WorldWideScience

Sample records for current applications pitfalls

  1. The current landscape of pitfalls in Ontologies

    CSIR Research Space (South Africa)

    Keet, CM

    2013-09-01

    Full Text Available 2Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad Polite´cnica de Madrid, Madrid, Spain keet@ukzn.ac.za, {mcsuarez,mpoveda}@fi.upm.es Keywords: Ontology Development : Ontology Quality : Pitfall Abstract: A growing... in Ontologies C. Maria Keet1, Mari Carmen Sua´rez-Figueroa2 and Marı´a Poveda-Villalo´n2 1School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, and UKZN/CSIR-Meraka Centre for Artificial Intelligence Research, Durban, South Africa...

  2. Merits and pitfalls of currently used diagnostic tools in mycetoma.

    Directory of Open Access Journals (Sweden)

    Wendy W J van de Sande

    2014-07-01

    Full Text Available Treatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma and fungi (eumycetoma, are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of infections and to identify the causative agents of mycetoma. These include various imaging, cytological, histopathological, serological, and culture techniques; phenotypic characterisation; and molecular diagnostics. In this review, we summarize these techniques and identify their merits and pitfalls in the identification of the causative agents of mycetoma and the extent of the disease. We also emphasize the fact that there is no ideal diagnostic tool available to identify the causative agents and that future research should focus on the development of new and reliable diagnostic tools.

  3. Merits and pitfalls of currently used diagnostic tools in mycetoma.

    Science.gov (United States)

    van de Sande, Wendy W J; Fahal, Ahmed H; Goodfellow, Michael; Mahgoub, El Sheikh; Welsh, Oliverio; Zijlstra, Ed E

    2014-07-01

    Treatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma) and fungi (eumycetoma), are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of infections and to identify the causative agents of mycetoma. These include various imaging, cytological, histopathological, serological, and culture techniques; phenotypic characterisation; and molecular diagnostics. In this review, we summarize these techniques and identify their merits and pitfalls in the identification of the causative agents of mycetoma and the extent of the disease. We also emphasize the fact that there is no ideal diagnostic tool available to identify the causative agents and that future research should focus on the development of new and reliable diagnostic tools.

  4. Merits and Pitfalls of Currently Used Diagnostic Tools in Mycetoma

    NARCIS (Netherlands)

    W.W.J. van de Sande (Wendy); A.H. Fahal (Ahmed); H. Goodfellow (Henry); E.S. Mahgoub (El Sheikh); O. Welsh (Oliverio); E. Zijlstra (Ed)

    2014-01-01

    textabstractTreatment of mycetoma depends on the causative organism and since many organisms, both actinomycetes (actinomycetoma) and fungi (eumycetoma), are capable of producing mycetoma, an accurate diagnosis is crucial. Currently, multiple diagnostic tools are used to determine the extent of infe

  5. Typical pitfalls in applications for marketing authorization of biotechnological products in Europe.

    Science.gov (United States)

    Schneider, Christian K; Schäffner-Dallmann, Gabriele

    2008-11-01

    Although regulatory standards and procedures in Europe have improved following the establishment of the European Medicines Agency (EMEA), the number of major issues with marketing authorization applications for biotechnological products remains high. For example, the pivotal clinical trials of some late-stage failures have been found not to meet the regulatory guidelines of the European Union, and regulators are increasingly concerned that attempts to accelerate the process of biotechnological product development leads to the neglect of important issues. Based on the scientific decisions of the EMEA's major scientific committees, in this article we identify and discuss frequent concerns, and suggest approaches that might enable developers of biotechnological products to avoid these common pitfalls.

  6. Current Guidelines, Common Clinical Pitfalls, and Future Directions for Laboratory Diagnosis of Lyme Disease, United States

    Science.gov (United States)

    Moore, Andrew; Nelson, Christina; Molins, Claudia; Mead, Paul

    2016-01-01

    In the United States, Lyme disease is caused by Borrelia burgdorferi and transmitted to humans by blacklegged ticks. Patients with an erythema migrans lesion and epidemiologic risk can receive a diagnosis without laboratory testing. For all other patients, laboratory testing is necessary to confirm the diagnosis, but proper interpretation depends on symptoms and timing of illness. The recommended laboratory test in the United States is 2-tiered serologic analysis consisting of an enzyme-linked immunoassay or immunofluorescence assay, followed by reflexive immunoblotting. Sensitivity of 2-tiered testing is low (30%–40%) during early infection while the antibody response is developing (window period). For disseminated Lyme disease, sensitivity is 70%–100%. Specificity is high (>95%) during all stages of disease. Use of other diagnostic tests for Lyme disease is limited. We review the rationale behind current US testing guidelines, appropriate use and interpretation of tests, and recent developments in Lyme disease diagnostics. PMID:27314832

  7. [Pitfalls in phlebography].

    Science.gov (United States)

    Foucart, H; Varloteaux, M C; Baudrillard, J C; Carlier, C; Picard, J D

    1989-01-01

    Despite the progress in functional investigation procedures, phlebography remains the standard test in venous disease of the lower extremities. The development of better quality contrast media has significantly improved patients tolerance. After a review of the regular, routine procedure, the authors stress the technic's pitfalls. Uncomplicated pitfalls are air bubbles, Venturi's effect, venous malformations, and superimposed venous axes or gases. This type of problems is easily circumvented. Flow images caused by confluent axes of high-flow veins (internal iliac veins, renal veins) or layer courants (gutter effect) are presented as a reminder. Compression images are often more treacherous: related to normal veins: compression of left iliac vein by aortic junction; of inferior vena cava by enlarged aorta or by osteophyte; tourniquet too low, iliac vein compressed by a dilated bladder; or compression due to intramuscular hematoma,... related to pathological veins: to be mentioned are bridle-caused obstruction of the popliteal vein (Klippel-Trénaunay syndrome), and retroperitoneal fibrosis. Although the present description of phlebography-related pitfalls is neither new, nor exhaustive, it should be reconsidered, as phlebography of the lower limbs, while being currently better tolerated, is still an update technic that needs to be rendered more reliable.

  8. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  9. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls

    Science.gov (United States)

    Sun, Linlin; Zheng, Chunli; Webster, Thomas J

    2017-01-01

    Over the last several decades, a great number of advances have been made in the area of self-assembled supramolecules for regenerative medicine. Such advances have involved the design, preparation, and characterization of brand new self-assembled peptide nanomaterials for a variety of applications. Among all biomolecules considered for self-assembly applications, peptides have attracted a great deal of attention as building blocks for bottom-up fabrication, due to their versatility, ease of manufacturing, low costs, tunable structures, and versatile properties. Herein, some of the more exciting new designs of self-assembled peptides and their associated unique features are reviewed and several promising applications of how self-assembled peptides are advancing drug delivery, tissue engineering, antibacterial therapy, and biosensor device applications are highlighted. PMID:28053525

  10. Augmented and virtual reality in surgery-the digital surgical environment: applications, limitations and legal pitfalls.

    Science.gov (United States)

    Khor, Wee Sim; Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason

    2016-12-01

    The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena.

  11. Augmented and virtual reality in surgery—the digital surgical environment: applications, limitations and legal pitfalls

    Science.gov (United States)

    Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason

    2016-01-01

    The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena. PMID:28090510

  12. Pitfalls and novel applications of particle sizing by dynamic light scattering.

    Science.gov (United States)

    Fischer, Karl; Schmidt, Manfred

    2016-08-01

    After briefly introducing the theoretical equations for DLS based particle size analysis, the need for angular dependent DLS investigations is emphasized to obtain correct particle sizes. Practical examples are given that demonstrate the possible magnitudes of errors in particle size if DLS is measured at one large scattering angle, only, as done by essentially all, most frequently utilized commercial "single angle" particle sizers. The second part is focused on a novel DLS application to sensitively trace (nano)particle interactions with concentrated blood serum or plasma that leads to the formation of large aggregates in a size regime of ≫100 nm. Most likely, such aggregates originate from protein induced bridging of nanoparticles, since it is well known that serum proteins adsorb onto the surface of essentially all nanoparticles utilized in medical applications. Thus, the protein corona around nanoparticles does not only change their biological identity but to a large extend also their size, thus possibly affecting biodistribution and in vivo circulation time.

  13. Safety, efficacy and pitfalls of fibrocyte application in the treatment of diabetic foot ulcer.

    Science.gov (United States)

    Behjati, Mohaddeseh; Hashemi, Mohammad; Shoarayenejati, Alireza; Karbalaie, Khadijeh; Nasr-Esfahani, Mohammad H

    2015-02-01

    Fibrocytes are unique bone marrow-derived cells with great potential in wound healing. Hence, the aim of this study was to determine the safety and efficacy of the applied circulating fibrocytes in the treatment of non healing diabetic foot ulcers. Peripheral blood mononuclear cells were isolated by centrifugation through Ficoll-Paque method. After 3 days, the non adherent cells were removed by a single, gentle aspiration. Adherent cells were cultured in the same medium for 10 days. The cells were characterised using mouse anti-human-CD45-fluorescein isothiocyanate (FITC) and mouse anti-human-collagen I, and also characterised by immunofluorescence microscopy using the above mentioned antibodies. Sterility measures were applied for clinical evaluation. Based on the literature review, cell transplantation generally requires at least 3 × 10(6) cells regarding efficacy measures. As fibrocytes are non proliferating cells, 350 ml patient's blood is required to prepare patient-specific serum before cell isolation and culture, and 85 ml patient's blood is needed for cell isolation and differentiation on cell transplantation applications. In our survey, no diabetic patient was inclined to be donor of such blood volume, mainly because of their pre-assumption that they are anaemic. It is concluded that fibrocytes do not seem to be candidate cells for cell therapy in the treatment of diabetic foot ulcers because of the rarity of this cell population in circulation.

  14. Pitfalls in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Peh, Wilfred C.G. (ed.) [Khoo Teck Puat Hospital (Singapore). Dept. of Diagnostic Radiology

    2015-04-01

    Only textbook to focus primarily on the topic of pitfalls in diagnostic radiology. Highlights the pitfalls in a comprehensive and systematic manner. Written by experts in different imaging modalities and subspecialties from reputable centers across the world. The practice of diagnostic radiology has become increasingly complex, with the use of numerous imaging modalities and division into many subspecialty areas. It is becoming ever more difficult for subspecialist radiologists, general radiologists, and residents to keep up with the advances that are occurring year on year, and this is particularly true for less familiar topics. Failure to appreciate imaging pitfalls often leads to diagnostic error and misinterpretation, and potential medicolegal problems. Diagnostic errors may be due to various factors such as inadequate imaging technique, imaging artifacts, failure to recognize normal structures or variants, lack of correlation with clinical and other imaging findings, and poor training or inexperience. Many, if not most, of these factors are potentially recognizable, preventable, or correctable. This textbook, written by experts from reputable centers across the world, systematically and comprehensively highlights the pitfalls that may occur in diagnostic radiology. Both pitfalls specific to different modalities and techniques and those specific to particular organ systems are described with the help of numerous high-quality illustrations. Recognition of these pitfalls is crucial in helping the practicing radiologist to achieve a more accurate diagnosis.

  15. Current conveyors variants, applications and hardware implementations

    CERN Document Server

    Senani, Raj; Singh, A K

    2015-01-01

    This book serves as a single-source reference to Current Conveyors and their use in modern Analog Circuit Design. The authors describe the various types of current conveyors discovered over the past 45 years, details of all currently available, off-the-shelf integrated circuit current conveyors, and implementations of current conveyors using other, off-the-shelf IC building blocks. Coverage includes prominent bipolar/CMOS/Bi-CMOS architectures of current conveyors, as well as all varieties of starting from third generation current conveyors to universal current conveyors, their implementations and applications. •Describes all commercially available off-the-shelf IC current conveyors, as well as hardware implementations of current conveyors using other off-the-shelf ICs; • Describes numerous variants of current conveyors evolved over the past forty five years; • Describes a number of Bipolar/CMOS/Bi-CMOS architectures of current conveyors, along with their characteristic features; • Includes a comprehe...

  16. Gynecologic imaging: Current and emerging applications

    Directory of Open Access Journals (Sweden)

    Iyer V

    2010-01-01

    Full Text Available Common diagnostic challenges in gynecology and the role of imaging in their evaluation are reviewed. Etiologies of abnormal uterine bleeding identified on pelvic sonography and sonohysterography are presented. An algorithmic approach for characterizing an incidentally detected adnexal mass and use of magnetic resonance imaging for definitive diagnosis are discussed. Finally, the role of F18-fluorodeoxyglucose positron emission tomography in the management of gynecological malignancies, and pitfalls associated with their use are examined.

  17. Overview of subtalar arthrodesis techniques: options, pitfalls and solutions.

    Science.gov (United States)

    Tuijthof, Gabriëlle J M; Beimers, Lijkele; Kerkhoffs, Gino M M J; Dankelman, Jenny; Dijk, C Niek van

    2010-09-01

    Subtalar arthrodesis (SA) is the preferred treatment for painful isolated subtalar disease. Although results are generally favourable, analysis of current operative techniques will help optimizing this treatment. The aim was to give an overview of SA-techniques and their pitfalls. Possible solutions were identified. A literature search was performed for papers that presented SA operative techniques. The general technique was divided into phases: surgical approach, cartilage removal, bone graft selection, hindfoot deformity correction and fixation. The published series were invariably retrospective reviews of small heterogenous groups of different hindfoot pathologies. The weighted outcome rate for SA was 85% (68-100%) performed in 766 feet and for SA requiring correction of malalignment 65% (36-96%) in 1001 feet. Non-union (weighted percentage 12%), malalignment (18%), and screw removal (17%) were the prevailing late complications. The following pitfalls were identified: 1) early complications related to the incisions made in open approaches, 2) insufficient cartilage removal, improper bone graft selection and fixation techniques, all possibly leading to non-union, 3) morbidity caused by bone graft harvesting and secondary screw removal, 4) under- or overcorrection of the hindfoot possibly due to improper intraoperative verification and 5) inadequate assessment of bony fusion. The review provides solutions to possibly overcome some pitfalls: 1) if applicable use an arthroscopic approach in combination with distraction devices and new burrs, 2) if possible use local bone graft or allografts, 3) use two screws for fixation to prevent rotational micromotion, and 4) improve assessment of operative outcome by application of appropriate assessment of bony fusion and alignment. The review provides practical suggestions to optimize SA-techniques. Copyright (c) 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  18. CT Colonography: Pitfalls in Interpretation

    Science.gov (United States)

    Pickhardt, Perry J.; Kim, David H.

    2012-01-01

    Synopsis As with any radiologic imaging test, there are a number of potential interpretive pitfalls at CT colonography (CTC) that need to be recognized and handled appropriately. Perhaps the single most important step in learning to avoid most of these diagnostic traps is simply to be aware of their existence. With a little experience, most of these potential pitfalls will be easily recognized. This review will systematically cover the key pitfalls confronting the radiologist at CTC interpretation, primarily dividing them into those related to technique and those related to underlying anatomy. Tips and pointers for how to effectively handle these potential pitfalls are included. PMID:23182508

  19. Current applications of molecular cytogenetic technologies.

    Science.gov (United States)

    Mark, H F; Jenkins, R; Miller, W A

    1997-01-01

    This review discusses select current applications of fluorescent in situ hybridization (FISH) which may be of utility for the average clinical cytogenetic laboratory. Owing to the large number of men and women affected, the applications chosen to illustrate the use of FISH technology in cancer focus on two diseases: breast cancer and prostate cancer. The applicability of FISH to detect common aneuploidies, such as trisomy 21, trisomy 18, trisomy 13 and the sex chromosome aneuploidies in prenatal diagnosis, is discussed, as well as FISH for the detection of microdeletions and microduplications. Quality assurance/quality control issues and standards and guidelines relating to laboratory practices in molecular cytogenetic testing are reviewed.

  20. Current trends in context-aware applications

    Directory of Open Access Journals (Sweden)

    Andrea Loayza

    2013-12-01

    Full Text Available (Received: 2013/10/07 - Accepted: 2013/12/10Context-aware applications adapt their behavior and settings according to the environment conditions and to the user preferences. This state-of-the-art survey identifies the current trends related to the technics and tools for the development of this kind of software, as well as the areas of interest of the scientific community on the subject. It stands out the research on multimodal interfaces, localization, activity detection, interruptions control, predictive and wellbeing applications.

  1. Current trends in Bayesian methodology with applications

    CERN Document Server

    Upadhyay, Satyanshu K; Dey, Dipak K; Loganathan, Appaia

    2015-01-01

    Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics.Each chapter is self-contained and focuses on

  2. Preparation of a scientific paper on clinical laser research or applications: pitfalls and how to avoid them

    Science.gov (United States)

    Calderhead, Robert G.

    2003-12-01

    It is said that clinicians today learn less and less about more and more until they end up knowing nothing about everything, whereas researchers learn more and more about less and less until they end up knowing everything about nothing. This is a phenomenon which is slowly creeping into the field of clinical applications and basic research in laser surgery and laser therapy. This trend is definitely to be discouraged, as it will effectively narrow the scope of both clinicians and researchers at a time when the scope needs to be expanded just as appropriate applications in laser surgery, and bona fide applications for laser therapy are also expanding. "Publish, or be damned" is a well-known dictum in the heady halls of academe. Unfortunately, for many of the papers which are submitted on laser applications but which do not reach the pages of the target journal, and indeed for some papers which are published elsewhere by journals which should know a little better, or should at least have done their homework, the saying should perhaps be amended to; "Publish and be damned," meaning that the paper actually do more harm than good to the cause of lasers in medical science.

  3. Current feedback operational amplifiers and their applications

    CERN Document Server

    Senani, Raj; Singh, A K; Singh, V K

    2013-01-01

    This book describes a variety of current feedback operational amplifier (CFOA) architectures and their applications in analog signal processing/generation. Coverage includes a comprehensive survey of commercially available, off-the-shelf integrated circuit CFOAs, as well as recent advances made on the design of CFOAs, including design innovations for bipolar and CMOS CFOAs.  This book serves as a single-source reference to the topic, as well as a catalog of over 200 application circuits which would be useful not only for students, educators and researchers in apprising them about the recent developments in the area but would also serve as a comprehensive repertoire of useful circuits for practicing engineers who might be interested in choosing an appropriate CFOA-based topology for use in a given application.

  4. Current status of laser applications in urology

    Science.gov (United States)

    Knipper, Ansgar; Thomas, Stephen; Durek, C.; Jocham, Dieter

    1993-05-01

    The overall development of laser use in urology is recessing. The reasons are the refinement of methods of radical surgery and the continuing development of alternative technologies involving electric current. Taking the cost factor into account, are lasers still opportune in medicine? The answer is definitely yes. Cost reduction in medical practice without quality loss is only possible with effective methods of minimally invasive surgery. Continuing investigation of cutting, welding, coagulating and ablating instruments is justified. Competition of lasers to other technologies can only be beneficial to the cause. But where are the highlights of laser applications? The unsurpassed utilization of optical properties of lasers lie in the concept of photodynamic therapies and in optical feedback mechanisms for laser applications. The combination of lasers with three dimensional visualization of the treatment area by ultrasound (TULIP-procedure for benign prostatic hyperplasia) is a novel approach in laser application. The further development of these treatment modalities will reveal the true benefit of laser technology in urological applications.

  5. Microbiome engineering: Current applications and its future.

    Science.gov (United States)

    Foo, Jee Loon; Ling, Hua; Lee, Yung Seng; Chang, Matthew Wook

    2017-03-01

    Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering.

  6. Genitourinary imaging: Current and emerging applications

    Directory of Open Access Journals (Sweden)

    O′ Donoghue P

    2010-01-01

    Full Text Available This review discusses the current and emerging techniques in urinary tract imaging. Recent technical advances and novel discoveries make this an exciting but challenging time for urinary tract imaging. The first section describes the imaging of the adrenal gland which has made great strides in the last decade, the current major adrenal imaging modalities as well as new applications are discussed with particular attention to the role of imaging in the incidentally detected adrenal lesion. In the second section the role of ultrasound, computed tomography (CT and magnetic resonance (MR in evaluation of the renal tract are discussed with the new technical advances leading to earlier detection and characterization of renal lesions. Complementary to this is the emerging role of CT and MR urography in assessment of the urinary tract and bladder in contrast to the demise of plain film studies/intravenous urography. The role of CT angiography in assessment of the renal vasculature is also discussed. The third section discusses the role of prostate imaging in the diagnosis, staging and management of prostate cancer. Transrectal ultrasonography, can be used to guide biopsy, CT is frequently used in staging, with bone scintigraphy and positron emission tomography having roles in advanced disease. Currently, all imaging modalities, especially MR are evolving to improve disease detection and staging. The final section discusses the recently encountered adverse reaction of nephrogenic systemic fibrosis in patients post gadolinium-enhanced MRI and how to help prevent this adverse reaction.

  7. Genitourinary imaging: current and emerging applications.

    Science.gov (United States)

    O' Donoghue, P M; McSweeney, S E; Jhaveri, K

    2010-01-01

    This review discusses the current and emerging techniques in urinary tract imaging. Recent technical advances and novel discoveries make this an exciting but challenging time for urinary tract imaging. The first section describes the imaging of the adrenal gland which has made great strides in the last decade, the current major adrenal imaging modalities as well as new applications are discussed with particular attention to the role of imaging in the incidentally detected adrenal lesion. In the second section the role of ultrasound, computed tomography (CT) and magnetic resonance (MR) in evaluation of the renal tract are discussed with the new technical advances leading to earlier detection and characterization of renal lesions. Complementary to this is the emerging role of CT and MR urography in assessment of the urinary tract and bladder in contrast to the demise of plain film studies/intravenous urography. The role of CT angiography in assessment of the renal vasculature is also discussed. The third section discusses the role of prostate imaging in the diagnosis, staging and management of prostate cancer. Transrectal ultrasonography, can be used to guide biopsy, CT is frequently used in staging, with bone scintigraphy and positron emission tomography having roles in advanced disease. Currently, all imaging modalities, especially MR are evolving to improve disease detection and staging. The final section discusses the recently encountered adverse reaction of nephrogenic systemic fibrosis in patients post gadolinium-enhanced MRI and how to help prevent this adverse reaction.

  8. Spinal robotics: current applications and future perspectives.

    Science.gov (United States)

    Roser, Florian; Tatagiba, Marcos; Maier, Gottlieb

    2013-01-01

    Even though robotic technology holds great potential for performing spinal surgery and advancing neurosurgical techniques, it is of utmost importance to establish its practicality and to demonstrate better clinical outcomes compared with traditional techniques, especially in the current cost-effective era. Several systems have proved to be safe and reliable in the execution of tasks on a routine basis, are commercially available, and are used for specific indications in spine surgery. However, workflow, usability, interdisciplinary setups, efficacy, and cost-effectiveness have to be proven prospectively. This article includes a short description of robotic structures and workflow, followed by preliminary results of a randomized prospective study comparing conventional free-hand techniques with routine spine navigation and robotic-assisted procedures. Additionally, we present cases performed with a spinal robotic device, assessing not only the accuracy of the robotic-assisted procedure but also other factors (eg, minimal invasiveness, radiation dosage, and learning curves). Currently, the use of robotics in spinal surgery greatly enhances the application of minimally invasive procedures by increasing accuracy and reducing radiation exposure for patients and surgeons compared with standard procedures. Second-generation hardware and software upgrades of existing devices will enhance workflow and intraoperative setup. As more studies are published in this field, robot-assisted therapies will gain wider acceptance in the near future.

  9. CT colonography: methods, pathology and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.A.; Halligan, S.; Bartram, C.I

    2003-03-01

    Computed tomography colonography (CTC) is a relatively new technique that is currently challenging more established methods of large bowel imaging. Several workers have suggested CTC surpasses the barium enema and approaches conventional endoscopy for detection of colorectal neoplasia. Accurate diagnosis relies on technically good studies, the main aim of which is adequate bowel cleansing and distension. Furthermore, the learning curve is steep and normal colonic anatomy has to be re-learned in a CT context. This review aims to describe the technique, revise the imaging features of both normal and pathological colon, and to highlight potential diagnostic pitfalls and their avoidance.

  10. Bibliometric methods: pitfalls and possibilities

    DEFF Research Database (Denmark)

    Wallin, Johan A

    2005-01-01

    Bibliometric studies are increasingly being used for research assessment. Bibliometric indicators are strongly methodology-dependent but for all of them, various types of data normalization are an indispensable requirement. Bibliometric studies have many pitfalls; technical skill, critical sense...... and a precise knowledge about the examined scientific domain are required to carry out and interpret bibliometric investigations correctly. Udgivelsesdato: 2005-Nov...

  11. Motor neurone disease: diagnostic pitfalls.

    Science.gov (United States)

    Williams, Timothy L

    2013-02-01

    The misdiagnosis of MND (particularly of the ALS phenotype), is uncommon. Atypical presentations, particularly of focal onset and with pure LMN or UMN signs, present a more difficult diagnostic challenge, although perhaps reassuringly, treatable mimics are rare. A working knowledge of potential alternative conditions and MND diagnostic pitfalls should help to reduce the misdiagnosis rate, particularly if the key points are considered.

  12. Preventing pitfalls in patient surveys.

    Science.gov (United States)

    Steiber, S R

    1989-05-01

    Properly conceived, customer satisfaction surveys can yield the quantitative data needed to gauge patient satisfaction. But, as the author notes, these surveys can be "a veritable mine field of surprises for the uninitiated." This article, the last in a three-part series on measuring patient satisfaction, describes potential pitfalls and discusses the merits of in-person, mail and telephone surveys.

  13. Flow cytometric applications of tumor biology: prospects and pitfalls. [Applications in study of spontaneous dog tumors and in drug and radiation effects on cultured V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.

    1979-01-01

    A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation.

  14. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  15. Nanowires for high DC current applications

    Energy Technology Data Exchange (ETDEWEB)

    Hankemeier, Sebastian; Sachse, Konrad; Stark, Yuliya; Scholz, Matthias; Hoffmann, Germar; Froemter, Robert; Oepen, Hans Peter [Universitaet Hamburg (Germany)

    2008-07-01

    For a more detailed investigation of current induced domain wall movement in nanowires by spin torque effect, it is essential to have maximum control of the external experimental parameters, i.e. the current density and the wire temperature. Additional, to study the forces that act on the walls, it is desirable to perform experiments with DC currents large enough to move the domain walls. In this talk we present the realization of Permalloy nanowires which sustain current densities larger 4.10{sup 12} A/m{sup 2}. The wires are made from 20 nm thick Permalloy, evaporated on diamond, with a width of 1 {mu}m and a length of 25 {mu}m. While applying current densities beyond 10{sup 11} A/m{sup 2}, we observe ohmic heating of the wires, which causes annealing effects. This effect can be used to improve the specific resistance of the wire near to the values of bulk material. The experiments are performed under HV conditions to prevent oxidation and cooling with liquid nitrogen is necessary for heat dissipation. The temperature of the wire, which depends on the applied current, has been evaluated utilizing the change in wire-resistance and estimated by heat transfer calculations.

  16. Current trend of robotics application in medical

    Science.gov (United States)

    Olanrewaju, O. A.; Faieza, A. A.; Syakirah, K.

    2013-06-01

    The applications of robotics in recent years has emerged beyond the field of manufacturing or industrial robots itself. Robotics applications are now widely used in medical, transport, underwater, entertainment and military sector. In medical field, these applications should be emphasized in view of the increasing challenges due to the variety of findings in the field of medicine which requires new inventions to ease work process. The objective of this review paper is to study and presents the past and on-going research in medical robotics with emphasis on rehabilitation (assistive care) and surgery robotics which are certainly the two main practical fields where robots application are commonly used presently. The study found that, rehabilitation and surgery robotics applications grow extensively with the finding of new invention, as well as research that is being undertaken and to be undertaken. The importance of medical robot in medical industry is intended to offer positive outcomes to assist human business through a complicated task that involves a long period, accuracy, focus and other routines that cannot be accomplished by human ability alone.

  17. Producing Ceramic High Tc Superconductors for Strong Current Applications

    Institute of Scientific and Technical Information of China (English)

    Jian-Xun Jin; Yuan-Chang Guo; Xue-Kei Fu; Shi-Xue Dou

    2000-01-01

    @@ Strong current and large-scale application is the most important prospect of high Tc superconductors (HTS).Practical HTS samples, both in forms of wire and bulk, have been produced with high critical currents operated at economic cryogenic temperatures, and studied for engineering applications with various prototype devices. The applicable HTS materials produced are introduced in this paper with regard to processing, characterization and application.

  18. Microchips in Medicine: Current and Future Applications

    OpenAIRE

    Eltorai, Adam E. M.; Henry Fox; Emily McGurrin; Stephanie Guang

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine.

  19. Microchips in Medicine: Current and Future Applications.

    Science.gov (United States)

    Eltorai, Adam E M; Fox, Henry; McGurrin, Emily; Guang, Stephanie

    2016-01-01

    With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine.

  20. Overview of current applications in plasma medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.

    2017-02-01

    Plasma medicine is a rapidly growing field of treatment, with the number and type of medical applications growing annually, such as dentistry, cancer treatment, wound treatment, Antimicrobial (bacteria, biofilm, virus, fungus, prions), and surface sterilization. Work promoting muscle and blood vessel regeneration and osteointegration is being investigated. This review paper will cover the latest treatments using gas-based plasmas in medicine. Disinfection of water and new commercial systems will also be reviewed, as well as vaccine deactivation. With the rapid increase in new investigators, development of new devices and systems for treatment, and wider clinical applications, Plasma medicine is becoming a powerful tool in in the field of medicine. There are a wide range of Plasma sources that allows customization of the effect. These variations include frequency (DC to MHz), voltage capacity (kV), gas source (He, Ar; O2, N2, air, water vapor; combinations), direct/indirect target exposure, and water targets.

  1. Applications of hydrophobins : current state and perspectives

    OpenAIRE

    Wösten, Han A.B.; Scholtmeijer, Karin

    2015-01-01

    Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrophobic. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to disperse hydrophobic materials; to stabilize f...

  2. Microchips in Medicine: Current and Future Applications

    Directory of Open Access Journals (Sweden)

    Adam E. M. Eltorai

    2016-01-01

    Full Text Available With the objective of improving efficacy and morbidity, device manufacturers incorporate chemicals or drugs into medical implants. Using multiple reservoirs of discrete drug doses, microchips represent a new technology capable of on-demand release of various drugs over long periods of time. Herein, we review drug delivery systems, how microchips work, recent investigations, and future applications in various fields of medicine.

  3. Microwave Photonics: current challenges towards widespread application.

    Science.gov (United States)

    Capmany, José; Li, Guifang; Lim, Christina; Yao, Jianping

    2013-09-23

    Microwave Photonics, a symbiotic field of research that brings together the worlds of optics and radio frequency is currently facing several challenges in its transition from a niche to a truly widespread technology essential to support the ever-increasing values for speed, bandwidth, processing capability and dynamic range that will be required in next generation hybrid access networks. We outline these challenges, which are the subject of the contributions to this focus issue.

  4. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  5. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  6. Current topics in summability theory and applications

    CERN Document Server

    Rhoades, Billy

    2016-01-01

    This book discusses recent developments in and contemporary research on summability theory, including general summability methods, direct theorems on summability, absolute and strong summability, special methods of summability, functional analytic methods in summability, and related topics and applications. All contributing authors are eminent scientists, researchers and scholars in their respective fields, and hail from around the world. The book can be used as a textbook for graduate and senior undergraduate students, and as a valuable reference guide for researchers and practitioners in the fields of summability theory and functional analysis. Summability theory is generally used in analysis and applied mathematics. It plays an important part in the engineering sciences, and various aspects of the theory have long since been studied by researchers all over the world. .

  7. Magnesium Nanocomposites: Current Status and Prospects for Army Applications

    Science.gov (United States)

    2011-09-01

    reviewed the current state of Mg development for Army-related ground vehicle applications (56). Two Mg alloys—WE43 and Elektron 675—currently under...development through a cooperative agreement between the U.S. Army Research Laboratory (ARL) and Magnesium Elektron , NA show great promise for a variety of...applications. WE43 has superior corrosion resistance to many early Mg alloys and is being considered for a variety of applications. Elektron 675 is

  8. Common System and Software Testing Pitfalls

    Science.gov (United States)

    2014-11-03

    and Statistics (TTS-ABT-2) [new pitfall] → Confusing Statistical Significance with Business Significance (TTS-ABT-3) [new pitfall] Source(s) of Error...management/engineering culture,…) Save 35%* at informit.com Discount code: FIRESMITH550 • informit.com - search on Firesmith • Available as book & eBook

  9. Cannabidiol: promise and pitfalls.

    Science.gov (United States)

    Welty, Timothy E; Luebke, Adrienne; Gidal, Barry E

    2014-09-01

    Over the past few years, increasing public and political pressure has supported legalization of medical marijuana. One of the main thrusts in this effort has related to the treatment of refractory epilepsy-especially in children with Dravet syndrome-using cannabidiol (CBD). Despite initiatives in numerous states to at least legalize possession of CBD oil for treating epilepsy, little published evidence is available to prove or disprove the efficacy and safety of CBD in patients with epilepsy. This review highlights some of the basic science theory behind the use of CBD, summarizes published data on clinical use of CBD for epilepsy, and highlights issues related to the use of currently available CBD products. Cannabidiol is the major nonpsychoactive component of Cannabis sativa. Over the centuries, a number of medicinal preparations derived from C. sativa have been employed for a variety of disorders, including gout, rheumatism, malaria, pain, and fever. These preparations were widely employed as analgesics by Western medical practitioners in the 19(th) century (1). More recently, there is clinical evidence suggesting efficacy in HIV-associated neuropathic pain, as well as spasms associated with multiple sclerosis (1).

  10. Microstructure informed tractography: pitfalls and open challenges

    Directory of Open Access Journals (Sweden)

    Alessandro eDaducci

    2016-06-01

    Full Text Available One of the major limitations of diffusion MRI tractography is that the fiber tracts recovered by existing algorithms are not truly quantitative. Local techniques for estimating more quantitative features of the tissue microstructure exist, but their combination with tractography has always been considered intractable. Recent advances in local and global modeling made it possible to fill this gap and a number of promising techniques for microstructure informed tractography have been suggested, opening new and exciting perspectives for the quantification of brain connectivity. The ease-of-use of the proposed solutions made it very attractive for researchers to include such advanced methods in their analyses; however, this apparent simplicity should not hide some critical open questions raised by the complexity of these very high-dimensional problems, otherwise some fundamental issues may be pushed into the background. The aim of this article is to raise awareness in the diffusion MRI community, notably researchers working on brain connectivity, about some potential pitfalls and modeling choices that make the interpretation of the outcomes from these novel techniques rather cumbersome. Through a series of experiments on synthetic and real data, we illustrate practical situations where erroneous and severely biased conclusions may be drawn about the connectivity if these pitfalls are overlooked, like the presence of partial/missing/duplicate fibers or the critical importance of the diffusion model adopted. Microstructure informed tractography is a young but very promising technology, and by acknowledging its current limitations as done in this paper, we hope our observations will trigger further research in this direction and new ideas for truly quantitative and biologically-meaningful analyses of the connectivity.

  11. Technology-based suicide prevention: current applications and future directions.

    Science.gov (United States)

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  12. Dual-energy CT in gout - A review of current concepts and applications.

    Science.gov (United States)

    Chou, Hong; Chin, Teck Yew; Peh, Wilfred C G

    2017-02-26

    Dual-energy computed tomography (DECT) is a relatively recent development in the imaging of gouty arthritis. Its availability and usage have become increasingly widespread in recent years. DECT is a non-invasive method for the visualisation, characterisation and quantification of monosodium urate crystal deposits which aids the clinician in the early diagnosis, treatment and follow-up of this condition. This article aims to give an up to date review and summary of existing literature on the role and accuracy of DECT in the imaging of gout. Techniques in image acquisition, processing and interpretation will be discussed along with pitfalls, artefacts and clinical applications.

  13. NUCLEAR CARDIOLOGY, CURRENT APPLICATIONS IN CLINICAL-PRACTICE

    NARCIS (Netherlands)

    NIEMEYER, MG; VANDERWALL, EE; KUIJPER, AFM; CLEOPHAS, AT; PAUWELS, EKJ

    1995-01-01

    The clinical applications of nuclear cardiology have rapidly expanded since the introduction of suitable imaging cameras and readily applicable isotopes. The currently available methods can provide useful data on estimates of ventricular function and detection of myocardial ischemia for adequate pat

  14. Eliminating Ground Current in a Transformerless Photovoltaic Application

    DEFF Research Database (Denmark)

    Lopez, Ocar; Freijedo, Francisco D.; Yepes, Alejandro G.

    2010-01-01

    For low-power grid-connected applications, a singlephase converter can be used. In photovoltaic (PV) applications, it is possible to remove the transformer in the inverter to reduce losses, costs, and size. Galvanic connection of the grid and the dc sources in transformerless systems can introduce...... additional ground currents due to the ground parasitic capacitance. These currents increase conducted and radiated electromagnetic emissions, harmonics injected in the utility grid, and losses. Amplitude and spectrum of the ground current depend on the converter topology, the switching strategy...

  15. Postural balance in Alzheimer's disease patients undergoing sensory pitfalls

    Directory of Open Access Journals (Sweden)

    Brunna Berton

    Full Text Available Abstract Despite consensus regarding the interference of cognitive processes on the human balance, the impact that different sensory stimuli have on the stabilometric measures remains unclear. Here, we investigated changes in the postural balance of individuals with Alzheimer's disease (AD and in healthy controls undergoing different proprioceptive and somesthetic pitfalls. We included 17 subjects submitted to eight sensorimotor dynamics with differences in the support bases, contact surfaces, and visual clues. The measurements used to assess participants balance were as follows: position of the body in space, range of instability, area of the support base, and velocity of postural control. From a total of 56 cross-sectional analyses, 21.42% pointed out differences between groups. Longitudinal analyses showed that tasks with proprioceptive and somesthetic pitfalls similarly impact imbalance in both groups. The current results suggest that AD subjects and healthy controls had different patterns submitted to balance, but suffered similar interference when undergoing proprioceptive and somesthetic challenges.

  16. Pearls and pitfalls in neural CGRP immunohistochemistry

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Edvinsson, Lars

    2013-01-01

    been widely scrutinized. Here, we describe the distribution of cerebral CGRP and pay special attention to the surprising reliability of results over time. PITFALLS: Pitfalls might include a fixation procedure, antibody clone and dilution, and interpretation of results. Standardization of staining...... protocols and true quantitative methods are lacking. The use of computerized image analysis has led us to believe that our examination is objective. However, in the steps of performing such an analysis, we make subjective choices. By pointing out these pitfalls, we aim to further improve immunohistochemical...

  17. Pulse current gas metal arc welding characteristics, control and applications

    CERN Document Server

    Ghosh, Prakriti Kumar

    2017-01-01

    This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.

  18. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  19. Advantages and pitfalls of South Africa-Angola strategic alliances

    Directory of Open Access Journals (Sweden)

    A. J. Vogel

    2010-12-01

    Full Text Available Purpose: Owing to a shortage of South African research focusing on international strategic alliances, this study aimed to determine whether the advantages and pitfalls of international strategic alliances referred to in international business publications are also applicable to South African international strategic alliances. Design/Methodology/Approach: This was a formal, empirical study that targeted the 163 South African enterprises which were members of the South African-Angolan Chamber of Commerce in 2005 and 2006. Findings: The results identified joint ventures as the most prominent mode of entry when expanding into developing countries and, with few exceptions, the findings support the advantages and pitfalls of international strategic alliances identified in other international publications. Value of the research: A great deal of international management research over the years has been focused on the importance of strategic alliances as a mode of entry, as well as on the pitfalls experienced by alliance partners, particularly in developed countries. However, the lack of such research in Africa in general and South Africa in particular means that South African enterprises must base their entry mode selection on non-South African research findings, and although this sample size was small, the lack of other Africa-specific research makes this research significant. Implications: With South Africa being the largest source of FDI into the rest of Africa, the findings of this paper show that South African enterprises can attain the advantages associated with international strategic alliances when using this mode of entry into Africa. In terms of pitfalls, the findings highlight the need for multinational enterprises to pay specific attention to the role of governments when forming strategic alliances.

  20. A Monotonic Precise Current DAC for Sensor Applications

    Directory of Open Access Journals (Sweden)

    P. Horsky

    2008-12-01

    Full Text Available In this paper a 17 bit monotonic precise current DAC for sensor applications is described. It is working in a harsh automotive environment in a wide temperature range with high output voltage swing and low current consumption. To guarantee monotonicity current division and segmentation techniques are used. To improve the output impedance, the accuracy and the voltage compliance of the DAC, two active cascoding loops and one follower loop are used. The resolution of the DAC is further increased by applying pulse width modulation to one fine LSB current. To achieve low power consumption unused coarse current sources are switched off. Several second order technological effects influencing final performance and circuits dealing with them are discussed.

  1. Nanomedicines for renal disease: current status and future applications

    DEFF Research Database (Denmark)

    Kamaly, Nazila; He, John C.; Ausiello, Dennis A.;

    2016-01-01

    Treatment and management of kidney disease currently presents an enormous global burden, and the application of nanotechnology principles to renal disease therapy, although still at an early stage, has profound transformative potential. The increasing translation of nanomedicines to the clinic, a...

  2. Evolutionary Optimization: Pitfalls and Booby Traps

    Institute of Scientific and Technical Information of China (English)

    Thomas Weise; Raymond Chiong; Ke Tang

    2012-01-01

    Evolutionary computation (EC),a collective name for a range of metaheuristic black-box optimization algorithms,is one of the fastest-growing areas in computer science.Many manuals and "how-to"s on the use of different EC methods as well as a variety of free or commercial software libraries are widely available nowadays.However,when one of these methods is applied to a real-world task,there can be many pitfalls and booby traps lurking-certain aspects of the optimization problem that may lead to unsatisfactory results even if the algorithm appears to be correctly implemented and executed.These include the convergence issues,ruggedness,deceptiveness,and neutrality in the fitness landscape,epistasis,non-separability,noise leading to the need for robustness,as well as dimensionality and scalability issues,among others.In this article,we systematically discuss these related hindrances and present some possible remedies.The goal is to equip practitioners and researchers alike with a clear picture and understanding of what kind of problems can render EC applications unsuccessful and how to avoid them from the start.

  3. Current Advances in the Medical Application of Nanotechnology

    CERN Document Server

    Slevin, Mark

    2012-01-01

    Nanotechnology promises new medical therapies, more rapid and sensitive diagnostic and investigative tools for normal and diseased tissues, and new materials for tissue engineering. This e-book highlights the major current uses, new technologies and future perspectives of nanotechnology in relation to medical applications. Sections in this e-book include nanobiological approaches to imaging, diagnosis and treatment of disease using targeted monoclonal antibodies and siRNA, the medical use of nanomaterials, to nanoelectronic biosensors, and possible future applications of molecular nanotechnolo

  4. Two novel applications of bootstrap currents: snakes and jitter stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Thyagaraja, A. [AEA Technology, Culham (United Kingdom); Haas, F.A. [The Open University, Oxford Research Unit, Oxford (United Kingdom)

    1993-12-31

    Both neoclassical theory and certain turbulence theories of particle transport in tokamaks predict the existence of bootstrap (i.e., pressure-driven) currents. Two new applications of this form of non-inductive current are considered in this work. The first is an explanation of the `snake` phenomenon observed in JET based on steady-state nonlinear tearing theory. The second is an active method of dynamic stabilization of the m=1 mode using the `jitter` approach suggested by Thyagaraja et al in a recent paper. (author) 11 refs.

  5. Enhanced current and voltage regulators for stand-alone applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback decoupling permits to achieve a better dynamic response for Voltage Source in stand-alone applications. The design of current and voltage regulators is performed in the discrete-time domain since it provides better accuracy and allows direct pole placement. As the attainable...... bandwidth of the current loop is mainly limited by computational and PWM delays, a lead compensator structure is proposed to overcome this limitation. The design of the voltage regulator is based on the Nyquist criterion, verifying to guarantee a high sensitivity peak. Discrete-time domain implementation...

  6. Two novel applications of bootstrap currents: Snakes and jitter stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Thyagaraja, A.; Haas, F.A. (AEA Fusion (AEA Fusion/Euratom Fusion Association), Culham Laboratory, Abingdon, OX14 3DB (United Kingdom))

    1993-09-01

    Both neoclassical theory and certain turbulence theories of particle transport in tokamaks predict the existence of bootstrap (i.e., pressure-driven) currents. Two new applications of this form of noninductive current are considered in this work. In the first, an earlier model of the nonlinearly saturated [ital m]=1 tearing mode is extended to include the stabilizing effect of a bootstrap current [ital inside] the island. This is used to explain several observed features of the so-called snake'' reported in the Joint European Torus (JET) [R. D. Gill, A. W. Edwards, D. Pasini, and A. Weller, Nucl. Fusion [bold 32], 723 (1992)]. The second application involves an alternating current (ac) form of bootstrap current, produced by pressure-gradient fluctuations. It is suggested that a time-dependent (in the plasma frame), radio-frequency (rf) power source can be used to produce localized pressure fluctuations of suitable frequency and amplitude to implement the dynamic stabilization method for suppressing gross modes in tokamaks suggested in a recent paper [A. Thyagaraja, R. D. Hazeltine, and A. Y. Aydemir, Phys. Fluids B [bold 4], 2733 (1992)]. This method works by detuning'' the resonant layer by rapid current/shear fluctuations. Estimates made for the power source requirements both for small machines such as COMPASS and for larger machines like JET suggest that the method could be practically feasible. This jitter'' (i.e., dynamic) stabilization method could provide a useful form of active instability control to avoid both gross/disruptive and fine-scale/transportive instabilities, which may set severe operating/safety constraints in the reactor regime. The results are also capable, in principle, of throwing considerable light on the local properties of current generation and diffusion in tokamaks, which may be enhanced by turbulence, as has been suggested recently by several researchers.

  7. Current Application of Search Engines and Their Developing Trend

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; SHAO Shi-huang; WU Xiao-qiong; ZENG Xian-hui; FAN Xiao-wen

    2002-01-01

    The basic types of current search engines which can help users to perfume laborious information-gathering tasks on Internet is proposed. Basically, the search engines can be classified into index engine, directory engine and agent engine on WWW information service. The key technologies of web mine, automatic classifying of documents and ordering regulation of feedback information are discussed. Finally, the developing trend of search engines is pointed out by analyzing their practical application on World Wide Web.

  8. Current status of clinical laser applications in periodontal therapy.

    Science.gov (United States)

    Aoki, Akira; Mizutani, Koji; Takasaki, Aristeo Atsushi; Sasaki, Katia Miyuki; Nagai, Shigeyuki; Schwarz, Frank; Yoshida, Itaru; Eguro, Toru; Zeredo, Jorge Luis; Izumi, Yuichi

    2008-01-01

    Periodontal disease is a chronic inflammatory disorder caused by bacterial infection. Laser treatment demonstrates specific characteristics that may be valuable in managing periodontal disease. In addition, lasers reduce stress and uncomfortable conditions for patients during and after treatment compared to other conventional tools. This article reviews the literature to describe the current clinical applications of lasers for gingival tissue management-including esthetic treatment, non-surgical and surgical periodontal pocket therapy, osseous surgery, and implant therapy.

  9. Spray drying technique: II. Current applications in pharmaceutical technology.

    Science.gov (United States)

    Sollohub, Krzysztof; Cal, Krzysztof

    2010-02-01

    This review presents current applications of spray drying in pharmaceutical technology. The topics discussed include the obtention of excipients and cospray dried composites, methods for increasing the aqueous solubility and bioavailability of active substances, and modified release profiles from spray-dried particles. This review also describes the use of the spray drying technique in the context of biological therapies, such as the spray drying of proteins, inhalable powders, and viable organisms, and the modification of the physical properties of dry plant extracts.

  10. The clinical application of clopidogrel in current coronary artery surgery

    Institute of Scientific and Technical Information of China (English)

    Yangyang Zhang; Kejiang Cao

    2008-01-01

    The article presents an overview of the current clinical application of clopidogrel in coronary artery surgery. The viewpoint is that clopidogrel can reduce preoperative and postoperative ischemic events of coronary artery bypass grafting(CABG). With the development of standardized medication and the corresponding preventive technique, it will be of great value to reduce hemorrhage complications and obtain the maximum benefit from clopidogrel' s anti-platelet properties.

  11. Impedimetric biosensors for medical applications current progress and challenges

    CERN Document Server

    Rushworth, Jo V; Goode, Jack A; Pike, Douglas J; Ahmed, Asif; Millner, Paul

    2014-01-01

    In this monograph, the authors discuss the current progress in the medical application of impedimetric biosensors, along with the key challenges in the field. First, a general overview of biosensor development, structure and function is presented, followed by a detailed discussion of impedimetric biosensors and the principles of electrochemical impedance spectroscopy. Next, the current state-of-the art in terms of the science and technology underpinning impedance-based biosensors is reviewed in detail. The layer-by-layer construction of impedimetric sensors is described, including the design of electrodes, their nano-modification, transducer surface functionalization and the attachment of different bioreceptors. The current challenges of translating lab-based biosensor platforms into commercially-available devices that function with real patient samples at the POC are presented; this includes a consideration of systems integration, microfluidics and biosensor regeneration. The final section of this monograph ...

  12. Grant-Writing Pearls and Pitfalls: Maximizing Funding Opportunities.

    Science.gov (United States)

    Liu, Jeffrey C; Pynnonen, Melissa A; St John, Maie; Rosenthal, Eben L; Couch, Marion E; Schmalbach, Cecelia E

    2016-02-01

    This invited article reviews the grant process to include the following objectives: (1) to provide an understanding of otolaryngology funding mechanisms in the context of career progression; (2) to outline key components of a well-written grant; (3) to highlight vital members of a successful research team, with emphasis on the mentor-mentee relationship; and (4) to clarify grant scoring with emphasis on common pitfalls to avoid. Current otolaryngology funding mechanisms and up-to-date resources are provided. The review is aimed to assist otolaryngology residents, faculty new to the grant process, as well as experienced researchers striving to improve their grant review scores.

  13. Mastering the discrete Fourier transform in one, two or several dimensions pitfalls and artifacts

    CERN Document Server

    Amidror, Isaac

    2013-01-01

    The discrete Fourier transform (DFT) is an extremely useful tool that finds application in many different disciplines. However, its use requires caution. The aim of this book is to explain the DFT and its various artifacts and pitfalls and to show how to avoid these (whenever possible), or at least how to recognize them in order to avoid misinterpretations. This concentrated treatment of the DFT artifacts and pitfalls in a single volume is, indeed, new, and it makes this book a valuable source of information for the widest possible range of DFT users. Special attention is given to the one and

  14. Industrial Large Scale Applications of Superconductivity -- Current and Future Trends

    Science.gov (United States)

    Amm, Kathleen

    2011-03-01

    Since the initial development of NbTi and Nb3Sn superconducting wires in the early 1960's, superconductivity has developed a broad range of industrial applications in research, medicine and energy. Superconductivity has been used extensively in NMR low field and high field spectrometers and MRI systems, and has been demonstrated in many power applications, including power cables, transformers, fault current limiters, and motors and generators. To date, the most commercially successful application for superconductivity has been the high field magnets required for magnetic resonance imaging (MRI), with a global market well in excess of 4 billion excluding the service industry. The unique ability of superconductors to carry large currents with no losses enabled high field MRI and its unique clinical capabilities in imaging soft tissue. The rapid adoption of high field MRI with superconducting magnets was because superconductivity was a key enabler for high field magnets with their high field uniformity and image quality. With over 30 years of developing MRI systems and applications, MRI has become a robust clinical tool that is ever expanding into new and developing markets. Continued innovation in system design is continuing to address these market needs. One of the key questions that innovators in industrial superconducting magnet design must consider today is what application of superconductivity may lead to a market on the scale of MRI? What are the key considerations for where superconductivity can provide a unique solution as it did in the case of MRI? Many companies in the superconducting industry today are investigating possible technologies that may be the next large market like MRI.

  15. PET/CT in the thorax: pitfalls.

    Science.gov (United States)

    Truong, Mylene T; Viswanathan, Chitra; Carter, Brett W; Mawlawi, Osama; Marom, Edith M

    2014-01-01

    PET/CT is widely used in the staging and assessment of therapeutic response in patients with malignancies. Accurate interpretation of PET/CT requires knowledge of the normal physiologic distribution of [18F]-fluoro-2-deoxy-d-glucose, artifacts due to the use of CT for attenuation correction of the PET scan and potential pitfalls due to malignancies that are PET negative and benign conditions that are PET positive. Awareness of these artifacts and potential pitfalls is important in preventing misinterpretation that can alter patient management. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Ligninolytic enzymes from Ganoderma spp: current status and potential applications.

    Science.gov (United States)

    Zhou, Xuan-Wei; Cong, Wei-Ran; Su, Kai-Qi; Zhang, Yong-Ming

    2013-11-01

    White-rot fungal species belonging to Ganoderma have long been used as medicinal mushrooms in many Asian countries. In recent years, however, attention is not just being paid to their pharmacological properties, but to their other potentially valuable features as well, including their secretion of enzymes which decompose lignin. The current literature regarding lignin-modifying enzymes from the genus Ganoderma, their potential uses, and the components, structures and processes of lignocellulose degradation are discussed. The ligninolytic enzymes from the genus Ganoderma, as well as the number of additional enzymes that participate in lignin degradation, are summarized; further, the potential applications of these enzymes are analyzed and probed in this article. This review will provide insight on the valuable applications of Ganoderma spp. and will serve as a useful reference on the use of lignocellulose degradation as a means of environmental protection.

  17. Application of quality by design in the current drug development

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2017-01-01

    Full Text Available Quality by Test was the only way to guarantee quality of drug products before FDA launched current Good Manufacturing Practice. To clearly understand the manufacture processes, FDA generalized Quality by Design (QbD in the field of pharmacy, which is based on the thorough understanding of how materials and process parameters affect the quality profile of final products. The application of QbD in drug formulation and process design is based on a good understanding of the sources of variability and the manufacture process. In this paper, the basic knowledge of QbD, the elements of QbD, steps and tools for QbD implementation in pharmaceutics field, including risk assessment, design of experiment, and process analytical technology (PAT, are introduced briefly. Moreover, the concrete applications of QbD in various pharmaceutical related unit operations are summarized and presented.

  18. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  19. Current application of proteomics in biomarker discoveryfor inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Recently, the field of proteomics has rapidly expanded inits application towards clinical research with objectivesranging from elucidating disease pathogenesis todiscovering clinical biomarkers. As proteins governand/or reflect underlying cellular processes, the studyof proteomics provides an attractive avenue for researchas it allows for the rapid identification of proteinprofiles in a biological sample. Inflammatory boweldisease (IBD) encompasses several heterogeneousand chronic conditions of the gastrointestinal tract.Proteomic technology provides a powerful means ofaddressing major challenges in IBD today, especiallyfor identifying biomarkers to improve its diagnosis andmanagement. This review will examine the current stateof IBD proteomics research and its use in biomarkerresearch. Furthermore, we also discuss the challengesof translating proteomic research into clinically relevanttools. The potential application of this growing field isenormous and is likely to provide significant insightstowards improving our future understanding and managementof IBD.

  20. Nanorobotic Applications in Medicine: Current Proposals and Designs.

    Science.gov (United States)

    Saadeh, Yamaan; Vyas, Dinesh

    2014-06-01

    Advances in technology have increased our ability to manipulate the world around us on an ever-decreasing scale. Nanotechnologies are rapidly emerging within the realm of medicine, and this subfield has been termed nanomedicine. Use of nanoparticle technology has become familiar and increasingly commonplace, especially with pharmaceutical technology. An exciting and promising area of nanotechnological development is the building of nanorobots, which are devices with components manufactured on the nanoscale. This area of study is replete with potential applications, many of which are currently being researched and developed. The goal of this paper is to give an introduction to the emerging field of nanorobotics within medicine, and provide a review of the emerging applications of nanorobotics to fields ranging from neurosurgery to dentistry.

  1. Trilingual aligned corpus – current state and new applications

    Directory of Open Access Journals (Sweden)

    Ludmila Dimitrova

    2014-09-01

    Full Text Available Trilingual aligned corpus – current state and new applications This article describes current state of a trilingual parallel corpus consisted of texts in two Slavic (Bulgarian and Polish and one Baltic language (Lithuanian. The corpus contains original literary texts (fiction, novels, and short stories in one of the three languages with translations to the other two, and texts in other languages translated into Bulgarian, Polish, and Lithuanian. A part of the texts are aligned at the sentence level. The authors propose a semantic annotation of verbs appearing in these aligned texts that will facilitate contrastive studies of natural languages. A theoretical background for the proposed semantic annotation is briefly also discussed.

  2. Hysteresis Current Control of Switched Reluctance Motor in Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Maged N. F. Nashed

    2014-05-01

    Full Text Available The switched reluctance motor (SRM drives have been widely used in aircraft applications due to the motor advantages like high speed operation, simple construction, no windings on rotor. But high torque ripples and acoustic noise are main disadvantages. The current hysteresis chopping control is one of the important control methods for SRM drives. These disadvantages can be limited using the hysteresis or chopping current control. This control strategy makes the torque of SRM maintained within a set of hysteresis bands by applying suitable source voltage. This paper introduces two hysteresis control modes; hard chopping and soft chopping mode. The SRM drive system is modeled in Simulink model using MATLAB/SIMULINK software package.

  3. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update.

    Science.gov (United States)

    Zeineddine, Hussein A; Frush, Todd J; Saleh, Zeina M; El-Othmani, Mouhanad M; Saleh, Khaled J

    2017-07-01

    Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Thermoelectric microgenerators. Current status and prospects of application

    Directory of Open Access Journals (Sweden)

    Strutynska L. T.

    2008-08-01

    Full Text Available Analysis of current status and prospects of using thermoelectric microgenerators, including organic-fueled ones, is performed. Developments of thermoelectric microgenerators presented in this review demonstrate that their increasingly wide use forms a separate, very important line of thermoelectricity – micropower generation with growing potential of practical applications for charging batteries, mobile phones, digital cameras and photocameras, power supply to small radio stations, other portable devices, including medical. The ways of increasing the efficiency of such devices and relevant lines of their wide use in practice are determined.

  5. Development of RF linac for high-current applications

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.C.D.; Lawrence, G.P.; Schneider, J.D.

    1997-12-31

    High-current proton linacs are promising sources of neutrons for material processing and research applications. Recently, a linac design that makes use of a combination of normal-conducting (NC) and superconducting (SC) linac technologies has been proposed for the US Accelerator Production of Tritium Project. As a result, a multi-year engineering development and demonstration (ED and D) program is underway. In this paper, the authors will describe the design and merits of the NC/SC hybrid approach. The scope, technology issues, and present status of the ED and D Program, and the participation of industry will also be described.

  6. Current focus of stem cell application in retinal repair

    Institute of Scientific and Technical Information of China (English)

    Maria L Alonso-Alonso; Girish Kumar Srivastava

    2015-01-01

    The relevance of retinal diseases, both in society'seconomy and in the quality of people's life who suffer withthem, has made stem cell therapy an interesting topic forresearch. Embryonic stem cells (ESCs), induced pluripotentstem cells (iPSCs) and adipose derived mesenchymal stemcells (ADMSCs) are the focus in current endeavors as asource of different retinal cells, such as photoreceptorsand retinal pigment epithelial cells. The aim is to applythem for cell replacement as an option for treating retinaldiseases which so far are untreatable in their advancedstage. ESCs, despite the great potential for differentiation,have the dangerous risk of teratoma formation as wellas ethical issues, which must be resolved before startinga clinical trial. iPSCs, like ESCs, are able to differentiatein to several types of retinal cells. However, the processto get them for personalized cell therapy has a high costin terms of time and money. Researchers are working toresolve this since iPSCs seem to be a realistic option fortreating retinal diseases. ADMSCs have the advantagethat the procedures to obtain them are easier. Despiteadvancements in stem cell application, there are stillseveral challenges that need to be overcome beforetransferring the research results to clinical application.This paper reviews recent research achievements of theapplications of these three types of stem cells as well asclinical trials currently based on them.

  7. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications

    Directory of Open Access Journals (Sweden)

    Andrés Caicedo

    2017-01-01

    Full Text Available The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell’s capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.

  8. Different Techniques of MRU: Pitfalls & Clinical Applications

    Directory of Open Access Journals (Sweden)

    H. Nayyeri

    2005-08-01

    Full Text Available Introduction & Background: Magnetic resonance urography (MRU refers to MR imaging of the urinary col-lecting systems and it provides information roughly analogous to conventional intravenous urography. There are two basic MRU imaging strategies, (1 Static MRU uses T2W scans and rely on the presence of fluid in the pelvicaliceal systems and the ureters; (2 Excretory MRU is performed after administration of IV Gd using a 3D gradient echo sequence. Static MRU is best used for dilated collecting systems and can be employed regardless of renal function. Excretory MRU is usually preferred over static techniques for the demonstration of non-distended ureters; however, it is contraindicated in severely impaired renal function. As MR urograms are often displayed as maximum intensity projections, a low signal intensity ureteral stone surrounded by high signal intensity urine may be obscured on maximum intensity projection images. A prob-lem in static MR urography is the superimposition of fluid-filled structures (i.e. bowel loops, gall bladder and bile ducts, CSF, or any intraabdominal fluid collection on reconstructed images which may create false posi-tive findings or obscure true abnormalities. Non-distended ureters may escape detection on static MR uro-grams, resulting in the incorrect diagnosis of complete ureteral obstruction. Parapelvic cysts may simulate hy-dronephrosis while calyceal diverticulae may simulate simple renal cysts on static MRU. Excretory MR urography is performed in all such cases; however, Gd may create different problems when it becomes too concentrated within the collecting system. Sufficiently concentrated Gd shortens T2 relaxation times to the point that signal loss from T2 relaxation exceeds the T1 shortening effects of the contrast agent. This may result in poor visualization of all or a portion of collecting system on T1W images. Concentrated Gd in the renal collecting system also causes signal loss on T2W images, particularly when long echo times are used. Blood products like Methemoglobin or hemosiderin resulting from hemorrhage within the collecting system also creates problems that limit the utility of heavily weighted static MR urograms. Flow artifacts re-sulting from moving urine (ureteral jet may simulate a bladder abnormality. Repeating the sequence would be helpful because they often change in appearance on subsequent images. MRU has proved advantages in examining live renal donors, diagnosis of urinary tract obstruction, investigat-ing infants, children, and pregnant women with urinary symptoms.

  9. Applications of Simulation Technology - Pitfalls and Challenges

    Directory of Open Access Journals (Sweden)

    A.A. Malik

    2015-09-01

    Full Text Available Simulator based training has its own unique features and problems associated with it. There is a need to discuss these issues in order to understand the real meaning of simulator based training and to handle it effectively. Like other fields of training, use of simulation in the maritime industry is owing to the multiple factors covering technological, financial and training needs of the time. When properly used, supported by well trained and experienced instructors, simulator training, through its risk free environment, can contribute to a reduction in accidents and improve capability and efficiency, by providing trainees with the necessary experience and self confidence to carry out their roles, functions and tasks.

  10. Current and Perspective Applications of Dense Plasma Focus Devices

    Science.gov (United States)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  11. Mobile applications for obesity and weight management: current market characteristics.

    Science.gov (United States)

    Nikolaou, C K; Lean, M E J

    2017-01-01

    Mobile-Health (mHealth) is the fastest-developing eHealth sector, with over 100 000 health applications (apps) currently available. Overweight/obesity is a problem of wide public concern that is potentially treatable/preventable through mHealth. This study describes the current weight-management app-market. Five app stores (Apple, Google, Amazon, Windows and Blackberry) in UK, US, Russia, Japan and Germany, Italy, France, China, Australia and Canada were searched for keywords: 'weight', 'calorie', 'weight-loss', 'slimming', 'diet', 'dietitian' and 'overweight' in January/February 2016 using App-Annie software. The 10 most downloaded apps in the lifetime of an app were recorded. Developers' lists and the app descriptions were searched to identify any professional input with keywords 'professional', 'dietitian' and 'nutritionist'. A total of 28 905 relevant apps were identified as follows: Apple iTunes=8559 (4634, 54% paid), Google Play=1762 (597, 33.9% paid), Amazon App=13569 (4821, 35.5% paid), Windows=2419 (819, 17% paid) and Blackberry=2596 (940, 36% paid). The 28 905 identified apps focused mainly on physical activity (34%), diet (31%), and recording/monitoring of exercise, calorie intake and body weight (23%). Only 17 apps (0.05%) were developed with identifiable professional input. Apps on weight management are widely available and very popular but currently lack professional content expertise. Encouraging app development based on evidence-based online approaches would assure content quality, allowing healthcare professionals to recommend their use.

  12. Transcranial direct current stimulation (tDCS) - application in neuropsychology.

    Science.gov (United States)

    Shin, Yong-Il; Foerster, Águida; Nitsche, Michael A

    2015-03-01

    Non-invasive brain stimulation is a versatile tool to modulate psychological processes via alterations of brain activity, and excitability. It is applied to explore the physiological basis of cognition and behavior, as well as to reduce clinical symptoms in neurological and psychiatric diseases. Neuromodulatory brain stimulation via transcranial direct currents (tDCS) has gained increased attention recently. In this review we will describe physiological mechanisms of action of tDCS, and summarize its application to modulate psychological processes in healthy humans and neuropsychiatric diseases. Furthermore, beyond giving an overview of the state of the art of tDCS, including limitations, we will outline future directions of research in this relatively young scientific field.

  13. Robotic technology in spine surgery: current applications and future developments.

    Science.gov (United States)

    Stüer, Carsten; Ringel, Florian; Stoffel, Michael; Reinke, Andreas; Behr, Michael; Meyer, Bernhard

    2011-01-01

    Medical robotics incrementally appears compelling in nowadays surgical work. The research regarding an ideal interaction between physician and computer assistance has reached a first summit with the implementation of commercially available robots (Intuitive Surgical's® da Vinci®). Moreover, neurosurgery--and herein spine surgery--seems an ideal candidate for computer assisted surgery. After the adoption of pure navigational support from brain surgery to spine surgery a meanwhile commercially available miniature robot (Mazor Surgical Technologies' The Spine Assist®) assists in drilling thoracic and lumbar pedicle screws. Pilot studies on efficacy, implementation into neurosurgical operating room work flow proved the accuracy of the system and we shortly outline them. Current applications are promising, and future possible developments seem far beyond imagination. But still, medical robotics is in its infancy. Many of its advantages and disadvantages must be delicately sorted out as the patients safety is of highest priority. Medical robots may achieve a physician's supplement but not substitute.

  14. Antiviral chemotherapy in veterinary medicine: current applications and perspectives.

    Science.gov (United States)

    Dal Pozzo, F; Thiry, E

    2014-12-01

    The current situation in the use of antiviral drugs in veterinary medicine is characterised by a novel and optimistic approach.Viruses of veterinary importance are still used as animal models in the developmentof human therapeutics, but there is growing interest in many of these viruses in the identification of antiviral molecules for use in both livestock and companion animals. The use of antiviral drugs in livestock animals is envisaged for the treatment or control of disease on a large scale (mass treatment), whereas in companion animals an individual approach is favoured. An overview of the most recent examples of research in the use of antivirals in veterinary medicine is presented, with particular emphasis on their in vivo applications.

  15. Spectrum Analyzer Application for the Proton Synchrotron Wall Current Monitors

    CERN Document Server

    Limpens, Rik

    The Proton Synchrotron (PS) is a key component in CERN's accelerator complex, where it usually accelerates either protons or heavy ions. The new acquisition system for the PS ring wall current monitors has been installed to be able to perform higher frequency measurements of a beam bunch. This is an important improvement, since the oscillating signals are related to losses of a beam bunch. The main goal of this project is to develop a LabVIEW application running on a Real-Time target to perform continuous and triggered spectral acquisition of a PS beam bunch and to provide a data visualization and analysis tool for the operators and users of the machine.

  16. Current evidence and applications of photodynamic therapy in dermatology

    Science.gov (United States)

    Wan, Marilyn T; Lin, Jennifer Y

    2014-01-01

    In photodynamic therapy (PDT) a photosensitizer – a molecule that is activated by light – is administered and exposed to a light source. This leads both to destruction of cells targeted by the particular type of photosensitizer, and immunomodulation. Given the ease with which photosensitizers and light can be delivered to the skin, it should come as no surprise that PDT is an increasingly utilized therapeutic in dermatology. PDT is used commonly to treat precancerous cells, sun-damaged skin, and acne. It has reportedly also been used to treat other conditions including inflammatory disorders and cutaneous infections. This review discusses the principles behind how PDT is used in dermatology, as well as evidence for current applications of PDT. PMID:24899818

  17. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  18. Current and emerging applications of 3D printing in medicine.

    Science.gov (United States)

    Liaw, Chya-Yan; Guvendiren, Murat

    2017-06-07

    Three-dimensional (3D) printing enables the production of anatomically matched and patient-specific devices and constructs with high tunability and complexity. It also allows on-demand fabrication with high productivity in a cost-effective manner. As a result, 3D printing has become a leading manufacturing technique in healthcare and medicine for a wide range of applications including dentistry, tissue engineering and regenerative medicine, engineered tissue models, medical devices, anatomical models and drug formulation. Today, 3D printing is widely adopted by the healthcare industry and academia. It provides commercially available medical products and a platform for emerging research areas including tissue and organ printing. In this review, our goal is to discuss the current and emerging applications of 3D printing in medicine. A brief summary on additive manufacturing technologies and available printable materials is also given. The technological and regulatory barriers that are slowing down the full implementation of 3D printing in the medical field are also discussed.

  19. Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status

    Directory of Open Access Journals (Sweden)

    M. T. Mathew

    2009-01-01

    Full Text Available Recently, “tribocorrosion,” a research area combining the science of tribology and corrosion, has drawn attention from scientists and engineers belonging to a wide spectrum of research domains. This is due to its practical impact on daily life and also the accompanying economical burdens. It encompasses numerous applications including the offshore, space, and biomedical industry, for instance, in the case of artificial joints (Total Hip Replacement, THR in orthopedic surgery, where implant metals are constantly exposed to tribological events (joint articulations in the presence of corrosive solutions, that is, body fluids. Keeping the importance of this upcoming area of research in biomedical applications in mind, it was thought to consolidate the work in this area with some fundamental aspects so that a comprehensive picture of the current state of knowledge can be depicted. Complexity of tribocorrosion processes has been highlighted, as it is influenced by several parameters (mechanical and corrosion and also due to the lack of an integrated/efficient test system. Finally a review of the recent work in the area of biotribocorrosion is provided, by focusing on orthopedic surgery and dentistry.

  20. Telecytology: Clinical applications, current challenges, and future benefits

    Directory of Open Access Journals (Sweden)

    Michael Thrall

    2011-01-01

    Full Text Available Telecytology is the interpretation of cytology material at a distance using digital images. For more than a decade, pioneering efforts to introduce telecytology into clinical practice have been reported. A Medline search for "telecytology" and "cytology" reveals a voluminous literature, though much of what has been published to date is based on technologies that are rapidly becoming obsolete. The technological limitations of previous techniques, including the transmission of static digital images and dynamic streaming images, have limited telecytology to minor niches. The primary problem with these technologies is that the remote viewer can only see a small fraction of the material on the original slides, introducing the possibility of diagnostic error based not only on image quality but also on image selection. Remote robotic microscopy offers one possible solution to this problem, but to date has found limited acceptance, principally attributable to slow operating times. Whole slide imaging seems to be a much more promising solution, though cytology-specific literature regarding its use is still scant. The advent of whole slide imaging opens up new possibilities for telecytology by enabling high-quality images of entire cytology specimens to be available to anyone, anywhere via the Internet. Although challenges remain, especially with regard to capturing the full microscopy experience including multiple planes of focus and sharp high-powered images, rapidly advancing technology promises to overcome these limitations. Increasing application of whole slide imaging technology in surgical pathology will undoubtedly also increase its application to cytology due to the increasing affordability and practicality of the equipment as it serves a larger number of useful roles within a pathology department. The current and expanding applications of telecytology for clinical practice, education, quality assurance, and testing will be reviewed.

  1. Ion-counting nanodosimetry: current status and future applications.

    Science.gov (United States)

    Schulte, R; Bashkirov, V; Garty, G; Leloup, C; Shchemelinin, S; Breskin, A; Chechik, R; Milligan, J; Grosswendt, B

    2003-12-01

    There is a growing interest in the study of interactions of ionizing radiation with condensed matter at the nanometer level. The motivation for this research is the hypothesis that the number of ionizations occurring within short segments of DNA-size subvolumes is a major factor determining the biological effectiveness of ionizing radiation. A novel dosimetry technique, called nanodosimetry, measures the spatial distribution of individual ionizations in an irradiated low-pressure gas model of DNA. The measurement of nanodosimetric event size spectra may enable improved characterization of radiation quality, with applications in proton and charged-particle therapy, radiation protection, and space research. We describe an ion-counting nanodosimeter developed for measuring radiation-induced ionization clusters in small, wall-less low-pressure gas volumes, simulating short DNA segments. It measures individual radiation-induced ions, deposited in 1 Torr propane within a tissue-equivalent cylindrical volume of 2-4 nm diameter and up to 100 nm length. We present first ionization cluster size distributions obtained with 13.6 MeV protons, 4.25 MeV alpha particles and 24.8 MeV carbon nuclei in propane; they correspond to a wide LET range of 4-500 keV/microm. We are currently developing plasmid-based assays to characterize the local clustering of DNA damage with biological methods. First results demonstrate that there is increasing complexity of DNA damage with increasing LET. Systematic comparison of biological and nanodosimetric data will help us to validate biophysical models predicting radiation quality based on nanodosimetric spectra. Possible applications for charged particle radiation therapy planning are discussed.

  2. Current and Future Nanotech Applications in the Oil Industry

    Directory of Open Access Journals (Sweden)

    Cocuzza Matteo

    2012-01-01

    Full Text Available Problem statement: Nanotech applications in the oil industry are not completely new: nanoparticles have been successfully used in drilling muds for the past 50 years. Only recently all the other key areas of the oil industry, such as exploration, primary and assisted production, monitoring, refining and distribution, are approaching nanotechnologies as the potential Philosopher's stone for facing critical issues related to remote locations (such as ultra-deep water and artic environments, harsh conditions (high-temperature and high-pressure formations, non-conventional reservoirs (heavy oils, tight gas, tar sands. The general aim is to bridge the gap between the oil industry and nanotechnology community using various initiatives such as consortia between oil and service companies and nanotechnology excellence centres, networking communities, workshops and conferences and even dedicated research units inside some oil companies. Quite surprisingly, even if a lot of discussion is taking place, no substantial research on these topics is currently being undertaken around the world by the petroleum industry. A very different attitude is demonstrated by other industries and the advances they achieved are outstanding. Approach: This study provides an overview of the most interesting nanotechnology applications and critically highlights the potential benefits that could come from transposing the same-or adapted-solutions to the oil industry. Results/Conclusion: As extensively illustrated, some technologies which are already available off-the-shelf can offer real improvements in dealing with some specific issues of the oil industry. Other technologies can require further elaboration before direct use, but their potential is enormous.

  3. RNA interference and its current application in mammals

    Institute of Scientific and Technical Information of China (English)

    沈维干

    2004-01-01

    Objective The aim of this review was to assess RNA interference (RNAi) and its possibility as a potential and powerful tool to develop highly specific double-stranded RNA( dsRNA) or small interfering RNA (siRNA) based gene-silencing therapeutics.Data sources The data used in this review were obtained from the current RNAi-related research reports.Study selection dsRNA-mediated RNAi has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms. The discovery that synthetic duplexes of 21 nucleotides siRNAs trigger gene-specific silencing in mammalian cells has further expanded the utility of RNAi in to the mammalian system.Data extraction The currently published papers reporting the discovery and mechanism of RNAi phenomena and application of RNAi on gene function in mammalian cells were included.Data synthesis Since the recent development of RNAi technology in the mammalian system, investigators have used RNAi to elucidate gene function, and to develop gene-based therapeutics by delivery exogenous siRNA or siRNA expressing vector. The general and sequence-specific inhibitory effects of RNAi that will be selective, long-term, and systemic to modulate gene targets mentioned in similar reports have caused much concern about its effectiveness in mammals and its eventual use as a therapeutic mordality. Conclusions It is certain that the ability of RNAi in mammals to silence specific genes, either when transfected directly as siRNAs or when generated from DNA vectors, will undoubtedly accelerate the study of gene function and might also be used as a potentially useful method to develop highly gene-specific therapeutic methods. It is also expected that RNAi might one day be used to treat human diseases.

  4. Diagnostic pitfalls in fetal brain MRI.

    Science.gov (United States)

    Al-Mukhtar, Ali; Kasprian, Gregor; Schmook, Maria T; Brugger, Peter C; Prayer, Daniela

    2009-08-01

    Recent technological advances in fetal magnetic resonance imaging (MRI) and increased reliability of MRI in depicting abnormalities and lesions, especially in the central nervous system, are increasingly bringing up challenging issues with regard to accurate diagnosis. There are also pitfalls not only attributable to image acquisition but also in clinical interpretation. The misinterpretation of findings because of insufficient knowledge about fetal brain development as visualized by MRI may also be regarded as an important limitation of fetal MRI. We provide an overview of the most common pitfalls experienced in fetal MRI in routine practice, demonstrate how to identify some of the factors that lead to imaging misinterpretation, and suggest ways to tackle these problems, with an emphasis on MR techniques and image calibration.

  5. Current Clinical Applications and Future Potential of Diffusion Tensor Imaging in Traumatic Brain Injury.

    Science.gov (United States)

    Strauss, Sara; Hulkower, Miriam; Gulko, Edwin; Zampolin, Richard L; Gutman, David; Chitkara, Munish; Zughaft, Malka; Lipton, Michael L

    2015-12-01

    In the setting of acute central nervous system (CNS) emergencies, computed tomography (CT) and conventional magnetic resonance imaging (MRI) play an important role in the identification of life-threatening intracranial injury. However, the full extent or even presence of brain damage frequently escapes detection by conventional CT and MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI) are emerging as important adjuncts in the diagnosis of microstructural white matter injury in the acute and postacute brain-injured patient. Although DTI aids in detection of brain injury pathology, which has been repeatedly associated with typical adverse clinical outcomes, the evolution of acute changes and their long-term prognostic implications are less clear and the subject of much active research. A major aim of current research is to identify imaging-based biomarkers that can identify the subset of TBI patients who are at risk for adverse outcome and can therefore most benefit from ongoing care and rehabilitation as well as future therapeutic interventions.The aim of this study is to introduce the current methods used to obtain DTI in the clinical setting, describe a set of common interpretation strategies with their associated advantages and pitfalls, as well as illustrate the clinical utility of DTI through a set of specific patient scenarios. We conclude with a discussion of future potential for the management of TBI.

  6. CT enterography: technical and interpretive pitfalls.

    Science.gov (United States)

    Barlow, John M; Goss, Brian C; Hansel, Stephanie L; Kolbe, Amy B; Rackham, Joshua L; Bruining, David H; Fletcher, Joel G

    2015-06-01

    CT enterography is a first-line test at many institutions to investigate potential small bowel disorders. While numerous articles have focused on the ability of CT enterography to diagnose and stage Crohn's disease, small bowel neoplasia, and malabsorptive or vascular disorders, this article reviews CT enterography limitations, technical and interpretive pitfalls, image review tactics, and complementary radiologic and endoscopic examinations to improve diagnostic accuracy. CT enterography limitations include its inability to demonstrate isolated mucosal abnormalities such as aphthous ulcers and its use of ionizing radiation. The most common technical pitfall of CT enterography is inadequate small bowel distention resulting from inadequate ingestion, gastric retention, or rapid small bowel transit of a large volume of neutral enteric contrast material. Additionally, segments of jejunum are frequently collapsed. Interpretive pitfalls commonly result from peristaltic contractions, transient intussusception and opaque intraluminal debris. Opaque debris is especially problematic during multiphasic CT enterography performed to identify potential small bowel sources of obscure gastrointestinal bleeding. False-negative examinations may result from inadequate radiation dose. Examinations complementary to CT enterography include small bowel follow through, enteroclysis, CT enteroclysis, MR enterography, MR enteroclysis, capsule endoscopy, and balloon-assisted endoscopy. Properly performed and accurately interpreted CT enterography contributes to the diagnosis and management of small bowel disease by itself and as a complement to other radiologic and optical small bowel imaging examinations.

  7. Current investigations into carbon nanotubes for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaoming; Fan Yubo [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Watari, Fumio, E-mail: x.m.li@hotmail.co [Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan)

    2010-04-15

    The nano-dimensionality of nature has logically given rise to the interest in using nanomaterials in the biomedical field. Currently, a lot of investigations into carbon nanotubes (CNTs), as one of the typical nanomaterials, are being made for biomedical application. In this review, five parts, such as cellular functions induced by CNTs, apatite formation on CNTs, CNT-based tissue engineering scaffold, functionalized CNTs for the delivery of genes and drugs and CNT-based biosensors, are stated, which might indicate that CNTs, with a range of unique properties, appear suited as a biomaterial and may become a useful tool for tissue engineering. However, everything has two parts and CNTs is not an exception. There are still concerns about cytotoxicity and biodegradation of CNTs. Chemical fictionalization may be one of the effective ways to improve the 'disadvantages' and utilize the 'advantages' of CNTs. One of their 'disadvantages', unbiodegradable property, may be utilized by creating monitors in in vivo-engineered tissues or nanosized CNT-based biosensors. Other promising research points, for example proteins adsorbed on CNTs, use of CNTs in combination with other biomaterials to achieve the goals of tissue engineering, mineralization of CNTs and standard toxicological tests for CNTs, are also described in the conclusion and perspectives part. (topical review)

  8. Laccase applications in biofuels production: current status and future prospects.

    Science.gov (United States)

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  9. Digitally Controllable Current Amplifier and Current Conveyors in Practical Application of Controllable Frequency Filter

    Science.gov (United States)

    Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David

    2016-07-01

    This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.

  10. Application of lipoarabinomannan antigen in tuberculosis diagnostics: current evidence.

    Science.gov (United States)

    Sarkar, Pronoti; Biswas, Debasis; Sindhwani, Girish; Rawat, Jagdish; Kotwal, Aarti; Kakati, Barnali

    2014-03-01

    Tests based on the detection of mycobacterial lipoarabinomannan (LAM) antigen in urine have emerged as potential point-of-care tests for tuberculosis (TB). We aimed to assimilate the current evidence regarding the diagnostic performance of LAM assays and to ascertain their clinical indication in settings with high and low prevalence of HIV-TB co-infection. Owing to suboptimal sensitivity, the urinary LAM assays are unsuitable as general screening tests for TB. However, unlike traditional diagnostic methods, they demonstrate improved sensitivity in HIV-TB co-infection which further increases with low CD4 counts. Accordingly, these assays are indicated as rule-in tests for TB in patients with advanced HIV-induced immunosuppression, and facilitate the early initiation of antituberculous treatment in them. They also offer incremental sensitivity and specificity when used as adjunct tests to smear microscopy and chest radiography in HIV-TB co-infection. They obviate the biohazards associated with sputum samples and provide an alternative diagnostic tool in sputum-scarce patients. Notwithstanding these advantages, the specificity of these assays is variable, which is mostly attributable to misclassification bias and cross-reactivity with non-tuberculous mycobacteria or other commensal flora. Furthermore, the inability to detect low titres of antigen in HIV-uninfected patients makes these assays unsuitable for use in settings with a low HIV prevalence. Future research targeted towards inclusion of specific monoclonal antibodies and more sensitive immunoassay platforms might help to improve the diagnostic performance of these assays and extend their applicability to the general population of patients with TB.

  11. High Tc Superconducting Materials for Strong Current Applications: Approach at the First Stage

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2007-01-01

    Strong current and large-scale application is the most important prospect of high Tc superconductors (HTS). Practical HTS samples in various forms have been produced with high critical currents operated at economic cryogenic temperatures. Engineering applications of those HTS materials have been studied with various HTS prototype devices. The applicable HTS materials produced in different forms are verified in this paper with regard to their strong current characterizations, and the HTS applications are summarized along with the HTS prototypes made.

  12. Current developments in soil organic matter modeling and the expansion of model applications: a review

    Science.gov (United States)

    Campbell, Eleanor E.; Paustian, Keith

    2015-12-01

    Soil organic matter (SOM) is an important natural resource. It is fundamental to soil and ecosystem functions across a wide range of scales, from site-specific soil fertility and water holding capacity to global biogeochemical cycling. It is also a highly complex material that is sensitive to direct and indirect human impacts. In SOM research, simulation models play an important role by providing a mathematical framework to integrate, examine, and test the understanding of SOM dynamics. Simulation models of SOM are also increasingly used in more ‘applied’ settings to evaluate human impacts on ecosystem function, and to manage SOM for greenhouse gas mitigation, improved soil health, and sustainable use as a natural resource. Within this context, there is a need to maintain a robust connection between scientific developments in SOM modeling approaches and SOM model applications. This need forms the basis of this review. In this review we first provide an overview of SOM modeling, focusing on SOM theory, data-model integration, and model development as evidenced by a quantitative review of SOM literature. Second, we present the landscape of SOM model applications, focusing on examples in climate change policy. We conclude by discussing five areas of recent developments in SOM modeling including: (1) microbial roles in SOM stabilization; (2) modeling SOM saturation kinetics; (3) temperature controls on decomposition; (4) SOM dynamics in deep soil layers; and (5) SOM representation in earth system models. Our aim is to comprehensively connect SOM model development to its applications, revealing knowledge gaps in need of focused interdisciplinary attention and exposing pitfalls that, if avoided, can lead to best use of SOM models to support policy initiatives and sustainable land management solutions.

  13. How to avoid potential pitfalls in recurrence plot based data analysis

    OpenAIRE

    Marwan, Norbert

    2010-01-01

    Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the applicat...

  14. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  15. Pitfalls and variants in pediatric chest imaging.

    Science.gov (United States)

    García Asensio, D; Fernández Martín, M

    2016-05-01

    Most pitfalls in the interpretation of pediatric chest imaging are closely related with the technique used and the characteristics of pediatric patients. To obtain a quality image that will enable the correct diagnosis, it is very important to use an appropriate technique. It is important to know how technical factors influence the image and to be aware of the possible artifacts that can result from poor patient cooperation. Moreover, radiologists need to be familiar with the normal anatomy in children, with the classic radiologic findings, and with the anatomic and developmental variants to avoid misinterpreting normal findings as pathological.

  16. Pitfalls in cytological diagnosis of autoimmune thyroiditis.

    Science.gov (United States)

    Kumarasinghe, M P; De Silva, S

    1999-02-01

    The aims of this study are to document pitfalls in cytologic diagnosis of autoimmune thyroiditis (AT) and highlight possible ways to minimize them. One hundred consecutive thyroid aspirates with features diagnostic or suggestive of AT, performed and reported by the first author, were included in the study. Follow-up was traced and cytologic features responsible for indecisiveness were re-assessed in those reported as suggestive of AT. The features were then correlated with the results of serologic and thyroid function tests and clinical features, and an attempt was made to amend the final diagnosis using an integrated approach. Seventy eight were diagnostic and 22 were suggestive of AT. In the latter 22, features responsible for the indecisiveness were: cytologic atypia, in the form of nuclear enlargement, irregularity and grooves and altered chromatin texture, in 14 (64%); nucleoli with suspicion of a coexisting neoplasm in three (13.6%), two of which showed epithelial preponderance, crowding and discohesion; sparse inflammation in four (18%); a predominant lymphoid population without epithelial cells resembling a reactive lymph node in one (4.5%); co-existing toxic features in two (9%); and scanty smears in one (4.5%). Eighteen of the 22 suspected of AT had follow-up. Six had been assessed histologically; three with features suspicious of a neoplasm were diagnosed respectively as a papillary carcinoma (PC), Hurthle cell carcinoma (HCC) and a multinodular goitre (MNG) with degenerate changes. The other three were confirmed as AT; one with cytologic atypia, one with sparse inflammation and the third as cytologically resembling a reactive lymphnode. In ten of the remaining 12, the final diagnosis could be revised following an integrated approach with possible reduction of the indecisiveness. Potential pitfalls are: cytologic atypia occurring in AT; abundance or scarcity of background inflammation; low cell yield; and co-existing toxicity and malignancies. Epithelial

  17. Pitfalls in colour photography of choroidal tumours.

    Science.gov (United States)

    Schalenbourg, A; Zografos, L

    2013-02-01

    Colour imaging of fundus tumours has been transformed by the development of digital and confocal scanning laser photography. These advances provide numerous benefits, such as panoramic images, increased contrast, non-contact wide-angle imaging, non-mydriatic photography, and simultaneous angiography. False tumour colour representation can, however, cause serious diagnostic errors. Large choroidal tumours can be totally invisible on angiography. Pseudogrowth can occur because of artefacts caused by different methods of fundus illumination, movement of reference blood vessels, and flattening of Bruch's membrane and sclera when tumour regression occurs. Awareness of these pitfalls should prevent the clinician from misdiagnosing tumours and wrongfully concluding that a tumour has grown.

  18. Pitfalls in colour photography of choroidal tumours

    Science.gov (United States)

    Schalenbourg, A; Zografos, L

    2013-01-01

    Colour imaging of fundus tumours has been transformed by the development of digital and confocal scanning laser photography. These advances provide numerous benefits, such as panoramic images, increased contrast, non-contact wide-angle imaging, non-mydriatic photography, and simultaneous angiography. False tumour colour representation can, however, cause serious diagnostic errors. Large choroidal tumours can be totally invisible on angiography. Pseudogrowth can occur because of artefacts caused by different methods of fundus illumination, movement of reference blood vessels, and flattening of Bruch's membrane and sclera when tumour regression occurs. Awareness of these pitfalls should prevent the clinician from misdiagnosing tumours and wrongfully concluding that a tumour has grown. PMID:23238442

  19. Congenital lobar emphysema: Pitfalls and management

    Directory of Open Access Journals (Sweden)

    Tempe Deepak

    2010-01-01

    Full Text Available Congenital lobar emphysema is a rare entity presenting in the first month of life. It appears with varying degrees of respiratory distress, clinical and radiological evidence of over-aeration of the upper and middle lobes, mediastinal shift and hypoxia. Its early recognition and surgical intervention can be life-saving. Even today, despite advanced diagnostic techniques, pitfalls in diagnosis and management are not uncommon and the condition may be mistaken for pneumothorax or pneumonia. This report elucidates the anesthetic management of three such cases with a review of literature.

  20. 21 CFR 210.2 - Applicability of current good manufacturing practice regulations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Applicability of current good manufacturing... AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PROCESSING, PACKING, OR HOLDING OF DRUGS; GENERAL § 210.2 Applicability of current good...

  1. Big data in sleep medicine: prospects and pitfalls in phenotyping

    Directory of Open Access Journals (Sweden)

    Bianchi MT

    2017-02-01

    Full Text Available Matt T Bianchi,1,2 Kathryn Russo,1 Harriett Gabbidon,1 Tiaundra Smith,1 Balaji Goparaju,1 M Brandon Westover1 1Neurology Department, Massachusetts General Hospital, 2Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA Abstract: Clinical polysomnography (PSG databases are a rich resource in the era of “big data” analytics. We explore the uses and potential pitfalls of clinical data mining of PSG using statistical principles and analysis of clinical data from our sleep center. We performed retrospective analysis of self-reported and objective PSG data from adults who underwent overnight PSG (diagnostic tests, n=1835. Self-reported symptoms overlapped markedly between the two most common categories, insomnia and sleep apnea, with the majority reporting symptoms of both disorders. Standard clinical metrics routinely reported on objective data were analyzed for basic properties (missing values, distributions, pairwise correlations, and descriptive phenotyping. Of 41 continuous variables, including clinical and PSG derived, none passed testing for normality. Objective findings of sleep apnea and periodic limb movements were common, with 51% having an apnea–hypopnea index (AHI >5 per hour and 25% having a leg movement index >15 per hour. Different visualization methods are shown for common variables to explore population distributions. Phenotyping methods based on clinical databases are discussed for sleep architecture, sleep apnea, and insomnia. Inferential pitfalls are discussed using the current dataset and case examples from the literature. The increasing availability of clinical databases for large-scale analytics holds important promise in sleep medicine, especially as it becomes increasingly important to demonstrate the utility of clinical testing methods in management of sleep disorders. Awareness of the strengths, as well as caution regarding the limitations, will maximize the productive use of big data analytics in sleep

  2. Big data in sleep medicine: prospects and pitfalls in phenotyping

    Science.gov (United States)

    Bianchi, Matt T; Russo, Kathryn; Gabbidon, Harriett; Smith, Tiaundra; Goparaju, Balaji; Westover, M Brandon

    2017-01-01

    Clinical polysomnography (PSG) databases are a rich resource in the era of “big data” analytics. We explore the uses and potential pitfalls of clinical data mining of PSG using statistical principles and analysis of clinical data from our sleep center. We performed retrospective analysis of self-reported and objective PSG data from adults who underwent overnight PSG (diagnostic tests, n=1835). Self-reported symptoms overlapped markedly between the two most common categories, insomnia and sleep apnea, with the majority reporting symptoms of both disorders. Standard clinical metrics routinely reported on objective data were analyzed for basic properties (missing values, distributions), pairwise correlations, and descriptive phenotyping. Of 41 continuous variables, including clinical and PSG derived, none passed testing for normality. Objective findings of sleep apnea and periodic limb movements were common, with 51% having an apnea–hypopnea index (AHI) >5 per hour and 25% having a leg movement index >15 per hour. Different visualization methods are shown for common variables to explore population distributions. Phenotyping methods based on clinical databases are discussed for sleep architecture, sleep apnea, and insomnia. Inferential pitfalls are discussed using the current dataset and case examples from the literature. The increasing availability of clinical databases for large-scale analytics holds important promise in sleep medicine, especially as it becomes increasingly important to demonstrate the utility of clinical testing methods in management of sleep disorders. Awareness of the strengths, as well as caution regarding the limitations, will maximize the productive use of big data analytics in sleep medicine. PMID:28243157

  3. Application of ISSR marker in pharmacognosy: Current update

    Directory of Open Access Journals (Sweden)

    Jayvant Kurane

    2009-01-01

    Full Text Available ISSR (Inter Simple Sequence Repeat is one of the popular techniques of DNA fingerprinting because of several reasons. In many fields, ISSR markers have proved their utility. There are many applications of ISSR in various aspects of medicinal plants. ISSR based markers have utility in the fields like genetics, taxonomy, physiology, embryology etc. and recently the ISSR based markers have found wide applicability in pharmacognostic characterization of medicinal plants. As use of herbal medicines is increasing, there is urgent need of newer technologies and its proper application. In recent years, pharmacognosy has witnessed advent of such new technologies. This review provides detail list of plants, which are studied by ISSR marker and discuss some of the important application in medicinal plant research.

  4. Pollen DNA barcoding: current applications and future prospects.

    Science.gov (United States)

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications.

  5. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    Science.gov (United States)

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed.

  6. Spine imaging after lumbar disc replacement: pitfalls and current recommendations

    Directory of Open Access Journals (Sweden)

    Sandén Bengt

    2009-07-01

    Full Text Available Abstract Background Most lumbar artificial discs are still composed of stainless steel alloys, which prevents adequate postoperative diagnostic imaging of the operated region when using magnetic resonance imaging (MRI. Thus patients with postoperative radicular symptoms or claudication after stainless steel implants often require alternative diagnostic procedures. Methods Possible complications of lumbar total disc replacement (TDR are reviewed from the available literature and imaging recommendations given with regard to implant type. Two illustrative cases are presented in figures. Results Access-related complications, infections, implant wear, loosening or fracture, polyethylene inlay dislodgement, facet joint hypertrophy, central stenosis, and ankylosis of the operated segment can be visualised both in titanium and stainless steel implants, but require different imaging modalities due to magnetic artifacts in MRI. Conclusion Alternative radiographic procedures should be considered when evaluating patients following TDR. Postoperative complications following lumbar TDR including spinal stenosis causing radiculopathy and implant loosening can be visualised by myelography and radionucleotide techniques as an adjunct to plain film radiographs. Even in the presence of massive stainless steel TDR implants lumbar radicular stenosis and implant loosening can be visualised if myelography and radionuclide techniques are applied.

  7. Current investigations into magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Li, Xiaoming; Wei, Jianrong; Aifantis, Katerina E; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio

    2016-05-01

    It is generally recognized that nanoparticles possess unique physicochemical properties that are largely different from those of conventional materials, specifically the electromagnetic properties of magnetic nanoparticles (MNPs). These properties have attracted many researchers to launch investigations into their potential biomedical applications, which have been reviewed in this article. First, common types of MNPs were briefly introduced. Then, the biomedical applications of MNPs were reviewed in seven parts: magnetic resonance imaging (MRI), cancer therapy, the delivery of drugs and genes, bone and dental repair, tissue engineering, biosensors, and in other aspects, which indicated that MNPs possess great potentials for many kinds of biomedical applications due to their unique properties. Although lots of achievements have been obtained, there is still a lot of work to do. New synthesis techniques and methods are still needed to develop the MNPs with satisfactory biocompatibility. More effective methods need to be exploited to prepare MNPs-based composites with fine microstructures and high biomedical performances. Other promising research points include the development of more appropriate techniques of experiments both in vitro and in vivo to detect and analyze the biocompatibility and cytotoxicity of MNPs and understand the possible influencing mechanism of the two properties. More comprehensive investigations into the diagnostic and therapeutic applications of composites containing MNPs with "core-shell" structure and deeper understanding and further study into the properties of MNPs to reveal their new biomedical applications, are also described in the conclusion and perspectives part.

  8. Seabirds and climate: knowledge, pitfalls and opportunities

    Directory of Open Access Journals (Sweden)

    Daniel eOro

    2014-12-01

    Full Text Available As a physical driver of ecosystem functioning, it is not surprising that climate influences seabird demography and population dynamics, generally by affecting food availability. However, if we zoom in ecologically, seabirds are in fact very heterogeneous, ranging in size from very small to very large species (with a difference of more than two orders of magnitude in body weight, from planktivorous forms to predators of large fish and squid, from benthic to pelagic, from species with small foraging ranges to species feeding throughout the whole circumpolar region, and from resident species (at a spatial mesoscale to trans-equatorial migrating seabirds that travel large distances across several oceanographic systems. Due to this high variability and the difficulty in obtaining direct reliable estimates of long-term food availability, global climatic indices have been extensively used in studying seabird demography and population dynamics. However, the use made by researchers of these indices has certain conceptual and methodological pitfalls, which I shall address in this review. Other factors, such as anthropogenic impacts (including oil-spills and interaction with fisheries, may further alter or confound the association between climate and seabird demography. These pitfalls and environmental noise, together with the inability to incorporate resilience, may bias our predictions regarding the future impact of global warming on seabirds, many of which have vulnerable populations.

  9. Evolving PBPK applications in regulatory risk assessment: current situation and future goals

    Science.gov (United States)

    The presentation includes current applications of PBPK modeling in regulatory risk assessment and discussions on conflicts between assuring consistency with experimental data in current situation and the desire for animal-free model development.

  10. Microfluidics and Raman microscopy: current applications and future challenges.

    Science.gov (United States)

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-07

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  11. CIECA - Application to current programmed switching Dc-Dc converters

    Science.gov (United States)

    Chetty, P. R. K.

    1982-09-01

    The current injection equivalent circuit approach (CIECA) to modeling switching converter power stages is extended to model the current programmed converter power stages operating in fixed frequency, continuous inductor conduction mode. To demonstrate the method, modeling is carried out for the buck, boost, and buckboost converters to obtain small-signal linear equivalent circuit models which represent both input and output properties. The results of these analyses are presented in the form of linear equivalent circuit models as well as transfer functions. Though current programmed converters exhibit single-pole response, the addition of artificial ramp changes converters to exhibit well damped two-pole response. This has been investigated for the first time using CIECA. The results of these analyses are presented in the form of linear equivalent circuit models as well as transfer functions.

  12. Plasma medicine—current state of research and medical application

    Science.gov (United States)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  13. Stretchable electronics for wearable and high-current applications

    Science.gov (United States)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  14. Current status in biotechnological production and applications of glycolipid biosurfactants.

    Science.gov (United States)

    Paulino, Bruno Nicolau; Pessôa, Marina Gabriel; Mano, Mario Cezar Rodrigues; Molina, Gustavo; Neri-Numa, Iramaia Angélica; Pastore, Glaucia Maria

    2016-12-01

    Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

  15. Microbial aspartic proteases: current and potential applications in industry.

    Science.gov (United States)

    Theron, Louwrens W; Divol, Benoit

    2014-11-01

    Aspartic proteases are a relatively small group of proteolytic enzymes that are active in acidic environments and are found across all forms of life. Certain microorganisms secrete such proteases as virulence agents and/or in order to break down proteins thereby liberating assimilable sources of nitrogen. Some of the earlier applications of these proteolytic enzymes are found in the manufacturing of cheese where they are used as milk-clotting agents. Over the last decade, they have received tremendous research interest because of their involvement in human diseases. Furthermore, there has also been a growing interest on these enzymes for their applications in several other industries. Recent research suggests in particular that they could be used in the wine industry to prevent the formation of protein haze while preserving the wines' organoleptic properties. In this mini-review, the properties and mechanisms of action of aspartic proteases are summarized. Thereafter, a brief overview of the industrial applications of this specific class of proteases is provided. The use of aspartic proteases as alternatives to clarifying agents in various beverage industries is mentioned, and the potential applications in the wine industry are thoroughly discussed.

  16. Catalases as biocatalysts in technical applications : current state and perspectives

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    2015-01-01

    Catalases represent a class of enzymes which has found its place among industrially relevant biocatalysts due to their exceptional catalytic rate and high stability. Textile bleaching prior to the dyeing process is the main application and has been performed on a large scale for the past few decades

  17. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.

  18. The polymerase chain reaction: current and future clinical applications.

    OpenAIRE

    Lynch, J R; Brown, J. M.

    1990-01-01

    The polymerase chain reaction has undergone rapid improvement since its initial development, such that the technique currently permits rapid, accurate, predictive tests to be made in the field of prenatal diagnosis and has greatly aided forensic medicine. It is anticipated that the polymerase chain reaction will also facilitate advances in other fields, in particular preimplantation diagnosis, virology, bacteriology, and cancer therapy.

  19. Miscellaneous conditions of the shoulder: Anatomical, clinical, and pictorial review emphasizing potential pitfalls in imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Nikdokht [University of California San Diego, Department of Radiology, 200 West Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States); Bruce, Dean [University of California San Diego, Department of Radiology, 200 West Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States); University of Alberta, Edmonton, Alberta (Canada); Chung, Christine B. [University of California San Diego, Department of Radiology, 200 West Arbor Drive, San Diego, CA 92103 (United States); VA Healthcare System San Diego, Department of Radiology, 3350 La Jolla Village Drive, La Jolla, CA 92161 (United States)], E-mail: cbchung@ucsd.edu

    2008-10-15

    The purpose of this article is to review the key imaging findings in major categories of pathology affecting the shoulder joint including hydroxyapatite deposition disease, rotator cuff interval pathology, acromioclavicular joint pathology, glenohumeral osteoarthrosis, and synovial inflammatory processes, with specific emphasis on findings that have associated pitfalls in imaging diagnosis. The pathophysiology and clinical manifestations of the above mentioned categories of pathology will be reviewed, followed in each section by a detailed pictorial review of the key imaging findings in each category including plain film, computed tomography, and magnetic resonance imaging findings as applicable. Imaging challenges that relate to both diagnosis and characterization will be addressed with each type of pathology. The goal is that after reading this article, the reader will be able to recognize the key imaging findings in major categories of pathology affecting the shoulder joint and will become familiar with the potential pitfalls in their imaging diagnosis.

  20. A turbidity current model for real world applications

    Science.gov (United States)

    Macías, Jorge; Castro, Manuel J.; Morales, Tomás

    2016-04-01

    Traditional turbidity current models suffer from several drawbacks. Among them not preserving freshwater mass, a missing pressure term, or not including terms related to deposition, erosion and entrainment in the momentum equation. In Morales et al.(2009) a new turbidity current model was proposed trying to overcome all these drawbacks. This model takes into account the interaction between the turbidity current and the bottom, considering deposition and erosion effects as well as solid bedload transport of particles at the bed due to the current. Moreover, this model includes the effects of the deposition, erosion and water entrainment into the momentum equation,commonly neglected in this type of models and, finally, in the absence of water entrainment, freshwater mass in the turbidity current is preserved. Despite these improvements, the numerical results obtained by this model when applied to real river systems were not satisfactory due to the simple form of the friction term that was considered. In the present work we propose a different parameterization of this term, where bottom and interface fluid frictions are separately parameterized with more complex expressions. Moreover, the discretization of the deposition/erosion terms is now performed semi-implicitly which guarantees the positivity of the volumetric concentration of sediments in suspension and in the erodible sediment layer at the bed. The numerical simulations obtained with this new turbidity current model (component of HySEA numerical computing platform) greatly improve previous numerical results for simplified geometries as well as for real river systems. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. References: T. Morales, M. Castro, C. Parés, and E. Fernández-Nieto (2009). On

  1. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    Science.gov (United States)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will

  2. Rise of Data Mining: Current and Future Application Areas

    Directory of Open Access Journals (Sweden)

    Dharminder Kumar

    2011-09-01

    Full Text Available Knowledge has played a significant role on human activities since his development. Data mining is the process of knowledge discovery where knowledge is gained by analyzing the data store in very large repositories, which are analyzed from various perspectives and the result is summarized it into useful information. Due to the importance of extracting knowledge/information from the large data repositories, data mining has become a very important and guaranteed branch of engineering affecting human life in various spheres directly or indirectly. Advancements in Statistics, Machine Learning, Artificial Intelligence, Pattern recognition and Computation capabilities have given present days data mining functionality a new height. Data mining have various applications and these applications have enriched the various fields of human life including business, education, medical, scientific etc. Objective of this paper is to discuss various improvements and breakthroughs in the field of data mining from past to the present and also to explores the future trends.

  3. Chitosan Biomaterials for Current and Potential Dental Applications

    Science.gov (United States)

    Husain, Shehriar; Al-Samadani, Khalid H.; Najeeb, Shariq; Zafar, Muhammad S.; Khurshid, Zohaib; Zohaib, Sana; Qasim, Saad B.

    2017-01-01

    Chitosan (CHS) is a very versatile natural biomaterial that has been explored for a range of bio-dental applications. CHS has numerous favourable properties such as biocompatibility, hydrophilicity, biodegradability, and a broad antibacterial spectrum (covering gram-negative and gram-positive bacteria as well as fungi). In addition, the molecular structure boasts reactive functional groups that provide numerous reaction sites and opportunities for forging electrochemical relationships at the cellular and molecular levels. The unique properties of CHS have attracted materials scientists around the globe to explore it for bio-dental applications. This review aims to highlight and discuss the hype around the development of novel chitosan biomaterials. Utilizing chitosan as a critical additive for the modification and improvement of existing dental materials has also been discussed. PMID:28772963

  4. Perivascular cells and tissue engineering: Current applications and untapped potential.

    Science.gov (United States)

    Avolio, Elisa; Alvino, Valeria V; Ghorbel, Mohamed T; Campagnolo, Paola

    2017-03-01

    The recent development of tissue engineering provides exciting new perspectives for the replacement of failing organs and the repair of damaged tissues. Perivascular cells, including vascular smooth muscle cells, pericytes and other tissue specific populations residing around blood vessels, have been isolated from many organs and are known to participate to the in situ repair process and angiogenesis. Their potential has been harnessed for cell therapy of numerous pathologies; however, in this Review we will discuss the potential of perivascular cells in the development of tissue engineering solutions for healthcare. We will examine their application in the engineering of vascular grafts, cardiac patches and bone substitutes as well as other tissue engineering applications and we will focus on their extensive use in the vascularization of engineered constructs. Additionally, we will discuss the emerging potential of human pericytes for the development of efficient, vascularized and non-immunogenic engineered constructs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Chitosan Biomaterials for Current and Potential Dental Applications

    Directory of Open Access Journals (Sweden)

    Shehriar Husain

    2017-05-01

    Full Text Available Chitosan (CHS is a very versatile natural biomaterial that has been explored for a range of bio-dental applications. CHS has numerous favourable properties such as biocompatibility, hydrophilicity, biodegradability, and a broad antibacterial spectrum (covering gram-negative and gram-positive bacteria as well as fungi. In addition, the molecular structure boasts reactive functional groups that provide numerous reaction sites and opportunities for forging electrochemical relationships at the cellular and molecular levels. The unique properties of CHS have attracted materials scientists around the globe to explore it for bio-dental applications. This review aims to highlight and discuss the hype around the development of novel chitosan biomaterials. Utilizing chitosan as a critical additive for the modification and improvement of existing dental materials has also been discussed.

  6. Animal models of frailty: current applications in clinical research.

    Science.gov (United States)

    Kane, Alice E; Hilmer, Sarah N; Mach, John; Mitchell, Sarah J; de Cabo, Rafael; Howlett, Susan E

    2016-01-01

    The ethical, logistical, and biological complications of working with an older population of people inherently limits clinical studies of frailty. The recent development of animal models of frailty, and tools for assessing frailty in animal models provides an invaluable opportunity for frailty research. This review summarizes currently published animal models of frailty including the interleukin-10 knock-out mouse, the mouse frailty phenotype assessment tool, and the mouse clinical frailty index. It discusses both current and potential roles of these models in research into mechanisms of frailty, interventions to prevent/delay frailty, and the effect of frailty on outcomes. Finally, this review discusses some of the challenges and opportunities of translating research findings from animals to humans.

  7. Practical Application of Eddy Currents Generated by Wind

    Energy Technology Data Exchange (ETDEWEB)

    Dirba, I; Kleperis, J, E-mail: imants.dirba@gmail.com [Institute of Solid State Physics of University of Latvia, 8 Kengaraga Street, Riga, LV-1063 (Latvia)

    2011-06-23

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  8. Practical Application of Eddy Currents Generated by Wind

    Science.gov (United States)

    Dirba, I.; Kleperis, J.

    2011-06-01

    When a conductive material is subjected to time-varying magnetic fluxes, eddy (Foucault) currents are generated in it and magnetic field of opposite polarity as the applied one arises. Due to the internal resistance of the conductive material, the eddy currents will be dissipated into heat (Joule heating). Conventional domestic water heaters utilize gas burners or electric resistance heating elements to heat the water in the tank and substantial part of the energy to use for it is wasted. In this paper the origin of electromagnetic induction heat generated by wind turbine in special heat exchange camera connected to water boiler is discussed and material evaluation performed using mathematical modelling (comparing the 2D finite element model with analytical and numerical calculation results).

  9. Industrial applications and current trends in supercritical fluid technologies

    OpenAIRE

    Gamse Thomas

    2005-01-01

    Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop...

  10. Current and Future Nanotech Applications in the Oil Industry

    OpenAIRE

    Cocuzza Matteo; Pirri Candido; Rocca Rocca Vera; Verga Francesca

    2012-01-01

    Problem statement: Nanotech applications in the oil industry are not completely new: nanoparticles have been successfully used in drilling muds for the past 50 years. Only recently all the other key areas of the oil industry, such as exploration, primary and assisted production, monitoring, refining and distribution, are approaching nanotechnologies as the potential Philosopher's stone for facing critical issues related to remote locations (such as ultra-deep water and artic environments), ha...

  11. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  12. Geosensors to support crop production: current applications and user requirements.

    Science.gov (United States)

    Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K

    2011-01-01

    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load.

  13. Geosensors to Support Crop Production: Current Applications and User Requirements

    Directory of Open Access Journals (Sweden)

    Lammert Kooistra

    2011-06-01

    Full Text Available Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load.

  14. Industrial applications and current trends in supercritical fluid technologies

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2005-01-01

    Full Text Available Supercritical fluids have a great potential for wide fields of processes Although CO2 is still one of the most used supercritical gases, for special purposes propane or even fluorinated-chlorinated fluids have also been tested. The specific characteristics of supercritical fluids behaviour were analyzed such as for example the solubilities of different components and the phase equilibria between the solute and solvent. The application at industrial scale (decaffeinating of tea and coffee, hop extraction or removal of pesticides from rice, activity in supercritical extraction producing total extract from the raw material or different fractions by using the fractionated separation of beverages (rum, cognac, whisky, wine, beer cider, of citrus oils and of lipids (fish oils, tall oil were also discussed. The main interest is still for the extraction of natural raw materials producing food ingredients, nutraceuticals and phytopharmaceuticals but also cleaning purposes were tested such as the decontamination of soils the removal of residual solvents from pharmaceutical products, the extraction of flame retardants from electronic waste or precision degreasing and cleaning of mechanical and electronic parts. An increasing interest obviously exists for impregnation purposes based on supercritical fluids behaviour, as well as for the dying of fibres and textiles. The production of fine particles in the micron and submicron range, mainly for pharmaceutical products is another important application of supercritical fluids. Completely new products can be produced which is not possible under normal conditions. Supercritical fluid technology has always had to compete with the widespread opinion that these processes are very expensive due to very high investment costs in comparison with classical low-pressure equipment. Thus the opinion is that these processes should be restricted to high-added value products. A cost estimation for different plant sizes and

  15. Smartphone applications to aid weight loss and management: current perspectives

    Directory of Open Access Journals (Sweden)

    Sutton EF

    2016-07-01

    Full Text Available Elizabeth F Sutton, Leanne M Redman Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA Abstract: The development and dissemination of smart devices has cultivated a global environment of hyperconnectivity and increased our access to information. The paralleled launch and success of the Mobile Health industry has created a market of commercially available applications or “apps” along with tools or sensors, which allow the user to receive and collect personal health information. Apps and accompanying tools now allow an individual to “self-digitize” and, pertaining to weight management, monitor their body weight, caloric intake, physical activity, and more. These products possess the ability to improve the scalability of traditional in-person weight management services considering their near ubiquity, affordability, and capability to deliver information directly and personally to the user. However, similar to the dietary supplement market, the anecdotal value of these products has driven their popularity and acceptance by the general public without requirement of scientific validation or, in the area of weight management or diet/exercise, validation of the safety and efficacy by the Food and Drug Administration prior to market launch. By conducting a literature and clinical trial search, we found remarkably few active, completed, or published studies testing the efficacy of smart device applications using randomized controlled trials. Research efforts must be focused on illuminating the efficacy of behavioral interventions and remote self-monitoring for weight loss/maintenance treatment with true, randomized controlled trials. Keywords: smartphone, mobile phone, application, app, weight, weight loss, weight maintenance

  16. Ultrasound in obstetric anaesthesia: a review of current applications.

    LENUS (Irish Health Repository)

    Ecimovic, P

    2010-07-01

    Ultrasound equipment is increasingly used by non-radiologists to perform interventional techniques and for diagnostic evaluation. Equipment is becoming more portable and durable, with easier user-interface and software enhancement to improve image quality. While obstetric utilisation of ultrasound for fetal assessment has developed over more than 40years, the same technology has not found a widespread role in obstetric anaesthesia. Within the broader specialty of anaesthesia; vascular access, cardiac imaging and regional anaesthesia are the areas in which ultrasound is becoming increasingly established. In addition to ultrasound for neuraxial blocks, these other clinical applications may be of value in obstetric anaesthesia practice.

  17. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.

    1996-12-31

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  18. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    Science.gov (United States)

    Feng, Y.; Qin, D.; Wan, M.

    2015-12-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented.

  19. Current applications of nanotechnology in dentistry: a review.

    Science.gov (United States)

    Bhavikatti, Shaeesta Khaleelahmed; Bhardwaj, Smiti; Prabhuji, M L V

    2014-01-01

    With the increasing demand for advances in diagnosis and treatment modalities, nanotechnology is being considered as a groundbreaking and viable research subject. This technology, which deals with matter in nanodimensions, has widened our views of poorly understood health issues and provided novel means of diagnosis and treatment. Researchers in the field of dentistry have explored the potential of nanoparticles in existing therapeutic modalities with moderate success. The key implementations in the field of dentistry include local drug delivery agents, restorative materials, bone graft materials, and implant surface modifications. This review provides detailed insights about current developments in the field of dentistry, and discusses potential future uses of nanotechnology.

  20. Current peptidomics: applications, purification, identification, quantification, and functional analysis.

    Science.gov (United States)

    Dallas, David C; Guerrero, Andres; Parker, Evan A; Robinson, Randall C; Gan, Junai; German, J Bruce; Barile, Daniela; Lebrilla, Carlito B

    2015-03-01

    Peptidomics is an emerging field branching from proteomics that targets endogenously produced protein fragments. Endogenous peptides are often functional within the body-and can be both beneficial and detrimental. This review covers the use of peptidomics in understanding digestion, and identifying functional peptides and biomarkers. Various techniques for peptide and glycopeptide extraction, both at analytical and preparative scales, and available options for peptide detection with MS are discussed. Current algorithms for peptide sequence determination, and both analytical and computational techniques for quantification are compared. Techniques for statistical analysis, sequence mapping, enzyme prediction, and peptide function, and structure prediction are explored.

  1. Current status of research and related activities in NAA application

    Energy Technology Data Exchange (ETDEWEB)

    Ab. Khalik bin Haji Wood [Malaysia Institute for Nuclear Technology Research, Bangi, Selangor (Malaysia)

    1999-10-01

    Current activities of Analytical Chemistry Group of MINT (Malaysia Institute for Nuclear Technology Research) laboratory for elemental analysis of trace amounts in environmental samples such as air particulate matter (on air filter), soils/sediments, water, flora/fauna, oil sludge/waste sludge, and tailing/blasting slag and others, utilizing particularly NAA (Neutron Activation Analysis) method are reviewed. The laboratory participates in the IAEA-organized Interlaboratory Comparison Studies to ensure the analytical system. Other activities include analytical chemistry services with ICP-mass spectrometry and GC/GCMS to compliment the NAA and, moreover, air and marine pollution studies with participation in the UNDP/RCA/IAEA project. (S. Ohno)

  2. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  3. Use of current S355 and S690 steels for arctic applications

    NARCIS (Netherlands)

    Walters, C.L.; Dragt, R.C.; Romeijn, E.; Weijde, G.D. van der

    2014-01-01

    In this paper, the applicability of currently-available S355 and S690 steels to Arctic applications is estimated according to current classification rules. A database of results used for quality control for offshore structures that were not necessarily designed for Arctic operations was analyzed. Th

  4. Smartphone applications to aid weight loss and management: current perspectives.

    Science.gov (United States)

    Sutton, Elizabeth F; Redman, Leanne M

    2016-01-01

    The development and dissemination of smart devices has cultivated a global environment of hyperconnectivity and increased our access to information. The paralleled launch and success of the Mobile Health industry has created a market of commercially available applications or "apps" along with tools or sensors, which allow the user to receive and collect personal health information. Apps and accompanying tools now allow an individual to "self-digitize" and, pertaining to weight management, monitor their body weight, caloric intake, physical activity, and more. These products possess the ability to improve the scalability of traditional in-person weight management services considering their near ubiquity, affordability, and capability to deliver information directly and personally to the user. However, similar to the dietary supplement market, the anecdotal value of these products has driven their popularity and acceptance by the general public without requirement of scientific validation or, in the area of weight management or diet/exercise, validation of the safety and efficacy by the Food and Drug Administration prior to market launch. By conducting a literature and clinical trial search, we found remarkably few active, completed, or published studies testing the efficacy of smart device applications using randomized controlled trials. Research efforts must be focused on illuminating the efficacy of behavioral interventions and remote self-monitoring for weight loss/maintenance treatment with true, randomized controlled trials.

  5. Direct Laser Cladding , Current Status and Future Scope of Application

    Science.gov (United States)

    Weisheit, A.; Gasser, A.; Backes, G.; Jambor, T.; Pirch, N.; Wissenbach, K.

    During the last decades Direct Laser Cladding has become an established technique in many industrial fields for applying wear and corrosion protection layers on metallic surfaces as well as for the repair of high value-added components. The most important application fields are die and tool making, turbine components for aero engines and power generation, machine components such as axes and gears, and oil drilling components. Continuous wave (CW) lasers with a power up to 18 kW are used on automated machines with three or more axes, enabling 3D cladding . The outstanding feature of DLC is the high precision which leads to a minimum heat input into the work piece and a very low distortion. Due to the high cooling rates a fine grained microstructure is achieved during solidification. A new development in laser cladding is micro cladding in a size range below 50 \\upmum especially for electronic and medical applications. Furthermore, additive manufacturing is coming again into focus as a clean and resource-efficient method to manufacture and modify functional prototypes as well as unique and small lot parts.

  6. Current applications of big data in obstetric anesthesiology.

    Science.gov (United States)

    Klumpner, Thomas T; Bauer, Melissa E; Kheterpal, Sachin

    2017-06-01

    The narrative review aims to highlight several recently published 'big data' studies pertinent to the field of obstetric anesthesiology. Big data has been used to study rare outcomes, to identify trends within the healthcare system, to identify variations in practice patterns, and to highlight potential inequalities in obstetric anesthesia care. Big data studies have helped define the risk of rare complications of obstetric anesthesia, such as the risk of neuraxial hematoma in thrombocytopenic parturients. Also, large national databases have been used to better understand trends in anesthesia-related adverse events during cesarean delivery as well as outline potential racial/ethnic disparities in obstetric anesthesia care. Finally, real-time analysis of patient data across a number of disparate health information systems through the use of sophisticated clinical decision support and surveillance systems is one promising application of big data technology on the labor and delivery unit. 'Big data' research has important implications for obstetric anesthesia care and warrants continued study. Real-time electronic surveillance is a potentially useful application of big data technology on the labor and delivery unit.

  7. [Current problems of information technologies application for forces medical service].

    Science.gov (United States)

    Ivanov, V V; Korneenkov, A A; Bogomolov, V D; Borisov, D N; Rezvantsev, M V

    2013-06-01

    The modern information technologies are the key factors for the upgrading of forces medical service. The aim of this article is the analysis of prospective information technologies application for the upgrading of forces medical service. The authors suggested 3 concepts of information support of Russian military health care on the basis of data about information technologies application in the foreign armed forces, analysis of the regulatory background, prospects of military-medical service and gathered experience of specialists. These three concepts are: development of united telecommunication network of the medical service of the Armed Forces of the Russian Federation medical service, working out and implementation of standard medical information systems for medical units and establishments, monitoring the military personnel health state and military medical service resources. It is noted that on the assumption of sufficient centralized financing and industrial implementation of the military medical service prospective information technologies, by the year 2020 the united information space of the military medical service will be created and the target information support effectiveness will be achieved.

  8. Application and interpretation of current autophagy inhibitors and activators

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Li-fang HU; Hui-fen ZHENG; Cheng-jie MAO; Wei-dong HU; Kang-ping XIONG; Fen WANG

    2013-01-01

    Aut ophagy is the major intracellular degradation system,by which cytoplasmic materials are delivered to and degraded in the lysosome.As a quality control mechanism for cytoplasmic proteins and organelles,autophagy plays important roles in a variety of human diseases,including neurodegenerative diseases,cancer,cardiovascular disease,diabetes and infectious and inflammatory diseases.The discovery of ATG genes and the dissection of the signaling pathways involved in regulating autophagy have greatly enriched our knowledge on the occurrence and development of this lysosomal degradation pathway.In addition to its role in degradation,autophagy may also promote a type of programmed cell death that is different from apoptosis,termed type II programmed cell death.Owing to the dual roles of autophagy in cell death and the specificity of diseases,the exact mechanisms of autophagy in various diseases require more investigation.The application of autophagy inhibitors and activators will help us understand the regulation of autophagy in human diseases,and provide insight into the use of autophagy-targeted drugs.In this review,we summarize the latest research on autophagy inhibitors and activators and discuss the possibility of their application in human disease therapy.

  9. Cross wavelet analysis: significance testing and pitfalls

    Directory of Open Access Journals (Sweden)

    D. Maraun

    2004-01-01

    Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.

  10. Pharmacogenomics: current applications and future prospects towards personalized therapeutics.

    Science.gov (United States)

    Vaiopoulou, A; Gazouli, M; Karikas, G A

    2013-01-01

    Personalized Medicine is more than just a metabolic activity of a person. Pharmacogenomics, pharmacogenetics, pharmacoproteomics, and metabolomics play an important role in the development of personalized medicines. Personalized medicine uses information about a person's genes, proteins, enzyme activities, and cellular environment to diagnose and treat disease, cancer included. A major problem of personalized medicine is the fact that there is no portable bedside and low-cost bioanalytical technology that can be used in close proximity to the patient. This technology could play a significant role in defining the dosage setting for subsets of the population. The success of the personalized therapy is possible through the application of technology, which can provide a bridge between metabolism status and an individual's response to a particular drug and therapeutic modality.

  11. Microarrays—Current and Future Applications in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Ulrich Certa

    2011-11-01

    Full Text Available Microarrays covers research where microarrays are applied to address complex biological questions. This new open access journal publishes articles where novel applications or state-of-the art technology developments in the field are reported. In addition, novel methods or data analysis algorithms are under the scope of Microarrays. This journal will serve as a platform for fast and efficient sharing of data within this large user community. As one of the first microarray users in Europe back in 1996, I am proud to serve as Editor-in-Chief and I believe we have assembled a highly proficient Editorial Board, responsible for a fair and fast peer-review of articles.

  12. Brain-computer interfaces current trends and applications

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.

  13. Applicability of Telemedicine in Bangladesh: Current Status and Future Prospects

    CERN Document Server

    Nessa, Ahasanun; Ullah, Sana; Kwak, Kyung Sup

    2009-01-01

    Telemedicine refers to the use of information and communication technology to provide and support health care mainly for the purpose of providing consultation. It is also a way to provide medical procedures or examinations to remote locations. It has the potential to improve both the quality and the access to health care services delivery while lowering costs even in the scarcity of resources. Understanding the potentiality of telemedicine, many developing countries are implementing telemedicine to provide health care facility to remote area where health care facilities are deficient. Bangladesh is not an exception to this either. In this paper we mention the reasons why Bangladesh has to move for telemedicine. We also present the past and on-going telemedicine activities and projects in Bangladesh. Analyzing these projects we have found out some factors which should be assessed carefully for successful implementation of telemedicine application. Finally we propose a prototype telemedicine network for Banglad...

  14. Overview of current additive manufacturing technologies and selected applications.

    Science.gov (United States)

    Horn, Timothy J; Harrysson, Ola L A

    2012-01-01

    Three-dimensional printing or rapid prototyping are processes by which components are fabricated directly from computer models by selectively curing, depositing or consolidating materials in successive layers. These technologies have traditionally been limited to the fabrication of models suitable for product visualization but, over the past decade, have quickly developed into a new paradigm called additive manufacturing. We are now beginning to see additive manufacturing used for the fabrication of a range of functional end use components. In this review, we briefly discuss the evolution of additive manufacturing from its roots in accelerating product development to its proliferation into a variety of fields. Here, we focus on some of the key technologies that are advancing additive manufacturing and present some state of the art applications.

  15. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  16. Current status of silicon materials research for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ciszek, T F

    1985-04-01

    The desire for high solar cell efficiencies has been a strong factor in determining the course of recent silicon crystal growth research efforts for photovoltaics. This review, therefore, focuses on single-crystal, dislocation-free ingot growth methods (Czochralski growth, float zoning, and cold crucible growth) and on sheet growth technologies, generally multicrystalline, that have achieved moderately high (>13.5%) laboratory-scale efficiencies. These include dendritic web growth, growth from capillary dies, edge-supported pulling, ribbon-against-drop growth, and a recent technique termed crucible-free horizontal growth. Silicon ribbon crystals provide a favorable geometry and require no wafering, but they contain defects that limit solar cell performance. Growth processes, their current status, and cell efficiencies are discussed. Silicon material process steps before and after crystal growth are described, and the advantages of silicon are presented.

  17. Current Technological Improvements in Enzymes toward Their Biotechnological Applications

    Science.gov (United States)

    Baweja, Mehak; Nain, Lata; Kawarabayasi, Yutaka; Shukla, Pratyoosh

    2016-01-01

    Enzymes from extremophiles are creating interest among researchers due to their unique properties and the enormous power of catalysis at extreme conditions. Since community demands are getting more intensified, therefore, researchers are applying various approaches viz. metagenomics to increase the database of extremophilic species. Furthermore, the innovations are being made in the naturally occurring enzymes utilizing various tools of recombinant DNA technology and protein engineering, which allows redesigning of the enzymes for its better fitment into the process. In this review, we discuss the biochemical constraints of psychrophiles during survival at the lower temperature. We summarize the current knowledge about the sources of such enzymes and their in vitro modification through mutagenesis to explore their biotechnological potential. Finally, we recap the microbial cell surface display to enhance the efficiency of the process in cost effective way. PMID:27379087

  18. SARAL/Altika for inland water: current and potential applications

    Science.gov (United States)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  19. Ultrasound treatment of neurological diseases--current and emerging applications.

    Science.gov (United States)

    Leinenga, Gerhard; Langton, Christian; Nisbet, Rebecca; Götz, Jürgen

    2016-03-01

    Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.

  20. NanoSIMS for Biological Applications: Current Practices and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jamie R.; Renslow, Ryan S.; Cliff, John B.; Anderton, Christopher R.

    2017-09-27

    Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically-relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, we provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analysis, and current outlooks. Specifically, we offer an overview of SIMS and development of the NanoSIMS. We describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, we provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, we present a perspective on the future of this technology and where we think it will have the greatest impact in near future.

  1. High temperature solar furnace: current applications and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Bjorndalen, N. [Dalhousie Univ., Faculty of Engineering, Halifax, NS (Canada)

    2003-02-15

    The high temperature solar furnace can offer great opportunities for the production of many types of products worldwide, but recent advances in this technology have been limited to metal reduction. The production of semiconductors, which are utilized to a great extent in the electronic industry, is a viable option for this technology that has been overlooked. Especially where sand and sunlight are plentiful (countries that surround the equator), silicon chips produced with a solar furnace can have great economical value. This paper describes current and potential solar furnace technologies. The components of the solar furnace are described, as well as metal reduction processes including zinc and aluminum production. The viability of silicon chip production is also examined. The possibilities for other product development using an extremely (up to 10,000 deg C) high temperature solar furnace are also discussed. Economically, the benefits of solar furnaces are great, with only high initial start-up costs and little operation costs. Metal reduction processes can also be enhanced with high temperature solar furnaces in that plugging problems are eliminated. By replacing conventional furnaces, such as blast and electric arc furnaces, with a high temperature solar furnace, CO{sub 2} emissions and energy consumption can be greatly reduced, which will bring in added dividends to the society. (Author)

  2. Additive Technology: Update on Current Materials and Applications in Dentistry.

    Science.gov (United States)

    Barazanchi, Abdullah; Li, Kai Chun; Al-Amleh, Basil; Lyons, Karl; Waddell, J Neil

    2017-02-01

    Additive manufacturing or 3D printing is becoming an alternative to subtractive manufacturing or milling in the area of computer-aided manufacturing. Research on material for use in additive manufacturing is ongoing, and a wide variety of materials are being used or developed for use in dentistry. Some materials, however, such as cobalt chromium, still lack sufficient research to allow definite conclusions about the suitability of their use in clinical dental practice. Despite this, due to the wide variety of machines that use additive manufacturing, there is much more flexibility in the build material and geometry when building structures compared with subtractive manufacturing. Overall additive manufacturing produces little material waste and is energy efficient when compared to subtractive manufacturing, due to passivity and the additive layering nature of the build process. Such features make the technique suitable to be used with fabricating structures out of hard to handle materials such as cobalt chromium. The main limitations of this technology include the appearance of steps due to layering of material and difficulty in fabricating certain material generally used in dentistry for use in 3D printing such as ceramics. The current pace of technological development, however, promises exciting possibilities. © 2016 by the American College of Prosthodontists.

  3. The Pleasures and the Pitfalls of Plant Science Activities.

    Science.gov (United States)

    Hershey, David R.

    2000-01-01

    Classroom plant activities have long been inexpensive, easy to do, and fun for students, and have become more central to biology teaching. Introduces some plant science activities and their pleasures and pitfalls. (ASK)

  4. Medical prescription pitfalls of uncomplicated urinary tract infections ...

    African Journals Online (AJOL)

    user

    identify pitfalls in medical prescriptions of uncomplicated .... encourage laboratory tests to support antibiotic drug treatment. ... relevant systems such as prescriptions monitoring and adverse drug ... registration house officer year: how prepared.

  5. Joint ventures: the trends and the potential pitfalls.

    Science.gov (United States)

    Wolff, S O

    1985-10-01

    Perhaps the hottest trend today in the health care field is the formation of joint ventures by hospitals and physicians. This article examines some of the critical success factors and the potential pitfalls of hospital physician joint venture arrangements.

  6. Clean Development Mechanism PDD Guidebook: Navigating the Pitfalls; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    This guidebook is designed to help readers navigate the pitfalls of preparing a Project Design Document (PDD) for Clean Development Mechanism (CDM) projects. This second edition also aims at helping project developers to navigate the pitfalls of preparing a Monitoring Report and be better prepared to face the verification process. The purpose of a PDD is to prepare project information for relevant stakeholders. These stakeholders include the investment community, the Designated Operating Entity (DOE) performing validation of the project, the CDM Executive Board (EB), the Designated National Authorities (DNA) of the involved countries and the local population. The PDD, together with the validation report and the approval letter of the DNA, are the basis for the registration of the project and its recognition as a credible CDM project. The PDD is about the project's design--that is, how the project intends to reduce greenhouse gas (GHG) emissions below those levels that would otherwise have been emitted1. Each and every CDM project is unique, from the project design to the application of even the simplest baseline methodology. Some of the projects submitted for validation may be very efficient in reducing emissions and score well in terms of economic, social and environmental benefits, but may still not qualify as CDM projects. Experience has shown that the information needed to judge the suitability of a project for the CDM is vast and can take months to assemble. Also, the time required to assemble relevant information increases with the number and diversity of stakeholders involved and the complexity of the information itself. The objective of the verification of emissions reduction is the review and ex post determination of the monitored emission reductions that have occurred during a specified verification period. The verification is about the project's reality--that is, how the project has been implemented as described in the registered PDD and is

  7. The law of similars: current biases in its application

    Directory of Open Access Journals (Sweden)

    Giovanna Silvestri

    2012-09-01

    Full Text Available Background and Aims. Homeopathic prescription is based on the so-called law of similars, i.e. 1 on a patient sharing symptoms with the artificial and reversible disease caused by a drug taken in the state of health in a proving (Materia Medica Pura; 2 on systematic observations of pathogenetic effects due to accidental drug abuse (toxicology. However, in contemporary homeopathy, distortions in the application of the law are not infrequent, and they will be considered here. Methods. Two main biases are described and analyzed: 1 the shift towards the law of the same, concerning methods like isopathy and homotoxicology; 2 the a priori attribution of therapeutic properties to high dilutions of a given substance. The first twist can be retraced to the extension of the concept of drainage. Drainage is aimed to restore a blocked function by making use of a drug with affinity for a given anatomic district or a specific function – tropism. To some extent this technique is compatible with classical homeopathy, though not based on the law of similars. In any case, drainage has limited effects and typically precedes the use of a simillimum identified within a holistic view. The second kind of distortion is due to the influence of the ancient doctrine of signaturae. In the Organon S. Hahnemann warns against the temptation of ascribing to remedies any effect or property without a preliminary screening through proving. However, while doctrine of signaturae was regarded by classical masters as a further support to experimental findings, rather than being used to infer ex novo substance properties, several homeopaths have expanded its application to the point of using it as an alternative approach to Materia Medica. Conclusions. In a picture of contemporary homeopathy based on these premises, we can draw a line which goes from methods combining isopathy and drainage, acting only on a local level, to approaches somewhat related to the doctrine

  8. Applicability of the current hypertension guidelines in Latin America.

    Science.gov (United States)

    Alcocer, Luis; Meaney, Eduardo; Hernandez-Hernandez, Hector

    2015-08-01

    Recent research has focused on the development of evidence-based guidelines that are intended to regulate the conduct of physicians in the diagnosis and control of hypertension, with the goal of achieving greater effectiveness and equity at the lowest possible cost. In Latin America, guidelines are available for the management of hypertension at three levels: national, regional and international. The national and regional Latin American and Caribbean (LAC) guidelines are in fact adaptations of the international guidelines. The potential benefit of applying guidelines developed in other regions to local healthcare decision making is that it will enable decision makers to take advantage of existing analyses and transfer or adapt them to their local contexts. However, this adaptation precludes the assessment of their generalizability and potential transferability. In addition, this region is characterized by wide socioeconomic differences between its inhabitants, both among and within nations. Therefore, new guidelines for the LAC region must include recommendations that are common to all hypertensive patients in the region. Moreover, we advocate the inclusion of a specific section that makes comprehensive recommendations and provides strategies for implementation according to the socioeconomic conditions of particular groups. In addition to developing guidelines that are truly applicable to the LAC region, it seems sensible to consider information that is specific to this region. Furthermore, developing evidence-based guidelines is not enough to affect positively the burden of disease caused by hypertension. Therefore, professional programs are required for the implementation of such guidelines as well as the auditing of their results. Achieving these ambitious goals will require collaborative efforts by many groups including policymakers, international organizations, healthcare providers, universities and society.

  9. Current and future biosimilars: potential practical applications in rheumatology

    Directory of Open Access Journals (Sweden)

    Noaiseh G

    2013-08-01

    Full Text Available Ghaith Noaiseh, Larry Moreland Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA Abstract: The use of biologics in the field of rheumatology has dramatically changed the way we treat rheumatic diseases. As the patent-expiration dates for many tumor necrosis-factor inhibitors and other biological agents are approaching, many large pharmaceutical companies are developing and testing their own versions of these agents; this is due to the biologics' huge revenue potential. The potential cost saving is a major incentive for their development. Producing a biosimilar is not an easy task, as minor changes in the production process can have profound immunological and clinical consequences. The European Medicines Agency (EMA has led the efforts in issuing guidelines to streamline the approval process for applicants interested in developing biosimilars. The US Food and Drug Administration (FDA has followed the EMA track and has guidelines in place, but the process varies in different countries. The approval process is far more complex than the one used for the approval of small-molecule generic products. Biosimilars should be developed according to the strict rules set forth by the EMA and FDA; other intended copies are available for clinical use in different parts of the world, but should not be considered biosimilars, as they do not fulfill the stringent definition criteria. Biosimilars will soon be in the market, and their use in rheumatic diseases will likely change our treatment approach. Rheumatologists and other health-care professionals will soon be faced with many questions and will have to be familiarized with the concept and the points of debate. Keywords: biosimilar, rheumatology, biologic, generic, TNF inhibitor, rituximab

  10. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications.

    Science.gov (United States)

    Swartjes, J J T M; Sharma, P K; van Kooten, T G; van der Mei, H C; Mahmoudi, M; Busscher, H J; Rochford, E T J

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence of antibiotic resistant bacterial strains. Effective antimicrobial surface coatings can be based on an anti-adhesive principle that prevents bacteria to adhere, or on bactericidal strategies, killing organisms either before or after contact is made with the surface. Many strategies, however, implement a multifunctional approach that incorporates both of these mechanisms. For anti-adhesive strategies, the use of polymer chains, or hydrogels is preferred, although recently a new class of super-hydrophobic surfaces has been described which demonstrate improved anti-adhesive activity. In addition, bacterial killing can be achieved using antimicrobial peptides, antibiotics, chitosan or enzymes directly bound, tethered through spacer-molecules or encased in biodegradable matrices, nanoparticles and quaternary ammonium compounds. Notwithstanding the ubiquitous nature of the problem of microbial colonization of material surfaces, this review focuses on the recent developments in antimicrobial surface coatings with respect to biomaterial implants and devices. In this biomedical arena, to rank the different coating strategies in order of increasing efficacy is impossible, since this depends on the clinical application aimed for and whether expectations are short- or long term. Considering that the era of antibiotics to control infectious biofilms will eventually come to an end, the future for biofilm control on biomaterial implants and devices is likely with surface-associated modifications that are non-antibiotic related.

  11. Applicability of RNA interference in cancer therapy: Current status

    Directory of Open Access Journals (Sweden)

    S Maduri

    2015-01-01

    Full Text Available Cancer is a manifestation of dysregulated gene function arising from a complex interplay of oncogenes and tumor suppressor genes present in our body. Cancer has been constantly chased using various therapies but all in vain as most of them are highly effective only in the early stages of cancer. Recently, RNA interference (RNAi therapy, a comparatively new entrant is evolving as a promising player in the battle against cancer due to its post-transcriptional gene silencing ability. The most alluring feature of this non-invasive technology lies in its utility in the cancer detection and the cancer treatment at any stage. Once this technology is fully exploited it can bring a whole new era of therapeutics capable of curing cancer at any stage mainly due to its ability to target the vital processes required for cell proliferation such as response to growth factors, nutrient uptake/synthesis, and energy generation. This therapy can also be used to treat stage IV cancer, the most difficult to treat till date, by virtue of its metastasis inhibiting capability. Recent research has also proved that cancer can even be prevented by proper modulation of physiological RNAi pathways and researchers have found that many nutrients, which are a part of routine diet, can effectively modulate these pathways and prevent cancer. Even after having all these advantages the potential of RNAi therapy could not be fully tapped earlier, due to many limitations associated with the administration of RNAi based therapeutics. However, recent advancements in this direction, such as the development of small interfering RNA (siRNA tolerant to nucleases and the development of non-viral vectors such as cationic liposomes and nanoparticles, can overcome this obstacle and facilitate the clinical use of RNAi based therapeutics in the treatment of cancer. The present review focuses on the current status of RNAi therapeutics and explores their potential as future diagnostics and

  12. Imageless Computer Navigation in Total Knee Arthroplasty—The Pitfalls

    Directory of Open Access Journals (Sweden)

    Kwok-Hing Chiu

    2011-12-01

    Full Text Available Correct implant positioning and mechanical alignment are crucial for long-term survival of the total knee prosthesis. Imageless navigation can improve the femoral and tibial component position in the sagittal and coronal planes, as well as the overall lower limb mechanical axis. However, there are pitfalls related to the imageless computer navigation systems in total knee arthroplasty. We need to know these pitfalls and weight against the benefits of this new technology.

  13. How to avoid potential pitfalls in recurrence plot based data analysis

    CERN Document Server

    Marwan, Norbert

    2010-01-01

    Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis.

  14. New Gain Controllable Resistor-less Current-mode First Order Allpass Filter and its Application

    Directory of Open Access Journals (Sweden)

    W. Jaikla

    2012-04-01

    Full Text Available New first order allpass filter (APF in current mode, constructed from 2 CCCCTAs and grounded capacitor, is presented. The current gain and phase shift can be electronically /orthogonally controlled. Low input and high output impedances are achieved which make the circuit to be easily cascaded to the current-mode circuit without additional current buffers. The operation of the proposed filter has been verified through simulation results which confirm the theoretical analysis. The application example as current-mode quadrature oscillator with non-interactive current control for both of oscillation condition and oscillation frequency is included to show the usability of the proposed filter.

  15. Clean development mechanism PDD guidebook: Navigating the pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, S. (ed.)

    2005-11-01

    This guidebook is designed to help readers navigate the pitfalls of preparing a Project Design Document (PDD) for Clean Development Mechanism (CDM) projects. The purpose of a PDD is to prepare project information for relevant stakeholders. These stakeholders include the investment community, the Designated Operating Entity (DOE) performing validation of the project, the CDM Executive Board (EB), the Designated National Authorities (DNA) of the involved countries and the local population. The PDD, together with the validation report and the approval letter of the DNA, are the basis for the registration of the project and its recognition as a credible CDM project. The PDD is about the project's design that is, how the project intends to reduce greenhouse gas (GHG) emissions below those levels that would otherwise have been emitted. Each and every CDM project is unique, from the project design to the application of even the simplest baseline methodology. Some of the projects submitted for validation may be very efficient in reducing emissions and score well in terms of economic, social and environmental benefits, but may still not qualify as CDM projects. Experience has shown that the information needed to judge a suitability of a project for the CDM is vast and can take months to assemble. Also, the time required to assemble relevant information increases with the number and diversity of stakeholders involved and the complexity of the information itself. This guidebook is based on a review of all PDDs submitted to DNV for validation. The advice given and the pitfalls described in this guidebook are, therefore, based on day-to-day, hands-on experience and real instances of mistakes made in submissions. In summary, then, this guidebook takes a practical stance: it is concerned with the practical issues of how to get projects through the validation process. It will help those submitting a PDD by: 1) Describing the most common and costly mistakes made in the process

  16. Application of flow cytometry in marine phytoplankton research: current applications and future perspectives

    Directory of Open Access Journals (Sweden)

    Marcel J.W. Veldhuis

    2000-06-01

    Full Text Available A brief overview is given of current applications of flow cytometry (FCM in marine phytoplankton research. This paper presents a selection of highlights and various technical and analytical problems we encountered during the past 10 years. In particular, the conversion of the relative values obtained in terms of size and fluorescence applying FCM to quantitative estimates of cell size, pigment concentration, genome size etc., is addressed. The introduction of DNA -cell-cycle analysis made easily assessable by flow cytometry has been of great importance, allowing in situ measurement of species specific growth rates. Key questions in ecology such as factors determining the wax and wane of phytoplankton bloom can now be better answered in terms of species specific growth and mortality. Finally, flow cytometry provides detailed information of the physiological status of the individual algal cells. New staining methods enable us to distinguish between viable and non-viable cells and so will help us to elucidate the importance of automortality in aquatic ecosystems.

  17. Monitoring of minimal residual disease in leukemia, advantages and pitfalls.

    Science.gov (United States)

    Cazzaniga, Giovanni; Gaipa, Giuseppe; Rossi, Vincenzo; Biondi, Andrea

    2006-01-01

    The term 'minimal residual disease' (MRD) defines the level of disease detectable in patients in clinical remission during therapy, below the detection limit of conventional methods. Very sensitive methods can be used, able to identify one leukemic cell out of 10,000 normal lymphocytes. In vivo measurements of leukemia cytoreduction reflect the combined effect of clinical and biological variables, thus providing direct information on the effectiveness of treatment in each patient. Thus, these methods can potentially be used for tailoring treatment and personalize the cure. Although MRD studies are becoming an integral part of the modern management of patients with leukemia, several parameters are critical for the application and interpretation of MRD studies, including therapeutic context, timing of sampling, target genes and sensitivity of the polymerase chain reaction (PCR) assay, inter-laboratory standardization (particularly relevant in multicenter studies), selection of patients, retrospective or prospective nature of the study. Methodologies and pitfalls as well as results of clinical uses of MRD will be reviewed in this article by selecting significant examples of its clinical impact in the management of patients with leukemia.

  18. Nonlinear Time Series Analysis in Earth Sciences - Potentials and Pitfalls

    Science.gov (United States)

    Kurths, Jürgen; Donges, Jonathan F.; Donner, Reik V.; Marwan, Norbert; Zou, Yong

    2010-05-01

    The application of methods of nonlinear time series analysis has a rich tradition in Earth sciences and has enabled substantially new insights into various complex processes there. However, some approaches and findings have been controversially discussed over the last decades. One reason is that they are often bases on strong restrictions and their violation may lead to pitfalls and misinterpretations. Here, we discuss three general concepts of nonlinear dynamics and statistical physics, synchronization, recurrence and complex networks and explain how to use them for data analysis. We show that the corresponding methods can be applied even to rather short and non-stationary data which are typical in Earth sciences. References Marwan, N., Romano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems, Physics Reports 438, 237-329 (2007) Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks, Physics Reports 469, 93-153 (2008) Marwan, N., Donges, J.F., Zou, Y., Donner, R. and Kurths, J., Phys. Lett. A 373, 4246 (2009) Donges, J.F., Zou, Y., Marwan, N. and Kurths, J. Europhys. Lett. 87, 48007 (2009) Donner, R., Zou, Y., Donges, J.F., Marwan, N. and Kurths, J., Phys. Rev. E 81, 015101(R) (2010)

  19. Gene therapy for PIDs: progress, pitfalls and prospects.

    Science.gov (United States)

    Mukherjee, Sayandip; Thrasher, Adrian J

    2013-08-10

    Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.

  20. Hybrid High-Temperature Superconductor Current Leads for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tai-Yang Research Company (TYRC) of Tallahassee, Florida proposes to build hybrid high-temperature superconducting current leads for space applications,...

  1. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.; Van Herwaarden, Joost A.

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  2. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair

    NARCIS (Netherlands)

    De Ruiter, Quirina M B; Moll, Frans L.|info:eu-repo/dai/nl/070246882; Van Herwaarden, Joost A.|info:eu-repo/dai/nl/304814733

    2015-01-01

    Objective This study reviewed the current developments in manual tracking and robotic navigation technologies for application in endovascular aortic aneurysm repair (EVAR). Methods EMBASE and MEDLINE databases were searched for studies reporting manual tracking or robotic navigation systems that are

  3. MEASURING RESULTS NUMERAL TREATMENT OF IMPULSIVE CURRENTS BY MEANS OF ROGOVSKY BELT APPLICATION

    Directory of Open Access Journals (Sweden)

    U. Batygin

    2009-01-01

    Full Text Available The technique of numerical processing of measurement results of pulse currents by means of Rogovsky belt application is offered in the given work. It is shown that at measurement of signals by digital oscillographs and further numerical transformation of target signals, the possibilities of Rogovsky belt without the application of additional devices that in turn allows to define parameters of pulse currents with any peak-time characteristics essentially expand.

  4. Modern dental imaging: a review of the current technology and clinical applications in dental practice

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberghe, Bart; Jacobs, Reinhilde [Katholieke Universiteit Leuven, Oral Imaging Centre, Faculty of Medicine, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Leuven (Belgium); Bosmans, Hilde [Katholieke Universiteit Leuven, Radiology Section, Department of Medical Diagnostic Sciences, Leuven (Belgium)

    2010-11-15

    A review of modern imaging techniques commonly used in dental practice and their clinical applications is presented. The current dental examinations consist of intraoral imaging with digital indirect and direct receptors, while extraoral imaging is divided into traditional tomographic/panoramic imaging and the more recently introduced cone beam computed tomography. Applications, limitations and current trends of these dental ''in-office'' radiographic techniques are discussed. (orig.)

  5. A Review on Current and Emerging Application Possibilities for Unmanned Aerial Vehicles

    OpenAIRE

    Beloev Ivan H.

    2016-01-01

    This paper presents a review on current and emerging application possibilities for unmanned aerial vehicles (UAVs). The introduction section of the paper briefly describes some of the application areas in which drones are currently being used. The next chapters of the paper describe more detailly the use of UAVs for aerial photography, filming, security and logistics, GIS, land and water surveys. The main focus of the last chapters is on the advantages and the disadvantages of the drones usag...

  6. The Application of Electroanalgesia Current for the Relief of Orofacial Pain.

    Science.gov (United States)

    1981-09-01

    A-A124 939 THE APPLICATION OF ELECTRORNALGESIA CURRENT FOR THE i/1 RELIEF OF OROFACIAL PAIN(U) OREGON UNIV HEALTH SCIENCES CENTER PORTLAND BIOPHYSICS...COVERED THE APPLICATION OF ELECTROANALGESIA CURRENT FOR Fnl-Fbur 90 and evelpmen Conand September 198 THE RELIEF OF OROFACIAL PAIN Spebr18 27. PERFORMING...of a suitable animal preparation. An excellent site to initiate orofacial pain is found in the tissue vhich also has o - timal relevance, the tooth

  7. Core biopsies of the breast: Diagnostic pitfalls

    Directory of Open Access Journals (Sweden)

    Megha Joshi

    2011-01-01

    Full Text Available The incidence of breast cancer is increasing worldwide. In this review article, the authors compare and contrast the incidence of breast cancer, and the inherent differences in the United States (US and India in screening techniques used for diagnosing breast cancer. In spite of these differences, core biopsies of the breast are common for diagnosis of breast cancer in both countries. The authors describe "Best Practices" in the reporting and processing of core biopsies and in the analysis of estrogen receptor (ER, progesterone receptor (PR, and human epidermal growth factor Receptor 2 (Her2/neu. The pitfalls in the diagnosis of fibroepithelial lesions of the breast on core biopsy are discussed, as also the significance of pseudoangiomatous stromal hyperplasia of the breast (PASH is discussed in core biopsy. In this review, the management and diagnosis of flat epithelial atypia and radiation atypia are elaborated and the use of immunohistochemistry (IHC in papillary lesions, phyllodes tumor, and complex sclerosing lesions (radial scars is illustrated. Rarer lesions such as mucinous and histiocytoid carcinoma are also discussed.

  8. Mucinous carcinoma of breast: A diagnostic pitfall

    Directory of Open Access Journals (Sweden)

    Magdalene KF, Sapna M, Jeevaraj TR

    2014-04-01

    Full Text Available Mucinous carcinoma is also known as mucoid carcinoma, colloid carcinoma, gelatinous carcinoma and mucin producing carcinoma. They are uncommon neoplasms of the breast and the reported incidence varies from 1-4%. Most of the mucinous carcinomas occur in older age group. FNAC can aid in diagnosis of mucinous carcinoma with only a few FNAC studies documented in literature. We present here a 56year old lady with a huge ulcerated breast mass clinically diagnosed as Malignant Phyllodes tumor. An FNAC was done which showed epithelial cell clusters with mild atypia in a background of both bluish violet and pink extracellular material. Spindle shaped cells were noted in the ground substance which led to a diagnosis of a phyllodes tumor with extensive myxoid change. Mastectomy was performed and the histopathological features confirmed a diagnosis of mucinous carcinoma. The tumor had areas showing thick collagenized fibrous septae separating tumor cell clusters and also areas of fibrosis. The pitfall in FNAC diagnosis may be due to the sampling from such an area.

  9. Avoiding numerical pitfalls in social force models

    Science.gov (United States)

    Köster, Gerta; Treml, Franz; Gödel, Marion

    2013-06-01

    The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.

  10. Pitfalls in aphakic contact lens fitting

    Directory of Open Access Journals (Sweden)

    Dada Vijay

    1990-01-01

    Full Text Available We examined 23 consecutive cases of unilateral aphakia reporting to the contact lens office for endothelial count and morphology, corneal thickness and toricity. The fellow eye served as a control in all the cases. It was found that there is a significant drop in the central endothelial cell density, and change in the size and shape of the cells. These observations indicate a thermodynamically unstable state. The aphakic corneas were thicker than the controls but not to a significant extent. The cell count and pachymetry had no statistical correlation. Toricity of the aphakic corneas make successful fitting of a lens difficult. Since prolonged use of extended wear gas permeable as well as hydrogel lenses have a deleterious effect on the endothelium it is suggested that a careful case selection be made and strict monitoting carried out at follow up. These corneas are liable for decompensation with only mild noxious stimuli. This article is intended to acquaint the ophthalmologist with the pitfalls in aphakic contact lens fitting so that a cautious follow up may be planned.

  11. The Applications of Current Comparators in the Measurements on High Voltage Insulation

    Directory of Open Access Journals (Sweden)

    Fei Yi-jun

    2016-01-01

    Full Text Available This paper describes the basic structure of the current comparator used for high voltage insulation measurements. Further applications for the current comparator in high voltage insulation are investigated and developed. A measuring system for the measurement of harmonics in the loss current of water tree aged insulation is described, as well as the principles to measure partial discharges with the current comparator bridge. A new system for the measurement of the DC component in the leakage current of insulation is de1veloped and presented. The results of experiments on XLPE cable insulation are also given.

  12. From single gene to integrative molecular concept MAPS: pitfalls and potentials of microarray technology.

    Science.gov (United States)

    Chiorino, G; Mello Grand, M; Scatolini, M; Ostano, P

    2008-01-01

    Microarray experiments have a large variety of applications and several important achievements have been obtained by means of this technology, especially within the field of whole genome expression profiling, which undoubtedly is the most diffused world-wide. Nevertheless, care must be taken in unconditionally applying such high-throughput techniques and in extracting/interpreting their results. Both the validity and the reproducibility of microarray-based clinical research have recently been challenged. Pitfalls and potentials of the microarray technology for gene expression profiling are critically reviewed in this paper.

  13. Cataract Surgery in Eyes with Previous Glaucoma Surgery: Pearls and Pitfalls.

    Science.gov (United States)

    Dada, Tanuj; Bhartiya, Shibal; Begum Baig, Nafees

    2013-01-01

    The problem of cataract management in the patients of glaucoma who have undergone fltering surgery is a challenging proposition for any surgeon, as the surgery can lead to several complications in the already compromised eye. As glaucoma requires lifelong management, the development of cataract is a significant concern because its treatment may lead to loss of intraocular pressure (IOP) control. This review aims to highlight the intra- and postoperative measures that may increase the chances of bleb survival following cataract surgery. How to cite this article: Dada T, Bhartiya S, Baig NB. Cataract Surgery in Eyes with Previous Glaucoma Surgery: Pearls and Pitfalls. J Current Glau Prac 2013;7(3):99-105.

  14. Pitfalls in detection of acute gastrointestinal bleeding with multi-detector row helical CT.

    Science.gov (United States)

    Stuber, T; Hoffmann, M H K; Stuber, G; Klass, O; Feuerlein, S; Aschoff, A J

    2009-07-01

    Contrast-enhanced multi-detector row helical CT angiography is establishing itself as an accurate, rapid, and non-invasive diagnostic modality in patients with acute gastrointestinal bleeding. On arterial phase MDCT images ongoing hemorrhage can be revealed as an area of active extravasation of contrast material within the bowel lumen. This pictorial essay gives a short overview of current diagnostic modalities in assessing acute GI tract bleeding, typical MDCT findings, and depicts potential pitfalls in the detection of acute GI bleeding with MDCT.

  15. Animal models of protein allergenicity: potential benefits, pitfalls and challenges.

    Science.gov (United States)

    Dearman, R J; Kimber, I

    2009-04-01

    Food allergy is an important health issue. With an increasing interest in novel foods derived from transgenic crop plants, there is a growing need for the development of approaches suitable for the characterization of the allergenic potential of proteins. There are methods available currently (such as homology searches and serological testing) that are very effective at identifying proteins that are likely to cross-react with known allergens. However, animal models may play a role in the identification of truly novel proteins, such as bacterial or fungal proteins, that have not been experienced previously in the diet. We consider here the potential benefits, pitfalls and challenges of the selection of various animal models, including the mouse, the rat, the dog and the neonatal swine. The advantages and disadvantages of various experimental end-points are discussed, including the measurement of specific IgE by ELISA, Western blotting or functional tests such as the passive cutaneous anaphylaxis assay, and the assessment of challenge-induced clinical symptoms in previously sensitized animals. The experimental variables of route of exposure to test proteins and the incorporation of adjuvant to increase the sensitivity of the responses are considered also. It is important to emphasize that currently none of these approaches has been validated for the purposes of hazard identification in the context of a safety assessment. However, the available evidence suggests that the judicious use of an accurate and robust animal model could provide important additional data that would contribute significantly to the assessment of the potential allergenicity of novel proteins.

  16. Modified Current Differencing Unit and its Application for Electronically Reconfigurable Simple First-order Transfer Function

    Directory of Open Access Journals (Sweden)

    SOTNER, R.

    2015-02-01

    Full Text Available Modified current differencing unit (MCDU and its simple filtering application are introduced in this paper. Modification of the well-known current differencing unit consists in weighted difference of both input currents controlled by adjustable current gain, controllable intrinsic resistance of both current input terminals, and availability of additional voltage terminal(s. Definition of MCDU therefore requires four adjustable parameters (B1, B2, Rp, Rn. A presented active element offers and combines benefits of electronically controllable current conveyor of second generation and current differencing unit and allows synthesis of interesting adjustable applications, which are not available by classical approaches based on simple elements. MCDU brings variability of the transfer function into the structure. It provides several transfer types without necessity of input or output node change by simple electronic tuning. A presented structure represents so-called reconnection-less reconfigurable current-mode filter for realization of all-pass, inverting high-pass, low-pass and direct transfer response. Behavioral model of the MCDU was prepared and carefully tested in filtering application. Spice simulations and measurements confirmed theoretical assumptions.

  17. De novo myocardial regeneration: advances and pitfalls.

    Science.gov (United States)

    Haider, Khawaja Husnain; Buccini, Stephanie; Ahmed, Rafeeq P H; Ashraf, Muhammad

    2010-12-15

    The capability of adult tissue-derived stem cells for cardiogenesis has been extensively studied in experimental animals and clinical studies for treatment of postischemic cardiomyopathy. The less-than-anticipated improvement in the heart function in most clinical studies with skeletal myoblasts and bone marrow cells has warranted a search for alternative sources of stem cells. Despite their multilineage differentiation potential, ethical issues, teratogenicity, and tissue rejection are main obstacles in developing clinically feasible methods for embryonic stem cell transplantation into patients. A decade-long research on embryonic stem cells has paved the way for discovery of alternative approaches for generating pluripotent stem cells. Genetic manipulation of somatic cells for pluripotency genes reprograms the cells to pluripotent status. Efforts are currently focused to make reprogramming protocols safer for clinical applications of the reprogrammed cells. We summarize the advancements and complicating features of stem cell therapy and discuss the decade-and-a-half-long efforts made by stem cell researchers for moving the field from bench to the bedside as an adjunct therapy or as an alternative to the contemporary therapeutic modalities for routine clinical application. The review also provides a special focus on the advancements made in the field of somatic cell reprogramming.

  18. Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example

    Directory of Open Access Journals (Sweden)

    Pegah Kassraian Fard

    2016-12-01

    Full Text Available Most psychiatric disorders are associated with subtle alterations in brain function and are subject to large inter-individual differences. Typically the diagnosis of these disorders requires time-consuming behavioral assessments administered by a multi-disciplinary team with extensive experience. Whilst the application of machine learning classification methods (ML classifiers to neuroimaging data has the potential to speed and simplify diagnosis of psychiatric disorders, the methods, assumptions, and analytical steps are not currently opaque and accessible to researchers and clinicians outside the field. In this paper, we describe potential classification pipelines for Autism Spectrum Disorder, as an example of a psychiatric disorder. The analyses are based on resting-state fMRI data derived from a multi-site data repository (ABIDE. We compare several popular ML classifiers such as support vector machines, neural networks and regression approaches, among others. In a tutorial style, written to be equally accessible for researchers and clinicians, we explain the rationale of each classification approach, clarify the underlying assumptions, and discuss possible pitfalls and challenges. We also provide the data as well as the MATLAB code we used to achieve our results. We show that out-of-the-box ML classifiers can yield classification accuracies of about 60-70%. Finally, we discuss how classification accuracy can be further improved, and we mention methodological developments that are needed to pave the way for the use of ML classifiers in clinical practice.

  19. Investigations on bipolar radio-frequency current application for interstitial thermotherapy (RF-ITT)

    Science.gov (United States)

    Desinger, Kai; Mueller, Gerhard J.; Stein, Thomas; Tschepe, Johannes

    1996-01-01

    This paper discusses the feasibility of radio-frequency current in bipolar technique for interstitial thermotherapy (rf-ITT). A short survey of established methods for interstitial tissue coagulation, e.g. the interstitial laser photocoagulation (ILP) and microwave exposure are given. In addition, a new concept for interstitial application of bipolar or quasi-bipolar radio- frequency alternating current is presented. Theoretical investigations of the electrical field distribution generated by a dipole model come together in the different mechanisms of heat generation by using radio-frequency alternating current. New concepts of bipolar or quasi- bipolar coaxial layered applicators are presented. This bipolar needle electrode enables the surgeon to use a partial and homogeneous exposure of radio-frequency current for interstitial thermotherapy, e.g. for the treatment of BPH or for concha coagulation in ENT. Less power is needed due to the limited current exposition at the immediate operation site and a highly safe procedure is possible. Therefore, to determine the thermal damage of tissue, depending on the rf parameters, a computer model for a real-time simulation of the spatial electrical field distribution especially for a multiple probe application is currently being developed. This is an appropriate tool for dosimetry. A similar program for LITT, called LITCIT, developed at the Laser-Medizin-Zentrum Berlin has already shown its efficiency in clinical use. Furthermore the feasibility of a 'cross-over' applicator is discussed which combines ILP and rf-application by using metallized optical fibers for a simultaneous application of electrical energy and laser radiation.

  20. Strategies of bringing drug product marketing applications to meet current regulatory standards.

    Science.gov (United States)

    Wu, Yan; Freed, Anita; Lavrich, David; Raghavachari, Ramesh; Huynh-Ba, Kim; Shah, Ketan; Alasandro, Mark

    2015-08-01

    In the past decade, many guidance documents have been issued through collaboration of global organizations and regulatory authorities. Most of these are applicable to new products, but there is a risk that currently marketed products will not meet the new compliance standards during audits and inspections while companies continue to make changes through the product life cycle for continuous improvement or market demands. This discussion presents different strategies to bringing drug product marketing applications to meet current and emerging standards. It also discusses stability and method designs to meet process validation and global development efforts.

  1. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  2. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  3. Pitfalls and Limitations of PET/CT in Brain Imaging.

    Science.gov (United States)

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  4. Pitfalls in statistical landslide susceptibility modelling

    Science.gov (United States)

    Schröder, Boris; Vorpahl, Peter; Märker, Michael; Elsenbeer, Helmut

    2010-05-01

    The use of statistical methods is a well-established approach to predict landslide occurrence probabilities and to assess landslide susceptibility. This is achieved by applying statistical methods relating historical landslide inventories to topographic indices as predictor variables. In our contribution, we compare several new and powerful methods developed in machine learning and well-established in landscape ecology and macroecology for predicting the distribution of shallow landslides in tropical mountain rainforests in southern Ecuador (among others: boosted regression trees, multivariate adaptive regression splines, maximum entropy). Although these methods are powerful, we think it is necessary to follow a basic set of guidelines to avoid some pitfalls regarding data sampling, predictor selection, and model quality assessment, especially if a comparison of different models is contemplated. We therefore suggest to apply a novel toolbox to evaluate approaches to the statistical modelling of landslide susceptibility. Additionally, we propose some methods to open the "black box" as an inherent part of machine learning methods in order to achieve further explanatory insights into preparatory factors that control landslides. Sampling of training data should be guided by hypotheses regarding processes that lead to slope failure taking into account their respective spatial scales. This approach leads to the selection of a set of candidate predictor variables considered on adequate spatial scales. This set should be checked for multicollinearity in order to facilitate model response curve interpretation. Model quality assesses how well a model is able to reproduce independent observations of its response variable. This includes criteria to evaluate different aspects of model performance, i.e. model discrimination, model calibration, and model refinement. In order to assess a possible violation of the assumption of independency in the training samples or a possible

  5. Two pitfalls of BOLD fMRI magnitude-based neuroimage analysis: non-negativity and edge effect.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2011-08-15

    BOLD fMRI is accepted as a noninvasive imaging modality for neuroimaging and brain mapping. A BOLD fMRI dataset consists of magnitude and phase components. Currently, only the magnitude is used for neuroimage analysis. In this paper, we show that the fMRI-magnitude-based neuroimage analysis may suffer two pitfalls: one is that the magnitude is non-negative and cannot differentiate positive from negative BOLD activity; the other is an edge effect that may manifest as an edge enhancement or a spatial interior dip artifact at a local uniform BOLD region. We demonstrate these pitfalls via numeric simulations using a BOLD fMRI model and also via a phantom experiment. We also propose a solution by making use of the fMRI phase image, the counterpart of the fMRI magnitude.

  6. Medical Abortion in Primary Care : Pitfalls and Benefits

    NARCIS (Netherlands)

    Boersma, A. A.; Meyboom-de Jong, B.

    2009-01-01

    We describe jive pitfalls of medical abortion: ectopic pregnancy not terminated after misoprostol, but without negative side-effects; long-term vaginal blood loss with suspicious retained products which disappeared spontaneously; a patient with uterus myomatatosus with severe pain and retained

  7. E-Content Development for Languages: Success Factors and Pitfalls

    Science.gov (United States)

    De Paepe, Liesbeth

    2014-01-01

    This paper discusses the success factors and pitfalls in development of e-content for languages. The factors discussed draw on several years of experience in developing and implementing 95% distance courses for Dutch as a second language in the adult education sector in Flanders and on PhD research at VUB. The CEFR [Common European Framework of…

  8. Reducing pitfalls in agricultural development projects: a case for the ...

    African Journals Online (AJOL)

    The management of agricultural development projects is a factor that can contribute to their success or failure. ... The argument is that these can be avoided if the Participatory Project Management Cycle (PPMC) is followed. ... PPMC was used during the ex-post evaluation to identify where and why major pitfalls occurred.

  9. Medical Abortion in Primary Care : Pitfalls and Benefits

    NARCIS (Netherlands)

    Boersma, A. A.; Meyboom-de Jong, B.

    2009-01-01

    We describe jive pitfalls of medical abortion: ectopic pregnancy not terminated after misoprostol, but without negative side-effects; long-term vaginal blood loss with suspicious retained products which disappeared spontaneously; a patient with uterus myomatatosus with severe pain and retained produ

  10. Proposal Pitfalls Plaguing Researchers: Can Technical Communicators Make a Difference?

    Science.gov (United States)

    Lemanski, Steve

    2014-01-01

    The facts bear out that the odds are against most scientific researchers and scholars--especially those just starting out--in their attempts to win funding for their research projects through their grant proposals. In this article, the author takes a close look at some of the proposal-related problems and pitfalls that have historically challenged…

  11. Medical Abortion in Primary Care : Pitfalls and Benefits

    NARCIS (Netherlands)

    Boersma, A. A.; Meyboom-de Jong, B.

    2009-01-01

    We describe jive pitfalls of medical abortion: ectopic pregnancy not terminated after misoprostol, but without negative side-effects; long-term vaginal blood loss with suspicious retained products which disappeared spontaneously; a patient with uterus myomatatosus with severe pain and retained produ

  12. Common pitfalls in statistical analysis: Linear regression analysis.

    Science.gov (United States)

    Aggarwal, Rakesh; Ranganathan, Priya

    2017-01-01

    In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

  13. Common pitfalls in statistical analysis: Linear regression analysis

    Directory of Open Access Journals (Sweden)

    Rakesh Aggarwal

    2017-01-01

    Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

  14. Common pitfalls in statistical analysis: Clinical versus statistical significance

    Science.gov (United States)

    Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc

    2015-01-01

    In clinical research, study results, which are statistically significant are often interpreted as being clinically important. While statistical significance indicates the reliability of the study results, clinical significance reflects its impact on clinical practice. The third article in this series exploring pitfalls in statistical analysis clarifies the importance of differentiating between statistical significance and clinical significance. PMID:26229754

  15. The Pitfalls of Testing in the Quest of Excellence.

    Science.gov (United States)

    Goodwin, Coleen R.

    This document presents five scenarios, each referring to a means of assessing learning. These examples are then used to discuss pitfalls faced when tests are used to assess learning, and the conclusion is reached that testing should play a supportive role only, not a major role in the quest for excellence. Effective schools research shows that…

  16. Choledochal cyst as a diagnostic pitfall: a case report

    Directory of Open Access Journals (Sweden)

    Waidner Uta

    2008-01-01

    Full Text Available Abstract Introduction Choledochal cysts are rare congenital anomalies. Their diagnosis is difficult, particulary in adults. Case presentation This case report demonstrates the diagnostic and therapeutic pitfalls. Conclusion To prevent cost-intensive and potentially life-threating complications, a choledochal cyst must be considered in the differential diagnosis whenever the rather common diagnosis of a hepatic cyst is considered.

  17. 75 FR 27926 - Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation...

    Science.gov (United States)

    2010-05-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation... ``showerhead'' in the DOE's regulations related to the energy conservation program for consumer products....

  18. Application of ESPRIT in Broad Beam HF Ground Wave Radar Sea Surface Current Mapping

    Institute of Scientific and Technical Information of China (English)

    Liu Dan-hong; Wu Xiong-bin; Wen Bi-yang; Cheng Feng

    2004-01-01

    HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar.

  19. 78 FR 13912 - Submission for Review: Application for Refund of Retirement Deductions/FERS (SF 3106) and Current...

    Science.gov (United States)

    2013-03-01

    ... MANAGEMENT Submission for Review: Application for Refund of Retirement Deductions/FERS (SF 3106) and Current/Former Spouse(s) Notification of Application for Refund of Retirement Deductions Under FERS (SF 3106A... Deductions/FERS (SF 3106) and Current/Former Spouse(s) Notification of Application for Refund of...

  20. Transient response of microbial communities in a water well field to application of an impressed current.

    Science.gov (United States)

    Medihala, P G; Lawrence, J R; Swerhone, G D W; Korber, D R

    2013-02-01

    Deterioration of water wells due to clogging and corrosion over time is a common problem where solutions may be costly and ineffective. Pilot studies have suggested that impressed current or cathodic protection may be used to reduce microbially-induced declines in water well performance. Two water wells in an alluvial aquifer close to the North Saskatchewan River were selected to study the response of subsurface microbial communities to the application of an impressed current as an anti-fouling technology. The treated well was exposed to an impressed current while the untreated well was used as a reference site. Biofilms grown on in situ coupons under the influence of the impressed current were significantly (p anti-fouling technology but actually promoted both microbial growth and physical clogging in this aquifer.

  1. Exploring the current application of professional competencies in human resource management in the South African context

    Directory of Open Access Journals (Sweden)

    Nico Schutte

    2015-03-01

    Full Text Available Orientation: Human research (HR practitioners have an important role to play in the sustainability and competitiveness of organisations. Yet their strategic contribution and the value they add remain unrecognised.Research purpose: The main objective of this research was to explore the extent to which HR practitioners are currently allowed to display HR competencies in the workplace, and whether any significant differences exist between perceived HR competencies, based on the respondents’ demographic characteristics.Motivation for the study: Limited empirical research exists on the extent to which HR practitioners are allowed to display key competencies in the South African workplace.Research approach, design, and method: A quantitative research approach was followed. A Human Resource Management Professional Competence Questionnaire was administered to HR practitioners and managers (N = 481.Main findings: The results showed that HR competencies are poorly applied in selected South African workplaces. The competencies that were indicated as having the poorest application were talent management, HR metrics, HR business knowledge, and innovation. The white ethic group experienced a poorer application of all human research management (HRM competencies compared to the black African ethnic group.Practical/managerial implications: The findings of the research highlighted the need for management to evaluate the current application of HR practices in the workplace and also the extent to which HR professionals are involved as strategic business partners.Contribution/value-add: This research highlights the need for the current application of HR competencies in South African workplaces to be improved.

  2. The targeted heating and current drive applications for the ITER electron cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, G.; Gagliardi, M. [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Farina, D.; Figini, L. [Istituto di Fisica del Plasma CNR, 20125 Milano (Italy); Hanson, G. [US ITER Project Office, ORNL, 1055 Commerce Park, PO Box 2008, Oak Ridge, Tennessee 37831 (United States); Poli, E. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 311-0193 (Japan)

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  3. 3D indium tin oxide electrodes by ultrasonic spray deposition for current collection applications

    Science.gov (United States)

    van den Ham, E. J.; Elen, K.; Bonneux, G.; Maino, G.; Notten, P. H. L.; Van Bael, M. K.; Hardy, A.

    2017-04-01

    Three dimensionally (3D) structured indium tin oxide (ITO) thin films are synthesized and characterized as a 3D electrode material for current collection applications. Using metal citrate chemistry in combination with ultrasonic spray deposition, a low cost wet-chemical method has been developed to achieve conformal ITO coatings on non-planar scaffolds. Although there is room for improvement with respect to the resistivity (9.9·10-3 Ω•cm, 220 nm thick planar films), high quality 3D structured coatings were shown to exhibit conductive properties based on ferrocene reactivity. In view of applications in Li-ion batteries, the electrochemical stability of the current collector was investigated, indicating that stability is guaranteed for voltages of 1.5 V and up (vs. Li+/Li). In addition, subsequent 3D coating of the ITO with WO3 as a negative electrode (battery) material confirmed the 3D ITO layer functions as a proper current collector. Using this approach, an over 4-fold capacity increase was booked for 3D structured WO3 in comparison to planar samples, confirming the current collecting capabilities of the 3D ITO coating. Therefore, the 3D ITO presented is considered as a highly interesting material for 3D battery applications and beyond.

  4. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  5. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  6. Application of radiotherapy for hepatocellular carcinoma in current clinical practice guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chai Hong; Seong, Jin Sil [Dept. of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    In oncologic practice, treatment guidelines provide appropriate treatment strategies based on evidence. Currently, many guidelines are used, including those of the European Association for the Study of the Liver and European Organization for Research and Treatment of Cancer (EASL-EORTC), National Comprehensive Cancer Network (NCCN), Asia-Pacific Primary Liver Cancer Expert (APPLE), and Korean Liver Cancer Study Group and National Cancer Centre (KLCSG-NCC). Although radiotherapy is commonly used in clinical practice, some guidelines do not accept it as a standard treatment modality. In this review, we will investigate the clinical practice guidelines currently used, and discuss the application of radiotherapy.

  7. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...

  8. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  9. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  10. Pitfalls and possibilities of radar compressive sensing.

    Science.gov (United States)

    Goodman, Nathan A; Potter, Lee C

    2015-03-10

    In this paper, we consider the application of compressive sensing (CS) to radar remote sensing applications. We survey a suite of practical system-level issues related to the compression of radar measurements, and we advocate the consideration of these issues by researchers exploring potential gains of CS in radar applications. We also give abbreviated examples of decades-old radio-frequency (RF) practices that already embody elements of CS for relevant applications. In addition to the cautionary implications of system-level issues and historical precedents, we identify several promising results that RF practitioners may gain from the recent explosion of CS literature.

  11. In situ visualization of bacterial populations in coral tissues: pitfalls and solutions

    Directory of Open Access Journals (Sweden)

    Naohisa Wada

    2016-09-01

    Full Text Available In situ visualization of microbial communities within their natural habitats provides a powerful approach to explore complex interactions between microorganisms and their macroscopic hosts. Specifically, the application of fluorescence in situ hybridization (FISH to simultaneously identify and visualize diverse microbial taxa associated with coral hosts, including symbiotic algae (Symbiodinium, Bacteria, Archaea, Fungi and protists, could help untangle the structure and function of these diverse taxa within the coral holobiont. However, the application of FISH approaches to coral samples is constrained by non-specific binding of targeted rRNA probes to cellular structures within the coral animal tissues (including nematocysts, spirocysts, granular gland cells within the gastrodermis and cnidoglandular bands of mesenterial filaments. This issue, combined with high auto-fluorescence of both host tissues and endosymbiotic dinoflagellates (Symbiodinium, make FISH approaches for analyses of coral tissues challenging. Here we outline the major pitfalls associated with applying FISH to coral samples and describe approaches to overcome these challenges.

  12. Development of fiber-optic current sensing technique and its applications in electric power systems

    Science.gov (United States)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  13. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed.

  14. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play.

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-05-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  15. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  16. Current Situation of Heavy Metal Pollution in Farmland Soil and Phytoremediation Application

    Institute of Scientific and Technical Information of China (English)

    Yanfei HUANG; Guifen CHEN; Liumei XIONG; Yuyi HUANG

    2016-01-01

    Phytoremediation technology is a newly-developed way of soil heavy metal pollution repair with high efficiency and good ecological comprehensive benefit. This paper briefly introduces the soil heavy metal pollution status at home and abroad,and focuses on the analysis of harm,sources and current situation of soil heavy metal pollution at home and abroad as well as mechanism and application of phytoremediation.Finally it discusses the key problems in phytoremediation technology that need to resolve in the future.

  17. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  18. The application of Big Data in medicine: current implications and future directions.

    Science.gov (United States)

    Austin, Christopher; Kusumoto, Fred

    2016-10-01

    Since the mid 1980s, the world has experienced an unprecedented explosion in the capacity to produce, store, and communicate data, primarily in digital formats. Simultaneously, access to computing technologies in the form of the personal PC, smartphone, and other handheld devices has mirrored this growth. With these enhanced capabilities of data storage and rapid computation as well as real-time delivery of information via the internet, the average daily consumption of data by an individual has grown exponentially. Unbeknownst to many, Big Data has silently crept into our daily routines and, with continued development of cheap data storage and availability of smart devices both regionally and in developing countries, the influence of Big Data will continue to grow. This influence has also carried over to healthcare. This paper will provide an overview of Big Data, its benefits, potential pitfalls, and the projected impact on the future of medicine in general and cardiology in particular.

  19. Magnetostatic image current and its application to an analytic identification of a current dipole inside a conducting sphere.

    Science.gov (United States)

    He, S; Norgren, M

    2000-02-01

    The image solution for the static magnetic field outside a conducting sphere with an internal current dipole is considered. The image current, which is a linear distribution of magnetic dipoles on the line segment between the dipole point and the center of the sphere, is derived by using the fact that the induced current does not have any contribution to the radial component of the magnetic field outside the sphere. The image is then used to obtain some explicit formulas for identifying the location and tangential moment of the primary current dipole. This explicit identification method is also tested with a real model for a patient's brain.

  20. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  1. Improvement of multilayer graphene crystallinity by solid-phase precipitation with current stress application during annealing

    Science.gov (United States)

    Sahab Uddin, Md.; Ichikawa, Hiroyasu; Sano, Shota; Ueno, Kazuyoshi

    2016-06-01

    To improve the crystallinity of multilayer graphene (MLG) films by solid-phase precipitation, a new method by which current stress is introduced during annealing of a carbon-doped cobalt (Co-C) layer using cobalt (Co) as the catalyst has been investigated. The effects of current stress on the formation and crystallinity of MLG films were investigated by comparing the characteristics of the films annealed at the same temperature with and without current by taking into account the temperature rise due to Joule heating. The characteristics obtained by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) measurements revealed that the MLG films produced were crystalline in nature and their crystallinity increased with applied current stress at the same temperature. From SEM observations, beside Joule heating, enhancement of Co grain size by agglomeration induced by current stress may be the potential reason for the improvement of the crystallinity of MLG films. We have also improved the uniformity of MLG films by depositing an additional copper (Cu) capping layer over the Co-C layer. Current stress application can lead to low-temperature fabrication of MLG with higher crystallinity by solid-phase precipitation.

  2. Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications.

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Park, Moonhee; Kang, Lin-Woo; Lee, Sang Hee

    2017-01-31

    Autologous adipose stromal vascular fractions (SVFs) containing adipose tissue-derived stem cells (ASCs) are currently being used in clinical settings for various orthopedic applications for human patients. Due to its potential capability of regenerating cartilage, bone, and tendons, autologous adipose SVFs are being tried in treating patients with osteoarthritis (OA), chondromalacia, meniscus tear, osteonecrosis of the femoral head, and tendon injuries. Here, we have reviewed available human clinical studies with regard to patient applications of autologous adipose SVF containing ASCs, specifically assessing effectiveness and safety in the field of orthopedic disorders. All studies reviewed in this article presents potential benefits of autologous adipose SVF in various orthopedic applications without any serious side effects.

  3. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  4. Invited review current progress and limitations of spider silk for biomedical applications.

    Science.gov (United States)

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. Copyright © 2011 Wiley Periodicals, Inc.

  5. Development of an electrical current sensor prototype for applications in high-power lines

    Science.gov (United States)

    Nascimento, I. M.; Brígida, A. C. S.; Baptista, J. M.; Costa, J. C. W. A.; Martinez, M. A. G.; Jorge, P. A. S.

    2013-11-01

    A magneto-optical current sensor, based on a low birefringence SF57 glass prism, using a dual quadrature polarimetric configuration was implemented and tested aiming its application in high voltage power lines. Sensor operation is characterized and compared using distinct Super Luminescent Diodes as optical sources, with emission at 650 nm, 830 nm and 1550 nm. Calibration and resolution are obtained in the different operating conditions using a DAQ board and full digital control for signal acquisition and processing. In particular, the sensor was tested in the range from 0 to 1 kA at 50 Hz. Also, operation at different frequencies from 50 Hz to 400 Hz was compared. A robust casing was fabricated in Nylon material enabling the portability of the sensor and its application in different types of conductors. Preliminary results indicate the feasibility of using the sensor both for metering and protection applications in high-power lines with interrogation via the OPGW cable.

  6. High-temperature superconductor current leads for electric utility SMES applications

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Weber, B. R.; Dixon, K. D.; Rey, C. M.

    Current leads that utilize high-temperature superconductors (HTSS) to deliver power to devices operating at liquid helium temperature have the potential to reduce refrigeration requirements to levels significantly below those achievable with conventional leads. As part of the US Department of Energy's Superconductivity Technology Program, Argonne National Laboratory and two industrial partners are developing HTS current leads for application to superconducting magnetic energy storage (SMES) systems. Superconductivity, Inc. (SI) is a supplier of micro-SMES systems for power-quality applications. A typical SI SMES system has an 0.3-kWh energy capacity and operates at currents up to 1.2 kA. The Babcock & Wilcox Company (B&W) is engaged in a project to design, build, and demonstrate a midsized SMES system. The B&W system has an 0.5-MWh energy capacity and operates at currents up to 16 kA. Details of the lead designs, including materials, configuration, and performance predictions, are presented.

  7. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-01-01

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software. PMID:28420132

  8. Application of PI Current Controller in Single Phase Inverter System Connected to Non Linear Load

    Science.gov (United States)

    Chai Anak Ajot, Tracy; Salimin, Suriana; Aziz, Roziah

    2017-08-01

    This study is concerned with the problem of network power quality when inverter systems are connected to a nonlinear load. Nonlinear loads are well known as one of the biggest source of harmonics in the power system. Besides that, inverter systems also have their nonlinearity characteristic because of the electronic components. As the inverter system is connected to nonlinear load, it resulting in harmonic distortion-related problem and draw non-sinusoidal currents in the system, thus reducing the power quality in the system. The application of Proportional Integral controller in this system is the main interest of this study. This current controller capable of reducing total harmonic distortion and improve the state of current waveform. This paper focuses on application of simple manual trial and error tuning technique to produce the optimum value for the gains. The result of study verifies the trial and error manual tuning of PI current controller in compensating harmonic distortions. Simulation and modelling of the system are successfully developed using Matlab/Simulink.

  9. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Shan X. Wang

    2012-11-01

    Full Text Available Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  10. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  11. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  12. Some pitfalls in the philosophical foundations of nanoethics.

    Science.gov (United States)

    Dupuy, Jean-Pierre

    2007-01-01

    If such a thing as nanoethics is possible, it can only develop by confronting the great questions of moral philosophy, thus avoiding the pitfalls so common to regional ethics. We identify and analyze some of these pitfalls: the restriction of ethics to prudence understood as rational risk management; the reduction of ethics to cost/benefit analysis; the confusion of technique with technology and of human nature with the human condition. Once these points have been clarified, it is possible to take up some weighty philosophical and metaphysical questions which are not new, but which need to be raised anew with respect to nanotechnologies: the artificialization of nature; the question of limits; the role of religion; the finiteness of the human condition as something with a beginning and an end; the relationship between knowledge and know-how; the foundations of ethics.

  13. [Limitations and pitfalls of clinical studies in oncology].

    Science.gov (United States)

    Cerny, Thomas

    2008-01-01

    Nowadays results of clinical studies in oncology are often first found and commented in the news media because of their high relevance to the pharmaceutical market. The limits and pitfalls of clinical studies are manifold and not always appreciated even by specialists as well as journalists and politicians. The planning of a study is a most crucial phase, and most deficits are due to inappropriate design and conduct of a study. Adequate and skilful interpretation of a study is often hampered by many known but mostly overlooked variable pitfalls. Today there is an overrepresentation of pharmaceutically sponsored studies and a painful lack of well-designed academic studies with really meaningful endpoints for patient care. This paper touches several important aspects of today's shortcomings of clinical studies in oncology and highlights the importance of strengthening the academic clinical research. Evidence-based medicine needs to be more clinically relevant, and therefore we need well-designed, and critically interpreted studies in the future.

  14. Pitfalls to avoid when using phage display for snake toxins.

    Science.gov (United States)

    Laustsen, Andreas Hougaard; Lauridsen, Line Præst; Lomonte, Bruno; Andersen, Mikael Rørdam; Lohse, Brian

    2017-02-01

    Antivenoms against bites and stings from snakes, spiders, and scorpions are associated with immunological side effects and high cost of production, since these therapies are still derived from the serum of hyper-immunized production animals. Biotechnological innovations within envenoming therapies are thus warranted, and phage display technology may be a promising avenue for bringing antivenoms into the modern era of biologics. Although phage display technology represents a robust and high-throughput approach for the discovery of antibody-based antitoxins, several pitfalls may present themselves when animal toxins are used as targets for phage display selection. Here, we report selected critical challenges from our own phage display experiments associated with biotinylation of antigens, clone picking, and the presence of amber codons within antibody fragment structures in some phage display libraries. These challenges may be detrimental to the outcome of phage display experiments, and we aim to help other researchers avoiding these pitfalls by presenting their solutions.

  15. MRI Evaluation of the Urothelial Tract: Pitfalls and Solutions.

    Science.gov (United States)

    Chung, Andrew D; Schieda, Nicola; Shanbhogue, Alampady Krishna; Dilauro, Marc; Rosenkrantz, Andrew B; Siegelman, Evan S

    2016-12-01

    MR urography (MRU) can be an alternative to CT urography (CTU) for imaging of the kidneys, urinary bladder, and collecting systems. MRU can be a challenging examination to perform and interpret, which may result in technical and interpretive errors being made. This article highlights the pitfalls associated with MRU and discusses how to recognize and avoid them. When performed properly, MRU may provide imaging quality generally comparable to that of CTU, and it enables comprehensive evaluation of the entire urinary tract.

  16. Modeling emission from the first explosions: pitfalls and problems

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher Lee [Los Alamos National Laboratory; Whalen, Daniel J [Los Alamos National Laboratory; Frey, Lucille H [Los Alamos National Laboratory

    2010-01-01

    Observations of the explosions of the population III stars have the potential to teach us much about the formation and evolution of these zero metallicity objects. But to reach this potential, we must tie the observed emission to and explosion model. This requires accurate light-curve/spectral calculations. Here we discuss many of the pitfalls and problems involved in such calculations, presenting some preliminary results from radiation-hydrodynamics calculations.

  17. Common pitfalls in statistical analysis: Odds versus risk

    Science.gov (United States)

    Ranganathan, Priya; Aggarwal, Rakesh; Pramesh, C. S.

    2015-01-01

    In biomedical research, we are often interested in quantifying the relationship between an exposure and an outcome. “Odds” and “Risk” are the most common terms which are used as measures of association between variables. In this article, which is the fourth in the series of common pitfalls in statistical analysis, we explain the meaning of risk and odds and the difference between the two. PMID:26623395

  18. Problems and pitfalls in a clinical research data management system.

    Science.gov (United States)

    Brower, R W; ten Katen, H J; Meester, G T

    1984-01-01

    The problems and pitfalls encountered in the computerized data bank for the Netherlands Coronary Surgery (NCS) study are reviewed. This study involved 848 patients seen before coronary artery surgery and at 1 and 3 yr after surgery. Nineteen data forms were used resulting in maximally 1142 variables per patient. The importance of quality control is emphasized as well as the efficient transfer of information from data bank to statistical processing.

  19. Multifunction Current Differencing Cascaded Transconductance Amplifier (MCDCTA) and Its Application to Current-Mode Multiphase Sinusoidal Oscillator

    Science.gov (United States)

    Wang, Chunhua; Lin, Hairong

    2015-09-01

    In this study, a new versatile active element, namely multifunction current differencing cascaded transconductance amplifier (MCDCTA), is proposed. This device which adopts a simple configuration enjoys the performances of low-voltage, low-input and high-output impedance, wide bandwidth etc. It simplifies the design of the current-mode analog signal processing circuit greatly, especially the design of high-order filter and oscillator circuits. Moreover, an example as a new current-mode multiphase sinusoidal oscillator (MSO) using MCDCTA is described in this paper. The proposed oscillator, which employs only one MCDCTA and minimum grounded passive elements, is easy to be realized. It can provide random n (n being odd or even) output current signals and these output currents are equally spaced in phase all at high output impedance terminals. Its oscillation condition and the oscillation frequency can be adjusted independently, linearly and electronically by controlling the bias currents of MCDCTA. The operation of the proposed oscillator has been testified through PSPICE simulation and experimental results.

  20. Current applications and different approaches for microbial L-asparaginase production

    Directory of Open Access Journals (Sweden)

    Jorge Javier Muso Cachumba

    Full Text Available ABSTRACT L-asparaginase (EC 3.5.1.1 is an enzyme that catalysis mainly the asparagine hydrolysis in L-aspartic acid and ammonium. This enzyme is presented in different organisms, such as microorganisms, vegetal, and some animals, including certain rodent's serum, but not unveiled in humans. It can be used as important chemotherapeutic agent for the treatment of a variety of lymphoproliferative disorders and lymphomas (particularly acute lymphoblastic leukemia (ALL and Hodgkin's lymphoma, and has been a pivotal agent in chemotherapy protocols from around 30 years. Also, other important application is in food industry, by using the properties of this enzyme to reduce acrylamide levels in commercial fried foods, maintaining their characteristics (color, flavor, texture, security, etc. Actually, L-asparaginase catalyzes the hydrolysis of L-asparagine, not allowing the reaction of reducing sugars with this aminoacid for the generation of acrylamide. Currently, production of L-asparaginase is mainly based in biotechnological production by using some bacteria. However, industrial production also needs research work aiming to obtain better production yields, as well as novel process by applying different microorganisms to increase the range of applications of the produced enzyme. Within this context, this mini-review presents L-asparaginase applications, production by different microorganisms and some limitations, current investigations, as well as some challenges to be achieved for profitable industrial production.

  1. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  2. Current status and outlook in the application of microalgae in biodiesel production and environmental protection

    Directory of Open Access Journals (Sweden)

    Xin eZhang

    2014-08-01

    Full Text Available Microalgae have been currently recognized as one group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO2 fixation, NOX and wastewater treatment and biorefinery have been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO2 and NOX and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g. food, medicine, wastewater treatment and flue gas treatment with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.

  3. A Review on Current and Emerging Application Possibilities for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Beloev Ivan H.

    2016-09-01

    Full Text Available This paper presents a review on current and emerging application possibilities for unmanned aerial vehicles (UAVs. The introduction section of the paper briefly describes some of the application areas in which drones are currently being used. The next chapters of the paper describe more detailly the use of UAVs for aerial photography, filming, security and logistics, GIS, land and water surveys. The main focus of the last chapters is on the advantages and the disadvantages of the drones usage in precision agriculture, wildlife and nature observations and archaeology. The last chapters also provide information on how the advanced information technology solutions can be implemented in order to provide means for fighting invasive species, to increase the yield of certain crops, to monitor and predict flooding, wildfires and other disasters, etc. This paper provides only overview of the most interesting and widely available applications of the UAVs, but there are also many other more specific and dedicated solutions for implementation of the drones for different purposes.

  4. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates.

    Science.gov (United States)

    Dubey, Manish K; Zehra, Andleeb; Aamir, Mohd; Meena, Mukesh; Ahirwal, Laxmi; Singh, Siddhartha; Shukla, Shruti; Upadhyay, Ram S; Bueno-Mari, Ruben; Bajpai, Vivek K

    2017-01-01

    Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production.

  5. Imaging Features of the Pleuropulmonary Manifestations of Rheumatoid Arthritis: Pearls and Pitfalls

    Directory of Open Access Journals (Sweden)

    Harbir S Sidhu

    2011-01-01

    Full Text Available Rheumatoid arthritis (RA is a common disorder that affects the joints. RA is a systemic disease associated with relatively frequent and variable pleuropulmonary manifestations. This article reviews the common and potentially serious thoracic sequelae in terms of pleural disease, pulmonary nodules, airways disorders, and interstitial disease, as well as pulmonary side effects of antirheumatic medication. An imaging-guided approach to classification of RA-associated lung disease is outlined and the comparative values of different imaging modalities are discussed. An appreciation of current knowledge of epidemiology, pathological correlation, and prognostic implications of different RA-associated lung disease is provided. We highlight importance of considering pertinent differential diagnoses to avoid misdiagnosis, and outline common pitfalls in dealing with pleuropulmonary rheumatoid disease.

  6. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future.......Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due...

  7. Ellipsometric light scattering to probe the interface of colloids - current applications and future challenges

    Directory of Open Access Journals (Sweden)

    Sigel R.

    2010-06-01

    Full Text Available In recent years, ellipsometric light scattering (ELS has been developed into a technique which can be used to characterise the interface between spherical colloidal particles and their surrounding medium. Here, we give an overview over previous successful applications of the technique, and its current limits. The successful applications include the characterisation of temperature-dependent swelling of a thermo-sensitive polymer coating on a latex particle, the measurement of birefringence and molecular orientation in a vescile shell, and the characterisation of the ion distribution around electrostatically stabilised latex particles. As a result of the characterisation of the ion distribution, disagreement with the Poisson-Boltzmann description has been reported before. Here, a few more experimental results on latex particles in the presence of CsBr are discussed.

  8. CURRENT APPLICATIONS OF THREE MILE ISLAND-2 CORE AND DEBRIS HANDLING AT THE IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, William Jonathan [Idaho National Laboratory; Braase, Lori Ann [Idaho National Laboratory

    2015-09-01

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification of current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.

  9. Current issues in the treatment of specific phobia: recommendations for innovative applications of hypnosis.

    Science.gov (United States)

    Spiegel, Sharon B

    2014-04-01

    Specific phobia is the most common and treatable of the anxiety disorders. Exposure-based therapies are the treatment of choice and empirically validated protocols are available that promise rapid and effective results. In many cases, however, patients are reluctant to comply with demanding schedules of exposure, increasing the risk of treatment failure. Furthermore, in clinical practice, patients often present with multiple phobias and other Axis I and Axis II disorders that can further complicate therapy. This article covers four important issues that have been addressed in the literature: (a) managing resistance to treatment, (b) reducing length of treatment, (c) clarifying the optimal application of relaxation training, and (d) applying advances in cognitive neuroscience. These issues are reviewed and recommendations proposed for ways in which to modify current treatments. Specific suggestions are provided for implementing these recommendations including examples of innovative applications of standard hypnotic techniques.

  10. Current and future applications of nanotechnology in plastic and reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Dana K Petersen

    2014-09-01

    Full Text Available Although nanotechnology is a relatively young field, there are countless biomedical applications in use or under investigation. Many specialties have benefitted from nanoscale refinements of diagnostic and therapeutic techniques. Plastic and reconstructive surgery is an incredibly diverse specialty, encompassing craniofacial and hand surgery; trauma, oncologic and congenital reconstruction; burn care, and aesthetic surgery. Advances in nanotechnology have significantly impacted wound management, topical skin care, implant and prosthetic design, tissue engineering, and drug delivery systems. Currently, plastic surgeons are researching the utility of nanoscale tools for bone regeneration, bone prosthetics, and drug delivery. Nanotechnology will continue to build upon preceding discoveries, and its biomedical applications in the field of plastic and reconstructive surgery will expand significantly.

  11. Advances for prosthetic technology from historical perspective to current status to future application

    CERN Document Server

    LeMoyne, Robert

    2016-01-01

    This book focuses on the advances in transtibial prosthetic technology and targets research in the evolution of the powered prosthesis such as the BiOM, which was derived from considerable research and development at the Massachusetts Institute of Technology. The concept of the book spans the historical evolution of prosthetic applications from passive to new and futuristic robotic prosthetic technologies.  The author describes the reasons for amputation, surgical procedures, and an historical perspective of the prosthesis for the lower limb. He also addresses the phases and sub-phases of gait and compensatory mechanisms arising for a transtibial prosthesis and links the compensatory mechanisms to long-term morbidities.  The general technologies for gait analysis central to prosthetic design and the inherent biomechanics foundations for analysis are also explored.  The book reports on recent-past to current-term applications with passive elastic prostheses.  The core of the book deals with futuristic robo...

  12. High-temperature superconducting current leads for micro-SMES application

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Daugherty, M. A.; Weber, B. R.

    1994-07-01

    SMES is being applied on a microscale (1-10 MJ stored energy) to improve electrical power quality. A major portion of the SMES refrigeration load is for cooling the conventional (copper, vapor-cooled) current leads that transfer energy between the magnet and the power-conditioning equipment. The lead refrigeration load can be reduced significantly by the use of high-temperature superconductors (HTSs). An HTS current lead suitable for micro-SMES application has been designed. The lower stage of the lead employs HTSs. A transition between the lower stage and the conventional upper-stage lead is heat-intercepted by a cryocooler. Details of the design are presented. Construction and operating experiences are discussed.

  13. [Current status of bone/cartilage tissue engineering towards clinical applications].

    Science.gov (United States)

    Ohgushi, Hajime

    2014-10-01

    Osteo/chondrogenic differentiation capabilities are seen after in vivo implantation of mesenchymal stem cells (MSCs), which are currently used for the patients having bone/cartilage defects. Importantly, the differentiation capabilities are induced by culturing technology, resulting in in vitro bone/cartilage formation. Especially, the in vitro bone tissue is useful for bone tissue regeneration. For cartilage regeneration, culture expanded chondrocytes derived from patient's normal cartilage are also used for the patients having cartilage damages. Recently, the cultured chondrocytes embedded in atelocollagen gel are obtainable as tissue engineered products distributed by Japan Tissue Engineering Co. Ltd. The products are available in the well-regulated hospitals by qualified orthopedic surgeons. The criteria for these hospitals/surgeons have been established. This review paper focuses on current status of bone/cartilage tissue engineering towards clinical applications in Japan.

  14. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    Science.gov (United States)

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  15. The antibacterial peptide ABP-CM4: the current state of its production and applications.

    Science.gov (United States)

    Li, Jian Feng; Zhang, Jie; Xu, Xing Zhou; Han, Yang Yang; Cui, Xian Wei; Chen, Yu Qing; Zhang, Shuang Quan

    2012-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells, which may possibly be used as a promising candidate for a new antibiotic. For pharmaceutical applications, a large quantity of antimicrobial peptides needs to be produced economically. In this communication, the progress in the structural characteristics, heterologous production, and biological evaluation of ABP-CM4 are reviewed.

  16. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi Yuet X’avia; Gritsenko, Marina A.; Smith, Richard D.; Qian, Wei-Jun

    2016-03-17

    Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been revealed in various human diseases. Kinases and their cognate inhibitors have been hotspot for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for the disease of interest. In this review, we will highlight recent advances in phosphoproteomics, the current state-of-the-art of the technologies, and the challenges and future perspectives of this research area. Finally, we will underscore some exemplary applications of phosphoproteomics in diabetes research.

  17. Current controller considering harmonics compensation for grid connected converter in DPGS applications

    DEFF Research Database (Denmark)

    Barote, L.; Marinescu, C.; Teodorescu, Remus

    2012-01-01

    This paper deals with the design and implementation of PR current control method in the αβ stationary reference frame for the grid side converter in Distributed Power Generation Systems (DPGS) applications. The goals of this paper are to implement a control technique for the grid side inverter in...... is made. The analyzed structure was simulated with Simulink software, then implemented and tested in laboratory using a dSPACE setup. The parameters of the system can be set according to the used experimental setup to validate the simulation results....

  18. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.

    Science.gov (United States)

    Chan, Chi Yuet X'avia; Gritsenko, Marina A; Smith, Richard D; Qian, Wei-Jun

    2016-01-01

    Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.

  19. A Novel Current-Mode Differential Transconductance LNA for IEEE 802.11a Application

    Science.gov (United States)

    Tu, Yuxiang; Wang, Chunhua; Chen, Lei; Wu, Zhangbin; Zhang, Guangxiang

    2012-03-01

    In this paper, a novel current-mode differential transconductance low noise amplifier (LNA) designed in the chartered 0.18 μm CMOS technology is proposed to realize the receiver front-end. The proposed LNA frequency ranges from 4.7 GHz to 6 GHz,mainly targeting at IEEE802.11a application. It utilizes two stage structure, with a PMOS current-mirrorr using inductive series peaking technique to achieve optimized current output. The noise performance is improved through the use of a gm-boosting technique, while the gain performance is improved and power consumption is saved by using current-reused technique. Measured results demonstrate that the circuit provides flat transconductance gain higher than 17.0 dB, noise figure lower than 2.31 dB and low operating voltage of 0.85 V in frequency band. A comparison with other LNAs in similar and nearby frequency bands shows the proposed LNA has advantages of higher gain, lower noise figure and better other performances.

  20. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    Science.gov (United States)

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  1. Pitfalls in Positron Emission Tomography/Computed Tomography Imaging: Causes and Their Classifications

    Institute of Scientific and Technical Information of China (English)

    Tian-ran Li; Jia-he Tian; Hui Wang; Zi-qian Chen; Chun-lei Zhao

    2009-01-01

    Objective To describe the pitfalls in positron emission tomography/computed tomography (PET/CT) imaging and classify them according to the principles of their generation. Methods We summarized retrospectively the 18F-fluorodeoxyglucose (FDP) PET/CT imaging pitfalls through reviewing the PET/CT images of 872 patients. The pitfalls were divided into artifacts and infrequent physiological uptake, and the artifacts were further classified according to their causes. Meanwhile, we calculated the incidences of various pitfalls. Whether the PET/CT pitfalls influenced the diagnostic decision was analyzed. The appearances of pitfalls in PET were also described. Results Pitfalls could be found in PET/CT images of 684 (78.4%) patients. Artifacts were found in 664 (76.15%) patients, and could be classified into self-factor artifacts and equipment- or technology- related artifacts. Among self-factor artifacts, respiratory motion (57.5%), postprandial or hyperglycemia artifacts (2.41%), and metal or high density matter artifacts (1.38%) were frequent. As for equipment- or technology-related factors, injection point outleakage or radiotracer contamination (13.88%) and truncation artifacts (1.83%) were most common ones. Infrequent physiological FDG uptakes, including fatty uptake, endometrial uptake, and bilateral breast feeding period uptake, were found in 20 (2.29%) patients. Among all pitfalls, the artifacts in 92 (13.4%) patients and infrequent physiological uptakes in 6 (0.88%) patients affected the diagnostic results. Artifact images in PET could be described as hot or cold area and the images of infrequent physiological uptake were always shown as hot area. Conclusions The incidence of pitfall in PET/CT imaging was high and the causes of pitfalls are various. Among all causes that artifacts generated, respiratory motion is the most common. Some pitfalls may disturb clinical physicians' decision, so it is important to recognize artifacts and physiological uptake, and

  2. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators.

    Science.gov (United States)

    Kaatee, R S; Crezee, H; Visser, A G

    1999-06-01

    The multielectrode current source (MECS) interstitial hyperthermia (IHT) system uses thermocouple thermometry. To obtain a homogeneous temperature distribution and to limit the number of traumas due to the implanted catheters, most catheters are used for both heating and thermometry. Implications of temperature measurement inside applicators are discussed. In particular, the impact of self-heating of both the applicator and the afterloading catheter were investigated. A one-dimensional cylindrical model was used to compute the difference between the temperature rise inside the applicators (deltaTin) and in the tissue just outside the afterloading catheter (deltaTout) as a function of power absorption in the afterloading catheter, self-heating of the applicator and the effective thermal conductivity of the surrounding tissue. Furthermore, the relative artefact (ERR), i.e. (deltaTin - deltaTout)/deltaTin, was measured in a muscle equivalent agar phantom at different positions in a dual-electrode applicator and for different catheter materials. A method to estimate the tissue temperature by power-off temperature decay measurement inside the applicator was investigated. Using clinical dual-electrode applicators in standard brachytherapy catheters in a muscle-equivalent phantom, deltaTin is typically twice as high as deltaTout. The main reason for this difference is self-heating of the thin feeder wires in the centre of the applicator. The measurement error caused by energy absorption in the afterloading catheter is small, i.e. even for materials with a high dielectric loss factor it is less than 5%. About 5 s after power has been switched off, Tin in the electrodes represents the maximum tissue temperature just before power-off. This delay time (t(delay)) and ERR are independent of Tin. However, they do depend on the thermal properties of the tissue. Therefore, ERR and t(delay) and their stability in perfused tissues have to be investigated to enable a reliable

  3. OVERVIEW, PRACTICAL TIPS AND POTENTIAL PITFALLS OF USING AUTOMATIC EXPOSURE CONTROL IN CT: SIEMENS CARE DOSE 4D.

    Science.gov (United States)

    Söderberg, Marcus

    2016-06-01

    Today, computed tomography (CT) systems routinely use automatic exposure control (AEC), which modulates the tube current. However, for optimal use, there are several aspects of an AEC system that need to be considered. The purpose of this study was to provide an overview of the Siemens CARE Dose 4D AEC system, discuss practical tips and demonstrate potential pitfalls. Two adult anthropomorphic phantoms were examined using two different Siemens CT systems. When optimising the CT radiation dose and image quality, the projection angle of the localiser, patient centring, protocol selection, scanning direction and the use of protective devices requires special attention.

  4. A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

    Directory of Open Access Journals (Sweden)

    RAMKRISHNA KUNDU

    2017-03-01

    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  5. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    Science.gov (United States)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2016-09-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on-p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  6. Antimicrobial food packaging: potential and pitfalls

    Science.gov (United States)

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  7. Improvement Strategies, Cost Effective Production, and Potential Applications of Fungal Glucose Oxidase (GOD): Current Updates

    Science.gov (United States)

    Dubey, Manish K.; Zehra, Andleeb; Aamir, Mohd; Meena, Mukesh; Ahirwal, Laxmi; Singh, Siddhartha; Shukla, Shruti; Upadhyay, Ram S.; Bueno-Mari, Ruben; Bajpai, Vivek K.

    2017-01-01

    Fungal glucose oxidase (GOD) is widely employed in the different sectors of food industries for use in baking products, dry egg powder, beverages, and gluconic acid production. GOD also has several other novel applications in chemical, pharmaceutical, textile, and other biotechnological industries. The electrochemical suitability of GOD catalyzed reactions has enabled its successful use in bioelectronic devices, particularly biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and enhancing pathogen defense response, thereby providing induced resistance in plants have also been reported. Moreover, the medical science, another emerging branch where GOD was recently reported to induce several apoptosis characteristics as well as cellular senescence by downregulating Klotho gene expression. These widespread applications of GOD have led to increased demand for more extensive research to improve its production, characterization, and enhanced stability to enable long term usages. Currently, GOD is mainly produced and purified from Aspergillus niger and Penicillium species, but the yield is relatively low and the purification process is troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the present review describes innovative methods of enhancing fungal GOD production by using genetic and non-genetic approaches in-depth along with purification techniques. The review also highlights current research progress in the cost effective production of GOD, including key advances, potential applications and limitations. Therefore, there is an extensive need to commercialize these processes by developing and optimizing novel strategies for cost effective GOD production. PMID:28659876

  8. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    Science.gov (United States)

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  9. The application of induced pluripotent stem cells for bone regeneration: current progress and prospects.

    Science.gov (United States)

    Teng, Songsong; Liu, Chaoxu; Krettek, Christian; Jagodzinski, Michael

    2014-08-01

    Loss of healthy bone tissue and dysosteogenesis are still common and significant problems in clinics. Cell-based therapy using mesenchymal stem cells (MSCs) has been performed in patients for quite some time, but the inherent drawbacks of these cells, such as the reductions in proliferation rate and osteogenic differentiation potential that occur with aging, greatly limit their further application. Moreover, embryonic stem cells (ESCs) have brought new hope to osteoregenerative medicine because of their full pluripotent differentiation potential and excellent performance in bone regeneration. However, the ethical issues involved in destroying human embryos and the immune reactions that occur after transplantation are two major stumbling blocks impeding the clinical application of ESCs. Instead, induced pluripotent stem cells (iPSCs), which are ESC-like pluripotent cells that are reprogrammed from adult somatic cells using defined transcription factors, are considered a more promising source of cells for regenerative medicine because they present no ethical or immunological issues. Here, we summarize the primary technologies for generating iPSCs and the biological properties of these cells, review the current advances in iPSC-based bone regeneration and, finally, discuss the remaining challenges associated with these cells, particularly safety issues and their potential application for osteoregenerative medicine.

  10. Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review.

    Science.gov (United States)

    Massetti, Thais; Crocetta, Tânia Brusque; Silva, Talita Dias da; Trevizan, Isabela Lopes; Arab, Claudia; Caromano, Fátima Aparecida; Monteiro, Carlos Bandeira de Mello

    2017-08-01

    To evaluate the methods and major outcomes of transcranial direct current stimulation (tDCS) combined with virtual reality (VR) therapy in randomized controlled trials. A systematic review was performed following PRISMA guidelines using PubMed, PubMed Central, Web of Science and CAPES periodic databases, with no time restriction. The studies were screened for the following inclusion criteria: human subjects, combination of VR and tDCS methods, and randomized controlled study design. All potentially relevant articles were independently reviewed by two researchers, who reached a consensus on which articles met the inclusion criteria. The PEDro scale was used to evaluate the studies. Eleven studies were included, all of which utilized a variety of tDCS and VR application methods. The main outcomes were found to be beneficial in intervention groups of different populations, including improvements in body sway, gait, stroke recovery, pain management and vegetative reactions. The use of tDCS combined with VR showed positive results in both healthy and impaired patients. Future studies with larger sample sizes and homogeneous participants are required to confirm the benefits of tDCS and VR. Implications for Rehabilitation tDCS with VR intervention can be an alternative to traditional rehabilitation programs. tDCS with VR is a promising type of intervention with a variety of positive effects. Application of tDCS with VR is appropriated to both healthy and impaired patients. There is no consensus of tDCS with VR application.

  11. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives.

    Science.gov (United States)

    Glemser, M; Heining, M; Schmidt, J; Becker, A; Garbe, D; Buchholz, R; Brück, T

    2016-02-01

    The quality and regulation of the incident light is crucial in microalgae cultivation processes. Depending on wavelength, spectrum, and intensity, growth characteristics and biochemical composition of these organisms vary. With mainly fluorescent lamps (FL) used previously for illumination, such variabilities could not be studied adequately due to their broad emission spectrum. In contrast, light-emitting diodes (LEDs) emit a very narrow wavelength band and enable flexible photobioreactor designs due to their small size. This review provides a condensed overview on the application of LEDs in microalgal cultivation processes. It summarizes the current availability and applicability of LED technologies as an illumination source for research-focused photobioreactor systems. A particular focus is the use of narrow-wavelength LEDs to address fundamental as well as applied aspects of light color on algae biomass and value-added compound formation. In this respect, the application of internal and external illumination systems is reviewed together with trends in the industrial use of LED systems to intensify algae process efficiency.

  12. Current Trends in the Studies of Allelochemicals for Their Application in Practice

    Directory of Open Access Journals (Sweden)

    Arsen V.Viter

    2015-06-01

    Full Text Available The allelochemicals have been largely used in agriculture, forestry, landscape design and ornamental plant growing for many decades. However, there is a lack of the comprehensive studies, where existing publications are analyzed and synthesized with regards to the theoretic aspects for such usage. The objective of this paper was to systemize the advances in the research on allelochemicals’ application in practice. Numerous novel methodological propositions have risen recently. We classified them into the physical, chemical, biological, biotechnological and cropgrowing approaches. The allelochemicals consist of the wide diversity of the substances according to their chemical nature. Among these substances we outlined, firstly, the unidentified plant exudates and the products of green manuring, secondly, the chemically characterized or purified substances, which include alcohols, organic acids, aliphatic compounds, aromatic, alicyclic and nitrogen-contain organic compounds. Several groups of the biotic sources of allelochemicals were described: dicotyledonous and monocotyledonous plants, particularly under their colonization by non-pathogenic strains of Fusarium oxysporum, marine flora and fungi, which exhibit the herbicidal activity. Different targets of the allelochemical application were listed in the paper and they were categorized into several groups: higher flora, animals, unicellular and multi-cellular fungi. We concluded that there is lack of the modern multifaceted knowledge bases for the information about the allelochemical application. Those knowledge bases must be useful in order to choose the appropriate biological method for solving each particular problem of plant cultivation. To that end we systemized the results of current investigation about the usage of allelochemicals in practice.

  13. Fly ashes from coal and petroleum coke combustion: current and innovative potential applications.

    Science.gov (United States)

    González, Aixa; Navia, Rodrigo; Moreno, Natalia

    2009-12-01

    Coal fly ashes (CFA) are generated in large amounts worldwide. Current combustion technologies allow the burning of fuels with high sulfur content such as petroleum coke, generating non-CFA, such as petroleum coke fly ash (PCFA), mainly from fluidized bed combustion processes. The disposal of CFA and PCFA fly ashes can have severe impacts in the environment such as a potential groundwater contamination by the leaching of heavy metals and/or particulate matter emissions; making it necessary to treat or reuse them. At present CFA are utilized in several applications fields such as cement and concrete production, agriculture and soil stabilization. However, their reuse is restricted by the quality parameters of the end-product or requirements defined by the production process. Therefore, secondary material markets can use a limited amount of CFA, which implies the necessity of new markets for the unused CFA. Some potential future utilization options reviewed herein are zeolite synthesis and valuable metals extraction. In comparison to CFA, PCFA are characterized by a high Ca content, suggesting a possible use as neutralizers of acid wastewaters from mining operations, opening a new potential application area for PCFA that could solve contamination problems in emergent and mining countries such as Chile. However, this potential application may be limited by PCFA heavy metals leaching, mainly V and Ni, which are present in PCFA in high concentrations.

  14. Thorium-230 dating of carbonates: current technical capabilities and major applications

    Science.gov (United States)

    Edwards, R. L.; Cheng, H.; Pythoud, M.; Lu, Y.; Zhang, P.; Nissen, J.; Berry, A.; Cross, M.

    2015-12-01

    Uranium-thorium or Th-230 dating has proven to be an important tool in determining the timing of events in the late Quaternary. Among the major applications are: the timing of sea level change, the timing of continental climate change as preserved in cave archives, the timing of climate change in marine and ice core archives through correlation to Th-230 - dated cave records, and calibration of the radiocarbon timescale. The success of these applications has been driven by continuing technical advances in the measurement of the rare actinide isotopes, U-234 and Th-230. The advances have improved the precision, sensitivity, and accuracy of the measurements. The main factor in measurement improvement has been an increase of about 5 orders of magnitude (over the past 30 years) in the fraction of the sample that can be detected, dramatically improving counting statistics, as well as measurement sensitivity. The 5-order of magnitude improvement, comes largely from the shift to mass spectrometric measurement techniques, but also has resulted from subsequent improvement in ionization plus transmission efficiency. While additional improvement above the 5-order of magnitude figure may be possible, current efforts are focused on improving the accuracy of the measurements, standardizing gravimetric standards among laboratories, and shortening measurement times. These efforts will be discussed along with summary results of some of the major applications.

  15. Stem cell technology for bone regeneration: current status and potential applications

    Directory of Open Access Journals (Sweden)

    Asatrian G

    2015-02-01

    Full Text Available Greg Asatrian,1 Dalton Pham,1,2 Winters R Hardy,3 Aaron W James,1–3 Bruno Peault3,4 1Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, 2Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, 3UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA; 4Medical Research Council Centre for Regenerative Medicine, Edinburgh, Scotland, UK Abstract: Continued improvements in the understanding and application of mesenchymal stem cells (MSC have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.Keywords: mesenchymal stem cell, pericyte, bone tissue engineering, MSC, ASC, DMSC

  16. Anti-aging pharmacology: Promises and pitfalls.

    Science.gov (United States)

    Vaiserman, Alexander M; Lushchak, Oleh V; Koliada, Alexander K

    2016-11-01

    Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.

  17. Potential Pitfalls in Estimating Viral Load Heritability.

    Science.gov (United States)

    Leventhal, Gabriel E; Bonhoeffer, Sebastian

    2016-09-01

    In HIV patients, the set-point viral load (SPVL) is the most widely used predictor of disease severity. Yet SPVL varies over several orders of magnitude between patients. The heritability of SPVL quantifies how much of the variation in SPVL is due to transmissible viral genetics. There is currently no clear consensus on the value of SPVL heritability, as multiple studies have reported apparently discrepant estimates. Here we illustrate that the discrepancies in estimates are most likely due to differences in the estimation methods, rather than the study populations. Importantly, phylogenetic estimates run the risk of being strongly confounded by unrealistic model assumptions. Care must be taken when interpreting and comparing the different estimates to each other.

  18. Mindfulness-based mobile applications: literature review and analysis of current features.

    Science.gov (United States)

    Plaza, Inmaculada; Demarzo, Marcelo Marcos Piva; Herrera-Mercadal, Paola; García-Campayo, Javier

    2013-11-01

    Interest in mindfulness has increased exponentially, particularly in the fields of psychology and medicine. The trait or state of mindfulness is significantly related to several indicators of psychological health, and mindfulness-based therapies are effective at preventing and treating many chronic diseases. Interest in mobile applications for health promotion and disease self-management is also growing. Despite the explosion of interest, research on both the design and potential uses of mindfulness-based mobile applications (MBMAs) is scarce. Our main objective was to study the features and functionalities of current MBMAs and compare them to current evidence-based literature in the health and clinical setting. We searched online vendor markets, scientific journal databases, and grey literature related to MBMAs. We included mobile applications that featured a mindfulness-based component related to training or daily practice of mindfulness techniques. We excluded opinion-based articles from the literature. The literature search resulted in 11 eligible matches, two of which completely met our selection criteria-a pilot study designed to evaluate the feasibility of a MBMA to train the practice of "walking meditation," and an exploratory study of an application consisting of mood reporting scales and mindfulness-based mobile therapies. The online market search eventually analyzed 50 available MBMAs. Of these, 8% (4/50) did not work, thus we only gathered information about language, downloads, or prices. The most common operating system was Android. Of the analyzed apps, 30% (15/50) have both a free and paid version. MBMAs were devoted to daily meditation practice (27/46, 59%), mindfulness training (6/46, 13%), assessments or tests (5/46, 11%), attention focus (4/46, 9%), and mixed objectives (4/46, 9%). We found 108 different resources, of which the most used were reminders, alarms, or bells (21/108, 19.4%), statistics tools (17/108, 15.7%), audio tracks (15/108, 13

  19. Mindfulness-Based Mobile Applications: Literature Review and Analysis of Current Features

    Science.gov (United States)

    Plaza, Inmaculada; Demarzo, Marcelo Marcos Piva; Herrera-Mercadal, Paola

    2013-01-01

    Background Interest in mindfulness has increased exponentially, particularly in the fields of psychology and medicine. The trait or state of mindfulness is significantly related to several indicators of psychological health, and mindfulness-based therapies are effective at preventing and treating many chronic diseases. Interest in mobile applications for health promotion and disease self-management is also growing. Despite the explosion of interest, research on both the design and potential uses of mindfulness-based mobile applications (MBMAs) is scarce. Objective Our main objective was to study the features and functionalities of current MBMAs and compare them to current evidence-based literature in the health and clinical setting. Methods We searched online vendor markets, scientific journal databases, and grey literature related to MBMAs. We included mobile applications that featured a mindfulness-based component related to training or daily practice of mindfulness techniques. We excluded opinion-based articles from the literature. Results The literature search resulted in 11 eligible matches, two of which completely met our selection criteria–a pilot study designed to evaluate the feasibility of a MBMA to train the practice of “walking meditation,” and an exploratory study of an application consisting of mood reporting scales and mindfulness-based mobile therapies. The online market search eventually analyzed 50 available MBMAs. Of these, 8% (4/50) did not work, thus we only gathered information about language, downloads, or prices. The most common operating system was Android. Of the analyzed apps, 30% (15/50) have both a free and paid version. MBMAs were devoted to daily meditation practice (27/46, 59%), mindfulness training (6/46, 13%), assessments or tests (5/46, 11%), attention focus (4/46, 9%), and mixed objectives (4/46, 9%). We found 108 different resources, of which the most used were reminders, alarms, or bells (21/108, 19.4%), statistics tools

  20. Epidemiological designs for vaccine safety assessment: methods and pitfalls.

    Science.gov (United States)

    Andrews, Nick

    2012-09-01

    Three commonly used designs for vaccine safety assessment post licensure are cohort, case-control and self-controlled case series. These methods are often used with routine health databases and immunisation registries. This paper considers the issues that may arise when designing an epidemiological study, such as understanding the vaccine safety question, case definition and finding, limitations of data sources, uncontrolled confounding, and pitfalls that apply to the individual designs. The example of MMR and autism, where all three designs have been used, is presented to help consider these issues.

  1. Pitfalls and Limitations of Radionuclide Hepatobiliary and Gastrointestinal System Imaging.

    Science.gov (United States)

    Low, Chen Sheng; Ahmed, Haseeb; Notghi, Alp

    2015-11-01

    Radionuclide imaging for the hepatobiliary and gastrointestinal system covers a wide range of different indications and imaging techniques. This wide variety allows the different functional assessments of both systems. Therefore, the understanding of each technique and its indications is essential. Cholescintigraphy is a well-established method in the assessment of acute and chronic cholecystitis. It also has a role in the detection of biliary atresia. The assessment of gastrointestinal transit is also well-established in radionuclide imaging for functional investigation of the gastrointestinal tract. Furthermore, detection of acute gastrointestinal bleeding with radionuclide imaging is also standard practice. This article aims to review the pitfalls and limitations in all of these areas.

  2. Cultural diversity in nursing education: perils, pitfalls, and pearls.

    Science.gov (United States)

    Bednarz, Hedi; Schim, Stephanie; Doorenbos, Ardith

    2010-05-01

    Increasing diversity in the classroom challenges nursing educators to identify issues that complicate teaching (perils), analyze barriers for themselves and their students (pitfalls), and select new strategies for working with nontraditional students (pearls). This article identifies concerns arising from attitudes and values within nursing and common approaches to diversity education, and then discusses key issues in nursing education that relate to human nature, culture, faculty workload, and student demographics. Finally, some strategies are proposed for increasing the effectiveness of professional preparation with diverse students through a focus on culturally congruent education and development of faculty cultural competence.

  3. Toxicology: pearls and pitfalls in the use of antidotes.

    Science.gov (United States)

    Smollin, Craig G

    2010-02-01

    Although most poisonings require only supportive care, the emergency physician must recognize when the use of an antidote is required, and understand the risks and benefits of the treatment rendered. Although the more commonly instituted specific therapy in acute poisoning is the administration of intravenous fluids followed by the administration of oxygen, in certain circumstances prompt administration of a specific antidote may be required, and failure to identify these circumstances may lead to significant morbidity or mortality. This article describes select antidotes, and discusses their indications and potential pitfalls.

  4. Pitfalls in ictal EEG interpretation: critical care and intracranial recordings.

    Science.gov (United States)

    Gaspard, Nicolas; Hirsch, Lawrence J

    2013-01-01

    EEG is the cornerstone examination for seizure diagnosis, especially nonconvulsive seizures in the critically ill, but is still subject to many errors that can lead to a wrong diagnosis and unnecessary or inadequate treatment. Many of these pitfalls to EEG interpretation are avoidable. This article reviews common errors in EEG interpretation, focusing on ictal or potentially ictal recordings obtained in critically ill patients. Issues discussed include artifacts, nonepileptic events, equivocal EEG patterns seen in comatose patients, and quantitative EEG artifacts. This review also covers some difficulties encountered with intracranial EEG recordings in patients undergoing epilepsy surgery, including issues related to display resolution.

  5. The seven common pitfalls of customer service in hospitals.

    Science.gov (United States)

    Domingo, Rene T

    2015-01-01

    Operating simultaneously like a repair shop, prison, and hotel, hospitals are prone to seven common pitfalls in customer service. Patient care is often fragmented, inscrutable, inflexible, insensitive, reactive, myopic, and unsafe. Hospitals are vying to be more high-tech, rather than high-touch even though staff engagement with patients rather than facilities and equipment strongly influence patient satisfaction. Unless processes, policies, and people are made customer-centered, the high quality of the hospital's human and hardware resources will not translate into high patient satisfaction and patient loyalty.

  6. Artifacts and pitfalls in shoulder magnetic resonance imaging.

    Science.gov (United States)

    Marcon, Gustavo Felix; Macedo, Tulio Augusto Alves

    2015-01-01

    Magnetic resonance imaging has revolutionized the diagnosis of shoulder lesions, in many cases becoming the method of choice. However, anatomical variations, artifacts and the particularity of the method may be a source of pitfalls, especially for less experienced radiologists. In order to avoid false-positive and false-negative results, the authors carried out a compilation of imaging findings that may simulate injury. It is the authors' intention to provide a useful, consistent and comprehensive reference for both beginner residents and skilled radiologists who work with musculoskeletal magnetic resonance imaging, allowing for them to develop more precise reports and helping them to avoid making mistakes.

  7. Principles and Pitfalls: a Guide to Death Certification.

    Science.gov (United States)

    Brooks, Erin G; Reed, Kurt D

    2015-06-01

    Death certificates serve the critical functions of providing documentation for legal/administrative purposes and vital statistics for epidemiologic/health policy purposes. In order to satisfy these functions, it is important that death certificates be filled out completely, accurately, and promptly. The high error rate in death certification has been documented in multiple prior studies, as has the effectiveness of educational training interventions at mitigating errors. The following guide to death certification is intended to illustrate some basic principles and common pitfalls in electronic death registration with the goal of improving death certification accuracy.

  8. Are sweep net sampling and pitfall trapping compatible with molecular analysis of predation?

    Science.gov (United States)

    Harwood, James D

    2008-08-01

    Molecular analysis of predation enables accurate and reliable elucidation of trophic linkages in complex food webs, but identifying the strength of such interactions can be subject to error. Currently two techniques dominate: monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). Although the optimization and characterization of these systems ensures their sensitivity and specificity, predator collection protocols such as sweep-netting and vacuum sampling could overestimate feeding rates because of surface-level contamination, yielding positive reactivity or predation within the sampling device. Therefore, two sampling techniques (sweep-net sampling and hand collection) were compared within an alfalfa agroecosystem using a monoclonal antibody-based ELISA to test the hypothesis that cross-contamination is a source of error, i.e., significantly more predators (linyphiid spiders) would test positive for prey (Diptera) proteins. A concurrent study examining the viability of trapping predators into saline solution was also undertaken. No significant differences were found between the proportions of spiders screening positive for Diptera when collected by sweep-net versus hand collection, rejecting the hypothesis that sweep-netting predators for subsequent molecular gut content analysis overestimates predation frequency. ELISA was also capable of detecting prey proteins in predator guts from pitfall traps containing phosphate-buffered saline, indicating the suitability of this approach for the collection and analysis of epigeal predators. Although these results indicate that sweep netting and pitfall trapping into solution is appropriate in this predator-prey and ELISA analysis system, caution should be exercised with other interactions and PCR-based analysis. The likelihood for false-positive reactivity should therefore be considered on a case-by-case basis.

  9. Burn prevention mechanisms and outcomes: pitfalls, failures and successes.

    Science.gov (United States)

    Atiyeh, Bishara S; Costagliola, Michel; Hayek, Shady N

    2009-03-01

    Burns are responsible for significant mortality and morbidity worldwide and are among the most devastating of all injuries, with outcomes spanning the spectrum from physical impairments and disabilities to emotional and mental consequences. Management of burns and their sequelae even in well-equipped, modern burn units of advanced affluent societies remains demanding and extremely costly. Undoubtedly, in most low and middle income countries (LMICs) with limited resources and inaccessibility to sophisticated skills and technologies, the same standard of care is obviously not possible. Unfortunately, over 90% of fatal fire-related burns occur in developing or LMICs with South-East Asia alone accounting for over half of these fire-related deaths. If burn prevention is an essential part of any integrated burn management protocol anywhere, focusing on burn prevention in LMICs rather than treatment cannot be over-emphasized where it remains the major and probably the only available way of reducing the current state of morbidity and mortality. Like other injury mechanisms, the prevention of burns requires adequate knowledge of the epidemiological characteristics and associated risk factors, it is hence important to define clearly, the social, cultural and economic factors, which contribute to burn causation. While much has been accomplished in the areas of primary and secondary prevention of fires and burns in many developed or high-income countries (HICs) such as the United States due to sustained research on the epidemiology and risk factors, the same cannot be said for many LMICs. Many health authorities, agencies, corporations and even medical personnel in LMICs consider injury prevention to have a much lower priority than disease prevention for understandable reasons. Consequently, burns prevention programmes fail to receive the government funding that they deserve. Prevention programmes need to be executed with patience, persistence, and precision, targeting high

  10. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  11. Parametrizing arbitrary galaxy morphologies: potentials and pitfalls

    Science.gov (United States)

    Andrae, René; Jahnke, Knud; Melchior, Peter

    2011-02-01

    Given the enormous galaxy data bases of modern sky surveys, parametrizing galaxy morphologies is a very challenging task due to the huge number and variety of objects. We assess the different problems faced by existing parametrization schemes (CAS, Gini, M20, Sérsic profile, shapelets) in an attempt to understand why parametrization is so difficult and in order to suggest improvements for future parametrization schemes. We demonstrate that morphological observables (e.g. steepness of the radial light profile, ellipticity, asymmetry) are intertwined and cannot be measured independently of each other. We present strong arguments in favour of model-based parametrization schemes, namely reliability assessment, disentanglement of morphological observables and point spread function modelling. Furthermore, we demonstrate that estimates of the concentration and Sérsic index obtained from the Zurich Structure & Morphology catalogue are in excellent agreement with theoretical predictions. We also demonstrate that the incautious use of the concentration index for classification purposes can cause a severe loss of the discriminative information contained in a given data sample. Moreover, we show that, for poorly resolved galaxies, concentration index and M20 suffer from strong discontinuities, i.e. similar morphologies are not necessarily mapped to neighbouring points in the parameter space. This limits the reliability of these parameters for classification purposes. Two-dimensional Sérsic profiles accounting for centroid and ellipticity are identified as the currently most reliable parametrization scheme in the regime of intermediate signal-to-noise ratios and resolutions, where asymmetries and substructures do not play an important role. We argue that basis functions provide good parametrization schemes in the regimes of high signal-to-noise ratios and resolutions. Concerning Sérsic profiles, we show that scale radii cannot be compared directly for profiles of different

  12. 77 FR 31828 - Notice of Request for Revision of a Currently Approved Collection Application for Plant Variety...

    Science.gov (United States)

    2012-05-30

    ... Information or Comments: Contact Bernadette Thomas, Information Technology Specialist, Plant Variety Protection Office (PVPO), Science and Technology, AMS, Room 401, National Agricultural Library (NAL), 10301... and revision to the currently approved information collection ``Application for ] Plant...

  13. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data.

    Science.gov (United States)

    Seisonen, Sirli; Vene, Kristel; Koppel, Kadri

    2016-11-01

    A lot of research has been conducted in correlating the sensory properties of food with different analytical measurements in recent years. Various statistical methods have been used in order to get the most reliable results and to create prediction models with high statistical performance. The current review summarises the latest practices in the field of correlating attributes from sensory analysis with volatile data obtained by gas chromatographic analysis. The review includes the origin of the data, different pre-processing and variable selection methods and finally statistical methods of analysis and validation. Partial least squares regression analysis appears as the most commonly used statistical method in the area. The main shortcomings were identified in the steps of pre-processing, variable selection and also validation of models that have not gained enough attention. As the association between volatiles and sensory perception is often nonlinear, future studies should test the application of different nonlinear techniques.

  14. Current applications of adipose-derived stem cells and their future perspectives.

    Science.gov (United States)

    Kim, Eun-Hee; Heo, Chan Yeong

    2014-01-26

    Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells (ADSCs) are one of the most promising stem cell types, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.

  15. High Current Planar Magnetics for High Efficiency Bidirectional DC-DC Converters for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    Efficiency is one of the main concerns during the design phase of switch mode power supply. Planar magnetics based on PCB windings have the potential to reduce the magnetic manufacturing cost however, one of their main drawbacks comes from their low filling factor and high stray capacitance....... This paper presents an analysis of different planar windings configurations focusing on dc and ac resistances in order to achieve highly efficiency in dc-dc converters. The analysis considers different copper thicknesses form 70 μm up to 1500 μm (extreme copper PCB) taking into account manufacturing...... complexity and challenges. The analysis is focused on a high current inductor for a dc-dc converter for fuel cell applications and it is based on FEM simulations. Analysis and results are verified on a 6 kW dc-dc isolated full bridge boost converter prototype based on fully planar magnetics achieving a peak...

  16. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    Science.gov (United States)

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  17. Weak measurement from the electron displacement current: new path for applications

    Science.gov (United States)

    Marian, D.; Colomés, E.; Zanghì, N.; Oriols, X.

    2015-10-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics.

  18. Augmented Reality in Neurosurgery: A Review of Current Concepts and Emerging Applications.

    Science.gov (United States)

    Guha, Daipayan; Alotaibi, Naif M; Nguyen, Nhu; Gupta, Shaurya; McFaul, Christopher; Yang, Victor X D

    2017-05-01

    Augmented reality (AR) superimposes computer-generated virtual objects onto the user's view of the real world. Among medical disciplines, neurosurgery has long been at the forefront of image-guided surgery, and it continues to push the frontiers of AR technology in the operating room. In this systematic review, we explore the history of AR in neurosurgery and examine the literature on current neurosurgical applications of AR. Significant challenges to surgical AR exist, including compounded sources of registration error, impaired depth perception, visual and tactile temporal asynchrony, and operator inattentional blindness. Nevertheless, the ability to accurately display multiple three-dimensional datasets congruently over the area where they are most useful, coupled with future advances in imaging, registration, display technology, and robotic actuation, portend a promising role for AR in the neurosurgical operating room.

  19. Current Status and Applications of Integrated Safety Assessment and Simulation Code System for ISA

    Directory of Open Access Journals (Sweden)

    J.M. Izquierdo

    2017-03-01

    Full Text Available This paper reviews current status of the unified approach known as integrated safety assessment (ISA, as well as the associated SCAIS (simulation codes system for ISA computer platform. These constitute a proposal, which is the result of collaborative action among the Nuclear Safety Council (CSN, University of Madrid (UPM, and NFQ Solutions S.L, aiming to allow independent regulatory verification of industry quantitative risk assessments. The content elaborates on discussions of the classical treatment of time in conventional probabilistic safety assessment (PSA sequences and states important conclusions that can be used to avoid systematic and unacceptable underestimation of the failure exceedance frequencies. The unified ISA method meets this challenge by coupling deterministic and probabilistic mutual influences. The feasibility of the approach is illustrated with some examples of its application to a real size plant.

  20. Reprint of: Transcranial direct current stimulation (tDCS) - Application in neuropsychology.

    Science.gov (United States)

    Shin, Yong-Il; Foerster, Águida; Nitsche, Michael A

    2015-07-01

    Non-invasive brain stimulation is a versatile tool to modulate psychological processes via alterations of brain activity, and excitability. It is applied to explore the physiological basis of cognition and behavior, as well as to reduce clinical symptoms in neurological and psychiatric diseases. Neuromodulatory brain stimulation via transcranial direct currents (tDCS) has gained increased attention recently. In this review we will describe physiological mechanisms of action of tDCS, and summarize its application to modulate psychological processes in healthy humans and neuropsychiatric diseases. Furthermore, beyond giving an overview of the state of the art of tDCS, including limitations, we will outline future directions of research in this relatively young scientific field.

  1. Metacognition fundaments, applications, and trends a profile of the current state-of-the-art

    CERN Document Server

    2015-01-01

    This book is devoted to the Metacognition arena. It highlights works that show relevant analysis, reviews, theoretical, and methodological proposals, as well as studies, approaches, applications, and tools that shape current state, define trends and inspire future research. As a result of the revision process fourteen manuscripts were accepted and organized into five parts as follows: ·     Conceptual: contains conceptual works oriented to: (1) review models of strategy instruction and tailor a hybrid strategy; (2) unveil second-order judgments and define a method to assess metacognitive judgments; (3) introduces a conceptual model to describe the metacognitive activity as an autopoietic system. ·     Framework: offers three works concerned with: (4) stimulate metacognitive skills and self-regulatory functions; (5) evaluate metacognitive skills and self-regulated learning at problem solving; (6) deal with executive management metacognition and strategic knowledge metacognition. ·     Studies: r...

  2. Silica-based UV-fibers for DUV applications: current status

    Science.gov (United States)

    Klein, K.-F.; Gonschior, C. P.; Beer, D.; Eckhardt, H.-S.; Belz, M.; Shannon, J.; Khalilov, V.; Klein, M.; Jakob, C.

    2013-05-01

    The current status of UV-damage in several different UV fibers due to defects in their synthetic high-OH silica core and cladding will be described. Further, steps to improve UV resistance and adequate measurement techniques based on a deuterium lamp setup are included. For the first time, the main parameters and their influences on UV induced losses are discussed in detail with an emphasis towards future standardization purposes. Applications based on two new UV light sources, a laser driven xenon plasma broad band source and a high pulse-power 355 nm Nd:YAG laser, are introduced. UV photo-darkening and -bleaching in UV fibers caused by this extremely powerful light source is demonstrated. Finally, first results on transmission of UV light in optical fibers at cryogenic temperatures are shown.

  3. Application of Transcranial Direct Current Stimulation in Neurorehabilitation: The Modulatory Effect of Sleep

    Directory of Open Access Journals (Sweden)

    James eEbajemito

    2016-04-01

    Full Text Available The relationship between sleep disorders and neurological disorders is often reciprocal, such that sleep disorders are worsened by neurological symptoms and that neurological disorders are aggravated by poor sleep. Animal and human studies further suggest that sleep disruption not only worsens single neurological symptoms, but may also lead to long-term negative outcomes. This suggests that sleep may play a fundamental role in neurorehabilitation and recovery. We further propose that sleep may not only alter the efficacy of behavioural treatments but also plasticity-enhancing adjunctive neurostimulation methods, such as transcranial direct current stimulation (tDCS. At present sleep receives little attention in the fields of neurorehabilitation and neurostimulation. In this review we draw together the strands of evidence from both fields of research to highlight the proposition that sleep is an important parameter to consider in the application of tDCS as a primary or adjunct rehabilitation intervention.

  4. Robotics and the spine: a review of current and ongoing applications.

    Science.gov (United States)

    Shweikeh, Faris; Amadio, Jordan P; Arnell, Monica; Barnard, Zachary R; Kim, Terrence T; Johnson, J Patrick; Drazin, Doniel

    2014-03-01

    Robotics in the operating room has shown great use and versatility in multiple surgical fields. Robot-assisted spine surgery has gained significant favor over its relatively short existence, due to its intuitive promise of higher surgical accuracy and better outcomes with fewer complications. Here, the authors analyze the existing literature on this growing technology in the era of minimally invasive spine surgery. In an attempt to provide the most recent, up-to-date review of the current literature on robotic spine surgery, a search of the existing literature was conducted to obtain all relevant studies on robotics as it relates to its application in spine surgery and other interventions. In all, 45 articles were included in the analysis. The authors discuss the current status of this technology and its potential in multiple arenas of spinal interventions, mainly spine surgery and spine biomechanics testing. There are numerous potential advantages and limitations to robotic spine surgery, as suggested in published case reports and in retrospective and prospective studies. Randomized controlled trials are few in number and show conflicting results regarding accuracy. The present limitations may be surmountable with future technological improvements, greater surgeon experience, reduced cost, improved operating room dynamics, and more training of surgical team members. Given the promise of robotics for improvements in spine surgery and spine biomechanics testing, more studies are needed to further explore the applicability of this technology in the spinal operating room. Due to the significant cost of the robotic equipment, studies are needed to substantiate that the increased equipment costs will result in significant benefits that will justify the expense.

  5. Time-dependent ROC curve analysis in medical research: current methods and applications.

    Science.gov (United States)

    Kamarudin, Adina Najwa; Cox, Trevor; Kolamunnage-Dona, Ruwanthi

    2017-04-07

    ROC (receiver operating characteristic) curve analysis is well established for assessing how well a marker is capable of discriminating between individuals who experience disease onset and individuals who do not. The classical (standard) approach of ROC curve analysis considers event (disease) status and marker value for an individual as fixed over time, however in practice, both the disease status and marker value change over time. Individuals who are disease-free earlier may develop the disease later due to longer study follow-up, and also their marker value may change from baseline during follow-up. Thus, an ROC curve as a function of time is more appropriate. However, many researchers still use the standard ROC curve approach to determine the marker capability ignoring the time dependency of the disease status or the marker. We comprehensively review currently proposed methodologies of time-dependent ROC curves which use single or longitudinal marker measurements, aiming to provide clarity in each methodology, identify software tools to carry out such analysis in practice and illustrate several applications of the methodology. We have also extended some methods to incorporate a longitudinal marker and illustrated the methodologies using a sequential dataset from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver. From our methodological review, we have identified 18 estimation methods of time-dependent ROC curve analyses for censored event times and three other methods can only deal with non-censored event times. Despite the considerable numbers of estimation methods, applications of the methodology in clinical studies are still lacking. The value of time-dependent ROC curve methods has been re-established. We have illustrated the methods in practice using currently available software and made some recommendations for future research.

  6. Fibrosis assessment: impact on current management of chronic liver disease and application of quantitative invasive tools.

    Science.gov (United States)

    Wang, Yan; Hou, Jin-Lin

    2016-05-01

    Fibrosis, a common pathogenic pathway of chronic liver disease (CLD), has long been indicated to be significantly and most importantly associated with severe prognosis. Nowadays, with remarkable advances in understanding and/or treatment of major CLDs such as hepatitis C, B, and nonalcoholic fatty liver disease, there is an unprecedented requirement for the diagnosis and assessment of liver fibrosis or cirrhosis in various clinical settings. Among the available approaches, liver biopsy remains the one which possibly provides the most direct and reliable information regarding fibrosis patterns and changes in the parenchyma at different clinical stages and with different etiologies. Thus, many endeavors have been undertaken for developing methodologies based on the strategy of quantitation for the invasive assessment. Here, we analyze the impact of fibrosis assessment on the CLD patient care based on the data of recent clinical studies. We discuss and update the current invasive tools regarding their technological features and potentials for the particular clinical applications. Furthermore, we propose the potential resolutions with application of quantitative invasive tools for some major issues in fibrosis assessment, which appear to be obstacles against the nowadays rapid progress in CLD medicine.

  7. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects.

    Science.gov (United States)

    Hesper, Tobias; Hosalkar, Harish S; Bittersohl, Daniela; Welsch, Götz H; Krauspe, Rüdiger; Zilkens, Christoph; Bittersohl, Bernd

    2014-10-01

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation-without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented.

  8. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  9. Current research and potential applications of the Concealed Information Test: An overview

    Directory of Open Access Journals (Sweden)

    Gershon eBen-Shakhar

    2012-09-01

    Full Text Available Research interest in psychophysiological detection of deception has significantly increased since the September 11 terror attack in the USA. In particular, the Concealed Information Test (CIT, designed to detect memory traces that can connect suspects to a certain crime, has been extensively studied. In this paper I will briefly review several psychophysiological detection paradigms that have been studied, with a focus on the CIT. The theoretical background of the CIT, its strength and weaknesses, its potential applications as well as research finings related to its validity, (based on a recent mata-analytic study, will be discussed. Several novel research directions, with a focus on factors that may affect CIT detection in realistic settings (e.g., memory for crime details; the effect of emotional stress during crime execution will be described. Additionally, research focusing on mal-intentions and attempts to detect terror networks using information gathered from groups of suspects using both the standard CIT and the searching CIT will be reviewed. Finally, implications of current research to the actual application of the CIT will be discussed and several recommendations that can enhance the use of the CIT will be made.

  10. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Hesper, Tobias; Bittersohl, Daniela; Krauspe, Ruediger; Zilkens, Christoph [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Hosalkar, Harish S. [Center of Hip Preservation and Children' s Orthopaedics, San Diego, CA (United States); Welsch, Goetz H. [Medical University of Vienna, MR Center, Department of Radiology, Vienna (Austria); Bittersohl, Bernd [University Duesseldorf, Department of Orthopaedics Medical Faculty, Duesseldorf (Germany); Heinrich-Heine University, Medical School, Department of Orthopaedics, Duesseldorf (Germany)

    2014-10-15

    With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, accurate and reliable assessment of the cartilage status is critical. Biochemically sensitive MRI techniques can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tools for the diagnosis and follow-up of cartilage abnormalities. T2* mapping could be a good alternative because it would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution three-dimensional cartilage evaluation - without the need for contrast media administration or special hardware. Several in vitro and in vivo studies, which have elaborated on the potential of cartilage T2* assessment in various cartilage disease patterns and grades of degeneration, have been reported. However, much remains to be understood and certain unresolved questions have become apparent with these studies that are crucial to the further application of this technique. This review summarizes the principles of the technique and current applications of T2* mapping for articular cartilage assessment. Limitations of recent studies are discussed and the potential implications for patient care are presented. (orig.)

  11. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications.

  12. Biotherapy in Inflammatory Diseases of the CNS: Current Knowledge and Applications.

    Science.gov (United States)

    Collongues, Nicolas; Michel, Laure; de Seze, Jérôme

    2017-05-01

    Biotherapy represents an innovative therapeutic approach that includes immunotherapy (vaccines, apheresis, and antibodies); gene therapy; and stem cell transplants. Their development helps to cross the bridge from bench to bedside and brings new hope of a cure for severe diseases in different fields of medicine. In neurology, a growing range of applications is being developed for these medications. Valuable results are now available in the field of autoimmunity, neuro-oncology, paraneoplastic manifestations, and neurodegenerative disorders. In this review, we examine the current and future applications of biotherapy in the field of inflammation of the central nervous system. We demonstrate its contribution in clinical practice, where it has enabled a significant level of effectiveness to be achieved. Indeed, the efficacy of these new biodrugs provides a solution for patients refractory to standard therapies, such as intravenous immunoglobulins in limbic encephalitis, plasma exchanges in neuromyelitis optica and anti-CD20 monoclonal antibodies in multiple sclerosis. They also mark the first steps towards individualized medicine.

  13. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  14. Enhancing Motor Skill Learning With Transcranial Direct Current Stimulation - A concise review with applications to stroke

    Directory of Open Access Journals (Sweden)

    Sangeetha eMadhavan

    2012-07-01

    Full Text Available In the past few years, there has been a rapid increase in the application of non-invasive brain stimulation to study brain-behavior relations in an effort to potentially increase the effectiveness of neuro-rehabilitation. Transcranial direct current stimulation (tDCS, an emerging technique of non-invasive brain stimulation, has shown to produce beneficial neural effects in consequence with improvements in motor behavior. tDCS has gained popularity as it is economical, simple to use, portable and increases corticospinal excitability without producing any serious side effects. As tDCS has been increasingly investigated as an effective tool for various disorders, numerous improvements and developments have been proposed with respect to this technique. tDCS has been widely used to identify the functional relevance of particular brain regions in motor skill learning and also to facilitate activity in specific cortical areas involved in motor learning, in turn improving motor function. Understanding the interaction between tDCS and motor learning can lead to important implications for developing various rehabilitation approaches. This paper provides a brief overview of tDCS as a neuromodulatory technique and a comprehensive understanding of the interaction of tDCS with motor learning. The paper further briefly goes through the application of this priming technique in the stroke population.

  15. Forced current sheet structure, formation and evolution: application to magnetic reconnection in the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. I. Domrin

    2004-07-01

    Full Text Available By means of a simulation model, the earlier predicted nonlinear kinetic structure, a Forced Kinetic Current Sheet (FKCS, with extremely anisotropic ion distributions, is shown to appear as a result of a fast nonlinear process of transition from a previously existing equilibrium. This occurs under triggering action of a weak MHD disturbance that is applied at the boundary of the simulation box. In the FKCS, current is carried by initially cold ions which are brought into the CS by convection from both sides, and accelerated inside the CS. The process then appears to be spontaneously self-sustained, as a MHD disturbance of a rarefaction wave type propagates over the background plasma outside the CS. Comparable to the Alfvénic discontinuity in MHD, transformation of electromagnetic energy into the energy of plasma flows occurs at the FKCS. But unlike the MHD case, ``free" energy is produced here: dissipation should occur later, through particle interaction with turbulent waves generated by unstable ion distribution being formed by the FKCS action. In this way, an effect of magnetic field ``annihilation" appears, required for fast magnetic reconnection. Application of the theory to observations at the magnetopause and in the magnetotail is considered.

  16. Artificial neural networks in gynaecological diseases: current and potential future applications.

    Science.gov (United States)

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  17. Techniques and applications of endoscopic spine surgery. Part I:overview of current techniques

    Institute of Scientific and Technical Information of China (English)

    Kai-Xuan Liu; MD; PhD

    2013-01-01

    Background Spinal pain is a serious health and social-economic problem. Endoscopic spine surgery as a treatment option for spinal pain has gained tremendous attention and growth in the past 2 decades, and a variety of endoscopic techniques have been invented to treat a wide range of spinal conditions. Purposes The purposes of this 2-part review article are to 1 ) overview the published techniques of endoscopic spine surgery, 2 ) summarize the applications of these techniques in treating various spinal conditions, and 3 ) evaluate the clinical evidence of the safety and effectiveness of these endoscopic techniques in treating some of the most common spinal conditions. The first part of the review article provides an overview of currently most commonly used techniques. Methods We searched the PubMed database for publications concerning endoscopic spine surgery and reviewed the relevant articles published in the English language. Results Discectomy and foraminotomy are the most common types of spine surgery that can currently be done endoscopically. Endoscopic techniques have been used to treat a wide range of spinal disorders located in the lumbar, cervical, as well as the thoracic regions of the spine.

  18. Application of hydrographic and surface current data to describe water properties in the Porsangerfjorden, Norway

    Science.gov (United States)

    Cieszyńska, Agata; Białogrodzka, Jagoda; Yngve Børsheim, Knut; Stramska, Małgorzata; Jankowski, Andrzej

    2016-04-01

    This presentation is a part of the NORDFLUX project, and describes some of the results from experimental work carried out in 2014 in the Porsangerfjorden located in the area of the European Arctic. The fjord borders the Barents Sea. This is a region of high climatic sensitivity and our interest in the basin stemmed from this fact. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In present work we focus on data sets collected with High Frequency (HF) radars monitoring surface currents in the outer part of the Porsnagerfjorden. In our analysis we also use data on water salinity and temperature collected as part of the NORDFLUX experiment, and data from sea level and meteorological station located in Honningsvaag. Analysis of data sets enabled us to describe water salinity, temperature, density distributions and their variability. What is more, we have related aforementioned results to tides, meteorological conditions, and sea surface currents speed and directions. During the poster session the Author will present the schemes of water masses movement in the area of interest. This work was funded by the Norway Grants through the Polish-Norwegian Research Programme, National Centre for Research and Development (contract No. 201985). Project title: 'Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea'.

  19. Life cycle greenhouse gas emissions of current oil sands technologies: GHOST model development and illustrative application.

    Science.gov (United States)

    Charpentier, Alex D; Kofoworola, Oyeshola; Bergerson, Joule A; MacLean, Heather L

    2011-11-01

    A life cycle-based model, GHOST (GreenHouse gas emissions of current Oil Sands Technologies), which quantifies emissions associated with production of diluted bitumen and synthetic crude oil (SCO) is developed. GHOST has the potential to analyze a large set of process configurations, is based on confidential oil sands project operating data, and reports ranges of resulting emissions, improvements over prior studies, which primarily included a limited set of indirect activities, utilized theoretical design data, and reported point estimates. GHOST is demonstrated through application to a major oil sands process, steam-assisted gravity drainage (SAGD). The variability in potential performance of SAGD technologies results in wide ranges of "well-to-refinery entrance gate" emissions (comprising direct and indirect emissions): 18-41 g CO(2)eq/MJ SCO, 9-18 g CO(2)eq/MJ dilbit, and 13-24 g CO(2)eq/MJ synbit. The primary contributor to SAGD's emissions is the combustion of natural gas to produce process steam, making a project's steam-to-oil ratio the most critical parameter in determining GHG performance. The demonstration (a) illustrates that a broad range of technology options, operating conditions, and resulting emissions exist among current oil sands operations, even when considering a single extraction technology, and (b) provides guidance about the feasibility of lowering SAGD project emissions.

  20. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics.

    Science.gov (United States)

    Taylor, Ronald C

    2010-12-21

    Bioinformatics researchers are now confronted with analysis of ultra large-scale data sets, a problem that will only increase at an alarming rate in coming years. Recent developments in open source software, that is, the Hadoop project and associated software, provide a foundation for scaling to petabyte scale data warehouses on Linux clusters, providing fault-tolerant parallelized analysis on such data using a programming style named MapReduce. An overview is given of the current usage within the bioinformatics community of Hadoop, a top-level Apache Software Foundation project, and of associated open source software projects. The concepts behind Hadoop and the associated HBase project are defined, and current bioinformatics software that employ Hadoop is described. The focus is on next-generation sequencing, as the leading application area to date. Hadoop and the MapReduce programming paradigm already have a substantial base in the bioinformatics community, especially in the field of next-generation sequencing analysis, and such use is increasing. This is due to the cost-effectiveness of Hadoop-based analysis on commodity Linux clusters, and in the cloud via data upload to cloud vendors who have implemented Hadoop/HBase; and due to the effectiveness and ease-of-use of the MapReduce method in parallelization of many data analysis algorithms.

  1. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.

    Science.gov (United States)

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.

  2. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    Science.gov (United States)

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. PMID:27274231

  3. Current Status and Applications of MEMS Sensors%MEMS传感器现状及应用

    Institute of Scientific and Technical Information of China (English)

    王淑华

    2011-01-01

    MEMS传感器种类繁多,发展迅猛,应用广泛.首先,简单介绍了MEMS传感器的分类和典型应用.其次,对MEMS压力传感器、加速度计和陀螺仪三种最典型的MEMS传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况.介绍MEMS压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况.最后,从新材料、加工和组装技术方面对MEMS传感器的发展趋势进行了展望.%MEMS sensors feature great varieties, rapid development and wide applications. Firstly, the categories and typical applications of MEMS sensors are introduced briefly. Then three typical MEMS sensors, I. E. The pressure sensor, accelerometer and gyroscope are illustrated in detail, including the subdivision, current technical capability and performance index, latest research progress, products and their applications. Besides that, the research status of the MEMS pressure sensor using new materials for the extreme environment at home and abroad is presented. Finally, development trends of MEMS sensors are predicted in terms of new materials, processing and assembling technology.

  4. Subjective and Objective Assessment of Perceived Audio Quality of Current Digital Audio Broadcasting Systems and Web-Casting Applications

    NARCIS (Netherlands)

    Pocta, P.; Beerends, J.G.

    2015-01-01

    This paper investigates the impact of different audio codecs typically deployed in current digital audio broadcasting (DAB) systems and web-casting applications, which represent a main source of quality impairment in these systems and applications, on the quality perceived by the end user. Both subj

  5. E-learning tools for education: regulatory aspects, current applications in radiology and future prospects.

    Science.gov (United States)

    Pinto, A; Selvaggi, S; Sicignano, G; Vollono, E; Iervolino, L; Amato, F; Molinari, A; Grassi, R

    2008-02-01

    E-learning, an abbreviation of electronic learning, indicates the provision of education and training on the Internet or the World Wide Web. The impact of networks and the Internet on radiology is undoubtedly important, as it is for medicine as a whole. The Internet offers numerous advantages compared with other mass media: it provides access to a large amount of information previously known only to individual specialists; it is flexible, permitting the use of images or video; and it allows linking to Web sites on a specific subject, thus contributing to further expand knowledge. Our purpose is to illustrate the regulatory aspects (including Internet copyright laws), current radiological applications and future prospects of e-learning. Our experience with the installation of an e-learning platform is also presented. We performed a PubMed search on the published literature (without time limits) dealing with e-learning tools and applications in the health sector with specific reference to radiology. The search included all study types in the English language with the following key words: e-learning, education, teaching, online exam, radiology and radiologists. The Fiaso study was referred to for the regulatory aspects of e-learning. The application of e-learning to radiology requires the development of a model that involves selecting and creating e-learning platforms, creating and technologically adapting multimedia teaching modules, creating and managing a unified catalogue of teaching modules, planning training actions, defining training pathways and Continuing Education in Medicine (CME) credits, identifying levels of teaching and technological complexity of support tools, sharing an organisational and methodological model, training the trainers, operators' participation and relational devices, providing training, monitoring progress of the activities, and measuring the effectiveness of training. Since 2004, a platform--LiveLearning--has been used at our

  6. Computational intelligence in gait research: a perspective on current applications and future challenges.

    Science.gov (United States)

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  7. Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Ziyatdinova, Guzel, E-mail: Ziyatdinovag@mail.ru [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation); Ziganshina, Endzhe; Budnikov, Herman [Analytical Chemistry Department, A.M. Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kremlyevskaya, 18, Kazan 420008 (Russian Federation)

    2012-09-26

    Highlights: Black-Right-Pointing-Pointer Applicability of surfactants in constant-current coulometry is shown for the first time. Black-Right-Pointing-Pointer Reactions of antioxidants with electrogenerated titrants in surfactant media are investigated. Black-Right-Pointing-Pointer Water insoluble antioxidants can be determined in water media with addition of surfactants. Black-Right-Pointing-Pointer Coulometric determination of antioxidants in pharmaceutical dosage forms using surfactants media is developed. - Abstract: Effect of surfactant presence on electrochemical generation of titrants has been evaluated and discussed for the first time. Cationic (1-dodecylpyridinium and cetylpyridinium bromide), anionic (sodium dodecyl sulfate) and nonionic (Triton X100 and Brij{sup Registered-Sign} 35) surfactants as well as nonionic high molecular weight polymer (PEG 4000) do not react with the electrogenerated bromine, iodine and hexacyanoferrate(III) ions. The electrogenerated chlorine chemically interact with Triton X100 and Brij{sup Registered-Sign} 35. The allowable range of surfactants concentrations providing 100% current yield has been found. Chain-breaking low molecular weight antioxidants (ascorbic acid, rutin, {alpha}-tocopherol and retinol) were determined by reaction with the electrogenerated titrants in surfactant media. Nonionic and cationic surfactants can be used for the determination of antioxidants by reaction with the electrogenerated halogens. On contrary, cationic surfactants gives significantly overstated results of antioxidants determination with electrogenerated hexacyanoferrate(III) ions. The use of surfactants in coulometry of {alpha}-tocopherol and retinol provides their solubilization and allows to perform titration in water media. Simple, express and reliable coulometric approach for determination of {alpha}-tocopherol, rutin and ascorbic acid in pharmaceuticals using surfactant media has been developed. The relative standard deviation of the

  8. Neuroimaging in Alzheimer's disease: current role in clinical practice and potential future applications

    Directory of Open Access Journals (Sweden)

    Luiz Kobuti Ferreira

    2011-01-01

    Full Text Available 'Alzheimer's disease is the most common cause of dementia and its prevalence is expected to increase in the coming years. Therefore, accurate diagnosis is crucial for patients, clinicians and researchers. Neuroimaging techniques have provided invaluable information about Alzheimer's disease and, owing to recent advances, these methods will have an increasingly important role in research and clinical practice. The purpose of this article is to review recent neuroimaging studies of Alzheimer's disease that provide relevant information to clinical practice, including a new modality: in vivo amyloid imaging. Magnetic resonance imaging, single photon emission computed tomography and 18F-fluorodeoxyglucose-positron emission tomography are currently available for clinical use. Patients with suspected Alzheimer's disease are commonly investigated with magnetic resonance imaging because it provides detailed images of brain structure and allows the identification of supportive features for the diagnosis. Neurofunctional techniques such as single photon emission computed tomography and 18F-fluorodeoxyglucose-positron emission tomography can also be used to complement the diagnostic investigation in cases of uncertainty. Amyloid imaging is a non-invasive technique that uses positron emission tomography technology to investigate the accumulation of the β-amyloid peptide in the brain, which is a hallmark of Alzheimer's disease. This is a promising test but currently its use is restricted to very few specialized research centers in the world. Technological innovations will probably increase its availability and reliability, which are the necessary steps to achieve robust clinical applicability. Thus, in the future it is likely that amyloid imaging techniques will be used in the clinical evaluation of patients with Alzheimer's disease.

  9. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    Directory of Open Access Journals (Sweden)

    Ganesan P

    2016-05-01

    Full Text Available Palanivel Ganesan,1,2 Dong-Kug Choi1,2 1Department of Applied Life Science, Nanotechnology Research Center, 2Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea Abstract: Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. Keywords: nanodelivery technologies, skincare

  10. Virtual reality training in neurosurgery: Review of current status and future applications

    Science.gov (United States)

    Alaraj, Ali; Lemole, Michael G.; Finkle, Joshua H.; Yudkowsky, Rachel; Wallace, Adam; Luciano, Cristian; Banerjee, P. Pat; Rizzi, Silvio H.; Charbel, Fady T.

    2011-01-01

    Background: Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. Methods: A PubMed review of the literature was performed for the MESH words “Virtual reality, “Augmented Reality”, “Simulation”, “Training”, and “Neurosurgery”. Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. Results: Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. Conclusion: Fully immersive technology is starting to be applied to the practice of

  11. Implications and applications of current-induced dynamics in molecular junctions.

    Science.gov (United States)

    Jorn, Ryan; Seideman, Tamar

    2010-09-21

    Instances of strongly nonadiabatic electronic-vibrational energy transfer have been studied since the early days of quantum mechanics and remain a topic of fundamental interest. Often such transfers are associated with electronic resonances, temporary states where transient localization of charge on the molecule provides a mechanism for channeling electronic energy into vibrational excitation. Extensively studied in the gas phase, electron resonance scattering also occurs with surface adsorbed molecules, where it manifests itself in broadened cross sections and desorption of adsorbates from metal surfaces. In this Account, we focus on a related topic: the implications of nonadiabatic, resonance-mediated scattering to the exciting field of molecular electronics. In this context, researchers can induce directed nuclear dynamics and control these processes in single molecules in contact with metallic and semiconducting electrodes. We discuss a variety of consequences and applications of current-driven nuclear excitation in molecular devices, ranging from the design of new forms of molecular machines to surface chemistry at the single-molecule level and atom-resolved lithography. We highlight two specific examples of molecular nanomachines. In the first, a Au-C(60)-Au transistor, the current induces the oscillatory motion of the center-of-mass coordinate of the C(60). The second, a zwitterion-based rattle, demonstrates excitation of intramolecular motion as the positively charged moiety is threaded back and forth through the negatively charged carbon ring. Finally, we discuss the current-induced desorption of organic molecules from Si(100) both to suggest the potential for controlled surface nanochemistry and to develop guidelines for the design of stable molecular junctions. Modeling the exchange of energy between tunneling electrons and the vibrational degrees of freedom of a target molecule subject to bias voltage, open boundary conditions in the electronic subspace

  12. T2* mapping of articular cartilage: current status of research and first clinical applications.

    Science.gov (United States)

    Andreisek, Gustav; Weiger, Markus

    2014-01-01

    T2* mapping is a relatively new method for the compositional assessment of the articular cartilage. Typically, a multigradient echo or an ultrashort echo time imaging technique with a range of short and very short echo times is used. In most studies, imaging is performed at a high field strength, that is, 3 and 7 T. Postprocessing includes exponential fitting of relaxation decay and manual region-of-interest-based measurements of T2* times on T2* maps. Detailed analyses of T2* times of articular cartilage have shown distinct T2* components with shorter and longer T2* times. Moreover, there is a zonal distribution with a significant depthwise gradient of T2*, with relatively short times near the osteochondral junction and relatively long times at the cartilage's surface. T2* times of normal articular cartilage at the knee are, when averaged over the whole cartilage thickness and using monoexponential fitting, approximately 20 milliseconds. The results of recent studies have shown a good test-retest as well as interreader and intrareader reliabilities for T2* mapping. This article provides a descriptive review of the current literature, briefly discusses the technique itself, and provides an outlook on future research questions and possible clinical applications.

  13. An overview of MR arthrography with emphasis on the current technique and applicational hints and tips

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Guelden [Department of Radiology, Faculty of Medicine, Ankara University, Samanpazari, 06100 Ankara (Turkey)]. E-mail: gsahin@medicine.ankara.edu.tr; Demirtas, Mehmet [Department of Hand Surgery, Faculty of Medicine, Ankara University, Samanpazari, 06100 Ankara (Turkey)

    2006-06-15

    Magnetic resonance (MR) arthrography has been investigated in every major peripheral joint of the body, and has been proven to be effective in determining the integrity of intraarticular ligamentous and fibrocartilaginous structures and in the detection or assessment of osteochondral lesions and loose bodies in selected cases. Several methods could be used to create arthrogram effect during MR imaging, however, direct MR arthrography using diluted gadolinium as the contrast agent is the most commonly used technique and is the most reliable of all. MR arthrography is useful for demonstrating labrocapsular-ligamentous abnormalities and distinguishing partial thickness rotator cuff tears from focal full thickness tears in the shoulder, identifying or excluding recurrent tears following meniscal operations in the knee, demonstrating perforations of the triangular fibrocartilage complex (TFCC) and ligaments in the wrist, showing labral tears in the hip, diagnosing ligament tears in the ankle and identifying osteochondral lesions or loose bodies in any of the aforementioned joints. In this article, an overview of techniques of MR arthrography is provided with emphasis on direct MR arthrography using diluted gadolinium as the contrast agent. The current applications of the technique in major peripheral joints are reviewed, with emphasis given to the shoulder joint where the role of this technique has become well established.

  14. From bench to bedside: current and future applications of molecular profiling in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yousef George M

    2009-03-01

    Full Text Available Abstract Among the adult population, renal cell carcinoma (RCC constitutes the most prevalent form of kidney neoplasm. Unfortunately, RCC is relatively asymptomatic and there are no tumor markers available for diagnostic, prognostic or predictive purposes. Molecular profiling, the global analysis of gene and protein expression profiles, is an emerging promising tool for new biomarker identification in RCC. In this review, we summarize the existing knowledge on RCC regarding clinical presentation, treatment options, and tumor marker status. We present a general overview of the more commonly used approaches for molecular profiling at the genomic, transcriptomic and proteomic levels. We also highlight the emerging role of molecular profiling as not only revolutionizing the process of new tumor marker discovery, but also for providing a better understanding of the pathogenesis of RCC that will pave the way towards new targeted therapy discovery. Furthermore, we discuss the spectrum of clinical applications of molecular profiling in RCC in the current literature. Finally, we highlight some of the potential challenging that faces the era of molecular profiling and its transition into clinical practice, and provide an insight about the future perspectives of molecular profiling in RCC.

  15. Magnetic resonance imaging of the chest: current and new applications, with an emphasis on pulmonology

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcel Koenigkam; Mauad, Fernando Marum, E-mail: marcelk46@yahoo.com.b [Universidade de Sao Paulo (HC/FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Hospital das Clinicas; Elias Junior, Jorge; Muglia, Valdair Francisco [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Secao de Radiologia

    2011-03-15

    The objective of the present review study was to present the principal applications of magnetic resonance imaging (MRI) of the chest, including the description of new techniques. Over the past decade, this method has evolved considerably because of the development of new equipment, including the simultaneous interconnection of phased-array multiple radiofrequency receiver coils and remote control of the table movement, in addition to faster techniques of image acquisition, such as parallel imaging and partial Fourier acquisitions, as well as the introduction of new contrast agents. All of these advances have allowed MRI to gain ground in the study of various pathologies of the chest, including lung diseases. Currently, MRI is considered the modality of choice for the evaluation of lesions in the mediastinum and in the chest wall, as well as of superior sulcus tumors. However, it can also facilitate the diagnosis of lung, pleural, and cardiac diseases, as well as of those related to the pulmonary vasculature. Pulmonary MRI angiography can be used in order to evaluate various pulmonary vascular diseases, and it has played an ever greater role in the study of thromboembolism. Because cardiac MRI allows morphological and functional assessment in the same test, it has also become part of the clinical routine in the evaluation of various cardiac diseases. Finally, the role of MRI has been extended to the identification and characterization of pulmonary nodules, the evaluation of airway diseases, and the characterization of pleural effusion. (author)

  16. Drug interaction studies on new drug applications: current situations and regulatory views in Japan.

    Science.gov (United States)

    Nagai, Naomi

    2010-01-01

    Drug interaction studies on new drug applications (NDAs) for new molecular entities (NMEs) approved in Japan between 1997 and 2008 are examined in the Pharmaceuticals and Medical Devices Agency (PMDA). The situations of drug interaction studies in NDAs have changed over the past 12 years, especially in metabolizing enzyme and transporter-based drug interactions. Materials and approaches to study drug-metabolizing enzyme-based drug interactions have improved, and become more rational based on mechanistic theory and new technologies. On the basis of incremental evidence of transporter roles in human pharmacokinetics, transporter-based drug interactions have been increasingly studied during drug development and submitted in recent NDAs. Some recently approved NMEs include transporter-based drug interaction information in their package inserts (PIs). The regulatory document "Methods of Drug Interaction Studies," in addition to recent advances in science and technology, has also contributed to plan and evaluation of drug interaction studies in recent new drug development. This review summarizes current situations and further discussion points on drug interaction studies in NDAs in Japan.

  17. Application of Caco-2 Cell Line in Herb-Drug Interaction Studies: Current Approaches and Challenges

    Science.gov (United States)

    Awortwe, C.; Fasinu, P.S.; Rosenkranz, B.

    2015-01-01

    The Caco-2 model is employed in pre-clinical investigations to predict the likely gastrointestinal permeability of drugs because it expresses cytochrome P450 enzymes, transporters, microvilli and enterocytes of identical characteristics to the human small intestine. The FDA recommends this model as integral component of the Biopharmaceutics Classification System (BCS). Most dedicated laboratories use the Caco-2 cell line to screen new chemical entities through prediction of its solubility, bioavailability and the possibility of drug-drug or herb-drug interactions in the gut lumen. However, challenges in the inherent characteristics of Caco-2 cell and inter-laboratory protocol variations have resulted to generation of irreproducible data. These limitations affect the extrapolation of data from pre-clinical research to clinical studies involving drug-drug and herb-drug interactions. This review addresses some of these caveats and enumerates the plausible current and future approaches to reduce the anomalies associated with Caco-2 cell line investigations focusing on its application in herb-drug interactions. PMID:24735758

  18. Ensemble forecasting for renewable energy applications - status and current challenges for their generation and verification

    Science.gov (United States)

    Pinson, Pierre

    2016-04-01

    The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.

  19. Technical Aspects of Contrast-enhanced MR Angiography: Current Status and New Applications.

    Science.gov (United States)

    Riederer, Stephen J; Stinson, Eric G; Weavers, Paul T

    2017-08-31

    This article is based on a presentation at the meeting of the Japanese Society of Magnetic Resonance in Medicine in September 2016. The purpose is to review the technical developments which have contributed to the current status of contrast-enhanced magnetic resonance angiography (CE-MRA) and to indicate related emerging areas of study. Technical developments include magnetic resonance imaging (MRI) physics-based innovations as well as improvements in MRI engineering. These have collectively addressed not only early issues of timing and venous suppression but more importantly have led to an improvement in spatiotemporal resolution of CE-MRA of more than two orders of magnitude compared to early results. This has allowed CE-MRA to be successfully performed in virtually all vascular territories of the body. Contemporary technical areas of study include improvements in implementation of high rate acceleration, extension of high performance first-pass CE-MRA across multiple imaging stations, expanded use of compressive sensing techniques, integration of Dixon-based fat suppression into CE-MRA sequences, and application of CE-MRA sequences to dynamic-contrast-enhanced perfusion imaging.

  20. An overview of synthetic strategies and current applications of gold nanorods in cancer treatment

    Science.gov (United States)

    Manish Lakhani, Prit; Vishnu Kiran Rompicharla, Sri; Ghosh, Balaram; Biswas, Swati

    2015-10-01

    Photothermal therapy, also referred to as optical hyperthermia or photothermal ablation, is an emerging strategy for treating solid tumours. Colloidal gold converts the absorbed light into localized heat via a non-radiative mechanism, surface plasmon resonance, which ablates the solid tumours. Several plasmon resonating nanostructures, including gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanoshells, gold nanocages, copper sulphide and carbon nanotubes, have shown potential for photo-activated cancer therapy. Generally, spherical AuNPs display absorption maxima between 500-550 nm, making them inefficient due to low tissue penetration. On the other hand, AuNRs absorb light in the near-infrared (NIR) region that penetrates deeper with higher spatial precision, and causes no damage to the surrounding healthy tissues due to the low energy absorption of NIR light by normal tissue. Moreover, the absorption range of light can be fine-tuned to the NIR region by adjusting the aspect ratios of AuNRs. However, large-scale synthesis and stability of this colloidal system still poses challenges for clinical translation. In this review, we discuss various strategies applied up to now for the synthesis of AuNRs. Current trends in the pre-clinical development of multifunctional AuNRs with emphasis on preparation and application strategies in cancer therapy have been delineated.

  1. Smartphone Applications with Sensors Used in a Tertiary Hospital—Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Yu Rang Park

    2015-04-01

    Full Text Available Smartphones have been widely used recently to monitor heart rate and activity, since they have the necessary processing power, non-invasive and cost-effective sensors, and wireless communication capabilities. Consequently, healthcare applications (apps using smartphone-based sensors have been highlighted for non-invasive physiological monitoring. In addition, several healthcare apps have received FDA clearance. However, in spite of their potential, healthcare apps with smartphone-based sensors are mostly used outside of hospitals and have not been widely adopted for patient care in hospitals until recently. In this paper, we describe the experience of using smartphone apps with sensors in a large medical center in Korea. Among >20 apps developed in our medical center, four were extensively analyzed (“My Cancer Diary”, “Point-of-Care HIV Check”, “Blood Culture” and “mAMIS”, since they use smartphone-based sensors such as the camera and barcode reader to enter data into the electronic health record system. By analyzing the usage patterns of these apps for data entry with sensors, the current limitations of smartphone-based sensors in a clinical setting, hurdles against adoption in the medical center, benefits of smartphone-based sensors and potential future research directions could be evaluated.

  2. A strong-focusing 800 MeV cyclotron for high-current applications

    Science.gov (United States)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  3. Current applications of foams formed from mixed surfactant-polymer solutions.

    Science.gov (United States)

    Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor

    2015-08-01

    Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry.

  4. Genetic linkage mapping in fungi: current state, applications, and future trends.

    Science.gov (United States)

    Foulongne-Oriol, Marie

    2012-08-01

    Genetic mapping is a basic tool for eukaryotic genomic research. Linkage maps provide insights into genome organization and can be used for genetic studies of traits of interest. A genetic linkage map is a suitable support for the anchoring of whole genome sequences. It allows the localization of genes of interest or quantitative trait loci (QTL) and map-based cloning. While genetic mapping has been extensively used in plant or animal models, this discipline is more recent in fungi. The present article reviews the current status of genetic linkage map research in fungal species. The process of linkage mapping is detailed, from the development of mapping populations to the construction of the final linkage map, and illustrated based on practical examples. The range of specific applications in fungi is browsed, such as the mapping of virulence genes in pathogenic species or the mapping of agronomically relevant QTL in cultivated edible mushrooms. Future prospects are finally discussed in the context of the most recent advances in molecular techniques and the release of numerous fungal genome sequences.

  5. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives.

    Directory of Open Access Journals (Sweden)

    Claudia eElena

    2014-02-01

    Full Text Available The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent silent nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding.In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites.This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially-relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well.

  6. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  7. Global temperature evolution: recent trends and some pitfalls

    Science.gov (United States)

    Rahmstorf, Stefan; Foster, Grant; Cahill, Niamh

    2017-05-01

    Global surface temperatures continue to rise. In most surface temperature data sets, the years 2014, 2015 and again 2016 set new global heat records since the start of regular measurements. Never before have three record years occurred in a row. We show that this recent streak of record heat does not in itself provide statistical evidence for an acceleration of global warming, nor was it preceded by a ‘slowdown period’ with a significantly reduced rate of warming. Rather, the data are fully consistent with a steady global warming trend since the 1970s, superimposed with random, stationary, short-term variability. All recent variations in short-term trends are well within what was to be expected, based on the observed warming trend and the observed variability from the 1970s up to the year 2000. We discuss some pitfalls of statistical analysis of global temperatures which have led to incorrect claims of an unexpected or significant warming slowdown.

  8. Human oocyte chromosome analysis: complicated cases and major pitfalls

    Indian Academy of Sciences (India)

    Bernd Rosenbusch; Michael Schneider; Hans Wilhelm Michelmann

    2008-08-01

    Human oocytes that remained unfertilized in programmes of assisted reproduction have been analysed cytogenetically for more than 20 years to assess the incidence of aneuploidy in female gametes. However, the results obtained so far are not indisputable as a consequence of difficulties in evaluating oocyte chromosome preparations. Because of the lack of guidelines, we decided to summarize for the first time, the possible pitfalls in human oocyte chromosome analysis. Therefore, we screened the material from our previous studies and compiled representative, complicated cases with recommendations for their cytogenetic classification. We point out that maturity and size of the oocyte are important parameters and that fixation artefacts, as well as the particular structure of oocyte chromosomes, may predispose one to misinterpretations. Moreover, phenomena related to oocyte activation and fertilization are illustrated and explained. This compilation may help to avoid major problems in future studies and contribute to a more precise, and uniform assessment of human oocyte chromosomes.

  9. Pitfalls in VAR based return decompositions: A clarification

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten

    Based on Chen and Zhao's (2009) criticism of VAR based return de- compositions, we explain in detail the various limitations and pitfalls involved in such decompositions. First, we show that Chen and Zhao's interpretation of their excess bond return decomposition is wrong: the residual component...... in their analysis is not "cashflow news" but "inter- est rate news" which should not be zero. Consequently, in contrast to what Chen and Zhao claim, their decomposition does not serve as a valid caution against VAR based decompositions. Second, we point out that in order for VAR based decompositions to be valid....... In a properly specified VAR, it makes no difference whether return news and dividend news are both computed directly or one of them is backed out as a residual....

  10. Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models.

    Science.gov (United States)

    Laman, Jon D; Kooistra, Susanne M; Clausen, Björn E

    2017-01-01

    In light of an enhanced awareness of ethical questions and ever increasing costs when working with animals in biomedical research, there is a dedicated and sometimes fierce debate concerning the (lack of) reproducibility of animal models and their relevance for human inflammatory diseases. Despite evident advancements in searching for alternatives, that is, replacing, reducing, and refining animal experiments-the three R's of Russel and Burch (1959)-understanding the complex interactions of the cells of the immune system, the nervous system and the affected tissue/organ during inflammation critically relies on in vivo models. Consequently, scientific advancement and ultimately novel therapeutic interventions depend on improving the reproducibility of animal inflammation models. As a prelude to the remaining hands-on protocols described in this volume, here, we summarize potential pitfalls of preclinical animal research and provide resources and background reading on how to avoid them.

  11. Potential pitfalls of strain rate imaging: angle dependency

    Science.gov (United States)

    Castro, P. L.; Greenberg, N. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    Strain Rate Imaging (SRI) is a new echocardiographic technique that allows for the real-time determination of myocardial SR, which may be used for the early and accurate detection of coronary artery disease. We sought to study whether SR is affected by scan line alignment in a computer simulation and an in vivo experiment. Through the computer simulation and the in vivo experiment we generated and validated safe scanning sectors within the ultrasound scan sector and showed that while SRI will be an extremely valuable tool in detecting coronary artery disease there are potential pitfalls for the unwary clinician. Only after accounting for these affects due to angle dependency, can clinicians utilize SRI's potential as a valuable tool in detecting coronary artery disease.

  12. Keratinocyte-based cell assays: their potential pitfalls.

    Science.gov (United States)

    Zupancic, Tina; Ozir, Mateja; Törmä, Hans; Komel, Radovan; Liovic, Mirjana

    2012-11-01

    As an in vitro model system, patient-derived epidermolysis bullosa simplex keratinocytes have had an immense impact on what we know today about keratin filament function and their role in disease development. In the absence of gene therapy, screening compound libraries for new or better drugs is another approach to improve existing treatments for genodermatoses. However in this study, we report of the potential pitfalls when using this type of cell lines as a "reporter" system. When cell lines with different genetic backgrounds are being used in cell-based assays, the greatest obstacle is to determine the most appropriate culture conditions (i.e., the composition of medium, number of cells plated and number of days in culture). We demonstrate how culture conditions can greatly interfere with the cellular response in cell-based assays (cell proliferation, metabolic activity and migration), potentially also giving rise to misleading data.

  13. Sperm viability staining in ecology and evolution: potential pitfalls

    DEFF Research Database (Denmark)

    Holman, Luke

    2009-01-01

    The causes and consequences of variation in sperm quality, survival and ageing are active areas of research in ecology and evolution. In order to address these topics, many recent studies have measured sperm viability using fluorescent staining. Although sperm viability staining has produced...... a number of interesting results, it has some potential pitfalls that have rarely been discussed. In the present paper, I review the major findings of ecology and evolution studies employing sperm viability staining and outline the method's principle limitations. The key problem is that the viability assay...... may itself kill sperm, which is likely to confound many common experimental designs in addition to producing artificially low estimates of sperm viability. I further suggest that sperm number should be routinely measured in sperm viability studies, as it may be an important but overlooked source...

  14. Wikipedia, sociology, and the promise and pitfalls of Big Data

    Directory of Open Access Journals (Sweden)

    Julia Adams

    2015-12-01

    Full Text Available Wikipedia is an important instance of “Big Data,” both because it shapes people's frames of reference and because it is a window into the construction—including via crowd-sourcing—of new bodies of knowledge. Based on our own research as well as others' critical and ethnographic work, we take as an instance Wikipedia's evolving representation of the field of sociology and sociologists, including such gendered aspects as male and female scholars and topics associated with masculinity and femininity. Both the gender-specific dynamics surrounding what counts as “notability” on the online encyclopedia and Wikipedia's relative categorical incoherence are discussed. If “Big Data” can be said to construct its own object, it is, in this instance, a curious and lop-sided one, exemplifying pitfalls as well as promise with respect to more accurate and democratic forms of knowledge.

  15. The neuroaesthetics of prose fiction: pitfalls, parameters and prospects.

    Science.gov (United States)

    Burke, Michael

    2015-01-01

    There is a paucity of neuroaesthetic studies on prose fiction. This is in contrast to the very many impressive studies that have been conducted in recent times on the neuroaesthetics of sister arts such as painting, music and dance. Why might this be the case, what are its causes and, of greatest importance, how can it best be resolved? In this article, the pitfalls, parameters and prospects of a neuroaesthetics of prose fiction will be explored. The article itself is part critical review, part methodological proposal and part opinion paper. Its aim is simple: to stimulate, excite and energize thinking in the discipline as to how prose fiction might be fully integrated in the canon of neuroaesthetics and to point to opportunities where neuroimaging studies on literary discourse processing might be conducted in collaborative work bringing humanists and scientists together.

  16. THE PITFALLS OF THE BLUE OCEAN STRATEGY CANVAS

    DEFF Research Database (Denmark)

    Lindgren, Peter; Saghaug, Kristin Margrethe; Clemmensen, Suberia

    2009-01-01

    Numerous authors have developed a list of tactics and analyticaltechniques to discover new business or new business models (Markides2008)(Johnson 2008). The Blue Ocean strategy (Kim & Mauborgne 2005)have been one of these - probably one of the most important analyticaltechniques related to the area...... - it is important tounderstand the very foundation and construction of the strategy canvas -namely value.This paper addresses the question on How is value defined, measured andfrom which viewed in the Blue Ocean theory and framework. How is valuedefined and used by companies using the Blue Ocean strategy...... canvasframework? Moreover, when addressing this, what are the pitfalls relatedto these definitions of value and use of the strategy canvas. What is theimplications of the strategy canvas in the process of developing a new BMon the basis of a Blue Ocean Strategy?...

  17. Scrum and Global Delivery: Pitfalls and Lessons Learned

    Science.gov (United States)

    Sadun, Cristiano

    Two trends are becoming widespread in software development work—agile development processes and global delivery, both promising sizable benefits in productivity, capacity and so on. Combining the two is a highly attractive possibility, even more so in fast-paced and constrained commercial software engineering projects. However, a degree of conflict exists between the assumptions underlying the two ideas, leading to pitfalls and challenges in agile/distributed projects which are new, both with respect to traditional development and agile or distributed efforts adopted separately. Succeeding in commercial agile/distributed projects implies recognizing these new challenges, proactively planning for them, and actively put in place solutions and methods to overcome them. This chapter illustrates some of the typical challenges that were met during real-world commercial projects, and how they were solved.

  18. Surgery for Locally Recurrent Rectal Cancer: Tips, Tricks, and Pitfalls.

    Science.gov (United States)

    Warrier, Satish K; Heriot, Alexander G; Lynch, Andrew Craig

    2016-06-01

    Rectal cancer can recur locally in up to 10% of the patients who undergo definitive resection for their primary cancer. Surgical salvage is considered appropriate in the curative setting as well as select cases with palliative intent. Disease-free survival following salvage resection is dependent upon achieving an R0 resection margin. A clear understanding of applied surgical anatomy, appropriate preoperative planning, and a multidisciplinary approach to aggressive soft tissue, bony, and vascular resection with appropriate reconstruction is necessary. Technical tips, tricks, and pitfalls that may assist in managing these cancers are discussed and the roles of additional boost radiation and intraoperative radiation therapy in the management of such cancers are also discussed.

  19. Multi-criteria decision analysis: Limitations, pitfalls, and practical difficulties

    Energy Technology Data Exchange (ETDEWEB)

    Kujawski, Edouard

    2003-02-01

    The 2002 Winter Olympics women's figure skating competition is used as a case study to illustrate some of the limitations, pitfalls, and practical difficulties of Multi-Criteria Decision Analysis (MCDA). The paper compares several widely used models for synthesizing the multiple attributes into a single aggregate value. The various MCDA models can provide conflicting rankings of the alternatives for a common set of information even under states of certainty. Analysts involved in MCDA need to deal with the following challenging tasks: (1) selecting an appropriate analysis method, and (2) properly interpreting the results. An additional trap is the availability of software tools that implement specific MCDA models that can beguile the user with quantitative scores. These conclusions are independent of the decision domain and they should help foster better MCDA practices in many fields including systems engineering trade studies.

  20. The Neuroaesthetics of Prose Fiction: Pitfalls, Parameters and Prospects

    Directory of Open Access Journals (Sweden)

    Michael eBurke

    2015-08-01

    Full Text Available Neuroaesthetics tends not to do literature. To put it more precisely, neuroaesthetics tends not to do literature very often and when it does, it is inclined not to do it with much conviction, belief and rigour. This is not the case in the very many impressive studies that have been conducted on the neuroaesthetics of sister arts such as painting, music, dance, sculpture and the like. Why is this the case and, of greater importance, how can it best be resolved? In this paper, the pitfalls, parameters and prospects of a neuroaesthetics of prose fiction will be explored. The article itself is part critical review, part methodological proposal and part opinion paper. Its aim is simple: to stimulate, excite and energize thinking in the discipline as to how prose fiction might be fully integrated in the canon of neuroaesthetics.

  1. Bipedal Robot Locomotion on a Terrain with Pitfalls

    Directory of Open Access Journals (Sweden)

    Alireza Tabrizizadeh

    2014-12-01

    Full Text Available In this paper a locomotion control system for bipedal robot is proposed to provide desirable walking on a terrain and skipping over a pitfall preventing the robot from falling in it. The proposed strategy is a combination of motion optimization based on particle swarm optimization algorithm and utilization of mode switching at the higher level controller. The model for bipedal robot is a compass gait model but the presented method is general and could be appropriately extended and generalized for other complicated models. Principles of minimalistic designs are also respected and simple central pattern generator and simple mechanical feedback control are used to produce and maintain desirable motion patterns of the robot.

  2. Artifacts and pitfalls of high-resolution CT scans.

    Science.gov (United States)

    Hahn, F J; Chu, W K; Anderson, J C; Dobry, C A

    1985-01-01

    Artifacts on CT images have been observed since the introduction of CT scanners. Some artifacts have been corrected with the improvement of technology and better understanding of the image formation and reconstruction algorithms. Some artifacts, however, are still observable in state-of-the-art high-resolution scans. Many investigations on CT artifacts have been reported. Some artifacts are obvious and some are similar to patterns commonly associated with pathological conditions. The present report summarizes some of the causes of artifacts and presents some artifacts that mimic pathology on clinical scans of the head and spine. It is the intention of this report to bring these artifacts and potential pitfalls to the attention of the radiologists so that misinterpretation can be avoided.

  3. Hyperpolarized Renal Magnetic Resonance Imaging: Potential and Pitfalls

    Directory of Open Access Journals (Sweden)

    Christoffer eLaustsen

    2016-03-01

    Full Text Available The introduction of dissolution dynamic nuclear polarization (d-DNP technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation. Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical value of this technology is unknown. In this paper, I review the potential benefits and pitfalls associated with dissolution dynamic nuclear polarization in preclinical research and its translation to renal patients.

  4. The Complicated Facial War Injury: Pitfalls and Mismanagement.

    Science.gov (United States)

    Abu-Sittah, Ghassan S; Baroud, Joe; Hakim, Christopher; Wakil, Cynthia

    2017-01-01

    The aim of this paper is to share the authors' experience in the management of complicated facial war injuries using free tissue transfer. A discussion on the most commonly encountered pitfalls in management during the acute and complicated settings is presented in an effort to raise insight on facial war wound complications. Two patients of complicated facial war injuries are presented to exemplify the pitfalls in acute and chronic management of the mandibular region in the first patient and the orbito-maxillary region in the second. The examples demonstrate free tissue transfer for early as well as late definitive reconstructions. A reconstruction algorithm or consensus regarding the optimal management plan of complicated facial war injuries is not attainable. The main principles of treatment, however, remain to decrease bacterial burden by adequate aggressive debridement followed by revisit sessions, remove of all infected hardware followed by replacement with external bony fixation if necessary and reviving the affected area by coverage with well-vascularized tissues and bone. The later is feasible via local, regional, or distant tissue transfer depending on the extent of injury, surgeon's experience, and time and personnel available. Free tissue transfer has revolutionized the management of complicated facial war injuries associated with soft tissue or bone loss as it has allowed the introduction of well-vascularized tissues into a hostile wound environment. The end result is a reduced infection rate, faster recovery time, and better functional outcome compared with when loco-regional soft tissue coverage or bone grafting is used. When soft tissue or bone loss is present, free tissue transfer should be the first management plan if time and personnel are available. The ultimate treatment of a complicated war wound remains prevention by accurate initial management.

  5. 故障电流限制器发展现状与应用前景%Current Status and Application Prospect of Fault Current Limiters

    Institute of Scientific and Technical Information of China (English)

    郑健超

    2014-01-01

    To meet the challenge of ever-increasing fault current level in the power grid, various fault current limiters have been proposed and developed over the past decades. However, with a few exceptions, there has been little progress in developing products feasible for commercial applications. This paper attempts to give an overview of current states and technical features of the leading fault current limiters, and to analyze the restrictions to its penetration into power market. Finally, the development trend and future prospect of FCL are projected, with special reference to the recent innovation tendency in making FCL more competitive, including extending its applications to smart grid and further improving its tech-economic performance by technology convergence.%为了应对电网故障电流水平日益增长的挑战,过去数十年,提出并开发了各类故障电流限制器。但是,除少数例外,适合于商业应用的产品开发却进展缓慢。该文概括介绍了主要限流器的发展现状及技术特点,分析了影响限流器进入电力市场的制约因素。最后,预测了限流器的发展趋势和未来前景,重点讲述为提高限流器的竞争力,近年来技术创新的趋向,包括将限流器的应用扩展到智能电网,通过技术融合进一步改善其技术经济性能等。

  6. Study on Recovery Performance of High Tc Superconducting Tapes for Resistive Type Superconducting Fault Current Limiter Applications

    Science.gov (United States)

    kar, Soumen; Kulkarni, Sandeep; Dixit, Manglesh; Singh, Kuwar Pal; Gupta, Alok; Balasubramanyam, P. V.; Sarangi, S. K.; Rao, V. V.

    Recent advances in reliable production of long length high temperature superconducting (HTS) tapes have resulted in commercial application of superconducting fault current limiters (SFCLs) in electrical utility networks. SFCL gives excellent technical performance when compared to conventional fault current limiters. The fast self-recovery from normal state to superconducting state immediately after the fault removal is an essential criterion for resistive type SFCL operation. In this paper, results on AC over-current testing of 1st generation (1G) Bi2223 tapes and 2nd generation (2G) YBCO coated conductors operating at 77 K are reported. From these results, the recovery time is estimated for different available HTS tapes in the market. The current limiting tests have also been performed to study the effective current limitation. Further, the recovery characteristics after the current limitation are quantitatively discussed for repetitive faults for different time intervals in the range of 100 ms to few seconds.

  7. Neural Networks Application For Current, Salinity And Temperature Forecasting In Osaka Bay

    Science.gov (United States)

    Aguilar, Sandra G.; El Serafy, Ghada Y.

    2010-05-01

    Artificial neural networks (ANNs) have been wide used in hydraulic applications. The main advantage of this method lies in its ability to represent both linear and non-linear relationships that are present in the processes and thus in the measured data. The artificial neural network is a well established technique for representing and predicting the dynamic state of water systems and environmental systems. In comparison to more conventional model techniques and complicated softwares, the ANN is specifically an attractive technique for operational forecasting systems that are focusing on forecasting few state variables at few essential locations. In this paper, an application of ANN for Osaka bay in Japan is presented. The human activities in the bay have an influence in the deterioration of regional seawater quality giving an importance to assess the behavior of water quality variables at three essential monitoring points. Those points are located in the northwest part of the bay and considered in this paper to be the locations of interest for operational forecasting. Moreover, in the presence of spatial and temporal variability of the dynamic state, the selection of appropriate set of input variables during the ANN development is important and rather difficult. In this study, a correlation analysis was used to help in defining the most important input variables and lag time in the recursive ANN here presented. Different ANN structures are presented to show that spatial and temporal correlations patters found in the correlation analysis have an impact in the performance of the ANN when choosing inputs and outputs. The results show that ANNs have great potential to simulate salinity, temperature and velocity field at locations of interest. Finally, a comparison with a numerical model (Osaka Bay Forecasting System) is presented to show the efficiency and accuracy of the ANN. The results were also compared to a simple data assimilation scheme that is also available

  8. Pitfalls in Persuasion: How Do Users Experience Persuasive Techniques in a Web Service?

    Science.gov (United States)

    Segerståhl, Katarina; Kotro, Tanja; Väänänen-Vainio-Mattila, Kaisa

    Persuasive technologies are designed by utilizing a variety of interactive techniques that are believed to promote target behaviors. This paper describes a field study in which the aim was to discover possible pitfalls of persuasion, i.e., situations in which persuasive techniques do not function as expected. The study investigated persuasive functionality of a web service targeting weight loss. A qualitative online questionnaire was distributed through the web service and a total of 291 responses were extracted for interpretative analysis. The Persuasive Systems Design model (PSD) was used for supporting systematic analysis of persuasive functionality. Pitfalls were identified through situations that evoked negative user experiences. The primary pitfalls discovered were associated with manual logging of eating and exercise behaviors, appropriateness of suggestions and source credibility issues related to social facilitation. These pitfalls, when recognized, can be addressed in design by applying functional and facilitative persuasive techniques in meaningful combinations.

  9. Limitations and pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) scintigraphy.

    Science.gov (United States)

    Garai, Ildikó; Barna, Sandor; Nagy, Gabor; Forgacs, Attila

    2016-01-01

    Tektrotyd kit was developed by Polatom company for 99mTc labeling to make an alternative tracer of somatostatin receptor scintigraphy available. Since 2005, 99mTc-EDDA/HYNIC-Tyr3-Octreotide has been used in clinical imaging and achieved high impact in management of patients with neuroendocrine tumors. Knowing the limitations and pitfalls is essential to provide ac-curate diagnosis. Therefore, the potential pitfalls associated with the use of 99mTc-EDDA/HYNIC-TOC are reviewed on the basis of own experience. Data were analyzed of 310 patients who underwent somatostatin receptor scintigraphy with 99mTc-Tektrotyd. Pitfalls during radiolabeling process or acquisition can worsen the sensitivity of SRS (somatostatin receptor scintigraphy). Recognizing physi-ological and clinical pitfalls, the diagnostic accuracy will improve.

  10. Social learning in Learning Networks through peer support: research findings and pitfalls

    NARCIS (Netherlands)

    Brouns, Francis

    2012-01-01

    Brouns, F. (2012, 2-4 April). Social learning in Learning Networks through peer support: research findings and pitfalls. Presentation at the Eighth International Conference on Networked Learning 2012, Maastricht, The Netherlands.

  11. Current and Future Clinical Applications of Zinc Transporter-8 in Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Bo Yi

    2015-01-01

    Conclusions: ZnT8 is a novel islet autoantigen with a widely potential for clinical applications in T1DM. However, before the large-scale clinical applications, there are still many problems to be solved.

  12. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cirio, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Fausti, F. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Elettronica e Telecomunicazioni del Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino (Italy); Fanola Guarachi, L. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Giordanengo, S., E-mail: Simona.Giordanengo@to.infn.it [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Marchetto, F.; Mazza, G. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Monaco, V.; Sacchi, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Talpacci, E. [Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Varasteh Anvar, M. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Vignati, A. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy)

    2015-10-21

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers.

  13. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    Science.gov (United States)

    Cirio, R.; Fausti, F.; Fanola Guarachi, L.; Giordanengo, S.; Marchetto, F.; Mazza, G.; Monaco, V.; Sacchi, R.; Talpacci, E.; Varasteh Anvar, M.; Vignati, A.

    2015-10-01

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers.

  14. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

    Science.gov (United States)

    Duffy, Rebecca M; Feinberg, Adam W

    2014-01-01

    Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs.

  15. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides.

    Science.gov (United States)

    Nowell, Lisa H; Norman, Julia E; Ingersoll, Christopher G; Moran, Patrick W

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n=3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  16. Interaction of Waves, Surface Currents, and Turbulence: the Application of Surface-Following Coordinate Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formulation of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply surface-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave-mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The balance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.

  17. Adaptive capacity indicators to assess sustainability of urban water systems - Current application.

    Science.gov (United States)

    Spiller, Marc

    2016-11-01

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  19. The value of positive psychology for health psychology: progress and pitfalls in examining the relation of positive phenomena to health.

    Science.gov (United States)

    Aspinwall, Lisa G; Tedeschi, Richard G

    2010-02-01

    The growth of the "positive psychology" movement reflects increased scientific and lay interest in the relation of positive phenomena to mental and physical health and the corresponding potential for interventions that promote positive feelings, thoughts, and experiences to improve health and well-being. In this article, we (1) consider research on optimism, sense of coherence, and posttraumatic growth that predates the contemporary emphasis on positive psychology, but has clear and increasingly well-supported connections to health psychology, (2) examine several potential mechanisms through which such positive phenomena may influence the etiology, progression, and management of illness, (3) identify four pervasive but misleading assumptions about positive phenomena that may limit both scientific research and practical application, and (4) caution against serious pitfalls of popular views of positive thinking, such as its promotion as a cure for cancer and other diseases. We conclude with recommendations for the balanced scientific investigation and application of positive phenomena.

  20. Current situation and trend of RE application in steel in recent three years

    Institute of Scientific and Technical Information of China (English)

    XIA Guojin; XIE Ping; XIA Xinyu

    2010-01-01

    @@ I.Features of RE application in steel in recent three years in China There are two major RE applications in China.One is in traditional fields including applications in metallurgy & machinery,petroleum & chemical industry,glass & ceramics and agriculture,light industry and textile industry,etc.

  1. Common Pitfalls in Exposure and Response Prevention (EX/RP) for OCD

    OpenAIRE

    Gillihan, Seth J.; Williams, Monnica T.; Malcoun, Emily; Yadin, Elna; Edna B. Foa

    2012-01-01

    Obsessive-compulsive disorder (OCD) is a highly debilitating disorder. Fortunately there are treatments that help the majority of OCD sufferers. The behavioral treatment with the most empirical support for its efficacy is exposure and response prevention (EX/RP). Over the years in our supervision meetings and in our clinical practice we have noted a number of relatively common therapist pitfalls that decrease the effectiveness of EX/RP. These pitfalls include not encouraging patients to appro...

  2. Distributed Secondary Control for DC Microgrid Applications with Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2013-01-01

    are used locally as the distributed secondary controllers in each converter to enhance the current sharing accuracy and restore the dc bus voltage simultaneously. All the controllers are realized locally and the LBC system is only used for changing the data of dc voltage and current. Thus, a decentralized......, a distributed secondary control method is proposed. Droop control is employed as the primary control method for load current sharing. Meanwhile, the dc output voltage and current in each module is transferred to the others by the low bandwidth communication (LBC) network. Average voltage and current controllers...

  3. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children

    Science.gov (United States)

    Kinney-Lang, E.; Auyeung, B.; Escudero, J.

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered

  4. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    Science.gov (United States)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  5. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...

  6. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Nowell, Lisa H., E-mail: lhnowell@usgs.gov [U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J Street, Sacramento, CA 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5" t" h Avenue, Portland, OR 97201 (United States); Ingersoll, Christopher G., E-mail: cingersoll@usgs.gov [U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65021 (United States); Moran, Patrick W., E-mail: pwmoran@usgs.gov [U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402 (United States)

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  7. Learning analytics fundaments, applications, and trends : a view of the current state of the art to enhance e-learning

    CERN Document Server

    2017-01-01

    This book provides a conceptual and empirical perspective on learning analytics, its goal being to disseminate the core concepts, research, and outcomes of this emergent field. Divided into nine chapters, it offers reviews oriented on selected topics, recent advances, and innovative applications. It presents the broad learning analytics landscape and in-depth studies on higher education, adaptive assessment, teaching and learning. In addition, it discusses valuable approaches to coping with personalization and huge data, as well as conceptual topics and specialized applications that have shaped the current state of the art. By identifying fundamentals, highlighting applications, and pointing out current trends, the book offers an essential overview of learning analytics to enhance learning achievement in diverse educational settings. As such, it represents a valuable resource for researchers, practitioners, and students interested in updating their knowledge and finding inspirations for their future work.

  8. Workflow with pitfalls to derive a regional airborne magnetic compilation

    Science.gov (United States)

    Brönner, Marco; Baykiev, Eldar; Ebbing, Jörg

    2017-04-01

    Today, large scale magnetic maps are usually a patchwork of different airborne surveys from different size, different resolution and different years. Airborne magnetic acquisition is a fast and economic method to map and gain geological and tectonic information for large areas, onshore and offshore. Depending on the aim of a survey, acquisition parameters like altitude and profile distance are usually adjusted to match the purpose of investigation. The subsequent data processing commonly follows a standardized workflow comprising core-field subtraction and line leveling to yield a coherent crustal field magnetic grid for a survey area. The resulting data makes it possible to correlate with geological and tectonic features in the subsurface, which is of importance for e.g. oil and mineral exploration. Crustal scale magnetic interpretation and modeling demand regional compilation of magnetic data and the merger of adjacent magnetic surveys. These studies not only focus on shallower sources, reflected by short to intermediate magnetic wavelength anomalies, but also have a particular interest in the long wavelength deriving from deep seated sources. However, whilst the workflow to produce such a merger is supported by quite a few powerful routines, the resulting compilation contains several pitfalls and limitations, which were discussed before, but still are very little recognized. The maximum wavelength that can be resolved of each individual survey is directly related to the survey size and consequently a merger will contribute erroneous long-wavelength components in the magnetic data compilation. To minimize this problem and to homogenous the longer wavelengths, a first order approach is the combination of airborne and satellite magnetic data commonly combined with the compilation from airborne data, which is sufficient only under particular preconditions. A more advanced approach considers the gap in frequencies between airborne and satellite data, which motivated

  9. Current status of fiber optic gyro efforts for space applications in Japan

    Science.gov (United States)

    Mitani, Shinji; Mizutani, Tadahito; Sakai, Shin-ichiro

    2016-05-01

    In response to the maturation of Fiber Optic Gyro technologies, FOGs are being used in various applications. Also in Japan, the demand for FOG is high, and is used in some space applications. In this paper, we introduce examples of Japanese products that apply to space-use. It also describes some efforts for high-grade navigation use in Japan.

  10. Assessing the Purpose and Importance University Students Attribute to Current ICT Applications

    Science.gov (United States)

    DiGiuseppe, Maurice; Partosoedarso, Elita

    2014-01-01

    In this study we surveyed students in a mid-sized university in Ontario, Canada to explore various aspects associated with their use of computer-based applications. For the purpose of analysis, the computer applications under study were categorized according to the Human-Computer-Human Interaction (HCHI) model of Desjardins (2005) in which…

  11. Application of isothermal current deep level transient spectroscopy to solar cells

    Science.gov (United States)

    Rancour, D. P.; Pierret, R. F.; Lundstrom, M. S.; Melloch, M. R.

    1989-03-01

    The utility of isothermal current deep level transient spectroscopy (DLTS) techniques in directly probing solar cells is described and illustrated. A modified approach to processing the isothermal DLTS data is also presented. Specifically, it is pointed out that properly normalized isothermal data, whether derived from a current or capacitance transient, should conform to a single, temperature-independent curve.

  12. Ionic Current Mapping Techniques and Applications to Aluminum-Copper Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H. S.; Jeffcoate, C. S.; Missert, N. A.; Barbour, J. C.

    1999-10-17

    Measurements have been made of the aluminum/metal galvanic couple. A wide range of geometries were investigated varying the areas of anodic and cathodic surfaces and employing specially designed galvanic cells with crevices. In situ ionic current density mapping was used to monitor galvanic corrosion and currents flowing between separated metals was measured.

  13. Qualifying stem cell sources: how to overcome potential pitfalls in regenerative medicine?

    Science.gov (United States)

    Reinke, Simon; Dienelt, Anke; Blankenstein, Antje; Duda, Georg N; Geissler, Sven

    2016-01-01

    Regenerative medicine aims to replace lost cells and to restore damaged tissues and organs by either tissue-engineering approaches or stimulation of endogenous processes. Due to their biological properties, stem cells promise to be an effective source for such strategies. Especially adult multipotent stem cells (ASCs) are believed to be applicable in a broad range of therapies for the treatment of multifactorial diseases or age-related degeneration, although the molecular and cellular mechanisms underlying their regenerative function are often hardly described. Moreover, in some demanding clinical situations their efficiency remains limited. Thus, a basic understanding of ASCs regenerative function, their complex interplay with their microenvironment and how compromising conditions interfere with their efficiency is mandatory for any regenerative strategy. Concerning this matter, the impact of patient-specific constraints are often underestimated in research projects and their influence on the study results disregarded. Thus, researchers are urgently depending on well-characterized tissue samples or cells that are connected with corresponding donor information, such as secondary diseases, medication. Here, we outline principle pitfalls during experimental studies using human samples, and describe a potential strategy to overcome these challenges by establishing a core unit for cell and tissue harvesting. This facility aims to bridge the gap between clinic and research laboratories by the provision of a direct link to the clinical operating theatres. Such a strategy clearly supports basic and clinical research in the conduct of their studies and supplies highly characterized human samples together with the corresponding donor information.

  14. Pitfalls of using the geometric-mean combining rule in the density gradient theory

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2016-01-01

    It is popular and attractive to model the interfacial tension using the density gradient theory with the geometric-mean combining rule, in which the same equation of state is used for the interface and bulk phases. The computational efficiency is the most important advantage of this theory. In th...... the interface could be considered as a warning for the unsuccessful applications of the geometric-mean density gradient theory combined with the chosen thermodynamic model, even if numerical pitfalls do not occur. (C) 2016 Elsevier B.V. All rights reserved.......It is popular and attractive to model the interfacial tension using the density gradient theory with the geometric-mean combining rule, in which the same equation of state is used for the interface and bulk phases. The computational efficiency is the most important advantage of this theory....... In this work, it has been mathematically shown that the theory fails if the solution profile is not monotonic in the path function, which is defined as the summation of the density multiplied by the square root of the influence parameter over all components. A computational solution procedure is then presented...

  15. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    Science.gov (United States)

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  16. Methods for meta-analysis in genetic association studies: a review of their potential and pitfalls.

    Science.gov (United States)

    Kavvoura, Fotini K; Ioannidis, John P A

    2008-02-01

    Meta-analysis offers the opportunity to combine evidence from retrospectively accumulated or prospectively generated data. Meta-analyses may provide summary estimates and can help in detecting and addressing potential inconsistency between the combined datasets. Application of meta-analysis in genetic associations presents considerable potential and several pitfalls. In this review, we present basic principles of meta-analytic methods, adapted for human genome epidemiology. We describe issues that arise in the retrospective or the prospective collection of relevant data through various sources, common traps to consider in the appraisal of evidence and potential biases that may interfere. We describe the relative merits and caveats for common methods used to trace inconsistency across studies along with possible reasons for non-replication of proposed associations. Different statistical models may be employed to combine data and some common misconceptions may arise in the process. Several meta-analysis diagnostics are often applied or misapplied in the literature, and we comment on their use and limitations. An alternative to overcome limitations arising from retrospective combination of data from published studies is to create networks of research teams working in the same field and perform collaborative meta-analyses of individual participant data, ideally on a prospective basis. We discuss the advantages and the challenges inherent in such collaborative approaches. Meta-analysis can be a useful tool in dissecting the genetics of complex diseases and traits, provided its methods are properly applied and interpreted.

  17. Data Science Careers: A Sampling of Successful Strategies, Pitfalls, and Persistent Challenges

    Science.gov (United States)

    Stocks, K. I.; Duerr, R.; Wyborn, L. A.; Yarmey, L.

    2015-12-01

    Data Scientists do not have a single career trajectory or preparatory pathway. Successful data scientists have come from domain sciences, computer science, library science, and other diverse fields. They have worked up from entry-level staff positions, have started as academics with doctoral degrees, and have established themselves as management professionals. They have positions in government, industry, academia, and NGO's, and their responsibilities range from highly specialized, to generalists, to high-level leadership. This presents a potentially confusing landscape for students interested in the field: how to decide among the varied options to have the best chance at fulfilling employment? What are the mistakes to avoid? Many established data scientist, both old-timers and early career professionals, expressed interest in presenting in this session but were unable to justify using their one AGU abstract for something other than their funded projects. As the session chairs we interviewed them, plus our extended network of colleagues, to ask for their best advice on what was most critical to their success in their current position, what pitfalls to avoid, what ongoing challenges they see, and what advice they would give themselves, if they could do it all over again starting now. Here we consolidate those interviews with our own perspectives to present some of the common themes and standout advice.

  18. Diagnostic tests based on human basophils: more potentials and perspectives than pitfalls. II. Technical issues.

    Science.gov (United States)

    De Week, A L; Sanz, M L; Gamboa, P M; Aberer, W; Bienvenu, J; Blanca, M; Demoly, P; Ebo, D G; Mayorga, L; Monneret, G; Sainte Laudy, J

    2008-01-01

    Cellular basophil activation tests (BAT) such as histamine or sulfidoleukotriene-release tests for allergy diagnosis have been available for some time, but expression of basophil-activation markers such as CD63 and CD203c detected by flow cytometry has attracted particular attention in recent years. Not only the potential but also the possible pitfalls of flow-cytometric BAT have been stressed recently. Some authors have suggested that the technical problems are still such that BAT should only be performed in specialist laboratories. In an earlier review based on our clinical experience obtained over several years, we showed that, even using different protocols, reproducible and meaningful clinical results can be obtained. In this paper, we review the current knowledge in relation to several technical issues and show that flow-cytometric BAT already represents a major advance in the field of in vitro allergy diagnosis. We conclude that there are no serious technical justifications for depriving allergic patients of clinically indicated BAT tests, which can be performed reliably by any laboratory with the appropriate experience in allergy diagnosis and flow cytometry.

  19. Lower hybrid heating and current drive design for ITER and application for present tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Froissard, P.; Rey, G.; Bibet, P.; Goniche, M.; Kazarian, F.; Portafaix, C.; Tonon, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bosia, G.; Bruno, L. [ITER Joint Work Site, Garching (Germany); Kuzikov, S. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation); Wasastjerna, F. [VTT Energy (Finland)

    1998-07-01

    The lower Hybrid Heating and Current Drive (LHH and CD) System shall provide on ITER off-axis current profile control during burn, main contribution to the non-inductive current generation in the advanced Tokamak scenario, current profile tailoring during ramp up phase, heating and current drive during plasma shut-down, extension of the pulse duration during commissioning phase. The LHH and CD system operates at 5 GHz, this frequency being a trade-off between power absorption by alpha particles and klystron technology and couples a minimum of 50 MW using two ITER ports. This article describes the launcher plug and the transmission lines. Specific converters, such as the mode converters, RF windows and the hyper-guide have now been successfully tested at high power and long pulse duration.

  20. Phase-contrast MRI and applications in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A., E-mail: adgoldberg@geisinger.edu [Department of Radiology, Geisinger Health System, Danville, PA (United States); Jha, S. [Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-15

    A review of phase-contrast magnetic resonance imaging techniques, with specific application to congenital heart disease, is presented. Theory, pitfalls, advantages, and specific examples of multiple, well-described congenital heart disease presentations are discussed.

  1. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications.

    Science.gov (United States)

    Young, Kwo-Hsiung; Nei, Jean

    2013-10-17

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB₅, AB₂, A₂B₇-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  2. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Kwo-hsiung Young

    2013-10-01

    Full Text Available In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

  3. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Deyang, E-mail: d.yu@impcas.ac.cn; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  4. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    CERN Document Server

    Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-01-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  5. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    Science.gov (United States)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  6. A New Small Drifter for Shallow Water Basins: Application to the Study of Surface Currents in the Muggia Bay (Italy

    Directory of Open Access Journals (Sweden)

    Carmelo Nasello

    2016-01-01

    Full Text Available A new small drifter prototype for measuring current immediately below the free surface in a water basin is proposed in this paper. The drifter dimensions make it useful for shallow water applications. The drifter transmits its GPS location via GSM phone network. The drifter was used to study the trajectory of the surface current in the Muggia bay, the latter containing the industrial harbor of the city of Trieste (Italy. The analysis has been carried out under a wide variety of wind conditions. As regards the behavior of the drifter, the analysis has shown that it is well suited to detect the water current since its motion is marginally affected by the wind. The study has allowed detecting the main features of the surface circulation within the Muggia bay under different meteorological conditions. Also, the study has shown that the trajectory of the surface current within the bay is weakly affected by the Coriolis force.

  7. Different diagnostic criteria for Parkinson disease: what are the pitfalls?

    Science.gov (United States)

    Bhidayasiri, Roongroj; Reichmann, Heinz

    2013-04-01

    As there are no definite diagnostic tests or reliable biomarkers for Parkinson disease (PD), its diagnosis still relies on the presence of a combination of cardinal motor features, along with the exclusion of other causes of Parkinsonism and the presence of some of supportive features. To date, several diagnostic criteria have been developed for different purposes through expert opinions or comprehensive review of the literature. However, none of them are without limitations. In this article, we review different diagnostic criteria for PD which have been published in the English medical literature, highlighting specific limitations and pitfalls. With considerable progress in the understanding of PD, particularly in a view of diverse clinical symptomatology and its evolution, it will be difficult to establish a single criterion that is capable of capturing all cases at different disease stages. Rather, we should aim to develop a set of criteria which include a consensus on clinical gold standard or reliable biomarkers at different levels of diagnostic certainty for different purposes. Despite a more refined set of criteria that may aid in the recognition of PD, the accuracy of its diagnosis still largely depends on the observational skills and clinical sensitivity of the treating physician.

  8. Pitfalls and Limitations of Radionuclide Renal Imaging in Adults.

    Science.gov (United States)

    Keramida, Georgia; James, Jacqueline M; Prescott, Mary C; Peters, Adrien Michael

    2015-09-01

    To understand pitfalls and limitations in adult renography, it is necessary to understand firstly the physiology of the kidney, especially the magnitude and control of renal blood flow, glomerular filtration rate and tubular fluid flow rate, and secondly the pharmacokinetics and renal handling of the three most often used tracers, Tc-99m-mercaptoacetyltriglycine (MAG3), Tc-99m-diethylene triamine pentaacetic acid (DTPA) and Tc-99m-dimercaptosuccinic acid (DMSA). The kidneys may be imaged dynamically with Tc-99m-MAG3 or Tc-99m-DTPA, with or without diuretic challenge, or by static imaging with Tc-99m-DMSA. Protocols are different according to whether the kidney is native or transplanted. Quantitative analysis of dynamic data includes measurement of renal vascularity (important for the transplanted kidney), absolute tracer clearance rates, differential renal function (DRF) and response to diuretic challenge. Static image reveals functional renal parenchymal damage, both focal and global, is useful in the clinical management of obstructive uropathy, renal stone disease and hypertension (under angiotensin converting enzyme inhibition), and is the preferred technique for determining DRF. Diagnosis based on morphological appearances is important in transplant management. Even though nuclear medicine is now in the era of hybrid imaging, renal imaging remains an important subspecialty in nuclear medicine and requires a sound basing in applied physiology, the classical supporting discipline of nuclear medicine.

  9. A structural approach in networks: showing patterns, possibilities and pitfalls

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Alves

    2010-01-01

    Full Text Available In recent years there has been a noticeable shift in evaluation paradigms away from positivist, individualist and atomistic explanations of phenomena to those seeking a more relational, contextual and systemic understanding. This growing shift in interest to the interrelationships or networks of connections between entities is apparent in fields as organizations in networks, knowledge transmission between social groups and so. A growing theoretical and methodological base is providing enhanced capacities to uncover the actual topologies or patterns of connections between entities, elements, people, organizations or communities and deliver a more fine grained analysis of their elements. In this way network analysis differs from conventional evaluation and research modes since its focus is on the interrelationships of entities not the characteristics of individuals. In this paper, we review and analyze the emerging capacity of the network paradigm as an evaluation method and show how this model can be applied t a range of evaluation arenas. In doing so, we outline a framework to guide network evaluation, establish some key network indicators and highlight key methodological aspects and pitfalls.

  10. ERG expression in multiple myeloma-A potential diagnostic pitfall.

    Science.gov (United States)

    Knief, Juliana; Reddemann, Katharina; Gliemroth, Jan; Brede, Swantje; Bartscht, Tobias; Thorns, Christoph

    2017-02-01

    ERG expression has been described as a frequent event in prostate cancer indicating poor prognosis and promoting oncogenesis. It has also been demonstrated in Ewing's sarcoma, acute myeloid leukemia and acute T-lymphoblastic leukemia but could not be found in other epithelial tumors, Hodgkin's or Non-Hodgkin's lymphoma. We aimed to analyze ERG expression in multiple myeloma, following an index case of a patient with metastases of unknown origin in the spine strongly expressing ERG, which were thought to be of prostatic origin but turned out to be plasmacytic lesions. We subsequently selected 12 formalin-fixed, paraffin-embedded tissue samples of multiple myeloma from our archives and performed immunohistochemical staining for ERG. All 12 analyzed cases showed strong nuclear expression of ERG in >90% of tumor cells (myeloma cells). This report highlights a potential and critical diagnostic pitfall in biopsy specimens where morphology is only of limited assistance in reaching the correct diagnosis. It urges pathologists to exercise caution in cases where strong ERG-positivity implicates the presence of a prostatic neoplasia and illustrates the need for further immunohistochemical examination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Pitfalls in modeling mantle convection with internal heat production

    Science.gov (United States)

    Korenaga, Jun

    2017-05-01

    The mantle of the Earth, and probably of other terrestrial planets as well, is heated from below and within. The heating mode of mantle convection is thus mixed heating, and it is also time dependent because the amount of heat-producing isotopes in the mantle is steadily decreasing by radioactive decay and because the basal heat flux originating in the cooling of the core can vary with time. This mode of transient mixed heating presents its own challenges to the study of mantle convection, but such difficulties are not always appreciated in the recent literature. The purpose of this tutorial is to clarify the issue of heating mode by explaining relevant concepts in a coherent manner, including the internal heating ratio, the Urey ratio, secular cooling, and the connection between the thermal budget of the Earth and the geochemical models of the Earth. The importance of such basic concepts will be explained with some illustrative examples in the context of the thermal evolution of the Earth, and a summary of common pitfalls will be provided, with a possible strategy for how to avoid them.

  12. Cutaneous epithelioid angiosarcoma: a neoplasm with potential pitfalls in diagnosis.

    Science.gov (United States)

    Mobini, Narciss

    2009-03-01

    Angiosarcoma (AS) is a rare neoplasm. Cutaneous AS is the most common form of AS. The epithelioid variant of the disease, however, is a rare entity. This subset can histologically mimic non-vascular neoplasms and impose serious challenges in reaching the correct diagnosis. We present five patients with cutaneous epithelioid angiosarcoma (EAS); in none, the clinical diagnosis included a vascular lesion. Three patients had history of breast conservation surgery with/without radiation therapy. Other patients had no previous radiation, and there was no lymphedema in any of the cases. The histopathological examination of the biopsy specimens by hematoxylin and eosin method was not suggestive of a malignant vascular neoplasm initially and the differential diagnoses included carcinoma, malignant melanoma and atypical lymphoid infiltrate. Only after performing immunohistochemical studies that included vascular markers, a definitive diagnosis was possible. Some cases showed unusual histopathological features. Cutaneous EAS is a rare variant of cutaneous AS that can mimic a variety of more common, non-vascular neoplasms, creating a major pitfall in the diagnosis. A careful and thorough histopathological examination and a high index of suspicion, along with appropriate immunohistochemical evaluation, can help reach a correct diagnosis and provide optimal patient care.

  13. Navigating The Possible Legal Pitfalls Of Virtual Teams

    Directory of Open Access Journals (Sweden)

    Carolyn M. Plump

    2013-12-01

    Full Text Available Virtual teams are an increasingly popular element of organizational designs. While virtual teams offer important advantages – including increased collaboration, greater flexibility, and cost savings – they may also create legal issues. Specifically, using virtual teams may lead executives to unwittingly violate labor and personnel laws. The results can be costly, including the loss of key personnel, damage to a company’s reputation, and financial harm. Viewing virtual teams from a legal point of view, we identify pitfalls that virtual teams may encounter and offer ways to avoid them.  Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  14. Surgical pitfalls with custom-made porous hydroxyapatite cranial implants

    Directory of Open Access Journals (Sweden)

    Bruno Zanotti

    2015-03-01

    Full Text Available Aim: Cranioplasty implants are used primarily in cases of surgical cranial decompression following pathological elevations of intracranial pressure. Available bone substitutes include porous hydroxyapatite (HA and polymethylmethacrylate. Whichever material is used, however, prosthetic cranial implants are susceptible to intra- and postsurgical complications and even failure. The aim of this study was to investigate such occurrences in HA cranioplasty implants, seeking not only to determine the likely causes (whether correlated or not with the device itself but also, where possible, to suggest countermeasures. Methods: We analyzed information regarding failures or complications reported in postmarketing surveillance and clinical studies of patients treated worldwide with custom-made HA cranial implants (Custom Bone Service Fin-Ceramica Faenza, Italy in the period 1997-2013. Results: The two most common complications were implant fractures (84 cases, 2.9% of the total fitted and infections (51 cases, 1.77%. Conclusion: Although cranioplasties are superficial and not difficult types of surgery, and use of custom-made implants are often considered the "easy" option from a surgical perspective, these procedures are nonetheless plagued by potential pitfalls. If performed well they yield more than satisfactory results from the points of view of both the patient and surgeon, but lack of appropriate care can open the door to numerous potential sources of failure, which can compromise-even irreparably-the ability to heal.

  15. Pearls and pitfalls in genetic studies of migraine.

    Science.gov (United States)

    Eising, Else; de Vries, Boukje; Ferrari, Michel D; Terwindt, Gisela M; van den Maagdenberg, Arn M J M

    2013-06-01

    Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.

  16. Applications of intelligent optimization in biology and medicine current trends and open problems

    CERN Document Server

    Grosan, Crina; Tolba, Mohamed

    2016-01-01

    This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad...

  17. Dendrimers: General Aspects, Applications and Structural Exploitations as Prodrug/ Drug-delivery Vehicles in Current Medicine.

    Science.gov (United States)

    Mariyam, Merina; Ghosal, Kajal; George, Anne; Thomas, Sabu; Kalarikkal, Nandakumar; S Latha, Mahima

    2017-05-11

    Dendrimers are hyper branched macro molecules with well-defined structure and high degree of functionality on the surface. The dendrimer architecture allows control over properties such as shape, size, density, polarity, reactivity, solubility etc. This can be manipulated to design molecules with desired properties in biomedical applications. Recent advancement in correlating structure to biodegradability and invivo performance opens up new avenue for these molecules in biological applications like drug delivery and tissue engineering. The unique structure of dendrimers provides enough attachment sites for drugs in drug delivery applications. It is possible to tune the molecule in such a way as to encapsulate drug molecule outside target area and release in the local environment of targets. This review presents the general aspects of dendrimers and how these properties are exploited for drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Application of fractal theory in detecting low current faults of power distribution system in coal mines

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; LIANG Rui; WANG Chong-lin; FAN Di-peng

    2009-01-01

    Single-phase low current grounding faults areoften seen in power distribution system of coal mines. These faults are difficult to reliably identify. We propose a new method of single-phase ground fault protection based upon a discernible matrix of the fractal dimension associated with line currents. The method builds on existing selective protection methods. Faulted feeders are distinguished using differences in the zero-sequence transient current fractal dimension. The current signals were first processed through a fast Fourier transform and then the characteristics of a faulted line were identified using a discernible matrix. The method of calculation is illustrated. The results show that the method involves simple calculations, is easy to do and is highly accurate. It is, therefore, suitable for distribution networks having different neutral grounding modes.

  19. An Optical Fiber Sensor and Its Application in UAVs for Current Measurements

    Directory of Open Access Journals (Sweden)

    Felipe S. Delgado

    2016-10-01

    Full Text Available In this paper, we propose and experimentally investigate an optical sensor based on a novel combination of a long-period fiber grating (LPFG with a permanent magnet to measure electrical current in unmanned aerial vehicles (UAVs. The proposed device uses a neodymium magnet attached to the grating structure, which suffers from an electromagnetic force produced when the current flows in the wire of the UAV engine. Therefore, it causes deformation on the sensor and thus, different shifts occur in the resonant bands of the transmission spectrum of the LPFG. Finally, the results show that it is possible to monitor electrical current throughout the entire operating range of the UAV engine from 0 A to 10 A in an effective and practical way with good linearity, reliability and response time, which are desirable characteristics in electrical current sensing.

  20. PROSPECTS OF HIGH-CURRENT ELECTRON BEAMS APPLICATION TO RADIATION POLYETHYLENE CROSS-LINKING

    Directory of Open Access Journals (Sweden)

    A.G. Gurin

    2013-09-01

    Full Text Available A possibility of applying a pulse-periodic high-current induction electron accelerators to radiation polyethylene cross-linking is considered in the article. A comparative analysis with other devices used for irradiation is made.

  1. Hybrid High-Temperature Superconductor Current Leads for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tai-Yang Research Company (TYRC) proposes to address the need for high temperature superconducting (HTS) current leads used in an adiabatic demagnetization...

  2. In vivo assessment of human brain oscillations during application of transcranial electric currents

    NARCIS (Netherlands)

    Soekadar, S.R.; Witkowski, M.; García Cossio, E.; Birbaumer, N.; Robinson, S.E.; Cohen, L.G.

    2013-01-01

    Brain oscillations reflect pattern formation of cell assemblies’ activity, which is often disturbed in neurological and psychiatric diseases like depression, schizophrenia and stroke. In the neurobiological analysis and treatment of these conditions, transcranial electric currents applied to the

  3. Model of control of glow discharge electron gun current for microelectronics production applications

    Science.gov (United States)

    Denbnovetsky, S. V.; Melnyk, V. I.; Melnyk, I. V.; Tugay, B. A.

    2003-04-01

    The problems of simulation of discharge current control and its gas-dynamic stabilization for technological glow discharge electron guns with a cold cathode are considered in a paper. Such guns are successfully operated in soft vacuum and can be used in modern microelectronic technologies for providing of thermal operations with using different technological gases including active ones. The results of theoretical and experimental investigation of automatic control system of current of electron gun which were used for deposition of coatings in reactive gas medium are presented in article. Time of regulation for considered system did not exceed 400 ms. Is proved, that the automatic control of a current of a glow discharge electron gun by pressure variation its volume is effective on all operation range of pressure, and the minimum time of a current regulation can be tens -- hundred of ms, and this fact is allow to use in the majority of technological operations for microelectronic production.

  4. CURRENT USAGE OF COMPONENT BASED PRINCIPLES FOR DEVELOPING WEB APPLICATIONS WITH FRAMEWORKS: A LITERATURE REVIEW

    OpenAIRE

    Matija Novak; Ivan Švogor

    2016-01-01

    Component based software development has become a very popular paradigm in many software engineering branches. In the early phase of Web 2.0 appearance, it was also popular for web application development. From the analyzed papers, between this period and today, use of component based techniques for web application development was somewhat slowed down, however, the recent development indicates a comeback. Most of all it is apparent with W3C’s component web working group. In this article we wa...

  5. Negative-resistance voltage-current characteristics of superconductor contact junctions for macro-scale applications

    CERN Document Server

    Takayasu, M; Minervini, J V; 10.1109/TASC.2003.812854

    2003-01-01

    Voltage-current characteristics of mechanical pressure contact junctions between superconducting wires are investigated using a voltage-driving method. It is found that the switching regions at low voltages result from negative resistance of the contact junction. The current transport of the contact junctions is discussed from the perspective of two existing models: the multiple Andreev reflections at the two SN interfaces of a SNS (Superconductor/Normal metal /Superconductor) junction and the inhomogeneous multiple Josephson weak-link array. (13 refs).

  6. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    . In order to reduce system size and cost, each module shares the same DC and AC bus without any isolation or passive elements in the system. Consequently, potential zero-sequence current is possible to occur and should be paid specific attention. In this paper, a four-module online UPS system is designed....... And thermal and loss distribution condition are investigated under different circulating current condition with conventional three phase H-bridge topology....

  7. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application

    Directory of Open Access Journals (Sweden)

    Prasenjit Chatterjee

    2016-08-01

    Full Text Available This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T−1, which is very effective as compared to other previously reported works for a single device.

  8. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    Science.gov (United States)

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology.

  9. State-of-the-art 3DCT angiography assessment of lower extremity trauma: typical findings, pearls, and pitfalls.

    Science.gov (United States)

    Fritz, Jan; Efron, David T; Fishman, Elliot K

    2013-06-01

    Multi-detector computed tomography angiography (MDCTA) of the lower extremities is an integral part of the decision-making process of lower extremity trauma. MDCTA can be integrated into multiphasic whole-body trauma MDCT and has replaced the traditional gold standard of catheter-based angiography as the preferred technique for the initial assessment of lower extremity trauma in many institutions worldwide. Advances in MDCT technology enable high speed simultaneous evaluation of both complete lower extremities, rapid image reconstruction, and advanced image visualization for the noninvasive and accurate diagnosis of vascular, including hematoma, active extravasation, vasospasm, stenosis, external compression, occlusion, intimal injury and dissection, arteriovenous fistulas, and pseudoaneurysm formation. In this exhibit, we outline the role of MDCTA in the management of lower extremity trauma, review current MDCT protocols and the practical use of advanced visualization techniques, and illustrate typical MDCTA findings, pearls, and pitfalls, which help to accurately characterize vascular injury and guide management.

  10. Pitfalls in the use of whole slide imaging for the diagnosis of central nervous system tumors: A pilot study in surgical neuropathology

    Directory of Open Access Journals (Sweden)

    Melike Pekmezci

    2016-01-01

    Full Text Available Background: Whole slide imaging (WSI finds increasingly higher value in everyday surgical pathology in addition to its well-established use for educational and research purposes. However, its diagnostic utility, especially in subspecialty settings such as neuropathology, is not fully validated. Neuropathology practice is unique with smaller overall tissue size and frequent need for high-power evaluation. In addition, tumor grade is an integral part of the initial diagnosis. The purpose of this study is to assess the feasibility of primary pathology diagnosis of surgical neuropathology specimens using WSI. Materials and Methods: We reviewed consecutive surgical neuropathology cases diagnosed in our institution during a 2-month period and identified a single diagnostic slide, which was scanned at 40× magnification. Two neuropathologists who were blinded to the original diagnoses reviewed the whole slide image and rendered a diagnosis including tumor grade when applicable. They reviewed the single diagnostic slide after a wash-out period. Intra- and inter-observer discrepancies, as well as reasons for discrepancies, were evaluated. Results: The concordance rates were 94.9% and 88% for two neuropathologists. Two critical issues leading to discrepancies were identified: (1 identification of mitoses and (2 recognition of nuclear details. Conclusions: Given the current study is exclusively for surgical neuropathology cases, an all-encompassing conclusion about the utility of WSI for diagnostic purposes may not be available. Nevertheless, pathologists should be aware of the potential pitfalls due to identification of mitotic figures and nuclear details. We recommend independent validation for each subspecialty of pathology to identify subspecialty-specific concerns, so they can be properly addressed.

  11. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  12. [Ergonomic risk assessment: aspects applicable in the light of current standards].

    Science.gov (United States)

    Baracco, A; Perrelli, F; Romano, C

    2010-01-01

    The Italian decree law 81/2008 mentions the application of ergonomic principles as a basic tool for the prevention. In this regulation we can not find the definition either of Ergonomics nor of the competences required for its correct application. The Authors consider that occupational physicians have a suitable competence and knowledge on the matter, thanks to their highly specialized training. Actually, the ergonomic doctrine shows up in the daily practice of occupational physicians, who regularly base their activity on the evaluation of the binomial "worker-task": in the management of fitness to work judgements they try to combine operating conditions with worker's psychophysical state, not confining themselves to a simple expression ofa medico-legal certificate. However, the legislative references to specific regulations raise difficulties to occupational physicians in dealing with aspects such as gender, age, reference values and methodological choices. The Authors debate these difficulties in the application of rules.

  13. Near-infrared spectroscopy for medical applications: Current status and future perspectives.

    Science.gov (United States)

    Sakudo, Akikazu

    2016-04-01

    The near-infrared radiation (NIR) window, also known as the "optical window" or "therapeutic window", is the range of wavelengths that has the maximum depth of penetration in tissue. Indeed, because NIR is minimally absorbed by water and hemoglobin, spectra readings can be easily collected from the body surface. Recent reports have shown the potential of NIR spectroscopy in various medical applications, including functional analysis of the brain and other tissues, as well as an analytical tool for diagnosing diseases. The broad applicability of NIR spectroscopy facilitates the diagnosis and therapy of diseases as well as elucidating their pathophysiology. This review introduces recent advances and describes new studies in NIR to demonstrate potential clinical applications of NIR spectroscopy.

  14. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  15. Manufacturing challenges of optical current and voltage sensors for utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  16. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    harmonic mitigation methods have been developed over the years, the total cost and complexity has become the main obstacle in employing prior-art methods for motor drive systems. This paper presents a novel current modulation method based on the electronic inductor concept for three-phase ac-dc systems......Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active...... to reduce input current harmonics. The obtained results at simulation and experimental levels confirm the effectiveness of the proposed approach....

  17. Prehospital Emergency Ultrasound: A Review of Current Clinical Applications, Challenges, and Future Implications

    Directory of Open Access Journals (Sweden)

    Mazen J. El Sayed

    2013-01-01

    Full Text Available Imaging modalities in the prehospital setting are helpful in the evaluation and management of time-sensitive emergency conditions. Ultrasound is the main modality that has been applied by emergency medical services (EMS providers in the field. This paper examines the clinical applications of ultrasound in the prehospital setting. Specific focus is on applications that provide essential information to guide triage and management of critical patients. Challenges of this modality are also described in terms of cost impact on EMS agencies, provider training, and skill maintenance in addition to challenges related to the technical aspect of ultrasound.

  18. Current control loop design and analysis based on resonant regulators for microgrid applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michelle; de Sousa Ribeiro, Luiz Antonio

    2015-01-01

    Voltage and current control loops play an important role in the performance of microgrids employing power electronics voltage source inverters. Correct design of feedback loops is essential for the proper operation of these systems. This paper analyzes the influence of state feedback cross......-coupling in the design of resonant regulators for inner current loops in power converters operating in standalone microgrids. It is also demonstrated that the effect of state feedback cross-coupling degrades the performance of the control loops by increasing the steady-state error. Different resonant regulators...... structures are analyzed and compared, performing experimental tests to validate the results of the theoretical analysis....

  19. Application of the Multi-Peaked Analytically Extended Function to Representation of Some Measured Lightning Currents

    CERN Document Server

    Lundengård, Karl; Javor, Vesna; Silvestrov, Sergei

    2016-01-01

    A multi-peaked form of the analytically extended function (AEF) is used for approximation of lightning current waveforms in this paper. The AEF function's parameters are estimated using the Marquardt least-squares method (MLSM), and the general procedure for fitting the $p$-peaked AEF function to a waveform with an arbitrary (finite) number of peaks is briefly described. This framework is used for obtaining parameters of 2-peaked waveforms typically present when measuring first negative stroke currents. Advantages, disadvantages and possible improvements of the approach are also discussed.

  20. Spontaneous current sheets in magnetic fields with applications to stellar X-rays

    CERN Document Server

    Parker, Eugene N

    1994-01-01

    Expanding upon the ideas first proposed in his seminal book Cosmical Magnetic Fields, Eugene N. Parker here offers the first in-depth treatment of the magnetohydrodynamic theory of spontaneous magnetic discontinuities. In detailing his theory of the spontaneous formation of tangential discontinuities (current sheets) in a magnetic field embedded in highly conducting plasma, Parker shows how it can be used to explain the activity of the external magnetic fields of planets, stars, interstellar gas clouds, and galaxies, as well as the magnetic fields in laboratory plasmas. Provocative and fascinating, Spontaneous Current Sheets in Magnetic Fields presents a bold new theory that will excite interest and discussion throughout the space physics community.

  1. The Application of Eddy Current Transducer for Testing Movement Locus of Shaker Screen

    Institute of Scientific and Technical Information of China (English)

    Zhu Pingyu; Lao Chuanjun; Zhang Wei; Li Xuejun

    2007-01-01

    Shaker screen is one of important equipments in the industry of oil, metallurgy, coal and timbering. The movement locus of shaker screen affects the capacity and efficiency of shaker screen to split the solid particle from crude ore directly .To test movement of shaker locus, two eddy current transducers are employed. A discussion of the usage of these eddy current transducer to test and acceleration sensors will be made. The experiment results from a real elliptic shaker screen have good agree with the design requirements.

  2. Pitfalls in RECIST Data Extraction for Clinical Trials: Beyond the Basics.

    Science.gov (United States)

    Abramson, Richard G; McGhee, Carrie R; Lakomkin, Nikita; Arteaga, Carlos L

    2015-06-01

    Response Evaluation Criteria in Solid Tumors (RECIST) is a standardized methodology for determining therapeutic response to anticancer therapy using changes in lesion appearance on imaging studies. Many radiologists are now using RECIST in their routine clinical workflow, as part of consultative arrangements, or within dedicated imaging core laboratories. Although basic RECIST methodology is well described in published articles and online resources, inexperienced readers may encounter difficulties with certain nuances and subtleties of RECIST. This article illustrates a set of pitfalls in RECIST assessment considered to be "beyond the basics." These pitfalls were uncovered during a quality improvement review of a recently established cancer imaging core laboratory staffed by radiologists with limited prior RECIST experience. Pitfalls are presented in four categories: (1) baseline selection of lesions, (2) reassessment of target lesions, (3) reassessment of nontarget lesions, and (4) identification of new lesions. Educational and operational strategies for addressing these pitfalls are suggested. Attention to these pitfalls and strategies may improve the overall quality of RECIST assessments performed by radiologists. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  3. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  4. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics.

    Science.gov (United States)

    Ovais, Muhammad; Raza, Abida; Naz, Shagufta; Islam, Nazar Ul; Khalil, Ali Talha; Ali, Shaukat; Khan, Muhammad Adeeb; Shinwari, Zabta Khan

    2017-05-01

    The design, development, and biomedical applications of phytochemical-based green synthesis of biocompatible colloidal gold nanoparticles (AuNPs) are becoming an emerging field due to several advantages (safer, eco-friendly, simple, fast, energy efficient, low-cost, and less toxic) over conventional chemical synthetic procedures. Biosynthesized colloidal gold nanoparticles are remarkably attractive in several biomedical applications including cancer theranostics due to small size, unusual physico-chemical properties, facile surface modification, high biocompatibility, and numerous other advantages. Of late, several researchers have investigated the biosynthesis and prospective applications (diagnostics, imaging, drug delivery, and cancer therapeutics) of AuNPs in health care and medicine. However, not a single review article is available in the literature that demonstrates the anti-cancer potential of biosynthesized colloidal AuNPs with detailed mechanistic study. In the present review article, we for the first time discuss the biointerface of colloidal AuNPs, plants, and cancer mainly (i) comprehensive mechanistic aspects of phytochemical-based synthesis of AuNPs; (ii) proposed anti-cancer mechanisms along with biomedical applications in diagnostics, imaging, and drug delivery; and (iii) key challenges for biogenic AuNPs as future cancer nanomedicine.

  5. Exploring the Ligand-Protein Networks in Traditional Chinese Medicine: Current Databases, Methods, and Applications

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhao

    2013-01-01

    Full Text Available The traditional Chinese medicine (TCM, which has thousands of years of clinical application among China and other Asian countries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This paper firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.

  6. Introduction to the Issue on Current Trends in Terahertz Photonics and Applications

    DEFF Research Database (Denmark)

    2013-01-01

    on research and recent developments on THz photonics and applications. This issue contains 28 papers including 12 invited and 16 contributed papers authored by both well-established research groups and emerging stars pioneering in the THz field all over the world. While the invited papers include extended...

  7. Current projects of the Application Technology Research Unit (ATRU) USDA-ARS, Wooster/Toledo, Ohio

    Science.gov (United States)

    The Application Technology Research Unit (ATRU) is the largest multidisciplinary research team in the United States Department of Agriculture, Agricultural Research Service, conducting studies on floricultural and nursery crops. On-farm research is a major approach to the mission of this Unit. The...

  8. Application of High Harmonic Fast Waves to Off-Axis Current Drive in DIII-D

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V. L.

    2013-10-01

    High harmonic fast waves, also called ``whistlers'' or ``helicons,'' may be an effective means of driving current off-axis in high performance discharges in DIII-D. Modeling using the GENRAY ray tracing code APP shows that fast waves launched with frequency 500 MHz tend to spiral around the magnetic axis. If the electron beta is above 1.7%, the waves are damped around ρ = 0 . 5 for a broad range of conditions. The fast wave current drive in the test discharge is 2 to 4 times larger per MW than that from the electron cyclotron heating or neutral beam injection systems on DIII-D. Interestingly, the current drive location and magnitude are nearly independent of the launched n| | over the range 2 to 4. Use of a moderately large value, n| | = 3 , reduces the possibility of mode conversion to the slow wave. A traveling wave antenna is expected to be effective at launching the wave with a narrow spectrum of n| |, which also helps avoid mode conversion. A test of the physics of high harmonic fast wave current drive is planned for DIII-D. Work supported in part by the US Department of Energy under DE-FC02-04ER54698.

  9. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  10. Low eddy current RF shielding enclosure designs for 3T MR applications.

    Science.gov (United States)

    Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S

    2017-06-06

    Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    NARCIS (Netherlands)

    Holsheimer, J.

    1987-01-01

    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were mea

  12. Forecasting Performance in Organizations: An Application of Current-Value Human Resources Accounting. Final Report.

    Science.gov (United States)

    Pecorella, Patricia A.; And Others

    A methodology to describe current-value human resources accounting (HRA) was developed to aid management in decision making and provide information about the effects of organizational policies and practices on the value of the organizations' human resources. A two-phase activity was designed to investigate the nature of the relationship between…

  13. PBOSPECTS FOR CLINICAL APPLICATION OF THE CURRENT ANTI-INFLAMMATORY DRUG MELOXICAM (AMELOTEX

    Directory of Open Access Journals (Sweden)

    M S Eliseev

    2008-01-01

    Full Text Available The paper presents data on the effectiveness, safety, tolerance, major mechanisms of action, and prospects for clinically using meloxicam, a current selective nonsteroidal anti-inflammatory drug, against cyclooxygenase-2. It describes the advantages of meloxicam for injections, which begins acting promptly and shows an adequate long analgesic effect.

  14. Method for the formation of cylindrical current and its application to evaluate electrical resistivity

    Science.gov (United States)

    Li, T.-C.; Chang, C.-S.; Liang, W.-L.; Tsai, W.-F.; Ai, C.-F.; Lin, J.-F.

    2012-07-01

    A cylindrical current method is developed to obtain a stable and precise electrical resistivity of a specimen with or without a coating film. The electrical resistivity of a standard silicon wafer doped with boron at a concentration can be measured using the proposed method if the experimental results of electrical voltage varying with the distance from the center line of the cylindrical current are available. A comparison of the electrical resistivity obtained using the present method and the theoretical reference value indicates that the proposed method produces reliable and precise measurements. Using four test samples, the experimental results of electrical resistivity measured by the present method are shown to be reproducible and more precise than those measured by the four-terminal sensing method and the van der Pauw method. The electrical voltage and current obtained at various distances from the center line of the cylindrical current are almost independent of the distance and the direction of measurements. The effect of specimen's crystallinity appears to be the governing factor of electrical resistivity. Electrical resistivity decreases with increasing crystallinity generally.

  15. Gasification of solid waste — potential and application of co-current moving bed gasifiers

    NARCIS (Netherlands)

    Groeneveld, M.J.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    A review is given of gasification processes for solid fuels with special emphasis on waste gasification. Although the co-current moving bed gasifier has not been under consideration for a long time, it offers interesting possibilities for waste gasification. Some operational data are given. Two

  16. The British Colonial Experience in Waziristan and Its Applicability to Current Operations

    Science.gov (United States)

    2007-11-02

    fall 2004, the Paksitani government used the same carrots and sticks that the British government used in the tribal areas from 1849-1947. The...limited and precise. (3) The U.S. and Pakistani cannot employ a cookie cutter solution to the current situation in Waziristan. Due to the complex and

  17. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    Steenwijk, van Gijs; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  18. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    NARCIS (Netherlands)

    Holsheimer, J.

    1987-01-01

    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were

  19. DC buffering and floating current for a high voltage IMB application

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    An interface technique for the latest generation of the Impedance Measurement Box (IMB) has been conceived to enable measurement of impedance spectra for battery modules up to 300V. A 300V capable or higher IMB is an enabling technology for in-situ diagnostics within electric vehicle charging stations or battery back-ups within power distribution sub-stations. It is possible that the existing IMB can be adapted via a 300V interface module to a test battery with voltage significantly greater than 50V. Recently a new concept was conceived for the calibration, algorithm and electronics of the IMB. That algorithm and calibration for that concept have been physically validated. The principal feature of the new electronics is the floating current source excitation of the battery under test. The single ended current excitation of the battery under test, used in the 50V IMB, requires that the negative terminal of the test battery must be the analog ground for the IMB. The new floating current technique allows the test battery to be fully high impedance isolated for a measurement. That isolation will improve IMB noise immunity and enable interrogation of cells internal to a battery module. All these techniques still use the same rapid concept for impedance measurement with the IMB. The purpose of this disclosure is to provide an overview of the analytical validation for three concepts to interface the floating current excitation to a high voltage battery. Recursive simulation models were used in different test scenarios to validate the various new concepts. The analysis will show that it is possible to interface the floating signal current to obtain an impedance measurement on a high voltage test battery. Additionally, the analysis will investigate stress seen by electronics while testing a 300V battery.

  20. A HIGH PERFORMANCE FULLY DIFFERENTIAL PURE CURRENT MODE OPERATIONAL AMPLIFIER AND ITS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    SEYED JAVAD AZHARI

    2012-08-01

    Full Text Available In this paper a novel high performance all current-mode fully-differential (FD Current mode Operational Amplifier (COA in BIPOLAR technology is presented. The unique true current mode simple structure grants the proposed COA the largest yet reported unity gain frequency while providing low voltage low power operation. Benefiting from some novel ideas, it also exhibits high gain, high common mode rejection ratio (CMRR, high power supply rejection ratio (PSRR, high output impedance, low input impedance and most importantly high current drive capability. Its most important parameters are derived and its performance is proved by PSPICE simulations using 0.8 μm BICMOS process parameters at supply voltage of ±1.2V indicating the values of 82.4 dB,52.3º, 31.5 Ω, 31.78 MΩ, 179.2 dB, 2 mW and 698 MHz for gain, phase margin, input impedance, output impedance, CMRR, power and unity gain frequency respectively. Its CMRR also shows very high frequency of 2.64 GHz at zero dB. Its very high PSRR+/PSRR- of 182 dB/196 dB makes the proposed COA a highly suitable block in Mixed-Mode (SOC chips. Most favourably it can deliver up to ±1.5 mA yielding a high current drive capability exceeding 25. To demonstrate the performance of the proposed COA, it is used to realize a constant bandwidth voltage amplifier and a high performance Rm amplifier.