WorldWideScience

Sample records for current demonstration phase

  1. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  2. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger R.; Flach, Greg [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States); Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Dixon, Paul; Moulton, J. David [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States); Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Marble, Justin [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  3. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    International Nuclear Information System (INIS)

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-01-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  4. Study of lower hybrid current drive for the demonstration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Molavi-Choobini, Ali Asghar [Dept. of Physics, Faculty of Engineering, Islamic Azad University, Shahr-e-kord Branch, Shahr-e-kord (Iran, Islamic Republic of); Naghidokht, Ahmed [Dept. of Physics, Urmia University, Urmia (Iran, Islamic Republic of); Karami, Zahra [Dept. of Engineering, Islamic Azad University, Zanjan Branch, Zanjan (Iran, Islamic Republic of)

    2016-06-15

    Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

  5. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2017-01-01

    A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies...... on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper firstly analyzes the impact...... of unequal loading among the parallel drives, and a scheme to enhance the performance is introduced to improve the quality of the total grid current, where partial loading operation should be enabled. Simulation and experimental case studies on multidrive systems have demonstrated that the enhanced phase...

  6. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  7. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements

    International Nuclear Information System (INIS)

    Higgins, B L; Wiseman, H M; Pryde, G J; Berry, D W; Bartlett, S D; Mitchell, M W

    2009-01-01

    We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique (Higgins et al 2007 Nature 450 393), our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes.

  8. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  9. Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....

  10. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  11. Integrated Monitoring and Surveillance System demonstration project. Phase 2 accomplishments

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Walters, B.G.; Singleterry, R.C.

    1997-01-01

    The paper presents the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase 2 efforts. the rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include further development of the data acquisition system and procurement of necessary hardware/software, options and associated costs for plutonium canning systems and gloveboxes, initiation of facility modifications, determination of possibly affected facility documentation, results from sensor system trade study, and preliminary storage configuration designs. Resources invested during Phase 1 and Phase 2 are summarized and budgetary requirements for completion of Phase 3 presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase 2 deliverables

  12. Scale-up of counter-current chromatography: demonstration of predictable isocratic and quasi-continuous operating modes from the test tube to pilot/process scale.

    Science.gov (United States)

    Sutherland, Ian; Hewitson, Peter; Ignatova, Svetlana

    2009-12-11

    Predictable scale-up from test tube derived distribution ratios and analytical-scale sample loading optimisation is demonstrated using a model sample system of benzyl alcohol and p-cresol in a heptane:ethyl acetate:methanol:water phase system with the new 18 L Maxi counter-current chromatography centrifuge. The versatility of having a liquid stationary phase with its high loading capacity and flexible operating modes is demonstrated at two different scales by separating and concentrating target compounds using a mixture of caffeine, vanillin, naringenin and carvone using a quasi-continuous technique called intermittent counter-current extraction.

  13. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  14. Experimental demonstration of continuous variable cloning with phase-conjugate inputs

    DEFF Research Database (Denmark)

    Sabuncu, Metin; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We report the first experimental demonstration of continuous variable cloning of phase-conjugate coherent states as proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)]. In contrast to this proposal, the cloning transformation is accomplished using only linear optical components......, homodyne detection, and feedforward. As a result of combining phase conjugation with a joint measurement strategy, superior cloning is demonstrated with cloning fidelities reaching 89%....

  15. Integrated monitoring and surveillance system demonstration project: Phase I accomplishments

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Walters, B.G.; Crawford, D.C.

    1997-01-01

    The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables

  16. Current injection phase thermography for low-velocity impact damage identification in composite laminates

    International Nuclear Information System (INIS)

    Grammatikos, S.A.; Kordatos, E.Z.; Matikas, T.E.; David, C.; Paipetis, A.S.

    2014-01-01

    Highlights: • A novel Current injection phase thermography NDE method has been developed. • Blind impact damage has been successfully detected in composite laminates. • Carbon nanotubes enhance detection by improving of through thickness conductivity. • Detection is feasible with considerably less energy than for IR excited thermography. - Abstract: An innovative non-destructive evaluation (NDE) technique is presented based on current stimulated thermography. Modulated electric current is injected to Carbon Fibre Reinforced Plastics (CFRP) laminates as an external source of thermal excitation. Pulsed Phase Thermography (PPT) is concurrently employed to identify low velocity impact induced (LVI) damage. The efficiency of the proposed method is demonstrated for both plain and with Carbon Nanotubes (CNTs) modified laminates, which are subjected to low-velocity impact damaged composite laminates at different energy levels. The presence of the nano reinforcing phase is important in achieving a uniform current flow along the laminate, as it improves the through thickness conductivity. The acquired thermographs are compared with optical PPT, C-scan images and Computer Tomography (CT) representations. The typical energy input for successful damage identification with current injection is three to four orders of magnitude less compared to the energy required for optical PPT

  17. Current Flow in the Bubble and Stripe Phases

    Science.gov (United States)

    Friess, B.; Umansky, V.; von Klitzing, K.; Smet, J. H.

    2018-03-01

    The spontaneous ordering of spins and charges in geometric patterns is currently under scrutiny in a number of different material systems. A topic of particular interest is the interaction of such ordered phases with itinerant electrons driven by an externally imposed current. It not only provides important information on the charge ordering itself but potentially also allows manipulating the shape and symmetry of the underlying pattern if current flow is strong enough. Unfortunately, conventional transport methods probing the macroscopic resistance suffer from the fact that the voltage drop along the sample edges provides only indirect information on the bulk properties because a complex current distribution is elicited by the inhomogeneous ground state. Here, we promote the use of surface acoustic waves to study these broken-symmetry phases and specifically address the bubble and stripe phases emerging in high-quality two-dimensional electron systems in GaAs /AlGaAs heterostructures as prototypical examples. When driving a unidirectional current, we find a surprising discrepancy between the sound propagation probing the bulk of the sample and the voltage drop along the sample edges. Our results prove that the current-induced modifications observed in resistive transport measurements are in fact a local phenomenon only, leaving the majority of the sample unaltered. More generally, our findings shed new light on the extent to which these ordered electron phases are impacted by an external current and underline the intrinsic advantages of acoustic measurements for the study of such inhomogeneous phases.

  18. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  19. CMOS switched current phase-locked loop

    NARCIS (Netherlands)

    Leenaerts, D.M.W.; Persoon, G.G.; Putter, B.M.

    1997-01-01

    The authors present an integrated circuit realisation of a switched current phase-locked loop (PLL) in standard 2.4 µm CMOS technology. The centre frequency is tunable to 1 MHz at a clock frequency of 5.46 MHz. The PLL has a measured maximum phase error of 21 degrees. The chip consumes

  20. Experimental demonstration of conformal phased array antenna via transformation optics.

    Science.gov (United States)

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  1. First demonstration of HF-driven ionospheric currents

    Science.gov (United States)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  2. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2003-01-01

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| ∼ 9 R E ) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J φ ∼ 10 nA/m 2 ) and very high plasma β (β ∼ 40) between 7 and 10 R E . The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J parallel max ∼ 3 (micro)A/m 2 ) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents

  3. Generation of geometrical phases and persistent spin currents in 1-dimensional rings by Lorentz-violating terms

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Ferreira, M.M., E-mail: manojr.ufma@gmail.com; Mouchrek-Santos, V.E.; Silva, Edilberto O.

    2015-06-30

    We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov–Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov–Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.

  4. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    Science.gov (United States)

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents.

  5. Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide

    DEFF Research Database (Denmark)

    Kang, Ning; Fadil, Ahmed; Pu, Minhao

    2013-01-01

    We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption.......We demonstrate experimentally phase-sensitive processes in nano-engineered silicon waveguides for the first time. Furthermore, we highlight paths towards the optimization of the phase-sensitive extinction ratio under the impact of two-photon and free-carrier absorption....

  6. Current phase control test based on real-time measurement of impedance matrix of ICRF antennas

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K., E-mail: saito@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kumazawa, R.; Seki, T.; Kasahara, H.; Yokota, M.; Nomura, G.; Shimpo, F.; Mutoh, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    New ion cyclotron range of frequencies (ICRF) antennas have just been installed in the large helical device (LHD). These side-by-side ICRF antennas are symmetrical and designed to launch fast waves with various wave numbers parallel to the magnetic field line. The wave number can be controlled by changing the current phase on the straps; however, the mutual coupling between antennas changes antenna impedances, even if the plasma parameters are constant, leading to an increase in the reflected power. In addition to the current phase control, impedance matching devices must be tuned for the protection of tetrode tubes and efficient power injection. For this purpose, the impedance matrix of ICRF antennas must be determined, and it can be deduced from the forward and reflected waves at the outlet of the power amplifier by assuming geometric symmetry and reciprocity of the antennas. Using half-scale antennas, we successfully demonstrated simultaneous impedance matching and current phase control.

  7. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    Energy Technology Data Exchange (ETDEWEB)

    Pervikov, A. V. [Laboratory of Physical Chemistry of Ultrafine Materials, Institute of Strength Physics and Materials Science, 2/4, pr. Akademicheskii, 634021 Tomsk, Russia and Department of High Voltage Electrophysics and High Current Electronics, Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2016-06-15

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtained allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.

  8. Eddy current NDE performance demonstrations using simulation tools

    International Nuclear Information System (INIS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code C armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  9. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    Science.gov (United States)

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sumit [GE Global Research Center, Niskayuna, NY (United States); Krok, Michael [GE Global Research Center, Niskayuna, NY (United States)

    2011-02-08

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  11. Current control loop of 3-phase grid-connected inverter

    International Nuclear Information System (INIS)

    Jabbar, A F; Mansor, M

    2013-01-01

    This paper presents a comparative study of current control loop in 3-phase inverter which is used to control the active and reactive output power. Generally, current control loop, power control loop and phase lock-loop are the conventional parameters that can be found in an inverter system controlled by the conventional linear control type, for instance proportional (P), integral (I) and derivative (D). If the grid remains stable throughout the day, PID control can be use. However variation of magnitude, frequency, voltage dips, transient, and other related power quality issues occur in a 3-phase grid often affects the control loop. This paper aims to provide an overall review on the available current control techniques used in grid connected system.

  12. Phase dynamics of a Josephson junction ladder driven by modulated currents

    International Nuclear Information System (INIS)

    Kawaguchi, T.

    2011-01-01

    Phase dynamics of disordered Josephson junction ladders (JJLs) driven by external currents which are spatially and temporally modulated is studied using a numerical simulation based on a random field XY model. This model is considered theoretically as an effective model of JJLs with structural disorder in a magnetic field. The spatiotemporal modulation of external currents causes peculiar dynamical effects of phases in the system under certain conditions, such as the directed motion of phases and the mode-locking in the absence of dc currents. We clarify the details of effects of the spatiotemporal modulation on the phase dynamics.

  13. Origin of the Nonsinusoidal current-phase relation of a superconducting bridge

    International Nuclear Information System (INIS)

    Sugahara, M.

    1977-01-01

    The current-phase relation of a long superconducting bridge is investigated with the use of the Aslamazov-Larkin model and the Ginzburg-Landau equation. The feedback effect of the supercurrent to the phase difference in the weak link is taken into consideration. The derived nonsinusoidal current-phase relation explains the experiments of Jackel et al. very well

  14. ICRF current drive by using antenna phase control

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Itoh, K.

    1987-01-01

    A global analysis of current drive in tokamaks by using waves in the ion cyclotron range of frequencies (ICRF), considering the entire antenna-plasma system, is presented. A phase shifted antenna array is used to inject toroidal momentum into the electrons. Within the context of quasi-linear theory, a Fokker-Planck calculation is combined with an ICRF wave propagation-absorption analysis which includes kinetic effects and realistic boundary conditions. The radial profile of the current induced by the mode converted ion Bernstein wave and by the magnetosonic fast wave is obtained, together with the global current drive efficiency (total induced current/total emitted power from the antennas) in the high density and temperature plasma regime. The phase dependence of the global efficiency is investigated by changing the launching conditions such as the total antenna number and the antenna spacing. In medium size tokamaks, the electron power absorption and the associated driven current are found to be affected considerably by the plasma cavity resonance. It is also found that the global efficiency is sensitive to the antenna spacing. When the antenna spacing is increased, the global efficiency is reduced by counter current generation. (author)

  15. Current generation by phased injection of pellets

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1983-08-01

    By phasing the injection of frozen pellets into a tokamak plasma, it is possible to generate current. The current occurs when the electron flux to individual members of an array of pellets is asymmetric with respect to the magnetic field. The utility of this method for tokamak reactors, however, is unclear; the current, even though free in a pellet-fueled reactor, may not be large enough to be worth the trouble. Uncertainty as to the utility of this method is, in part, due to uncertainty as to proper modeling of the one-pellet problem

  16. Demonstration of Femtosecond-Phase Stabilization in 2 km Optical Fiber

    International Nuclear Information System (INIS)

    Staples, J.W.; Wilcox, R.; Byrd, J.M.

    2007-01-01

    Long-term phase drifts of less than a femtosecond per hour have been demonstrated in a 2 km length of single-mode optical fiber, stabilized interferometrically at 1530 nm. Recent improvements include a wide-band phase detector that reduces the possibility of fringe jumping due to fast external perturbations of the fiber and locking of the master CW laser wavelength to an atomic absorption line. Mode-locked lasers may be synchronized using two wavelengths of the comb, multiplexed over one fiber, each wavelength individually interferometrically stabilized

  17. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  18. Current-induced massless mode of the interband phase difference in two-band superconductors

    International Nuclear Information System (INIS)

    Tanaka, Y.; Hase, I.; Yanagisawa, T.; Kato, G.; Nishio, T.; Arisawa, S.

    2015-01-01

    Highlights: • A current induces an interband phase difference in two-band superconductors. • By controlling the boundary conditions, we can trap this phase difference. • A phase difference soliton is observed after switching off the current. - Abstract: There is a current-induced massless mode of an interband phase difference in two-band superconductors. For a thin wire, the externally applied current always invokes a finite interband phase difference when the end of the wire is terminated by a natural boundary condition, i.e., where the total current is specified but the other parameters are left as free and a finite interband phase difference is allowed. This condition can be realized by the normal state region formed by the shrinking of a cross section of the wire where the critical current density is lower than that of the other region of the wire. The interband interaction in the wire cannot completely prevent the emergence of the interband phase difference, though it reduces it somewhat. Instead, boundary conditions determine the presence of the interband phase difference. By reverting the normal state into the superconducting state at the shrunken region by decreasing the current, we may trap a rotation of integral multiples of 2π radians of the interband phase difference in the wire. After switching off the current, this rotation of integral multiples of 2π radians, which continuously spreads over the whole wire, is separated into several interband phase difference solitons (i-solitons), where one i-soliton locally generates a 2π interband phase difference

  19. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  20. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  1. Preconceptual design of the gas-phase decontamination demonstration cart

    International Nuclear Information System (INIS)

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF 6 , which is generated from the reaction of ClF 3 with the uranium deposits, by use of NaF traps

  2. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-31

    The Liquid Phase Methanol (LPMEOH(TM)) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOIWM Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. During this quarter, the Cooperative Agreement was modified (Mod AO11) on 8 October 1996, authorizing the transition born Budget Period No. 2 (Design and Construction) to the . final Budget Period (Commissioning, Start-up, and Operation), A draft Topical Report on Process Economics Studies concludes that methanol coproduction with integrated gasification combined cycle (IGCC) electric power utilizing the LPMEOW process technology, will be competitive in serving local market needs. Planning for a proof-of- concept test run of the liquid phase dimethyl ether (DME) process at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended; and a deeision to proceed is pending. Construction (Task 2.2) is 97'Mo complete, asof31 December 1996. Completion of pipe pressure testing has taken longer than expected. This will delay completion of construction by about three weeks. Commissioning activities (Task 2.3) commenced in mid-October of 1996, and the demonstration unit is scheduled to be mechanically complete on 24 January 1997.

  3. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per

  4. Current-phase relation of a Bose-Einstein condensate flowing through a weak link

    International Nuclear Information System (INIS)

    Piazza, F.; Smerzi, A.; Collins, L. A.

    2010-01-01

    We study the current-phase relation of a Bose-Einstein condensate flowing through a repulsive square barrier by solving analytically the one-dimensional Gross-Pitaevskii equation. The barrier height and width fix the current-phase relation j(δφ), which tends to j∼cos(δφ/2) for weak barriers and to the Josephson sinusoidal relation j∼sin(δφ) for strong barriers. Between these two limits, the current-phase relation depends on the barrier width. In particular, for wide-enough barriers, we observe two families of multivalued current-phase relations. Diagrams belonging to the first family, already known in the literature, can have two different positive values of the current at the same phase difference. The second family, new to our knowledge, can instead allow for three different positive currents still corresponding to the same phase difference. Finally, we show that the multivalued behavior arises from the competition between hydrodynamic and nonlinear-dispersive components of the flow, the latter due to the presence of a soliton inside the barrier region.

  5. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de, E-mail: drGraf@t-online.de [Section on Experimental Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany); Clasen, Stephan [Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen D-72076 (Germany)

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase

  6. Demonstration of Focusing Wolter Mirrors for Neutron Phase and Magnetic Imaging

    Directory of Open Access Journals (Sweden)

    Daniel S. Hussey

    2018-03-01

    Full Text Available Image-forming focusing mirrors were employed to demonstrate their applicability to two different modalities of neutron imaging, phase imaging with a far-field interferometer, and magnetic-field imaging through the manipulation of the neutron beam polarization. For the magnetic imaging, the rotation of the neutron polarization in the magnetic field was measured by placing a solenoid at the focus of the mirrors. The beam was polarized upstream of the solenoid, while the spin analyzer was situated between the solenoid and the mirrors. Such a polarized neutron microscope provides a path toward considerably improved spatial resolution in neutron imaging of magnetic materials. For the phase imaging, we show that the focusing mirrors preserve the beam coherence and the path-length differences that give rise to the far-field moiré pattern. We demonstrated that the visibility of the moiré pattern is modified by small angle scattering from a highly porous foam. This experiment demonstrates the feasibility of using Wolter optics to significantly improve the spatial resolution of the far-field interferometer.

  7. A mixture theory approach to model co- and counter-current two-phase flow in porous media accounting for viscous coupling

    Science.gov (United States)

    Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.

    2018-02-01

    It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.

  8. Airspace Technology Demonstration 2 (ATD-2) Phase 1 Concept of Use (ConUse)

    Science.gov (United States)

    Jung, Yoon; Engelland, Shawn; Capps, Richard; Coppenbarger, Rich; Hooey, Becky; Sharma, Shivanjli; Stevens, Lindsay; Verma, Savita; Lohr, Gary; Chevalley, Eric; hide

    2018-01-01

    This document presents an operational Concept of Use (ConUse) for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of NASA's Airspace Technology Demonstration 2 (ATD-2) sub-project, which began demonstration in 2017 at Charlotte Douglas International Airport (CLT). NASA is developing the IADS system under the ATD-2 sub-project in coordination with the Federal Aviation Administration (FAA) and aviation industry partners. The primary goal of ATD-2 sub-project is to improve the predictability and the operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 effort is a five-year research activity through 2020. The initial phase of the ATD-2 sub-project, which is the focus of this document, will demonstrate the Phase 1 Baseline IADS capability at CLT in 2017. The Phase 1 Baseline IADS capabilities of the ATD-2 sub-project consists of: (a) Strategic and tactical surface scheduling to improve efficiency and predictability of airport surface operations, (b) Tactical departure scheduling to enhance merging of departures into overhead traffic streams via accurate predictions of takeoff times and automated coordination between the Airport Traffic Control Tower (ATCT, or Tower) and the Air Route Traffic Control Center (ARTCC, or Center), (c) Improvements in departure surface demand predictions in Time Based Flow Management (TBFM), (d) A prototype Electronic Flight Data (EFD) system provided by the FAA via the Terminal Flight Data Manager (TFDM) early implementation effort, and (e) Improved situational awareness and demand predictions through integration with the Traffic Flow Management System (TFMS), TBFM, and TFDM (3Ts) for electronic data integration and exchange, and an on-screen dashboard displaying pertinent analytics in real

  9. Performance demonstration requirements for eddy current steam generator tube inspection

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1992-10-01

    This paper describes the methodology used for developing performance demonstration tests for steam generator tube eddy current (ET) inspection systems. The methodology is based on statistical design principles. Implementation of a performance demonstration test based on these design principles will help to ensure that field inspection systems have a high probability of detecting and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented. Probability of detection and flaw sizing tests are described

  10. Flooding in counter-current two-phase flow

    International Nuclear Information System (INIS)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding

  11. Flooding in counter-current two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  12. Influence of the current-phase relation on the critical-current-applied-magnetic-flux dependence in parallel-connected Josephson junctions

    International Nuclear Information System (INIS)

    Tsang, W.; Van Duzer, T.

    1976-01-01

    The form of the current-phase relations for the Josephson junctions is shown to have a significant influence on the relation I/sub c/(theta/sub a/) between critical current and applied flux for two junctions connected in parallel in a superconducting circuit. The observed one-flux-quantum periodicity and inversion symmetry of the I/sub c/(theta/sub a/) relation are shown to result from the fact that the current-phase, i-phi, relations of the junctions satisfy i (phi+2mπ) =i (phi) and i (-phi) =-i (phi), respectively. It is also shown that if the current-phase relations for the two junctions are different, an asymmetry appears in the I/sub c/(theta/sub a/)

  13. High voltage fault current limiter having immersed phase coils

    Science.gov (United States)

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  14. Draft plan for the Waste Isolation Pilot Plant test phase: Performance assessment and operations demonstration

    International Nuclear Information System (INIS)

    1989-04-01

    The mission of the Waste Isolation Pilot Plant (WIPP) Project is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes resulting from United States defense programs. With the Construction Phase of the WIPP facility nearing completion, WIPP is ready to initiate the next phase in its development, the Test Phase. The purpose of the Test Phase is to collect the necessary scientific and operational data to support a determination whether to proceed to the Disposal Phase and thereby designate WIPP a demonstration facility for the disposal of TRU wastes. This decision to proceed to the Disposal Phase is scheduled for consideration by September 1994. Development of the WIPP facility is the responsibility of the United States Department of Energy (DOE), whose Albuquerque Operations Office has designated the WIPP Project Office as Project Manager. This document describes the two major programs to be conducted during the Test Phase of WIPP: (1) Performance Assessment for determination of compliance with the Environmental Protection Agency Standard and (2) Operations Demonstration for evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP facility. 42 refs., 38 figs., 14 tabs

  15. Direct-current vector control of three-phase grid-connected rectifier-inverter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Hong, Yang-Ki; Xu, Ling [Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35475 (United States)

    2011-02-15

    The three-phase grid-connected converter is widely used in renewable and electric power system applications. Traditionally, control of the three-phase grid-connected converter is based on the standard decoupled d-q vector control mechanism. Nevertheless, the study of this paper shows that there is a limitation in the conventional standard vector control method. Some of the limitations have also been found recently by other researchers. To overcome the shortage of the conventional vector control technique, this paper proposes a new direct-current d-q vector control mechanism in a nested-loop control structure, based on which an optimal control strategy is developed in a nonlinear programming formulation. The behaviors of both the conventional and proposed control methods are compared and evaluated in simulation and laboratory hardware experiment environments, both of which demonstrates that the proposed approach is effective for grid-connected power converter control in a wide system conditions while the conventional standard vector control approach may behave improperly especially when the converter operates beyond its PWM saturation limit. (author)

  16. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 5 - Phase 2 Implementation of the Concept Demonstrator

    Science.gov (United States)

    Batten, Adam; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris; hide

    2009-01-01

    This report describes the second phase of the implementation of the Concept Demonstrator experimental test-bed system containing sensors and processing hardware distributed throughout the structure, which uses multi-agent algorithms to characterize impacts and determine a suitable response to these impacts. This report expands and adds to the report of the first phase implementation. The current status of the system hardware is that all 192 physical cells (32 on each of the 6 hexagonal prism faces) have been constructed, although only four of these presently contain data-acquisition sub-modules to allow them to acquire sensor data. Impact detection.. location and severity have been successfully demonstrated. The software modules for simulating cells and controlling the test-bed are fully operational. although additional functionality will be added over time. The visualization workstation displays additional diagnostic information about the array of cells (both real and simulated) and additional damage information. Local agent algorithms have been developed that demonstrate emergent behavior of the complex multi-agent system, through the formation of impact damage boundaries and impact networks. The system has been shown to operate well for multiple impacts. and to demonstrate robust reconfiguration in the presence of damage to numbers of cells.

  17. The Regularities of the Cyclical Development of the World Economy in the Current Phase

    Directory of Open Access Journals (Sweden)

    Revyakin Georgy V.

    2017-09-01

    Full Text Available The article is aimed at identifying and describing the key tendencies in the cyclical development of the world economy. In order to allocate the cyclical component in the dynamics of the world-wide GDP growth, a time series decomposition was performed using the Hodrick-Prescott filter and the relationship of economic cycles to the dynamics of different indicators of economic conditions was analyzed. The persistent relationship between inflation, unemployment and the current phase of the economic cycle have been identified and described. The truth of the Phillips curve has been empirically demonstrated: existence of an inverse relationship between the rate of inflation and the level of unemployment. A new classification of branches of economy has been provided according to their susceptibility to the current phase of the economic cycle. According to this criterion, all branches of economy have been divided into the cyclical and the non-cyclical sectors. A hypothesis that there is a direct relationship between the average annual growth rate of GDP and the structure of the national economy has been suggested.

  18. Joint optimization of phase diversity and adaptive optics : Demonstration of potential

    NARCIS (Netherlands)

    Korkiakoski, V.; Keller, C.U.; Doelman, N.; Fraanje, P.R.; Verhaegen, M.H.G.

    2011-01-01

    We study different possibilities to use adaptive optics (AO) and phase diversity (PD) together in a jointly optimized system. The potential of the joint system is demonstrated through numerical simulations. We find that the most significant benefits are obtained from the improved deconvolution of

  19. Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....

  20. Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hadley, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kreyling, Sean J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

  1. High performance predictive current control of a three phase VSI: An ...

    Indian Academy of Sciences (India)

    ... current control of a three phase VSI: An experimental assessment ... Voltage source inverter; two level inverter; predictive current control; weighting factor ... Conventionally, for reference current tracking control in a two level VSI, the objective ...

  2. Graphite electrode arc melter demonstration Phase 2 test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O'Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau's Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of open-quotes as-receivedclose quotes heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process

  3. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    Science.gov (United States)

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  4. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2013-01-01

    Full Text Available This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR or a coupled current-doubler rectifier (CCDR is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  5. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    International Nuclear Information System (INIS)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-01-01

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code

  6. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  7. Performance demonstration tests for eddy current inspection of steam generator tubing

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given

  8. Performance demonstration tests for eddy current inspection of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

  9. Energy content of stormtime ring current from phase space mapping simulations

    International Nuclear Information System (INIS)

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-01-01

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm

  10. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  11. Critical current anomaly at the topological quantum phase transition in a Majorana Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-28

    Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.

  12. Impact of sodium on the secondary phases and current pathway in Cu{sub 2}(Zn,Sn)Se{sub 4} thin film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Cheng, E-mail: ielinyc@cc.ncue.edu.tw [Department of Mechatronics Engineering, National Changhua University of Education, Changhua, Taiwan (China); Lai, Chien-Mu [Department of Mechatronics Engineering, National Changhua University of Education, Changhua, Taiwan (China); Hsu, Hung-Ru [Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)

    2017-05-01

    In this study, we investigated the influence of Na content on secondary phases and current pathway in Cu{sub 2}(Zn,Sn)Se{sub 4} (CZTSe) thin film solar cells with the following structure: Ti/Mo:Na/Mo/CZTSe/CdS/i-ZnO/ZnO:Al/Al. The application of Na-doped Mo target as a source of sodium. Experimental results demonstrate that increasing the Na content leads to an increase in the quantity of secondary phase SnSe{sub 2} on the surface of the absorber layer; however, it did not appear to affect the secondary phases of Cu{sub 2}SnSe{sub 3} (CTSe) or ZnSe. Excessive quantities of Na were shown to have an adverse effect on device efficiency. Our results using conductive atomic force microscopy (C-AFM) revealed that an increase in the quantity of secondary phase SnSe{sub 2} can shift the current pathway on the surface of CZTSe from CZTSe grain boundaries (GBs) to the SnSe{sub 2} grains. The role of secondary phase SnSe{sub 2} of the CZTSe acted as a channel for the current flow, which results in high leakage current and low device efficiency. - Highlights: • Increasing the Na content leads to an increase in the quantity of secondary phase SnSe{sub 2}. • An increase of secondary phase SnSe{sub 2} can shift the current pathway from CZTSe grain boundaries to the SnSe{sub 2} grains. • The secondary phase SnSe{sub 2} acted as a channel for the current flow, which results in high leakage current.

  13. Graphite electrode arc melter demonstration Phase 2 test results

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  14. Interleaved Buck Converter with Variable Number of Active Phases and a Predictive Current Sharing Scheme

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Garcia, O.; Oliver, J. A.

    2008-01-01

    The efficiency of an interleaved Buck converter is typically low at light load conditions because of the switching losses in each of the switching stages. Improvements in the converter efficiency can be achieved by dynamically changing the number of active phases depending on the load current....... This paper addresses the issues related to the transient response of the converter when the number of active phases is changed by a digital control scheme. The problem arises because the current in the individual phases of the interleaved Buck converter will not be equal immediately after the controller has...... changed the number of active phases. This paper proposes a current equalisation scheme that adjusts the duty cycle of each phase in a manner that ensures equal average inductor current in all active phases in one or two PWM periods. The current equalisation scheme relies on the measurement of the output...

  15. Electron Energy Confinement for HHFW Heating and Current Drive Phasing on NSTX

    International Nuclear Information System (INIS)

    Hosea, J.C.; Bernabei, S.; Biewer, T.; LeBlanc, B.; Phillips, C.K.; Wilson, J.R.; Stutman, D.; Ryan, P.; Swain, D.W.

    2005-01-01

    Thomson scattering laser pulses are synchronized relative to modulated HHFW power to permit evaluation of the electron energy confinement time during and following HHFW pulses for both heating and current drive antenna phasing. Profile changes resulting from instabilities require that the total electron stored energy, evaluated by integrating the midplane electron pressure P(sub)e(R) over the magnetic surfaces prescribed by EFIT analysis, be used to derive the electron energy confinement time. Core confinement is reduced during a sawtooth instability but, although the electron energy is distributed outward by the sawtooth, the bulk electron energy confinement time is essentially unaffected. The radial deposition of energy into the electrons is noticeably more peaked for current drive phasing (longer wavelength excitation) relative to that for heating phasing (shorter wavelength excitation) as is expected theoretically. However, the power delivered to the core plasma is reduced consider ably for the current drive phasing, indicating that surface/peripheral damping processes play a more important role for this case

  16. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  17. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)

    2013-12-04

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

  18. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCI far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2

  19. Strong enhancement of streaming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system

  20. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  1. A current profile model for magnetic analysis of the start-up phase of toroidal plasmas driven by electron cyclotron heating and current drive

    International Nuclear Information System (INIS)

    Yoshinaga, T.; Uchida, M.; Tanaka, H.; Maekawa, T.

    2007-01-01

    An estimation model of plasma current density distribution for the start-up phase of toroidal plasmas generated by electron cyclotron heating (ECH) in the low aspect ratio torus experiment device is presented. The model assumes a power law parabolic current profile having seven fitting parameters. Its position, extent and broadness (or steepness) are fitted by adjusting these parameters to the observed magnetic flux signals. The adequacy of the model has been examined and confirmed by comparisons of the reconstructed current profiles and the resultant poloidal flux surfaces with the plasma images at visible light range at various stages of start-up discharges, including both the initial open field phase, the subsequent closed field phase, the current decay phase after ECH is turned off and also by a current-profile limiting experiment. This method may be useful for the study of non-inductive start-up experiments by ECH, where there is no appropriate MHD constraint on the current distribution as that in the full tokamak discharge plasmas

  2. Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV Systems

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; He, Ran; Jian, Jiamin

    2016-01-01

    Eliminating the leakage current is one of the most important issues for transformerless three phase photovoltaic (PV) systems. In this paper, the leakage current elimination of a three-phase four-leg PV inverter is investigated. With the common mode loop model established, the generation mechanism...... of the leakage current is clearly identified. Different typical carrier-based modulation methods and their corresponding common mode voltages are discussed. A new modulation strategy with Boolean logic function is proposed to achieve the constant common mode voltage for the leakage current reduction. Finally...

  3. Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Kang; Baek, Hyung Lae; Lee, Sang Il [Chosun University, Kwangju (Korea)

    2001-05-01

    During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch. (author). 10 refs., 13 figs., 2 tabs.

  4. PROTECTION OF HOUSEHOLD APPLIANCES INDUCTION MOTORS AGAINST OVERCURRENT TAKING INTO ACCOUNT NONLINEAR DISTORTION OF PHASE CURRENT

    Directory of Open Access Journals (Sweden)

    A.G. Sereda

    2015-06-01

    Full Text Available Purpose. Theoretical justification and engineering of induction motors heat protection method from overload currents taking into account nonlinear distortion of the phase current and implementation as a microprocessor device functioning algorithm. Methodology. To solve the problem used the theory of the representing complex harmonic oscillations analog signals expansion into the oscillation spectrum forming elementary harmonic components in order to compare their properties by applying the theory of discrete signals and systems, as well as methods of spectral analysis and discrete signals filtering. The harmonic analysis versatility is that any periodic signal may be synthesized from harmonic oscillation of certain amplitude, frequency and initial phase. A mathematical model for determining the phase current harmonic content of power supply networks with isolated neutral and non-linear loads types and, as a consequence, the distortion of sinusoidal phase current change is developed by multiplying the analog current in time dependency on the grate delta-function with different sampling intervals, in which the use of simple and widely used in relay protection units, in particular electronic overcurrent relays, mathematical operations of integration squares instantaneous current allows the most in harmony with the mathematical tools to build other network protection types. Findings. The necessity to increase the sensitivity of the induction motors heat protection from overload currents taking into account nonlinear distortion of the phase currents is proved. By nonlinear distortion harmonic analysis of the phase currents the motor protection reliability increasing provided by taking into account the higher harmonic components of the phase currents, which causes to additional losses and heating of the stator winding. It uses the simplest and widely used in protective relaying mathematical apparatus determining of most significant higher harmonics

  5. A low-cost non-intercepting beam current and phase monitor for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.

    1995-01-01

    A low cost ion beam measurement system has been developed for use at ATLAS. The system provides nondestructive phase and intensity measurement of passing ion beam bunches by sensing their electric fields. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum jacket where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam induced radiofrequency signals are summed against an offset frequency generated by the master oscillator. The resulting difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop to stabilize phase readings during microsecond beam drop outs. The other channel uses a linear full-wave active rectifier circuit which converts sine wave signal amplitude to a DC voltage representing beam current. Plans are in progress to install this new diagnostic at several locations in ATLAS which should help shorten the tuning cycle of new ion species

  6. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Arrowood, Lloyd F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2018-03-15

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusion strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.

  7. The Majorana Demonstrator for 0νββ: Current Status and Future Plans

    Energy Technology Data Exchange (ETDEWEB)

    Green, Matthew P. [ORNL; Avignone, F. T. [University of South Carolina/Oak Ridge National Laboratory (ORNL); Bertrand, Jr, Fred E [ORNL; Galindo-Uribarri, Alfredo [ORNL; Radford, David C [ORNL; Romero-Romero, Elisa [ORNL; Varner, Jr, Robert L [ORNL; White, Brandon R [ORNL; Wilkerson, J. F. [UNC/Triangle Univ. Nucl. Lab, Durham, NC/ORNL; Yu, Chang-Hong [ORNL

    2015-01-01

    The Majorana Demonstrator will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3cnts/(ROI-t-y). The current status of the Demonstrator is discussed, as are plans for its completion.

  8. Nonlinear Deadbeat Current Control of a Switched Reluctance Motor

    OpenAIRE

    Rudolph, Benjamin

    2009-01-01

    High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...

  9. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.

    2014-01-01

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  10. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    Science.gov (United States)

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  11. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang

    2014-09-14

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  12. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-06-30

    The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons

  13. Control phase shift of spin-wave by spin-polarized current and its application in logic gates

    International Nuclear Information System (INIS)

    Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2015-01-01

    We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates

  14. Optimizing the current ramp-up phase for the hybrid ITER scenario

    NARCIS (Netherlands)

    Hogeweij, G.M.D.; Artaud, J.F.; Casper, T.A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current

  15. Dead Zone Oscillator Control for Communication-Free Synchronization of Paralleled, Three-Phase, Current-Controlled Inverters

    Science.gov (United States)

    2016-05-11

    Current-Controlled Inverters by Midshipman 1/C Spencer C. Shabshab, USN UNITED STATES NAVAL ACADEMY...Three-Phase, Current-Controlled Inverters by Midshipman 1/C Spencer C. Shabshab United States Naval Academy Annapolis, Maryland...for Communication-Free Synchronization of Paralleled, 5a. CONTRACT NUMBER Three-Phase, Current-Controlled Inverters 5b. GRANT NUMBER 5c

  16. The MAJORANA DEMONSTRATOR for 0νββ: Current Status and Future Plans

    Science.gov (United States)

    Green, M. P.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    The MAJORANA DEMONSTRATOR will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3 counts in the 0νββ-decay ROI per tonne of target isotope per year (cnts/(ROI-t-y)). The current status of the Demonstrator is discussed, as are plans for its completion.

  17. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOW Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, initial planning and procurement work began on the seven project sites which have been accepted for participation in the off-site, methanol product-use test plan. Two of the projects have begun pre-testing of equipment and three other projects have commenced with equipment procurement, Methanol produced from carbon monoxide (CO)- rich syngas at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX has been shipped to four of the project sites in anticipation of the start of testing during the first quarter of calendar year 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for a freshly reduced catalyst (as determined in the laboratory autoclave), continued to decline more rapidly than expected. In response to concentrations of arsenic and sulfbr detected on catalyst samples from the LPMEOW Reactor, Eastman replaced both the arsine- and sulfiwremoval material in the Eastman guard bed which treats the primary syngas feed stream (&danced Gas) prior to its introduction into both the Eastman fixed-bed methanol plant and the LPMEOWM Demonstration Unit. After restarting the demonstration unit, the catalyst deactivation rate remained essentially unchanged. Parallel testing in the laboratory using arsine-doped, and subsequently arsine- and SuIfi-doped syngas, ako ftiIed to prove that arsine was responsible for the higher-than-expected rate of

  18. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    OpenAIRE

    Carrio Argos, Fernando; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configur...

  19. Prevention of the current-quench phase of a major disruption in a tokamak reactor

    International Nuclear Information System (INIS)

    Miller, J.B.

    1987-01-01

    The 2-D Tokamak Simulation Code written by the Princeton Plasma Physics Laboratory was joined to a 3-D eddy-current code, which models periodic torus sectors. The combined system was found to be an efficient and accurate method for modeling the plasma/eddy current interaction during a major disruption. For modeling large highly compartmentalized structures, artificially increasing the self-inductance and limiting the mutual inductance of current elements were necessary to enhance numerical stability. Even with these modifications, a slowly growing instability made the results unreliable after 58 ms. This model was used to demonstrate prevention of the current quench phase of a major disruption in INTOR. The average plasma temperature was reduced to 150 eV over 3 ms. The (outboard) breeding blanket structure was constructed of CuBeNi and was electrically connected between torus sectors. Disruption recovery coils were provided inboard of the inboard shield (linking the toroidal field coils). It was necessary to supply to these coils a total of 500 MW for 0.6 s and to reheat the plasma to full beta in 6 s. The calculation shows a method of recovery from the most severe disruption probable. Determining the severity of the disruption from which recovery would be cost effective is beyond the scope of this study

  20. Current Status of HCCR TBM Design for the Preliminary Design Phase Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Ahn, Mu Young [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    Helium cooled ceramic reflector (HCCR) TBM-set will be installed in the equatorial port no.18 of ITER inside the vacuum vessel directly facing the plasma. TBM-set refers the TBM and associated shield and connecting support. After the Conceptual Design Review (CDR), Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design is being updated for the preparation of the preliminary design phase. The manufacturability is considered based on the TBM-set model of the conceptual design phase. In this work, the design changes for each component of the TBM-set is described in comparison with the CD phase. The current design direction and details is presented. The first wall (FW) is component facing the plasma directly. This component should have a superior cooling performance. Present Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) design was described in comparison with the CD model. The manufacturability was considered in current PD phase. The detained design of the connecting support will be determined reflecting the load assessment. The structural integrity will be confirmed with a various load condition.

  1. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H4...... inverter fails to reduce the leakage current is clarified. In order to solve the problem, a new cascaded H5 inverter is proposed to solve the leakage current issue. Finally, the experimental results are presented to verify the effectiveness of the proposed topology with the leakage current reduction...... for the single-phase transformerless PV systems....

  2. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    he Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOEP Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. The LPMEOHW Demonstration Facility completed its first year of operation on 02 April 1998. The LPMEOW Demonstration Facility also completed the longest continuous operating run (65 days) on 21 April 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laboratory autoclave), was monitored throughout the reporting period. During a six-week test at a reactor temperature of 225oC and Balanced Gas flowrate of 700 KSCFH, the rate of decline in catalyst activity was steady at 0.29-0.36% per day. During a second one-month test at a reactor temperature of 220oC and a Balanced Gas flowrate of 550-600 KSCFH, the rate of decline in catalyst activity was 0.4% per day, which matched the pefiorrnance at 225"C, as well as the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Beginning on 08 May 1998, the LPMEOW Reactor temperature was increased to 235oC, which was the operating temperature tier the December 1997 restart with the fresh charge of catalyst (50'Yo of design loading). The flowrate of the primary syngas feed stream (Balanced Gas) was also increased to 700-750 KSCFH. During two stable operating periods between 08 May and 09 June 1998, the average catalyst deactivation rate was 0.8% per day. Due to the scatter of the statistical analysis of the results, this test was extended to better

  3. Study of plasma equilibrium during the AC current reversal phase in STOR-M

    International Nuclear Information System (INIS)

    Xiao, C.

    2002-01-01

    Alternating current (AC) tokamak operation and equilibrium studies have been performed on the STOR-M tokamak. The recent experiments have achieved consistent smooth current reversal through the implementation of a hybrid digital-analog position controller and by careful density control. In order to study the plasma equilibrium during the current reversal phase with negligible rotational transform, a segmented limiter with four isolated conducting plates has been installed. The plates can be connected outside the vacuum vessel, which allows measurements of currents flowing between limiter plates. When the current reversal is smooth with zero dwell time, the hydrogen line emission level and electron density remain finite, indicating a finite particle confinement. The current from the top to the bottom limiter plate is also finite and its direction is consistent with that of the grad-B drift. The observation suggests that the limiter and other conducting structures surrounding the plasmas plays the role, during the current reversal phase of AC tokamak operation, to short out the charge separation arising from the grad-B drift and to maintain a finite particle confinement. (author)

  4. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    Science.gov (United States)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  5. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  6. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  7. Experimental demonstration of synergy between electron cyclotron and lower hybrid current drive on Tore Supra

    International Nuclear Information System (INIS)

    Artaud, J.F.; Giruzzi, G.; Dumont, R.J.; Imbeaux, F.; Bibet, P.; Bouquey, F.; Clary, J.; Ekedahl, A.; Hoang, G.T.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Non-inductive current drive (CD) has two main applications in tokamaks: sustainment of a substantial fraction of the toroidal plasma current necessary for the plasma confinement and control of the plasma stability and transport properties by appropriate shaping of the current density profile. For the first kind of applications, lower hybrid (LH) waves are known to provide the highest efficiency (defined as the ratio of the driven current to the injected wave power), although with limited control capability. Conversely, electron cyclotron (EC) waves drive highly localized currents, and are therefore particularly suited for control purposes, but their CD efficiency is much lower than that of LH waves (typically, an order of magnitude in present day experiments). Various calculations have demonstrated an interesting property: the current driven by the simultaneous use of the two waves, I(LH+EC), can be significantly larger than the sum I(LH)+I(EC) of the currents separately driven by the two waves in the same plasma conditions. This property, called synergy effect. The peculiar experimental conditions attainable on the Tore Supra tokamak have allowed the first experimental demonstration of the synergy between EC and LH current drive. The significant improvement of the electron cyclotron current drive (ECCD) efficiency in the presence of low hybrid current drive (LHCD), predicted by kinetic theory and confirmed by stationary experiments on Tore Supra, opens up the possibility of using ECCD as an efficient current profile control tool in LHCD plasmas

  8. Demonstration of an optical phased array using electro-optic polymer phase shifters

    Science.gov (United States)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  9. Infiltration barrier demonstration at Maxey Flats, Kentucky

    International Nuclear Information System (INIS)

    Mills, D.; Razor, J.

    1983-01-01

    At the 1982 DOE LLWMP meeting, the Kentucky Natural Resources and Environmental Protection Cabinet presented a history of the Maxey Flats Waste Disposal Facility, its status, and current Commonwealth activities leading toward stabilization and decommissioning. Information was presented at that time on the purpose of the DOE Trench Moisture Barrier Demonstration Grant and the early phases of construction and implementation. In this paper, final construction and implementation of the trench moisture barrier demonstration are discussed. Data including trench water level measurements, lateral liquid flow in experimental sections, and soil moisture measurements are presented and discussed. The Paper is completed with a brief discussion of remediation activities currently being implemented at Maxey Flats. 9 references, 7 figures, 1 table

  10. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  11. Demonstration of the Kibble-Zurek mechanism in a non-equilibrium phase transition

    Science.gov (United States)

    Patil, Yogesh S.; Cheung, Hil F. H.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We describe the experimental realization of a driven-dissipative phase transition (DPT) in a mechanical parametric amplifier and demonstrate key signatures of a critical point in the system, where the susceptibilities and relaxation time scales diverge and coincide with the spontaneous breaking of symmetry and the emergence of macroscopic order. While these observations are reminiscent of equilibrium phase transitions, it is presently an open question whether such DPTs are amenable to the conventional Landau-Ginsburg-Wilson paradigm that relies on concepts of scale invariance and universality - Indeed, recent theoretical work has predicted that DPTs can exhibit phenomenology that departs from these conventional paradigms. By quenching the system past the critical point, we measure the dynamics of the emergent ordered phase and its departure from adiabaticity, and find that our measurements are in excellent agreement with the Kibble-Zurek hypothesis. In addition to validating the KZ mechanism in a DPT for the first time, we also uniquely show that the measured critical exponents accurately reflect the interplay between the intrinsic coherent dynamics and the environmental correlations, with a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We also discuss how the techniques of reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and exotic non-equilibrium states of matter.

  12. Safety and tolerability of transcranial direct current stimulation to stroke patients - A phase I current escalation study.

    Science.gov (United States)

    Chhatbar, Pratik Y; Chen, Rong; Deardorff, Rachael; Dellenbach, Blair; Kautz, Steven A; George, Mark S; Feng, Wuwei

    A prior meta-analysis revealed that higher doses of transcranial direct current stimulation (tDCS) have a better post-stroke upper-extremity motor recovery. While this finding suggests that currents greater than the typically used 2 mA may be more efficacious, the safety and tolerability of higher currents have not been assessed in stroke patients. We aim to assess the safety and tolerability of single session of up to 4 mA in stroke patients. We adapted a traditional 3 + 3 study design with a current escalation schedule of 1»2»2.5»3»3.5»4 mA for this tDCS safety study. We administered one 30-min session of bihemispheric montage tDCS and simultaneous customary occupational therapy to patients with first-ever ischemic stroke. We assessed safety with pre-defined stopping rules and investigated tolerability through a questionnaire. Additionally, we monitored body resistance and skin temperature in real-time at the electrode contact site. Eighteen patients completed the study. The current was escalated to 4 mA without meeting the pre-defined stopping rules or causing any major safety concern. 50% of patients experienced transient skin redness without injury. No rise in temperature (range 26°C-35 °C) was noted and skin barrier function remained intact (i.e. body resistance >1 kΩ). Our phase I safety study supports that single session of bihemispheric tDCS with current up to 4 mA is safe and tolerable in stroke patients. A phase II study to further test the safety and preliminary efficacy with multi-session tDCS at 4 mA (as compared with lower current and sham stimulation) is a logical next step. ClinicalTrials.gov Identifier: NCT02763826. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  14. Current capabilities of transient two-phase flow instruments

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Kondic, N.N.

    1979-01-01

    The measurement of two phase flow phenomena in transient conditions representative of a Loss-of-Coolant Accident requires the use of sophisticated instruments and the further development of other instruments. Measurements made in large size pipes are often flow regime dependent. The flow regimes encountered depend upon the system geometry, transient effects, heat transfer, etc. The geometries in which these measurements must be made, the instruments which are currently used, new instruments being developed, the facilities used to calibrate these instruments, and the improvements which must be made to measurement capabilities are described

  15. SITE PROGRAM DEMONSTRATION ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS, BAY CITY, MICHIGAN TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...

  16. Third harmonic current injection into highly saturated multi-phase machines

    Directory of Open Access Journals (Sweden)

    Klute Felix

    2017-03-01

    Full Text Available One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.

  17. Notional Airspace Operations Demonstration Plan

    Science.gov (United States)

    Trongale, Nicholas A.

    2006-01-01

    The airspace operations demonstration (AOD) is intended to show that the Access 5 Step 1 functional requirements can be met. The demonstration will occur in two phases. The initial on-range phase will be carried out in restricted airspace to demonstrate the cooperative collision avoidance (CCA) functional requirements and to provide risk-reduction for the AOD by allowing the test team to rehearse some elements of the demonstration mission. The CCA system to be used in these flights is based on Automatic Dependent Surveillance-Broadcast (ADS-B) which is a commercially-available system by which airplanes constantly broadcast their current position and altitude to other aircraft and ground resources over a dedicated radio datalink. The final phase will occur in the national airspace (NAS) and will be the formal demonstration of the remainder of the proposed functional requirements. The general objectives of the AOD are as follows: (1) Demonstrate that the UAS can aviate in the NAS (2) Demonstrate that the UAS can navigate in the NAS (3) Demonstrate that the UAS can communicate with the NAS (4) Demonstrate that the UAS can perform selected collision avoidance functions in the NAS (5) Demonstrate that the UAS can evaluate and avoid weather conflicts in the NAS (6) Demonstrate that the UAS can provide adequate command and control in the NAS In addition to the stated objectives, there are a number of goals for the flight demonstration. The demo can be accomplished successfully without achieving these goals, but these goals are to be used as a guideline for preparing for the mission. The goals are: (1) Mission duration of at least 24 hours (2) Loiter over heavy traffic to evaluate the data block issue identified during the Access 5 Airspace Operations Simulations (3) Document the contingency management process and lessons learned (4) Document the coordination process for Ground Control Stations (GCS) handoff (5) Document lessons learned regarding the process of flying in

  18. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, John R. [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory; Wigmosta, Mark S. [PNNL; Voisin, Nathalie [PNNL; Rakowski, Cynthia [PNNL; Coleman, Andre [PNNL; Lowry, Thomas S. [SNL

    2014-05-19

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

  19. Optimizing the current ramp-up phase for the hybrid ITER scenario

    International Nuclear Information System (INIS)

    Hogeweij, G.M.D.; Citrin, J.; Artaud, J.-F.; Imbeaux, F.; Litaudon, X.; Casper, T.A.; Köchl, F.; Voitsekhovitch, I.

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like n e peaking, edge T e,i and Z eff . The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme. (paper)

  20. On the Variability of Wilson Currents by Storm Type and Phase

    Science.gov (United States)

    Deierling, Wiebke; Kalb, Christina; Mach, Douglas; Liu, Chuntao; Peterson, Michael; Blakeslee, Richard

    2014-01-01

    Storm total conduction currents from electrified clouds are thought to play a major role in maintaining the potential difference between the earth's surface and the upper atmosphere within the Global Electric Circuit (GEC). However, it is not entirely known how the contributions of these currents vary by cloud type and phase of the clouds life cycle. Estimates of storm total conduction currents were obtained from data collected over two decades during multiple field campaigns involving the NASA ER-2 aircraft. In this study the variability of these currents by cloud type and lifecycle is investigated. We also compared radar derived microphysical storm properties with total storm currents to investigate whether these storm properties can be used to describe the current variability of different electrified clouds. The ultimate goal is to help improve modeling of the GEC via quantification and improved parameterization of the conduction current contribution of different cloud types.

  1. Turbidity current flow over an erodible obstacle and phases of sediment wave generation

    Science.gov (United States)

    Strauss, Moshe; Glinsky, Michael E.

    2012-06-01

    We study the flow of particle-laden turbidity currents down a slope and over an obstacle. A high-resolution 2-D computer simulation model is used, based on the Navier-Stokes equations. It includes poly-disperse particle grain sizes in the current and substrate. Particular attention is paid to the erosion and deposition of the substrate particles, including application of an active layer model. Multiple flows are modeled from a lock release that can show the development of sediment waves (SW). These are stream-wise waves that are triggered by the increasing slope on the downstream side of the obstacle. The initial obstacle is completely erased by the resuspension after a few flows leading to self consistent and self generated SW that are weakly dependant on the initial obstacle. The growth of these waves is directly related to the turbidity current being self sustaining, that is, the net erosion is more than the net deposition. Four system parameters are found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock concentration, and (4) particle diameters. Three phases are discovered for the system: (1) "no SW," (2) "SW buildup," and (3) "SW growth". The second phase consists of a soliton-like SW structure with a preserved shape. The phase diagram of the system is defined by isolating regions divided by critical slope angles as functions of current lock height, grain lock concentration, and particle diameters.

  2. High-efficiency toroidal current drive using low-phase-velocity kinetic Alfven waves

    International Nuclear Information System (INIS)

    Puri, S.

    1991-09-01

    A method for obtaining efficient current drive in Tokamaks using low-phase-velocity (v ρ = ω/K parallel ∝ 0.1v te ) kinetic Alfen wave is proposed. The wave momentum, imparted primarily to the trapped electrons by Landau damping, is stored as the canonical angular momentum via the Ware pinch. In steady state, collisions restore the pinched electrons to their original phase-space configuration, in the process releasing the stored canonical angular momentum to the background ions and electrons in proportion to the respective collision frequencies. Despite the loss of a part of the original impulse to the plasma ions, well over half the wave momentum is ultimately delivered to the bulk-plasma electrons, resulting in an efficient current drive. A normalized current-drive efficiency γ = R 0 20 > I/P ∝ 2 would be feasible using the subthermal kinetic-Alfen-wave current drive in a Tokamak of reactor parameters. Optimum antenna loading conditions are described. The problem of accessibility is discussed. In an elongated, high-β plasma with a density dependence n e ∝ (1-ρ 2 ) Χn , accessibility is restricted to ρ > or approx. 3/(4A Χn ), where A is the aspect ratio. For current drive at still lower values of ρ, operation in conjunction with fast-wave current drive is suggested. (orig.)

  3. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter

    International Nuclear Information System (INIS)

    Hamid, Muhammad Imran; Jusoh, Awang

    2014-01-01

    Highlights: • A reduction scheme for harmonics from utility interactive PV-inverter is proposed. • Single-phase conditioner with 3-phase expandability structure is used. • The single-phase conditioner in 3-phase structure work independently. • The scheme works effectively within overall operation range of the PV-inverter. • Conditioner in the scheme also improves the PV-inverter and plant’s utility factor. - Abstract: As the natural behavior of energy source and design characteristic, the current generated by a grid-interactive PV-inverter may contain harmonics. This distortion component will be carried on from the PV-inverter during injection power into the grid. Excessive harmonics in a grid will lead to a variety of power quality problems. This paper presents a distortion reduction scheme, utilizing a fed forward single-phase, generation-side power conditioner with a structure that can be expanded for use in a three-phase system and can work independently under imbalanced condition. Conditioner is placed in parallel with the photovoltaic plant and it functions to compensate the plant’s output current distortion, so that the total current flow to the grid is sinusoidal. This method also includes the implementation of a simpler control system for the conditioner, which consists of a combination of distortion current extraction, synchronization and a current control system, and realized through a TMS320F28335: a 150 MHz floating point DSP controller. Testing of the conditioner prototype, which was conducted on a real operation of a PV plant, showed that the scheme worked effectively within the overall operation range of the PV plant. This paper also discusses the potential of utility factor improvement of the PV-inverter and plant due to implementation of conditioner in the scheme

  4. Steady and transient states of a two-phase counter current flow

    International Nuclear Information System (INIS)

    Siebert, S.

    1984-06-01

    The aim of this work is to estimate the efficiency of the counter current exchange between a heavy dispersed phase and a continous light phase in a pulse perforated plate column. From an experimental point, hydraulic measurements (retention ratio, droplet size) and residence time measurements (radioactive tracers). The model will be so applied to the calculation of retention ratios in steady conditions then of tracer concentrations in transient conditions. From a numerical point of view a fixed point type iteration then a method Runge Kutta are then adapted [fr

  5. Pulse Pattern-Modulated Strategy for Harmonic Current Components Reduction in Three-Phase AC–DC Converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2016-01-01

    , which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...

  6. Pulse pattern modulated strategy for harmonic current components reduction in three-phase AC-DC converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    , which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...

  7. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  8. YBCO SQUIDs with unconventional current phase relation

    International Nuclear Information System (INIS)

    Bauch, T.; Johansson, J.; Cedergren, K.; Lindstroem, T.; Lombardi, F.

    2007-01-01

    We have studied the dynamics of YBa 2 Cu 3 O 7-δ (YBCO) dc sperconducting quantum interference devices (SQUIDs) characterized by an unconventional Josephson current phase relation (CPR). We have focused on SQUID configurations with Josephson junctions where the lobe of the order parameter in one electrode is facing a node in the other electrode. This order parameter arrangement should enhance the appearance of a sin(2φ) term in the CPR. The response of the critical current of the dc SQUID, under the effect of an external magnetic field, has been measured in temperature, down to 20 mK. Our experimental data have been compared with numerical simulations of the SQUIDs dynamics by considering a CPR of a single junction of the form I(φ) = I I sin(φ) - I II sin(2φ) where I I and I II are, respectively, the first and second harmonic component. In our devices the values of the sin(2φ) term are such that the fundamental state of the SQUID is naturally double degenerate. This is of great relevance for applications of d-wave SQUIDs in quantum information processing

  9. Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Grzegorz Psuj

    2012-01-01

    Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.

  10. Design confirmation and demonstration for EBS: current developments in several european national programmes as part of the EP6 EURATOM Esdred project

    International Nuclear Information System (INIS)

    Bock, Ch. de; Londe, L.; Weber, H.

    2007-01-01

    In the context of the technological project ESDRED: 'Engineering Studies and Demonstration of Repository Designs', the national waste management agencies ANDRA, ONDRAF/NINAS and NAGRA are currently in the process of demonstration testing the construction of the buffer/backfill component inside the disposal drifts for high level waste (HLW). ESDRED is co-funded by the European Commission (EC) as part of the sixth Euratom research and training Framework Programme (FP6) on nuclear energy (2002-2006). The work aims to demonstrate the technical feasibility at an industrial scale of the construction of the buffer around the disposal package and/or the associated activity of backfilling the remaining voids within the disposal drift. The tests described in this paper are performed in a workshop on the surface, which will enable a better control over the test conditions and facilitate the evaluation of the test results. The following configurations are being tested: - a prefabricated buffer in a horizontal disposal cell (representative of the ANDRA design); - granular and grout backfills in a horizontal disposal drift (representative of the ONDRAF/NIRAS design); - a combination of a prefabricated and a granular buffer in a horizontal disposal drift (representative of the NAGRA design). After the preceding stages of defining the functional requirements of the buffer/backfill component, computer simulation, laboratory testing and designing the buffer prototypes or disposal drift mockups, the work is currently focused on the execution phase of the demonstration testing. The work, although conducted by the agencies in parallel, is characterised by frequent mutual status reporting and exchange of 'lessons-learned' within the context of ESDRED. The work on the in-workshop demonstrators is scheduled to be finalized by the end of 2006. (authors)

  11. Phase dynamics of low critical current density YBCO Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); Carillo, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Galletti, L. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2014-08-15

    Highlights: • We study the phase dynamics of YBaCuO Josephson junctions using various tools. • We derive information on the dissipation in a wide range of transport parameters. • Dissipation in such devices can be described by a frequency dependent damping model. • The use of different substrates allows us to tune the shell circuit. - Abstract: High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current–voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.

  12. SP-100 from ground demonstration to flight validation

    International Nuclear Information System (INIS)

    Buden, D.

    1989-01-01

    The SP-100 program is in the midst of developing and demonstrating the technology of a liquid-metal-cooled fast reactor using thermoelectric thermal-to-electric conversion devices for space power applications in the range of tens to hundreds of kilowatts. The current ground engineering system (GES) design and development phase will demonstrate the readiness of the technology building blocks and the system to proceed to flight system validation. This phase includes the demonstration of a 2.4-MW(thermal) reactor in the nuclear assembly test (NAT) and aerospace subsystem in the integrated assembly test (IAT). The next phase in the SP-100 development, now being planned, is to be a flight demonstration of the readiness of the technology to be incorporated into future military and civilian missions. This planning will answer questions concerning the logical progression of the GES to the flight validation experiment. Important issues in planning the orderly transition include answering the need to plan for a second reactor ground test, the method to be used to test the SP-100 for acceptance for flight, the need for the IAT prior to the flight-test configuration design, the efficient use of facilities for GES and the flight experiment, and whether the NAT should be modified based on flight experiment planning

  13. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    Science.gov (United States)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  14. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  15. Feasibility of reclaimed asphalt pavement as aggregate in portland cement concrete pavement, phase II : field demonstration.

    Science.gov (United States)

    2015-10-01

    This research was focused on evaluating the feasibility of using minimally processed reclaimed asphalt pavement (RAP) as : aggregate replacement in concrete pavements. An initial phase of research demonstrated that concretes with up to 50 percent : o...

  16. HFC-134A and HCFC-22 supermarket refrigeration demonstration and laboratory testing. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Aspen Systems and a team of nineteen agencies and industry participants conducted a series of tests to determine the performance of HFC-134a, HCFC-22, and CFC-502 for supermarket application. This effort constitutes the first phase of a larger project aimed at carrying out both laboratory and demonstration tests of the most viable HFC refrigerants and the refrigerants they replace. The results of the Phase I effort are presented in the present report. The second phase of the project has also been completed. It centered on testing all viable HFC replacement refrigerants for CFC-502. These were HFC-507, HFC-404A, and HFC-407A. The latter results are published in the Phase II report for this project. As part of Phase I, a refrigeration rack utilizing a horizontal open drive screw compressor was constructed in our laboratory. This refrigeration rack is a duplicate of one we have installed in a supermarket in Clifton Park, NY.

  17. Current distribution in LV networks during 1-phase MV short-circuit

    NARCIS (Netherlands)

    Waes, van J.B.M.; Provoost, F.; Merwe, van der J.; Cobben, J.F.G.; Deursen, van A.P.J.; van Riet, M.J.M.; Laan, van der P.C.T.

    2000-01-01

    This paper describes the consequences of a fault in a medium voltage network on the grounding systems at the LV-side. To study the current distribution and to verify the models, we deliberately introduced one phase to ground faults in the 10 kV floating MV network. The selected site was the end of a

  18. Characteristics of the Current-Controlled Phase Transition of VO2 Microwires for Hybrid Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Arash Joushaghani

    2015-08-01

    Full Text Available The optical and electrical characteristics of the insulator-metal phase transition of vanadium dioxide (VO2 enable the realization of power-efficient, miniaturized hybrid optoelectronic devices. This work studies the current-controlled, two-step insulator-metal phase transition of VO2 in varying microwire geometries. Geometry-dependent scaling trends extracted from current-voltage measurements show that the first step induced by carrier injection is delocalized over the microwire, while the second, thermally-induced step is localized to a filament about 1 to 2 μm wide for 100 nm-thick sputtered VO2 films on SiO2. These effects are confirmed by direct infrared imaging, which also measures the change in optical absorption in the two steps. The difference between the threshold currents of the two steps increases as the microwires are narrowed. Micron- and sub-micron-wide VO2 structures can be used to separate the two phase transition steps in photonic and electronic devices.

  19. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    Science.gov (United States)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  20. Adaptive Hysteresis Band Current Control for Transformerless Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Vázquez, Gerardo; Rodriguez, Pedro; Ordoñez, Rafael

    2009-01-01

    Current control based on hysteresis algorithms are widely used in different applications, such as motion control, active filtering or active/reactive power delivery control in distributed generation systems. The hysteresis current control provides to the system a fast and robust dynamic response......, and requires a simple implementation in standard digital signal platforms. On the other hand, the main drawback of classical hysteresis current control lies in the fact that the switching frequency is variable, as the hysteresis band is fixed. In this paper a variable band hysteresis control algorithm...... different single-phase PV inverter topologies, by means of simulations performed with PSIM. In addition, the behavior of the thermal losses when using each control structure in such converters has been studied as well....

  1. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  2. A TECHNIQUE OF IDENTIFICATION OF THE PHASE-DISPLACEMENT GROUP OF THREE-PHASE TRANSFORMER

    International Nuclear Information System (INIS)

    Aburjania, A.; Begiashvili, V.; Rezan Turan

    2007-01-01

    It is demonstrated that the arbitrary choice of arbitrarily pisitive direction of induced currents and voltages contradicts the energy conservation law and leads to equilibrium equations and standards making no sense from the physical standpoint. Of 12 recognized standard phase-displacement groups of three-phase transformer, only three have real physical bases. The rest are based on a wrong assumption about mutual biasing of primary and secondary currents. They does not rule out the occurrence of emergency situations and, thus, must be eliminated from use. A new method of identification of the phase-displacement of three-phase transformer is proposed. The method is based on well-known physical laws with consideration for the dual character of the inertia of mutual inductance and exhausts for all possible versions of connection of transformer windings. (author)

  3. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    Highlight: ► Comparison of quench and fault-current-limiting behavior of SFCLs by Tr type. -- Abstract: The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1–5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle

  4. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, Timothy J., E-mail: tpennycook@gmail.com [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lupini, Andrew R. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37830 (United States); Yang, Hao [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Murfitt, Matthew F. [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Jones, Lewys [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D. [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-04-15

    We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. - Highlights: • Ptychographic high efficiency phase contrast imaging is demonstrated in STEM. • We rely on a hardware aberration corrector to eliminate aberrations. • High efficiency is achieved by collecting all the relevant interference. • Use of a pixelated detector allows comparison of bright field modes post acquisition. • Ptychography provides the clearest images among the STEM bright field modes tested.

  5. Demonstrating TTC-PON robustness and flexibility

    CERN Document Server

    Brandao de Souza Mendes, Eduardo; Soos, Csaba; Saint-Germain, Logan; Vasey, Francois

    2018-01-01

    In 2016, a TTC-PON (Timing, Trigger and Control system based on Passive Optical Networks) demonstrator was presented at TWEPP as an alternative to replace the TTC system, currently responsible for delivering timing, trigger and control commands in the LHC experiments. Towards a deployment foreseen for ALICE phase-1 upgrade, the system has been consolidated through flexible software implementation providing full configuration, complete calibration and extended monitoring and diagnostic tools. A new demonstrator setup was built with various FPGA platforms to test the system with an increased number of nodes and under different environmental conditions. This paper focuses on the TTC-PON system design with a discussion on its features and scaled-up tests.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, B. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myer, M. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  7. Interaction on boundary of current-conducting and glass-forming phases in cermet films under annealing

    International Nuclear Information System (INIS)

    Shulishova, O.I.; Zyrin, A.V.; Ismalgaliev, R.K.; Izmajlov, Sh.Z.; Kovylyaev, V.V.; Shevchuk, N.V.; Shcherbak, I.A.

    1990-01-01

    The electron-probe microanalysis permits investigating the interaction on the boundary of current-conducting and glass-binding phases in cermet films without noble metals on the base of ruthenium oxide. The performed studies along with experiments on model microsections subject to annealing in different media have shown the differences in the process of formation of structure and properties of cermet resistive elements as well as a significance of the oxidation process of current-conducting phase in formation of high working characteristics of cermet resistors on the base of hexaborides of the rare-earth elements

  8. A Simple System for Observing Dynamic Phase Equilibrium via an Inquiry-Based Laboratory or Demonstration

    Science.gov (United States)

    Cloonan, Carrie A.; Andrew, Julie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    This article describes an activity that can be used as an inquiry-based laboratory or demonstration for either high school or undergraduate chemistry students to provide a basis for understanding both vapor pressure and the concept of dynamic phase equilibrium. The activity includes a simple setup to create a closed system of only water liquid and…

  9. Gas-phase decontamination demonstration on PORTS cell X-25-4-2. Final technology status report

    International Nuclear Information System (INIS)

    Riddle, R.J.

    1997-09-01

    The Long-Term, Low Temperature (LTLT) process is a gas-phase in situ decontamination technique which has been tested by LMES/K-25 personnel on the laboratory scale with promising results. The purpose of the Gas-Phase Decontamination Demonstration at PORTS was to evaluate the LTLT process on an actual diffusion cascade cell at conditions similar to those used in the laboratory testing. The demonstration was conducted on PORTS diffusion cell X-25-4-2 which was one of the X-326 Building cells which was permanently shutdown as part of the Suspension of HEU Production at PORTS. The demonstration full-scale test consisted of rendering the cell leak-tight through the installation of Dresser seals onto the process seals, exposing the cell to the oxidants ClF 3 and F 2 for a period of 105 days and evaluating the effect of the clean-up treatment on cell samples and coupons representing the major diffusion cascade materials of construction. The results were extrapolated to determine the effectiveness of LTLT decontamination over the range of historical uranium isotope assays present in the diffusion complex. It was determined that acceptable surface contamination levels could be obtained in all of the equipment in the lower assay cascades which represents the bulk of the equipment contained in the diffusion complex

  10. On the inward drift of runaway electrons during the plateau phase of runaway current

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Di, E-mail: hudi-2@pku.edu.cn [School of Physics, Peking University, Beijing 100871 (China); Qin, Hong [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States); School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-03-15

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrange equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.

  11. Phase II drugs currently being investigated for the treatment of hypogonadism.

    Science.gov (United States)

    Udedibia, Emeka; Kaminetsky, Jed

    2014-12-01

    Hypogonadism is the most common endocrine disorder, which affects men of all age groups. Recent shifts in public awareness, increased screening and recognition of symptoms and updated diagnostic criteria have led to an increase in men diagnosed as hypogonadal, including middle-aged and older men who previously would have been considered eugonadal. The increase in testosterone replacement therapy (TRT) has paralleled an increase in advancements of treatment options. Although current therapies are highly efficacious for many men, there remains a need for newer therapies that are more cost-effective, preserve ease of use and administration, mitigate undesirable effects and closely mimic physiological levels of testosterone. In this review, the authors discuss current TRTs and therapies in development for the treatment of hypogonadism. The focus is on therapies under Phase II investigation or those who have recently completed Phase II study. With several new therapies in development, the authors expect advancements in achieving treatment benchmarks that meet the needs of the individual symptomatic hypogonadal male. Increased public awareness of hypogonadism and TRT has led to a welcomed expansion in the choice of TRT options. These include new delivery systems, formulations, routes of administration and non-testosterone modalities.

  12. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  13. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Laura Becerra-Fajardo

    Full Text Available Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs that will be flexible, thread-like (diameters < 0.5 mm and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with

  14. FWCD (fast wave current drive) and ECCD (electron cyclotron current drive) experiments on DIII-D

    International Nuclear Information System (INIS)

    Prater, R.; Austin, M.; Baity, F.W.

    1994-01-01

    Fast wave current drive and electron cyclotron current drive experiments have been performed on the DIII-D tokamak as part of the advanced tokamak program. The goal of this program is to develop techniques for controlling the profile of the current density in order to access regimes of improved confinement and stability. The experiments on fast wave current drive used a four strap antenna with 90deg phasing between straps. A decoupler was used to help maintain the phasing, and feedback control of the plasma position was used to keep the resistive loading constant. RF pickup loops demonstrate that the directivity of the antenna is as expected. Plasma currents up to 0.18 MA were driven by 1.5 MW of fast wave power. Electron cyclotron current drive experiments at 60 GHz have shown 0.1 MA of plasma current driven by 1 MW of power. New fast wave and electron cyclotron heating systems are in development for DIII-D, so that the goals of the advanced tokamak program can be carried out. (author)

  15. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  16. The effect of solar and lunar currents on simultaneous phase path, group path and amplitude measurements

    International Nuclear Information System (INIS)

    Baulch, R.N.E.; Butcher, E.C.

    1984-01-01

    The solar and lunar variations in the phase path, group path and amplitude of a fixed frequency transmission were obtained at the September equinox over a slightly oblique path. The phase of the lunar semi-diurnal tide in the phase path and amplitude were similar, the maxima occurring near 0200 lunar time, whereas the group path had a maximum near 0800 lunar time. These results were compared with other results obtained near the same location. The results suggest a complex situation in the E-region, where the height of the lunar current depends on season, and also suggest that the location and distribution of the solar and lunar currents may be different. (author)

  17. High-frequency, three-phase current controller implementation in an FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M.; Round, S. D.; Kolar, J. W.

    2008-07-01

    Three phase rectifiers with switching frequencies of 500 kHz or more require high speed current controllers. At such high switching frequencies analog controllers as well as high speed digital signal processing (DSP) systems have limited performance. In this paper, two high speed current controller implementations using two different field-programmable gate arrays (FPGA) - one for switching frequencies up to 1 MHz and one for switching frequencies beyond 1 MHz - are presented to overcome this performance limitation. Starting with the digital system design all the blocks of the signal chain, containing analog-to-digital (A/D) interface, digital controller implementation using HW-multipliers and implementation of a novel high speed, high resolution pulse width modulation (PWM) are discussed and compared. Final measurements verify the performance of the controllers. (author)

  18. Test plan for the remote conveyance and innovative end effector demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.; Smith, A.M. [EG& G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.; Peterson, R.

    1994-08-01

    This test plan describes the demonstration of innovative equipment and processes specifically designed to be superior to currently employed technology for buried waste retrieval. The dumping of dry soil into a funnel/dumpster arrangement has been found to be the primary mechanism for dust generation during the retrieval of buried transuranic waste. The primary goal of the innovative end effector is to reduce dust generation and the potential spread of airborne contaminants during the dumping operation. In addition, regardless of the excavation technique, exhumed waste will have to be conveyed away from the retrieval area to a packaging area or directly to a treatment facility. The remote conveyance system is aimed at developing a remotely controlled vehicle to convey retrieved waste that will operate on variable terrain and remove workers from the hazardous zone. To demonstrate the remote conveyance system and the innovative end effector, the Buried Waste Integrated Demonstration (BWID) Program has subcontracted with RAHCO International to provide equipment and services to perform a demonstration of the technologies. The demonstration will be performed in two phases. In Phase I, the subcontractor will perform a full scale demonstration to assess the ability of the innovative end effector to control dust generation and the potential spread of contamination during dumping operations. Phase II includes performing a retrieval/conveyance demonstration. This demonstration will excavate, dump, and convey simulated waste to demonstrate the functionality of the system (e.g., maneuverability, retrieval rates, and system integration). Phase II of the demonstration will include all elements of the remote conveyance and end effector system. This test plan will describe the demonstration objectives, data quality objectives, equipment operation, and methods for collecting data during the demonstration.

  19. Test plan for the remote conveyance and innovative end effector demonstration

    International Nuclear Information System (INIS)

    Rice, P.; Smith, A.M.; Peterson, R.

    1994-08-01

    This test plan describes the demonstration of innovative equipment and processes specifically designed to be superior to currently employed technology for buried waste retrieval. The dumping of dry soil into a funnel/dumpster arrangement has been found to be the primary mechanism for dust generation during the retrieval of buried transuranic waste. The primary goal of the innovative end effector is to reduce dust generation and the potential spread of airborne contaminants during the dumping operation. In addition, regardless of the excavation technique, exhumed waste will have to be conveyed away from the retrieval area to a packaging area or directly to a treatment facility. The remote conveyance system is aimed at developing a remotely controlled vehicle to convey retrieved waste that will operate on variable terrain and remove workers from the hazardous zone. To demonstrate the remote conveyance system and the innovative end effector, the Buried Waste Integrated Demonstration (BWID) Program has subcontracted with RAHCO International to provide equipment and services to perform a demonstration of the technologies. The demonstration will be performed in two phases. In Phase I, the subcontractor will perform a full scale demonstration to assess the ability of the innovative end effector to control dust generation and the potential spread of contamination during dumping operations. Phase II includes performing a retrieval/conveyance demonstration. This demonstration will excavate, dump, and convey simulated waste to demonstrate the functionality of the system (e.g., maneuverability, retrieval rates, and system integration). Phase II of the demonstration will include all elements of the remote conveyance and end effector system. This test plan will describe the demonstration objectives, data quality objectives, equipment operation, and methods for collecting data during the demonstration

  20. A Coordinate Control Strategy for Circulating Current Suppression in Multiparalleled Three-Phase Inverters

    DEFF Research Database (Denmark)

    Zhang, Xueguang; Wang, Tianyi; Wang, Xiongfei

    2017-01-01

    This paper addresses the zero-sequence circulating current control in the multiparalleled three-phase voltage-source inverters. The model of the zero-sequence circulating current in the N-paralleled (N ≥ 3) inverters is derived. It is shown that the circulating current is not only susceptible...... to the mismatches of circuit parameters, but it is also influenced by the interactions of circulating current controllers used by other paralleled inverters. To eliminate these adverse effects on the circulating current control loop, a coordinate control strategy for the N-paralleled inverter is proposed based...... on the zero-vector feedforward method with the space-vector pulse width modulation. Moreover, a virtual inverter method is introduced to facilitate the implementation of the proposed controller, which decouples the interactions of circulating current controllers in the paralleled inverters. Finally...

  1. SmartPark Technology Demonstration Project, Phase II: Final Report

    Science.gov (United States)

    2018-05-01

    The purpose of FMCSA's SmartPark project was to determine the feasibility of a technology for providing truck parking space availability information in real time to truckers on the road. SmartPark consisted of two phases. Phase I was a field operatio...

  2. Electron Bernstein wave current drive in the start-up phase of a tokamak discharge

    International Nuclear Information System (INIS)

    Montes, A.; Ludwig, G.O.

    1986-04-01

    Current drive by electron Bernstein waves in the start-up phase of tokamak discharges is studied. A general analytical expression is derived for the figure of merit J/Pd associated with these waves. This is coupled with a ray tracing code, allowing the calculation of the total current generated per unit of incident power in realistic tokamak conditions. The resuts show that the electron Bernstein waves can drive substantial currents even at very low electron temperatures. (Author) [pt

  3. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    Science.gov (United States)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  4. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  5. The geometric effect and programming current reduction in cylindrical-shaped phase change memory

    International Nuclear Information System (INIS)

    Li Yiming; Hwang, C-H; Li, T-Y; Cheng, H-W

    2009-01-01

    This study conducts a three-dimensional electro-thermal time-domain simulation for numerical analysis of cylindrical-shaped phase change memories (PCMs). The influence of chalcogenide material, germanium antimony telluride (GeSbTe or GST), structure on PCM operation is explored. GST with vertical structure exhibits promising characteristics. The bottom electrode contact (BEC) is advanced to improve the operation of PCMs, where a 25% reduction of the required programming current is achieved at a cost of 26% reduced resistance ratio. The position of the BEC is then shifted to further improve the performance of PCMs. The required programming current is reduced by a factor of 11, where the resistance ratio is only decreased by 6.9%. However, the PCMs with a larger shift of BEC are sensitive to process variation. To design PCMs with less than 10% programming current variation, PCMs with shifted BEC, where the shifted distance is equal to 1.5 times the BEC's radius, is worth considering. This study quantitatively estimates the structure effect on the phase transition of PCMs and physically provides an insight into the design and technology of PCMs.

  6. Multi-phase alternative current machine winding design | Khan ...

    African Journals Online (AJOL)

    ... single-phase to 18-phase excitation. Experimental results of a five-phase induction machine supplied from a static five-phase supply are provided to support the proposed design. Keywords: AC machine, Multi-phase machine, Stator winding, Five-phase. International Journal of Engineering, Science and Technology, Vol.

  7. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach

    Science.gov (United States)

    Akasofu, Syun-Ichi

    2017-10-01

    Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions. (1) The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above 10^{18} erg/s (10^{11} w). (2) The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy. (3) When the power reaches 3-5× 10^{18} erg/s (3-5× 10^{11} w) for about one hour and the stored magnetic energy reaches 3-5×10^{22} ergs (10^{15} J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density {≈}3× 10^{-12} A/cm2 and the total current {≈}106 A at 6 Re). As a result, the plasma sheet current is reduced. (4) The magnetosphere is thus deflated. The current reduction causes partial B/partial t > 0 in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both

  8. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    Science.gov (United States)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  9. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phase...... slip centers in a quasi-one-dimensional wire. The competition between two relaxations times (relaxation time of the absolute value of the order parameter τ and relaxation time of the phase of the order parameter in the phase slip center τ) governs the phase slip process. Phase slips, as periodic...... oscillations in time of the order parameter, are only possible if the gradient of the phase grows faster than the value of the order parameter in the phase slip center, or equivalently if τ≤ τ....

  10. Prototypical Rod Construction Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report.

  11. Abc-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Guerrero, Josep M.

    2016-01-01

    Current quality is one of the most important issues for operating three-phase grid-connected inverter in distributed generation systems. In practice, the grid current quality is degraded in case of non-ideal utility voltage. A new control strategy is proposed for the three-phase gridconnected...... inverter. Different from the traditional method, our proposal utilizes the unique abc-frame complex-coefficient filter and controller to achieve the balanced, sinusoidal grid current. The main feature of the proposed method is simple and easy to implement without any frame transformation. The theoretical...

  12. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current......-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce-the inductive...... voltage. The 1 mu V cm(-1) critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6 +/- 0.15 W m(-1). This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far...

  13. Stability of carbon-bearing phases in coal on the passage of weak electric current

    International Nuclear Information System (INIS)

    Pivnyak, G.G.; Sobolev, V.V.; Baskevich, A.S.

    2012-01-01

    According to data of the electron paramagnetic resonance, infrared spectroscopy, X-ray analysis, and other methods, mobile radicals and gas have formed in coal on the passage of weak electric current. The quantum-mechanical estimation of the stability of coal organic mass components under the action of weak electric current is offered. It is established that the hydrocarbon and carbon chains are the most probable phase which is destroyed the first.

  14. Influence of powder pre-annealing on the phase formation and critical current of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.

    2004-01-01

    . The effects of different precursors were investigated by XRD, SEM/EDS and critical current measurements. It has been found that both the microstructure and phase formation depended strongly on the different lead-rich phases, which determined the reactivity of the precursor. Tapes fabricated using...... the precursor with Ca2PbO4 phase (tape T1) had lower transformation rate of 2223 phase than tapes fabricated using the precursor with 3321 phase (tape T2). SEM results show that a large fraction of secondary phases with big particle size was formed in the tape T1 during the subsequent sintering, which might...

  15. In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents

    Science.gov (United States)

    Ivorra, Antoni; Becerra-Fajardo, Laura; Castellví, Quim

    2015-12-01

    Objective. It is possible to develop implantable microstimulators whose actuation principle is based on rectification of high-frequency (HF) current bursts supplied through skin electrodes. This has been demonstrated previously by means of devices consisting of a single diode. However, previous single diode devices caused dc currents which made them impractical for clinical applications. Here flexible thread-like stimulation implants which perform charge balance are demonstrated in vivo. Approach. The implants weigh 40.5 mg and they consist of a 3 cm long tubular silicone body with a diameter of 1 mm, two electrodes at opposite ends, and, within the central section of the body, an electronic circuit made up of a diode, two capacitors, and a resistor. In the present study, each implant was percutaneously introduced through a 14 G catheter into either the gastrocnemius muscle or the cranial tibial muscle of a rabbit hindlimb. Then stimulation was performed by delivering HF bursts (amplitude pair of textile electrodes strapped around the hindlimb and either isometric plantarflexion or dorsiflexion forces were recorded. Stimulation was also assayed 1, 2 and 4 weeks after implantation. Main results. The implants produced bursts of rectified current whose mean value was of a few mA and were capable of causing local neuromuscular stimulation. The implants were well-tolerated during the 4 weeks. Significance. Existing power supply methods, and, in particular inductive links, comprise stiff and bulky parts. This hinders the development of minimally invasive implantable devices for neuroprostheses based on electrical stimulation. The proposed methodology is intended to relieving such bottleneck. In terms of mass, thinness, and flexibility, the demonstrated implants appear to be unprecedented among the intramuscular stimulation implants ever assayed in vertebrates.

  16. Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy-Current Phase Rotation

    Science.gov (United States)

    2016-08-01

    Science and Technology Organisation) EDM Electrodischarge machining FSH Full Screen Height on an eddy - current instrument IVD Ion Vapour...electromagnetic skin depth δ is 0.15 mm in the fastener holes3. 4.1 Bolt Hole Eddy Current Inspection Procedure 4.1.1 Calibration on Machined ...UNCLASSIFIED UNCLASSIFIED Discrimination between Fatigue Cracking and Mechanical Damage in Aircraft Fastener Holes by Eddy - Current Phase

  17. Summary Report on Phase I and Phase II Results From the 3D Printing in Zero-G Technology Demonstration Mission. Volume II

    Science.gov (United States)

    Prater, T. J.; Werkheiser, N. J.; Ledbetter, F. E., III

    2018-01-01

    In-space manufacturing seeks to develop the processes, skill sets, and certification architecture needed to provide a rapid response manufacturing capability on long-duration exploration missions. The first 3D printer on the Space Station was developed by Made in Space, Inc. and completed two rounds of operation on orbit as part of the 3D Printing in Zero-G Technology Demonstration Mission. This Technical Publication provides a comprehensive overview of the technical objections of the mission, the two phases of hardware operation conducted on orbit, and the subsequent detailed analysis of specimens produced. No engineering significant evidence of microgravity effects on material outcomes was noted. This technology demonstration mission represents the first step in developing a suite of manufacturing capabilities to meet future mission needs.

  18. A three-phase to three-phase series-resonant power converter with optimal input current waveforms, Part II: implementation and results

    NARCIS (Netherlands)

    Huisman, H.

    1988-01-01

    For pt.I see ibid., vol.35, no.2, p.263-8 (1988). A 15 kW three-phase prototype series-resonant power converter is constructed. The converter features sinusoidal output voltage and sinusoidal input currents. The control concepts and necessary electronics, as well as the layout of the power circuit,

  19. Direct transformation of solar energy into three-phase current for technical uses

    Energy Technology Data Exchange (ETDEWEB)

    von Hacht, G [Ingenieurbuero Opto-Sensor-Technik, Frankfurt am Main (Germany, F.R.)

    1977-08-01

    The author proposes a method which may increase the 15% efficiency of present solar plants. In principle, the device consists of an optical waveguide tube containing a chain of solar elements. The tube serves as conductive wire for the primary coil of an a.c. or three-phase current transformer. The 50 Hz cycle of the a.c. or three-phase current is generated by rotor or cylindrical diaphragms and/or electronic pilot/thyristor control. The solar energy is focussed axially and/or vertically to the axis of the optical waveguide tube. The light going through the optical waveguide tube makes it possible for solar elements to be equipped with light-sensitive layers on both sides instead of just on one side, as until now. This means a higher efficiency than for conventional solar elements exposed to light only on one side. In addition, the optical waveguide tube is designed in its length as Fabry-Perot resonator. This way, it may also be used as a gas laser. The light generated in this gas laser would multiply the luminous intensity which again acts on the two light-sensitive sides of the solar elements, thus again increasing their efficiency.

  20. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New phases of D≥2 current and diffeomorphism algebras in particle physics

    International Nuclear Information System (INIS)

    Tze, Chia-Hsiung.

    1990-09-01

    We survey some global results and open issues of current algebras and their canonical field theoretical realization in D ≥ 2 dimensional spacetime. We assess the status of the representation theory of their generalized Kac-Moody and diffeomorphism algebras. Particular emphasis is put on higher dimensional analogs of fermi-bose correspondence, complex analyticity and the phase entanglements of anyonic solitons with exotic spin and statistics. 101 refs

  2. A robust predictive current controller for healthy and open-circuit faulty conditions of five-phase BLDC drives applicable for wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent

    2015-01-01

    Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive

  3. Dynamic phases of low-temperature low-current driven vortex matter in superconductors

    International Nuclear Information System (INIS)

    Benkraouda, M; Obaidat, I M; Khawaja, U Al; Mulaa, N M J

    2006-01-01

    Using molecular dynamics simulations of vortices in a high-temperature superconductor with square periodic arrays of pinning sites, dynamic phases of the low-current driven vortices are studied at low temperatures. A rough vortex phase diagram of three distinct regimes of vortex flow is proposed. At zero temperature, we obtain a coupled-channel regime where rows of vortices flow coherently in the direction of the driving force. As the temperature is increased, a smooth crossover into an uncoupled-channel regime occurs where the coherence between the flowing rows of vortices becomes weaker. Increasing the temperature further leads to a plastic vortex regime, where the channels of flowing vortices completely disappear. The temperatures of the crossovers between these regimes were found to decrease with the driving force

  4. Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2013-08-01

    Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.

  5. Reactively sputtered Ti-Si-N films for application as heating layers for low-current phase-change memory

    International Nuclear Information System (INIS)

    Yin, You; Noguchi, Tomoyuki; Ota, Kazuhiro; Higano, Naoya; Sone, Hayato; Hosaka, Sumio

    2009-01-01

    In this study, we investigate the properties of Ti-Si-N films for the application as the heating layers in phase-change memory (PCM). The experimental results show that the resistivity of Ti-Si-N films can be varied by over six orders of magnitude from 2.18 x 10 4 to 3.9x10 2 Ω-cm by increasing the flow rate ratio [N 2 /(N 2 +Ar)] from 0 to 10%. The controllability of resistivity might result from the concentration change from Ti-Si to mixture of TiN and Si 3 N 4 . Reversible switching was also successfully demonstrated by using a lateral PCM with these heating layers. The stability of the Ti-Si-N films at high temperatures implies that they can be used as the heating layers in the conventional vertical PCMs for current reduction.

  6. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    Science.gov (United States)

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.

  7. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active har...

  8. Influence of load type on power factor and harmonic composition of three-phase rectifier current

    Science.gov (United States)

    Nikolayzin, N. V.; Vstavskaya, E. V.; Konstantinov, V. I.; Konstantinova, O. V.

    2018-05-01

    This article is devoted to research of the harmonic composition of the three-phase rectifier current consumed when it operates with different types of load. The results are compared with Standard requirements.

  9. A DC-Link Modulation Scheme with Phase-Shifted Current Control for Harmonic Cancellations in Multidrive Applications

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2016-01-01

    of a new DC link modulation scheme with a phase-shifted current control enabled by the SCR. The DC-link current modulation scheme is implemented by adding and subtracting specific modulation levels, which makes the total currents drawn from the grid “multi-level”, resulting in an improved current quality......This letter proposes a harmonic mitigation strategy to cancel out current harmonics induced by the front-end rectifiers in multi-drive systems, which consist of diode rectifiers, Silicon-Controlled Rectifiers (SCR), and boost converters in the DC-link. The proposed strategy is a combination...

  10. Analysis of Three-Phase Rectifier Systems with Controlled DC-Link Current Under Unbalanced Grids

    DEFF Research Database (Denmark)

    Kumar, Dinesh; Davari, Pooya; Zare, Firuz

    2017-01-01

    Voltage unbalance is the most common disturbance in distribution networks, which give undesirable effects on many grid connected power electronics systems including Adjustable Speed Drive (ASD). Severe voltage unbalance can force three-phase rectifiers into almost single-phase operation, which...... degrades the grid power quality and also imposes a significant negative impact on the ASD system. This major power quality issue affecting the conventional rectifiers can be attenuated by controlling the DC-link current based on an Electronic Inductor (EI) technique. The purpose of this digest...... is to analyze and compare the performance of an EI with a conventional three-phase rectifier under unbalanced grid conditions. Experimental and simulation results validate the proposed mathematical modelling. Further analysis and benchmarking will be provided in the final paper....

  11. FY16 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    International Nuclear Information System (INIS)

    Diaz, Aaron A.; Chamberlin, Clyde E.; Edwards, Matthew K.; Hagge, Tobias J.; Hughes, Michael S.; Larche, Michael R.; Mathews, Royce A.; Neill, Kevin J.; Prowant, Matthew S.

    2016-01-01

    This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL's M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs - a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32x2, 64-element matrix phased-array ETU. The 1D probes are 32x1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.

  12. FY16 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamberlin, Clyde E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagge, Tobias J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, Michael S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1D probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.

  13. LBNO-DEMO (WA105): a large demonstrator of the Liquid Argon double phase TPC

    CERN Document Server

    Trzaska, Wladyslaw Henryk

    2015-01-01

    LBNO-DEMO (WA105) is a large demonstrator of the double phase liquid argon TPC intended to develop and test the main elements of the GLACIER-based design for the purpose of scaling it up to the 10–50 kton size needed for Long Baseline Neutrino Oscillation studies. The crucial components of the design are: ultra-high argon purity in non-evacuable tank, long drifts, very high drift voltages, large area Micro Pattern Gas Detectors, and cold preamplifiers. The active volume of the demonstrator is 666 m3 (approximately 300t). WA105 is under construction at CERN and will be exposed to charged particle beams (0.5-20 GeV/c) in the North Area in 2018. The data will provide the necessary calibration of the detector performance and benchmark reconstruction algorithms. This project is a crucial milestone for the long baseline neutrino program, including projects like LBNO and DUNE.

  14. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    NARCIS (Netherlands)

    Yokoyama, T.; Eto, M.; Nazarov, Y.V.

    2012-01-01

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the

  15. Demonstration of fuel resistant to pellet-cladding interaction. Phase 2. First semiannual report, January-June 1979

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-08-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress and reactive fission products during reactor service. This is the first semiannual progress report for Phase 2 of this program (January-June 1979). Progress in the irradiation testing of barrier fuel and of unfueled barrier cladding specimens is reported

  16. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  17. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Laser projection using generalized phase contrast

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Rodrigo, Peter John

    2007-01-01

    is introduced. An arbitrary phase shift filter eliminates the need for high-frequency modulation and conjugate phase encoding. This lowers device performance requirements and allows practical implementation with currently available dynamic spatial light modulators. (c) 2007 Optical Society of America.......We demonstrate experimental laser projection of a gray-level photographic image with 74% light efficiency using the generalized phase contrast (GPC) method. In contrast with a previously proposed technique [Alonzo et al., New J. Phys. 9, 132 (2007)], a new approach to image construction via GPC...

  19. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...... for open-/star-winding loads. Elaborately, per phase of the VSI is built with one additional bi-directional switch (MOSFET/IGBT) and all five legs links to the neutral through two capacitors. The structure allows multilevel generation to five-level output with greater potential for fault tolerability under...

  20. Variable current speed controller for eddy current motors

    Science.gov (United States)

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  1. Phased-array antenna system for electron Bernstein wave heating and current drive experiments in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.

    2010-11-01

    The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)

  2. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    Science.gov (United States)

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  3. Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach

    International Nuclear Information System (INIS)

    Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle

    2002-01-01

    Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)

  4. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    Directory of Open Access Journals (Sweden)

    A. C. Dexter

    2011-03-01

    Full Text Available The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  5. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  6. Two-dimensional electron density characterisation of arc interruption phenomenon in current-zero phase

    Science.gov (United States)

    Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko

    2018-01-01

    Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.

  7. Demonstration of Key Elements of a Dual Phase Argon Detection System Suitable for Measurement of Coherent Neutrino-Nucleus Scattering

    International Nuclear Information System (INIS)

    Adam, B; Celeste, W; Christian, H; Wolfgang, S; Norman, M

    2007-01-01

    This feasibility study sought to demonstrate several necessary steps in a research program whose ultimate goal is to detect coherent scattering of reactor antineutrinos in dual-phase noble liquid detectors. By constructing and operating a Argon gas-phase drift and scintillation test-bed, the study confirmed important expectations about sensitivity of these detectors, and thereby met the goals set forth in our original proposal. This work has resulted in a successful Lab-Wide LDRD for design and deployment of a coherent scatter detector at a nuclear reactor, and strong interest by DOE Office of Science. In recent years, researchers at LLNL and elsewhere have converged on a design approach for a new generation of very low noise, low background particle detectors known as two-phase noble liquid/noble gas ionization detectors. This versatile class of detector can be used to detect coherent neutrino scattering-an as yet unmeasured prediction of the Standard Model of particle physics. Using the dual phase technology, our group would be the first to verify the existence of this process. Its (non)detection would (refute)validate central tenets of the Standard Model. The existence of this process is also important in astrophysics, where coherent neutrino scattering is assumed to play an important role in energy transport within nascent neutron stars. The potential scientific impact after discovery of coherent neutrino-nuclear scattering is large. This phenomenon is flavor-blind (equal cross-sections of interaction for all three neutrino types), raising the possibility that coherent scatter detectors could be used as total flux monitors in future neutrino oscillation experiments. Such a detector could also be used to measure the flavor-blind neutrino spectrum from the next nearby (d ∼ 10kpc) type Ia supernova explosion. The predicted number of events [integrated over explosion time] for a proposed dual-phase argon coherent neutrino scattering detector is 10000 nuclear

  8. Designing single phase Current-Programmed-Controlled rectifiers by harmonic currents

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Blaabjerg, Frede

    2002-01-01

    The grid current harmonics of a Current-Programmed-Controlled (CPC) pfc rectifier strongly depends on the choice of switching frequency and switching inductance. This paper describes a new simple and vert fast method to calculate the grid current of a CPC controlled pfc converter. The method...

  9. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    International Nuclear Information System (INIS)

    Krueger Olsen, S.; Kuehle, A.; Traeholt, C.; C Rasmussen, C.; Toennesen, O.; Daeumling, M.; Rasmussen, C.N.; Willen, D.W.A.

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current and the voltage over the cable close to 90 degrees. This has the effect that the loss cannot be derived directly using most commercial lock-in amplifiers due to their limited absolute accuracy. However, by using two lock-in amplifiers and an appropriate correction scheme the high relative accuracy of such lock-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce the inductive voltage. The 1 μV cm -1 critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6±0.15 W m -1 . This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far at these high currents. (author)

  10. New phases of D ge 2 current and diffeomorphism algebras in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Tze, Chia-Hsiung.

    1990-09-01

    We survey some global results and open issues of current algebras and their canonical field theoretical realization in D {ge} 2 dimensional spacetime. We assess the status of the representation theory of their generalized Kac-Moody and diffeomorphism algebras. Particular emphasis is put on higher dimensional analogs of fermi-bose correspondence, complex analyticity and the phase entanglements of anyonic solitons with exotic spin and statistics. 101 refs.

  11. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new read-out system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. We present the current status and results where the new Demonstrator new electronics were situated in calorimeter modules and exposed to beams of muons, electrons and hadrons with different energies and impact angles.

  12. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, S.; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibata, Y.; Isayama, A.; Kawano, Y. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Watanabe, K. Y. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Takizuka, T. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Okamoto, M. [Ishikawa National College of Technology, Ishikawa 929-0392 (Japan)

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  13. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    Science.gov (United States)

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  14. ELISA, a demonstrator environment for information systems architecture design

    Science.gov (United States)

    Panem, Chantal

    1994-01-01

    This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.

  15. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    Science.gov (United States)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  16. Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

    1980-12-01

    A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

  17. A Single-Phase Current Source Solar Inverter with Constant Instantaneous Power, Improved Reliability, and Reduced-Size DC-Link Filter

    Science.gov (United States)

    Bush, Craig R.

    This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

  18. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  19. Control Strategy for Three-Phase Grid-Connected PV Inverters Enabling Current Limitation Under Unbalanced Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Rahimi, Ramin

    2017-01-01

    Power quality and voltage control are among the most important aspects of the grid-connected power converter operation under faults. Non-sinusoidal current is injected during unbalanced voltage sag and active or/and reactive power includes double frequency content. This paper introduces a novel...... control strategy to mitigate the double grid frequency oscillations in the active power and dc-link voltage of the two-stage three-phase grid-connected Photovoltaic (PV) inverters during unbalanced faults. With the proposed control method, PV inverter injects sinusoidal currents under unbalanced grid...... faults. In addition, an efficient and easy-to-implement current limitation method is introduced, which can effectively limit the injected currents to the rated value during faults. In this case, the fault-ride-through operation is ensured and it will not trigger the overcurrent protection. A non...

  20. Control for the Three-Phase Four-Wire Four-Leg APF Based on SVPWM and Average Current Method

    Directory of Open Access Journals (Sweden)

    Xiangshun Li

    2015-01-01

    Full Text Available A novel control method is proposed for the three-phase four-wire four-leg active power filter (APF to realize the accurate and real-time compensation of harmonic of power system, which combines space vector pulse width modulation (SVPWM with triangle modulation strategy. Firstly, the basic principle of the APF is briefly described. Then the harmonic and reactive currents are derived by the instantaneous reactive power theory. Finally simulation and experiment are built to verify the validity and effectiveness of the proposed method. The simulation results show that the response time for compensation is about 0.025 sec and the total harmonic distortion (THD of the source current of phase A is reduced from 33.38% before compensation to 3.05% with APF.

  1. Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2016-05-01

    Full Text Available This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−, and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation to identify the optimal pulse-width modulation (PWM strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load.

  2. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  3. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems

    Science.gov (United States)

    2007-02-28

    National Industrial Security Program Operating Manual (NISPOM), Chapter 5, Section 7, or DOD 5200.1-R, Information Security Program Regulation...Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems 5a. CONTRACT NUMBER 5b... SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 41 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT

  4. Tunnel currents produced by defects in p-n junctions of GaAs grown on vapor phase

    International Nuclear Information System (INIS)

    Barrales Guadarrama, V R; Rodríguez Rodriguez, E M; Barrales Guadarrama, R; Reyes Ayala, N

    2017-01-01

    With the purpose of assessing if the epitaxy on vapor phase technique “Close Space Vapor Deposition (CSVT)” is capable of produce thin films with adequate properties in order to manufacture p-n junctions, a study of invert and direct current was developed, in a temperature range of 94K to 293K, to junctions p-n of GaAs grown through the technique CSVT. It is shown that the dominant current, within the range 10 -7 to 10 -2 A, is consistent with a currents model of the type of internal emission form field, which shows these currents are due to the presence of localized states in the band gap. (paper)

  5. Predictive Pulse Pattern Current Modulation Scheme for Harmonic Reduction in Three-Phase Multidrive Systems

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    at the rectification stage to synthesize sinusoidal input currents. The input voltage sensing is avoided in order to minimize the number of required sensors, and the grid synchronization also has been implemented based on a common Phase-Locked-Loop (PLL) using the DC-link capacitor voltage ripple. Experimental results......The majority of the industrial motor drive systems are equipped with the conventional line-commutated front-end rectifiers, and being one of the main sources of harmonics in the power line. While a parallel combination of these drive units elevates current quality issues, a proper arrangement...... of them can lead to the cancellation of specific harmonics. This paper proposes a new cost-effective harmonic mitigation solution for multi-drive systems using a predictive pulse pattern current modulation control strategy. The proposed technique applies suitable interaction among parallel drive units...

  6. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ''as low as reasonably achievable'' (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford's OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types

  7. Electrodril system field test program. Phase II: Task C-1-deep drilling system demonstration. Final report for Phase II: Task C-1

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P D

    1981-04-01

    The Electrodril Deep Drilling System field test demonstrations were aborted in July 1979, due to connector problems. Subsequent post test analyses concluded that the field replacable connectors were the probable cause of the problems encountered. The designs for both the male and female connectors, together with their manufacturing processes, were subsequently modified, as was the acceptance test procedures. A total of nine male and nine female connectors were manufactured and delivered during the 2nd Quarter 1980. Exhaustive testing was then conducted on each connector as a precursor to formal qualification testing conducted during the month of October 1980, at the Brown Oil Tool test facility located in Houston, Texas. With this report, requirements under Phase II, Task C-1 are satisfied. The report documents the results of the connector qualification test program which was successfully completed October 28, 1980. In general, it was concluded that connector qualification had been achieved and plans are now in progress to resume the field test demonstration program so that Electrodril System performance predictions and economic viability can be evaluated.

  8. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    lifetime and the potential for an all transparent display. And because carbon nanotubes (CNTs) and organics are used, CN-VFET and CN-VOLET devices are compatible with flexible displays. This dissertation describes the first ever demonstration of CN-VFETs and CN-VOLETs and relates their performance to the specific properties of the CNTs and the new device architecture. In the work that followed, the CN-VFET was systematically optimized overcoming the problems revealed in the demonstration devices. The large undesired hysteresis was decreased by 96%, the on/off ratio was improved three orders of magnitude and the operating voltages were reduced to state of the art values. Additionally, the current output per device area of the CN-VFET was demonstrated to be greater than any other low resolution patterned organic transistor by a factor of 3.9. Moreover, it was demonstrated that the CNTs induce a reorientation of the high mobility plane in small molecule organics like pentacene to coincide with the vertical direction, giving additional explanation for the large currents observed in the CN-VFET. The ability to drive high currents and potentially inexpensive fabrication may provide the solution for the AMOLED backplane problem.

  9. Integrated-optic current sensors with a multimode interference waveguide device.

    Science.gov (United States)

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  10. Demonstration of fuel resistant to pellet-cladding interaction. Second semiannual report, January--June 1978

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1978-09-01

    This program has as its ultimate objective the demonstration of an advanced fuel concept that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Since currently used fuel in the nuclear power industry is subject to the PCI failure mechanism, reactor operators limit the rates of power increases and thus reduce their capacity factors in order to protect the fuel. Two concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as ''barrier fuels'') have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress and reactive fission products during reactor service. The demonstration of one of these concepts in a commercial power reactor is planned for PHASE 2 of this program. The current plans for the demonstration will involve approximately 132 bundles of PCI-resistant fuel

  11. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    Science.gov (United States)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  12. Analysis of minor disruptions during current flat phase in the HL-1 device

    International Nuclear Information System (INIS)

    Yan Longwen; Shi Bingren; Zheng Yongzhen; Peng Liling; Huang Keqiang

    1991-01-01

    The phenomena of minor disruptions during current flat phase have been observed in the HL-1 device for five years. When these phenomena appear the safety factors qa are between 2.5∼4.5, and densities are between 1 x 10 13 cm -3 and 3 x 10 13 cm -3 or greater than 4 x 10 13 cm -3 . Periodic relaxation ocsillations of voltage and soft-X-rays are observed during minor disruptions. Their character and development conditions are carefully analylsed

  13. Power Swing Detection in UPFC-Compensated Line by Phase Angle of Current

    DEFF Research Database (Denmark)

    Khodaparast, Jalal; Khederzadeh, M.; Silva, Filipe Miguel Faria da

    2017-01-01

    Power swing blocker (PSB) is a complementary part of distance relay protection, that detects power swing, in order to prevent unintended operation of a distance relay. Unified power flow controller (UPFC) is used in power system to control both active and reactive powers and its operation during...... condition. The results show that these indices may no longer work in systems with UPFC. In addition, this paper proposes a new method for detecting power swing based on the phase angle of current at relay point and compares it with two other methods. The new method distinguishes power swing from a fault...

  14. Suppressing flavor-changing neutral currents and CP-violating phases by extra dimensions

    International Nuclear Information System (INIS)

    Kubo, Jisuke; Terao, Haruhiko

    2002-01-01

    In extra dimensions the infrared attractive force of gauge interactions is amplified. We find that this force can align in the infrared limit the soft-supersymmetry breaking terms out of their anarchical disorder at a fundamental scale in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are sufficiently suppressed at the unification scale. The main assumption is that the matter and Higgs supermultiplets and the flavor-dependent interactions such as Yukawa interactions are stuck at the four-dimensional boundary. As a concrete example we consider the minimal model based on SU(5) in six dimensions

  15. Modeling beams with elements in phase space

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1998-01-01

    Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated

  16. Fast wave current drive above the slow wave density limit

    International Nuclear Information System (INIS)

    McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.

    1989-01-01

    Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit

  17. Essential parameters in eddy current inspection

    International Nuclear Information System (INIS)

    Stepinski, T.

    2000-05-01

    Our aim was to qualitatively analyze a number of variables that may affect the result of eddy current (EC) inspection but because of various reasons are not considered as essential in common practice. In the report we concentrate on such variables that can vary during or between inspections but their influence is not determined during routine calibrations. We present a qualitative analysis of the influence of the above-mentioned variables on the ability to detect and size flaws using mechanized eddy current testing (ET). ET employs some type of coil or probe, sensing magnetic flux generated by eddy currents induced in the tested specimen. An amplitude-phase modulated signal (with test frequency f0 ) from the probe is sensed by the EC instrument. The amplitude-phase modulated signal is amplified and demodulated in phase-sensitive detectors removing carrier frequency f0 from the signal. The detectors produce an in-phase and a quadrature component of the signal defining it as a point in the impedance plane. Modern instruments are provided with a screen presenting the demodulated and filtered signal in complex plane. We focus on such issues, related to the EC equipment as, probe matching, distortion introduced by phase discriminators and signal filters, and the influence of probe resolution and lift-off on sizing. The influence of different variables is investigated by means of physical reasoning employing theoretical models and demonstrated using simulated and real EC signals. In conclusion, we discuss the way in which the investigated variables may affect the result of ET. We also present a number of practical recommendations for the users of ET and indicate the areas that are to be further analyzed

  18. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Second semiannual report, July-December 1979

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1980-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. In the current report period the nuclear design of the demonstration was begun. The design calls for 132 bundles of barrier fuel to be inserted into the core of Quad Cities Unit 2 at the beginning of Cycle 6. Laboratory and in-reactor tests were started to evaluate the stability of Zr-liner fuel which remains in service after a defect has occurred which allows water to enter the rod. Results to date on intentionally defected fuel indicate that the Zr-liner fuel is not rapidly degraded despite ingress of water

  19. Micromagnetic Simulation of Strain-Assisted Current-Induced Magnetization Switching

    Directory of Open Access Journals (Sweden)

    H. B. Huang

    2016-01-01

    Full Text Available We investigated the effect of substrate misfit strain on the current-induced magnetization switching in magnetic tunnel junctions by combining micromagnetic simulation with phase-field microelasticity theory. Our results indicate that the positive substrate misfit strain can decrease the critical current density of magnetization switching by pushing the magnetization from out-of-plane to in-plane directions, while the negative strain pushes the magnetization back to the out-of-plane directions. The magnetic domain evolution is obtained to demonstrate the strain-assisted current-induced magnetization switching.

  20. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  1. Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Sharma, Neeraj; Peterson, Vanessa K.

    2013-01-01

    Highlights: ► Links between time-dependent structural parameters and battery performance. ► Current-dependent evolution of the anode. ► Direct correlation of LixCoO 2 and LiC 6 structure with battery capacity. -- Abstract: This work uses real-time in situ neutron powder diffraction to study the electrode lattice response and anode phase evolution in a commercial lithium-ion battery. We show that the time-resolved lattice response of the Li x CoO 2 cathode and Li x C 6 anode under non-equilibrium conditions varies proportionally with the applied current, where higher current results in faster structural change. Higher current also reduces the Li x CoO 2 cathode c lattice parameter and the LiC 6 quantity that forms at the charged state of the battery, both of which are related to lower battery capacity. At the anode, we find that the Li x C 6 phase evolution is current-dependent

  2. Study of electron and ion fluxes in a microsecond plasma switch during current switch phase at power level of 0,2TW

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Bystritskij, V.M.; Karpov, V.B.; Krasik, Ya.E.; Lisitsin, I.V.; Sinebryukhov, A.A.

    1991-01-01

    Results of experimental study of dynamics of electron and ion losses in a microsecond plasma switch (PS), carring the short-circuited inductance load and operating with open potential electrode, are presented. Investigations were carried out at 'DUBL' microsecond generator with stored energy of 56 kJ and 300 kA current amplitude in inductive storage. The investigations showed that primary channel of energy losses, limiting microsecond plasma switch impedance, are energy losses: they constitute 70% of all losses under inductive load and 30% during operation with an open cathode. It was shown that ion current in PS attains its peak value by the end of conductivity phase and it does not increase in switch phase. With an open cathode, PS impedance is defined by an electron beam, forming during current switch phase and propagating towards external electrode end. In this high-current electron beam H + ions, accelerated up to 3.5-4.2 MeV energy, and outcoming from PS plasma boundary, were detected

  3. Newberry EGS Demonstration: Phase 2.2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Cladouhos, Trenton T. [AltaRock Energy, Seattle, WA (United States); Petty, Susan [AltaRock Energy, Seattle, WA (United States); Swyer, Mike W. [AltaRock Energy, Seattle, WA (United States); Nordin, Yini [AltaRock Energy, Seattle, WA (United States); Garrison, Geoff [AltaRock Energy, Seattle, WA (United States); Uddenberg, Matt [AltaRock Energy, Seattle, WA (United States); Grasso, Kyla [AltaRock Energy, Seattle, WA (United States); Stern, Paul [PLS Environmental, Boulder, CO (United States); Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Foulger, Gillian [Foulger Consulting, Palo Alto, CA (United States); Julian, Bruce [Foulger Consulting, Palo Alto, CA (United States)

    2015-07-03

    The Newberry Volcano EGS Demonstration is a five year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 ºC), dry well (NWG 55-29) drilled in 2008. In the fall of 2014, 9,500m3 (2.5 million gallons) of groundwater were injected at a maximum wellhead pressure of 195 bar (2850 psi) over 4 weeks of hydraulic stimulation. Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced. The fifteen-station microseismic array (MSA) located 398 seismic events, ranging in magnitude from M 0 to M 2.26. The next step is to drill a production well into the EGS reservoir. Advanced analysis of the microseismic data including hand picking of first arrivals, moment tensors, relative relocations, and velocity model improvements have resulted new higher-quality microseismic catalogs. These catalogs have been combined by relative weighting and gridding of seismic densities, resulting in probability-based maps and cross-sections, which have been used to plan a production well trajectory. The microseismic locations and times were also used to develop a reservoir diffusivity model, which can be used to evaluate stimulation plans such as dual-well stimulation.

  4. Fault Diagnosis of Three Phase Induction Motor Using Current Signal, MSAF-Ratio15 and Selected Classifiers

    Directory of Open Access Journals (Sweden)

    Glowacz A.

    2017-12-01

    Full Text Available A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, friction, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies – Ratio 15% of maximum of amplitude. A classification of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA and Nearest Neighbour classifier. The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, vibration signal together.

  5. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  6. SAD phasing: History, current impact and future opportunities.

    Science.gov (United States)

    Rose, John P; Wang, Bi-Cheng

    2016-07-15

    Single wavelength anomalous diffraction (SAD) can trace its beginnings to the early 1950s. Researchers at the time recognized that SAD offers some unique features that might be advantageous for crystallographic phasing, despite the fact that at that time recording accurate SAD data was problematic. In this review we will follow the trail from those early days, highlighting key advances in the field and interpreting them in terms on how they stimulated continued phasing development that produced the theoretical foundation for the routine macromolecular structure determination by SAD today. The technological advances over the past three decades in both hardware and software, which played a significant role in making SAD phasing a 'first choice method', will also be described. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    Science.gov (United States)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  8. Experimental study of the positive leader velocity as a function of the current in the initial and final-jump phases of a spark discharge

    International Nuclear Information System (INIS)

    Andreev, A. G.; Bazelyan, E. M.; Bulatov, M. U.; Kuzhekin, I. P.; Makalsky, L. M.; Sukharevskij, D. I.; Syssoev, V. S.

    2008-01-01

    A positive leader in air at gap lengths of up to 8 m was studied experimentally on an open experimental stand. The voltage source was a 6-MV pulsed voltage generator or an artificial charged aerosol cloud. The dependence of the leader velocity on the current in the range 0.2-8 A was determined by simultaneously recording the optical picture and electric parameters of the discharge. Particular attention was paid to the final-jump phase of the discharge, when the gap was completely bridged by the streamer zone of the leader. It is shown that the character of the dependence of the leader velocity on the current in this phase remains unchanged; hence, the final-jump phase can be used in experiments in which the current has to be varied within a wide range. For this purpose, one can use a damping resistance, which is inefficient in the initial phase. The parameters of the power-law dependence of the leader velocity on the current at currents of a few amperes are established reliably. It is found that the power-law dependence with constant parameters is inapplicable to calculate the leader velocity at currents of about 0.1 A, which correspond to the lower limit of the leader viability.

  9. Scintigraphic demonstration of single- or two-phase gastric emptying in diabetics

    International Nuclear Information System (INIS)

    Eikman, E.A.; Leichter, S.; Waldholtz, B.; Tenorio, L.; Brady, P.

    1989-01-01

    This paper discusses how a modified scintigraphic test of gastric emptying revealed two types of abnormal gastric emptying in diabetic patients. After ingestion of 100 mL of cooked egg whites labeled with 0.5 mCi of Tc-99m sulfur colloid, the geometric mean stomach radioactivity was recorded serially for 90 minutes. Linear regression computed for the log of radioactivity versus time facilitated recognition of changes in gastric emptying. In 16 of 25 consecutive diabetic patients with postprandial symptoms, initial slow emptying (half-life,>100 minutes) was observed. Single-phase emptying was shown in seven of these patients. In nine patients, the slow-emptying phase lasted up to 50 minutes, followed by a distinct second phase of normal or rapid emptying (half-life, <40 minutes). The existence of different gastric emptying implies differing mechanisms of delay and may be important in treatment

  10. Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Paar, N.; Vretenar, D.; Marketin, T.; Ring, P.

    2008-01-01

    Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described with the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random-phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on 12 C, 16 O, 56 Fe, and 208 Pb, and results compared with previous studies and available data. Through the use of the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on 16 O and 208 Pb target nuclei are analyzed as functions of the temperature and chemical potential

  11. Exploring topological phases with quantum walks

    International Nuclear Information System (INIS)

    Kitagawa, Takuya; Rudner, Mark S.; Berg, Erez; Demler, Eugene

    2010-01-01

    The quantum walk was originally proposed as a quantum-mechanical analog of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete-time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigations. In particular, we demonstrate that recent experimental realizations of quantum walks with cold atoms, photons, and ions simulate a nontrivial one-dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases, which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the nontrivial topological character of the system.

  12. PHARUS ASAR demonstrator

    NARCIS (Netherlands)

    Smith, A.J.E.; Bree, R.J.P. van; Calkoen, C.J.; Dekker, R.J.; Otten, M.P.G.; Rossum, W.L. van

    2001-01-01

    PHARUS is a polarimetric phased array C-band Synthetic Aperture Radar (SAR), designed and built for airborne use. Advanced SAR (ASAR) data in image and alternating polarization mode have been simulated with PHARUS to demonstrate the use of Envisat for a number of typical SAR applications that are

  13. Design and control of phased ICRF antenna arrays

    International Nuclear Information System (INIS)

    Goulding, R.H.; Baity, F.W.; Hoffman, D.J.

    1993-01-01

    Phased antenna arrays operating in the ion cyclotron range of frequencies (ICRF) are used to produce highly directional wave spectra, primarily for use in current drive experiments. RF current drive using phased antennas has been demonstrated in both the JET and DIII-D tokamaks, and both devices are planning to operate new four-element arrays beginning early next year. Features of antenna design that are relevant to phased operation and production of directional spectra are reviewed. Recent advances in the design of the feed circuits and the related control systems for these arrays should substantially improve their performance, by reducing the coupling seen by the matching networks and rf power supplies caused by the mutual impedance of the array elements. The feed circuit designs for the DIII-D and JET phased antenna arrays are compared. The two configurations differ significantly due to the fact that one power amplifier is used for the entire array in the former case, and one per element in the latter. The JET system uses automatic feedback control of matching, phase and amplitude of antenna currents, and the transmitter power balance. The design of this system is discussed, and a time dependent model used to predict its behavior is described

  14. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

    Directory of Open Access Journals (Sweden)

    Jelena Loncarski

    2015-04-01

    Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

  15. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Fourth semiannual report, July-December 1980

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1981-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts have been developed for possible demonstration: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the scope of this program one of these concepts had to be selected for a large-scale demonstration in a commercial power reactor. The selection was made to demonstrate Zr-liner fuel and to include bundles which have liners prepared from either low oxygen sponge zirconium or of crystal bar zirconium. The demonstration is intended to include a total of 132 barrier bundles in the reload for Quad Cities Unit 2, Cycle 6. In the current report period changes in the nuclear design were made to respond to changes in the Energy Utilization Plan for Quad Cities Unit 2. Bundle designs were completed, and were licensed for use in a BWR/3. The core specific licensing will be done as part of the reload license for Quad Cities Unit 2, Cycle 6

  16. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  17. Control of optically induced currents in semiconductor crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, Kapil Kumar

    2010-06-01

    The generation and control of optically induced currents has the potential to become an important building block for optical computers. Here, shift and rectification currents are investigated that emerge from a divergence of the optical susceptibility. It is known that these currents react to the shape of the impinging laser pulse, and especially to the shape of the pulse envelope. The main goal is the systematic manipulation of the pulse envelope with an optical pulse shaper that is integrated into a standard THz emission setup. The initial approach, the chirping of the laser pulse only has a weak influence on the envelope and the currents. Instead, a second approach is suggested that uses the combined envelope of a phase-stable pulse-pair as a parameter. In a laser pulse, the position of the maxima of the electrical field and the pulse envelope are shifted relative to each other. This shift is known as the Carrier-Envelope Phase (CEP). It is a new degree of freedom that is usually only accessible in specially stabilized systems. It is shown, that in a phase-stable pulse-pair, at least the relative CEP is usable as a new degree of freedom. It has a great influence on the shape of the pulse envelope and thus on the current density. It is shown that this approach enables the coherent control of the current density. The experiments are corroborated by a theoretical model of the system. The potential of this approach is demonstrated in an application. A framework is presented that uses an iterative genetic algorithm to create arbitrarily shaped THz traces. The algorithm controls the optical pulse shaper, and varies the phase of the impinging laser pulses until the desired target trace is found. (orig.)

  18. Beam-phase monitoring with non-destructive pickup

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.

    1995-01-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few open-quotes reference tunesclose quotes for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year's FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for open-quotes old-tuneclose quotes configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction

  19. Three-phase current transformer rectifier sets. High-voltage power supplies for difficult conditions in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Stackelberg, Josef von [Rico-Werk Eiserlo und Emmrich GmbH, Toenisvorst (Germany)

    2013-04-01

    The precipitation rate of electrostatic precipitators (ESP) highly depends on the consistency of waste gas. Among other things, electrical conductivity plays an important role as well as the ability of particles to be electrically charged or ionised. Within certain limits, common ESPs are able to clean waste gas satisfactorily. If the dust attributes exceed these limits, more sophisticated technical solutions are required in the ESP to meet the demands for the gas cleaning equipment. In these cases, a three phase transformer rectifier system offers an alternative to the conventional single phase system, as it delivers a smooth direct current voltage over a wide voltage range. (orig.)

  20. Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors

    Directory of Open Access Journals (Sweden)

    Bo Long

    2013-12-01

    Full Text Available Regenerative braking provides an effective way of extending the driving range of battery powered electric vehicles (EVs. This paper analyzes the equivalent power circuit and operation principles of an EV using regenerative braking control technology. During the braking period, the switching sequence of the power converter is controlled to inverse the output torque of the three-phase brushless direct-current (DC motor, so that the braking energy can be returned to the battery. Compared with the presented methods, this technology can achieve several goals: energy recovery, electric braking, ultra-quiet braking and extending the driving range. Merits and drawbacks of different braking control strategy are further elaborated. State-space model of the EVs under energy-regenerative braking operation is established, considering that parameter variations are unavoidable due to temperature change, measured error, un-modeled dynamics, external disturbance and time-varying system parameters, a sliding mode robust controller (SMRC is designed and implemented. Phase current and DC-link voltage are selected as the state variables, respectively. The corresponding control law is also provided. The proposed control scheme is compared with a conventional proportional-integral (PI controller. A laboratory EV for experiment is setup to verify the proposed scheme. Experimental results show that the drive range of EVs can be improved about 17% using the proposed controller with energy-regeneration control.

  1. Right-sided phase abnormalities on gated blood pool ventriculography: Demonstration of six different patterns

    International Nuclear Information System (INIS)

    Bahar, R.H.; Abdel-Dayem, H.M.; Ziada, G.; Al-Suhali, A.; Constantinides, C.; Nair, K.M.

    1986-01-01

    Phase pattern abnormalities on multiple gated blood pool ventriculography are better reported for the left ventricle (LV) than for the right side of the heart. In a study of 92 patients who also underwent contrast ventriculography, the authors identified six different patterns of right-sided phase abnormalities and their causes: right bundle-branch block, causing delayed phase in the entire right ventricle (RV); ischemic right coronary artery disease, causing delayed phase in the inferior RV wall; pericardial effusion, causing an L-shaped area of delayed phase to the right of the septum and below the LV; pulmonary hypertension, causing delayed phase in the pulmonary infundibulum; tricuspid regurgitation, causing a crescentic area of delayed phase around and below the right RV and extending below the LV as well, and atrial septal defect causing an abnormally large auricular phase

  2. PWM control of current source type six-phase inverter with improved waveforms by coupling reactor; Ketsugo reactor ni yori hakei kaizen sareta denryugata rokuso inverter no PWM seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Inami, K.; Danjo, M.; Kondo, Y.; Yamada, M. [Niihama Technical College, Ehime (Japan); Toki, K. [Shikoku Electric Power Co., Inc., Kagawa (Japan); Heike, J. [Shikoku Instrumentation Co. Ltd., Kagawa (Japan)

    1998-10-01

    A PWM method has been applied to a high capacity six phase current source inverter system in order to obtain sinusoidal output voltage and current. In this system, the three-phase coupling reactor is connected between the inverter output and an induction motor used as a load. Then the reactor eliminates harmonic components included in the inverter output current except 12k {+-} 1 (k=1,2,3)th order. As a result, the distortion factor of the inverter output current decreases. But the resonant circuit is composed of the capacitance of filter capacitor and the induction motor leakage inductance. Then the resonance current is superimposed on the induction motor phase currents. To solve this problem, the optimal PWM pattern is derived, so that the resonant current becomes very small. The order of the resonant frequency component of the induction motor phase current depend on the inverter frequency. Then total inverter frequency range is divided into several areas. The optimal PWM pattern is derived in each areas. As a result, the use of each optimal PWM pattern allows us to drive the induction motor, over a wide range of speed, under the condition of small distortion factor of phase currents. 5 refs., 10 figs., 1 tab.

  3. Imaging the Spatial Distribution of Transport Currents and the Phenomenon of Nanoscale Phase Separation Phenomenon in CMR Materials

    National Research Council Canada - National Science Library

    Banerjee, Satyajit

    2007-01-01

    ... by transport currents sent through materials. Based on the above objective it was planned to apply this technique to investigate fundamental issues like magnetic phase separation in colossal magneto resistive materials as well as to investigate...

  4. Lateral resolution of eddy current imaging

    International Nuclear Information System (INIS)

    Hassan, W.; Blodgett, M.; Nagy, P.B.

    2002-01-01

    Analytical, finite element simulation, and experimental methods were used to investigate the lateral resolution of eddy current microscopy. It was found that the lateral resolution of eddy current imaging is ultimately limited by the probe-coil geometry and dimensions, but both the inspection frequency and the phase angle can be used to optimize the resolution, to some degree, at the expense of sensitivity. Electric anisotropy exhibited by noncubic crystallographic classes of materials such as titanium alloys can play a very similar role in electromagnetic materials characterization of polycrystalline metals to that of elastic anisotropy in ultrasonic materials characterization. Our results demonstrate that eddy current microscopy can be enhanced via a high-resolution, small diameter probe-coil which delivers a unique materials characterization tool well suited for the evaluation of Ti alloys

  5. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil

    2016-01-01

    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  6. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    Science.gov (United States)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  7. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  8. Longitudinal motion in high current ion beams: a self-consistent phase space distribution with an envelope equation

    International Nuclear Information System (INIS)

    Neuffer, D.

    1979-03-01

    Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived

  9. DEMONSTRATION BULLETIN: GAS-PHASE CHEMICAL REDUCTION - ECO LOGIC INTERNATIONAL, INC.

    Science.gov (United States)

    The patented Eco Logic Process employs a gas-phase reduction reaction of hydrogen with organic and chlorinated organic compounds at elevated temperatures to convert aqueous and oily hazardous contaminants into a hydrocarbon-rich gas product. After passing through a scrubber, the ...

  10. Practical aspects of the use of three-phase alternating current electric machines in electricity storage system

    Science.gov (United States)

    Ciucur, Violeta

    2015-02-01

    Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.

  11. Project Half Double: Current Results of Phase 1 and Phase 2, December 2017

    DEFF Research Database (Denmark)

    Svejvig, Per; Thorp Adland, Karoline; Zippora Klein, Judith Birte

    ’s competitiveness and play an important role in the battle for jobs and future welfare. The overall goal is to deliver “Projects in half the time with double the impact” where projects in half the time should be understood as half the time to impact (benefit realization, effect is achieved) and not as half the time...... of Project Half Double was initiated in June 2015. It is a two-phase project: phase 1 took place from June 2015 to June 2016 with seven pilot projects, and phase 2 is in progress from July 2016 to July 2018 with 10 pilot projects. The Half Double consortium: Implement Consulting Group is the project leader....... 2016, Svejvig et al. 2017). This report’s target group inludes practitioners in Danish industry and society in general. The editorial team from Aarhus University prepared the report from October 2017 to December 2017, which means that data about pilot projects from December 2017 is not included....

  12. Dry cask storage: a Vepco/DOE/EPRI cooperative demonstration program

    International Nuclear Information System (INIS)

    Smith, M.L.

    1984-01-01

    In response to a Department of Energy (DOE) Solicitation for Cooperative Agreement Proposal, Virginia Electric and Power Company (Vepco) proposed to participate in a spent fuel storage demonstration program utilizing the dry cask storage technology. This proposed program includes dry cask storage at Vepco's Surry Nuclear Power Station and research and development activities at a DOE site in support of the licensed program at Surry. Phase I of Vepco's two-phase program involves a demonstration of the licensed dry cask storage of spent fuel in an inert atmosphere at the Surry Power Station site. Phase II of Vepco's proposed program will involve the demonstration of storing unconsolidated and consolidated spent fuel in dry casks filled only with air. This phase of the program will involve DOE site testing similar to Phase I and is expected to require an additional (fourth) cask to demonstrate storage of unconsolidated spent fuel in air-filled casks

  13. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  14. BWR Servicing and Refueling Improvement Program: Phase I summary report

    International Nuclear Information System (INIS)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development

  15. Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, John [Southern Company Services, Inc., Wilsonville, AL (United States)

    2017-10-01

    This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO2 capture process. This will occur via improvements in three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termed New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO2 capture rate with 95% CO2 purity at a cost of

  16. Removal of Direct Current Link Harmonic Ripple in Single Phase Voltage Source Inverter Systems Using Supercapacitors

    Science.gov (United States)

    2016-09-01

    Khaligh, “Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications...depth cycling operation in photovoltaic system ,” in 22nd International Conference “Mixed Design of Integrated Circuits and Systems ,” Toruń, Poland...CURRENT LINK HARMONIC RIPPLE IN SINGLE-PHASE VOLTAGE SOURCE INVERTER SYSTEMS USING SUPERCAPACITORS by Gabriel D. Hernandez September 2016

  17. Second Order Generalized Integrator Based Reference Current Generation Method for Single-Phase Shunt Active Power Filters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; Guerrero, Josep M.

    2013-01-01

    The reference current generation (RCG) is a crucial part in the control of a shunt active power filter (APF). A variety of RCG techniques have been proposed in literature. Among these, the instantaneous reactive power theory, called pq theory, is probably the most widely used technique. The pq...... theory offers advantages such as satisfactory steady-state and dynamic performance, and at the same time simple digital implementation, however its application was limited to three-phase systems. To exploit the advantages of pq theory in single-phase systems, the single-phase pq theory has been proposed...... recently. In this paper, a simple and effective implementation of the single phase pq theory for single-phase shunt APFs is proposed. The suggested approach is based on employing second order generalized integrators (SOGI), and a phase locked loop (PLL). To fine tune the control parameters, a systematic...

  18. Common-Mode Voltage Reduction of Three-to-Five Phase Indirect Matrix Converters with Zero-Current Vector Modulation

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Yang, Jian; Yang, Yongheng

    2017-01-01

    In order to reduce the Common-Mode Voltage (CMV) in three-to-five phase indirect matrix converters, three improved Space Vector Pulse Width Modulation (SVPWM) methods are proposed and discussed. The improved modulation schemes are achieved by reorganizing zero vectors from the inversion stage......) in the inversion stage, which results in a large amount of third-order harmonics in output currents. In addition, the method that utilizes two adjacent active current vectors (ACVs) and the method that uses two non-adjacent ACVs in the rectification stage have the same CMV peak value. By contrast, the latter...... achieves a lower Total Harmonic Distortion (THD) level of the output currents. Simulation results verify the effectiveness of the proposed methods....

  19. Optical Verification Laboratory Demonstration System for High Security Identification Cards

    Science.gov (United States)

    Javidi, Bahram

    1997-01-01

    Document fraud including unauthorized duplication of identification cards and credit cards is a serious problem facing the government, banks, businesses, and consumers. In addition, counterfeit products such as computer chips, and compact discs, are arriving on our shores in great numbers. With the rapid advances in computers, CCD technology, image processing hardware and software, printers, scanners, and copiers, it is becoming increasingly easy to reproduce pictures, logos, symbols, paper currency, or patterns. These problems have stimulated an interest in research, development and publications in security technology. Some ID cards, credit cards and passports currently use holograms as a security measure to thwart copying. The holograms are inspected by the human eye. In theory, the hologram cannot be reproduced by an unauthorized person using commercially-available optical components; in practice, however, technology has advanced to the point where the holographic image can be acquired from a credit card-photographed or captured with by a CCD camera-and a new hologram synthesized using commercially-available optical components or hologram-producing equipment. Therefore, a pattern that can be read by a conventional light source and a CCD camera can be reproduced. An optical security and anti-copying device that provides significant security improvements over existing security technology was demonstrated. The system can be applied for security verification of credit cards, passports, and other IDs so that they cannot easily be reproduced. We have used a new scheme of complex phase/amplitude patterns that cannot be seen and cannot be copied by an intensity-sensitive detector such as a CCD camera. A random phase mask is bonded to a primary identification pattern which could also be phase encoded. The pattern could be a fingerprint, a picture of a face, or a signature. The proposed optical processing device is designed to identify both the random phase mask and the

  20. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    International Nuclear Information System (INIS)

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-01-01

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  1. Prospects for versatile phase manipulation in the TEM: Beyond aberration correction

    International Nuclear Information System (INIS)

    Guzzinati, Giulio; Clark, Laura; Béché, Armand; Juchtmans, Roeland; Van Boxem, Ruben; Mazilu, Michael; Verbeeck, Jo

    2015-01-01

    In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose's legacy in aberration correction and electron optics in general would open an exciting field of research and applications. - Highlights: • We offer a review of available phase manipulation techniques. • We demonstrate a method for producing Airy waves through aberration manipulation. • We outline hypothetical applications of arbitrary phase manipulation methods

  2. Current Harmonics Cancellation in Three-Phase Four-Wire Systems by Using a Four-Branch Star Filtering Topology

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Candela, J. I.; Luna, A.

    2009-01-01

    This paper presents a new solution for filtering current harmonics in three-phase four-wire networks. The original four-branch star (FBS) filter topology presented in this paper is characterized by a particular layout of single-phase inductances and capacitors, without using any transformer......, a specific implementation of a three-phase four-wire hybrid power filter is presented as an illustrative application of the filtering topology. An extensive evaluation using simulation and experimental results from a DSP-based laboratory prototype is conducted in order to verify and validate the good...... only passive components are employed, or as a hybrid filter, when its behavior is improved by integrating a power converter into the filter structure. The paper analyzes the proposed topology, and derives fundamental concepts about the control of the resulting hybrid power filter. From this analysis...

  3. Component Fragility Research Program: Phase 1, Demonstration tests: Volume 1, Summary report

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.; Shipway, G.D.; Glozman, V.

    1987-08-01

    This report describes tests performed in Phase I of the NRC Component Fragility Research Program. The purpose of these tests was to demonstrate procedures for characterizing the seismic fragility of a selected component, investigating how various parameters affect fragility, and finally using test data to develop practical fragility descriptions suitable for application in probabilistic risk assessments. A three-column motor control center housing motor controllers of various types and sizes as well as relays of different types and manufacturers was subjected to seismic input motions up to 2.5g zero period acceleration. To investigate the effect of base flexibility on the structural behavior of the MCC and on the functional behavior of the electrical devices, multiple tests were performed on each of four mounting configurations: four bolts per column with top bracking, four bolts per column with no top brace, four bolts per column with internal diagonal bracking, and two bolts per column with no top or internal bracking. Device fragility was characterized by contact chatter correlated to local in-cabinet response at the device location. Seismic capacities were developed for each device on the basis of local input motion required to cause chatter; these results were then applied to develop probabilistic fragility curves for each type of device, including estimates of the ''high-confidence low probability of failure'' capacity of each

  4. Phase 1: ISOCELL demonstration test performance review

    International Nuclear Information System (INIS)

    Chatwin, T.D.

    1991-04-01

    This document consolidates and organizes information available concerning cryogenic retrieval of hazardous, radioactive, and mixed wastes and is mainly derived from a report on the ISOCELL Demonstration Project prepared by Concept RKK, Ltd. ISOCELL cryogenic technology is designed to immobilize hazardous, radioactive, and mixed waste by creating a block of frozen waste and soil that can be safely retrieved, stored, transported, and treated with a minimum of dust. A test of the ISOCELL process was conducted in Carnation, Washington by Concept RKK, Ltd. Test conditions were compared to possible testing conditions at Idaho National Engineering Laboratory. Results indicate ISOCELL technology successfully froze wet soil into a soil block capable of being lifted. 5 refs., 6 figs., 1 tab

  5. An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Xiaobo Dou

    2015-07-01

    Full Text Available Inverter voltage control is an important task in the operation of a DC/AC microgrid system. To improve the inverter voltage control dynamics, traditional approaches attempt to measure and feedforward the load current, which, however, needs remote measurement with communications in a microgrid system with distributed loads. In this paper, a load current observer (LCO based control strategy, which does not need remote measurement, is proposed for sinusoidal signals tracking control of a three-phase inverter of the microgrid. With LCO, the load current is estimated precisely, acting as the feedforward of the dual-loop control, which can effectively enlarge the stability margin of the control system and improve the dynamic response to load disturbance. Furthermore, multiple PR regulators are applied in this strategy conducted in a stationary  frame to suppress the transient fluctuations and the total harmonic distortion (THD of the output voltage and achieve faster transient performance compared with traditional dual-loop control in a rotating dq0 frame under instantaneous change of various types of load (i.e., balanced load, unbalanced load, and nonlinear load. The parameters of multiple PR regulators are analyzed and selected through the root locus method and the stability of the whole control system is evaluated and analyzed. Finally, the validity of the proposed approach is verified through simulations and a three-phase prototype test system with a TMS320F28335 DSP.

  6. Prototype scale demonstration of CECE detritiation

    International Nuclear Information System (INIS)

    Sadhankar Ramesh; Cobanoglu, Macit

    2004-01-01

    AECL has developed and demonstrated the Combined Electrolysis and Catalytic Exchange (CECE) Process for detritiation of heavy water. Although CECE has been the subject of pilot-scale demonstrations by various organizations, AECL is the first to demonstrate this technology in an industrial prototype plant. AECL designed, built and operated a CECE demonstration facility under CAN/CSA N286 Quality Assurance Program. The facility was licensed by the Canadian nuclear regulator. This was a two-fold demonstration of the CECE technology - for upgrading (removal of light water) and for detritiation of heavy water. In 1998 June, AECL began operating the facility in upgrading mode. The design feed rate ranged up to 25 Mg/a for 95 mol% D 2 O feed water. After 18 months of operation in upgrading mode, the facility was reconfigured and operated for an additional 9 months from 2000 August in detritiation mode. Design capacity for detritiation was 5 Mg/a with a detritiation factor (DF) of 100. However, significantly higher DFs, up to 56 000, were demonstrated. Highlights of the detritiation demonstration were: Proven robustness of AECL's proprietary wetproofed catalyst for Liquid Phase Catalytic Exchange; Demonstration of a trickle-bed-recombiner for stoichiometric combination of deuterium and oxygen; Demonstration of electrolysis of highly tritiated heavy water; High process availability and controllability was demonstrated by a long interrupted run; Low emissions; Demonstration of high DF - up to 56 000 - a significant advantage of the CECE process over other approaches to detritiation; Validation of AECL's simulation code for the CECE process over a range of DFs from 100 to 50 000. Apart from the technology, AECL has expertise in all aspects of setting up a new detritiation facility including design, engineering, safety assessment, licensing support, project management and training. AECL is also the engineering and design contractor for a tritium removal facility that is under

  7. Simulation of High-current Pulse Effect on the Electrode with Nonlinear Material Characteristics and Phase Transitions Taken into Account

    Directory of Open Access Journals (Sweden)

    R. V. Arutjunjan

    2016-01-01

    Full Text Available The article investigates the thermal and electrical processes when heating the metal electrode by a high current pulse. The aim is to understand an impact nature of the nonlinearities of thermal parameters, the phase transitions of melting and evaporation, and the type of boundary conditions in the current spot. To solve the problem was formulated a mathematical model, and were also developed a finite-difference method and computer programmes which allow an effective computer simulations of thermal and electrical processes under the high current pulse impact on the metal electrodes. The Stefan problem is solved by the through "enthalpy" method. Calculation of the electric field is performed by Seidel iteration. Thermal and current balance and comparison with solution results of model problems allow computer error monitoring.The work involved a series of calculations for an informative case of iron. It enabled to find a significant influence of the nonlinearities of thermal parameters, the phase transitions of melting and evaporation, the type of boundary conditions on the values of the temperature and electric fields, especially in the vicinity of the current spot. The presence of high current density and temperature, respectively, in the vicinity of the current spot edge confirms the well-known hypothesis about the causes of contact welding on the edges of the contact area. It has been found that the impact of losses on radiation and convection cooling is negligible. The article continues and complements the well-known research in the theory of electrical contacts and welding processes based on detailed consideration of the electrode material properties, the nonlinearities, and a type of boundary conditions for temperature and electric fields.The results can be used in the practice in research and design of electrical machines and other electrical devices.The study has revealed the need to improve the enthalpy finite- difference method for

  8. Feasibility study of current pulse induced 2-bit/4-state multilevel programming in phase-change memory

    Science.gov (United States)

    Liu, Yan; Fan, Xi; Chen, Houpeng; Wang, Yueqing; Liu, Bo; Song, Zhitang; Feng, Songlin

    2017-08-01

    In this brief, multilevel data storage for phase-change memory (PCM) has attracted more attention in the memory market to implement high capacity memory system and reduce cost-per-bit. In this work, we present a universal programing method of SET stair-case current pulse in PCM cells, which can exploit the optimum programing scheme to achieve 2-bit/ 4state resistance-level with equal logarithm interval. SET stair-case waveform can be optimized by TCAD real time simulation to realize multilevel data storage efficiently in an arbitrary phase change material. Experimental results from 1 k-bit PCM test-chip have validated the proposed multilevel programing scheme. This multilevel programming scheme has improved the information storage density, robustness of resistance-level, energy efficient and avoiding process complexity.

  9. A Review on Current Reference Calculation of Three-Phase Grid-Connected PV Converters under Grid Faults

    DEFF Research Database (Denmark)

    Afshari, Ehsan; Moradi, Gholam Reza; Yang, Yongheng

    2017-01-01

    Unbalanced grid voltage dips may lead to unbalanced non-sinusoidal current injections, dc-link voltage oscillations, and active and/or reactive power oscillations with twice the grid fundamental frequency in three-phase grid-connected Photovoltaic (PV) systems. Double grid frequency oscillations...... of the most important issues that should be coped with for a reliable operation of grid-connected converters under unbalanced grid faults. Accordingly, this paper reviews the existing CRC methods and presents a current reference generation method, which can have 16 unique modes. Issues are also investigated...... at the dc-link of the conventional two-stage PV inverters can further deteriorate the dc-link capacitor, which is one of the most life-limiting components in the system. Proper controls of these converters may efficiently address this problem. In those solutions, Current Reference Calculation (CRC) is one...

  10. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  11. Optimal multi-photon phase sensing with a single interference fringe

    Science.gov (United States)

    Xiang, G. Y.; Hofmann, H. F.; Pryde, G. J.

    2013-01-01

    Quantum entanglement can help to increase the precision of optical phase measurements beyond the shot noise limit (SNL) to the ultimate Heisenberg limit. However, the N-photon parity measurements required to achieve this optimal sensitivity are extremely difficult to realize with current photon detection technologies, requiring high-fidelity resolution of N + 1 different photon distributions between the output ports. Recent experimental demonstrations of precision beyond the SNL have therefore used only one or two photon-number detection patterns instead of parity measurements. Here we investigate the achievable phase sensitivity of the simple and efficient single interference fringe detection technique. We show that the maximally-entangled “NOON” state does not achieve optimal phase sensitivity when N > 4, rather, we show that the Holland-Burnett state is optimal. We experimentally demonstrate this enhanced sensitivity using a single photon-counted fringe of the six-photon Holland-Burnett state. Specifically, our single-fringe six-photon measurement achieves a phase variance three times below the SNL. PMID:24067490

  12. Effects of menstrual cycle phase on cocaine self-administration in rhesus macaques.

    Science.gov (United States)

    Cooper, Ziva D; Foltin, Richard W; Evans, Suzette M

    2013-01-01

    Epidemiological findings suggest that men and women vary in their pattern of cocaine use resulting in differences in cocaine dependence and relapse rates. Preclinical laboratory studies have demonstrated that female rodents are indeed more sensitive to cocaine's reinforcing effects than males, with estrous cycle stage as a key determinant of this effect. The current study sought to extend these findings to normally cycling female rhesus macaques, a species that shares a nearly identical menstrual cycle to humans. Dose-dependent intravenous cocaine self-administration (0.0125, 0.0250, and 0.0500 mg/kg/infusion) using a progressive-ratio schedule of reinforcement was determined across the menstrual cycle. The menstrual cycle was divided into 5 discrete phases - menses, follicular, periovulatory, luteal, and late luteal phases - verified by the onset of menses and plasma levels of estradiol and progesterone. Dependent variables including number of infusions self-administered per session, progressive ratio breakpoint, and cocaine intake were analyzed according to cocaine dose and menstrual cycle phase. Analysis of plasma hormone levels verified phase-dependent fluctuations of estradiol and progesterone, with estrogen levels peaking during the periovulatory phase, and progesterone peaking during the luteal phase. Progressive ratio breakpoint, infusions self-administered, and cocaine intake did not consistently vary based on menstrual cycle phase. These findings demonstrate that under the current experimental parameters, the reinforcing effects of cocaine did not vary across the menstrual cycle in a systematic fashion in normally cycling rhesus macaques. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Geometry of duskside equatorial current during magnetic storm main phase as deduced from magnetospheric and low-altitude observations

    Directory of Open Access Journals (Sweden)

    S. Dubyagin

    2013-03-01

    Full Text Available We present the results of a coordinated study of the moderate magnetic storm on 22 July 2009. The THEMIS and GOES observations of magnetic field in the inner magnetosphere were complemented by energetic particle observations at low altitude by the six NOAA POES satellites. Observations in the vicinity of geosynchronous orbit revealed a relatively thin (half-thickness of less than 1 RE and intense current sheet in the dusk MLT sector during the main phase of the storm. The total westward current (integrated along the z-direction on the duskside at r ~ 6.6 RE was comparable to that in the midnight sector. Such a configuration cannot be adequately described by existing magnetic field models with predefined current systems (error in B > 60 nT. At the same time, low-altitude isotropic boundaries (IB of > 80 keV protons in the dusk sector were shifted ~ 4° equatorward relative to the IBs in the midnight sector. Both the equatorward IB shift and the current strength on the duskside correlate with the Sym-H* index. These findings imply a close relation between the current intensification and equatorward IB shift in the dusk sector. The analysis of IB dispersion revealed that high-energy IBs (E > 100 keV always exhibit normal dispersion (i.e., that for pitch angle scattering on curved field lines. Anomalous dispersion is sometimes observed in the low-energy channels (~ 30–100 keV. The maximum occurrence rate of anomalous dispersion was observed during the main phase of the storm in the dusk sector.

  14. Demonstrator study for micro-ranging-laser device

    Science.gov (United States)

    Henkel, Hartmut; Bernhardt, Bodo; Pereira do Carmo, J.

    2017-11-01

    Within ESA's Innovation Triangle Initiative (ITI) a demonstrator breadboard for a micro-ranging-laser device "MYLRAD" has been developed. Its working principle is the measurement of the round-trip delay time of a laser beam as a phase shift. The demonstrator consists of the laser diode (30 mW, square wave AM), optics, APD detector, narrowband preamplifier, limiter, and a phase digitiser based on a novel noise-shaping synchroniser (NSS) circuit; this works without ADCs and can be built from rad-hard components for space. The system timing and the digitiser algorithm are performed by an FPGA. The demonstrator has been tested at ranges from 1 m to 30 m. With a static non-cooperative target an RMS noise of 1 mm at a result rate of 60 Hz was reached. The demonstrator needs less than 2.5 W power.

  15. Plasma current sustainment after iron core saturation in the STOR-M tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O., E-mail: omitarai@ktmail.tokai-u.jp [Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652 (Japan); Ding, Y.; Hubeny, M.; Lu, Y.; Onchi, T.; McColl, D.; Xiao, C.; Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada)

    2014-10-15

    Highlights: • Plasma current can be started up by small iron core without central solenoid. • Iron core removes central solenoid. • Plasma current can be maintained after iron core saturation. • Hysteresis curve shows the partial core saturation. • Image field from iron core is estimated during discharge. • Spherical tokamak reactor without CS is proposed using the small iron core. - Abstract: We propose to use of a small iron core transformer to start up the plasma current in a spherical tokamak (ST) reactor without central solenoid (CS). Taking advantage of the high aspect ratio of the STOR-M iron core tokamak, we have demonstrated that the plasma current up to 10–15 kA can be started up using the outer Ohmic heating (OH) coils without CS, and that the plasma current can be maintained further by increasing the outer OH coil current during iron core saturation phase. When the magnetizing current reaches 1.2 kA and the iron core becomes saturated, the third capacitor bank connected to the outer OH coils is discharged to maintain the plasma current. The plasma current is slightly increased and maintained for additional 5 ms as expected from numerical calculations. Core saturation has been clearly observed on the hysteresis curve. This is the first experimental demonstration of the feasibility of slow transition from the iron core to air core transformer phase without CS. The results implies that a plasma current can be initiated by a small iron core and could be ramped up by additional heating and vertical field after iron core saturation in future STs without CS.

  16. The Kwajalein bioremediation demonstration: Final technical report

    International Nuclear Information System (INIS)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail

  17. Vortex depinning as a nonequilibrium phase transition phenomenon: Scaling of current-voltage curves near the low and the high critical-current states in 2 H -Nb S2 single crystals

    Science.gov (United States)

    Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.

    2018-04-01

    The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.

  18. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  19. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  20. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  1. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  2. MODIL cryocooler producibility demonstration project results

    International Nuclear Information System (INIS)

    Cruz, G.E.; Franks, R.M.

    1993-01-01

    The production of large quantities of spacecraft needed by SDIO will require a cultural change in design and production practices. Low rates production and the need for exceedingly high reliability has driven the industry to custom designed, hand crafted, and exhaustively tested satellites. These factors have mitigated against employing design and manufacturing cost reduction methods commonly used in tactical missile production. Additional challenges to achieving production efficiencies are presented by the SDI spacecraft mission requirement. IR sensor systems, for example, are comprised of subassemblies and components that require the design, manufacture, and maintenance of ultra precision tolerances over challenging operational lifetimes. These IR sensors demand the use of reliable, closed loop, cryogenic refrigerators or active cryocoolers to meet stringent system acquisition and pointing requirements. The authors summarize some spacecraft cryocooler requirements and discuss observations regarding Industry's current production capabilities of cryocoolers. The results of the Lawrence Livermore National Laboratory (LLNL) Spacecraft Fabrication and Test (SF and T) MODIL's Phase I producibility demonstration project is presented

  3. About the influence of phase mixing process and current neutralization on the resistive sausage instability dynamics of a relativistic electron beam

    Science.gov (United States)

    Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Zelensky, A. G.

    2018-05-01

    The resistive sausage instability of the relativistic electron beam in dense gas-plasma medium in the case of the generation of equilibrium return plasma current is investigated. In this situation the eigenvalue equation of this instability is obtained. The stabilizing and destabilizing effects of the phase mixing and generation of the return plasma current respectively have been shown.

  4. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 8 discusses Control System SOT Tests Results and Analysis Report. This is a continuation of Book 7

  5. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  6. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  7. Demonstration of inherent safety features of HTGRs using the HTTR

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Nakagawa, Shigeaki; Nakazawa, Toshio; Iyoku, Tatsuo

    2004-01-01

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are conducted for the purpose of demonstrating inherent safety features of High Temperature Gas-cooled Reactors (HTGRs) quantitatively as well as providing the core and plant transient data for validation of HTGR analysis codes for safety evaluation. The safety demonstration test are divided to the first phase and second phase tests. In the first phase tests, simulation tests of anticipated operational occurrences and anticipated transients without scram (ATWS) are conducted. The second phase tests will simulate accidents such as a depressurization accident (loss of coolant accident). The first phase test simulating reactivity insertion events and coolant flow reduction events stared in FY 2002. Post-test analyses have been conducted to reproduced the test results by using the core and plant dynamics analysis code, ACCORD and Monte Carlo code, MVP. The analysis results agreed fairly well with the test results of a control rod withdrawal test simulating reactivity insertion, and gas circulators trip test simulating coolant flow reduction, at power levels of 50% and 30% of the rated power, respectively. It is shown that improvement of the ACCORD code by taking into consideration vertical and horizontal temperature distribution gives better analysis results in the control rod withdrawal test. The fist phase safety demonstration tests will continue until FY 2005, and the second phase tests are planned to be started in FY 2006. (author)

  8. Classroon demonstration: Foucault s currents explored by the computer hard disc (HD

    Directory of Open Access Journals (Sweden)

    Jorge Roberto Pimentel

    2008-09-01

    Full Text Available This paper making an experimental exploration of Foucault s currents (eddy currents through a rotor magnetically coupled to computer hard disc (HD that is no longer being used. The set-up allows to illustrate in a stimulating way electromagnetism classes in High Schools for mean of the qualitative observations of the currents which are created as consequence of the movement of an electric conductor in a region where a magnetic field exists.

  9. Detection of second harmonic of phase dependence of superconducting current in Nb/Au/YBCO heterojunctions

    CERN Document Server

    Komissinskij, F V; Ilichev, E V; Ivanov, Z G

    2001-01-01

    The results of the experimental study on the current phase dependence (CPD) of the heterotransitions, consisting of the niobium and the YBa sub 2 Cu sub 3 O sub x (YBCO) film with an additional interlayer from gold (Nb/Au/YBCO) are presented. The CPD measurement is carried out through the radiofrequency superconducting quantum interferometer. The CPD second harmonic is determined in the Nb/Au/YBCO heterotransitions. Possible causes of its appearance are discussed within the frames of the d +- s combined symmetry of the YBCO order parameter. One of the causes of the CPD second harmonic appearance is the twinning of the YBCO films (001). The second cause of existing the anomalously high critical current consists in the availability of the Nb/Au boundary with the transparence of approx 10 sup - sup 1 in the Nb/Au/YBCO

  10. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  11. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  12. Additional phase information from UV damage of selenomethionine labelled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, Daniele de [ESRF, Structural Biology Group, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Tucker, Paul A.; Panjikar, Santosh, E-mail: panjikar@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2011-05-01

    Successful examples of ultraviolet radiation-damage-induced phasing with anomalous scattering from selenomethionine protein crystals have been demonstrated. Currently, selenium is the most widely used phasing vehicle for experimental phasing, either by single anomalous scattering or multiple-wavelength anomalous dispersion (MAD) procedures. The use of the single isomorphous replacement anomalous scattering (SIRAS) phasing procedure with selenomethionine containing proteins is not so commonly used, as it requires isomorphous native data. Here it is demonstrated that isomorphous differences can be measured from intensity changes measured from a selenium labelled protein crystal before and after UV exposure. These can be coupled with the anomalous signal from the dataset collected at the selenium absorption edge to obtain SIRAS phases in a UV-RIPAS phasing experiment. The phasing procedure for two selenomethionine proteins, the feruloyl esterase module of xylanase 10B from Clostridium thermocellum and the Mycobacterium tuberculosis chorismate synthase, have been investigated using datasets collected near the absorption edge of selenium before and after UV radiation. The utility of UV radiation in measuring radiation damage data for isomorphous differences is highlighted and it is shown that, after such measurements, the UV-RIPAS procedure yields comparable phase sets with those obtained from the conventional MAD procedure. The results presented are encouraging for the development of alternative phasing approaches for selenomethionine proteins in difficult cases.

  13. Co-current descending two-phase flows in inclined packed beds : experiments versus simulations

    Energy Technology Data Exchange (ETDEWEB)

    Atta, A.; Nigam, K.D.P.; Roy, S. [Inst. of Technology, New Delhi (India). Dept. of Chemical Engineering; Schubert, M.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2010-10-15

    This paper presented a numerical simulation for an inclined packed bed configuration for two-phase co-current downward flow. A two-phase Eulerian computational fluid dynamics (CFD) model was used to predict the hydrodynamic behaviour. Two different modelling strategies were compared, notably a straight tube with an artificially inclined gravity, and an inclined geometry with straight gravity. The effect of inclination angle of a packed bed on its gas-liquid flow segregation and liquid saturation spatial distribution was measured for varying inclinations and fluid velocities. The CFD model was adapted from a trickle-bed vertical configuration and based on the porous media concept. The predicted pressure drops for the inclined gravity were found to be insensitive to inclination. Therefore, simulations to study the parameters that influence the reduced liquid saturation were performed only with the inclined geometry case. Experimental data obtained using electrical capacitance tomography was used to validate the model predictions. The study showed that a trickle bed CFD model for vertically straight reactors can be effectively implemented in inclined reactor geometries. However, additional research is needed to formulate appropriate drag force closures which should be incorporated in the CFD model for improved quantitative estimation of inclined bed hydrodynamics. 22 refs., 10 figs.

  14. Three-Phase Harmonic Analysis Method for Unbalanced Distribution Systems

    Directory of Open Access Journals (Sweden)

    Jen-Hao Teng

    2014-01-01

    Full Text Available Due to the unbalanced features of distribution systems, a three-phase harmonic analysis method is essential to accurately analyze the harmonic impact on distribution systems. Moreover, harmonic analysis is the basic tool for harmonic filter design and harmonic resonance mitigation; therefore, the computational performance should also be efficient. An accurate and efficient three-phase harmonic analysis method for unbalanced distribution systems is proposed in this paper. The variations of bus voltages, bus current injections and branch currents affected by harmonic current injections can be analyzed by two relationship matrices developed from the topological characteristics of distribution systems. Some useful formulas are then derived to solve the three-phase harmonic propagation problem. After the harmonic propagation for each harmonic order is calculated, the total harmonic distortion (THD for bus voltages can be calculated accordingly. The proposed method has better computational performance, since the time-consuming full admittance matrix inverse employed by the commonly-used harmonic analysis methods is not necessary in the solution procedure. In addition, the proposed method can provide novel viewpoints in calculating the branch currents and bus voltages under harmonic pollution which are vital for harmonic filter design. Test results demonstrate the effectiveness and efficiency of the proposed method.

  15. Decommissioning and reclamation of the Beaverlodge uranium mine-mill operation: current state of the transition phase

    International Nuclear Information System (INIS)

    Phillips, R.L.J.; Himbeault, K.T.; Topp, B.J.; Halbert, B.E.; Fernandes, S.L.

    2000-01-01

    The Beaverlodge uranium mining and milling facilities were operated from 1952 to 1981 with about 94% of the ore extracted from the main underground mine and 6% from smaller satellite deposits. Decommissioning work occurred from 1982 to 1985 involving periods of shutdown, salvage and reclamation. Transition phase monitoring, leading to eventual delicencing commenced in July 1985. Over the last 15 years, discharge from the tailings management facility (TMF) and a fresh water stream, impacted during the operational phase by tailings spills, has improved in water quality for most parameters of concern. Loadings to the environment of three key contaminants (radium-226, total dissolved solids and uranium) have consistently been less than during the operational phase with radium-226 having the greatest variability. Outstanding environmental issues associated with the recovering drainage system formerly used for tailings disposal, are being addressed in an enhanced environmental monitoring program to commence in 2000. Changes in water chemistry and the natural re-introduction of aquatic organisms are issues of concern. In the meantime, application for release from selected satellite areas commenced in 1999. This paper reviews the issues which have arisen during the transition phase, outlines how they have and are being addressed, and provides a comparison of original and current predictions of the recovery process underway at the former Beaverlodge mine site. (author)

  16. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Third semiannual report, January-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, H.S. (comp.)

    1980-09-01

    Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the work scope of this program one of these concepts is to be selected for demonstration in a commercial power reactor. It was decided to demonstrate Zr-liner in 132 bundles which have liners of either crystal-bar zirconium or of low-oxygen sponge zirconium in the reload for Quad Cities Unit 2, Cycle 6. Irradiation testing or barrier fuel was continued, and the superior PCI resistance of Zr-liner fuel was further substantiated in the current report period. Furthermore, an irradiation experiment in which Zr-liner fuel, having a deliberately fabricated cladding perforation, was operated at a linear heat generation rate of 35 kW/m to a burnup of approx. 3 MWd/kg U showed no unusual signs of degradation compared with a similarly defected reference fuel rod. Four lead test assemblies of barrier fuel (two of Zr-liner and two of Cu-barrier), presently under irradiation in Quad Cities Unit 1, have achieved a burnup of 11 MWd/kg U.

  17. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Third semiannual report, January-June 1980

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1980-09-01

    Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the work scope of this program one of these concepts is to be selected for demonstration in a commercial power reactor. It was decided to demonstrate Zr-liner in 132 bundles which have liners of either crystal-bar zirconium or of low-oxygen sponge zirconium in the reload for Quad Cities Unit 2, Cycle 6. Irradiation testing or barrier fuel was continued, and the superior PCI resistance of Zr-liner fuel was further substantiated in the current report period. Furthermore, an irradiation experiment in which Zr-liner fuel, having a deliberately fabricated cladding perforation, was operated at a linear heat generation rate of 35 kW/m to a burnup of approx. 3 MWd/kg U showed no unusual signs of degradation compared with a similarly defected reference fuel rod. Four lead test assemblies of barrier fuel (two of Zr-liner and two of Cu-barrier), presently under irradiation in Quad Cities Unit 1, have achieved a burnup of 11 MWd/kg U

  18. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  19. CONCEPTUAL ANALYSIS OF THE CURRENT PHASE DEVELOPMENT OF RELATIONS BETWEEN RUSSIA AND ISRAEL

    Directory of Open Access Journals (Sweden)

    Yuri B. Bocharov

    2013-01-01

    Full Text Available The article dedicated to analysis of Russian-Israeli international business relations by using of all the arsenal of modern methods. The article investigates the possibility of using the geo-political, geo-economic and geo-cultural approaches to definition of optimal ways of relations between the two countries' development. It demonstrates that due to the historical and cultural features of the nature of relations between those two countries, geo-cultural approach is more preferable. Also, the article shows that this approach of the analysis is not often used for the analysis of relations of Russia with other countries. The geo-cultural approach of analysis had used for elaboration of suggestions of new phase of development of business relations between Russia and Israel.

  20. Neural network-based voltage regulator for an isolated asynchronous generator supplying three-phase four-wire loads

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhim; Kasal, Gaurav Kumar [Department of Electrical Engineering, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016 (India)

    2008-06-15

    This paper deals with a neural network-based solid state voltage controller for an isolated asynchronous generator (IAG) driven by constant speed prime mover like diesel engine, bio-gas or gasoline engine and supplying three-phase four-wire loads. The proposed control scheme uses an indirect current control and a fast adaptive linear element (adaline) based neural network reference current extractor, which extracts the real positive sequence current component without any phase shift. The neutral current of the source is also compensated by using three single-phase bridge configuration of IGBT (insulated gate bipolar junction transistor) based voltage source converter (VSC) along-with single-phase transformer having self-supported dc bus. The proposed controller provides the functions as a voltage regulator, a harmonic eliminator, a neutral current compensator, and a load balancer. The proposed isolated electrical system with its controller is modeled and simulated in MATLAB along with Simulink and PSB (Power System Block set) toolboxes. The simulated results are presented to demonstrate the capability of an isolated asynchronous generating system driven by a constant speed prime mover for feeding three-phase four-wire loads. (author)

  1. Design and implementation of predictive current control of three-phase PWM rectifier using space-vector modulation (SVM)

    International Nuclear Information System (INIS)

    Bouafia, Abdelouahab; Gaubert, Jean-Paul; Krim, Fateh

    2010-01-01

    This paper is concerned with the design and implementation of current control of three-phase PWM rectifier based on predictive control strategy. The proposed predictive current control technique operates with constant switching frequency, using space-vector modulation (SVM). The main goal of the designed current control scheme is to maintain the dc-bus voltage at the required level and to achieve the unity power factor (UPF) operation of the converter. For this purpose, two predictive current control algorithms, in the sense of deadbeat control, are developed for direct controlling input current vector of the converter in the stationary α-β and rotating d-q reference frame, respectively. For both predictive current control algorithms, at the beginning of each switching period, the required rectifier average voltage vector allowing the cancellation of both tracking errors of current vector components at the end of the switching period, is computed and applied during a predefined switching period by means of SVM. The main advantages of the proposed predictive current control are that no need to use hysteresis comparators or PI controllers in current control loops, and constant switching frequency. Finally, the developed predictive current control algorithms were tested both in simulations and experimentally, and illustrative results are presented here. Results have proven excellent performance in steady and transient states, and verify the validity of the proposed predictive current control which is compared to other control strategies.

  2. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel

    International Nuclear Information System (INIS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-01-01

    The magnetic properties of ferrite–martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels. - Highlights: • Normalized impedance decreased as the ASTM grain size number increased. • An increase in martensite percentage resulted in a decrease in normalized impedance. • As the martensite in the DP steels increased, the MBN signals increased. • Barkhausen jumps increased with increasing the ASTM grain size number. • Both ECT and MBN had a high potential to detect microstructural changes of DP steels

  3. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  4. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  5. Plasma current profile during current reversal in a tokamak

    International Nuclear Information System (INIS)

    Huang Jianguo; Yang Xuanzong; Zheng Shaobai; Feng Chunhua; Zhang Houxian; Wang Long

    1999-01-01

    Alternating current operation with one full cycle and a current level of 2.5 kA have been achieved in the CT-6B tokamak. The poloidal magnetic field in the plasma is measured with two internal magnetic probes in repeated discharges. The current distribution is reconstructed with an inversion algorithm. The inverse current first appears on the weak field side. The existence of magnetic surfaces and rotational transform provide particle confinement in the current reversal phase

  6. Current Status of the Pixel Phase I Upgrade in CMS: Barrel Module Production

    CERN Document Server

    Bartek, Rachel

    2016-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. Before 2018 the instantaneous luminosity of the LHC is expected to reach about 2~x~$10^{34}~\\rm{cm}^{-2}\\rm{s}^{-1}$, which will significantly increase the number of interactions per bunch crossing. To maintain a high tracking efficiency, CMS has planned to replace the current pixel system during phase I by a new lightweight detector, equipped with an additional 4th layer in the barrel, and one additional forward/backward disk. The present status of barrel modules production will be presented, including preliminary results from tests on the first production pixel modules of the new pixel tracker.

  7. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wu Zongxin; Wang Dazhong; Xu Yuanhui; Sun Yuliang; Li Fu; Dong Yujie

    2009-01-01

    After the nuclear accidents of Three Mile Island and Chernobyl the world nuclear community made great efforts to increase research on nuclear reactors and to develop advanced nuclear power plants with much improved safety features. Following the successful construction and a most gratifying operation of the 10 MW th high-temperature gas-cooled test reactor (HTR-10), the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University has developed and designed an HTR demonstration plant, called the HTR-PM (high-temperature-reactor pebble-bed module). The design, having jointly been carried out with industry partners from China and in collaboration of experts worldwide, closely follows the design principles of the HTR-10. Due to intensive engineering and R and D efforts since 2001, the basic design of the HTR-PM has been finished while all main technical features have been fixed. A Preliminary Safety Analysis Report (PSAR) has been compiled. The HTR-PM plant will consist of two nuclear steam supply system (NSSS), so called modules, each one comprising of a single zone 250 MW th pebble-bed modular reactor and a steam generator. The two NSSS modules feed one steam turbine and generate an electric power of 210 MW. A pilot fuel production line will be built to fabricate 300,000 pebble fuel elements per year. This line is closely based on the technology of the HTR-10 fuel production line. The main goals of the project are two-fold. Firstly, the economic competitiveness of commercial HTR-PM plants shall be demonstrated. Secondly, it shall be shown that HTR-PM plants do not need accident management procedures and will not require any need for offsite emergency measures. According to the current schedule of the project the completion date of the demonstration plant will be around 2013. The reactor site has been evaluated and approved; the procurement of long-lead components has already been started. After the successful operation of the demonstration plant

  8. The Demonstrator for the European Plate Observing System (EPOS)

    Science.gov (United States)

    Hoffmann, T. L.; Euteneuer, F.; Ulbricht, D.; Lauterjung, J.; Bailo, D.; Jeffery, K. G.

    2014-12-01

    An important outcome of the 4-year Preparatory Phase of the ESFRI project European Plate Observing System (EPOS) was the development and first implementation of the EPOS Demonstrator by the project's ICT Working Group 7. The Demonstrator implements the vertical integration of the three-layer architectural scheme for EPOS, connecting the Integrated Core Services (ICS), Thematic Core Services (TCS) and the National Research Infrastructures (NRI). The demonstrator provides a single GUI with central key discovery and query functionalities, based on already existing services by the seismic, geologic and geodetic communities. More specifically the seismic services of the Demonstrator utilize webservices and APIs for data and discovery of raw seismic data (FDSN webservices by the EIDA Network), events (Geoportal by EMSC) and analytical data products (e.g., hazard maps by EFEHR via OGC WMS). For geologic services, the EPOS Demonstrator accesses OneGeology Europe which serves the community with geologic maps and point information via OGC webservices. The Demonstrator also provides access to raw geodetic data via a newly developed universal tool called GSAC. The Demonstrator itself resembles the future Integrated Core Service (ICS) and provides direct access to the end user. Its core functionality lies in a metadata catalogue, which serves as the central information hub and stores information about all RIs, related persons, projects, financial background and technical access information. The database schema of the catalogue is based on CERIF, which has been slightly adapted. Currently, the portal provides basic query functions as well as cross domain search. [www.epos.cineca.it

  9. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  10. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  11. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    Science.gov (United States)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  12. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery

    Science.gov (United States)

    Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2017-02-01

    In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.

  13. Zeolite Vitrification Demonstration Program nonradioactive-process operations summary

    International Nuclear Information System (INIS)

    Bryan, G.H.; Knox, C.A.; Goles, R.G.; Ethridge, L.J.; Siemens, D.H.

    1982-09-01

    The Submerged Demineralizer System is a process developed to decontaminate high-activity level water at Three Mile Island by sorbing the activity (primarily Cs and Sr) onto beds of zeolite. Pacific Northwest Laboratory's Zeolite Vitrification Demonstration Program has the responsibility of demonstrating the full-scale vitrification of this zeolite material. The first phase of this program has been to develop a glass formulation and demonstrate the vitrification process with the use of nonradioactive materials. During this phase, four full-scale nonradioactive demonstration runs were completed. The same zeolite mixture being used in the SDS system was loaded with nonradioactive isotopes of Cs and Sr, dried, blended with glass-forming chemicals and fed to a canister in an in-can melter furnace. During each run, the gaseous effluents were sampled. After each run, glass samples were removed and analyzed

  14. A dual mode operated boost inverter and its control strategy for ripple current reduction in single-phase uninterruptible power supplies

    DEFF Research Database (Denmark)

    Tang, Y.; Yao, W.; Blaabjerg, Frede

    2015-01-01

    In single-phase uninterruptible power supply (UPS) applications, it is well known that the AC side instantaneous power is not constant by nature. The resulting input current from the DC source side will inevitably contain low frequency ripple components that may largely deteriorate the system...... as active power conversion, while its CM operation is controlled in such a way that the low frequency ripple current on the DC side can be maintained in a minimum level. The proposed ripple current reduction method may not only work with linear loads, but also nonlinear loads, where more sophisticated...

  15. Demonstration of a free piston Stirling engine driven linear alternator system. Annual report

    International Nuclear Information System (INIS)

    1978-01-01

    The objective of the program is to develop a 2 kW Free Piston Stirling Engine/Linear Alternator Energy Conversion System for an isotopic heat source with a greater than 30% overall efficiency. The work was broken up into two phases. Phase I demonstrated the feasibility of the energy conversion system through analysis and experimental testing of the individual components. Phase II is a two-year effort to design, fabricate, and test a prototype demonstrator energy conversion system. The reprt documents the work performed during October 1976 through September 1977, the first year of Phase II. Details of the tasks are presented in five major sections: (1) Linear Alternator Development; (2) Engine/Alternator System Demonstration; (3) Demonstrator Preliminary Design; (4) Demonstrator Detailed Design; and (5) Development of Free Piston Stirling Engine Computer Simulation

  16. Current scaling of plasma focus devices

    International Nuclear Information System (INIS)

    Schiuma, C.; Herold, H.; Kaeppeler, H.J.; Shakhatre, M.; Auluck, S.K.H.

    1990-03-01

    In continuation of the work by G. Decker et al. on current and neutron yield scaling of plasma focus devices an analytical solution for the circuit equation (with resistance R = 0) in the compression phase was derived. Together with the solution for the rundown phase from G. Decker et al, which was extended for finite resistance (R ≠ 0), there follows an analytical scaling theory for maximum and pinch currents. At the same time there exists the possibility to discuss the influence of finite resistance on current variation and scaling parameters. The model solutions were checked out by numerical integrations of the current equation. While at the beginning of the rundown phase the ohmic resistance cannot be neglected (the magnitude R/L plays an important role), its influence at the end of the rundown phase and in the compression phase is negligible. The theoretically determined values are compared with the results of numerous probe measurements. (orig.)

  17. Phased Development of Accident Tolerant Fue

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M.; Carmack, W. Jon

    2016-09-01

    The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modeling predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the technology

  18. Seasonality of the Mindanao Current/Undercurrent System

    Science.gov (United States)

    Ren, Qiuping; Li, Yuanlong; Wang, Fan; Song, Lina; Liu, Chuanyu; Zhai, Fangguo

    2018-02-01

    Seasonality of the Mindanao Current (MC)/Undercurrent (MUC) system is investigated using moored acoustic Doppler current profiler (ADCP) measurements off Mindanao (8°N, 127.05°E) and ocean model simulations. The mooring observation during December 2010 to August 2014 revealed that the surface-layer MC between 50-150 m is dominated by annual-period variation and tends to be stronger in spring (boreal) and weaker in fall. Prominent semiannual variations were detected below 150 m. The lower MC between 150 and 400 m is stronger in spring and fall and weaker in summer and winter, while the northward MUC below 400 m emerges in summer and winter and disappears in spring and fall. In-phase and out-of-phase current anomalies above and below 150 m were observed alternatively. These variations are faithfully reproduced by an eddy-resolving ocean model simulation (OFES). Further analysis demonstrates that seasonal variation of the MC is a component of large-scale upper-ocean circulation gyre, while current variations in the MUC layer are confined near the western boundary and featured by shorter-scale (200-400 km) structures. Most of the MC variations and approximately half of the MUC variations can be explained by the first and second baroclinic modes and caused by local wind forcing of the western Pacific. Semiannual surface wind variability and superimposition of the two baroclinic modes jointly give rise to the enhanced subsurface semiannual variations. The pronounced mesoscale eddy variability in the MUC layer may also contribute to the seasonality of the MUC through eddy-current interaction.

  19. Space Vector Modulation Technique to Reduce Leakage Current of a Transformerless Three-Phase Four-Leg Photovoltaic System

    Directory of Open Access Journals (Sweden)

    F. Hasanzad

    2017-06-01

    Full Text Available Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer or without it (transformerless. Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV, and total harmonic distortion (THD. An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.

  20. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  1. Prototypical Rod Construction Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report

  2. Harmonic Distortion Performance of Multi Three-Phase SCR-Fed Drive Systems with Controlled DC-Link Current under Unbalanced Grid

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    . In this paper, the main aim is to analyze the effects of the grid unbalanced voltage on the multi-unit three-phase ASDs with the Silicon-Controlled Rectifier (SCR)-fed front-end rectifiers, where the DC-link current is controlled utilizing an Electronic Inductor (EI) technique. In this respect, the main...

  3. GPS phase scintillation during the geomagnetic storm of March 17, 2015: The relation to auroral electrojet currents

    DEFF Research Database (Denmark)

    Prikryl, Paul; Ghoddousi-Fard, Reza; Connors, Martin

    and magnetometers. GPS phase scintillation index is computed for L1 signal sampled at the rate of 50 Hz by specialized GPS scintillation receivers of the Expanded Canadian High Arctic Ionospheric Network (ECHAIN). To further extend the geographic coverage, the phasescintillation proxy index is obtained from......Ionospheric irregularities cause rapid fluctuations of radio wave amplitude and phase that candegrade GPS positional accuracy and affect performance of radio communication and navigation systems. The ionosphere becomes particularly disturbed during geomagnetic storms caused by impacts of coronal...... mass ejections compounded by high-speed plasma streams from coronal holes. Geomagnetic storm of March 17, 2015 was the largest in the current solar cycle. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  4. A Method of Maximum Power Control in Single-phase Utility Interactive Photovoltaic Generation System by using PWM Current Source Inverter

    Science.gov (United States)

    Neba, Yasuhiko

    This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.

  5. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamberlin, Clyde E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  6. Intracavitary ultrasound phased arrays for thermal therapies

    Science.gov (United States)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  7. Charge modulation as fingerprints of phase-string triggered interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan

    2015-07-07

    Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.

  8. Method and apparatus for current-output peak detection

    Science.gov (United States)

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  9. Magnus force, Aharonov-Bohm effect, and berry phase in superfluids

    International Nuclear Information System (INIS)

    Sonin, E.

    2001-01-01

    The present paper is an attempt to bring together two points of view in order to find a source of disagreement. I restrict myself with the problem of the Galilean invariant quantum Bose-liquid described by the Gross-Pitaevskii theory. At large scales the theory yields equations of the hydrodynamics of an ideal inviscous liquid. In presence of an ensemble of sound waves (phonons) with the Planck distribution, which is characterized by a locally defined normal velocity, one obtains the two-fluid hydrodynamics. The momentum balance in the area around a moving vortex demonstrates the existence of the Iordanskii force. I also discuss the Berry phase. The Berry phase and the Magnus forces are proportional to the total current circulation at large distances. But the total current circulation contains a normal-fluid contribution, which is proportional to the Iordanski force. Taking this contribution into account, the Berry-phase analysis agrees with the momentum-balance approach. (orig.)

  10. Cone-shaped membrane liquid phase micro extraction

    International Nuclear Information System (INIS)

    Hong, Heng See; Sanagi, M.M.; Ibrahim, W.A.W.; Naim, A.A.

    2008-01-01

    A novel sample pre-treatment technique termed cone-shaped membrane liquid phase micro extraction (CSM-LPME) was developed and combined with micro-liquid chromatography (micro-LC) for the determination of selected pesticides in water samples. Several important extraction parameters such as types of extraction solvent, agitation rate, pH value, total exposure time and effect of salt and humic acids were investigated and optimized. Enrichment factors of >50 folds were easily achieved within 20 min of extraction. The new developed method demonstrated an excellent performance in terms of speed, cost effectiveness, reproducibility, as well as exceptional low detection limits. Current work provides a great interest to further investigate on the applicability of the CSM-LPME technique in analytical chemistry and explores the possibility of replacing conventional extraction techniques such as soxhlet, solid phase extraction (SPE) and solid phase micro extraction (SPME). (author)

  11. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 1 of Volume IV, discusses: Process overview functional descriptions; Control system descriptions; Support system descriptions; Maintenance system descriptions; and Process equipment descriptions

  12. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase III of the Prototypical Rod Consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod Consolidation System as described in the NUS Phase II Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase III effort the system was tested on a component, subsystem, and system level. Volume IV provides the Operating and Maintenance Manual for the Prototypical Rod Consolidation System that was installed at the Cold Test Facility. This document, Book 4 of Volume IV, discusses: Off-normal operating and recovery procedures; Emergency response procedures; Troubleshooting procedures; and Preventive maintenance procedures

  13. Correlation analysis of motor current and chatter vibration in grinding using complex continuous wavelet coherence

    International Nuclear Information System (INIS)

    Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei

    2016-01-01

    Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively. (paper)

  14. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  15. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.

    1999-04-15

    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  16. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    1994-06-01

    Full Text Available The relationship between the auroral electrojet indices (AE and the ring current magnetic field (DR was investigated by observations obtained during the magnetic storm on 1-3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE'. To determine AE' during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE' which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE' values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE' and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence of saturation for minimum (maximum AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current. ASY increases (decreases faster during the main phase (the recovery phase than DR. The magnetic field decay at low latitudes in the

  17. Innovative grout/retrieval demonstration final report

    International Nuclear Information System (INIS)

    Loomis, G.G.; Thompson, D.N.

    1995-01-01

    This report presents the results of an evaluation of an innovative retrieval technique for buried transuranic waste. Application of this retrieval technique was originally designed for full pit retrieval; however, it applies equally to a hot spot retrieval technology. The technique involves grouting the buried soil waste matrix with a jet grouting procedure, applying an expansive demolition grout to the matrix, and retrieving the debris. The grouted matrix provides an agglomeration of fine soil particles and contaminants resulting in an inherent contamination control during the dusty retrieval process. A full-scale field demonstration of this retrieval technique was performed on a simulated waste pit at the Idaho National Engineering Laboratory. Details are reported on all phases of this proof-of-concept demonstration including pit construction, jet grouting activities, application of the demolition grout, and actual retrieval of the grouted pit. A quantitative evaluation of aerosolized soils and rare earth tracer spread is given for all phases of the demonstration, and these results are compared to a baseline retrieval activity using conventional retrieval means. 8 refs., 47 figs., 10 tabs

  18. Current ramp-up experiments in full current drive plasmas in TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Nakamura, K.; Hasegawa, M.; Itoh, S.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Iyomasa, A.; Kawasaki, S.; Nakashima, H.; Yoshida, N.; Tokunaga, K.; Fujiwara, T.; Kulkarni, S.V.; Mitarai, O.

    2004-01-01

    Four types of plasma current ramp-up experiments in full non-inductively lower hybrid current driven (LHCD) plasmas were executed in TRIAM-1M: (1) current start-up by a combination of electron cyclotron resonance heating (ECRH) and LHCD, (2) tail heating by additional LHCD, (3) bulk heating by ECRH and (4) spontaneous ramp-up by a transition to enhanced current drive (ECD) mode. The time evolutions of plasma current during four types of ramp-up phase were adjusted by a simple model with two different time constants, which are a time defined by the total current diffusion time and a time constant for improving the current drive efficiency. In the case of (1) and (4), the latter time constant is significant during the current ramp-up phase. The improvement in the current drive efficiency in the ECD mode is likely to be caused by the increase in the effective refractive index along the magnetic field of the lower hybrid wave. (author)

  19. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    Science.gov (United States)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-04-01

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

  20. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Thomas, E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Deendarlianto,; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany)

    2011-10-15

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-{omega} turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.

  1. Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model

    Energy Technology Data Exchange (ETDEWEB)

    Hohne, T.; Deendarlianto; Vallee, C.; Lucas, D.; Beyer, M., E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany)

    2011-07-01

    In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden- Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations. (author)

  2. Visual Electricity Demonstrator

    Science.gov (United States)

    Lincoln, James

    2017-09-01

    The Visual Electricity Demonstrator (VED) is a linear diode array that serves as a dynamic alternative to an ammeter. A string of 48 red light-emitting diodes (LEDs) blink one after another to create the illusion of a moving current. Having the current represented visually builds an intuitive and qualitative understanding about what is happening in a circuit. In this article, I describe several activities for this device and explain how using this technology in the classroom can enhance the understanding and appreciation of physics.

  3. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    International Nuclear Information System (INIS)

    Pruess, K.

    1998-01-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories

  4. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.

    Directory of Open Access Journals (Sweden)

    Josef Ladenbauer

    Full Text Available The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency

  5. Performance enhancement of the single-phase series active filter by employing the load voltage waveform reconstruction and line current sampling delay reduction methods

    DEFF Research Database (Denmark)

    Senturk, O.S.; Hava, A.M.

    2011-01-01

    This paper proposes the waveform reconstruction method (WRM), which is utilized in the single-phase series active filter's (SAF's) control algorithm, in order to extract the load harmonic voltage component of voltage harmonic type single-phase diode rectifier loads. Employing WRM and the line...... current sampling delay reduction method, a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous-reference-frame-based methods. The analytical, simulation, and experimental studies of a 2.5 k...

  6. SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication

    Science.gov (United States)

    Luo, Yong; Deng, Xuefeng; Cheng, Fang; Li, Yi

    2013-01-01

    Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and to recruit cellular DNA replication factors for viral DNA replication. The intra-S-phase arrest is regulated by ATM (ataxia telangiectasia-mutated kinase) signaling in a p53-independent manner. Moreover, we demonstrate that SMC1 (structural maintenance of chromosomes 1) is the key regulator of the intra-S-phase arrest induced during infection. Either knockdown of SMC1 or complementation with a dominant negative SMC1 mutant blocks both the intra-S-phase arrest and viral DNA replication. Finally, we show that the intra-S-phase arrest induced during MVC infection was caused neither by damaged host cellular DNA nor by viral proteins but by replicating viral genomes physically associated with the DNA damage sensor, the Mre11-Rad50-Nbs1 (MRN) complex. In conclusion, the feedback loop between MVC DNA replication and the intra-S-phase arrest is mediated by ATM-SMC1 signaling and plays a critical role in MVC DNA replication. Thus, our findings unravel the mechanism underlying DDR signaling-facilitated MVC DNA replication and demonstrate a novel strategy of DNA virus-host interaction. PMID:23365434

  7. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. The results of the ongoing data analysis are discussed in the presentation.

  8. 100 MeV laser accelerator demonstration and 1 GeV baseline design development. 1992 Annual report

    International Nuclear Information System (INIS)

    1992-01-01

    The acceleration of relativistic electrons using the inverse Cerenkov effect was first demonstrated at Stanford University in 1981. Later, Fontana and Pantell developed an improved configuration for the inverse Cerenkov acceleration (ICA) process. A radially polarized laser beam is focused by an axicon onto the e-beam traveling through a gas-filled interaction region. The light intersects the e-beam at the Cerenkov angle θ c , where θ c = cos -1 (1/nβ), n is the index of refraction of the gas, and β is the ratio of the electron velocity to the speed of light. The goal of the present program is to demonstrate improved laser acceleration using the Fontana and Pantell configuration. The experiments will be performed on the Accelerator Test Facility (ATF) located at Brookhaven National Laboratory (BNL). This facility features a 50 MeV linac fed by a Nd:YAG (4ω) laser-driven photocathode e-gun. It will be upgraded to 65 MeV in the near future. The ATF also has a high peak power CO 2 laser, which was developed for laser acceleration studies. The present ICA experiment was divided into two phases. Phase 1 was to examine certain experimental issues in preparation for Phase 2. Phase 1 was successfully completed in the spring of 1992. Phase 2 is to perform the actual laser acceleration experiments on the ATF e-beam. The authors are currently waiting for the availability of the e-beam so that they can begin the Phase 2 experiments. In this section, the theory and experimental hardware for the present program are described. The results of the Phase 1 experiments are presented, and an update on the Phase 2 experiment is given

  9. Phencyclidine block of calcium current in isolated guinea-pig hippocampal neurones.

    Science.gov (United States)

    Ffrench-Mullen, J M; Rogawski, M A

    1992-10-01

    1. Phencyclidine (PCP) block of Ca2+ channel current in enzymatically dissociated neurones from the CA1 region of the adult guinea-pig hippocampus was studied using whole-cell voltage clamp techniques. Ca2+ channel current was recorded with 3 mM-Ba2+ as the charge carrier. Na+ currents were blocked with tetrodotoxin and K+ currents were eliminated by using tetraethylammonium and N-methyl-D-glucamine as the predominant extracellular and intracellular cations, respectively. 2. Peak Ca2+ channel current evoked by depolarization from -80 to -10 mV was reduced in a use-dependent fashion by PCP. The apparent forward and reverse rate constants for block at the depolarized voltage were 10(6) s-1 M-1 and 11-14 s-1, respectively. These values were at least 60 times faster than the corresponding rates at the resting voltage. The steady-state block produced by PCP increased in a concentration-dependent fashion with an IC50 of 7 microM. Other dissociative anaesthetic drugs were substantially weaker inhibitors of the current (tiletamine > dizocilpine (MK-801) > ketamine). 3. The Ca2+ channel current recorded under identical conditions in rat dorsal root ganglion neurones was less sensitive to blockade by PCP (IC50, 90 microM). 4. PCP block of the hippocampal Ca2+ channel current occurred in a voltage-dependent fashion with the fractional block decreasing at positive membrane potentials. Analysis indicated that the PCP blocking site senses 56% of the transmembrane electric field. 5. Analysis of tail currents recorded at -80 mV demonstrated that PCP does not affect the voltage-dependent or time-dependent activation or deactivation of the Ca2+ channel current. 6. The rate and extent of inactivation of the Ca2+ channel current was maximal at -10 mV and diminished at more positive potentials. Experiments with Ba(2+)-free external solution demonstrated that inactivation of the Ca2+ channels is largely voltage-dependent and is not affected by Ba2+ influx. 7. PCP markedly increased the

  10. Confined zone dispersion flue gas desulfurization demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO[sub 2] and NO[sub x] Reduction - Preliminary confirmation of 50% SO[sub 2] reduction has been achieved, but the NO[sub x] reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO[sub 2] reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO[sub 2] Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel's original cost estimates (capital and operating) were prepared. Therefore, SO[sub 2] removal costs are still expected to be in the range of $300/ton or less.

  11. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  12. Impact of Neutral Point Current Control on Copper Loss Distribution of Five Phase PM Generators Used in Wind Power Plants

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Efficiency improvement under faulty conditions is one of the main objectives of fault tolerant PM drives. This goal can be achieved by increasing the output power while reducing the losses. Stator copper loss not only directly affects the total efficiency, but also plays an important role in thermal stress generations of iron core. In this paper, the effect of having control on neutral point current is studied on the efficiency of five-phase permanent magnet machines. Open circuit fault is considered for both one and two phases, and the distribution of copper loss along the windings are evaluated in each case. It is shown that only by having access to neutral point, it is possible to generate less stator thermal stress and more mechanical power in five-phase permanent magnet generators. Wind power generation and their applications are kept in mind, and the results are verified via simulations and experimental tests on an outer-rotor type of five-phase PM machine.

  13. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  14. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    International Nuclear Information System (INIS)

    Andrs, David; Berry, Ray; Gaston, Derek; Martineau, Richard; Peterson, John; Zhang, Hongbin; Zhao, Haihua; Zou, Ling

    2012-01-01

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7 is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to

  15. Phase Noise Tolerant QPSK Receiver Using Phase Sensitive Wavelength Conversion

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Xu, Jing; Lei, Lei

    2013-01-01

    A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated.......A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated....

  16. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  17. Characteristics of disruptive plasma current decay in the HT-2 tokamak

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Takeuchi, Kazuhiro; Otsuka, Michio

    1993-01-01

    Motions of plasma current channel and time evolutions of eddy current distribution on the vacuum vessel during disruptive plasma current decay were studied experimentally in the Hitachi tokamak HT-2. The plasmas are vertically elongated and circularly shaped plasmas. A disruptive plasma current decay has three phases. During the first phase, a large displacement of the plasma position without plasma current decay is observed. Rapid plasma current decay is observed during the second phase and the decay rate is roughly constant with time. The eddy current distribution is like that due to the shell effect which creates a poloidal field to reduce the plasma displacement. During the third phase, the plasma current decays exponentially. The second phase is observed in slightly elongated and high plasma current (> 20 kA) circularly shaped plasmas. The plasma current decay rates in the second phase depend on the plasma cross sectional shape, but they do not in the third phase. The magnetic axis moves from the plasma area to the vacuum vessel wall between the second and third phases. (author)

  18. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  19. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    .g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...

  20. Fixed switching frequency applied in single-phase boost AC to DC converter

    International Nuclear Information System (INIS)

    Chen, T.-C.; Ren, T.-J.; Ou, J.-C.

    2009-01-01

    The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.

  1. MPED: An ISRU Bucket Ladder Excavator Demonstrator System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a planetary surface tool called the Multi Purpose Excavation Demonstrator (MPED), which is intended to both extract Lunar Soil to feed an...

  2. Electric vehicle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ouellet, M. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The desirable characteristics of Canadian projects that demonstrate vehicle use in real-world operation and the appropriate mechanism to collect and disseminate the monitoring data were discussed in this presentation. The scope of the project was on passenger cars and light duty trucks operating in plug-in electric vehicle (PHEV) or battery electric vehicle modes. The presentation also discussed the funding, stakeholders involved, Canadian travel pattern analysis, regulatory framework, current and recent electric vehicle demonstration projects, and project guidelines. It was concluded that some demonstration project activities may have been duplicated as communication between the proponents was insufficient. It was recommended that data monitoring using automatic data logging with minimum reliance on logbooks and other user entry should be emphasized. figs.

  3. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  4. Plastic Melt Waste Compactor Flight Demonstrator Payload (PFDP), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The PMWC Flight Demonstrator Payload is a trash dewatering and volume reduction system that uses heat melt compaction to remove nearly 100% of water from trash while...

  5. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 4 discusses the following topics: Rod Compaction/Loading System Test Results and Analysis Report; Waste Collection System Test Results and Analysis Report; Waste Container Transfer Fixture Test Results and Analysis Report; Staging and Cutting Table Test Results and Analysis Report; and Upper Cutting System Test Results and Analysis Report

  6. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  7. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  8. AggieSat: Autonomous Rendezvous and Docking Technology Demonstrator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current autonomous rendezvous and docking (AR&D) capability in low Earth orbit (LEO) is constrained by sensor and effector mass, power, and accuracy limits. To...

  9. Acute-phase reactants in periodontal disease: current concepts and future implications.

    Science.gov (United States)

    Archana, Vilasan; Ambili, Ranjith; Nisha, Krishnavilasam Jayakumary; Seba, Abraham; Preeja, Chandran

    2015-05-01

    Periodontal disease has been linked to adverse cardiovascular events by unknown mechanisms. C-reactive protein is a systemic marker released during the acute phase of an inflammatory response and is a prognostic marker for cardiovascular disease, with elevated serum levels being reported during periodontal disease. Studies also reported elevated levels of various other acute-phase reactants in periodontal disease. It has been reported extensively in the literature that treatment of periodontal infections can significantly lower serum levels of C-reactive protein. Therefore, an understanding of the relationship between acute-phase response and the progression of periodontal disease and other systemic health complications would have a profound effect on the periodontal treatment strategies. In view of this fact, the present review highlights an overview of acute-phase reactants and their role in periodontal disease. © 2014 Wiley Publishing Asia Pty Ltd.

  10. Current practices in library/informatics instruction in academic libraries serving medical schools in the Western United States: a three-phase action research study.

    Science.gov (United States)

    Eldredge, Jonathan D; Heskett, Karen M; Henner, Terry; Tan, Josephine P

    2013-09-04

    To conduct a systematic assessment of library and informatics training at accredited Western U.S. medical schools. To provide a structured description of core practices, detect trends through comparisons across institutions, and to identify innovative training approaches at the medical schools. Action research study pursued through three phases. The first phase used inductive analysis on reported library and informatics skills training via publicly-facing websites at accredited medical schools and the academic health sciences libraries serving those medical schools. Phase Two consisted of a survey of the librarians who provide this training to undergraduate medical education students at the Western U.S. medical schools. The survey revealed gaps in forming a complete picture of current practices, thereby generating additional questions that were answered through the Phase Three in-depth interviews. Publicly-facing websites reviewed in Phase One offered uneven information about library and informatics training at Western U.S. medical schools. The Phase Two survey resulted in a 77% response rate. The survey produced a clearer picture of current practices of library and informatics training. The survey also determined the readiness of medical students to pass certain aspects of the United States Medical Licensure Exam. Most librarians interacted with medical school curricular leaders through either curricula committees or through individual contacts. Librarians averaged three (3) interventions for training within the four-year curricula with greatest emphasis upon the first and third years. Library/informatics training was integrated fully into the respective curricula in almost all cases. Most training involved active learning approaches, specifically within Problem-Based Learning or Evidence-Based Medicine contexts. The Phase Three interviews revealed that librarians are engaged with the medical schools' curricular leaders, they are respected for their knowledge and

  11. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    Science.gov (United States)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  12. Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller

    Directory of Open Access Journals (Sweden)

    Bingzhang Li

    2017-03-01

    Full Text Available Two-stage single-phase grid-connected converters are widely used in renewable energy applications. Due to the presence of a second harmonic ripple across the DC bus voltage, it is very challenging to design the DC bus voltage control scheme in single-phase grid-connected inverters. The DC bus voltage controller must filter the ripple and balance a tradeoff between low harmonic distortion and high bandwidth. This paper presents a fast DC bus voltage controller, which uses a second order digital finite impulse response (FIR notch filter in conjunction with input power feedforward scheme to ensure the steady-state and dynamic performance. To gain the input power without extra hardware, a Kalman filter is incorporated to estimate the DC bus input current. At the same time, a modulation compensation strategy is implemented to eliminate the nonlinearity of the grid current control loop, which is caused by the DC bus voltage ripple. Moreover, a novel synchronous frame current controller for single-phase systems is also introduced, and its equivalent model in stationary frame has been derived. Simulation and experimental results are provided to verify the effective of the proposed control scheme.

  13. Analysis and MPPT control of a wind-driven three-phase induction generator feeding single-phase utility grid

    Directory of Open Access Journals (Sweden)

    Krishnan Arthishri

    2017-05-01

    Full Text Available In this study, a three-phase diode bridge rectifier and a single-phase voltage source inverter topology has been proposed for feeding single-phase utility grid employing a three-phase induction generator fed from wind energy. A self-excited induction generator configuration has been chosen for wide speed operation of wind turbine system, which gives the scope for extracting maximum power available in the wind. In addition to maximum power point tracking (MPPT, the generator can be loaded to its rated capacity for feeding single-phase utility grid using a three-phase induction machine, whereas it is not possible with existing configurations because of the absence of power converters. For the proposed system, MPPT algorithm has been devised by continuously monitoring the grid current and a proportional resonant controller has been employed for grid synchronisation of voltage source inverter with single-phase grid. A MATLAB/Simulink model of the proposed system has been developed to ascertain its successful working by predetermining the overall performance characteristics. The present proposal has also been tested with sag, swell and distortion in the grid voltage. The control strategy has been implemented using field programmable gate array (FPGA controller with modularised programming approach. The efficacy of the system has been demonstrated with the results obtained from an experimental set-up in the laboratory.

  14. Rotor cage fault diagnosis in three-phase induction motors based on a current and virtual flux approach

    International Nuclear Information System (INIS)

    Pires, Dulce F.; Pires, V. Fernao; Martins, J.F.; Pires, A.J.

    2009-01-01

    This paper focuses on the detection of a rotor cage fault in a three-phase PWM feed induction motor. In inverter-fed machines there are some difficulties for the detection of a rotor cage fault. These difficulties are due to the fault signature that will be contained in the currents or voltages applied to the machine. In this way, a new approach based on the current and a virtual flux is proposed. The use of the virtual flux allows the improving of the signal to noise ratio. This approach also allows the identification of a rotor cage fault independently of the type of control used in the ac drive. The theoretical principle of this method is discussed. Simulation and experimental results are presented in order to show the effectiveness of the proposed approach

  15. Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    Science.gov (United States)

    Sheth, Rubik B.; Ahlstrom, Thomas D.; Le, Hung V.

    2016-01-01

    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system.

  16. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed A.; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  17. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  18. Innovative technology demonstration

    International Nuclear Information System (INIS)

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.; Hinchee, R.

    1992-04-01

    The Innovative Technology Demonstration (ITD) program at Tinker Air Force Base (TAFB), Oklahoma City, Oklahoma, will demonstrate the overall utility and effectiveness of innovative technologies for site characterization, monitoring, and remediation of selected contaminated test sites. The current demonstration test sites include a CERCLA site on the NPL list, located under a building (Building 3001) that houses a large active industrial complex used for rebuilding military aircraft, and a site beneath and surrounding an abandoned underground tank vault used for storage of jet fuels and solvents. The site under Building 3001 (the NW Test Site) is contaminated with TCE and Cr +6 ; the site with the fuel storage vault (the SW Tanks Site) is contaminated with fuels, BTEX and TCE. These sites and others have been identified for cleanup under the Air Force's Installation Restoration Program (IRP). This document describes the demonstrations that have been conducted or are planned for the TAFB

  19. Current control design for three-phase grid-connected inverters using a pole placement technique based on numerical models

    OpenAIRE

    Citro, Costantino; Gavriluta, Catalin; Nizak Md, H. K.; Beltran, H.

    2012-01-01

    This paper presents a design procedure for linear current controllers of three-phase grid-connected inverters. The proposed method consists in deriving a numerical model of the converter by using software simulations and applying the pole placement technique to design the controller with the desired performances. A clear example on how to apply the technique is provided. The effectiveness of the proposed design procedure has been verified through the experimental results obtained with ...

  20. Fourier phasing with phase-uncertain mask

    International Nuclear Information System (INIS)

    Fannjiang, Albert; Liao, Wenjing

    2013-01-01

    Fourier phasing is the problem of retrieving Fourier phase information from Fourier intensity data. The standard Fourier phase retrieval (without a mask) is known to have many solutions which cause the standard phasing algorithms to stagnate and produce wrong or inaccurate solutions. In this paper Fourier phase retrieval is carried out with the introduction of a randomly fabricated mask in measurement and reconstruction. Highly probable uniqueness of solution, up to a global phase, was previously proved with exact knowledge of the mask. Here the uniqueness result is extended to the case where only rough information about the mask’s phases is assumed. The exponential probability bound for uniqueness is given in terms of the uncertainty-to-diversity ratio of the unknown mask. New phasing algorithms alternating between the object update and the mask update are systematically tested and demonstrated to have the capability of recovering both the object and the mask (within the object support) simultaneously, consistent with the uniqueness result. Phasing with a phase-uncertain mask is shown to be robust with respect to the correlation in the mask as well as the Gaussian and Poisson noises. (paper)

  1. A Novel Phase-Locking-Free Phase Sensitive Amplifier based Regenerator

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Røge, Kasper Meldgaard; Guan, Pengyu

    2016-01-01

    We propose a scheme for phase regeneration of optical binary phase-shift keying (BPSK) data signals based on phase sensitive amplification without active phase-locking. A delay interferometer (DI) is used to convert a BPSK signal impaired by noise to an amplitude modulated signal followed by cross......-locked pumps. As a result, active phase-stabilization is avoided. A proof-of-principle experiment is carried out with a dual-pump degenerate phase sensitive amplifier (PSA), demonstrating regeneration for a 10 Gb/s non-return-to-zero differential BPSK (NRZ-DPSK) data signal degraded by a sinusoidal phase...

  2. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  3. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  4. Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available The relationship between the auroral electrojet indices (AE and the ring current magnetic field (DR was investigated by observations obtained during the magnetic storm on 1-3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE'. To determine AE' during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE' which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE' values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE' and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence of saturation for minimum (maximum AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current.

  5. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  6. Two novel plasma diagnostic tools: fiber sensors and phase conjugation

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1985-01-01

    A rapidly developing technology (single-mode optical fiber sensors) and recent fundamental research in nonlinear optics (phase conjugation) both offer opportunities for novel plasma diagnostics. Single-mode fiber sensors can replace electrical wire probes for current and magnetic field measurements with advantages in voltage insulation requirements, electromagnetic noise immunity, much greater bandwidth, and some configuration flexibility. Faraday rotation measurements through fibers wound on the ZT-40M RFP have demonstrated quantitative results, but competing linear birefringence effects still hinder independent interpretation. Twisted fiber may solve this problem. Optical phase conjugation (in which a phase reversed copy of a laser beam is generated) allows real time distortion corrections in laser diagnostics. Self-pumped phase conjugation in BaTiO 3 improves the quality of phase conjugation imagery and greatly simplifies experimentation directed toward plasma diagnostics. Our initial applications are a) time-differential refractometry with high spatial resolution and b) intracavity absorption Zeeman spectroscopy

  7. LAr instrumentation for Gerda phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2015-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently the commissioning of Gerda Phase II is ongoing. To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. The light instrumentation consisting of photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon multipliers (SiPM) has been installed in Gerda. In this talk the low background design of the LAr veto and its performance during the commissioning runs are reported.

  8. Test and Demonstration Assets of New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-03-31

    This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

  9. Current Trend Towards Using Soft Computing Approaches to Phase Synchronization in Communication Systems

    Science.gov (United States)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    1999-01-01

    This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.

  10. Inference in Complex Systems Using Multi-Phase MCMC Sampling With Gradient Matching Burn-in

    OpenAIRE

    Lazarus, Alan; Husmeier, Dirk; Papamarkou, Theodore

    2017-01-01

    We propose a novel method for parameter inference that builds on the current research in gradient matching surrogate likelihood spaces. Adopting a three phase technique, we demonstrate that it is possible to obtain parameter estimates of limited bias whilst still adopting the paradigm of the computationally cheap surrogate approximation.

  11. Mixed Waste Focus Area alternative oxidation technologies development and demonstration program

    International Nuclear Information System (INIS)

    Borduin, L.C.; Fewell, T.; Gombert, D.; Priebe, S.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each

  12. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    International Nuclear Information System (INIS)

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program

  13. Laboratory demonstration of an optical vortex mask coronagraph using photonic crystal

    Science.gov (United States)

    Murakami, N.; Baba, N.; Ise, A.; Sakamoto, M.; Oka, K.

    2010-10-01

    Photonic crystal, artificial periodic nanostructure, is an attractive device for constructing focal-plane phase-mask coronagraphs such as segmented phase masks (four-quadrant, eight-octant, and 4N-segmented ones) and an optical vortex mask (OVM), because of its extremely small manufacturing defect. Recently, speckle-noise limited contrast has been demonstrated for two monochromatic lasers by using the eight-octant phase-mask made of the photonic crystal (Murakami et al. 2010, ApJ, 714, 772). We applied the photonic-crystal device to the OVM coronagraph. The OVM is more advantageous over the segmented phase masks because it does not have discontinuities other than a central singular point and provides a full on-sky field of view. For generating an achromatic optical vortex, we manufactured an axially-symmetric half-wave plate (ASHWP). It is expected that a size of the manufacturing defect due to the central singularity is an order of several hundreds nanometers. The ASHWP is placed between two circular polarizers for modulating a Pancharatnam phase. A continuous spiral phase modulation is then implemented achromatically. We carried out preliminary laboratory demonstration of the OVM coronagraph using two monochromatic lasers as a model star (wavelengths of 532 nm and 633 nm). We report a principle of the achromatic optical-vortex generation, and results of the laboratory demonstration of the OVM coronagraph.

  14. Phase locking in backward-wave oscillators with strong end reflections

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Sinitsyn, O. V.; Rodgers, J.; Shkvarunets, A. G.; Carmel, Y.

    2007-01-01

    The theory of phase-locked oscillations in a backward-wave oscillator with strong end reflections is developed. Numerical results demonstrate that the locking bandwidth of such a device phase-locked by a prebunched electron beam can be twice the bandwidth of a resonator formed by a waveguide with strong end reflections. It is also shown that the device can operate with the efficiency exceeding 50% and that, in some cases, it can exhibit a hysteresis in the process of tuning the signal frequency. The applicability of the results obtained to the experiments with the plasma-assisted backward-wave oscillator currently underway at the University of Maryland is discussed

  15. Radial profile of pressure in a storm ring current as a function of D st

    Science.gov (United States)

    Kovtyukh, A. S.

    2010-06-01

    Using satellite data obtained near the equatorial plane during 12 magnetic storms with amplitudes from -61 down to -422 nT, the dependences of maximum in L-profile of pressure ( L m) of the ring current (RC) on the current value of D st are constructed, and their analytical approximations are derived. It is established that function L m( D st ) is steeper on the phase of recovery than during the storm’s main phase. The form of the outer edge of experimental radial profiles of RC pressure is studied, and it is demonstrated to correspond to exponential growth of the total energy of RC particles on a given L shell with decreasing L. It is shown that during the storms’ main phase the ratio of plasma and magnetic field pressures at the RC maximum does not practically depend on the storm strength and L m value. This fact reflects resistance of the Earth’s magnetic field to RC expansion, and testifies that during storms the possibilities of injection to small L are limited for RC particles. During the storms’ recovery phase this ratio quickly increases with increasing L m, which reflects an increased fraction of plasma in the total pressure balance. It is demonstrated that function L m( D st ) is derived for the main phase of storms from the equations of drift motion of RC ions in electrical and magnetic fields, reflecting the dipole character of magnetic field and scale invariance of the pattern of particle convection near the RC maximum. For the recovery phase it is obtained from the Dessler-Parker-Sckopke relationship. The obtained regularities allow one to judge about the radial profile of RC pressure from ground-based magnetic measurements (data on the D st variation).

  16. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    Science.gov (United States)

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  17. How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation

    DEFF Research Database (Denmark)

    Saturnino, Guilherme Bicalho; Madsen, Kristoffer Hougaard; Siebner, Hartwig Roman

    2017-01-01

    oscillations in two connected cortical areas. While the frequency of ds-TACS is matched, the phase of stimulation is either identical (in-phase stimulation) or opposite (anti-phase stimulation) in the two cortical target areas. In-phase stimulation is thought to synchronize the endogenous oscillations...... and hereby to improve behavioral performance. Conversely, anti-phase stimulation is thought to desynchronize neural oscillations in the two areas, which is expected to decrease performance. Critically, in- and anti-phase ds-TACS should only differ with respect to temporal phase, while all other stimulation...... unambiguously the causal contribution of phase coupling to specific cognitive processes in the human brain....

  18. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  19. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    Science.gov (United States)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  20. Discrete changes of current statistics in periodically driven stochastic systems

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Sinitsyn, N A

    2010-01-01

    We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)

  1. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  2. Subsurface Planar Vitrification Treatment of Problematic TRU Wastes: Status of a Technology Demonstration Program

    International Nuclear Information System (INIS)

    Morse, M.K.; Nowack, B.R.; Thompson, L.E.

    2006-01-01

    This paper provides a status of the In Situ Transuranic Waste Delineation and Removal Project in which the GeoMelt R Subsurface Planar Vitrification TM (SPV TM ) process is being evaluated for the in situ treatment of burial sites containing remote handled mixed transuranic (TRU) waste. The GeoMelt R SPV TM process was invented and patented by Geosafe Corporation. AMEC holds the exclusive worldwide license to use this technology. The current project is part of a three-phase demonstration program to evaluate the effectiveness of the GeoMelt R SPV TM process to treat waste contained in vertical pipe units (VPUs) and caissons that were used for the disposal of remote handled transuranic wastes located at Hanford's 618-10 and 618-11 burial grounds. This project is being performed for the US Department of Energy (DOE) for use at the Hanford site and other DOE installations. The Phase I evaluation determined that removal and treatment of the 618-10/11 VPUs are beyond what can be safely accomplished using conventional excavation methods. Accordingly, a careful stepwise non-intrusive delineation approach and treatment using the GeoMelt R SPV TM technology, followed by removal, characterization, and disposal of the resulting inert vitrified mass was identified as the preferred alternative. Phase II of the project, which started in July 2004, included a full-scale non-radioactive demonstration of AMEC's GeoMelt R SPV TM process on a mock VPU configured to match the actual VPUs. The non-radioactive demonstration (completed in May 2005) was performed to confirm the approach and design before proceeding to a radioactive ('hot') demonstration on an actual VPU. This demonstration took approximately 130 hours, processed the entire mock VPU, and resulted in a vitrified monolith weighing an estimated 90 tonnes. [1] Plans for a radioactive demonstration on an actual VPU are being developed for CY 2006. In addition to demonstrating GeoMelt R SPV TM , delineation techniques are being

  3. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    International Nuclear Information System (INIS)

    Jim Jnatt

    2001-01-01

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the

  4. Counter current extraction for the partitioning of actinides from PFBR-SHLW using TODGA

    International Nuclear Information System (INIS)

    Ansari, S.A.; Gujar, R.B.; Kumar, Mithilesh; Seshagiri, T.K.; Godbole, S.V.; Manchanda, V.K.; Rajeswari, S.; Antony, M.P.; Srinivasan, T.G.

    2009-01-01

    Counter current extraction for the partitioning of actinides from simulated HLW of PFBR origin was demonstrated with 0.1M TODGA + 0.5M DHOA dissolved in NPH using a 16 stage mixer-settler unit. Results demonstrated that all lanthanides could be quantitatively extracted from the feed solution and quantitatively stripped from the loaded organic phase with 0.2M HNO 3 . The extracted lanthanides are not scrubbed with 0.2M oxalic acid at 5M HNO 3 in the scrubbing cycle. Elements such as Ba, Cd and Sn were not extracted. However, Pd was partially extracted but was scrubbed quantitatively. (author)

  5. A three-phase model proposal for the evolution of scientific communication: from first print periodicals to current electronic communication system

    Directory of Open Access Journals (Sweden)

    Patrícia Bertin

    Full Text Available Scientific communication has undergone deep transformations, since the emergence of Internet. Aiming to provide further thought on the evolution of scientific communication, this paper features a historical overview of the scientific communication advances over the last twenty years through a three-phase model for the evolution of the electronic journal and the preprints services, and presents Brazilian contemporary panorama for scientific communication. The three-phase model presented in this work is an adaptation of that one proposed by Tenopir et al. (2003 to describe the patterns of journal use by scientists since 1990. The early evolutionary phase followed the emergence of the first digital journals and the creation of repositories in the Web for publishing preliminary versions of scientific literature on the author’s initiative; by that time, most academics reproved electronic publishing initiatives. From 1996 and forward, in the consolidation phase, electronic journals were commonly identical to their print counterparts; the acceptance of the electronic format began to increase, and preprint services got underway in several disciplines. The advanced evolutionary phase started with the world discussion on open access to scientific information. The comparison of the current electronic journal with that viewed by enthusiasts in the first years of the 1990s shows that some aspects still remain to be improved in electronic formal and informal communication, towards effective dissemination of scientific information.

  6. Effects of substorms on the stormtime ring current index Dst

    Directory of Open Access Journals (Sweden)

    G. Rostoker

    Full Text Available There has been some discussion in recent times regarding whether or not substorm expansive phase activity plays any role of importance in the formation of the stormtime ring current. I explore this question using the Kp index as a proxy for substorm expansive phase activity and the Dst index as a proxy for symmetric ring current strength. I find that increases in Dst are mildly related to the strength of substorm expansive phase activity during the development of the storm main phase. More surprisingly, I find that the strength of Dst during the storm recovery phase is positively correlated with the strength of substorm expansive phase activity. This result has an important bearing on the question of how much the Dst index reflects activity other than that of the stormtime symmetric ring current strength for which it is supposed to be a proxy.Key words: Ionosphere (electric fields and currents - Magnetospheric physics (current systems; storms and substorms

  7. Effects of substorms on the stormtime ring current index Dst

    Directory of Open Access Journals (Sweden)

    G. Rostoker

    2000-11-01

    Full Text Available There has been some discussion in recent times regarding whether or not substorm expansive phase activity plays any role of importance in the formation of the stormtime ring current. I explore this question using the Kp index as a proxy for substorm expansive phase activity and the Dst index as a proxy for symmetric ring current strength. I find that increases in Dst are mildly related to the strength of substorm expansive phase activity during the development of the storm main phase. More surprisingly, I find that the strength of Dst during the storm recovery phase is positively correlated with the strength of substorm expansive phase activity. This result has an important bearing on the question of how much the Dst index reflects activity other than that of the stormtime symmetric ring current strength for which it is supposed to be a proxy.Key words: Ionosphere (electric fields and currents - Magnetospheric physics (current systems; storms and substorms

  8. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  9. Design of current source for multi-frequency simultaneous electrical impedance tomography

    Science.gov (United States)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  10. Flux consumption, current ramp-up and current diffusion in Tore Supra non-inductive Lower Hybrid scenarios

    International Nuclear Information System (INIS)

    Kazarian, F.; Litaudon, X.; Moreau, D.; Arslanbekov, R.; Hoang, G.T.; Joffrin, E.; Peysson, Y.; Allibert, J.P.; Ane, J.M.; Bremond, S.

    1995-01-01

    The main objective of the Lower Hybrid (LH) experiments performed on Tore Supra is to provide large flux savings for long pulse operation while controlling the plasma current density profile. This goal will be best achieved by applying LH wave directly during the current ramp-up phase. Experiments have been performed where a large fraction of the current is driven non-inductively during the ramp-up phase. A theoretical flux consumption scaling is presented and compared to experimental data. The time evolutions of the current density profiles are analysed with a new current diffusion code (CRONOS). In view to achieve fully non-inductive current drive discharges in a fast, systematic and reproducible way, experiments where the primary voltage is imposed have been carried out. In a complementary approach, an appropriate transformer flux feedback scheme has been also studied. (author) 6 refs.; 6 figs

  11. Another dimension to metamorphic phase equilibria: the power of interactive movies for understanding complex phase diagram sections

    Science.gov (United States)

    Moulas, E.; Caddick, M. J.; Tisato, N.; Burg, J.-P.

    2012-04-01

    The investigation of metamorphic phase equilibria, using software packages that perform thermodynamic calculations, involves a series of important assumptions whose validity can often be questioned but are difficult to test. For example, potential influences of deformation on phase relations, and modification of effective reactant composition (X) at successive stages of equilibrium may both introduce significant uncertainty into phase diagram calculations. This is generally difficult to model with currently available techniques, and is typically not well quantified. We present here a method to investigate such phenomena along pre-defined Pressure-Temperature (P-T) paths, calculating local equilibrium via Gibbs energy minimization. An automated strategy to investigate complex changes in the effective equilibration composition has been developed. This demonstrates the consequences of specified X modification and, more importantly, permits automated calculation of X changes that are likely along the requested path if considering several specified processes. Here we describe calculations considering two such processes and show an additional example of a metamorphic texture that is difficult to model with current techniques. Firstly, we explore the assumption that although water saturation and bulk-rock equilibrium are generally considered to be valid assumptions in the calculation of phase equilibria, the saturation of thermodynamic components ignores mechanical effects that the fluid/melt phase can impose on the rock, which in turn can modify the effective equilibrium composition. Secondly, we examine how mass fractionation caused by porphyroblast growth at low temperatures or progressive melt extraction at high temperatures successively modifies X out of the plane of the initial diagram, complicating the process of determining best-fit P-T paths for natural samples. In particular, retrograde processes are poorly modeled without careful consideration of prograde

  12. An application of the time-step topological model for three-phase transformer no-load current calculation considering hysteresis

    International Nuclear Information System (INIS)

    Carrander, Claes; Mousavi, Seyed Ali; Engdahl, Göran

    2017-01-01

    In many transformer applications, it is necessary to have a core magnetization model that takes into account both magnetic and electrical effects. This becomes particularly important in three-phase transformers, where the zero-sequence impedance is generally high, and therefore affects the magnetization very strongly. In this paper, we demonstrate a time-step topological simulation method that uses a lumped-element approach to accurately model both the electrical and magnetic circuits. The simulation method is independent of the used hysteresis model. In this paper, a hysteresis model based on the first-order reversal-curve has been used. - Highlights: • A lumped-element method for modelling transformers i demonstrated. • The method can include hysteresis and arbitrarily complex geometries. • Simulation results for one power transformer are compared to measurements. • An analytical curve-fitting expression for static hysteresis loops is shown.

  13. Computational thermodynamics in electric current metallurgy

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Qin, R.S.

    2015-01-01

    . The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations.......A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature...

  14. Study of current oscillations and hard x-ray emissions in pre-cursor phase of major disruptions in Damavand tokamak

    International Nuclear Information System (INIS)

    Amrollahi, R.

    2002-01-01

    We notice that the hard x-ray activity before disruption consists of a series of spikes, uniformly distributed in time domain forming an orderly periodic series of oscillations at a frequency of 6.0 kHz. Disruption starts with an initial fast rise followed by decay. Current decay occurs in two regimes: the first corresponds to slow decay, in which the current is oscillating and reducing down to ∼70% its max value, and the second corresponds to fast decay, in which it totally vanishes abruptly in about 0.2 ms. In the first regime, the loop voltage also oscillates with considerable amplitude. The frequency of oscillations in the first regime is measured to be also about 6.0 kHz. As well, they follow the oscillation phase of hard x-rays. Thus the micro-instabilities driven by runaway electrons, being responsible for the production of hard x-rays bursts and small current oscillations, play a significant role in the disruption. (author)

  15. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2010-01-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  16. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  17. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  18. Autonomous Aerobraking Development Software: Phase 2 Summary

    Science.gov (United States)

    Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David

    2013-01-01

    NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.

  19. Probing phase- and frequency-dependent characteristics of cortical interneurons using combined transcranial alternating current stimulation and transcranial magnetic stimulation.

    Science.gov (United States)

    Hussain, Sara J; Thirugnanasambandam, Nivethida

    2017-06-01

    Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.

  20. Prototypical consolidation demonstration project - Final fuel recommendation report

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Paskey, W.R.

    1987-01-01

    The Prototypical Consolidation Demonstration (PCD) Project will, in its final phase, conduct a demonstration of the equipment's ability to consolidate actual spent commercial fuel. Since budget and schedule limitations do not allow this demonstration to include all types of fuel assemblies, a selection process was utilized to identify the fuel types that would represent predominate fuel inventories and that would demonstrate the equipment's abilities. The Pressurized Water Reactor (PWR) fuel assemblies that were suggested for use in the PCD Project Hot Demonstration were Babcock and Wilcox (B and W) 15 x 15's, and Westinghouse (WE) 15 x 15's. The Boiling Water Reactor (BWR) fuel suggested was the General Electric (GE) 8 x 8

  1. Stingray tidal stream energy device - phase 3

    International Nuclear Information System (INIS)

    2005-01-01

    The 150 kW Stingray demonstrator was designed, built and installed by The Engineering Business (EB) in 2002, becoming the world's first full-scale tidal stream generator. The concept and technology are described in the reports from Phases 1 and 2 of the project. This report provides an overview of Phase 3 - the re-installation of Stingray in Yell Sound in the Shetland Isles between July and September 2003 for further testing at slack water and on the flood tide to confirm basic machine characteristics, develop the control strategy and to demonstrate performance and power collection through periods of continuous operation. The overall aim was to demonstrate that electricity could be generated at a potentially commercially viable unit energy cost; cost modelling indicated a future unit energy cost of 6.7 pence/kWh when 100 MW capacity had been installed. The report describes: project objectives, targets and activities; design and production; marine operations including installation and demobilisation; environmental monitoring and impact, including pre-installation and post-decommissioning surveys; stakeholder involvement; test results on machine characteristics, sensor performance, power cycle analysis, power collection, transmission performance and efficiency, current data analysis; validation of the mathematical model; the background to the economic model; cost modelling; and compliance with targets set by the Department of Trade and Industry (DTI)

  2. Stingray tidal stream energy device - phase 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The 150 kW Stingray demonstrator was designed, built and installed by The Engineering Business (EB) in 2002, becoming the world's first full-scale tidal stream generator. The concept and technology are described in the reports from Phases 1 and 2 of the project. This report provides an overview of Phase 3 - the re-installation of Stingray in Yell Sound in the Shetland Isles between July and September 2003 for further testing at slack water and on the flood tide to confirm basic machine characteristics, develop the control strategy and to demonstrate performance and power collection through periods of continuous operation. The overall aim was to demonstrate that electricity could be generated at a potentially commercially viable unit energy cost; cost modelling indicated a future unit energy cost of 6.7 pence/kWh when 100 MW capacity had been installed. The report describes: project objectives, targets and activities; design and production; marine operations including installation and demobilisation; environmental monitoring and impact, including pre-installation and post-decommissioning surveys; stakeholder involvement; test results on machine characteristics, sensor performance, power cycle analysis, power collection, transmission performance and efficiency, current data analysis; validation of the mathematical model; the background to the economic model; cost modelling; and compliance with targets set by the Department of Trade and Industry (DTI).

  3. Numerical study of gravity currents in a channel

    International Nuclear Information System (INIS)

    Wang, D.

    1985-01-01

    A three-dimensional, primitive-equation model was used to study gravity currents produced by instantaneous releases of a buoyant fluid in a rectangular channel. Without rotation, the gravity current passes through two distinct phases: an initial adjustment phase in which the front speed is constant, and an eventual self-similar phase in which the front speed decreases with time. With rotation, the gravity current is confined to the right-hand wall, forming a coastal jet. The initial front-speed is constant; however, the front speed decreases rapidly due to strong mixing at the horizontal edge of the gravity current. Also, with rotation, part of the buoyant fluid is trapped near the source region, forming an anticyclonic vortex

  4. Coherent quantum phase slip in two-component bosonic atomtronic circuits

    International Nuclear Information System (INIS)

    Gallemí, A; Mateo, A Muñoz; Mayol, R; Guilleumas, M

    2016-01-01

    Coherent quantum phase slip consists in the coherent transfer of vortices in superfluids. We investigate this phenomenon in two miscible coherently coupled components of a spinor Bose gas confined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized circulation, on each component, we demonstrate that during the whole dynamics the system remains in a linear superposition of two current states in spite of the nonlinearity, and can be mapped onto a linear Josephson problem. We propose this system as a good candidate for the realization of a Mooij–Harmans qubit and remark its feasibility for implementation in current experiments with 87 Rb, since we have used values for the physical parameters currently available in laboratories. (paper)

  5. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  6. Lapatinib versus hormone therapy in patients with advanced renal cell carcinoma: a randomized phase III clinical trial

    DEFF Research Database (Denmark)

    Ravaud, Alain; Hawkins, Robert; Gardner, Jason P

    2008-01-01

    PURPOSE: Lapatinib is an orally reversible inhibitor of epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER-2) tyrosine kinases with demonstrated activity in patients with HER-2-positive breast cancer. In the current phase III open-label trial, lapatinib was comp...

  7. Choice of sample size for high transport critical current density in a granular superconductor: percolation versus self-field effects

    International Nuclear Information System (INIS)

    Mulet, R.; Diaz, O.; Altshuler, E.

    1997-01-01

    The percolative character of the current paths and the self-field effects were considered to estimate optimal sample dimensions for the transport current of a granular superconductor by means of a Monte Carlo algorithm and critical-state model calculations. We showed that, under certain conditions, self-field effects are negligible and the J c dependence on sample dimensions is determined by the percolative character of the current. Optimal dimensions are demonstrated to be a function of the fraction of superconducting phase in the sample. (author)

  8. Evaluation of a solid-phase RIA technique and a solid-phase ELISA technique for demonstrating hepatitis-B surface antigen

    International Nuclear Information System (INIS)

    Vranckx, R.; Cole, J.; Peetermans, M.

    1978-01-01

    The sensitivities of a solid-phase radioimmunoassay (RIA), a solid-phase enzyme immunoassay (ELISA) and a haemagglutination test (RPHA) for the detection of the hepatitis-B surface antigen (HBsAg) were compared (1) by screening a panel of 300 sera (97 positives and 203 negatives), and (2) by titrating serial dilutions of 10 positive sera. Ninety-seven sera were positive by RIA, 95% were detected by ELISA and 81% were detected by RPHA. In the serial dilutions, the average end-points of the titrations were 0.005ng/ml for RIA, 0.01ng/ml for ELISA and 0.04 ng/ml for RPHA. It can be concluded that the sensitivity of the ELISA test is intermediate between that of the RIA and the RPHA. The ELISA and the RPHA tests seem to be a little more sensitive for the detection of subtype ay than for the detection of subtype ad. (author)

  9. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Science.gov (United States)

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  10. Branching in current-voltage characteristics of intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Shukrinov, Yu M; Mahfouzi, F

    2007-01-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented

  11. New Approaches to Circulating Current Controllers for Modular Multilevel Converters

    Directory of Open Access Journals (Sweden)

    Miguel Moranchel

    2017-01-01

    Full Text Available In the next years, modular multilevel converters (MMCs are going to be a next generation multilevel converters for medium to high voltage conversion applications, such as medium voltage motor drives, medium voltage flexible AC transmission systems (FACTS and high voltage direct current transmission. They provide advantages such as high modularity, availability, low generation of harmonics, etc. However, the circulating current distorts the leg currents and increases the rated current of power devices, which further increases system cost. This paper focuses on analysis and suppression of these currents in a MMC using two algorithms for tracking of harmonics. For this work resonant controllers and repetitive controllers have been selected. Both controllers are analyzed and simulations results are presented. Moreover, the controllers have been tested and validated for a three phase MMC operating as an inverter using a real processing platform based on Zynq by Xilinx and designed to control large multilevel converters and in a real MMC prototype. These results are provided to demonstrate the feasibility of the proposed method.

  12. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  13. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  14. Design, manufacture, and calibration of Foucault current sensors

    Science.gov (United States)

    Chailleux, H.; Choffy, J. P.; Molinero, I.

    1990-09-01

    The development and production of Foucalt current sensors for low frequencies (between 1 and 3 kHz) is described. These sensors are to be used in fault detection of sheet assemblies between 1 and 5 mm in thickness. Nine sensors are produced. Three coils without a central core demonstrate that the ferrite core improves the magnetic coupling between the sensor and the panel studied by approximately 50 percent, and the detection of a fault by about 14 dB. The electric characteristics measured by means of an impedance meter seem to provide good indication of the quality of the sensors during both production and operating phases.

  15. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  16. Oblique electron-cyclotron-emission radial and phase detector of rotating magnetic islands applied to alignment and modulation of electron-cyclotron-current-drive for neoclassical tearing mode stabilization

    International Nuclear Information System (INIS)

    Volpe, F.; Austin, M. E.; Campbell, G.; Deterly, T.

    2012-01-01

    A two channel oblique electron cyclotron emission (ECE) radiometer was installed on the DIII-D tokamak and interfaced to four gyrotrons. Oblique ECE was used to toroidally and radially localize rotating magnetic islands and so assist their electron cyclotron current drive (ECCD) stabilization. In particular, after manipulations operated by the interfacing analogue circuit, the oblique ECE signals directly modulated the current drive in synch with the island rotation and in phase with the island O-point, for a more efficient stabilization. Apart from the different toroidal location, the diagnostic view is identical to the ECCD launch direction, which greatly simplified the real-time use of the signals. In fact, a simple toroidal extrapolation was sufficient to lock the modulation to the O-point phase. This was accomplished by a specially designed phase shifter of nearly flat response over the 1–7 kHz range. Moreover, correlation analysis of two channels slightly above and below the ECCD frequency allowed checking the radial alignment to the island, based on the fact that for satisfactory alignment the two signals are out of phase.

  17. Strong enhancement of straeming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly enhanced by the use of two phase flow. Injection of gas bubbles into a liquid-filled channel increases both the maximum output power and the energy conversion efficiency. In single-phase

  18. Hardware Demonstrator of a Level-1 Track Finding Algorithm with FPGAs for the Phase II CMS Experiment

    International Nuclear Information System (INIS)

    Cieri, D.

    2016-01-01

    At the HL-LHC, proton bunches collide every 25 ns, producing an average of 140 pp interactions per bunch crossing. To operate in such an environment, the CMS experiment will need a Level-1 (L1) hardware trigger, able to identify interesting events within a latency of 12.5 μs. This novel L1 trigger will make use of data coming from the silicon tracker to constrain the trigger rate . Goal of this new track trigger will be to build L1 tracks from the tracker information. The architecture that will be implemented in future to process tracker data is still under discussion. One possibility is to adopt a system entirely based on FPGA electronic. The proposed track finding algorithm is based on the Hough transform method. The algorithm has been tested using simulated pp collision data and it is currently being demonstrated in hardware, using the “MP7”, which is a μTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s. Two different implementations of the Hough transform technique are currently under investigation: one utilizes a systolic array to represent the Hough space, while the other exploits a pipelined approach. (paper)

  19. OVERVIEW OF USEPA'S ARSENIC TECHNOLOGY DEMONSTRATION PROGRAM

    Science.gov (United States)

    This presentation provides a summary on the Arsenic Treatment Technology Demonstration Program. The information includes the history and the current status of the demonstration projects on both round 1 and round 2 including some photos of the treatment systems. The presentation m...

  20. A Fluorogenic Aromatic Nucleophilic Substitution Reaction for Demonstrating Normal-Phase Chromatography and Isolation of Nitrobenzoxadiazole Chromophores

    Science.gov (United States)

    Key, Jessie A.; Li, Matthew D.; Cairo, Christopher W.

    2011-01-01

    Normal-phase chromatography is an essential technique for monitoring chemical reactions, identifying the presence of specific components, as well as the purification of organic compounds. An experiment to facilitate the instruction and understanding of the concepts behind normal-phase chromatography at the introductory and intermediate…

  1. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    Science.gov (United States)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and single combination of a triple M2+-doped group (Cu2+-Ni2+-Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+-Ni2+, Cu2+-Co2+, and Cu2+-Ni2+) and triple (Cu2+-Ni2+-Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  2. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  3. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  4. Multi-color phase imaging and sickle cell anemia (Conference Presentation)

    Science.gov (United States)

    Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2016-03-01

    Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.

  5. Calibration of phase field parameters demonstrated on kinetics of a shrinking single grain

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Zickler, G. A.; Svoboda, Jiří

    2017-01-01

    Roč. 97, č. 3 (2017), s. 92-100 ISSN 0950-0839 R&D Projects: GA MŠk LM2015069 Institutional support: RVO:68081723 Keywords : thermodynamic quantities * phase field method * thermodynamic extremal principle * grain shrinkage Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.941, year: 2016

  6. An analytical demonstration of coupling schemes between magnetohydrodynamic codes and eddy current codes

    International Nuclear Information System (INIS)

    Liu Yueqiang; Albanese, R.; Rubinacci, G.; Portone, A.; Villone, F.

    2008-01-01

    In order to model a magnetohydrodynamic (MHD) instability that strongly couples to external conducting structures (walls and/or coils) in a fusion device, it is often necessary to combine a MHD code solving for the plasma response, with an eddy current code computing the fields and currents of conductors. We present a rigorous proof of the coupling schemes between these two types of codes. One of the coupling schemes has been introduced and implemented in the CARMA code [R. Albanese, Y. Q. Liu, A. Portone, G. Rubinacci, and F. Villone, IEEE Trans. Magn. 44, 1654 (2008); A. Portone, F. Villone, Y. Q. Liu, R. Albanese, and G. Rubinacci, Plasma Phys. Controlled Fusion 50, 085004 (2008)] that couples the MHD code MARS-F[Y. Q. Liu, A. Bondeson, C. M. Fransson, B. Lennartson, and C. Breitholtz, Phys. Plasmas 7, 3681 (2000)] and the eddy current code CARIDDI[R. Albanese and G. Rubinacci, Adv. Imaging Electron Phys. 102, 1 (1998)]. While the coupling schemes are described for a general toroidal geometry, we give the analytical proof for a cylindrical plasma.

  7. Optimal current waveforms for brushless permanent magnet motors

    Science.gov (United States)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  8. Wavelet analysis of nonstationary fluctuations of Monte Carlo-simulated excitatory postsynaptic currents.

    Science.gov (United States)

    Aristizabal, F; Glavinovic, M I

    2003-10-01

    Tracking spectral changes of rapidly varying signals is a demanding task. In this study, we explore on Monte Carlo-simulated glutamate-activated AMPA patch and synaptic currents whether a wavelet analysis offers such a possibility. Unlike Fourier methods that determine only the frequency content of a signal, the wavelet analysis determines both the frequency and the time. This is owing to the nature of the basis functions, which are infinite for Fourier transforms (sines and cosines are infinite), but are finite for wavelet analysis (wavelets are localized waves). In agreement with previous reports, the frequency of the stationary patch current fluctuations is higher for larger currents, whereas the mean-variance plots are parabolic. The spectra of the current fluctuations and mean-variance plots are close to the theoretically predicted values. The median frequency of the synaptic and nonstationary patch currents is, however, time dependent, though at the peak of synaptic currents, the median frequency is insensitive to the number of glutamate molecules released. Such time dependence demonstrates that the "composite spectra" of the current fluctuations gathered over the whole duration of synaptic currents cannot be used to assess the mean open time or effective mean open time of AMPA channels. The current (patch or synaptic) versus median frequency plots show hysteresis. The median frequency is thus not a simple reflection of the overall receptor saturation levels and is greater during the rise phase for the same saturation level. The hysteresis is due to the higher occupancy of the doubly bound state during the rise phase and not due to the spatial spread of the saturation disk, which remains remarkably constant. Albeit time dependent, the variance of the synaptic and nonstationary patch currents can be accurately determined. Nevertheless the evaluation of the number of AMPA channels and their single current from the mean-variance plots of patch or synaptic

  9. Dual Aharonov-Casher effect and persistent dipole current

    International Nuclear Information System (INIS)

    Yi, J.; Jeon, G.S.; Choi, M.Y.

    1995-01-01

    An electric dipole moving in a magnetic field acquires a nontrivial quantum phase in the appropriate configuration. It is shown that this phase is manifested by the persistent dipole current induced on a ring pierced by a line of magnetic monopoles. Such a current depends on the statistics of the dipoles, which may have interesting implications for experiments. It is also pointed out that the dipole current cannot be self-sustained

  10. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    Science.gov (United States)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  11. Explosive transitions to synchronization in networks of phase oscillators.

    Science.gov (United States)

    Leyva, I; Navas, A; Sendiña-Nadal, I; Almendral, J A; Buldú, J M; Zanin, M; Papo, D; Boccaletti, S

    2013-01-01

    The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization.

  12. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Manzo, Michele; Gallo, Katia, E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se [Department of Applied Physics, KTH-Royal Institute of Technology, Roslagstullbacken 21, 10691 Stockholm (Sweden); Kholkin, Andrei L. [Department of Physics and CICECO-Aveiro Institute of Materials, 3810-193 Aveiro, Portugal and Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2016-03-21

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  13. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    Science.gov (United States)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  14. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  15. Multilevel Converter by Cascading Two-Level Three-Phase Voltage Source Converter

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-04-01

    Full Text Available This paper proposes a topology using isolated, cascaded multilevel voltage source converters (VSCs and employing two-winding magnetic elements for high-power applications. The proposed topology synthesizes 6 two-level, three-phase VSCs, so the power capability of the presented converter is six times the capability of each VSC module. The characteristics of the proposed topology are demonstrated through analyzing its current relationships, voltage relationships and power capability in detail. The power rating is equally shared among the VSC modules without the need for a sharing algorithm; thus, the converter operates as a single three-phase VSC. The comparative analysis with classical neutral-point clamped, flying capacitor and cascaded H-bridge exhibits the superior features of fewer insulated gate bipolar transistors (IGBTs, capacitor requirement and fewer diodes. To validate the theoretical performance of the proposed converter, it is simulated in a MATLAB/Simulink environment and the results are experimentally demonstrated using a laboratory prototype.

  16. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  17. A low-power and low-phase-noise LC digitally controlled oscillator featuring a novel capacitor bank

    Energy Technology Data Exchange (ETDEWEB)

    Tian Huanhuan; Li Zhiqiang; Chen Pufeng; Wu Rufei; Zhang Haiying, E-mail: thuan8@126.com [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-12-15

    A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 {mu}m CMOS process with six metal layers. A third new way to change capacitance is proposed and implemented in this work. Results show that the phase noise at 1 MHz offset frequency is below -122.5 dBc/Hz while drawing a current of only 4.8 mA from a 1.8 V supply. Also, the DCO can work at low supply voltage conditions with a 1.6 V power supply and 4.1 mA supply current for the DCO's core circuit, achieving a phase-noise of -21.5 dBc/Hz at offset of 1 MHz. It demonstrates that the supply pushing of DCO is less than 10 MHz/V. (semiconductor integrated circuits)

  18. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  19. Harmonic Mitigation Using a Polarized Ramp-time Current-Controlled Inverter

    Directory of Open Access Journals (Sweden)

    Lawrence J. Borle

    2010-12-01

    Full Text Available This paper describes the implementation of a shunt active power filter for a three-phase four-wire system to compensate for power quality problems generated by mixed non-linear loads, which are a combination of harmonic, reactive and unbalanced components. The filter is a three-phase current-controlled voltage source inverter (CC-VSI with a filter inductor at the AC output and a DC-bus capacitor. The CC-VSI is operated to directly control the grid current to be sinusoidal and in phase with the grid voltage without sensing the load currents. The switching is controlled using polarized ramp-time current control, which is based on the concept of zero average current error (ZACE with a fixed switching frequency. The laboratory experiment results indicate that the filter is able to mitigate predominantly the harmonics, as well as the reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical although the grid voltage contains harmonics.

  20. Beat wave current drive experiment on the Davis Diverted Tokamak (DDT)

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Horton, R.D.; Rogers, J.H.

    1993-01-01

    The beatwave current drive experiment is summarized. The first phase of the experiment was the construction of the microwave sources and the diagnostics needed to demonstrate the beat wave effects, i.e. the measurement of the electrostatic plasma wave produced by the beating of two high intensity electromagnetic waves. In order to keep the cost of the experiments to a minimum, a low density filament plasma source (10 8 ) to (10 10 particles cm -3 ) was employed and the magnetic field in the toroidal plasma was produced by a dc power supply

  1. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  2. Study of nonequilibrium dispersed two phase flow

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.

    1986-01-01

    Understanding the behavior of liquid droplets in a superheated steam environment is essential to the accurate prediction of nuclear fuel rod surface temperatures during the blowdown and reflood phase of a loss-of-coolant-accident (LOCA). In response to this need, this treatise presents several original and significant contributions to the field of thermofluid physics. The research contained herein presents a statistical derivation of the two-phase mass, momentum, and energy-conservation equations using a droplet continuity equation analogous to that used in the Kinetic Theory of Gases. Unlike the Eulerian volume and time-averaged conservation equations generally used to describe dispersed two-phase flow behavior, this statistical averaging approach results in an additional mass momentum or energy term in each of the respective conservation equations. Further, this study demonstrates that current definitions of the volumetric vapor generation rate used in the mass conservation equation are inappropriate results under certain circumstances. The mass conservation equation derived herein is used to obtain a new definition for the volumetric vapor-generation rate. Last, a simple two phase phenomenological model, based on the statistically averaged conservation equations, is presented and solved analytically. It is shown that the actual quality and vapor temperature, under these circumstances, depend on a single dimensionless group

  3. Dynamic modeling method for infrared smoke based on enhanced discrete phase model

    Science.gov (United States)

    Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo

    2018-03-01

    The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.

  4. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  5. Japanese contributions to IAEA INTOR workshop, phase two A, part 2, chapter IV: RF heating and current drive

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Kimura, Haruyuki; Okazaki, Takashi

    1985-07-01

    This report corresponds to Chapter IV of Japanese contribution report to IAEA INTOR Workshop, phase Two A, Part 2. Data base assessments of plasma heating and launcher system design for Ion Cyclotron Range of Frequency (ICRF) wave, for Lower Hybrid Range of Frequency (LHRF) wave, and for Electron Cyclotron Range of Frequency (ECRF) wave are made. Assessments of current drive by LHRF, and of start-up assist and profile control by ECRF are also made. R and D programmes both physics and technology for each of the waves are specified. Applications of these waves to INTOR are examined. (author)

  6. Industrial advanced turbine systems: Development and demonstration. Quarterly report, July 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The US DOE has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. Forecasts call for completion of the program within budget as originally estimated. Scheduled completion is forecasted to be approximately 3 years late to original plan. Significant efforts were spent this quarter to reforecast and control expenditures due to Solar`s and DOE`s current funding and resource constraints. Selective reductions and delays in program activities were identified and implemented. Although these actions will increase technical risk and the attainment of stretch goals, it is not anticipated that the schedule for initial test units or the attainment of basic program performance requirements will be impacted. As of the end of the reporting period work on the program is 22.80% complete based upon milestones completed. This measurement is considered quite conservative as numerous drawings on the Mercury 50 are near release. Variance information is provided in Section 4.0-Program Management.

  7. Status of the Majorana Demonstrator experiment

    Science.gov (United States)

    Martin, R. D.; Abgrall, N.; Aguayo, E.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G., II; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Soin, A.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    2014-06-01

    The Majorana Demonstrator neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  8. Methanol supply issues for alternative fuels demonstration programs

    International Nuclear Information System (INIS)

    Teague, J.M.; Koyama, K.K.

    1995-01-01

    This paper surveys issues affecting the supply of fuel-grade methanol for the California Energy Commission's alternative fuels demonstration programs and operations by other public agencies such as transit and school districts. Establishing stable and reasonably priced sources of methanol (in particular) and of alternative fuels generally is essential to their demonstration and commercialization. Development both of vehicle technologies and of fuel supply and distribution are complementary and must proceed in parallel. However, the sequence of scaling up supply and distribution is not necessarily smooth; achievement of volume thresholds in demand and through-put of alternative fuels are marked by different kinds of challenges. Four basic conditions should be met in establishing a fuel supply: (1) it must be price competitive with petroleum-based fuels, at least when accounting for environmental and performance benefits; (2) bulk supply must meet volumes required at each phase; necessitating resilience among suppliers and a means of designating priority for high value users; (3) distribution systems must be reliable, comporting with end users' operational schedules; (4) volatility in prices to the end user for the fuel must be minimal. Current and projected fuel volumes appear to be insufficient to induce necessary economies of scale in production and distribution for fuel use. Despite their benefits, existing programs will suffer absent measures to secure economical fuel supplies. One solution is to develop sources that are dedicated to fuel markets and located within the end-use region

  9. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  10. Current Practices in the Treatment of Alzheimer Disease: Where is the Evidence After the Phase III Trials?

    Science.gov (United States)

    Ehret, Megan J; Chamberlin, Kevin W

    2015-08-01

    The purpose of this systematic review was to review the current place in therapy of the 4 medications, donepezil, rivastigmine, galantamine, and memantine, approved for the treatment of Alzheimer disease (AD) since the publication of Phase III trials. A systematic literature search of MEDLINE and EMBASE was conducted for articles published in the past 10 years. The search was performed using the following Medical Subject Headings and text key words: Alzheimer's disease, treatment, donepezil, galantamine, rivastigmine, memantine, dementia of the Alzheimer's type, and dementia. Studies that evaluated new doses, indications, and dose formulations remain a large part of the current literature. Donepezil gained approval for the treatment of severe AD and became available in a 23-mg/d dose formulation. Rivastigmine became available in a patch formulation. Memantine became available as an extended-release capsule. Use of a combination product formulation was recently approved, memantine extended release/donepezil. Controversy among clinicians remains regarding when to initiate therapy, appropriate duration of therapy, and how and when to discontinue the treatment of AD. Only drugs that affect cholinergic function have shown consistent, but modest, clinical effects, even in late-phase trials. There is a need for a better appreciation of the various risk factors and drug targets for the treatment of AD. The wide range of targets makes it unlikely that affecting only 1 of those targets (eg, cholinergic function or N-methyl-d-aspartate) will lead to a more than minimally effective treatment option, regardless of when a treatment is started and discontinued. There is substantial opportunity for the continued growth and development of drugs and clinical trial expansion for the treatment of AD. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  11. Transcranial Direct Current Stimulation combined with treadmill training in the subacute phase following stroke: case series

    DEFF Research Database (Denmark)

    Figlewski, Krystian; Nielsen, Jørgen Feldbæk; Blicher, Jakob

    such as transcranial Direct Current Stimulation (tDCS). In neurophysiologic studies an imbalance of interhemispheric interactions has been demonstrated which is believed to interfere with the recovery process. This imbalance can be ameliorated by upregulation of the excitability in the lesioned hemisphere applying...... anodal tDCS. Aims: to evaluate the feasibility of anodal tDCS with body weight support treadmill training (BWSTT) in the subacute stroke patients. Methods Four subjects (Table 1.) participated in BWSTT coupled with anodal tDCS thrice per week for 4 weeks. Subjects were included within 14 days from stroke...... onset. Anodal tDCS was delivered to excite the cortical leg motor area using 35 cm2 saline soaked electrodes. During BWSTT a 2 mA current was applied for 20 minutes. Evaluations conducted at baseline and after the intervention included 10-meters walking test (10 MWT), isokinetic muscle strength of knee...

  12. Current transport properties and phase diagram of a Kitaev chain with long-range pairing

    Science.gov (United States)

    Giuliano, Domenico; Paganelli, Simone; Lepori, Luca

    2018-04-01

    We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges. The method relies on the effects of the finite mass of the subgap edge modes in the long-range regime (which survives in the thermodynamic limit) on the single-particle scattering coefficients through the chain connected to two normal leads. Specifically, we show that, when the leads are biased at a voltage V with respect to the superconducting chain, the Fano factor is either zero (in the short-range correlated phase) or 2 e (in the long-range correlated phase). As a result, we find that the Fano factor works as a directly measurable quantity to probe the quantum phase transition between the two phases. In addition, we note a remarkable "critical fractionalization effect" in the Fano factor, which is exactly equal to e along the quantum critical line. Finally, we note that a dual implementation of our proposed device makes it suitable as a generator of large-distance entangled two-particle states.

  13. The WA105-3x1x1 m3 dual phase LAr-TPC demonstrator

    CERN Document Server

    Murphy, Sebastien

    2016-11-15

    The dual phase Liquid Argon Time Projection Chamber (LAr TPC) is the state-of-art technology for neutrino detection thanks to its superb 3D tracking and calorimetry performance. Its main feature is the charge amplification in gas argon which provides excellent signal-to-noise ratio. Electrons produced in the liquid argon are extracted in the gas phase. Here, a readout plane based on Large Electron Multiplier detectors provides amplification of the charges before its collection onto an anode with strip readout. The charge amplification enables constructing fully homoge- nous giant LAr-TPCs with tuneable gain, excellent charge imaging performance and increased sensitivity to low energy events. Following a staged approach the WA105 collaboration is con- structing a dual phase LAr-TPC with an active volume of 3x1x1m3 that will soon be tested with cosmic rays. Its construction and operation aims to test scalable solutions for the crucial aspects of this technology: ultra high argon purity in non-evacuable tank, la...

  14. Status of the Virginia Power/DOE Cooperative Cask Testing/Demonstration Program: A video presentation

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.; Collantes, C.E.

    1990-01-01

    This paper is documentation of a video presentation and provides a brief summary of the Virginia power/US Department of Energy Cooperative Cask Testing/Demonstration Program. The program consists of two phases. The first phase has been completed and involved the unlicensed performance testing (heat transfer and shielding) of three metal spent fuel storage casks at the federally owned Idaho National Engineering Laboratory. The second phase is ongoing and consists of licensed demonstrations of standard casks from two different vendors and of one or two enhanced capacity casks. 6 refs., 1 tab

  15. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  16. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  17. Dancers with achilles tendinopathy demonstrate altered lower extremity takeoff kinematics.

    Science.gov (United States)

    Kulig, Kornelia; Loudon, Janice K; Popovich, John M; Pollard, Christine D; Winder, Brooke R

    2011-08-01

    Controlled laboratory study using a cross-sectional design. To analyze lower extremity kinematics during takeoff of a "saut de chat" (leap) in dancers with and without a history of Achilles tendinopathy (AT). We hypothesized that dancers with AT would demonstrate different kinematic strategies compared to dancers without pathology, and that these differences would be prominent in the transverse and frontal planes. AT is a common injury experienced by dancers. Dance leaps such as the saut de chat place a large demand on the Achilles tendon. Sixteen female dancers with and without a history of AT (mean ± SD age, 18.8 ± 1.2 years) participated. Three-dimensional kinematics at the hip, knee, and ankle were quantified for the takeoff of the saut de chat, using a motion analysis system. A force platform was used to determine braking and push-off phases of takeoff. Peak sagittal, frontal, and transverse plane joint positions during the braking and push-off phases of the takeoff were examined statistically. Independent samples t tests were used to evaluate group differences (α = .05). The dancers in the tendinopathy group demonstrated significantly higher peak hip adduction during the braking phase of takeoff (mean ± SD, 13.5° ± 6.1° versus 7.7° ± 4.2°; P = .046). During the push-off phase, dancers with AT demonstrated significantly more internal rotation at the knee (13.2° ± 5.2° versus 6.9° ± 4.9°; P = .024). Dancers with AT demonstrate increased peak transverse and frontal plane kinematics when performing the takeoff of a saut de chat. These larger displacements may be either causative or compensatory factors in the development of AT.

  18. Evaluation of Three-Phase Transformerless Photovoltaic Inverter Topologies

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper analyzes and compares three transformerless photovoltaic inverter topologies for three-phase grid connection with the main focus on the safety issues that result from the lack of galvanic isolation. A common-mode model, valid at frequencies lower than 50 kHz, is adopted to study...... the leakage current paths. The model is validated by both simulation and experimental results. These will be used to compare the selected topologies, and to explain the influence of system unbalance and the neutral conductor inductance on the leakage current. It will be demonstrated that the later has...... a crucial influence. Finally, a comparison of the selected topologies is carried out, based on the adopted modulation, connection of the neutral and its inductance, effects of unbalance conditions, component ratings, output voltage levels, and filter size....

  19. Frequency domain phase retrieval of simultaneous multi-wavelength phase-shifting interferometry

    International Nuclear Information System (INIS)

    Yin, Zhenxing; Zhong, Liyun; Xu, Xiaofei; Zhang, Wangping; Lu, Xiaoxu; Tian, Jindong

    2016-01-01

    In simultaneous multi-wavelength phase-shifting interferometry, we propose a novel frequency domain phase retrieval (FDPR) algorithm. First, using only a one-time phase-shifting operation, a sequence of simultaneous multi-wavelength phase-shifting interferograms (SPSMWIs) are captured by a monochrome charge-coupled device. Second, by performing a Fourier transform for each pixel of SPSMWIs, the wrapped phases of each wavelength can be retrieved from the complex amplitude located in the spectral peak of each wavelength. Finally, the phase of the synthetic wavelength can be obtained by the subtraction between the wrapped phases of a single wavelength. In this study, the principle and the application condition of the proposed approach are discussed. Both the simulation and the experimental result demonstrate the simple and convenient performance of the proposed FDPR approach. (paper)

  20. Fast wave current drive on DIII-D

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Petty, C.C.; Pinsker, R.I.; Forest, C.B.; Ikezi, H.; Prater, R.; Baity, F.W.; Callis, R.W.; Cary, W.P.; Chiu, S.C.; Doyle, E.J.; Ferguson, S.W.; Hoffman, D.J.; Jaeger, E.F.; Kim, K.W.; Lee, J.H.; Lin-Liu, Y.R.; Murakami, M.; ONeill, R.C.; Porkolab, M.; Rhodes, T.L.; Swain, D.W.

    1996-01-01

    The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as γ=0.4x10 18 T e0 (keV) [A/m 2 W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with clear evidence for a toroidally directed wave with antenna phasing set for current drive. copyright 1996 American Institute of Physics