depend on the plasma equilibrium outside the separatrix. The influence of plasma shear and pressure gradient at the boundary on the stability of the outer peeling modes in doublets is studied. The stability of kink modes in divertor configurations with plasma outside the separatrix is very sensitive to the boundary conditions set at open field lines. The choice of the boundary conditions and kink mode stability calculations for the divertor configurations are discussed. (author) 4 figs., 5 refs
High-current discharge channel contraction in high density gas
International Nuclear Information System (INIS)
Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.
2011-01-01
Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.
Electron and current density measurements on tokamak plasmas
International Nuclear Information System (INIS)
Lammeren, A.C.A.P. van.
1991-01-01
The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs
Use of high current density superconducting coils in fusion devices
International Nuclear Information System (INIS)
Green, M.A.
1979-11-01
Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost
Morphodynamics of supercritical high-density turbidity currents
Cartigny, M.
2012-01-01
Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms
Robust Data-Driven Inference for Density-Weighted Average Derivatives
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael
This paper presents a new data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density- weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based on a mean squared error...
Density currents as a desert dust mobilization mechanism
Directory of Open Access Journals (Sweden)
S. Solomos
2012-11-01
Full Text Available The formation and propagation of density currents are well studied processes in fluid dynamics with many applications in other science fields. In the atmosphere, density currents are usually meso-β/γ phenomena and are often associated with storm downdrafts. These storms are responsible for the formation of severe dust episodes (haboobs over desert areas. In the present study, the formation of a convective cool pool and the associated dust mobilization are examined for a representative event over the western part of Sahara desert. The physical processes involved in the mobilization of dust are described with the use of the integrated atmospheric-air quality RAMS/ICLAMS model. Dust is effectively produced due to the development of near surface vortices and increased turbulent mixing along the frontal line. Increased dust emissions and recirculation of the elevated particles inside the head of the density current result in the formation of a moving "dust wall". Transport of the dust particles in higher layers – outside of the density current – occurs mainly in three ways: (1 Uplifting of preexisting dust over the frontal line with the aid of the strong updraft (2 Entrainment at the upper part of the density current head due to turbulent mixing (3 Vertical mixing after the dilution of the system. The role of the dust in the associated convective cloud system was found to be limited. Proper representation of convective processes and dust mobilization requires the use of high resolution (cloud resolving model configuration and online parameterization of dust production. Haboob-type dust storms are effective dust sources and should be treated accordingly in dust modeling applications.
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
Particle-driven gravity currents in non-rectangular cross section channels
International Nuclear Information System (INIS)
Zemach, T.
2015-01-01
We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρ i , propagating along a channel into an ambient fluid of the density ρ a . The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f 1 (z) ≤ y ≤ f 2 (z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = z α and f(z) = (H − z) α , where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model
High current density aluminum stabilized conductor concepts for space applications
International Nuclear Information System (INIS)
Huang, X.; Eyssa, Y.M.; Hilal, M.A.
1989-01-01
Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail
Current density profile inside q=1 on Tore Supra
International Nuclear Information System (INIS)
Joffrin, E.; Desgranges, C.; Sabot, R.; Dubois, M.A.
1995-01-01
The Tore Supra polarimeter used to measure the poloidal field distribution is described. The current density profiles are computed in two different ways using the interferometric and polarimetric data in conjunction with the magnetic data and the location of the inversion radius determined by the soft X-ray camera. The current density inside the q=1 surface is investigated for normal and monster sawteeth. Its variation are also measured by the polarimeter and compared with that predicted by the current diffusion equation assuming complete reconnection. Finally, the safety factor profile is compared with that obtained with the striation data of the pellet ablation. The results of the evolution of the q profile during sawteeth are in good agreement with those obtained in other devices. (author) 9 refs.; 4 figs
Polydisperse particle-driven gravity currents in non-rectangular cross section channels
Zemach, T.
2018-01-01
We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.
High dislocation density of tin induced by electric current
International Nuclear Information System (INIS)
Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.
2015-01-01
A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining
High current density magnets for INTOR and TIBER
International Nuclear Information System (INIS)
Miller, J.R.; Henning, C.D.; Kerns, J.A.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.
1986-12-01
The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm 2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER
Numerical Simulation of Density Current Evolution in a Diverging Channel
Directory of Open Access Journals (Sweden)
Mitra Javan
2012-01-01
Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.
Diagnostic development for current density profile control at KSTAR
Energy Technology Data Exchange (ETDEWEB)
Ko, J., E-mail: jinseok@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); University of Science and Technology, Daejeon 34113 (Korea, Republic of); Chung, J. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Messmer, M.C.C. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands)
2016-11-01
Highlights: • The motional Stark effect (MSE) diagnostic installed at KSTAR. • Engineering challenges and solutions on the design and fabrication of the front optics housing and filter modules. • Characterization of the bandpass filters and the responses to polarized light. - Abstract: The current density profile diagnostics are critical for the control of the steady-state burning plasma operations. A multi-channel motional Stark effect (MSE) diagnostic system has been implemented for the measurements of the internal magnetic field structures that constrain the magnetic equilibrium reconstruction to accurately produce the tokamak safety factor and current density profiles for the Korea Superconducting Tokamak Advanced Research (KSTAR). This work presents the design and fabrication of the front optics and the filter modules and the calibration activities for the MSE diagnostic at KSTAR.
Highly efficient red electrophosphorescent devices at high current densities
International Nuclear Information System (INIS)
Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong
2007-01-01
Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence
International Nuclear Information System (INIS)
Fidone, I.; Giruzzi, G.; Caron, X.; Meyer, R.L.
1991-01-01
A method for measuring the radial profile of the lower-hybrid-driven current in a low-density tokamak plasma using electron-cyclotron wave attenuation is discussed. This diagnostic scheme is reminiscent of the transmission interferometry approach, commonly used in tokamaks to measure the plasma density, but now the wave amplitude instead of the phase is measured. Wave attenuation of the ordinary mode at ω p much-lt ω c along vertical chords is measured; at these frequencies, the waves are absorbed by the superthermal tail sustained by lower-hybrid waves and the local wave absorption coefficient is proportional to the noninductive current density. The radial profile of this current is obtained from Abel inversion. An application to the Tore Supra tokamak is presented
ELMs and the role of current-driven instabilities in the edge
International Nuclear Information System (INIS)
Snyder, P.B.; Wilson, H.R.
2001-01-01
Edge localized modes (ELMs) can limit tokamak performance both directly, via large transient heat loads, and indirectly, through constraints placed on the H-mode pedestal height which impact global confinement. Theoretical understanding of the physics of ELMs should allow optimisation of existing experiments, and lead to greater confidence in projections for Next Step devices. However, understanding ELMs has proved challenging, in part because the sharp edge pressure gradients and consequent large bootstrap currents in the pedestal region provide drive for a variety of modes over a wide range of toroidal mode numbers (n). Here we present a brief discussion of ELM phenomenology, focussing primarily on ELMs whose frequency increases with input power. Theories of ELMs will be reviewed, emphasizing those which incorporate current-driven instabilities such as kink or 'peeling' modes. Parallel current plays a dual role in the edge, enhancing second stability access for ballooning modes while providing drive for peeling modes. The strong collisionality dependence of the edge bootstrap current introduces separate density and temperature dependence into pedestal MHD stability. We give a detailed description of recent work on coupled peeling-ballooning modes, including a model for ELM characteristics and temperature pedestal limits. Peeling-ballooning stability analysis of experimental discharges will be discussed, emphasising comparisons of different ELM regimes, such as the comparison between 'giant' and 'grassy' ELM shots on JT-60U. (orig.)
Current density monitor for intense relativistic electron beams
International Nuclear Information System (INIS)
Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.
1986-01-01
We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment
Magnetohydrodynamically stable plasma with supercritical current density at the axis
Energy Technology Data Exchange (ETDEWEB)
Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)
2014-05-15
In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.
Investigation of domain wall motion in RE-TM magnetic wire towards a current driven memory and logic
Energy Technology Data Exchange (ETDEWEB)
Awano, Hiroyuki
2015-06-01
Current driven magnetic domain wall (DW) motions of ferri-magnetic TbFeCo wires have been investigated. In the case of a Si substrate, the critical current density (Jc) of DW motion was successfully reduced to 3×10{sup 6} A/cm{sup 2}. Moreover, by using a polycarbonate (PC) substrate with a molding groove of 600 nm width, the Jc was decreased to 6×10{sup 5} A/cm{sup 2}. In order to fabricate a logic in memory, a current driven spin logics (AND, OR, NOT) have been proposed and successfully demonstrated under the condition of low Jc. These results indicate that TbFeCo nanowire is an excellent candidate for next generation power saving memory and logic.
Current-Driven Switch-Mode Audio Power Amplifiers
DEFF Research Database (Denmark)
Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.
2012-01-01
The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....
High current density, cryogenically cooled sliding electrical joint development
International Nuclear Information System (INIS)
Murray, H.
1986-09-01
In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025
Micromagnetic analysis of geometrically controlled current-driven magnetization switching
Directory of Open Access Journals (Sweden)
O. Alejos
2017-05-01
Full Text Available The magnetization dynamics induced by current pulses in a pair of two “S-shaped” ferromagnetic elements, each one consisting on two oppositely tilted tapered spikes at the ends of a straight section, is theoretically studied by means of micromagnetic simulations. Our results indicate that the magnetization reversal is triggered by thermal activation, which assists the current-induced domain nucleation and the propagation of domain walls. The detailed analysis of the magnetization dynamics reveals that the magnetization switching is only achieved when a single domain wall is nucleated in the correct corner of the element. In agreement with recent experimental studies, the switching is purely dictated by the shape, being independent of the current polarity. The statistical study points out that successful switching is only achieved within a narrow range of the current pulse amplitudes.
Current-driven dynamics in molecular-scale devices
International Nuclear Information System (INIS)
Seideman, Tamar
2003-01-01
We review recent theoretical work on current-triggered processes in molecular-scale devices - a field at the interface between solid state physics and chemical dynamics with potential applications in diverse areas, including artificial molecular machines, unimolecular transport, surface nanochemistry and nanolithography. The qualitative physics underlying current-triggered dynamics is first discussed and placed in context with several well-studied phenomena with which it shares aspects. A theory for modelling these dynamics is next formulated within a time-dependent scattering approach. Our end result provides useful insight into the system properties that determine the reaction outcome as well as a computationally convenient framework for numerical realization. The theory is applied to study single-molecule surface reactions induced by a scanning tunnelling microscope and current-triggered dynamics in single-molecule transistors. We close with a discussion of several potential applications of current-induced dynamics in molecular devices and several opportunities for future research. (topical review)
Magnetization oscillations and waves driven by pure spin currents
Energy Technology Data Exchange (ETDEWEB)
Demidov, V.E. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Urazhdin, S. [Department of Physics, Emory University, Atlanta, GA 30322 (United States); Loubens, G. de [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France); Demokritov, S.O., E-mail: demokrit@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation)
2017-02-23
Recent advances in the studies of pure spin currents–flows of angular momentum (spin) not accompanied by the electric currents–have opened new horizons for the emerging technologies based on the electron’s spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.
Remarks on time-dependent [current]-density functional theory for open quantum systems.
Yuen-Zhou, Joel; Aspuru-Guzik, Alán
2013-08-14
Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.
Ernst, D.
2015-11-01
We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.
DEFF Research Database (Denmark)
Wang, W.G.; Jensen, M.B.; Kindl, B.
2000-01-01
The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...
Transport critical current density in flux creep model
International Nuclear Information System (INIS)
Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.
1992-01-01
The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials
Poloidal polarimeter for current density measurements in ITER
International Nuclear Information System (INIS)
Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.
2004-01-01
One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details
Schlieren Cinematography of Current Driven Plasma Jet Dynamics
Loebner, Keith; Underwood, Thomas; Cappelli, Mark
2016-10-01
Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.
Computation of the current density in nonlinear materials subjected to large current pulses
International Nuclear Information System (INIS)
Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.
1991-01-01
This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments
A measurement of perpendicular current density in an aurora
International Nuclear Information System (INIS)
Bering, E.A.; Mozer, F.S.
1975-01-01
A Nike Tomahawk sounding rocket was launched into a 400-γ auroral substorm on February 7, 1972, from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir probe plasma velocity detector and a double-probe electric field detector. Above 140-km altitude the electric field deduced from the ion flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth of 276degree. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward
Submerged electricity generation plane with marine current-driven motors
Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander
2014-07-01
An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.
Critical current fluctuation in a microwave-driven Josephson junction
International Nuclear Information System (INIS)
Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng
2007-01-01
Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations
International Nuclear Information System (INIS)
Capelle, K.; Gross, E.
1997-01-01
It is shown that the exchange-correlation functional of spin-density functional theory is identical, on a certain set of densities, with the exchange-correlation functional of current-density functional theory. This rigorous connection is used to construct new approximations of the exchange-correlation functionals. These include a conceptually new generalized-gradient spin-density functional and a nonlocal current-density functional. copyright 1997 The American Physical Society
Fullerene solubility-current density relationship in polymer solar cells
International Nuclear Information System (INIS)
Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.
2008-01-01
During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Kondo, Shuji; Nanbu, Kenichi
2001-01-01
An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap
MHD Modeling of Conductors at Ultra-High Current Density
International Nuclear Information System (INIS)
ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.
2000-01-01
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model
MHD Modeling of Conductors at Ultra-High Current Density
International Nuclear Information System (INIS)
Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.
1999-01-01
In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed
Characterization of beam-driven instabilities and current redistribution in MST plasmas
Parke, E.
2015-11-01
A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.
Accelerator driven neutron sources in Korea. Current and future
International Nuclear Information System (INIS)
Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho
2008-01-01
The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)
Two-point theory of current-driven ion-cyclotron turbulence
International Nuclear Information System (INIS)
Chiueh, T.; Diamond, P.H.
1985-02-01
An analytical theory of current-driven ion-cyclotron turbulenc which treats incoherent phase space density granulations (clumps) is presented. In contrast to previous investigations, attention is focused on the physically relevant regime of weak collective dissipation, where waves and clumps coexist. The threshold current for nonlinear instability is calculated, and is found to deviate from the linear threshold. A necessary condition for the existence of stationary wave-clump turbulence is derived, and shown to be analogous to the test particle model fluctuation-dissipation theorem result. The structure of three dimensional magnetized clumps is characterized. It is proposed that instability is saturated by collective dissipation due to ion-wave scattering. For this wave-clump turbulence regime, it is found that the fluctuation level (e psi/T/sub e/)/sub rms/ less than or equal to 0.1, and that the modification of anomalous resistivity to levels predicted by conventional nonlinear wave theories is moderate. It is also shown that, in marked contrast to the quasilinear prediction, ion heating significantly exceeds electron heating
Energy Technology Data Exchange (ETDEWEB)
Singh, Chandra B.; Pino, Elisabete M. de Gouveia Dal [Department of Astronomy (IAG-USP), University of São Paulo, São Paulo (Brazil); Mizuno, Yosuke, E-mail: csingh@iag.usp.br, E-mail: dalpino@iag.usp.br, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, D-60438, Frankfurt am Main (Germany)
2016-06-10
Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of the radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purposes of our study, we used a nonperiodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light and heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and a relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field, and the flow is accelerated owing to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated with the kink-unstable regions and correlated with the decrease of the sigma parameter of the flow. We discuss the implications of our findings for Poynting-flux-dominated jets in connection with magnetic reconnection processes. We find that fast magnetic reconnection may be driven by the kink-instability turbulence and govern the transformation of magnetic into kinetic energy, thus providing an efficient way to power and accelerate particles in active galactic nucleus and gamma-ray-burst relativistic jets.
Fast electron current density profile and diffusion studies during LHCD in PBX-M
International Nuclear Information System (INIS)
Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.
1993-08-01
Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ''hollow'' profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m 2 /sec
What happens in Josephson junctions at high critical current densities
Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.
2017-07-01
The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.
Online diagnoses of high current-density beams
International Nuclear Information System (INIS)
Gilpatrick, J.D.
1994-01-01
Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques
A distributed current stimulator ASIC for high density neural stimulation.
Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim
2016-08-01
This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.
Ultra-high current density thin-film Si diode
Wang, Qi [Littleton, CO
2008-04-22
A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.
Development of high temperature superconductors having high critical current density
International Nuclear Information System (INIS)
Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.
2000-08-01
Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation
Development of high temperature superconductors having high critical current density
Energy Technology Data Exchange (ETDEWEB)
Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H
2000-08-01
Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.
A finite volume method for density driven flows in porous media
Directory of Open Access Journals (Sweden)
Hilhorst Danielle
2013-01-01
Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.
DEFF Research Database (Denmark)
Sharma, S.; Pittalis, S.; Kurth, S.
2007-01-01
The relative merits of current-spin-density- and spin-density-functional theory are investigated for solids treated within the exact-exchange-only approximation. Spin-orbit splittings and orbital magnetic moments are determined at zero external magnetic field. We find that for magnetic (Fe, Co......, and Ni) and nonmagnetic (Si and Ge) solids, the exact-exchange current-spin-density functional approach does not significantly improve the accuracy of the corresponding spin-density functional results....
Electron heating caused by parametrically driven turbulence near the critical density
International Nuclear Information System (INIS)
Mizuno, K.; DeGroot, J.S.; Estabrook, K.G.
1986-01-01
Microwave-driven experiments and particle simulation calculations are presented that model s-polarized laser light incident on a pellet. In the microwave experiments, the incident microwaves are observed to decay into ion and electron waves near the critical density if the microwave power is above a well-defined threshold. Significant absorption, thermal electron heating, and hot electron generation are observed for microwave powers above a few times threshold. Strong absorption, strong profile modification, strongly heated hot electrons with a Maxwellian distribution, a hot-electron temperature that increases slowly with power, and a hot-electron density that is almost constant, are all observed in both the microwave experiments and simulation calculations for high powers. In addition, the thermal electrons are strongly heated for high powers in the microwave experiments
Evidence and effects of a wave-driven nonlinear current in the equatorial electrojet
Directory of Open Access Journals (Sweden)
M. Oppenheim
1997-07-01
Full Text Available Ionospheric two-stream waves and gradient-drift waves nonlinearly drive a large-scale (D.C. current in the E-region ionosphere. This current flows parallel to, and with a comparable magnitude to, the fundamental Pedersen current. Evidence for the existence and magnitude of wave-driven currents derives from a theoretical understanding of E-region waves, supported by a series of nonlinear 2D simulations of two-stream waves and by data collected by rocket instruments in the equatorial electrojet. Wave-driven currents will modify the large-scale dynamics of the equatorial electrojet during highly active periods. A simple model shows how a wave-driven current appreciably reduces the horizontally flowing electron current of the electrojet. This reduction may account for the observation that type-I radar echoes almost always have a Doppler velocity close to the acoustic speed, and also for the rocket observation that electrojet regions containing gradient-drift waves do not appear also to contain horizontally propagating two-stream waves. Additionally, a simple model of a gradient-drift instability shows that wave-driven currents can cause nonsinusoidal electric fields similar to those measured in situ.
Effects of the current boundary conditions at the plasma-gun gap on density in SSPX
Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.
2012-10-01
The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).
Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction
Energy Technology Data Exchange (ETDEWEB)
Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)
2004-12-01
Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current-density
Orbital functionals in density-matrix- and current-density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Helbig, N
2006-05-15
Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized
Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.
2010-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.
Theory of the current-driven ion cyclotron instability in the bottomside ionosphere
International Nuclear Information System (INIS)
Satyanarayana, P.; Chaturvedi, P.K.; Keskinen, M.J.; Huba, J.D.; Ossakow, S.L.
1985-01-01
A theory of the current-driven electrostatic ion cyclotron (EIC) instability in the collisional bottomside ionosphere is presented. It is found that electron collisions are destabilizing and are crucial for the excitation of the EIC instability in the collisional bottomside ionosphere. Furthermore, the growth rates of the ion cyclotron instability in the bottomside ionosphere maximize for k/sub perpendicular/ rho/sub i/> or =1, where 2π/k/sub perpendicular/ is the mode scale size perpendicular to the magnetic field and rho/sub i/ the ion gyroradius. Realistic plasma density and temperature profiles typical of the high-latitude ionosphere are used to compute the altitude dependence of the linear growth rate of the maximally growing modes and critical drift velocity of the EIC instability. The maximally growing modes correspond to observed tens of meter size irregularities, and the threshold drift velocity required for the excitation of EIC instability is lower for heavier ions (NO + , O + ) than that for the lighter ions (H + ). Dupree's resonance-broadening theory is used to estimate nonlinear saturated amplitudes for the ion cyclotron instability in the high-latitude ionosphere. Comparison with experimental observations is also made. It is conjectured that the EIC instability in the bottomside ionosphere could be a source of transversely accelerated heavier ions and energetic heavy-ion conic distributions at higher altitudes
Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K
2017-07-17
Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].
Farrell, L. L.; McGovern, P. J.; Morgan, J. K.
2008-12-01
We have carried out 2-D numerical simulations using the discrete element method (DEM) to investigate density-driven deformation in volcanic edifices on Earth (e.g., Hawaii) and Mars (e.g., Olympus Mons and Arsia Mons). Located within volcanoes are series of magma chambers, reservoirs, and conduits where magma travels and collects. As magma differentiates, dense minerals settle out, building thick accumulations referred to as cumulates that can flow ductilely due to stresses imparted by gravity. To simulate this process, we construct granular piles subject to Coulomb frictional rheology, incrementally capture internal rectangular regions to which higher densities and lower interparticle friction values are assigned (analogs for denser, weaker cumulates), and then bond the granular edifice. Thus, following each growth increment, the edifice is allowed to relax gravitationally with a reconfigured weak cumulate core. The presence and outward spreading of the cumulate causes the development of distinctive structural and stratigraphic patterns. We obtained a range of volcanic shapes that vary from broad, shallowly dipping flanks reminiscent of those of Olympus Mons, to short, steep surface slopes more similar to Arsia Mons. Edifices lacking internal cumulate exhibit relatively horizontal strata compared to the high-angle, inward dipping strata that develops within the cumulate-bearing edifices. Our simulated volcanoes also illustrate a variety of gravity driven deformation features, including regions of thrust faulting within the flanks and large-scale flank collapses, as observed in Hawaii and inferred on Olympus Mons. We also see significant summit subsidence, and of particular interest, distinct summit calderas. The broad, flat caldera and convex upward profile of Arsia Mons appears to be well-simulated by cumulate-driven volcanic spreading. In contrast, the concave upward slopes of Olympus Mons are more challenging to reproduce, and instead are attributed to volcanic
Experimental Determination of Bed Conditions in Concentrated Pyroclastic Density Currents
Winner, A.; Ferrier, K.; Dufek, J.
2016-12-01
Pyroclastic density currents (PDCs) are ground-hugging mixtures of hot gas and rock that can reach temperatures > 800 oC and speeds of 200 m/s. These flows are capable of eroding and entraining the underlying bed material into the flow, which can strongly influence flow momentum, runout distance, and hazards associated with PDCs. However, the mechanism of erosion remains poorly constrained, with proposed mechanisms including under-pressure following the head of the fluidized current, force chain enhanced stresses at the bed, and discrete particle impacts and friction. The interactions between PDCs and the bed have been difficult to observe in the field, as their infrequent occurrence, opacity, and hostile environment make real-time measurement difficult. This study is aimed at obtaining a better understanding of the interactions between PDCs and the bed through a quantitative analysis of bed forces. Our experimental apparatus consists of a rotating cylindrical flume of radius 22 cm, within which gas-rich granular material flows along the interior of the cylinder as it rotates. By using a rotating cylinder, we are able to simulate long-duration flows, allowing us to observe impact forces at the bed over timescales comparable to the flow duration of natural PDCs. To measure the distribution and evolution of forces imparted by the flow on the bed, we constructed a cylindrical insert with a non-erodible bed in which we embedded force sensor arrays parallel and perpendicular to the direction of flow. To measure the forces felt by the particles in the flow, we added "smart particles" 25 to 50 mm in diameter to the flow. Each smart particle contains a three-axis accelerometer and a micro SD card enclosed in a spherical plastic casing, and possesses a density similar to that of the pumice in the experimental flow. Each smart particle also contains a three-axis magnetometer which permits its location to be tracked by means of a unique applied magnetic field. Ultimately
Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.
Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R
2009-04-01
A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.
Directory of Open Access Journals (Sweden)
Andisheh Bastani
Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.
Superconductivity, intergrain, and intragrain critical current densities of materials
International Nuclear Information System (INIS)
Thompson, J.R.; Brynestad, J.; Kroeger, D.M.; Kim, Y.C.; Sekula, S.T.; Christen, D.K.; Specht, E.D.
1989-01-01
Bulk sintered and powdered samples of the high-temperature superconductive compounds Tl 2 Ca 2 Ba 2 Cu 3 O/sub 1+//sub δ/ (Tl-2:2:2:3) and Tl 2 Ca 2 Ba 2 Cu 2 O/sub 8+//sub δ/ (Tl-2:1:2:2) have been synthesized with phase purity of approximately 90%. The materials were characterized by x-ray-diffraction, metallographic, and electron microprobe analyses. The electronic and superconductive properties were investigated through measurement of the electrical resistivity and the critical current density J/sub c/ using transport methods and by extensive magnetization measurements. Primary results and conclusions are that (1) the intragrain J/sub c/ values were large, much larger than the transport values; (2) both sintered and powdered materials exhibited large flux creep; (3) and the J/sub c/ decreased exponentially with temperature. These features are qualitatively very similar to those found in the corresponding YBa 2 Cu 3 O/sub z/ (with z≅7) series of compounds
High-density matter: current status and future challenges
Directory of Open Access Journals (Sweden)
Stone J. R.
2015-01-01
Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.
Weyer, K. U.
2017-12-01
Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields
Field- and current-driven domain wall dynamics: An experimental picture
International Nuclear Information System (INIS)
Beach, G.S.D.; Knutson, C.; Tsoi, M.; Erskine, J.L.
2007-01-01
Field- and current-driven domain wall velocities are measured and discussed in terms of existing spin-torque models. A reversal in the roles of adiabatic and non-adiabatic spin-torque is shown to arise in those models below and above Walker breakdown. The measured dependence of velocity on current is the same in both regimes, indicating both spin-torque components have similar magnitude. However, the models on which these conclusions are based have serious quantitative shortcomings in describing the observed field-driven wall dynamics, for which they were originally developed. Hence, the applicability of simple one-dimensional models to most experimental conditions may be limited
Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts
Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang
2017-05-01
Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.
Linear calculations of edge current driven kink modes with BOUT++ code
Energy Technology Data Exchange (ETDEWEB)
Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y. [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Snyder, P. B.; Turnbull, A. D. [General Atomics, San Diego, California 92186 (United States); Ma, C. H.; Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); FSC, School of Physics, Peking University, Beijing 100871 (China)
2014-10-15
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.
Linear calculations of edge current driven kink modes with BOUT++ code
International Nuclear Information System (INIS)
Li, G. Q.; Xia, T. Y.; Xu, X. Q.; Snyder, P. B.; Turnbull, A. D.; Ma, C. H.; Xi, P. W.
2014-01-01
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linear growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density
Negara, Ardiansyah
2014-04-21
Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the
Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.
2017-10-01
We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.
International Nuclear Information System (INIS)
Azbel, M.Y.; Bak, P.
1984-01-01
The differential equation epsilonphi-dieresis+phi-dot-(1/2)α sin(2phi) = I+summation/sub n/ = -infinity/sup infinity/A/sub n/delta(t-t/sub n/) describing the periodically driven damped pendulum is analyzed in the strong damping limit epsilon<<1, using first-order perturbation theory. The equation may represent the motion of a sliding charge-density wave (CDW) in ac plus dc electric fields, and the resistively shunted Josephson junction driven by dc and microwave currents. When the torque I exceeds a critical value the pendulum rotates with a frequency ω. For infinite damping, or zero mass (epsilon = 0), the equation can be transformed to the Schroedinger equation of the Kronig-Penney model. When A/sub n/ is random the pendulum exhibits chaotic motion. In the regular case A/sub n/ = A the frequency ω is a smooth function of the parameters, so there are no phase-locked subharmonic plateaus in the ω(I) curve, or the I-V characteristics for the CDW or Josephson-junction systems. For small nonzero epsilon the return map expressing the phase phi(t/sub n/+1) as a function of the phase phi(t/sub n/) is a one-dimensional circle map. Applying known analytical results for the circle map one finds narrow subharmonic plateaus at all rational frequencies, in agreement with experiments on CDW systems
Exact probability function for bulk density and current in the asymmetric exclusion process
Depken, Martin; Stinchcombe, Robin
2005-03-01
We examine the asymmetric simple exclusion process with open boundaries, a paradigm of driven diffusive systems, having a nonequilibrium steady-state transition. We provide a full derivation and expanded discussion and digression on results previously reported briefly in M. Depken and R. Stinchcombe, Phys. Rev. Lett. 93, 040602 (2004). In particular we derive an exact form for the joint probability function for the bulk density and current, both for finite systems, and also in the thermodynamic limit. The resulting distribution is non-Gaussian, and while the fluctuations in the current are continuous at the continuous phase transitions, the density fluctuations are discontinuous. The derivations are done by using the standard operator algebraic techniques and by introducing a modified version of the original operator algebra. As a by-product of these considerations we also arrive at a very simple way of calculating the normalization constant appearing in the standard treatment with the operator algebra. Like the partition function in equilibrium systems, this normalization constant is shown to completely characterize the fluctuations, albeit in a very different manner.
Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions
Manchon, Aurelien
2011-01-01
be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from
T-junction cross-flow mixing with thermally driven density stratification
Energy Technology Data Exchange (ETDEWEB)
Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)
2016-12-01
Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.
Beam-driven currents in the 1/ν regime in a helical system
International Nuclear Information System (INIS)
Nakajima, Noriyoshi; Okamoto, Masao.
1990-04-01
Beam currents driven by a neutral particle injection in a helical system (stellarator, heliotron/torsatron) are studied in the 1/ν collisionality regime. The general expression for the beam-driven current is obtained for arbitrary magnetic field configurations by solving the drift kinetic equation for electrons. It is found that F = J(net)/J(b) (J(net) is the net current and J(b) is the fast ion beam current) increases as f(t) and Zeff where f(t) is the fraction of trapped electrons and Zeff is the effective ionic charge number. Especially, for Zeff ≅ 1 the effect of trapped electrons is large and F is roughly proportional to f(t). On the other hand, if Zeff > or approx 3 the effect of trapped electrons becomes small. (author)
Clast comminution during pyroclastic density current transport: Mt St Helens
Dawson, B.; Brand, B. D.; Dufek, J.
2011-12-01
Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC
A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide
Allen, Rebecca
2013-01-01
The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently
Current-driven thermo-magnetic switching in magnetic tunnel junctions
Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.
2017-12-01
We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.
International Nuclear Information System (INIS)
Zucca, C.
2009-04-01
The current density in tokamak plasmas strongly affects transport phenomena, therefore its understanding and control represent a crucial challenge for controlled thermonuclear fusion. Within the vast framework of tokamak studies, three topics have been tackled in the course of the present thesis: first, the modelling of the current density evolution in electron Internal Transport Barrier (eITB) discharges in the Tokamak à Configuration Variable (TCV); second, the study of current diffusion and inversion of electron transport properties observed during Swing Electron Cyclotron Current Drive (Swing ECCD) discharges in TCV; third, the analysis of the current density tailoring obtained by local ECCD driven by the improved EC system for sawtooth control and reverse shear scenarios in the International Thermonuclear Experimental Reactor (ITER). The work dedicated to the study of eITBs in TCV has been undertaken to identify which of the main parameters, directly related to the current density, played a relevant role in the confinement improvement created during these advanced scenarios. In this context, the current density has to be modeled, there being no measurement currently available on TCV. Since the Rebut-Lallia-Watkins (RLW) model has been validated on TCV ohmic heated plasmas, the corresponding scaling factor has often been used as a measure of improved confinement on TCV. The many interpretative simulations carried on different TCV discharges have shown that the thermal confinement improvement factor, H RLW , linearly increases with the absolute value of the minimum shear outside ρ > 0.3, ρ indicating a normalized radial coordinate. These investigations, performed with the transport code ASTRA, therefore confirmed a general observation, formulated through previous studies, that the formation of the transport barrier is correlated with the magnetic shear reversal. This was, indeed, found to be true in all cases studied, regardless of the different heating and
Phase dynamics of a Josephson junction ladder driven by modulated currents
International Nuclear Information System (INIS)
Kawaguchi, T.
2011-01-01
Phase dynamics of disordered Josephson junction ladders (JJLs) driven by external currents which are spatially and temporally modulated is studied using a numerical simulation based on a random field XY model. This model is considered theoretically as an effective model of JJLs with structural disorder in a magnetic field. The spatiotemporal modulation of external currents causes peculiar dynamical effects of phases in the system under certain conditions, such as the directed motion of phases and the mode-locking in the absence of dc currents. We clarify the details of effects of the spatiotemporal modulation on the phase dynamics.
International Nuclear Information System (INIS)
Wang Canjun; Chen Shibo; Mei Dongcheng
2006-01-01
We study the noise-induce transport and current reversal of Brownian particles in a continuously periodic potential driven by cross correlation between a multiplicative white noise and an additive white noise. We find that directed motion of the Brownian particles can be induced by the correlation between the additive noise and the multiplicative noise. The current reversal and the direction of the current is controlled by the values of the intensity (λ) of the correlated noises and a dimensionless parameter R (R=α/D, D is the intensity of multiplicative noise and α is the intensity of additive noise)
Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.
Zhu, Zhen-Gang; Berakdar, Jamal
2009-04-08
We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.
Evidence for intrinsic critical current density in high Tc superconductors
International Nuclear Information System (INIS)
Freltoft, T.; Minnhagen, P.; Jeldtoft Jensen, H.
1991-01-01
We present measurements of the voltage-current characteristics of high quality epitaxial YBaCuO films in zero magnetic field. According to the predictions of a current induced vortex pair breaking picture the voltage should follow the functional form V∝I(I-I c ) a-1 . An analysis designed to test this functional behavior is carried out. Consistency is found. (orig.)
Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions
Manchon, Aurelien
2011-05-17
Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.
The Current-Driven, Ion-Acoustic Instability in a Collisionless Plasma
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1979-01-01
The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated, and it was ......, and it was demonstrated that the fluctuations in the plasma column behave as a classical Van der Pol oscillator. Accurate measurements of the growth rate of the instability can be performed by making explicit use of the particular properties of such a system.......The current-driven, ion-acoustic instability was investigated by means of an experiment performed in a collisionless plasma produced in a single-ended Q-machine. Reflections at the ends of the plasma column gave rise to a standing wave. Parameters of the instability were investigated...
International Nuclear Information System (INIS)
Jardin, S.C.; Schmidt, J.A.
1998-01-01
The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrape-off layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer advantages over the more conventional method of controlling this instability when applied in a reactor environment. (author)
A Study of Current Driven Electrostatic Instability on the Auroral Zone
Directory of Open Access Journals (Sweden)
S. Y. Kim
1986-12-01
Full Text Available According to recent satellite observations, strong ion transverse acceleration to the magnetic field(ion conics has been known. The ion conics may be a result of electrostatic waves frequently observed on the auroral zone. Both linear and nonlinear theory of electrostatic instability driven by an electron current based on 1-dimenstional particle simulation experiment have been considered. From the results of simulation strong ion transverse acceleration has been shown.
Lower hybrid current drive for edge current density modification in DIII-D: Final status report
International Nuclear Information System (INIS)
Fenstermacher, M.E.; Porkolab, M.
1993-01-01
Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients
Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities
Energy Technology Data Exchange (ETDEWEB)
Slough, John [MSNW LLC, Redmond, WA (United States)
2015-02-01
To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power
The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction
Pahlavanias, Hassan
2018-03-01
The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.
Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics
International Nuclear Information System (INIS)
Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.
1989-01-01
Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current
Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density
Mishra, A. C.; Jha, A. K.
2017-12-01
An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.
A frozen record of density-driven crustal overturn in lava lakes: The example of Kilauea Iki 1959
Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.
2009-01-01
Lava lakes are found at basaltic volcanoes on Earth and other planetary bodies. Density-driven crustal foundering leading to surface renewal occurs repeatedly throughout the life of a lava lake. This process has been observed and described in a qualitative sense, but due to dangerous conditions, no data has been acquired to evaluate the densities of the units involved. Kilauea Iki pit crater in Hawai'i houses a lava lake erupted during a 2 month period in 1959. Part of the surface of the Kilauea Iki lake now preserves the frozen record of a final, incomplete, crustal-overturn cycle. We mapped this region and sampled portions of the foundering crust, as well as overriding and underlying lava, to constrain the density of the units involved in the overturn process. Overturn is driven by the advance of a flow front of fresh, low-density lava over an older, higher density surface crust. The advance of the front causes the older crust to break up, founder, and dive downwards into the lake to expose new, hot, low-density lava. We find density differences of 200 to 740 kg/m3 between the foundering crust and over-riding and under-lying lava respectively. In this case, crustal overturn is driven by large density differences between the foundering and resurfacing units. These differences lead, inevitably, to frequent crustal renewal: simple density differences between the surface crust and underlying lake lava make the upper layers of the lake highly unstable. ?? Springer-Verlag 2008.
The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles
Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava
2017-10-01
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.
Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip
Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar
2018-04-01
Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.
International Nuclear Information System (INIS)
Ohlsson, D.
1978-08-01
Previous stability theories concerning electrostatic current and magnetic curvature driven modes in cold plasma mantle boundary layers are generalized. In particular the commonly used adiabatic approximation is relaxed. In the general theory presented important new effects associated with heat conduction, ionization and ohmic heating are found. In combination with viscosity and resistivity these effects introduce additional stabilizing as well as destabilizing effects. Furthermore the present theory typically predicts similar stability properties as the adiabatic theory in the limit |d(1nT)/d(1nn)| >1 the general theory predicts less favourable stability properties. One may speculate that these conclusions also apply to more general types of electrostatic modes associated with density and temperature gradients in cold plasma mantel boundary layers. (author)
Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp
Directory of Open Access Journals (Sweden)
M. V. Goldman
2003-01-01
Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.
Critical current density for spin transfer torque switching with composite free layer structure
You, Chun-Yeol
2009-01-01
Critical current density of composite free layer (CFL) in magnetic tunneling junction is investigated. CFL consists of two exchange coupled ferromagnetic layers, where the coupling is parallel or anti-parallel. Instability condition of the CFL under the spin transfer torque, which is related with critical current density, is obtained by analytic spin wave excitation model and confirmed by macro-spin Landau-Lifshitz-Gilbert equation. The critical current densities for the coupled two identical...
Peltier effect in multilayered nanopillars under high density charge current
International Nuclear Information System (INIS)
Gravier, L; Fukushima, A; Kubota, H; Yamamoto, A; Yuasa, S
2006-01-01
From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
Lazarescu, Alexandre
2015-12-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results.
Stimulated scattering in laser driven fusion and high energy density physics experiments
Energy Technology Data Exchange (ETDEWEB)
Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2014-09-15
In laser driven fusion and high energy density physics experiments, one often encounters a kλ{sub D} range of 0.15 < kλ{sub D} < 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and λ{sub D} is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as ∼ (kλ{sub D}){sup −4} for kλ{sub D} ≳ 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for kλ{sub D} < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for kλ{sub D} between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed.
Simulation of density-driven flow in heterogeneous and fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Grillo, A. [Politecnico di Torino (Italy). DISMA; Logashenko, D. [Steinbeis Research Center, Oelbronn (Germany); Stichel, S.; Wittum, G. [Frankfurt Univ., Frankfurt am Main (Germany). G-CSC
2015-07-01
The study of fractured porous media is an important and challenging problem in hydrogeology. One of the difficulties is that mathematical models have to account for heterogeneity introduced by fractures in hydrogeological media. Heterogeneity may strongly influence the physical processes taking place in these media. Moreover, the thickness of the fractures, which is usually negligible in comparison with the size of the whole domain, and the complicated geometry of fracture networks reduce essentially the efficiency of numerical methods. In order to overcome these difficulties, fractures are sometimes considered as objects of reduced dimensionality (surfaces in three dimensions), and the field equations are averaged along the fracture width. Fractures are assumed to be thin regions of space filled with a porous material whose properties differ from those of the porous medium enclosing them. The interfaces separating the fractures from the embedding medium are assumed to be ideal. We consider two approaches: (i) the fractures have the same dimension, d, as the embedding medium and are said to be d-dimensional; (ii) the fractures are considered as (d-1)-dimensional manifolds, and the equations of density-driven flow are found by averaging the d-dimensional laws over the fracture width. We show that the second approach is a valid alternative to the first one. For this purpose, we perform numerical experiments using a finite-volume discretization for both approaches. The results obtained by the two methods are in good agreement with each other. We derive a criterion for the validity of the simplified representation. The criterion characterizes the transition of a mainly parallel flow to a rotational flow, which cannot be reasonably approximated using a d-1 dimensional representation. We further present a numerical algorithm using adaptive dimensional representation.
Effect of current density on the anodic behaviour of zircaloy-4 and niobium: a comparative study
International Nuclear Information System (INIS)
Raghunath Reddy, G.; Lavanya, A.; Ch Anjaneyulu
2004-01-01
The kinetics of anodic oxidation of zircaloy-4 and niobium have been studied at current densities ranging from 2 to 14 mA.cm -2 at room temperature in order to investigate the dependence of ionic current density on the field across the oxide film. Thickness of the anodic films were estimated from capacitance data. The formation rate, current efficiency and differential field were found to increase with increase in the ionic current density for both zircaloy-4 and niobium. Plots of the logarithm of formation rate vs. logarithm of the current density are fairly linear. From linear plots of logarithm of ionic current density vs. differential field, and applying the Cabrera-Mott theory, the half-jump distance and the height of the energy barrier are deduced and compared. (author)
High current densities in superconducting films from magnetization
International Nuclear Information System (INIS)
McGuire, T.R.; Gupta, A.; Koren, G.; Gross, R.
1990-01-01
Epitaxial thin films of YBa 2 Cu 3 O 7-x made by laser ablation have the CuO planes parallel to the film surface. In the CuO planes critical currents of J C ∼40 x 10 6 amps/cm 2 are found at 5K in zero field. Multi-layered films with Gd replacing Y each .01μm in thickness have J C nearly 140 x 10 6 amps/cm 2 . This higher value is perhaps due to additional point defects. Perpendicular to the CuO planes magnetization studies indicate strong pinning effects attributed to the CuO planes acting as barriers to flux motion
Phase dynamics of low critical current density YBCO Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); Carillo, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Galletti, L. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)
2014-08-15
Highlights: • We study the phase dynamics of YBaCuO Josephson junctions using various tools. • We derive information on the dissipation in a wide range of transport parameters. • Dissipation in such devices can be described by a frequency dependent damping model. • The use of different substrates allows us to tune the shell circuit. - Abstract: High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current–voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.
The heat current density correlation function: sum rules and thermal conductivity
International Nuclear Information System (INIS)
Singh, Shaminder; Tankeshwar, K; Pathak, K N; Ranganathan, S
2006-01-01
Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed
The heat current density correlation function: sum rules and thermal conductivity
Energy Technology Data Exchange (ETDEWEB)
Singh, Shaminder [Department of Physics, Panjab University, Chandigarh-160 014 (India); Tankeshwar, K [Department of Physics, Panjab University, Chandigarh-160 014 (India); Pathak, K N [Department of Physics, Panjab University, Chandigarh-160 014 (India); Ranganathan, S [Department of Physics, Royal Military College, Kingston, ON, K7K 7B4 (Canada)
2006-02-01
Expressions for the second and fourth sum rules of the heat current density correlation function have been derived in an appropriate ensemble. The thermal conductivity of Lennard-Jones fluids has been calculated using these sum rules for the heat current density correlation function and the Gaussian form of the memory function. It is found that the results obtained for the thermal conductivity are in good agreement with the molecular dynamics simulation results over a wide range of densities and temperatures. Earlier results obtained using the energy current density correlation function are also discussed.
Directory of Open Access Journals (Sweden)
Johannes L van der Walt
2017-05-01
Full Text Available This paper sets the tone for the 2017 BCES Conference in that it confronts the educators and educationists assembled at the opening ceremony with some of the manifestations of the current business and economics driven orientation to life in general and to education in particular. It demonstrates how and to what extent the neoliberal life-view or orientation has so far colonized the minds of educators and educationists and affected their occupational environment. The paper concludes with a brief critical discussion of neoliberal tenets and their effects on education based on professional pedagogical insight into the human being, societal relationships and education.
Ion transfer through solvent polymeric membranes driven by an exponential current flux.
Molina, A; Torralba, E; González, J; Serna, C; Ortuño, J A
2011-03-21
General analytical equations which govern ion transfer through liquid membranes with one and two polarized interfaces driven by an exponential current flux are derived. Expressions for the transient and stationary E-t, dt/dE-E and dI/dE-E curves are obtained, and the evolution from transient to steady behaviour has been analyzed in depth. We have also shown mathematically that the voltammetric and stationary chronopotentiometric I(N)-E curves are identical (with E being the applied potential for voltammetric techniques and the measured potential for chronopotentiometric techniques), and hence, their derivatives provide identical information.
Instantaneous current and field structure of a gun-driven spheromak for two gun polarities
International Nuclear Information System (INIS)
Woodruff, S; Nagata, M
2002-01-01
The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
Energy Technology Data Exchange (ETDEWEB)
Parke, E. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Anderson, J. K.; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Johnson, C. A. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, Auburn University 206 Allison Laboratory, Auburn, Alabama 36849 (United States)
2016-05-15
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].
Directory of Open Access Journals (Sweden)
R. M. STEVANOVIC
2001-02-01
Full Text Available Cell voltage current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies
Whyte, Dennis; ADX Team
2015-11-01
The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.
International Nuclear Information System (INIS)
Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Shigemori, Keisuke; Sunahara, Atsushi; Nakai, Mitsuo; Azechi, Hiroshi; Nishihara, Katsunobu; Yamanaka, Tatsuhiko
2003-01-01
The temporal evolution of the density profile of a directly laser-driven polystyrene target was observed for the first time using an x-ray penumbral imaging technique coupled with side-on x-ray backlighting at the GEKKO XII [C. Yamanaka et al., IEEE J. Quantum Electron. QE-17, 1639 (1981)]-High Intensity Plasma Experimental Research laser facility (I L =0.7x10 14 W/cm 2 , λ L =0.35 μm). This density measurement makes it possible to experimentally confirm all physical parameters [γ(k),k,g,m,ρ a ,L m ] appearing in the modified Takabe formula for the growth rate of the ablative Rayleigh-Taylor instability. The measured density profiles were well reproduced by a one-dimensional hydrodynamic simulation code. The density measurement contributes toward fully understanding the ablative Rayleigh-Taylor instability
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide
Allen, Rebecca; Reis, Tim; Sun, Shuyu
2013-01-01
-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE
Response functions of cold neutron matter: density, spin and current fluctuations
Energy Technology Data Exchange (ETDEWEB)
Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe-Universitaet, Frankfurt am Main (Germany)
2014-07-01
We study the response of a single-component pair-correlated baryonic Fermi-liquid to density, spin, and their current perturbations. A complete set of response functions is calculated in the low-temperature regime. We derive the spectral functions of collective excitations associated with the density, density-current, spin, and spin-current perturbations. The dispersion relations of density and spin fluctuations are determined and it is shown that the density fluctuations lead to exciton-like undamped bound states, whereas the spin excitations correspond to diffusive modes above the pair-breaking threshold. The contribution of the collective pair-breaking modes to the specific heat of neutron matter at subnuclear densities is computed and is shown to be comparable to that of the degenerate electron gas at not too low temperatures.
Numerical prediction of a dip effect in the critical current density
International Nuclear Information System (INIS)
Al Khawaja, U.; Benkraouda, M.; Obaidat, I.M.
2007-01-01
We have conducted extensive series of molecular dynamic simulations on the properties of the critical current density in systems with periodic square arrays of pinning sites. The density of the pinning sites was kept fixed while the density of vortices, pinning strength, and temperature were varied several times. At zero temperature, we have observed a substantial dip in the critical current density that occurs only at a fixed value of the vortex density and for specific values of pinning strength. We have found that the occurrence of the dip depends mainly on the initial positions of the vortices with respect to the positions of the pinning sites. At the dip, we have found that the interstitial vortices form moving channels leading to the observed drop in the critical current density
Zhou, Li; Wang, Kui; Li, Qifu; Nice, Edouard C; Zhang, Haiyuan; Huang, Canhua
2016-01-01
Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.
Microstructural factors influencing critical-current densities of high-temperature superconductors
International Nuclear Information System (INIS)
Suenaga, M.
1992-01-01
Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced? and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices? Only the case where the applied field is parallel to the c-axis is considered here
Measurement of the absolute tunneling current density in field emission from tungsten(110)
International Nuclear Information System (INIS)
Ehrlich, C.D.; Plummer, E.W.
1978-01-01
The phenomenon of quantum-mechanical tunneling of an electron through a barrier in the potential energy has been well established in a variety of experiments. The quantity which is usually measured in these experiments is the rate of change of tunneling current and not the absolute current density. This paper reports on a direct measurement of the tunneling current density, which is found to be in good agreement with free-electron theory for W
Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang
2018-03-01
During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
Energy Technology Data Exchange (ETDEWEB)
Sánchez-Tejerina, L., E-mail: luis.st@ee.uva.es [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Alejos, O. [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain)
2017-02-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.
Steady-state configurations of Dzyaloshinskii domain walls driven by field and current
International Nuclear Information System (INIS)
Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.
2017-01-01
The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.
Blue functions: probability and current density propagators in non-relativistic quantum mechanics
International Nuclear Information System (INIS)
Withers, L P Jr
2011-01-01
Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)
International Nuclear Information System (INIS)
Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.
2000-01-01
Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density
International Nuclear Information System (INIS)
He Yong; Zou Wen-Kang; Song Sheng-Yi
2011-01-01
In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load. The circuit parameters of MITLs are well understood by employing the concept of flow impedance derived from Maxwell's equations and pressure balance across the flow. However, the electron density in an MITL is always taken as constant in the application of flow impedance. Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected. We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other. It is found that the assumption of constant electron density profile in the calculation of the flow impedance is not always valid. The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL. The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly by experiments and theories in the future. (nuclear physics)
Estimation of current density distribution of PAFC by analysis of cell exhaust gas
Energy Technology Data Exchange (ETDEWEB)
Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)
1996-12-31
To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.
The actual current density of gas-evolving electrodes—Notes on the bubble coverage
International Nuclear Information System (INIS)
Vogt, H.
2012-01-01
All investigations of electrochemical reactors with gas-evolving electrodes must take account of the fact that the actual current density controlling cell operation commonly differs substantially from the nominal current density used for practical purposes. Both quantities are interrelated by the fractional bubble coverage. This parameter is shown to be affected by a large number of operational quantities. However, available relationships of the bubble coverage take account only of the nominal current density. A further essential insufficiency is their inconsistency with reality for very large values of the bubble coverage being of relevance for operation conditions leading to anode effects. An improved relationship applicable to the total range is proposed.
Energy Technology Data Exchange (ETDEWEB)
Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Spielman, R. B. [Idaho State University, Pocatello, Idaho 83201 (United States)
2016-06-15
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks,” that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L{sub 2} norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected
Critical temperature gradient and critical current density in thin films of a type I superconductor
Energy Technology Data Exchange (ETDEWEB)
Heubener, R P
1968-12-16
Measurements of the critical temperature gradient and the critical current density in superconducting lead films in a transverse magnetic field indicate that the critical current flows predominantly along the surface of the films and that the critical surface currents contribute only very little to the Lorentz force on a fluxoid.
Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng
2018-04-01
Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.
Definition of current density in the presence of a non-local potential.
Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian
2008-04-16
In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.
Definition of current density in the presence of a non-local potential
International Nuclear Information System (INIS)
Li Changsheng; Wan Langhui; Wei Yadong; Wang Jian
2008-01-01
In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J c = (e/2m)([(p-eA)ψ]*ψ-ψ*[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., ∇ . J c ≠ 0 in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Buettiker formula. Examples are given to demonstrate our results
Z-pinch driven hohlraums design for the 100 nanoseconds current time scale
International Nuclear Information System (INIS)
Hamann, F.
2003-12-01
This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)
Dynamic phases of low-temperature low-current driven vortex matter in superconductors
International Nuclear Information System (INIS)
Benkraouda, M; Obaidat, I M; Khawaja, U Al; Mulaa, N M J
2006-01-01
Using molecular dynamics simulations of vortices in a high-temperature superconductor with square periodic arrays of pinning sites, dynamic phases of the low-current driven vortices are studied at low temperatures. A rough vortex phase diagram of three distinct regimes of vortex flow is proposed. At zero temperature, we obtain a coupled-channel regime where rows of vortices flow coherently in the direction of the driving force. As the temperature is increased, a smooth crossover into an uncoupled-channel regime occurs where the coherence between the flowing rows of vortices becomes weaker. Increasing the temperature further leads to a plastic vortex regime, where the channels of flowing vortices completely disappear. The temperatures of the crossovers between these regimes were found to decrease with the driving force
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam
Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.
2017-11-01
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.
Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G
2017-11-03
We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.
Directory of Open Access Journals (Sweden)
Arun Augustin
2016-09-01
Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.
Fattah-Alhosseini, Arash; Khan, Hamid Yazdani
2017-06-01
This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.
International Nuclear Information System (INIS)
Vase, P.
1991-08-01
The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)
High current density M-type cathodes for vacuum electron devices
International Nuclear Information System (INIS)
Li Ji; Yu Zhiqiang; Shao Wensheng; Zhang Ke; Gao Yujuan; Yuan Haiqing; Wang Hui; Huang Kaizhi; Chen Qilue; Yan Suqiu; Cai Shaolun
2005-01-01
We investigated high current density emission capabilities of M-type cathodes used for vacuum electron devices (VEDs). The experimental results of emission and lifetime evaluating in both close-spaced diode structure and electron gun testing vehicles are given. Emission current densities measured in the diode structure at 1020 deg. C Br in the CW mode were above 10 A/cm 2 ; while in electron gun testing vehicles, emission current densities were above 8 A/cm 2 in CW mode and above 32 A/cm 2 in pulsed mode, respectively. The current density above 94 A/cm 2 has been acquired in no. 0306 electron gun vehicle while the practical temperature is 1060 deg. C Br . For a comparison some of the data from I-scandate cathodes are presented. Finally, several application examples in practical travelling wave tubes (TWTs) and multi beam klystrons (MBKs) are also reported
Effect of via depth on the TSV filling process for different current densities
Wang, Feng; Zhao, Zhipeng; Nie, Nantian; Wang, Fuliang; Zhu, Wenhui
2018-04-01
Through-silicon-via (TSV) filling with optimum electrodeposition parameters is still a challenge in the industry, especially for via with different depths. Herein, the effects of via depth on optimum current density and filling patterns were investigated. It was found that the deeper the via, the lower the optimum current density. At low current density (4 mA cm-2), the via depth only affects the size of the defect, but does not change the filling pattern. However, at medium current density (7 mA cm-2), the filling pattern changes from super-conformal filling to sub-conformal filling with the increase of via depth, the pinch-off position remaining constant at a depth of about 70 µm from the top surface. Simulations of the TSV filling process using COMSOL modeling software revealed that the local concentration of additives, which is affected by the via depth, determine the morphology of the electrodeposition, matching well the experimental results.
Method of measuring the current density distribution and emittance of pulsed electron beams
International Nuclear Information System (INIS)
Schilling, H.B.
1979-07-01
This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)
Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant
You, Chun-Yeol
2012-01-01
We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...
Directory of Open Access Journals (Sweden)
S. W. H. Cowley
2003-08-01
Full Text Available We calculate the latitude profile of the equatorward-directed ionospheric Pedersen currents that are driven in Saturn’s ionosphere by partial corotation of the magnetospheric plasma. The calculation incorporates the flattened figure of the planet, a model of Saturn’s magnetic field derived from spacecraft flyby data, and angular velocity models derived from Voyager plasma data. We also employ an effective height-integrated ionospheric Pedersen conductivity of 1 mho, suggested by a related analysis of Voyager magnetic field data. The Voyager plasma data suggest that on the largest spatial scales, the plasma angular velocity declines from near-rigid corotation with the planet in the inner magnetosphere, to values of about half of rigid corotation at the outer boundary of the region considered. The latter extends to ~ 15–20 Saturn radii (RS in the equatorial plane, mapping along magnetic field lines to ~ 15° co-latitude in the ionosphere. We find in this case that the ionospheric Pedersen current peaks near the poleward (outer boundary of this region, and falls toward zero over ~ 5°–10° equator-ward of the boundary as the plasma approaches rigid corotation. The peak current near the poleward boundary, integrated in azimuth, is ~ 6 MA. The field-aligned current required for continuity is directed out of the ionosphere into the magnetosphere essentially throughout the region, with the current density peaking at ~ 10 nA m-2 at ~ 20° co-latitude. We estimate that such current densities are well below the limit requiring field-aligned acceleration of magnetospheric electrons in Saturn’s environment ( ~ 70 nAm-2, so that no significant auroral features associated with this ring of upward current is anticipated. The observed ultraviolet auroras at Saturn are also found to occur significantly closer to the pole (at ~ 10°–15° co-latitude, and show considerable temporal and local time variability, contrary to expectations for corotation
A measurement of the turbulence-driven density distribution in a non-star-forming molecular cloud
Energy Technology Data Exchange (ETDEWEB)
Ginsburg, Adam; Darling, Jeremy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Federrath, Christoph, E-mail: Adam.G.Ginsburg@gmail.com [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Vic 3800 (Australia)
2013-12-10
Molecular clouds are supersonically turbulent. This turbulence governs the initial mass function and the star formation rate. In order to understand the details of star formation, it is therefore essential to understand the properties of turbulence, in particular the probability distribution of density in turbulent clouds. We present H{sub 2}CO volume density measurements of a non-star-forming cloud along the line of sight toward W49A. We use these measurements in conjunction with total mass estimates from {sup 13}CO to infer the shape of the density probability distribution function. This method is complementary to measurements of turbulence via the column density distribution and should be applicable to any molecular cloud with detected CO. We show that turbulence in this cloud is probably compressively driven, with a compressive-to-total Mach number ratio b=M{sub C}/M>0.4. We measure the standard deviation of the density distribution, constraining it to the range 1.5 < σ {sub s} < 1.9, assuming that the density is lognormally distributed. This measurement represents an essential input into star formation laws. The method of averaging over different excitation conditions to produce a model of emission from a turbulent cloud is generally applicable to optically thin line observations.
Effect of strain on the critical-current density of Cu-Nb composites
International Nuclear Information System (INIS)
Klein, J.D.; Rose, R.M.
1987-01-01
Microfilamentary superconducting composites of Nb fibers in Cu matrices prepared by the stack and draw method were tested for tensile critical-current performance at 4.2 K. The superconducting critical-current densities increased exponentially under the influence of an applied mechanical strain until the onset of Nb fiber plastic deformation. In the elastic range, the critical-current densities conformed to log 10 J/sub c/ = m (strain)+b. In several tests the critical current was increased by more than an order of magnitude by the applied strain. This behavior is consistent with an increase in the upper critical field of the Nb fibers by the applied stress
Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents
International Nuclear Information System (INIS)
Bertotti, G.; Magni, A.; Serpico, C.; d'Aquino, M.; Mayergoyz, I. D.; Bonin, R.
2005-01-01
Full text: Considerable interest has been generated in recent years by the discovery that a current of spin-polarized electrons can apply appreciable torques to a nanoscale ferromagnet. This mechanism was theoretically predicted and subsequently confirmed by a number of experiments which have shown that spin transfer can indeed induce switching or microwave oscillations of the magnetization. Significant efforts have been devoted to the explanation of these results, in view of the new physics involved and of the possible applications to new types of current-controlled memory cells or microwave sources and resonators . However, the precise nature of magnetization dynamics when spin-polarized currents and external magnetic fields are simultaneously present has not yet been fully understood. The spin-transfer-driven nanomagnet is a nonlinear open system that is forced far from equilibrium by the injection of the current. Thus, the appropriate framework for the study of the problem is nonlinear dynamical system theory and bifurcation theory. In this talk, it is shown that within this framework the complexity and subtlety of spin-torque effects are fully revealed and quantified, once it is recognized that both intrinsic damping and spin transfer can be treated as perturbations of the free precessional dynamics typical of ferromagnetic resonance. Complete stability diagrams are derived for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching; for the amplitude and frequency of magnetization self-oscillations; for the conditions leading to hysteretic transitions between self-oscillations and stationary states
The role of edge current-driven modes in ELM activity
Energy Technology Data Exchange (ETDEWEB)
Gimblett, C G; Hastie, R J; Helander, P [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)
2006-10-15
We propose a model for edge localized mode (ELM) evolution which goes beyond linear stability arguments by hypothesizing that peeling modes initiate a Taylor relaxation (a constrained minimization of the magnetic energy) of an outer annular plasma region. The relaxation has two effects on peeling mode stability: (a) As the relaxation process proceeds radially inwards it leaves in its wake a Taylor state, which for conventional tokamak ordering is simply a flattened equilibrium toroidal current density. This effect acting in isolation would provide a destabilizing effect (for conventional current profiles the edge current density would increase); (b) The formation of a (negative for conventional current profiles) skin current at the plasma-vacuum interface which has a counteracting stabilizing effect on peeling modes. For a finite relaxed annulus, these two opposing effects can balance and give a configuration that is stable to all possible peeling instabilities. The radial extent of the relaxed region required for stability can be calculated using this balance. This then leads to model predictions for ELM characteristics such as the widths and mode numbers, the magnitude of the attendant energy losses and the natural (deterministic) scatter in these quantities. We compare these model predictions with a number of experimentally observed ELM properties. Further, expanding the governing equations gives analytic expressions for ELM widths in terms of localized edge parameters. Peeling modes can occur even when the critical pressure gradient for the onset of ballooning modes has not been reached. For this reason 'type III' ELMs, which typically occur just above the threshold for L-H transitions, may be best described by this model.
The role of edge current-driven modes in ELM activity
International Nuclear Information System (INIS)
Gimblett, C G; Hastie, R J; Helander, P
2006-01-01
We propose a model for edge localized mode (ELM) evolution which goes beyond linear stability arguments by hypothesizing that peeling modes initiate a Taylor relaxation (a constrained minimization of the magnetic energy) of an outer annular plasma region. The relaxation has two effects on peeling mode stability: (a) As the relaxation process proceeds radially inwards it leaves in its wake a Taylor state, which for conventional tokamak ordering is simply a flattened equilibrium toroidal current density. This effect acting in isolation would provide a destabilizing effect (for conventional current profiles the edge current density would increase); (b) The formation of a (negative for conventional current profiles) skin current at the plasma-vacuum interface which has a counteracting stabilizing effect on peeling modes. For a finite relaxed annulus, these two opposing effects can balance and give a configuration that is stable to all possible peeling instabilities. The radial extent of the relaxed region required for stability can be calculated using this balance. This then leads to model predictions for ELM characteristics such as the widths and mode numbers, the magnitude of the attendant energy losses and the natural (deterministic) scatter in these quantities. We compare these model predictions with a number of experimentally observed ELM properties. Further, expanding the governing equations gives analytic expressions for ELM widths in terms of localized edge parameters. Peeling modes can occur even when the critical pressure gradient for the onset of ballooning modes has not been reached. For this reason 'type III' ELMs, which typically occur just above the threshold for L-H transitions, may be best described by this model
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes
Quasi-regular impurity distribution driven by charge-density wave
International Nuclear Information System (INIS)
Baldea, I.; Badescu, M.
1991-09-01
The displacive motion of the impurity distribution immersed into the one-dimensional system has recently been studied in detail as one kind of quasi-regularity driven by CDW. As a further investigation of this problem we develop here a microscopical model for a different kind of quasi-regular impurity distribution driven by CDW, consisting of the modulation in the probability of occupied sites. The dependence on impurity concentration and temperature of relevant CDW quantities is obtained. Data reported in the quasi-1D materials NbSe 3 and Ta 2 NiSe 7 (particularly, thermal hysteresis effects at CDW transition) are interpreted in the framework of the present model. Possible similarities to other physical systems are also suggested. (author). 38 refs, 7 figs
Grain size dependence of the critical current density in YBa2Cu3Ox superconductors
International Nuclear Information System (INIS)
Kuwabara, M.; Shimooka, H.
1989-01-01
The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials
Stable equilibria for bootstrap-current-driven low aspect ratio tokamaks
International Nuclear Information System (INIS)
Miller, R.L.; Lin-Liu, Y.R.; Turnbull, A.D.; Chan, V.S.; Pearlstein, L.D.; Sauter, O.; Villard, L.
1997-01-01
Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high β p . A high value of the Troyon factor β N and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both β N and β are defined in terms of the vacuum toroidal field. Equilibria with β N ≥8 and β∼35%endash 55% exist that are stable to n=∞ ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Furno, I.; Weisen, H.
2003-01-01
In the Tokamak a Configuration Variable [F. Hofmann, J.B. Lister, M. Anton et al., Plasma Phys. Controlled Fusion 36, B277 (1994)], inward or outward convection in the core of electron cyclotron heated and current driven plasmas is observed, depending on discharge conditions. In sawtoothing discharges with central electron cyclotron heating, outward convection is observed when a quasicontinuous m=1 kink mode is present, resulting in inverted sawteeth on the central electron density, while in the absence thereof, inward convection between successive sawtooth crashes leads to 'normal' sawteeth. The occurrence of a kink mode depends sensitively on plasma triangularity. When sawteeth are stabilized with central co- or counterelectron cyclotron current drive, stationary hollow electron density profiles are observed in the presence of m=1 modes, while peaked or flat profiles are observed in magnetohydrodynamic quiescent discharges. The observation of peaked density profiles in fully electron cyclotron driven plasmas demonstrates that pinch processes other than the Ware pinch must be responsible for these phenomena
SIMULATION OF FREE CURRENT FLOWS IN BUOYANCY-DRIVEN VENTILATION SYSTEMS
Directory of Open Access Journals (Sweden)
D. V. Abramkina
2017-01-01
Full Text Available Objectives. The aim of the study is to analyse the effect of the design and methods for heating the ventilation duct of a buoyancy- driven system on the formation of free convective air currents in it.Methods. The study of free convection under the conditions of interior problem was carried out using the CFD software, based on the finite volume method with unstructured grid. Ansys Fluent software was used as a calculation tool in the study, due to its having a high convergence of numerical solutions offering full-scale measurements of convective currents.To evaluate the reliability of the results obtained, a validation procedure was carried out, allowing us to determine how accurately the selected conceptual model describes the investigated flow through a comparison of experimental and numerical data.Results. The results of numerical modelling of free convective currents occurring in the heated channel of the ventilation system of the top floor of a multi-storey residential building are presented in the article. In the course of the study, the air velocity at the entrance to the ventilation duct was found to depend on the calculated temperature difference θ ˚C for various heating methods. A gradual increase in the discrepancy between the numerical simulation and experimental results is observed if the calculated temperature difference > 20 ° C. This phenomenon is due to the fact that with increased duct temperature, it is quite difficult to achieve even heating under actual conditions; this is especially noticeable when considering the variant when the vertical part of the vent duct and the take-off are both heated. The maximum deviation of the results is 4.4%. The obtained velocity profiles in the calculated sections indicate the impact of the ventilation take-off on the nature of the air flow motion.Conclusion. One of the drawbacks of the existing systems of natural ventilation of residential
Neutronics design of accelerator-driven system for power flattening and beam current reduction
International Nuclear Information System (INIS)
Nishihara, Kenji; Iwanaga, Kohei; Tsujimoto, Kazufumi; Kurata, Yuji; Oigawa, Hiroyuki; Iwasaki, Tomohiko
2008-01-01
In the present neutronics design of the Accelerator-Driven System (ADS) cooled by lead-bismuth eutectic (LBE), we investigated several methods to reduce the power peak and beam current, and estimated the temperature reductions of the cladding tube and beam window from the conventional design. The methods are adjustment of inert matrix ratio in fuel in each burn-up cycle, multiregion design in terms of pin radius or inert matrix content, and modification of the level of the beam window position and the height of the central fuel assemblies. As a result, we optimized the ADS combined with the adjustment of the inert matrix ratio in each burn-up cycle, multiregion design in terms of inert matrix content and deepened window level. The maximum temperatures of the optimized ADS at the surface of the cladding tube and the beam window were reduced by 91 and 38degC, respectively. The maximum beam current was improved from 20.3 to 15.6 mA. (author)
Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Flow instability in laminar jet flames driven by alternating current electric fields
Kim, Gyeong Taek
2016-10-13
The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.
Electric current-driven migration of electrically neutral particles in liquids
International Nuclear Information System (INIS)
Zhang, Xinfang; Qin, Rongshan
2014-01-01
We design and experimentally demonstrate a migration of electrically neutral particles in liquids driven by electric current according to the discrepancies of their electrical conductivities. A force from electric current to electrically neutral particles has been identified to drive the particles toward the lateral surface from the centre of suspension via three distinguishable zones, namely, pushing, trapping, and expelling zones. The driving force can overtake gravity in practical cases. The property of the force is found neither similar to that of the force in electromagnetophoresis nor similar to that of the electromigration force in terms of direction and magnitude. An expression for the force at the pushing zone has been developed based on the numerical calculation of the thermodynamics of suspension fluids. The excellent agreement between numerical calculations and experimental data demonstrates that our calculation provides fundamental and predictive insight into particles separation from the liquids. Therefore, it is possible to use the force in many engineering applications such as separation of particles according to the differences of their electrical conductivities
International Nuclear Information System (INIS)
Horioka, Kazuhiko
2002-06-01
The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)
Anisotropy and intergrain current density in oriented grained bulk YBa2Cu3Ox superconductor
International Nuclear Information System (INIS)
Selvamanickam, V.; Salama, K.
1990-01-01
The intergrain transport current density and its anisotropy have been studied in oriented grained bulk YBa 2 Cu 3 O x superconductors fabricated by the liquid phase processing method. Current density measurements were performed on oriented grained samples with the transport current aligned at different angles to the a-b plane. In these measurements, the transport current passed through several oriented grain boundaries. The results indicate that the critical current density drops rapidly when the transport current flows at small angles to the a-b plane and then decreases slowly at larger angles. At 77 K and zero magnetic field, an anisotropy ratio of about 25 is observed between J c along a-b plane and that perpendicular to the plane. Further, the critical current density in these samples is found to depend weakly on magnetic field even though the current crosses grain boundaries. These results support the notion that grain boundaries of these superconductors are different in nature from those of solid-state sintered samples.
International Nuclear Information System (INIS)
Saarelma, S.; Kurki-Suonio, T.; Guenter, S.; Zehrfeld, H.-P.
2000-01-01
An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments. (author)
International Nuclear Information System (INIS)
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Lyubarsky, Yuri; Hardee, Philip E.
2009-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.
Method for controlling low-energy high current density electron beams
International Nuclear Information System (INIS)
Lee, J.N.; Oswald, R.B. Jr.
1977-01-01
A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams
High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate
Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E.
2014-01-01
© 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic
High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate
Ren, Lijiao
2014-08-05
© 2014 Wiley Periodicals, Inc. Chemical oxygen demand (COD) removal rates could be described by first-order kinetics with respect to COD concentration at different current densities, even under open circuit conditions with no current generation. The COD concentration was reduced more quickly with current generation due to the greater consumption of substrate by exoelectrogens, and less substrate was lost to aerobic heterotrophs. Higher current densities enabled exoelectrogens to outcompete aerobic heterotrophs for substrate, allowing for increased coulombic efficiencies with current densities. © 2014 Wiley Periodicals, Inc. In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14±0.01h-1). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33±0.02h-1) obtained at the lowest external resistance (100Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic
Directory of Open Access Journals (Sweden)
C. Vallat
2005-07-01
Full Text Available The inner magnetosphere's current mapping is one of the key elements for current loop closure inside the entire magnetosphere. A method for directly computing the current is the multi-spacecraft curlometer technique, which is based on the application of Maxwell-Ampère's law. This requires the use of four-point magnetic field high resolution measurements. The FGM experiment on board the four Cluster spacecraft allows, for the first time, an instantaneous calculation of the magnetic field gradients and thus a measurement of the local current density. This technique requires, however, a careful study concerning all the factors that can affect the accuracy of the J estimate, such as the tetrahedral geometry of the four spacecraft, or the size and orientation of the current structure sampled. The first part of this paper is thus providing a detailed analysis of the method accuracy, and points out the limitations of this technique in the region of interest. The second part is an analysis of the ring current region, which reveals, for the first time, the large latitudinal extent of the ring current, for all magnetic activity levels, as well as the latitudinal evolution of the perpendicular (and parallel components of the current along the diffuse auroral zone. Our analysis also points out the sharp transition between two distinct plasma regions, with the existence of high diamagnetic currents at the interface, as well as the filamentation of the current inside the inner plasma sheet. A statistical study over multiple perigee passes of Cluster (at about 4 R_{E} from the Earth reveals the azimuthal extent of the partial ring current. It also reveals that, at these distances and all along the evening sector, there isn't necessarily a strong dependence of the local current density value on the magnetic activity level. This is a direct consequence of the ring current morphology evolution, as well as the relative
Microstructure and critical current density in high-Tc metal oxide superconductors
International Nuclear Information System (INIS)
Johnson, S.M.; Gusman, M.I.
1992-03-01
Superconductor powders in the U-Ba-Cu-O (YBCO) and Bi-Pb-Sr-Ca-Cu-O (BSCCO) systems were synthesized by freeze-drying. Powders were characterized, and processed into samples for evaluation of superconducting behavior. Freeze-drying is attractive because the powders have high purity, are homogeneous, have a small size and are active. YBCO powders can be sintered to high density at 890 degrees C. Many compositions, processing approaches and heat treatments were explored in an effort to understand relations between microstructure and critical density, and to improve the critical current density. Powders were also formed into sputtering targets for coating preparation at Stanford University. The highest critical current density achieved with the YBCO powders was ∼15,000 A/cm 2 at 4.2K and 0.5T using powders treated to prevent carbon contamination. The BSCCO materials with the highest critical current density, ∼30,000 A/cm 2 at the same conditions were formed by heat treating melted and quenched samples. All critical current density measurements were made by Stanford University, a subcontractor to this effort. Stanford University also prepared coatings by off-axis magnetron sputtering
Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion
International Nuclear Information System (INIS)
Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.
2007-01-01
During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy
International Nuclear Information System (INIS)
Van Andel, H.W.H.
1978-03-01
Microwave radiation measurements in the region ωsub(pi) >ωsub(ce)) tokamak with turbulent skin heating show evidence of a Cerenkov beam-plasma instability during the first few microseconds of the heating pulse. It is proposed that the instability is caused by the interaction of populations of freely accelerated electrons with the bulk of the plasma, and corresponds to the unstable propagation of oblique whistlers along group-velocity resonance cones. Measured microwave spectra and their interpretation are presented. (Auth.)
International Nuclear Information System (INIS)
1985-01-01
A diagnostics survey was made to provide a clear definition of advanced diagnostic needs and the limitations of current approaches in addressing those needs. Special attention was given to the adequacy with which current diagnostics are interfaced to signal processing/data acquisition devices and systems. Critical evaluations of selected alternative diagnostic techniques for future R and D activities are presented. The conceptual basis of the Aimed Magnetic Lead Gradiometric system as a current density/magnetic field diagnostic is established
Quench protection and design of large high-current-density superconducting magnets
International Nuclear Information System (INIS)
Green, M.A.
1981-03-01
Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented
International Nuclear Information System (INIS)
Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.
2013-01-01
Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed
Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind
2018-01-01
Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Directory of Open Access Journals (Sweden)
Tomohiro Miyanishi
Full Text Available INTRODUCTION: Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN, by using low-resolution brain electromagnetic tomography (LORETA, and neuropsychological performance in subjects with early schizophrenia. METHODS: Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J. RESULTS: Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. CONCLUSIONS: This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.
Modeling density-driven flow in porous media principles, numerics, software
Holzbecher, Ekkehard O
1998-01-01
Modeling of flow and transport in groundwater has become an important focus of scientific research in recent years. Most contributions to this subject deal with flow situations, where density and viscosity changes in the fluid are neglected. This restriction may not always be justified. The models presented in the book demonstrate immpressingly that the flow pattern may be completely different when density changes are taken into account. The main applications of the models are: thermal and saline convection, geothermal flow, saltwater intrusion, flow through salt formations etc. This book not only presents basic theory, but the reader can also test his knowledge by applying the included software and can set up own models.
Energy Technology Data Exchange (ETDEWEB)
Horioka, Kazuhiko (ed.)
2002-06-01
The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation
International Nuclear Information System (INIS)
Kiser, D.L.
1981-01-01
Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation
Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents
2017-11-28
AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison
Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng
2016-06-01
Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu
2014-01-01
Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density
Coastal circulations driven by river outflow in a variable-density 1.5-layer model
Digital Repository Service at National Institute of Oceanography (India)
McCreary, J.P.; Zhang, S.; Shetye, S.R.
A variable-density, 1.5-layer model is used to investigate the dynamics of the fresher-water plumes generated by river outflow. Solutions are found in a north-south channel, and the transport M sub(tau) and salinity S sub(tau) of the outflow...
International Nuclear Information System (INIS)
Katrasnik, Tomaz; Medica, Vladimir; Trenc, Ferdinand
2005-01-01
Reliability of electric supply systems is among the most required necessities of modern society. Turbocharged diesel engine driven alternating current generating sets are often used to prevent electric black outs and/or as prime electric energy suppliers. It is well known that turbocharged diesel engines suffer from an inadequate response to a sudden load increase, this being a consequence of the nature of the energy exchange between the engine and the turbocharger. The dynamic response of turbocharged diesel engines could be improved by electric assisting systems, either by direct energy supply with an integrated starter-generator-booster (ISG) mounted on the engine flywheel, or by an indirect energy supply with an electrically assisted turbocharger. An experimentally verified zero dimensional computer simulation method was used for the analysis of both types of electrical assistance. The paper offers an analysis of the interaction between a turbocharged diesel engine and different electric assisting systems, as well as the requirements for the supporting electric motors that could improve the dynamic response of a diesel engine while driving an AC generating set. When performance class compliance is a concern, it is evident that an integrated starter-generator-booster outperforms an electrically assisted turbocharger for the investigated generating set. However, the electric energy consumption and frequency recovery times are smaller when an electrically assisted turbocharger is applied
Current delivery and radiation yield in plasma flow switch-driven implosions
International Nuclear Information System (INIS)
Baker, W.L.; Degnan, J.H.; Beason, J.D.
1995-01-01
Vacuum inductive-store, plasma flow switch-driven implosion experiments have been performed using the Shiva Star capacitor bank (1300 μf, 3 nH, 120 kV, 9.4 MJ). A coaxial plasma gun arrangement is employed to store magnetic energy in the vacuum volume upstream of a dynamic discharge during the 3- to 4-μs rise of current from the capacitor bank. Motion of the discharge off the end of the inner conductor of the gun releases this energy to implode a coaxial cylindrical foil. The implosion loads are 5-cm-radius, 2-cm-long, 200 to 400 μg/cm 2 cylinders of aluminum or aluminized Formvar. With 5 MJ stored initially in the capacitor bank, more than 9 MA are delivered to the implosion load with a rise time of nearly 200 ns. The subsequent implosion results in a radiation output of 0.95 MJ at a power exceeding 5 TW (assuming isotropic emission). Experimental results and related two-dimensional magnetohydrodynamic simulations are discussed. 10 refs., 12 figs
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
Energy Technology Data Exchange (ETDEWEB)
Yang, Luyi [Univ. of California, Berkeley, CA (United States)
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly
Orbital currents and charge density waves in a generalized Hubbard ladder
International Nuclear Information System (INIS)
Fjaerestad, J.O.; Marston, J.B.; Schollwoeck, U.
2006-01-01
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2k F and 4k F for the currents and densities, where 2k F = π (1 - δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities
Fabrication of multi-emitter array of CNT for enhancement of current density
Energy Technology Data Exchange (ETDEWEB)
Chouhan, Vijay, E-mail: vchouhan@post.kek.jp [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); Noguchi, Tsuneyuki [High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan); Kato, Shigeki [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan)
2011-11-11
We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm{sup 2} was achieved at an electric field of 8 V/{mu}m from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.
International Nuclear Information System (INIS)
Cech, R; Leitgeb, N; Pediaditis, M
2008-01-01
The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded
Asuha,; Kobayashi, Takuya; Maida, Osamu; Inoue, Morio; Takahashi, Masao; Todokoro, Yoshihiro; Kobayashi, Hikaru
2002-10-01
Chemical oxidation of Si by use of azeotrope of nitric acid and water can form 1.4-nm-thick silicon dioxide layers with a leakage current density as low as those of thermally grown SiO2 layers. The capacitance-voltage (C-V) curves for these ultrathin chemical SiO2 layers have been measured due to the low leakage current density. The leakage current density is further decreased to approx1/5 (cf. 0.4 A/cm2 at the forward gate bias of 1 V) by post-metallization annealing at 200 degC in hydrogen. Photoelectron spectroscopy and C-V measurements show that this decrease results from (i) increase in the energy discontinuity at the Si/SiO2 interface, and (ii) elimination of Si/SiO2 interface states and SiO2 gap states.
The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas
International Nuclear Information System (INIS)
Hatami, M. M.
2013-01-01
A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)
Towards the definition of AMS facies in the deposits of pyroclastic density currents
Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.
2014-01-01
Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.
The study of dynamics of electrons in the presence of large current densities
International Nuclear Information System (INIS)
Garcia, G.
2007-11-01
The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and
New features of current-driven low-frequency instabilities in a Q-machine plasma
International Nuclear Information System (INIS)
Dimitriu, Dan-Gheorghe; Ignatescu, Valerian; Lozneanu, Erzilia; Sanduloviciu, Mircea; Ionita, Codrina; Schrittwieser, Roman Wolfgang
2001-01-01
Among the instabilities in a low-density magnetized plasma column, the electrostatic ion-cyclotron instability (EICI) and the potential relaxation instability (PRI) are the best known and most thoroughly investigated. Both instabilities are excited by drawing an electron current parallel to the magnetic field towards a circular collector (CO), which is inserted into the plasma column perpendicular to the axis. For the PRI, the radius of CO must be considerably larger than the ion gyroradius so that the ion trajectories can be approximated as one-dimensional. For the EICI, the radius of CO must be considerably smaller than that of the plasma column, but also larger than one ion gyroradius. A transition from the PRI into the EICI was reported earlier. A certain range of CO radii was found where both instabilities could be excited simultaneously. We report on a strong modulation of the EICI by the PRI, obtained for gradually increasing the CO bias, with the EICI appearing at first, and later the PRI. The EICI frequency was about four times larger than that of the PRI. The modulation not only affects the amplitude but also the frequency of the EICI. This leads to the formation of sidebands in the spectrum around f EICI with a frequency difference equal to ± f PRI . In addition, we find that the EICI frequency depends not only on the magnetic field strength but also on the CO current. Our data also show a strong non-linear dependence of the PRI frequency on the magnetic field strength. To explain these features, we propose a new phenomenological model, which is able to clarify the role of complex space charge configurations for low frequency instabilities in a low-density magnetized plasma column. (authors)
Symmetry and illumination uniformity requirements for high density laser-driven implosions
International Nuclear Information System (INIS)
Mead, W.C.; Lindl, J.D.
1976-01-01
As laser capabilities increase, implosions will be performed to achieve high densities. Criteria are discussed for formation of a low-density corona, preheated supersonically, which increases the tolerance of high convergence implosions to non-uniform illumination by utilizing thermal smoothing. We compare optimized double shell target designs without and with atmosphere production. Two significant penalties are incurred with atmosphere production using 1 μm laser light. First, a large initial shock at the ablation surface limits the pulse shaping flexibility, and degrades implosion performance. Second, the mass and heat capacity of the atmosphere reduce the energy delivered to the ablation surface and the driving pressures obtained for a given input energy. Improvement is possible using 2 μm light for the initial phase of the implosion. We present results of 2-D simulations which evaluate combined symmetry and stability requirements. At l = 8, the improvement produced in the example is a factor of 10, giving tolerance of 10 percent
Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions.
Mackinnon, A J; Kline, J L; Dixit, S N; Glenzer, S H; Edwards, M J; Callahan, D A; Meezan, N B; Haan, S W; Kilkenny, J D; Döppner, T; Farley, D R; Moody, J D; Ralph, J E; MacGowan, B J; Landen, O L; Robey, H F; Boehly, T R; Celliers, P M; Eggert, J H; Krauter, K; Frieders, G; Ross, G F; Hicks, D G; Olson, R E; Weber, S V; Spears, B K; Salmonsen, J D; Michel, P; Divol, L; Hammel, B; Thomas, C A; Clark, D S; Jones, O S; Springer, P T; Cerjan, C J; Collins, G W; Glebov, V Y; Knauer, J P; Sangster, C; Stoeckl, C; McKenty, P; McNaney, J M; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A G; Chandler, G G A; Hahn, K D; Moran, M J; Schneider, M B; Palmer, N E; Bionta, R M; Hartouni, E P; LePape, S; Patel, P K; Izumi, N; Tommasini, R; Bond, E J; Caggiano, J A; Hatarik, R; Grim, G P; Merrill, F E; Fittinghoff, D N; Guler, N; Drury, O; Wilson, D C; Herrmann, H W; Stoeffl, W; Casey, D T; Johnson, M G; Frenje, J A; Petrasso, R D; Zylestra, A; Rinderknecht, H; Kalantar, D H; Dzenitis, J M; Di Nicola, P; Eder, D C; Courdin, W H; Gururangan, G; Burkhart, S C; Friedrich, S; Blueuel, D L; Bernstein, L A; Eckart, M J; Munro, D H; Hatchett, S P; Macphee, A G; Edgell, D H; Bradley, D K; Bell, P M; Glenn, S M; Simanovskaia, N; Barrios, M A; Benedetti, R; Kyrala, G A; Town, R P J; Dewald, E L; Milovich, J L; Widmann, K; Moore, A S; LaCaille, G; Regan, S P; Suter, L J; Felker, B; Ashabranner, R C; Jackson, M C; Prasad, R; Richardson, M J; Kohut, T R; Datte, P S; Krauter, G W; Klingman, J J; Burr, R F; Land, T A; Hermann, M R; Latray, D A; Saunders, R L; Weaver, S; Cohen, S J; Berzins, L; Brass, S G; Palma, E S; Lowe-Webb, R R; McHalle, G N; Arnold, P A; Lagin, L J; Marshall, C D; Brunton, G K; Mathisen, D G; Wood, R D; Cox, J R; Ehrlich, R B; Knittel, K M; Bowers, M W; Zacharias, R A; Young, B K; Holder, J P; Kimbrough, J R; Ma, T; La Fortune, K N; Widmayer, C C; Shaw, M J; Erbert, G V; Jancaitis, K S; DiNicola, J M; Orth, C; Heestand, G; Kirkwood, R; Haynam, C; Wegner, P J; Whitman, P K; Hamza, A; Dzenitis, E G; Wallace, R J; Bhandarkar, S D; Parham, T G; Dylla-Spears, R; Mapoles, E R; Kozioziemski, B J; Sater, J D; Walters, C F; Haid, B J; Fair, J; Nikroo, A; Giraldez, E; Moreno, K; Vanwonterghem, B; Kauffman, R L; Batha, S; Larson, D W; Fortner, R J; Schneider, D H; Lindl, J D; Patterson, R W; Atherton, L J; Moses, E I
2012-05-25
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 μm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).
DEFF Research Database (Denmark)
Li, Xiao-Fen; Grivel, Jean-Claude; Abrahamsen, Asger B.
2012-01-01
We have numerically proved that the dependence of AC susceptibility χ of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical...... current density Jc of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of Jc from a normally...
L. Braga, F.
2013-10-01
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
Critical current densities and vortex dynamics in FeTexSe1-x single crystals
International Nuclear Information System (INIS)
Taen, T.; Tsuchiya, Y.; Nakajima, Y.; Tamegai, T.
2010-01-01
The critical current density and the normalized relaxation rate are reported in FeTe 0.59 Se 0.41 single crystal. Critical current density is of order of 10 5 A/cm 2 , which is comparable to that in Co-doped BaFe 2 As 2 . In low temperature and low field region, the vortex dynamics of this system is well defined by the collective creep theory, which is quite similar to Co-doped BaFe 2 As 2 reported before. We also discuss the origin of the anomaly in the field dependence of the relaxation rate.
Multipole lenses with implicit poles and with harmonic distribution of current density in a coil
International Nuclear Information System (INIS)
Skachkov, V.S.
1984-01-01
General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed
International Nuclear Information System (INIS)
Shen, Weimin.
1992-08-01
Studies of magnetic fluctuation induced particle transport on Reversed Field Pinch plasmas were done on the Madison Symmetric Torus. Plasma current density and current density fluctuations were measured using a multi-coil magnetic probes. The low frequency (f parallel B r >. The result of zero net charged particle loss was obtained, meaning the flux is ambipolar. The ambipolarity of low frequency global tearing modes is satisfied through the phase relations determined by tearing instabilities. The ambipolarity of high frequency localized modes could be partially explained by the simple model of Waltz based on the radial average of small scale turbulence
Macdonald, J.; Bland, S. N.; Threadgold, J.
2015-08-01
We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.
Particle-bearing currents in uniform density and two-layer fluids
Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher
2018-02-01
Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.
The role of meridional density differences for a wind-driven overturning circulation
Energy Technology Data Exchange (ETDEWEB)
Schewe, J.; Levermann, A. [Potsdam Institute for Climate Impact Research, Earth System Analysis, Potsdam (Germany); Potsdam University, Physics Institute, Potsdam (Germany)
2010-03-15
Experiments with the coupled climate model CLIMBER-3{alpha}, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation. (orig.)
Gandhi, Om P.; Kang, Gang
2001-11-01
This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.
Gandhi, O P; Kang, G
2001-11-01
This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.
On the estimation of the current density in space plasmas: Multi- versus single-point techniques
Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco
2017-06-01
Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.
Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster
International Nuclear Information System (INIS)
Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.
2006-01-01
The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures
Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed
Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.
2017-04-01
Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these
Current Trends in the Detection of Sociocultural Signatures: Data-Driven Models
Energy Technology Data Exchange (ETDEWEB)
Sanfilippo, Antonio P.; Bell, Eric B.; Corley, Courtney D.
2014-09-15
available that are shaping social computing as a strongly data-driven experimental discipline with an increasingly stronger impact on the decision-making process of groups and individuals alike. In this chapter, we review current advances and trends in the detection of sociocultural signatures. Specific embodiments of the issues discussed are provided with respect to the assessment of violent intent and sociopolitical contention. We begin by reviewing current approaches to the detection of sociocultural signatures in these domains. Next, we turn to the review of novel data harvesting methods for social media content. Finally, we discuss the application of sociocultural models to social media content, and conclude by commenting on current challenges and future developments.
International Nuclear Information System (INIS)
Lemaire, J.; Scherer, M.
1983-01-01
The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article
Crack problem in superconducting cylinder with exponential distribution of critical-current density
Zhao, Yufeng; Xu, Chi; Shi, Liang
2018-04-01
The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.
Determination of plasma density from data on the ion current to cylindrical and planar probes
Energy Technology Data Exchange (ETDEWEB)
Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.; Mankelevich, Yu. A.; Rakhimova, T. V. [Moscow State University, Skobeltsyn Nuclear Physics Institute (Russian Federation)
2016-12-15
To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.
Directory of Open Access Journals (Sweden)
Orhan Gökhan
2012-01-01
Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.
The interaction of laser driven shock waves with a spherical density perturbation
International Nuclear Information System (INIS)
Bach, D.R; Budil, K.S.; Klein, R.I.; Perry, T.S.
1999-01-01
Strong shock waves produced by illumination of a CH target by laser produced x-rays were driven through a copper sphere. The motion and deformation of the sphere were measured using radiographs generated by backlighting the sphere with a large area backlighter. The sphere became non-spherical after the passage of the shock, having a complicated down-stream structure. This was an instability-induced structure that was predicted by calculations. The experiment is a convenient laboratory model of the complicated interactions occurring in much larger systems such as in astrophysics in the interaction of shocks formed in the interstellar medium with various types of clouds. In particular, the experiment is a useful tool for checking the computational ability of the new generation ASCI computers, as it requires three-dimensional modeling. This experiment has shown that three dimensional calculations seem to be necessary to describe major features observed in the experiment. Any attempt to explain hydrodynamic behavior with similar instabilities must take into account these three dimensional effects
A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW
Directory of Open Access Journals (Sweden)
PREDRAG M. ŽIVKOVIĆ
2011-06-01
Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.
Critical current densities in thick yttrium-barium cuprate (1-2-3) films
International Nuclear Information System (INIS)
Ryvkina, G.G.; Gorlanov, S.F.; Vedernikov, G.E.; Telegin, A.B.; Ryabin, V.A.; Khodos, M.Ya.
1993-01-01
The study of critical current densities j c of oxide superconductors and their thick films is a very important practical task because the value of j c is one of the main criteria for their utilization in modern cryoelectronics. For most devices based on the Josephson effect, the value of j c ∼ 10 2 - 10 3 A/cm 2 is acceptable, which is easily attainable for polycrystalline thick films obtained by stenciling. The study of the current-transport phenomenon involves a number of difficulties, especially for direct current, because both the sample itself and the lead-in contacts are resistance-heated during the measurements, which, in turn, results in lower values of the j c . Measurements with pulsed currents allow one to lower the power that is applied to the sample; the heat that is released in the sample is reduced, in comparison to measurements with direct current, by a factor of the pulsed-current duty cycle. In addition, measurements with direct current detects only the appearance of resistance; it provides no information on the rest of the transition from the normal to the superconductive state, i.e., on the so-called 'tail' of the transition. In this work, the authors studied critical current densities of thick HTSC yttrium-barium cuprate films of the 1-2-3 composition using pulsed current
International Nuclear Information System (INIS)
Tallouli, M; Yamaguchi, S.; Shyshkin, O.
2017-01-01
The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
Franks, Peter J; Beerling, David J
2009-06-23
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.
Dynamics of laser-driven proton beam focusing and transport into solid density matter
Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.
2016-10-01
Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.
Avanzini, Francesco; Moro, Giorgio J
2018-03-15
The quantum molecular trajectory is the deterministic trajectory, arising from the Bohm theory, that describes the instantaneous positions of the nuclei of molecules by assuring the agreement with the predictions of quantum mechanics. Therefore, it provides the suitable framework for representing the geometry and the motions of molecules without neglecting their quantum nature. However, the quantum molecular trajectory is extremely demanding from the computational point of view, and this strongly limits its applications. To overcome such a drawback, we derive a stochastic representation of the quantum molecular trajectory, through projection operator techniques, for the degrees of freedom of an open quantum system. The resulting Fokker-Planck operator is parametrically dependent upon the reduced density matrix of the open system. Because of the pilot role played by the reduced density matrix, this stochastic approach is able to represent accurately the main features of the open system motions both at equilibrium and out of equilibrium with the environment. To verify this procedure, the predictions of the stochastic and deterministic representation are compared for a model system of six interacting harmonic oscillators, where one oscillator is taken as the open quantum system of interest. The undeniable advantage of the stochastic approach is that of providing a simplified and self-contained representation of the dynamics of the open system coordinates. Furthermore, it can be employed to study the out of equilibrium dynamics and the relaxation of quantum molecular motions during photoinduced processes, like photoinduced conformational changes and proton transfers.
Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.
2008-11-01
In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Ion temperature gradient driven transport in a density modification experiment on the TFTR tokamak
International Nuclear Information System (INIS)
Horton, W.; Lindberg, D.; Kim, J.Y.; Dong, J.Q.; Hammett, G.W.; Scott, S.D.; Zarnstorff, M.C.; Hamaguchi, S.
1991-07-01
TFTR profiles from a supershot density-modification experiment are analyzed for their local and ballooning stability to toroidal η i -modes in order to understand the initially puzzling results showing no increase in X i when a pellet is used to produce an abrupt and large increase in the η i parameter. The local stability analysis assumes that k parallel = 1/qR and ignores the effects of shear, but makes no assumption on the magnitude of k parallel v ti /ω. The ballooning stability analysis determines a self-consistent linear spectrum of k parallel's including the effect of shear and toroidicity, but it expands in k parallel v ti /ω ≤ 1, which is a marginal assumption for this experiment. Nevertheless, the two approaches agree well and show that the mixing length estimate of the transport rate does not change appreciably during the density-modification and has a value close to or less than the observed X i , in contrast to most previous theories which predicted X i 's which were over an order-of-magnitude too large. However, we are still unable to explain the observed increase X i (r) with minor radius by adding the effects of the finite beta drift - MHD mode coupling, the slab-like mode, or the trapped electron response. The experimental tracking 0.2 e /X i i and trapped-electron driving mechanisms are operating. 4 refs., 5 figs., 5 tabs
Lower hybrid current drive at ITER-relevant high plasma densities
International Nuclear Information System (INIS)
Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.
2009-01-01
Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.
Induced critical current density limit of Ag sheathed Bi-2223 tape conductor
International Nuclear Information System (INIS)
Ogiwara, H.; Satou, M.; Yamada, Y.; Kitamura, T.; Hasegawa, T.
1994-01-01
The authors have already reported the best critical current density of 66,000 A/cm 2 with an Ag sheathed Bi-2223 tape conductor. The Brick-wall model is for explaining the current transport mechanism of this conductor. The model has its roots in the fact that the Bi-2223 tape core is a complicated stack of crystals which have a mica-flake structure. The orientation of the crystals which have a mica-flake structure. The orientation of the crystals seriously affects the current transport capability. Moreover, the contacts between the stacking crystals are very important. The transport current flows dividing into many branch paths. Under high magnetic field, the different paths experienced different electromagnetic forces. Differences between the electromagnetic forces on the different crystals can affect the contacts so as to increase resistivity and decrease overall critical current density of the tape. This effect can foretell the limit of the critical current density obtainable with these kinds of conductors
The effect of plasma collisionality on pedestal current density formation in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Thomas, D M; Leonard, A W; Osborne, T H; Groebner, R J; West, W P; Burrell, K H [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)
2006-05-15
The evolution and performance limits for the pedestal in H-mode are dependent on the two main drive terms for instability: namely the edge pressure gradient and the edge current density. These terms are naturally coupled though neoclassical (Pfirsch-Schluter and bootstrap) effects. On DIII-D, local measurements of the edge current density are made using an injected lithium beam in conjunction with Zeeman polarimetry and compared with pressure profile measurements made with other diagnostics. These measurements have confirmed the close spatial and temporal correlation that exists between the measured current density and the edge pressure in H- and QH-mode pedestals, where substantial pressure gradients exist. In the present work we examine the changes in the measured edge current for DIII-D pedestals which have a range of values for the ion and electron collisionalities {l_brace}{upsilon}{sub i}*,{upsilon}{sub e}*{r_brace} due to fuelling effects. Such changes in the collisionality in the edge are expected to significantly alter the level of the bootstrap current from the value predicted from the collisionless limit and therefore should correspondingly alter the pedestal stability limits. We find a clear decrease in measured current as {nu} increases, even for discharges having similar edge pressure gradients.
Nernst-Planck modeling of multicomponent ion transport in a Nafion membrane at high current density
Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.
A mathematical model of multicomponent ion transport through a cation-exchange membrane is developed based on the Nernst–Planck equation. A correlation for the non-linear potential gradient is derived from current density relation with fluxes. The boundary conditions are determined with the Donnan
DEFF Research Database (Denmark)
Liu, Qing Zhong
1991-01-01
Novel analytical expressions have been derived for calculating transimpedances and equivalent input noise current densities of five tuned optical receiver front ends based on PIN diode and MESFETs or HEMTs. Miller's capacitance, which has been omitted in previous studies, has been taken...
Characteristics of PEMFC operating at high current density with low external humidification
International Nuclear Information System (INIS)
Fan, Linhao; Zhang, Guobin; Jiao, Kui
2017-01-01
Highlights: • PEMFC with low humidity and high current density is studied by numerical simulation. • At high current density, water production lowers external humidification requirement. • A steady anode circulation status without external humidification is demonstrated. • The corresponding detailed internal water transfer path in the PEMFC is illustrated. • Counter-flow is superior to co-flow at low anode external humidification. - Abstract: A three-dimensional multiphase numerical model for proton exchange membrane fuel cell (PEMFC) is developed to study the fuel cell performance and water transport properties with low external humidification. The results show that the sufficient external humidification is necessary to prevent the polymer electrolyte dehydration at low current density, while at high current density, the water produced in cathode CL is enough to humidify the polymer electrolyte instead of external humidification by flowing back and forth between the anode and cathode across the membrane. Furthermore, a steady anode circulation status without external humidification is demonstrated in this study, of which the detailed internal water transfer path is also illustrated. Additionally, it is also found that the water balance under the counter-flow arrangement is superior to co-flow at low anode external humidification.
Transition from Fowler-Nordheim field emission to space charge limited current density
International Nuclear Information System (INIS)
Feng, Y.; Verboncoeur, J. P.
2006-01-01
The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response
Particle image velocimetry measurements and numerical modeling of a saline density current
CSIR Research Space (South Africa)
Gerber, G
2011-03-01
Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...
Magnetic penetration depth δ o and critical current density in Y-BA-Cu-O crystals
International Nuclear Information System (INIS)
Zavaritsky, N.V.; Zavaritsky, V.N.
1989-01-01
Magnetic penetration depthδ o ∼1.03 10 - 5 cm and critical current density (j c = 0.5 divided-by 1 x 10 5 A/cm 2 at T/T ∼0.98) are determined from low-field do magnetization measurements on Y 1 Ba 2 Cu 3 O 7 - crystals
Czech Academy of Sciences Publication Activity Database
Zelinka, Jiří; Oral, Martin; Radlička, Tomáš
2015-01-01
Roč. 21, S4 (2015), s. 246-251 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : electron optical system * calculations of current density Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)
2016-06-15
We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)
Directory of Open Access Journals (Sweden)
Manuel Cánovas
2017-09-01
Full Text Available Density-driven flow and heat transport processes in 2-D porous media scenarios are governed by coupled, non-linear, partial differential equations that normally have to be solved numerically. In the present work, a model based on the network method simulation is designed and applied to simulate these processes, providing steady state patterns that demonstrate its computational power and reliability. The design is relatively simple and needs very few rules. Two applications in which heat is transported by natural convection in confined and saturated media are studied: slender boxes heated from below (a kind of Bénard problem and partially heated horizontal plates in rectangular domains (the Elder problem. The streamfunction and temperature patterns show that the results are coherent with those of other authors: steady state patterns and heat transfer depend both on the Rayleigh number and on the characteristic Darcy velocity derived from the values of the hydrological, thermal and geometrical parameters of the problems.
Energy Technology Data Exchange (ETDEWEB)
Akola, Jaakko [Department of Physics, Tampere University of Technology (Finland); COMP Centre of Excellence, Department of Applied Physics, Aalto University (Finland); GRSS and PGI-1, Forschungszentrum Juelich (Germany); Kalikka, Janne; Larrucea, Julen [Nanoscience Center, Department of Physics, University of Jyvaeskylae (Finland); Jones, Robert O. [GRSS and PGI-1, Forschungszentrum Juelich (Germany)
2013-07-01
Early stages of nucleus-driven crystallization of the prototype phase change material Ge{sub 2}Sb{sub 2}Te{sub 5} have been studied by massively-parallel density functional/molecular dynamics simulations for amorphous samples (460 and 648 atoms) at 500, 600, and 700 K. All systems assumed a fixed cubic seed of 58 atoms and 6 vacancies in order to achieve sub-nanosecond phase transition. Crystallization occurs within 600 ps for the 460-atom system at 600 and 700 K, and signs of crystallization (nucleus growth, percolation) are present in the others. Crystallization is accompanied by an increase in the number of ABAB squares (A: Ge,Sb, B: Te), and atoms of all elements move significantly. The evolution of cavities/vacancies is closely monitored. The existence of Te-Te, Ge-Ge, Ge-Sb, and Sb-Sb (wrong) bonds is an inevitable consequence of rapid crystallization.
International Nuclear Information System (INIS)
Hahm, T.S.
1990-12-01
Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs
Sauer, Konrad; Malaspina, David M.; Pulupa, Marc; Salem, Chadi S.
2017-07-01
Langmuir amplitude modulation in association with type III radio bursts is a well-known phenomenon since the beginning of space observations. It is commonly attributed to the superposition of beam-excited Langmuir waves and their backscattered counterparts as a result of parametric decay. The dilemma, however, is the discrepancy between fast beam relaxation and long-lasting Langmuir wave activity. Instead of starting with an unstable electron beam, our focus in this paper is on the nonlinear response of Langmuir oscillations that are driven after beam stabilization by the still persisting current of the (stable) two-electron plasma. The velocity distribution function of the second population forms a plateau (index h) with a point at which ∂fh/∂v ˜0 associated with weak damping over a more or less extended wave number range k. As shown by particle-in-cell simulations, this so-called plateau plasma drives primarily Langmuir oscillations at the plasma frequency (ωe) with k = 0 over long times without remarkable change of the distribution function. These Langmuir oscillations act as a pump wave for parametric decay by which an electron-acoustic wave slightly below ωe and a counterstreaming ion-acoustic wave are generated. Both high-frequency waves have nearly the same amplitude, which is given by the product of plateau density and velocity. Beating of these two wave types leads to pronounced Langmuir amplitude modulation, in reasonable agreement with solar wind and terrestrial foreshock observations made by the Wind spacecraft.
International Nuclear Information System (INIS)
Kurihara, Kenichi
1997-11-01
Plasma current density distribution is one of the most important controlled variables to determine plasma performance of energy confinement and stability in a tokamak. However, its reproduction by using magnetic measurements solely is recognized to yield an ill-posed problem. A method to presume the formulas giving profiles of plasma pressure and current has been adopted to regularize the ill-posedness, and hence it has been reported the current density distribution can be reproduced as a solution of Grad-Shafranov equation within a certain accuracy. In order to investigate its strict reproducibility from magnetic measurements in this inverse problem, a new method of 'bounded-eigenfunction expansion' is introduced, and it was found that the reproducibility directly corresponds to the independence of a series of the special function. The results from various investigations in an aspect of applied mathematics concerning this inverse problem are presented in detail. (author)
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-10-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.
Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata
2013-01-01
A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic
Harvey, C. F.; Michael, H. A.
2017-12-01
We formulate the energy balance for coastal groundwater systems and apply it to: (1) Explain the energy driving offshore saline circulation cells, and; (2) Assess the accuracy of numerical simulations of coastal groundwater systems. The flow of fresh groundwater to the ocean is driven by the loss of potential energy as groundwater drops from the elevation of the inland watertable, where recharge occurs, to discharge at sea level. This freshwater flow creates an underlying circulation cell of seawater, drawn into coastal aquifers offshore and discharging near shore, that adds to total submarine groundwater discharge. The saline water in the circulation cell enters and exits the aquifer through the sea floor at the same hydraulic potential. Existing theory explains that the saline circulation cell is driven by mixing of fresh and saline without any additional source of potential or mechanical power. This explanation raises a basic thermodynamic question: what is the source of energy that drives the saline circulation cell? Here, we resolve this question by building upon Hubbert's conception of hydraulic potential to formulate an energy balance for density-dependent flow and salt transport through an aquifer. We show that, because local energy dissipation within the aquifer is proportional to the square of the groundwater velocity, more groundwater flow may be driven through an aquifer for a given energy input if local variations in velocity are smoothed. Our numerical simulations of coastal groundwater systems show that dispersion of salt across the fresh-saline interface spreads flow over larger volumes of the aquifer, smoothing the velocity field, and increasing total flow and submarine groundwater discharge without consuming more power. The energy balance also provides a criterion, in addition to conventional mass balances, for judging the accuracy of numerical solutions of non-linear density-dependent flow problems. Our results show that some numerical
Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns.
Liu, Quan-Xing; Rietkerk, Max; Herman, Peter M J; Piersma, Theunis; Fryxell, John M; van de Koppel, Johan
2016-12-01
Many ecosystems develop strikingly regular spatial patterns because of small-scale interactions between organisms, a process generally referred to as spatial self-organization. Self-organized spatial patterns are important determinants of the functioning of ecosystems, promoting the growth and survival of the involved organisms, and affecting the capacity of the organisms to cope with changing environmental conditions. The predominant explanation for self-organized pattern formation is spatial heterogeneity in establishment, growth and mortality, resulting from the self-organization processes. A number of recent studies, however, have revealed that movement of organisms can be an important driving process creating extensive spatial patterning in many ecosystems. Here, we review studies that detail movement-based pattern formation in contrasting ecological settings. Our review highlights that a common principle, where movement of organisms is density-dependent, explains observed spatial regular patterns in all of these studies. This principle, well known to physics as the Cahn-Hilliard principle of phase separation, has so-far remained unrecognized as a general mechanism for self-organized complexity in ecology. Using the examples presented in this paper, we explain how this movement principle can be discerned in ecological settings, and clarify how to test this mechanism experimentally. Our study highlights that animal movement, both in isolation and in unison with other processes, is an important mechanism for regular pattern formation in ecosystems. Copyright Â© 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Koops, Hans W.P.
2013-01-01
Focused electron beam induced deposition is a novel bottom up nano-structurization technology. An electron beam of high power density is used to generate nano- structures with dimensions > 20 nm, but being composed from amorphous or nanogranular materials with crystals of 2 to 5 nm diameter embedded in a Fullerene matrix. Those compounds are generated in general by secondary or low energy electrons in layers of inorganic, organic, organometallic compounds absorbed to the sample. Those are converted into nanogranular materials by the electron beam following chemical and physical laws, as given by 'Mother Nature'. Metals and amorphous mixtures of chemical compounds from metals are normal resistors, which can carry a current density J 2 . Nanogranular composites like Au/C or Pt/C with metal nanocrystals embedded in a Fullerene matrix have hopping conduction with 0-dimensional Eigen-value characteristics and show 'anomalous electron transport' and can carry 'Giant Current Densities' with values from > 1 MA/cm 2 to 0.1 GA/cm 2 without destruction of the materials. However the area connecting the nanogranular material with a metal with a 3-dimensional electron gas needs to be designed, that the flowing current is reduced to the current density values which the 3-D metal can support without segregation. The basis for a theoretical explanation of the phenomenon can be geometry quantization for Coulomb blockade, of electron surface orbitals around the nanocrystals, hopping conduction, and the limitation of the density of states for phonons in geometry confined non percolated granular materials with strong difference in mass and orientation. Several applications in electronics, signal generators, light sources, detectors, and solar energy harvesting are suggested. (author)
Directory of Open Access Journals (Sweden)
Smolen D
2013-02-01
Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material
Real-time control of the current density and pressure profiles in Jet
International Nuclear Information System (INIS)
Mazon, D.; Moreau, D.; Litaudon, X.; Joffrin, E.; Laborde, L.; Zabeo, L.; Crisanti, F.; Riva, M.; Felton, R.; Murari, A.; Tala, T.
2003-01-01
In order to ultimately control internal transport barriers during advanced operation scenarios, new algorithms using a truncated singular value decomposition of a linearized model operator have been implemented in the JET real-time controller, with the potentiality of retaining the distributed nature of plasma parameter profiles. First experiments using the simplest, lumped-parameter, version of this technique have been dedicated to the feedback control of the current density profile in a negative shear plasma using three heating and current drive actuators, namely neutral beam injection (NBI), ion cyclotron resonant frequency heating (ICRH) and lower hybrid current drive (LHCD). Successful control of the safety factor profile has been achieved on the time scale of the current redistribution time, first during an extended preheat phase with only LHCD as actuator and, then, in quasi steady-state conditions during the main heating phase of a discharge, using the three heating and current drive actuators
Energy Technology Data Exchange (ETDEWEB)
Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J. [U.S. Naval Research Laboratory, Washington DC 20375 (United States); Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C. [Research Support Instruments, Lanham, Maryland 20905 (United States); Phillips, L. [Alogus Research Corporation, McLean, Virginia 22101 (United States); Afeyan, B. [Polymath Research, Inc., Pleasanton, California 94566 (United States); Seely, J.; Feldman, U. [Berkeley Research Associates, Inc., Beltsville, Maryland 20705 (United States)
2013-02-15
The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength ({lambda}=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers ({lambda}=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns{<=}{tau}{<=}1.25 ns) and intensities (up to 2 Multiplication-Sign 10{sup 15} W/cm{sup 2}). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.
International Nuclear Information System (INIS)
Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C.; Phillips, L.; Afeyan, B.; Seely, J.; Feldman, U.
2013-01-01
The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×10 15 W/cm 2 ). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.
Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.
2013-02-01
The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.
Responsivity Dependent Anodization Current Density of Nanoporous Silicon Based MSM Photodetector
Directory of Open Access Journals (Sweden)
Batool Eneaze B. Al-Jumaili
2016-01-01
Full Text Available Achieving a cheap and ultrafast metal-semiconductor-metal (MSM photodetector (PD for very high-speed communications is ever-demanding. We report the influence of anodization current density variation on the response of nanoporous silicon (NPSi based MSM PD with platinum (Pt contact electrodes. Such NPSi samples are grown from n-type Si (100 wafer using photoelectrochemical etching with three different anodization current densities. FESEM images of as-prepared samples revealed the existence of discrete pores with spherical and square-like shapes. XRD pattern displayed the growth of nanocrystals with (311 lattice orientation. The nanocrystallite sizes obtained using Scherrer formula are found to be between 20.8 nm and 28.6 nm. The observed rectifying behavior in the I-V characteristics is ascribed to the Pt/PSi/n-Si Schottky barrier formation, where the barrier height at the Pt/PSi interface is estimated to be 0.69 eV. Furthermore, this Pt/PSi/Pt MSM PD achieved maximum responsivity of 0.17 A/W and quantum efficiency as much as 39.3%. The photoresponse of this NPSi based MSM PD demonstrated excellent repeatability, fast response, and enhanced saturation current with increasing anodization current density.
Confinement studies of a high current density RFP in the Extrap T1 Upgrade device
International Nuclear Information System (INIS)
Drake, J.R.; Brzozowski, J.H.; Brunsell, P.; Hellblom, G.; Karlsson, P.; Mazur, S.; Nordlund, P.; Welander, A.; Zastrow, K.D.
1992-01-01
Confinement studies have been carried out on the Extrap T1 device operated in the reversed field pinch (RFP) mode. Extrap T1 is a small device with a major radius of R=0.5 m and a high aspect ratio, R/a=8.9. For these experiments, the device has been operated with a resistive shell with measured, toroidally-averaged flux penetration times of τ sv = 500μs (vertical) and τ sR =300μs (radial). The pulse lengths are about 600 μs, which is slightly longer than the shell penetration time. The purpose of these experiments is to study energy confinement in a high aspect-ratio, high current-density RFP device with a resistive shell. The device can be operated with high current densities which exceed 20 MAm -2 on axis. For these discharges, the average electron density is relatively high, ≅ 1x10 20 m -3 . Therefore, although the average current density exceeds 5 MAm -2 , the important parameter / ≅ I/N is maintained less than 1x10 -13 Am, where N is the line density. The plasma diagnostics for the device include a single chord CO 2 laser interferometer ( ), single point Thomson scattering (T e , n o ), VUV and visible spectroscopy (T e , Z eff ) surface barrier diodes for soft X-ray measurements (T e ), bolometry (P rad ), surface probes (Γ p ,T i ) and comprehensive magnetic diagnostics for both equilibrium and magnetic fluctuation studies. (author) 5 refs., 1 fig., 1 tab
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-08
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
Distribution of the Current Density in Electrolyte of the Pem Fuel Cell
Directory of Open Access Journals (Sweden)
Eugeniusz Kurgan
2004-01-01
Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.
Microstructure characterisation of solid oxide electrolysis cells operated at high current density
DEFF Research Database (Denmark)
Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming
degradation of cell components in relation to the loss of electrochemical performance specific to the mode of operation. Thus descriptive microstructure characterization methods are required in combination with electrochemical characterization methods to decipher degradation mechanisms. In the present work......High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...
Energy Technology Data Exchange (ETDEWEB)
Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2016-06-15
The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.
Morphological features of the copper surface layer under sliding with high density electric current
Energy Technology Data Exchange (ETDEWEB)
Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)
2015-10-27
Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.
International Nuclear Information System (INIS)
Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.
2016-01-01
The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.
Effect of Applied Current Density on Cavitation-Erosion Characteristics for Anodized Al Alloy.
Lee, Seung-Jun; Kim, Seong-Jong
2018-02-01
Surface finishing is as important as selection of material to achieve durability. Surface finishing is a process to provide surface with the desired performance and features by applying external forces such as thermal energy or stress. This study investigated the optimum supply current density for preventing from cavitation damages by applying to an anodizing technique that artificially forms on the surface an oxide coating that has excellent mechanical characteristics, such as hardness, wear resistance. Result of hardness test, the greater hardness was associated with greater brittleness, resulting in deleterious characteristics. Consequently, under conditions such as the electrolyte concentration of 10 vol.%, the processing time of 40 min, the electrolyte temperature of 10 °C, and the current density of 20 mA/cm2 were considered to be the optimum anodizing conditions for improvement of durability in seawater.
International Nuclear Information System (INIS)
Walsh, D; Hall, S R; Wimbush, S C
2008-01-01
Templated control of crystallization by biopolymers is a new technique in the synthesis of high temperature superconducting phases. By controlling the way YBa 2 Cu 3 O 7-δ (Y123) materials crystallize and are organized in three dimensions, the critical current density can be improved. In this work, we present the results of doping superconducting sponges with calcium ions, which result in higher critical current densities (J c ) and improved compressive strength compared to that of commercially available Y123, in spite of minor reductions in T c . Y123 synthesis using the biopolymer dextran achieves not only an extremely effective oxygenation of the superconductor but also an in situ template-directing of the crystal morphology producing high J c , homogeneous superconducting structures with nano-scale crystallinity
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities
DEFF Research Database (Denmark)
Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg
2014-01-01
In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode....... A current density of -1.5 and -2.0 A/cm2 was applied to the cell and the gas conversion was 45 % and 60 %, respectively. The cells were operated for a period of up to 700 hours. The electrochemical analysis revealed significant performance degradation for the ohmic process, oxygen ion interfacial transfer...
Amirhoseiny, M.; Hassan, Z.; Ng, S. S.
2012-08-01
Photoelectrochemical etched Si layers were prepared on n-type (110) oriented silicon wafer. The photoluminescence (PL), Fourier transformed infrared (FTIR) absorption and Raman spectroscopies of etched Si (110) at two different current densities were studied. Both samples showed PL peak in the visible spectral range situated from 650 nm to 750 nm. The corresponding changes in Raman spectra at different current density are discussed. The blue shift in the PL and Raman peaks is consequent of the quantum confinement effect and defect states of surface Si nanocrystallites complexes and hydrogen atoms of the photoelectrochemical etched Si (110) samples. The attenuated total reflection (ATR) results show both hydrogen and oxygen related IR modes in the samples which can be used to explain the PL effect.
Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures
Velazquez-Rizo, Martin
2017-07-01
In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed magnet (Bhowmik et al., 2014). The possibility of setting the magnetization to both stable magnetization states in a controlled manner using a similar concept remains unknown, but the proposed structure poses to be a solution to this difficulty. The second cell proposed takes advantage of the multiple stable magnetic states that exist in ferromagnets with configurational anisotropy and also uses spin torques to manipulate its magnetization. It utilizes a square-shaped ferromagnet whose stable magnetization has preferred directions along the diagonals of the square, giving four stable magnetic states allowing to use the structure as a multi-bit memory cell. Both devices use spin currents generated in heavy metals by the Spin Hall effect present in these materials. Among the advantages of the structures proposed are their inherent non-volatility and the fact that there is no need for applying external magnetic fields during their operation, which drastically improves the energy efficiency of the devices. Computational simulations using the Object Oriented Micromagnetic Framework (OOMMF) software package were performed to study the dynamics of the magnetization process in both structures and predict their behavior. Besides, we fabricated a 4-terminal memory cell with configurational anisotropy similar to the device proposed, and found four stable resistive states on the structure, proving the feasibility of this technology for implementation of high-density, non-volatile memory cells.
Measurements of current density distribution in shaped e-beam writers
Czech Academy of Sciences Publication Activity Database
Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav
2016-01-01
Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016
Czech Academy of Sciences Publication Activity Database
Youssef, A.; Baničová, L.; Švindrych, Zdeněk; Janů, Zdeněk
2010-01-01
Roč. 118, č. 5 (2010), s. 1036-1037 ISSN 0587-4246. [Czech and Slovak Conference on Magnetism /14./. Košice, 06.07.2010-09.07.2010] R&D Projects: GA MŠk(CZ) ME10069 Institutional research plan: CEZ:AV0Z10100520 Keywords : superconductivity * critical state * Bean model * critical current density Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.467, year: 2010
Harris, Peter T.
1991-07-01
Large subtidal sand dunes (sandwaves) located in Adolphus Channel, Torres Strait, have been observed to reverse their asymmetric orientation between September-February. This has been attributed to a reversal in wind-driven currents, which flow westward during the SE trade season (April-November) and eastwards during the NW monsoon season [December-March: HARRIS (1989) Continental Shelf Research, 9, 981-1002]. Observations in September 1988 and February 1989 from another area of dunes in Torres Strait corroborate this asymmetry reversal pattern. The results indicate that such reversals may be common in Torres Strait and in other areas where subtidal bedforms are subject to modification by superimposed, seasonally reversing, wind-driven currents.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Dependence of critical current density on crystalline direction in thin YBCO films
DEFF Research Database (Denmark)
Paturi, P.; Peurla, M.; Raittila, J.
2005-01-01
The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...
Defects influence on short circuit current density in p-i-n silicon solar cell
International Nuclear Information System (INIS)
Wagah F Mohamad; Alhan M Mustafa
2006-01-01
The admittance analysis method has been used to calculate the collection efficiency and the short circuit current density in a-Si:H p-i-n solar cell, as a function of the thickness of i-layer. Its is evident that the results of the short circuit current can be used to determine the optimal thickness of the i-layer of a cell, and it will be more accurate in comparison with the previous studies using a constant generation rate or an empirical exponential function for the generation of charge carriers throughout the i-layer
Influence of the anodic etching current density on the morphology of the porous SiC layer
Directory of Open Access Journals (Sweden)
Anh Tuan Cao
2014-03-01
Full Text Available In this report, we fabricated a porous layer in amorphous SiC thin films by using constant-current anodic etching in an electrolyte of aqueous diluted hydrofluoric acid. The morphology of the porous amorphous SiC layer changed as the anodic current density changed: At low current density, the porous layer had a low pore density and consisted of small pores that branched downward. At moderate current density, the pore size and depth increased, and the pores grew perpendicular to the surface, creating a columnar pore structure. At high current density, the porous structure remained perpendicular, the pore size increased, and the pore depth decreased. We explained the changes in pore size and depth at high current density by the growth of a silicon oxide layer during etching at the tips of the pores.
Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell
Directory of Open Access Journals (Sweden)
Ravichandra S. Jupudi
2009-12-01
Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.
Directory of Open Access Journals (Sweden)
Karzan A. Omar
2013-11-01
Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.
International Nuclear Information System (INIS)
Green, M.A.
1977-05-01
The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described
International Nuclear Information System (INIS)
Góral, Anna; Nowak, Marek; Berent, Katarzyna; Kania, Bogusz
2014-01-01
Highlights: • Current density of the electrodeposition affects the incorporation of Al 2 O 3 in Ni matrix. • Ni/Al 2 O 3 composite coatings exhibit changes in crystallographic texture. • The pitting corrosion effects were observed in Ni/Al 2 O 3 coatings. • Residual stresses were decreased with increasing current density and coating thickness. - Abstract: Electrodeposition process is a very promising method for producing metal matrix composites reinforced with ceramic particles. In this method insoluble particles suspended in an electrolytic bath are embedded in a growing metal layer. This paper is focused on the investigations of the nickel matrix nanocomposite coatings with hard α-Al 2 O 3 nano-particles, electrochemically deposited from modified Watts-type baths on steel substrates. The influence of various current densities on the microstructure, residual stresses, texture, hardness and corrosion resistance of the deposited nickel/alumina coatings was investigated. The surface morphology, cross sections of the coatings and distribution of the ceramic particles in the metal matrix were examined by scanning electron microscopy. The phase composition, residual stresses and preferred grain orientation of the coatings were characterized using X-ray diffraction techniques. The coating morphology revealed that α-Al 2 O 3 particles show a distinct tendency to form agglomerates, approximately uniformly distributed into the nickel matrix
Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen
Young, Matthew Garett
The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.
High current density in bulk YBa2Cu3O/sub x/ superconductor
International Nuclear Information System (INIS)
Salama, K.; Selvamanickam, V.; Gao, L.; Sun, K.
1989-01-01
A liquid phase processing method for the fabrication of bulk YBa 2 Cu 3 O/sub x/ superconductors with large current carrying capacity has been developed. Slow cooling through the peritectic transformation (1030--980 degree C) has been shown to control the microstructure of these superconductors. A cooling rate of 1 degree C/h in this temperature range has yielded a microstructure with long plate type, thick grains oriented over a wide area. Current density up to 18 500 A/cm 2 has been obtained by continuous direct current measurements and in excess of 62 000 A/cm 2 with pulse current of 10 ms duration and 75 000 A/cm 2 using 1 ms pulse. The strong magnetic field dependence observed in sintered bulk 1-2-3 superconductors is also minimized to a large extent where a current density in excess of 37 000 A/cm 2 is obtained in a field of 6000 G
Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging
International Nuclear Information System (INIS)
Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je
2005-01-01
This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed
Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios
2018-03-01
We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.
International Nuclear Information System (INIS)
Nishikawa, Masahiro; Ueda, Yoshio; Goto, Seiichi
1991-01-01
A high current density neutral beam injector with a low energy has been developed to investigate interactions with plasma facing materials and propagation processes of damages. The high current density neutral beam has been produced by geometrical focusing method employing a spherical electrode system. The hydrogen beam with the current density of 140 mA/cm 2 has been obtained on the focal point in the case of the acceleration energy of 8 keV. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Christ-Koch, Sina
2007-12-20
This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)
Directory of Open Access Journals (Sweden)
Pradeep Kumar eSreenivasaiah
2010-12-01
Full Text Available Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases (DBs and web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research.
The effect of current density and saccharin addition on the grain size of nickel coatings
Energy Technology Data Exchange (ETDEWEB)
Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)
2012-10-15
Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating.
The effect of current density and saccharin addition on the grain size of nickel coatings
International Nuclear Information System (INIS)
Uhm, Young Rang; Park, Keun Yung; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju
2012-01-01
Recently, the main advantage of a radioisotope 'fuel' is concentrated, because it is 'burned' at the rate of the isotopes half life. In other words, given a half life of 100 years, a nuclear battery would still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63, a beta radiation source, is prepared by electrical deposition of radioactive Ni 63 ions on thin non radioactive nickel foil. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To establish the coating condition of Ni 63, non radioactive metal Ni particles were dissolved in an acid solution and electroplated on the Ni sheet. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of the Ni plating solution prepared by dissolving metal particles but also an optimization of the deposition conditions, such as the influence of current density and saccharin concentration on the grain size, was investigated. The proposed model can also be applied for radioactive Ni 63 electroplating
International Nuclear Information System (INIS)
Atzeni, S
2009-01-01
A brief overview of the inertial fusion principles and schemes is presented. The bases for the laser driven ignition experiments programmed for the near future at the National Ignition Facility are outlined. These experiments adopt indirect-drive and aim at central ignition. The principles of alternate approaches, based on direct-drive and different routes to ignition (fast ignition and shock ignition) are also discussed. Gain curves are compared and discussed.
Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles
Energy Technology Data Exchange (ETDEWEB)
Villavicencio, J [Facultad de Ciencias, Universidad Autonoma de Baja California, Ensenada (Mexico); Maldonado, I [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico); Cota, E [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Ensenada (Mexico); Platero, G, E-mail: villavics@uabc.edu.mx [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain)
2011-02-15
The dynamics of electrons in ac-driven double quantum dots have been extensively analyzed by means of Floquet theory. In these systems, coherent destruction of tunneling has been shown to occur for certain ac field parameters. In this work we analyze, by means of Floquet theory, the electron dynamics of a triple quantum dot in series attached to electric contacts, where the central dot position oscillates. In particular, we analyze the quasienergy spectrum of this ac-driven nanoelectromechanical system as a function of the intensity and frequency of the ac field and of external dc voltages. For strong driving fields, we derive, by means of perturbation theory, analytical expressions for the quasienergies of the driven oscillator system. From this analysis, we discuss the conditions for coherent destruction of tunneling (CDT) to occur as a function of detuning and field parameters. For zero detuning, and from the invariance of the Floquet Hamiltonian under a generalized parity transformation, we find analytical expressions describing the symmetry properties of the Fourier components of the Floquet states under such a transformation. By using these expressions, we show that in the vicinity of the CDT condition, the quasienergy spectrum exhibits exact crossings which can be characterized by the parity properties of the corresponding eigenvectors.
Energy Technology Data Exchange (ETDEWEB)
Sharma, Ashutosh; Bhattacharya, Sumit; Das, Siddhartha; Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.in
2014-01-30
Bulk polycrystalline tin films have been processed by pulse electrodeposition technique from a simple solution containing triammonium citrate and stannous chloride. The cathodic investigations have been carried out by galvanostatic methods. As deposited samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis of the deposited films shows microcrystalline grains having β-Sn form. The surface morphology is very rough at lower current density, but becomes smooth at higher current density, and exhibits pyramid type morphology at all the current densities. The effect of current density on microhardness, melting behavior, and electrical resistivity are also reported here.
Digital Repository Service at National Institute of Oceanography (India)
Babu, M.T.; Vethamony, P.; Desa, E.
showed very good agreement with the measured currents. The study suggests that though the currents of GoK are predominantly tide-driven, they respond significantly to the seasonally changing wind system. Strong southwesterly winds enhance the flood tidal...
Dynamics of low density coronal plasma in low current x-pinches
International Nuclear Information System (INIS)
Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N
2007-01-01
Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma
Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs
Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.
2016-01-01
Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293
Impurities, temperature, and density in a miniature electrostatic plasma and current source
International Nuclear Information System (INIS)
Den Hartog, D.J.; Craig, D.J.; Fiksel, G.; Sarff, J.S.
1996-10-01
We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high density (10 19 - 10 20 m -3 ), low temperature (5 - 15 eV) plasma. A key result of our investigation is that molybdenum from the gun electrodes is largely trapped in the internal gun discharge; only a small amount escapes in the plasma flowing out of the gun. In addition, the gun plasma parameters actually improve (even lower impurity contamination and higher ion temperature) when up to 1 kA of electron current is extracted from the gun via the application of an external bias. This improvement occurs because the internal gun anode no longer acts as the current return for the internal gun discharge. The gun plasma is a virtual plasma electrode capable of sourcing an electron emission current density of 1 kA/cm 2 . The high emission current, small size (3 - 4 cm diameter), and low impurity generation make this gun attractive for a variety of fusion and plasma technology applications
Energy Technology Data Exchange (ETDEWEB)
McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)
2014-12-15
The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.
A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability
DEFF Research Database (Denmark)
Schrittwieser, R.; Juul Rasmussen, Jens
1985-01-01
Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....
Reduction of Gas Bubbles and Improved Critical Current Density in Bi-2212 Round Wire by Swaging
Jiang, J; Huang, Y; Hong, S; Parrell, J; Scheuerlein, C; Di Michiel, M; Ghosh, A; Trociewitz, U; Hellstrom, E; Larbalestier, D
2013-01-01
Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.
Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications
International Nuclear Information System (INIS)
Chacon-Golcher, E.
2002-01-01
This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10
Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications
Energy Technology Data Exchange (ETDEWEB)
Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)
2002-06-01
This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm^{2}) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield (
Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.
2018-05-01
Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.
Confinement bifurcation by current density profile perturbation in TUMAN-3M tokamak
International Nuclear Information System (INIS)
Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.
2001-01-01
In the recent experiments performed on TUMAN-3M the possibility to switch on/off the H-mode by current density profile perturbations has been shown. The j(r) perturbations were created by fast Current Ramp Up/Down or by Magnetic Compression produced by a fast increase of the toroidal magnetic field. It was found that the Current Ramp Up (CRU) and Magnetic Compression (MC) are useful means for H-mode triggering. The Current Ramp Down (CRD) triggers H-L transition. The difference in the j(r) behavior in these experiments suggests the peripheral current density may not be the critical parameter controlling L-H and H-L transitions. Confinement bifurcation in the above experiments could be explained by the unified mechanism: variation of a turbulent transport resulting from radial electric field emerging near the edge in the conditions of alternating toroidal electric field Ej and different electron and ion collisionalities. According to the suggested model the toroidal field E φ arising in the periphery during the CRU and MC processes amplifies Ware drift, which mainly influences electron component. As a result the favorable for the transition negative (inward directed) E r emerges. In the CRD scenario, when E φ is opposite to the total plasma current direction, the mechanism should generate positive E r , which is thought to be unfavorable for the H-mode. The experimental data on L-H and H-L transitions in various scenarios and the results of the modeling of E r emerging in the CRU experiment are presented in the paper. (author)
International Nuclear Information System (INIS)
Outeda, R.; D'Onofrio, A.; El Hasi, C.; Zalts, A.
2014-01-01
Density driven instabilities produced by CO 2 (gas) dissolution in water containing a color indicator were studied in a Hele Shaw cell. The images were analyzed and instability patterns were characterized by mixing zone temporal evolution, dispersion curves, and the growth rate for different CO 2 pressures and different color indicator concentrations. The results obtained from an exhaustive analysis of experimental data show that this system has a different behaviour in the linear regime of the instabilities (when the growth rate has a linear dependence with time), from the nonlinear regime at longer times. At short times using a color indicator to see the evolution of the pattern, the images show that the effects of both the color indicator and CO 2 pressure are of the same order of magnitude: The growth rates are similar and the wave numbers are in the same range (0–30 cm −1 ) when the system is unstable. Although in the linear regime the dynamics is affected similarly by the presence of the indicator and CO 2 pressure, in the nonlinear regime, the influence of the latter is clearly more pronounced than the effects of the color indicator
Jain, Anubhav
2017-04-01
Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.
Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET
2017-12-01
Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the
The Physicist's Companion to Current Fluctuations: One-Dimensional Bulk-Driven Lattice Gases
Lazarescu, Alexandre
2015-01-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs-Boltzmann distribution for equilibrium systems. In this review, we consider one-dime...
MHD kink-driven instabilities in net-current-free stellarators
International Nuclear Information System (INIS)
Rewoldt, G.; Johnson, J.L.
1984-02-01
The Pfirsch-Schlueter current, which is induced in a toroidal device to keep the plasma current diverence-free, is shown to drive a free-boundary instability in a model of a net-current-free ATF-1 stellarator if = 2.6%
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Perkins, F.W.
1984-04-01
The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches
International Nuclear Information System (INIS)
Lazarides, N
2004-01-01
An analytical expression for the magnetic-field-dependent critical current I c (H) of Josephson junctions with periodically alternating critical current density J c (x) is derived within the uniform field approximation. Comparison with numerically calculated I c (H) patterns for junctions with identical, thick, periodically arranged defects with the corresponding analytical expression reveals fair agreement for a wide range of parameters, due to increased characteristic length. Based on qualitative arguments, we give the dependence of the new characteristic length on the geometrical parameters of the junction, which is in agreement with self-consistent calculations with the static sine-Gordon equation. The analytical expression captures the observed qualitative features of the I c (H) patterns, while it is practically exact for short junctions or high fields. It also produces the shift of the major peak from the zero-field position of the standard Fraunhofer pattern to another position related to the periodicity of the critical current density in φ-junctions
BATTERY RECYCLING: EFFECT OF CURRENT DENSITY ON MANGANESE RECOVERY THROUGH ELECTROLYTIC PROCESS
Directory of Open Access Journals (Sweden)
E. R. R. Roriz
Full Text Available Abstract This work aims to verify the possibility of using depleted batteries as a source of manganese dioxide applying the electrolytic process. An electrolyte solution containing the following metal ions was used: Ca (270 mgL-1, Ni (3.000 mgL-1, Co (630 mgL-1, Mn (115.3 mgL-1, Ti (400 mgL-1 and Pb (20 mgL-1. The production of electrolytic manganese dioxide (EMD was performed through electrolysis at 98 °C (± 2 °C applying different current densities (ranging from 0.61 A.dm-2 to 2.51 A.dm-2. The materials obtained were analyzed through X-ray fluorescence spectrometry, X-ray diffraction, specific surface area (BET and scanning electron microscopy (SEM. The best results regarding the current efficiency, purity grade and specific surface area were obtained with a current density ranging between 1.02 A.dm-2 and 1.39 A.dm-2. The allotropic εMnO2 variety was found in all tests.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
The physicist's companion to current fluctuations: one-dimensional bulk-driven lattice gases
International Nuclear Information System (INIS)
Lazarescu, Alexandre
2015-01-01
One of the main features of statistical systems out of equilibrium is the currents they exhibit in their stationary state: microscopic currents of probability between configurations, which translate into macroscopic currents of mass, charge, etc. Understanding the general behaviour of these currents is an important step towards building a universal framework for non-equilibrium steady states akin to the Gibbs–Boltzmann distribution for equilibrium systems. In this review, we consider one-dimensional bulk-driven particle gases, and in particular the asymmetric simple exclusion process (ASEP) with open boundaries, which is one of the most popular models of one-dimensional transport. We focus, in particular, on the current of particles flowing through the system in its steady state, and on its fluctuations. We show how one can obtain the complete statistics of that current, through its large deviation function, by combining results from various methods: exact calculation of the cumulants of the current, using the integrability of the model; direct diagonalization of a biased process in the limits of very high or low current; hydrodynamic description of the model in the continuous limit using the macroscopic fluctuation theory. We give a pedagogical account of these techniques, starting with a quick introduction to the necessary mathematical tools, as well as a short overview of the existing works relating to the ASEP. We conclude by drawing the complete dynamical phase diagram of the current. We also remark on a few possible generalizations of these results. (topical review)
Development of Bi-based high critical current density superconducting tapes
International Nuclear Information System (INIS)
Swaminathan, G.
1995-01-01
In order to achieve the aim of developing suitable superconducting materials the main emphasis has to be made in the following areas viz., synthesizing powders, detailed study of sintering and phase conversion process in relation to the critical current density (J c ) on pellets and optimising of tape processing parameters. The bismuth system has been found to be more favourable for making wires and tapes because of its high transition temperature, good stability, does not require oxygen on cooling and is non-toxic. These have been the most convenient properties which made the BiSCO material the most popular one
Real-time evaluation of electron and current density profile parameters on TEXTOR
International Nuclear Information System (INIS)
Bruessau, W.D.; Soltwisch, H.
1985-08-01
The shapes of electron and current density profiles are monitored in real-time mode in order to get rapid qualitative information on the development of a TEXTOR tokamak plasma. The profiles are described by form parameters which relate to the signals of a 9-channel FIR-polari/interferometer in simple mathematical formulae. These profile parameters are obtained by real-time conversion of measured quantities for display on a storage oscilloscope or on a chart recorder. The application of the parameters is demonstrated in some examples. (orig.)
International Nuclear Information System (INIS)
Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.
1977-01-01
Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed
Migrational polarization in high-current density molten salt electrochemical devices
Energy Technology Data Exchange (ETDEWEB)
Braunstein, J.; Vallet, C.E.
1977-01-01
Electrochemical flux equations based on the thermodynamics of irreversible processes have been derived in terms of experimental transport coefficients for binary molten salt mixtures analogous to those proposed for high temperature batteries and fuel cells. The equations and some numerical solutions indicate steady state composition gradients of significant magnitude. The effects of migrational separation must be considered along with other melt properties in the characterization of electrode behavior, melt composition, operating temperatures and differences of phase stability, wettability and other physicochemical properties at positive and negative electrodes of high current density devices with mixed electrolytes.
Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit
International Nuclear Information System (INIS)
Duryat, Rahmat Saptono; Kim, Choong-Un
2016-01-01
One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)
Critical current density of BiSrCaCuO superconductors: effect of surface barriers
International Nuclear Information System (INIS)
Konczykowski, M.; Chikumoto, N.
1992-01-01
Effects of surface barriers on vortex motion in BiSrCaCuO-2212 high-temperature superconducting crystals is summarized. Characteristic features of this phenomenon appear in the hysteresis loop (shape of its ascending and descending branches), in the effect of 2.5 MeV electron irradiation, and in flux creep measurements (magnetization dependence to the crystal lateral dimension, size of the flux-creep barrier and the crossover as a function of temperature and time persistent current density). (A.B.). 25 refs., 3 figs
Effect of Current Density on Thermal and Optical Properties of p-Type Porous Silicon
International Nuclear Information System (INIS)
Kasra Behzad; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Azmi Zakaria; Afarin Bahrami
2011-01-01
The different parameters of the porous silicon (PSi) can be tuned by changing some parameters in preparation process. We have chosen the anodization as formation method, so the related parameters should be changed. In this study the porous silicon (PSi) layers were formed on p-type Si wafer. The samples were anodized electrically in a fixed etching time under some different current densities. The structural and optical properties of porous silicon (PSi) on silicon (Si) substrates were investigated using photoluminescence (PL) and Photoacoustic Spectroscopy (PAS). (author)
Emissions from heavy current carrying high density plasma and their diagnostics
International Nuclear Information System (INIS)
Hirano, Katsumi
1987-06-01
Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)
System and method for magnetic current density imaging at ultra low magnetic fields
Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich
2016-02-09
Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.
Observability of the probability current density using spin rotator as a quantum clock
International Nuclear Information System (INIS)
Home, D.; Alok Kumar Pan; Md Manirul Ali
2005-01-01
Full text: An experimentally realizable scheme is formulated which can test any quantum mechanical approach for calculating the arrival time distribution. This is specifically illustrated by using the modulus of the probability current density for calculating the arrival time distribution of spin-1/2 neutral particles at the exit point of a spin rotator (SR) which contains a constant magnetic field. Such a calculated time distribution is then used for evaluating the distribution of spin orientations along different directions for these particles emerging from the SR. Based on this, the result of spin measurement along any arbitrary direction for such an ensemble is predicted. (author)
Turbulent structures in cylindrical density currents in a rotating frame of reference
Salinas, Jorge S.; Cantero, Mariano I.; Dari, Enzo A.; Bonometti, Thomas
2018-06-01
Gravity currents are flows generated by the action of gravity on fluids with different densities. In some geophysical applications, modeling such flows makes it necessary to account for rotating effects, modifying the dynamics of the flow. While previous works on rotating stratified flows focused on currents of large Coriolis number, the present work focuses on flows with small Coriolis numbers (i.e. moderate-to-large Rossby numbers). In this work, cylindrical rotating gravity currents are investigated by means of highly resolved simulations. A brief analysis of the mean flow evolution to the final state is presented to provide a complete picture of the flow dynamics. The numerical results, showing the well-known oscillatory behavior of the flow (inertial waves) and a final state lens shape (geostrophic adjustment), are in good agreement with experimental observations and theoretical models. The turbulent structures in the flow are visualized and described using, among others, a stereoscopic visualization and videos as supplementary material. In particular, the structure of the lobes and clefts at the front of the current is presented in association to local turbulent structures. In rotating gravity currents, the vortices observed at the lobes front are not of hairpin type but are rather of Kelvin-Helmholtz type.
Santos, Joao
2017-10-01
Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.
Prospects for Edge Current Density Determination Using LIBEAM on DIII-D
International Nuclear Information System (INIS)
D.M. Thomas; A.S. Bozek; T.N. Carlstrom; D.K. Finkenthal; R. Jayakumar; M.A. Makowski; D.G. Nilson; T.H. Osborne; B.W. Rice; R.T. Snider
2000-01-01
The specific size and structure of the edge current profile has important effects on the MHD stability and ultimate performance of many advanced tokamak (AT) operating modes. This is true for both bootstrap and externally driven currents that may be used to tailor the edge shear. Absent a direct local measurement of j(r), the best alternative is a determination of the poloidal field. Measurements of the precision (0.1-0.01 o in magnetic pitch angle and 1-10 ms) necessary to address issues of stability and control and provide constraints for EFIT are difficult to do in the region of interest (ρ = 0.9-1.1). Using Zeeman polarization spectroscopy of the 2S-2P lithium resonance line emission from the DIII-D LIBEAM, measurements of the various field components may be made to the necessary precision in exactly the region of interest to these studies. Because of the negligible Stark mixing of the relevant atomic levels, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to Motional Stark Effect (MSE) measurements of B. Key issues for utilizing this technique include good beam quality, an optimum viewing geometry, and a suitable optical pre-filter to isolate the polarized emission line. A prospective diagnostic system for the DIII-D AT program will be described
International Nuclear Information System (INIS)
Higashikawa, K.; Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T.; Iijima, Y.; Kakimoto, K.; Saitoh, T.; Izumi, T.
2011-01-01
Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 μm in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.
Geerts, Hugo; Hofmann-Apitius, Martin; Anastasio, Thomas J
2017-11-01
Neurodegenerative diseases such as Alzheimer's disease (AD) follow a slowly progressing dysfunctional trajectory, with a large presymptomatic component and many comorbidities. Using preclinical models and large-scale omics studies ranging from genetics to imaging, a large number of processes that might be involved in AD pathology at different stages and levels have been identified. The sheer number of putative hypotheses makes it almost impossible to estimate their contribution to the clinical outcome and to develop a comprehensive view on the pathological processes driving the clinical phenotype. Traditionally, bioinformatics approaches have provided correlations and associations between processes and phenotypes. Focusing on causality, a new breed of advanced and more quantitative modeling approaches that use formalized domain expertise offer new opportunities to integrate these different modalities and outline possible paths toward new therapeutic interventions. This article reviews three different computational approaches and their possible complementarities. Process algebras, implemented using declarative programming languages such as Maude, facilitate simulation and analysis of complicated biological processes on a comprehensive but coarse-grained level. A model-driven Integration of Data and Knowledge, based on the OpenBEL platform and using reverse causative reasoning and network jump analysis, can generate mechanistic knowledge and a new, mechanism-based taxonomy of disease. Finally, Quantitative Systems Pharmacology is based on formalized implementation of domain expertise in a more fine-grained, mechanism-driven, quantitative, and predictive humanized computer model. We propose a strategy to combine the strengths of these individual approaches for developing powerful modeling methodologies that can provide actionable knowledge for rational development of preventive and therapeutic interventions. Development of these computational approaches is likely to
Electrical design of a high current density air-core reversed-field pinch ''ZTP''
International Nuclear Information System (INIS)
Reass, W.A.; Cribble, R.F.; Melton, J.G.
1983-01-01
This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented
Critical current density of MgB2 thin films and the effect of interface pinning
International Nuclear Information System (INIS)
Choi, Eun-Mi; Gupta, S K; Sen, Shashwati; Lee, Hyun-Sook; Kim, Hyun-Jung; Lee, Sung-Ik
2004-01-01
Preferentially oriented MgB 2 thin films with c-axis normal to the surface have been prepared and characterized for microstructure and transport properties. The magnetic field dependence of superconducting critical current density J c has been determined from the magnetization hysteresis (M-H) loops at various temperatures using the Bean's critical state model. High J c of these films show their potential for applications. We have also measured the angular dependences of J c . The angular dependence is seen to be in agreement with the anisotropic Ginzburg-Landau model except that at angles close to the ab plane, increased pinning due to film-substrate interaction is observed. The angular range where interface pinning is effective has been determined by measurement of asymmetry in dissipation on reversal of current for fields applied at angles close to the ab plane
Electrical design of a high current density air-core reversed-field pinch ZTP
International Nuclear Information System (INIS)
Reass, W.A.; Melton, J.G.; Gribble, R.F.
1983-01-01
This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented
Electrodynamic wear of rails in high current density rail gun discharges
International Nuclear Information System (INIS)
Edwards, W.T.; Caldwell, S.G.
1984-01-01
Significant advances in high current, high speed power sources, has in recent years allowed rail guns to produce very high velocity (> 10 km/sec) macroscopic particles (> 1/10 grams). A continuing problem is the structural integrity of the components under these loadings and in particular, the rail wear due to the high current density plasma contacts. In this investigation a small bore rail gun (6x5 mm) was used with a 10.6 kjoule capacitor energy source to examine the modes of rail damage. The rails were constructed of 110 copper base material. These rails were used in an uncoated condition and also with plasma sprayed coatings of W and W/WC. The resulting surface wear was characterized by standard metallurgical techniques and analyzed for the various coatings
Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes
Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.
1991-01-01
InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.
Anisotropy of critical current density in the superconducting Nb/sub 3/Sn tape wires
Energy Technology Data Exchange (ETDEWEB)
Glowacki, B A [Technical Univ., Wroclaw (Poland). Inst. of Fundamental Electrotechnics and Electrotechnology
1985-04-01
In this letter the results are presented of an investigation of Isub(c parallel) and Isub(c perpendicular) in Nb/sub 3/Sn layers obtained in the process diffusion of tin atoms from liquid bronze solution Cu-80% Sn to the Nb-1.5% Zr substrate. Measurements of critical current density in Nb/sub 3/Sn layers were carried out in a perpendicular magnetic field of the induction value 4.25 T for different sample surface orientations in relation to the magnetic field strength vector defined by the value of angle. The critical current density was measured at a temperature of 4.2 K. Phase identification and investigation of the microstructure of superconducting Nb-Sn layers were performed on the Moessbauer spectrometer and scanning electron microscope, respectively. Classification measurements of grains in Nb-Sn layers were carried out with TV automatic image analyser. The texture and lattice parameter in Nb/sub 3/Sn layers were investigated by means of an X-ray diffractometer. The surface zone of Nb/sub 3/Sn layer was removed with the use of an argon ion gun. Results are presented and discussed.
Current density distribution mapping in PEM fuel cells as an instrument for operational measurements
Energy Technology Data Exchange (ETDEWEB)
Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)
2010-07-01
A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)
Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements
Directory of Open Access Journals (Sweden)
Martin Geske
2010-04-01
Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.
Electrodeposition Behavior of U into Liquid Cd Cathode at Low Current Density
International Nuclear Information System (INIS)
Kim, Si Hyung; Kim, Gha-Young; Sim, Jun-Bo; Paek, Seungwoo; Ahn, Do-Hee
2015-01-01
According to the U-Cd phase diagram, U and UCd 11 are, respectively, present as a stable phase above and below 473 .deg. C when both U and Cd elements coexist at such temperatures. U metals deposited on the surface of the LCC around 500 .deg. C tends to form a dendrite shape having a large surface area and the U dendrites floating on the surface of the LCC have a role of a solid cathode, and from that time, co-deposition of U and TRU can be hampered. If the UCd 11 phase does not have a dendrite form during electrodeposition, this phase may sink into the liquid Cd. This can be a good method to simplify the equipment configuration through the omission of the stirring tool. In this study, the deposition behavior of U metal was observed when electrodeposition using a LCC was carried out at 450 and 500 .deg. C at low current density. To observe the deposition behavior of U when using a liquid cadmium cathode (LCC), several deposition experiments were conducted in the LiCl- KCl-UCl 3 salt at a current density of 50 mA/cm 2 at 450 and 500 .deg.C. At 500 .deg. C, the U metal deposited on the LCC grew in the form of a dendrite shape having a large surface area, and thus it was not sunk into the liquid Cd even though the density of U was much larger than that of liquid Cd. On the other hand, the UCd 11 phase was stable according to the U-Cd phase diagram at 450 .deg. C
Directory of Open Access Journals (Sweden)
Matt Silver
2013-11-01
Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK
Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni
2013-01-01
Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune
International Nuclear Information System (INIS)
Fertig, Fabian; Greulich, Johannes; Rein, Stefan
2014-01-01
We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.
Balasubramanian, Sridhar; Zhong, Qiang
2018-05-01
Gravity currents modify their flow characteristics by entraining ambient fluid, which depends on a variety of governing parameters such as the initial density, Δρ, the total initial height of the fluid, H, and the slope of the terrain, α, from where it is released. It is imperative to study the entrainment dynamics of a gravity current in order to have a clear understanding of mixing transitions that govern the flow physics, the velocity mixing layer thickness, δu, and the density mixing layer thickness, δρ. Experiments were conducted in a lock-exchange facility in which the dense fluid was separated from the ambient lighter fluid using a gate. As the gate is released instantaneously, an energy conserving gravity current is formed, for which the only governing parameter is the Reynolds number defined as R e =U/h ν , where U is the front velocity of the gravity current and h is the height of the current. In our study, the bulk Richardson number (inverse of Froude number, Fr), Rib = g/'H Ub2 = 1, takes a constant value for all the experiments, with Ub being the bulk velocity of the current defined as Ub = √{g'H }. Simultaneous particle image velocimetry and planar laser induced fluorescence measurement techniques are employed to get the velocity and density statistics. Using the buoyancy conservation equation, a new flux-based method was formulated for calculating the entrainment coefficient, EF, near the front and head of the propagating gravity current for a Reynolds number range of Re ≈ 485-12 270 used in our experiments. At the head of the current, the results show a mixing transition at Re ≈ 2700 that is attributed to the flow transitioning from weak Holmboe waves to Kelvin-Helmholtz instabilities, in the form of Kelvin-Helmholtz vortex rolls. Following this mixing transition, the entrainment coefficient continued to increase with increasing Reynolds number owing to the occurrence of three-dimensional Kelvin-Helmholtz billows that promote further
Mohammed, Hanan
2018-04-18
A next-generation memory device utilizing a three-dimensional nanowire system requires the reliable control of domain wall motion. In this letter, domain walls are studied in cylindrical nanowires consisting of alternating segments of cobalt and nickel. The material interfaces acting as domain wall pinning sites, are utilized in combination with current pulses, to control the position of the domain wall, which is monitored using magnetoresistance measurements. Magnetic force microscopy results further confirm the occurrence of current assisted domain wall depinning. Data bits are therefore shifted along the nanowire by sequentially pinning and depinning a domain wall between successive interfaces, a requirement necessary for race-track type memory devices. We demonstrate that the direction, amplitude and duration of the applied current pulses determine the propagation of the domain wall across pinning sites. These results demonstrate a multi-bit cylindrical nanowire device, utilizing current assisted data manipulation. The prospect of sequential pinning and depinning in these nanowires allows the bit density to increase by several Tbs, depending on the number of segments within these nanowires.
Mohammed, Hanan; Corte-Leó n, Hector; Ivanov, Yurii P.; Lopatin, Sergei; Moreno, Julian A.; Chuvilin, Andrey; Salimath, Akshaykumar; Manchon, Aurelien; Kazakova, Olga; Kosel, Jü rgen
2018-01-01
A next-generation memory device utilizing a three-dimensional nanowire system requires the reliable control of domain wall motion. In this letter, domain walls are studied in cylindrical nanowires consisting of alternating segments of cobalt and nickel. The material interfaces acting as domain wall pinning sites, are utilized in combination with current pulses, to control the position of the domain wall, which is monitored using magnetoresistance measurements. Magnetic force microscopy results further confirm the occurrence of current assisted domain wall depinning. Data bits are therefore shifted along the nanowire by sequentially pinning and depinning a domain wall between successive interfaces, a requirement necessary for race-track type memory devices. We demonstrate that the direction, amplitude and duration of the applied current pulses determine the propagation of the domain wall across pinning sites. These results demonstrate a multi-bit cylindrical nanowire device, utilizing current assisted data manipulation. The prospect of sequential pinning and depinning in these nanowires allows the bit density to increase by several Tbs, depending on the number of segments within these nanowires.
Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo
2016-01-01
We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.
Bang, Do
2016-05-23
We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.
Dacuña, Javier
2011-11-28
We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.
An attempt at MHD mode control by feedback modulation of L.H. driven current
International Nuclear Information System (INIS)
Parlange, F.; Vallet, J.C
1986-01-01
MHD activity in Tokamak discharges with lower hybrid current drive has distinct features which can be used to stabilize tearing modes. A way of reducing the m=2 tearing mode was recently proposed, consisting in driving more current at the 0 point of the islands than at the X point, by means of amplitude modulated lower hybrid waves. The way it was tested in Petula is presented here
Beat-wave excitation and current driven in tokamak plasma. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Mohamed, B F [Plasma physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)
1996-03-01
Wave heating current drive in tokamaks is a growing subject in the plasma physics literature. For current drive in tokamaks by electromagnetic waves, different methods have been proposed recently. One of the promising schemes for current drive remains the beat wave scheme. This technique employs two CO- or counterpropagating monochromatic laser beams (or microwaves) whose frequency difference matches the plasma frequency, while the wave number difference (or sum, in the case of counterpropagating) determine the wave number of the resulting plasma beat wave. In this work, the basic analysis of a beat wave current drive scheme in which collinear waves are used is discussed. by assuming a Gaussian profile for the amplitude of these pump waves, the amplitudes of the longitudinal and radial fields of the beat wave due to the nonlinear wave interactions have been calculated. Besides, the transfer of momentum flux that accompanies the transfer of wave action in beat-wave scattering will be used to drive the toroidal radial currents in tokamaks. self-generated magnetic fields due to those currents were also calculated. 1 fig.
International Nuclear Information System (INIS)
Volkov, N V; Eremin, E V; Tsikalov, V S; Patrin, G S; Kim, P D; Seong-Cho, Yu; Kim, Dong-Hyun; Chau, Nguyen
2009-01-01
The transport and magnetotransport properties of a newly fabricated tunnel structure manganite/depletion layer/manganese silicide have been studied in the current-in-plane (CIP) geometry. A manganite depletion layer in the structure forms a potential barrier sandwiched between two conducting layers, one of manganite and the other of manganese silicide. The voltage-current characteristics of the structure are nonlinear due to switching conducting channels from an upper manganite film to a bottom, more conductive MnSi layer with an increase in the current applied to the structure. Bias current assists tunnelling of a carrier across the depletion layer; thus, a low-resistance contact between the current-carrying electrodes and the bottom layer is established. Below 30 K, both conducting layers are in the ferromagnetic state (magnetic tunnel junction), which allows control of the resistance of the tunnel junction and, consequently, switching of the conducting channels by the magnetic field. This provides a fundamentally new mechanism of magnetoresistance (MR) implementation in the magnetic layered structure with CIP geometry. MR of the structure under study depends on the bias current and can reach values greater than 400% in a magnetic field lower than 1 kOe. A positive MR value is related to peculiarities of the spin-polarized electronic structures of manganites and manganese silicides.
Anomalous plasma heating induced by modulation of the current-density profile
International Nuclear Information System (INIS)
Lopes Cardozo, N.J.
1985-05-01
The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed
High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors
Energy Technology Data Exchange (ETDEWEB)
Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.
2014-04-01
CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.
Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive
International Nuclear Information System (INIS)
Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.
2005-01-01
FRCs have been formed and sustained for up to 50 normal flux decay times by Rotating Magnetic Fields (RMF) in the TCS experiment. For these longer pulse times a new phenomenon has been observed: switching to a higher performance mode delineated by shallower RMF penetration, higher ratios of generated poloidal to RMF drive field, and lower overall plasma resistivity. This global data is not explainable by previous RMF theory based on uniform electron rotational velocities or by numerical calculations based on uniform plasma resistivity, but agrees in many respects with new calculations made using strongly varying resistivity profiles. In order to more realistically model RMF driven FRCs with such non-uniform resistivity profiles, a double rigid rotor model has been developed with separate inner and outer electron rotational velocities and resistivities. The results of this modeling suggest that the RMF drive results in very high resistivity in a narrow edge layer, and that the higher performance mode is characterized by a sharp reduction in resistivity over the bulk of the FRC. (author)
International Nuclear Information System (INIS)
Okano, K.; Ogawa, Y.; Naitou, H.
1988-07-01
A new MHD-equilibrium/current-drive analysis code was developed to analyse the high beta tokamak equilibria consistent with the beam driven current profiles. In this new code, the critical beta equilibrium, which is stable against the ballooning mode, the kink mode and the Mercier mode, is determined first using MHD equilibrium and stability analysis codes (EQLAUS/ERATO). Then, the current drive parameters and the plasma parameters, required to sustain this critical beta equilibrium, are determined by iterative calculations. The beam driven current profiles are evaluated by the Fokker-Planck calculations on individual flux surfaces, where the toroidal effects on the beam ion and plasma electron trajectories are considered. The pressure calculation takes into account the beam ion and fast alpha components. A peculiarity of our new method is that the obtained solution is not only consistent with the MHD equilibrium but also consistent with the critical beta limit conditions, in the current profile and the pressure profile. Using this new method, β ∼ 21 % bean and β ∼ 6 % D-type critical beta equilibria were scanned for various parameters; the major radius, magnetic field, temperature, injection energy, etc. It was found that the achievable Q value for the bean type was always about 30 % larger than for the D-type cases, where Q = fusion power/beam power. With strong beanness, Q ∼ 6 for DEMO type tokamaks (∼500 MWth) and Q ∼ 20 for power reactor size (4.5 GWth) are achievable. On the other hand, the Q value would not exceed sixteen for the D-type machines. (author)
International Nuclear Information System (INIS)
Vasina, P; Hytkova, T; Elias, M
2009-01-01
The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.
Energy Technology Data Exchange (ETDEWEB)
Chung, C.K., E-mail: ckchung@mail.ncku.edu.t [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China); Chang, W.T. [Department of Mechanical Engineering, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, Taiwan 701 (China)
2009-07-01
Effect of pulse frequency and current density on the anomalous cobalt content and nanomechanical property of the electrodeposited nickel-cobalt (Ni-Co) films has been investigated. The composition, morphology, phase and hardness of the Ni-Co alloy films were examined by scanning electron microscope with an attached energy dispersive X-ray spectroscope, X-ray diffraction and nanoindentation techniques, respectively. The different Co composition of the Ni-Co films codeposited from the fixed sulfamate-chloride bath is subject to the pulse frequencies and current densities. The frequencies varied from 0 to 100 Hz and current densities varied from 1 to 20 ASD (ampere per square decimeter). The Co composition has no significant variation in pulse electrodeposition but it is greatly influenced by current densities from 22.53% at 1 ASD decreased to 13.39% at 20 ASD under DC codeposition. The mean hardness of Ni-Co films has no eminent change at a pulse frequency of 10-100 Hz but it decreases with current densities from 8.72 GPa (1 ASD) to 7.13 GPa (20 ASD). The smoother morphology can be obtained at higher pulse frequency or lower current density. Good Ni-Co films with high hardness and smooth morphology can be obtained by reducing current density and increasing pulse frequency.
Directory of Open Access Journals (Sweden)
Nikolić Nebojša D.
2017-01-01
Full Text Available The processes of lead and zinc electrodeposition from the very dilute electrolytes were compared by the analysis of polarization characteristics and by the scanning electron microscopic (SEM analysis of the morphology of the deposits obtained in the galvanostatic regime of electrolysis. The exchange current densities for lead and zinc were estimated by comparison of experimentally obtained polarization curves with the simulated ones obtained for the different the exchange current density to the limiting diffusion current density ratios. Using this way for the estimation of the exchange current density, it is shown that the exchange current density for Pb was more than 1300 times higher than the one for Zn. In this way, it is confirmed that the Pb electrodeposition processes are considerably faster than the Zn electrodeposition processes. The difference in the rate of electrochemical processes was confirmed by a comparison of morphologies of lead and zinc deposits obtained at current densities which corresponded to 0.25 and 0.50 values of the limiting diffusion current densities. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172046
Observation of Self-Generated Flows in Tokamak Plasmas with Lower-Hybrid-Driven Current
International Nuclear Information System (INIS)
Ince-Cushman, A.; Rice, J. E.; Reinke, M.; Greenwald, M.; Wallace, G.; Parker, R.; Fiore, C.; Hughes, J. W.; Bonoli, P.; Shiraiwa, S.; Hubbard, A.; Wolfe, S.; Hutchinson, I. H.; Marmar, E.; Bitter, M.; Wilson, J.; Hill, K.
2009-01-01
In Alcator C-Mod discharges lower hybrid waves have been shown to induce a countercurrent change in toroidal rotation of up to 60 km/s in the central region of the plasma (r/a∼<0.4). This modification of the toroidal rotation profile develops on a time scale comparable to the current redistribution time (∼100 ms) but longer than the energy and momentum confinement times (∼20 ms). A comparison of the co- and countercurrent injected waves indicates that current drive (as opposed to heating) is responsible for the rotation profile modifications. Furthermore, the changes in central rotation velocity induced by lower hybrid current drive (LHCD) are well correlated with changes in normalized internal inductance. The application of LHCD has been shown to generate sheared rotation profiles and a negative increment in the radial electric field profile consistent with a fast electron pinch
International Nuclear Information System (INIS)
Ejima, S.; Petrie, T.W.; Riviere, A.C.
1982-01-01
The dependence of plasma energy confinement on minor radius, density and plasma current is described for Ohmically heated near-circular plasmas in Doublet III. A wide range of parameters is used for the study of scaling laws; the plasma minor radius defined by the flux surface in contact with limiter is varied by a factor of 2 (a = 44, 32, and 23 cm), the line average plasma density, nsub(e)-bar, is varied by a factor of 20 from 0.5 to 10 x 10 13 cm -3 (nsub(e)-bar R 0 /Bsub(T) = 0.3 to 6 x 10 14 cm -2 .kG -1 ) and the plasma current, I, is varied by a factor of 6 from 120 to 718 kA. The range of the limiter safety factor, qsub(L), is from 2 to 12. - For plasmas with a = 23 and 32 cm, the scaling law at low nsub(e)-bar for the gross electron energy confinement time can be written as (s, cm) tausub(Ee)sup(G) approx.= 3.6 x 10 -19 nsub(e)-bar a 2 qsub(c)sup(3/4), where qsub(c) = 2πa 2 Bsub(T)/μ 0 IR 0 . For the 44-cm plasmas, tausub(Ee)sup(G) is about 1.8 times less than predicted by this scaling, possibly owing to the change in limiter configuration and small plasma-wall separation and/or the aspect ratio change. At high nsub(e)-bar, tausub(Ee)sup(G) saturates and in many cases decreases with nsub(e)-bar but increases with I in a classical-like manner. The dependence of tausub(Ee)sup(G) on a is considerably weakened. The confinement behaviour can be explained by taking an ion thermal conductivity 2 to 7 times that given by Hinton-Hazeltine's neoclassical theory with a lumped-Zsub(eff) impurity model. Within this range the enhancement factor increases with a or a/R 0 . The electron thermal conductivity evaluated at half-temperature radius where most of the thermal insulation occurs sharply increases with average current density within that radius, but does not depend on a within the uncertainties of the measurements. (author)
Directory of Open Access Journals (Sweden)
M. Rastello
2002-01-01
Full Text Available Results of laboratory experiments are presented in which a finite suspension of sawdust particles was released instantaneously into a rectangular channel immersed in a water tank. Two kinds of gravity currents were studied: currents with or without entrainment of particles from the bed. Experiments were repeated for two slopes: 30° and 45°. We observed that the velocity of the front was significantly in-creased as particle entrainment occurred. In addition, our experiments showed that the front kept a quasi-constant velocity for both runs. This might suggest that the flow regime corresponded to the "slumping regime" or "adjustment phase" described earlier by Huppert and Simpson (1980.
International Nuclear Information System (INIS)
Wu, Di; Yu, Guoqiang; Shao, Qiming; Li, Xiang; Wong, Kin L.; Wang, Kang L.; Wu, Hao; Han, Xiufeng; Zhang, Zongzhi; Khalili Amiri, Pedram
2016-01-01
We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co_4_0Fe_4_0B_2_0 (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer, i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
Large critical current density improvement in Bi-2212 wires through the groove-rolling process
International Nuclear Information System (INIS)
Malagoli, A; Bernini, C; Braccini, V; Romano, G; Putti, M; Chaud, X; Debray, F
2013-01-01
Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density J C and on the microstructure. In particular, groove-rolled multifilamentary wires show a J C increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper. (paper)
Critical current density and wire fabrication of high-TC superconductors
International Nuclear Information System (INIS)
Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.
1989-01-01
In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes
Spontaneous layering of porous silicon layers formed at high current densities
Energy Technology Data Exchange (ETDEWEB)
Parkhutik, Vitali; Curiel-Esparza, Jorge; Millan, Mari-Carmen [R and D Center MTM, Technical University of Valencia, Valencia (Spain); Albella, Jose [Institute of Materials Science (ICMM CSIC) Madrid (Spain)
2005-06-01
We report here a curious effect of spontaneous fracturing of the silicon layers formed in galvanostatic conditions at medium and high current densities. Instead of formation of homogeneous p-Si layer as at low currents, a stack of thin layers is formed. Each layer is nearly separated from others and possesses rather flat interfaces. The effects is observed using p{sup +}-Si wafers for the p-Si formation and starts being noticeable at above 100 mA/cm{sup 2}. We interpret these results in terms of the porous silicon growth model where generation of dynamic mechanical stress during the p-Si growth causes sharp changes in Si dissolution mechanism from anisotropic etching of individual needle-like pores in silicon to their branching and isotropic etching. At this moment p-Si layer loses its adhesion to the surface of Si wafer and another p-Si layer starts growing. One of the mechanisms triggering on the separation of p-Si layers from one another is a fluctuation of local anodic current in the pore bottoms associated with gas bubble evolution during the p-Si formation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
An exponential scaling law for the strain dependence of the Nb3Sn critical current density
International Nuclear Information System (INIS)
Bordini, B; Alknes, P; Bottura, L; Rossi, L; Valentinis, D
2013-01-01
The critical current density of the Nb 3 Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb 3 Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature. (paper)
Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K
2010-12-01
Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.
Zeitlin, Bruce A.; Pyon, Taeyoung; Gregory, Eric; Scanlan, R. M.
2002-05-01
A number of configurations of a mono element internal tin conductor (MEIT) were fabricated designed to explore the effect of local ratio, niobium content, and tin content on the overall current density. Critical current densities on four configurations were measured, two to 17T. Current density as a function of filament size was also measured with filaments sizes ranging from 1.8 to 7.1 microns. A Nb60wt%Ta barrier was also explored as a means to reduce the high cost of the Tantalum barrier. The effectiveness of radial copper channels in high Nb conductors is also evaluated. Results are used to suggest designs for more optimized conductors.
Polyatomic ions from a high current ion implanter driven by a liquid metal ion source
Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.
2017-12-01
High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.
Flow instability in laminar jet flames driven by alternating current electric fields
Kim, Gyeong Taek; Park, Daegeun; Cha, Min; Park, Jeong; Chung, Suk-Ho
2016-01-01
The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames
Le Page, Y.; van der Werf, G.R.; Morton, D.C.; Pereira, J.M.C.
2010-01-01
Fire is a widely used tool to prepare deforested areas for agricultural use in Amazonia. Deforestation is currently concentrated in seasonal forest types along the arc of deforestation, where dry-season conditions facilitate burning of clear-felled vegetation. Interior Amazon forests, however, are
Current guidelines for high-density lipoprotein cholesterol in therapy and future directions
Directory of Open Access Journals (Sweden)
Subedi BH
2014-04-01
Full Text Available Bishnu H Subedi,1,2 Parag H Joshi,1 Steven R Jones,1 Seth S Martin,1 Michael J Blaha,1 Erin D Michos1 1Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, 2Greater Baltimore Medical Center, Baltimore, MD, USA Abstract: Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD is low high-density lipoprotein cholesterol (HDL-C. Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. Keywords: high-density lipoprotein, lipids, cholesterol, atherosclerosis, cardiovascular disease, therapy
Exploration of one-dimensional plasma current density profile for K-DEMO steady-state operation
Energy Technology Data Exchange (ETDEWEB)
Kang, J.S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Jung, L. [National Fusion Research Institute, Daejeon (Korea, Republic of); Byun, C.-S.; Na, D.H.; Na, Y.-S. [Seoul National University, Seoul 151-742 (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of)
2016-11-01
Highlights: • One-dimensional current density and its optimization for the K-DEMO are explored. • Plasma current density profile is calculated with an integrated simulation code. • The impact of self and external heating profiles is considered self-consistently. • Current density is identified as a reference profile by minimizing heating power. - Abstract: Concept study for Korean demonstration fusion reactor (K-DEMO) is in progress, and basic design parameters are proposed by targeting high magnetic field operation with ITER-sized machine. High magnetic field operation is a favorable approach to enlarge relative plasma performance without increasing normalized beta or plasma current. Exploration of one-dimensional current density profile and its optimization process for the K-DEMO steady-state operation are reported in this paper. Numerical analysis is conducted with an integrated plasma simulation code package incorporating a transport code with equilibrium and current drive modules. Operation regimes are addressed with zero-dimensional system analysis. One-dimensional plasma current density profile is calculated based on equilibrium, bootstrap current analysis, and thermal transport analysis. The impact of self and external heating profiles on those parameters is considered self-consistently, where thermal power balance and 100% non-inductive current drive are the main constraints during the whole exploration procedure. Current and pressure profiles are identified as a reference steady-state profile by minimizing the external heating power with desired fusion power.
Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source
Energy Technology Data Exchange (ETDEWEB)
Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)
2011-11-15
A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.
Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.
Waldmann, Ole; Ludewigt, Bernhard
2011-11-01
A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics
Higher critical current density achieved in Bi-2223 High-Tc superconductors
Directory of Open Access Journals (Sweden)
M.S. Shalaby
2016-07-01
Full Text Available Bi2Sr2Ca2Cu3Ox (Bi-2223 were prepared using a solid state reaction method at different sintering times and temperatures. Structural phase identifications have been done using X-Ray analysis and refinement by Reitveld method which proves the coexistence of Bi-2223 and Bi-2212 phases. The critical transition temperature Tc and critical current density Jc values were measured using superconducting quantum interference device magnetometer (SQUID and by the magneto-optics technique. A remarkable rapid decrease to the diamagnetic signal in the magnetization versus temperature M(T at 110 K and Jc around 1.2 × 107 A/m2 at 5 K are confirmed for the Bi-2223 compound.
Studying VM-1 molybdenum alloy workability at high current density. II
Energy Technology Data Exchange (ETDEWEB)
Tatarinova, O M; Amirkhanova, N A; Zaripov, R A
1976-01-01
Under galvanostatic conditions, voltampere characteristics have been taken off for VM-1 alloy; determined are also the selective effect of electrolytes and the influence of hydrodynamical conditions on the rate of anodic dissolution in the electrolytes containing 15% NaNO/sub 3/; 15% NaNO/sub 3/ + 5% NaOH, and 15 % NaOH. In a composite electrolyte, the quality of the surface is improved, and higher current densities have been attained as compared with those for pure 15% NaNO/sub 3/. The process of dissolution in the above electrolytes is effected with diffuse limitations. For the electrochemical treatment of the VM-1 alloy under production conditions, a composite electrolyte containing 15% NaNO/sub 3/ and 5% NaOH has been suggested and tested.