WorldWideScience

Sample records for current aligned instabilities

  1. Precessional Instability in Binary Black Holes with Aligned Spins.

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-02

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  2. Current concepts in the management of patellar instability

    Directory of Open Access Journals (Sweden)

    Michael S Laidlaw

    2017-01-01

    Full Text Available Patellar instability is a common presenting clinical entity in the field of orthopedics. This not only can occur from baseline morphologic variability within the patellofemoral articulation and alignment, but also from traumatic injury. While conservative management is many times employed early in the treatment course, symptomatic patellar instability can persist. This article reviews the available indexed published literature regarding patellar instability. Given the debilitating nature of this condition and the long term sequelae that can evolve from its lack of adequate recognition and treatment, this article details the most current methods in the evaluation of this entity as well as reviews the most up-to-date surgical treatment regimens that are available to address this condition.

  3. Urethral instability: current pathophysiological concept.

    NARCIS (Netherlands)

    Groenendijk, P.M.; Heesakkers, J.P.F.A.; Ouwerkerk, T.J.; Lycklama à Nijeholt, A.A.B.

    2009-01-01

    The role of urethral pressure variations during filling cystometry is seldom assessed as a potential cause of voiding dysfunction and/or storage disorders. In this article, we review current research in the field of urethral pressure variations and discuss the way of determining urethral pressure va

  4. Urethral instability: current pathophysiological concept.

    NARCIS (Netherlands)

    Groenendijk, P.M.; Heesakkers, J.P.F.A.; Ouwerkerk, T.J.; Lycklama à Nijeholt, A.A.B.

    2009-01-01

    The role of urethral pressure variations during filling cystometry is seldom assessed as a potential cause of voiding dysfunction and/or storage disorders. In this article, we review current research in the field of urethral pressure variations and discuss the way of determining urethral pressure va

  5. Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields

    Science.gov (United States)

    Grassi, A.; Grech, M.; Amiranoff, F.; Pegoraro, F.; Macchi, A.; Riconda, C.

    2017-02-01

    The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode. The application of an external field leads to a slight increase of the saturation level for large wavelengths, while it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high temperature the saturation level is independent of the external magnetic field, at low but finite temperature the competition between different modes in the presence of an external magnetic field leads to a saturation level lower with respect to the unmagnetized case.

  6. Effects of the Hot Alignment of a Power Unit on Oil-Whip Instability Phenomena

    OpenAIRE

    2010-01-01

    This paper shows the results of the analysis of the dynamic behaviour of a power unit, whose shaft-train alignment was significantly influenced by the machine thermal state, that was affected in operating condition by high subsynchronous vibrations caused by oil-whip instability phenomena. The dynamic stiffness coefficients of the oil-film journal bearings of the generator were evaluated considering the critical average journal positions that caused the instability onsets. By including these ...

  7. Effects of the Hot Alignment of a Power Unit on Oil-Whip Instability Phenomena

    Directory of Open Access Journals (Sweden)

    A. Vania

    2010-01-01

    Full Text Available This paper shows the results of the analysis of the dynamic behaviour of a power unit, whose shaft-train alignment was significantly influenced by the machine thermal state, that was affected in operating condition by high subsynchronous vibrations caused by oil-whip instability phenomena. The dynamic stiffness coefficients of the oil-film journal bearings of the generator were evaluated considering the critical average journal positions that caused the instability onsets. By including these bearing coefficients in a mathematical model of the fully assembled machine, the real part of the eigenvalue associated with the first balance resonance of the generator rotor became positive. This paper shows the successful results obtained by combining diagnostic techniques based on mathematical models of journal bearings and shaft train with detailed analyses of monitoring data aimed to investigate the effects of the hot alignment of rotating machines on the occurrence of oil-whip instability onsets.

  8. Oblique Alfvén instabilities driven by compensated currents

    Energy Technology Data Exchange (ETDEWEB)

    Malovichko, P. [Main Astronomical Observatory, NASU, Kyiv (Ukraine); Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-01-10

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  9. Field aligned current observations in the polar cusp ionosphere

    Science.gov (United States)

    Ledley, B. G.; Farthing, W. H.

    1973-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F-region which are interpreted as being caused by the payload's passage through a structured field aligned current system. The field aligned currents have a characteristic horizontal scale size of one kilometer. Analysis of one large field fluctuation gives a current density of 0.0001 amp/m sq.

  10. Field-aligned current observations in the polar cusp ionosphere

    Science.gov (United States)

    Ledley, B. G.; Farthing, W. H.

    1974-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F region that are interpreted as being caused by the passage of the payload through a structured field-aligned current system. The field-aligned currents have a characteristic horizontal scale size of about 1 km. Analysis of one large field fluctuation gives a current density of .001 A/sq m.

  11. The inhomogeneous ion temperature anisotropy instabilities of magnetic-field-aligned plasma sheared flow

    Science.gov (United States)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-11-01

    The stability of the magnetic field aligned sheared flow with anisotropic ion temperatures, which have the anisotropic spatial inhomogeneities across the magnetic field and are comparable with or are above the electron temperature, is investigated numerically and analytically. The ion temperatures gradients across the magnetic field affect the instability development only when the inhomogeneous is the ion temperature along the magnetic field irrespective the inhomogeneity of the ion temperature across the magnetic field. In this case, the instability is developed due to the combined effect of the ion Landau damping, velocity shear, ion temperature anisotropy, and anisotropy of the ion temperature gradients. In the case when the ion temperature along the magnetic field is homogeneous, but the ion temperature across the magnetic field is inhomogeneous, the short wavelength instability develops with the wave length less than the thermal ion Larmor radius. This instability excites due to the coupled effect of the ion Landau damping, velocity shear and ion temperature anisotropy.

  12. Understanding ionospheric instabilities eludes current approaches

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-07-01

    Ionized gases are heavily concentrated in the ionosphere's F zone, the region between 200 and 500 kilometers in altitude, which is critical for transmitting long-distance radio signals on Earth. However, instabilities in the F region plasma, which can last from seconds to hours and can be spread over centimeters to tens of kilometers, disrupt transmission of radio signals. The plasma instabilities, restricted to the equatorial region following sunset, are called equatorial spread F (ESF). Earth-based instruments perceive ESF events as “twinkling” radio signals. ESF events, first detected in the 1930s, affect the performance and reliability of space-borne and ground-based electronic systems; they can disrupt satellite operations and related communications and navigation systems.

  13. Spatial-temporal evolution of the current filamentation instability

    CERN Document Server

    Pathak, V B; Stockem, A; Fonseca, R A; Silva, L O

    2015-01-01

    The spatial-temporal evolution of the purely transverse current filamentation instability is analyzed by deriving a single partial differential equation for the instability and obtaining the analytical solutions for the spatially and temporally growing current filament mode. When the beam front always encounters fresh plasma, our analysis shows that the instability grows spatially from the beam front to the back up to a certain critical beam length; then the instability acquires a purely temporal growth. This critical beam length increases linearly with time and in the non-relativistic regime it is proportional to the beam velocity. In the relativistic regime the critical length is inversely proportional to the cube of the beam Lorentz factor $\\gamma_{0b}$. Thus, in the ultra-relativistic regime the instability immediately acquires a purely temporal growth all over the beam. The analytical results are in good agreement with multidimensional particle-in-cell simulations performed with OSIRIS. Relevance of curr...

  14. Particle accelerations and current structures of Weibel and Filamentation instabilities

    Science.gov (United States)

    Ryu, C. M.; Huynh, C. T.

    2015-12-01

    Particle accelerations of the Wibel instability (WI) and the Filamentation instability(FI) are studied by using PIC simuations, comparing them side-by-side. Although two instabilities are almost identical in the linear growth phase, significant differences are found in the nonlinear phase in their particle accelerations and current structures. The FI shows enhanced electron acceleration, whereas particle acceleration is almost absent in the WI. The different particle accelerations between the FI and the WI seem to be associated with their different current structures; a hollow electron current structure for the FI and a center filled current structure for that of the WI. Different electron distributions seem to bring in different current filament structures, eventually leading to different magnetic characteristics.

  15. Trilingual aligned corpus – current state and new applications

    Directory of Open Access Journals (Sweden)

    Ludmila Dimitrova

    2014-09-01

    Full Text Available Trilingual aligned corpus – current state and new applications This article describes current state of a trilingual parallel corpus consisted of texts in two Slavic (Bulgarian and Polish and one Baltic language (Lithuanian. The corpus contains original literary texts (fiction, novels, and short stories in one of the three languages with translations to the other two, and texts in other languages translated into Bulgarian, Polish, and Lithuanian. A part of the texts are aligned at the sentence level. The authors propose a semantic annotation of verbs appearing in these aligned texts that will facilitate contrastive studies of natural languages. A theoretical background for the proposed semantic annotation is briefly also discussed.

  16. Overview of Current Activities in Combustion Instability

    Science.gov (United States)

    2015-10-02

    9/23/2015 14. ABSTRACT Briefing Charts/Viewgraph 15. SUBJECT TERMS N/A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...CSTD Approved for public release; distribution unlimited 14 ALREST phase II Multifidelity Tools and Methodologies Phase I VISP SPACE Current gen  HF ...Current gen  HF ,  productional Next gen  HF F i d e l i t y High fidelity Cost  ALREST phase II Experiments  Approved for public release

  17. Magnetosphere-Ionosphere Coupling and Field-Aligned Currents

    CERN Document Server

    Oliveira, D M

    2015-01-01

    It is presented in this paper a review of one of several interactions between the magnetosphere and the ionosphere through the field-aligned currents (FACs). Some characteristics and physical implications of the currents flowing in a plane perpendicular to the magnetic field at high latitudes are discussed. The behavior of this system as an electric circuit is explained, where momentum and energy are transferred via Poynting flux from the magnetosphere into the ionosphere.

  18. Current concepts in the management of shoulder instability

    Directory of Open Access Journals (Sweden)

    Suresh Srinivasan

    2017-01-01

    Full Text Available Shoulder instability ranges from subtle instability to frank dislocation. Our understanding on the subject is getting better. Patient lifestyle, increased awareness/expectations, better availability of information, improved imaging modalities, and increased awareness about the previously less known concepts in instability all add to the challenges of managing the problem. History and clinical examination without over reliance on imaging remain essential. We used Embase, PubMed, Medline, CINAHL, Cochrane Library, Scottish Intercollegiate Guidelines Network and Google Scholar search for published literature in English. We used various combinations of the keywords, namely, human shoulder instability, sports injuries, dislocation, surgery, latarjet, glenohumeral, glenoid, and arthroscopy from 1980 to March 2017. The systematic search captured 310 publications. After applying initial exclusion criteria, 41 abstracts were assessed for eligibility. Of these, we selected 20 full-text articles with the majority of focus primarily on surgical management of traumatic shoulder instability. A tailor-made approach for the management of the individual patient is essential and should involve shared decision making. In this article, we have tried to simplify and present the current evidence in the management of traumatic shoulder instability, particularly in sportsperson.

  19. Interacting tilt and kink instabilities in repelling current channels

    Energy Technology Data Exchange (ETDEWEB)

    Keppens, R.; Porth, O.; Xia, C., E-mail: rony.keppens@wis.kuleuven.be [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2014-11-01

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.

  20. Current filamentation model for the Weibel/Filamentation instabilities

    Science.gov (United States)

    Ryu, Chang-Mo; Huynh, Cong Tuan; Kim, Chul Min

    2016-10-01

    A current filamentaion model for a nonrelativistic plasma with e +/e- beam has been presented together with PIC simulations, which can explain the mangetic field enhancement during the Weibel/ Filamentation instabilities. This filament model assumes the Hammer-Rostoker equilibrium. In addition, this model predicts preferential acceleration/deceleration for electron-ion plasmas depending on the injected beam to be e +/e-.

  1. Simultaneous field-aligned currents at Swarm and Cluster satellites

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, J. Y.; Yang, Y. Y.

    2015-01-01

    We show for the first time, with direct, multispacecraft calculations of electric current density, and other methods, matched signatures of field-aligned currents (FACs) sampled simultaneously near the ionosphere at low (∼500km altitude) orbit and in the magnetosphere at medium (similar to 2.5 RE...... find clear evidence of both small-scale and large-scale FACs and clear matching of the behavior and structure of the large-scale currents at both Cluster and Swarm. The methodology is made possible through the joint operations of Cluster and Swarm, which contain, in the first several months of Swarm...... operations, a number of close three-spacecraft configurations....

  2. 3D Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. 1; Instability of a Static Column

    Science.gov (United States)

    Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.

    2010-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.

  3. Instability of Vertical Current Transport in Layered Structures

    Science.gov (United States)

    Wang, Jiannong

    2000-03-01

    Many interesting phenomena related to interface electronic structure of layered structures have been found, including stable sawtooth-like current-voltage characteristic, unstable current self-oscillations, and chaos in the vertical electron transport. While many studies of current self-oscillation have been focused on the effect of changing the carrier concentration, we show that a transverse magnetic field and the sample temperature can also control the transition from stable to unstable current transport. We show that the unstable current self-oscillation is due to the generation of a limit cycle around an unstable steady state solution which, in turn, is due to the negative differential resistance (NDR) existed at layer interfaces. This new insight both generalizes and unifies our understanding of the instability in current transport through layer structures. We also show that a dynamic dc voltage band emerges in the transition from stable to unstable current transport.

  4. Instabilities of bosonic spin currents in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Hoi-Yin; Barnett, Ryan; Sensarma, Rajdeep; Das Sarma, S. [Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2011-10-15

    We analyze the dynamical and energetic instabilities of spin currents in a system of two-component bosons in an optical lattice, with a particular focus on the Neel state. We consider both the weakly interacting superfluid and the strongly interacting Mott insulating limits as well as the regime near the superfluid-insulator transition and establish the criteria for the onset of these instabilities. We use Bogoliubov theory to treat the weakly interacting superfluid regime. Near the Mott transition, we calculate the stability phase diagram within a variational Gutzwiller wave-function approach. In the deep Mott limit we discuss the emergence of the Heisenberg model and calculate the stability diagram within this model. Though the Bogoliubov theory and the Heisenberg model (appropriate for the deep superfluid and the deep Mott-insulating phase, respectively) predict no dynamical instabilities, we find, interestingly, that between these two limiting cases there is a regime of dynamical instability. This result is relevant for the ongoing experimental efforts to realize a stable Neel-ordered state in multicomponent ultracold bosons.

  5. Field-aligned currents during northward IMF: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastätter, L.

    2005-01-01

    We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF B y component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents. We...... dayside field lines. The existence of a small nonzero IMF B y component, however, effectively acts to open up the magnetosphere. When ∣B y ∣ position of the polar cap is strongly asymmetric with respect to the noon-midnight meridian, depending on the sign of B y . In the northern hemisphere for B...... y positive(negative) the polar cap is then located mainly in the dawnside (duskside), in close accordance with what have been observed using particle precipitation data or auroral observations. The simulated NBZ currents map to major portions of the magnetopause: the flanks and the mantle. They can...

  6. Three-dimensional structure of ionospheric currents produced by field-aligned currents

    Science.gov (United States)

    Takeda, M.

    1982-08-01

    Ionospheric currents caused by field-aligned currents are calculated three-dimensionally under quiet conditions at the equinox, using a magnetic field line coordinate system and with the assumption of infinite parallel conductivity. Input field-aligned currents are assumed to be distributed only in the daytime and the whole system is assumed to be symmetric about the equator. Calculated currents are comparable with those of the ionospheric dynamo in higher latitudes, but much weaker in lower latitudes including the equatorial electrojet region. Hence, if the model is valid these currents may have a considerable effect on the day-to-day variation of Sq currents in higher latitudes, but little effect on those in lower latitudes such as the counter-electrojet.

  7. Field-aligned currents during northward IMF: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastätter, L.

    2005-01-01

    We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF B y component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents. We...... find that the existence and geometry of the polar cap is closely connected to the IMF B y component. During strictly northward IMF the simulated magnetosphere can remain essentially closed because the solar wind field lines reconnect in both hemispheres, thereby creating newly reconnected closed...... dayside field lines. The existence of a small nonzero IMF B y component, however, effectively acts to open up the magnetosphere. When ∣B y ∣

  8. Interacting tilt and kink instabilities in repelling current channels

    CERN Document Server

    Keppens, Rony; Xia, Chun

    2014-01-01

    We present a numerical study in resistive magnetohydrodynamics where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or fluxropes, which on Alfvenic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to 2.5D and full 3D scenarios. As long as the third dimension remains ignorable, pure tilt evolutions result which are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular cur...

  9. Asymmetric field-aligned currents in the conjugate hemispheres

    Science.gov (United States)

    Reistad, J. P.; Ostgaard, N.; Oksavik, K.; Laundal, K. M.

    2012-12-01

    Earlier studies using simultaneous imaging from space of the Aurora Borealis (Northern Hemisphere) and Aurora Australis (Southern Hemisphere) have revealed that the aurora can experience a high degree of asymmetry between the two hemispheres. Using 19 hours of simultaneous global imaging from both hemispheres (IMAGE satellite in north and Polar satellite in south) in conjunction with the entire IMAGE WIC database, we investigate the importance of various mechanisms thought to generate the asymmetries seen in global imaging. In terms of asymmetric or interhemispheric field-aligned currents, three candidate mechanisms have been suggested: 1) Hemispheric differences in solar wind dynamo efficiency mainly controlled by IMF Bx leading to asymmetric region 1 currents; 2) conductivity differences in conjugate areas; and 3) penetration of IMF By into the closed magnetosphere possibly generating a pair of oppositely directed interhemispheric currents. From the 19 hour conjugate dataset we find that the solar wind dynamo is likely to be the most important controlling mechanism for asymmetric bright aurora in the polar part of the nightside oval. Here we present statistical analyses of candidates 1) and 3). Using the entire IMAGE WIC database, a statistical analysis of the auroral brightness distribution along and across the Northern Hemisphere oval is carried out. For each candidate, two extreme cases (+/- IMF Bx for 1) and +/- IMF By for 3)) are compared during times non-favorable for the other two mechanisms. Our results indicate that solar wind dynamo induced currents play an important role for the nightside auroral brightness in an average sense. Also, signatures of interhemispheric currents due to IMF By penetration are seen in our statistics, although this effect is somehow weaker.

  10. Energy current loss instability model on a computer

    Science.gov (United States)

    Edighoffer, John A.

    1995-04-01

    The computer program called Energy Stability in a Recirculating Accelerator (ESRA) Free Electron Laser (FEL) has been written to model bunches of particles in longitudinal phase space transversing a recirculating accelerator and the associated rf changes and aperture current losses. This energy-current loss instability was first seen by Los Alamos's FEL group in their energy recovery experiments. This code addresses these stability issues and determines the transport, noise, feedback and other parameters for which these FEL systems are stable or unstable. Two representative systems are modeled, one for the Novosibirisk high power FEL racetrack microtron for photochemical research, the other is the CEBAF proposed UV FEL system. Both of these systems are stable with prudent choices of parameters.

  11. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  12. Internal pinch instability at the edge of an inviscid current sheet

    CERN Document Server

    Priede, Jānis

    2015-01-01

    This paper presents numerical analysis a pinch-type instability in a semi-infinite planar layer of inviscid conducting liquid bounded by solid walls and carrying a uniform electric current. The instability resembles the Tayler instability in astrophysics and can presumably disrupt the operation of the recently developed liquid metal batteries (Wang et al. 2014 Nature 514, 348). We show that the instability in liquid metals, which are relatively poor conductors, significantly differs from that in a well conducting fluid. In the latter, instability is dominated by the current perturbation resulting from the advection of the magnetic field. In the former, the instability is dominated by the magnetic field perturbation resulting from the diffusion of the electric current perturbation. As a result, in liquid metals, instability develops on the magnetic response time scale, which depends on the conductivity, and is much longer than the Alfv\\'en time scale, on which the instability develops in a well conducting flui...

  13. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  14. Instability of field-aligned electron-cyclotron waves in a magnetic mirror plasma with anisotropic temperature

    Science.gov (United States)

    Grishanov, N. I.; Azarenkov, N. A.

    2016-08-01

    > Dispersion characteristics have been analysed for field-aligned electron-cyclotron waves (also known as right-hand polarized waves, extraordinary waves or whistlers) in a cylindrical magnetic mirror plasma including electrons with anisotropic temperature. It is shown that the instability of these waves is possible only in the range below the minimal electron-cyclotron frequency, which is much lower than the gyrotron frequency used for electron-cyclotron resonance power input into the plasma, under the condition where the perpendicular temperature of the resonant electrons is larger than their parallel temperature. The growth rates of whistler instability in the two magnetized plasma models, where the stationary magnetic field is either uniform or has a non-uniform magnetic mirror configuration, are compared.

  15. The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks%The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks

    Institute of Scientific and Technical Information of China (English)

    李莉; 刘悦; 许欣洋; 夏新念

    2012-01-01

    A cylindrical model of linear MHD instabilities in tokamaks is presented. In the model, the cylindrical plasma is surrounded by a vacuum which is divided into inner and outer vacuum areas by a conducting wall. Linearized resistivity MHD equations with plasma viscosity are adopted to describe our model, and the equations are solved numerically as an initial value problem. Some of the results are used as benchmark tests for the code, and then a series of equilibrium current profiles are used to simulate the bootstrap current profiles in actual experiments with a bump on tail. Thus the effects of these kinds of profiles on MHD instabilities in tokamaks are revealed. From the analysis of the numerical results, it is found that more plasma can be confined when the center of the current bump is closer to the plasma surface, and a higher and narrower current bump has a better stabilizing effect on the MHD instabilities.

  16. Ion acoustic wave instabilities and nonlinear structures associated with field-aligned flows in the F-region ionosphere

    Science.gov (United States)

    Saleem, H.; Ali Shan, S.; Haque, Q.

    2016-11-01

    It is shown that the inhomogeneous field-aligned flow of heavier ions into the stationary plasma of the upper ionosphere produces very low frequency (of the order of a few Hz) electrostatic unstable ion acoustic waves (IAWs). This instability is an oscillatory instability unlike D'Angelo's purely growing mode. The growth rate of the ion acoustic wave (IAW) corresponding to heavier ions is due to shear flow and is larger than the ion Landau damping. However, the ion acoustic waves corresponding to non-flowing lighter ions are Landau damped. It is found that even if D'Angelo's instability condition is satisfied, the unstable mode develops its real frequency in this coupled system. Hence, the shear flow of one type of ions in a bi-ion plasma system produces ion acoustic wave activity. If the density non-uniformity is taken into account, then the drift wave becomes unstable. The coupled nonlinear equations for stationary ions "a," flowing ions "b," and inertialess electrons are also solved using the small amplitude limit. The solutions predict the existence of the order of a few kilometers electric field structures in the form of solitons and vortices, which is in agreement with the satellite observations.

  17. Current-less solar wind driven dust acoustic instability in cometary plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [Belgian Institute for Space Aeronomy, Ringlaan 3, 1180 Brussels (Belgium)

    2011-08-15

    A quantitative analysis is presented of the dust acoustic wave instability driven by the solar and stellar winds. This is a current-less kinetic instability which develops in permeating plasmas, i.e.., when one quasi-neutral electron-ion wind plasma in its propagation penetrates through another quasi-neutral plasma which contains dust, electrons, and ions.

  18. Galeazzi fractures: Is DRUJ instability predicted by current guidelines?

    Science.gov (United States)

    Tsismenakis, Tony; Tornetta, Paul

    2016-07-01

    Clinically significant distal radioulnar joint (DRUJ) injuries can occur with radial shaft fractures. Several radiographic methods of diagnosis, such as radial shortening of >5mm or fracture line within 7.5cm from the lunate facet, have been proposed but not clinically validated. The purpose of this study was to compare radiographic measurements of radial shaft fractures associated with and without clinically significant DRUJ injury (i.e., true Galeazzi fracture-dislocation) in order to evaluate the predictive value of reported parameters of DRUJ injury. A retrospective record and radiographic review was performed of 66 consecutive skeletally mature patients with isolated radial shaft fractures from 2004 to 2014 treated at one level 1 academic trauma center. Intraoperatively determined DRUJ instability after radial shaft fixation was used as the gold standard for diagnosis of a Galeazzi fracture-dislocation. Average age was 34 years old (range: 18-90). By thirds, there were 10 proximal (15%), 27 middle (41%), and 29 distal (44%) fractures. 13 (20%) had an associated ulnar styloid fracture. 7 (11%) patients had DRUJ instability after radial fixation. Radial shortening averaged 4.4±5.2mm (-2.6-22), and 21 had shortening of >5mm. Twenty-six (39%) fractures were within 7.5cm of the wrist joint. Previous guidelines were only moderately accurate. Even greater shortening did not predict instability (3/7 patients with >10mm shortening had a true injury). Four out of 7 cases with instability had ulnar styloid fractures (p=0.02). Using a larger data set than has historically been evaluated, previously reported radiographic guidelines are only moderately accurate. The presence of an ulnar styloid fracture can be helpful. Surgeons should be aware of these associations but rely primarily on intraoperative assessment of the DRUJ after radial fixation to determine treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A current-driven resistive instability and its nonlinear effects in simulations of coaxial helicity injection in a tokamak

    Science.gov (United States)

    Hooper, E. B.; Sovinec, C. R.

    2016-10-01

    An instability observed in whole-device, resistive magnetohydrodynamic simulations of the driven phase of coaxial helicity injection in the National Spherical Torus eXperiment is identified as a current-driven resistive mode in an unusual geometry that transiently generates a current sheet. The mode consists of plasma flow velocity and magnetic field eddies in a tube aligned with the magnetic field at the surface of the injected magnetic flux. At low plasma temperatures (˜10-20 eV), the mode is benign, but at high temperatures (˜100 eV) its amplitude undergoes relaxation oscillations, broadening the layer of injected current and flow at the surface of the injected toroidal flux and background plasma. The poloidal-field structure is affected and the magnetic surface closure is generally prevented while the mode undergoes relaxation oscillations during injection. This study describes the mode and uses linearized numerical computations and an analytic slab model to identify the unstable mode.

  20. Connection of Screw Instability with Electric Current in an Accretion Disc around a Black Hole

    Institute of Scientific and Technical Information of China (English)

    LAN Xiao-Xia; WANG Ding-Xiong; GAN Zhao-Ming

    2005-01-01

    @@ The screw instability of the magnetic field is discussed based on its poloidal configuration generated by a single toroidal electric current flowing in the equatorial plane of a Kerr Mack hole (BH). The rotation of the BH relative to the disc induces an electromotive force, which in turn results in a poloidal electric current. By using Ampere's law, we calculate the toroidal component of the magnetic field and derive a criterion for the screw instability of the magnetic field connecting the rotating BH with its surrounding disc. It is determined that the screw instability is related to two parameters: the radius of the disc and the BH spin. The occurrence of screw instability is depicted in a parameter space. In addition, we discuss the effect of the screw instability on magnetic extraction of energy from the rotating BH.

  1. Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Neeraj [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Das, Amita; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-09-15

    This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.

  2. The evolution of arguments regarding the existence of field-aligned currents

    Science.gov (United States)

    Dessler, A. J.

    1984-01-01

    The present understanding of Birkeland (magnetically-field-aligned) currents was not obtained by a direct, logical course. The story is rather more complex. Starting at the end of the 19th century, the Norwegian scientist Kristian Birkeland laid out a compelling case, supported by both theory and experiment, for the existence of field-aligned currents that cause both the aurora and polar geomagnetic disturbances. Sydney Chapman, the British geophysicist, became the acknowledged leader and opinion maker in the field in the decades following Birkeland's death. Chapman proposed, in contradistinction to Birkeland's ideas, equivalent currents that were restricted to flow in the ionosphere with no vertical or field-aligned components. Birkeland's ideas may have faded completely if it had not been for Hannes Alfven, who became involved well after Chapman's ideas gained predominance. Alfven kept insisting that Birkeland's current system made more sense because field-aligned currents were required to drive most of the ionospheric currents. The author became personally involved when Zmuda et al. (1966) submitted to the Journal of Geophysical Research a paper reporting satellite data showing magnetic disturbances above the ionosphere that were consistent with field-aligned Birkeland currents, but which they did not interpret as being due to such currents.

  3. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department, University of Birjand, Birjand 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of)

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  4. Field-aligned current observed on ISEE-2 in the innermagnetosphere

    Institute of Scientific and Technical Information of China (English)

    徐荣栏; 王左丁; 谢榴香; 杨龙

    1995-01-01

    Field-aligned currents in the inner magnetosphere arc studied by using ISEE-2 magnetometer da-la, A method is proposed to calculate ×B with single-satellite data. From the morphology of ×B in time (or L). a lot of large fluctuations are found in ×B near L = 5.5RE corresponding to the field-aligned currents. Statistical study shows that the field-aligned current in the inner magnetosphere is a function of B, L, MLT and AL. The region of the projections of ×B along the magnetic field line onto the ionosphere is not symmetrical for the geomagnetic pole. The inner boundary is independent of the geomagnetic disturbance, but during substorms the outer boundary shifts equatorward. The spatial distribution of the in- and out-flowing currents is complicated. The region-1-and-2 system is hardly distinguishable.

  5. Instabilities of collisionless current sheets revisited: the role of anisotropic heating

    CERN Document Server

    Muñoz, P A; Büchner, J

    2015-01-01

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initi...

  6. Non-linear Study of Bell's Cosmic Ray Current-driven Instability

    CERN Document Server

    Riquelme, Mario A

    2008-01-01

    The cosmic ray current-driven (CRCD) instability, predicted by Bell (2004), consists of non-resonant, growing plasma waves driven by the electric current of cosmic rays (CRs) that stream along the magnetic field ahead of both relativistic and non-relativistic shocks. Combining an analytic, kinetic model with one-, two-, and three-dimensional particle-in-cell simulations, we confirm the existence of this instability in the kinetic regime and determine its saturation mechanisms. In the linear regime, we show that, if the background plasma is well magnetized, the CRCD waves grow exponentially at the rates and wavelengths predicted by the analytic dispersion relation. The magnetization condition implies that the growth rate of the instability is much smaller than the ion cyclotron frequency. As the instability becomes non-linear, significant turbulence forms in the plasma. This turbulence reduces the growth rate of the field and damps the shortest wavelength modes, making the dominant wavelength, \\lambda_d, grow ...

  7. Nonlinear evolution of three-dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Neeraj; Büchner, Jörg [Max Planck/Princeton Center for Plasma Physics, Göttingen (Germany); Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen (Germany)

    2014-07-15

    Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.

  8. Magnetic instability induced by tunnel current in single Co nanoparticles

    OpenAIRE

    Birk, F. Tijiwa; Jiang, W.; Davidović, D.

    2011-01-01

    Measurements of magnetic hysteresis loops in single Co nanoparticles at dilution refrigerator temperatures are presented. The nanoparticles are in electric contact with bulk Al leads via tunnel junctions. The tunnel current versus magnetic field displays a magnetic hysteresis loop. The magnetic switching field is reduced by current, and the magnetization of the nanoparticle can be switched by applying a voltage pulse, demonstrating that the magnetic stability of the nanoparticle is diminished...

  9. Field-aligned currents during northward interplanetary magnetic field: Morphology and causes

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.

    2005-01-01

    [1] We present the results of a global MHD simulation of solar wind magnetosphere interaction during northward IMF. In particular, we emphasize the effect of the IMF By component on the reconnection geometry and the mapping along field lines to the polar ionosphere, through field-aligned currents....... However, the idea that the NBZ currents rotate to form the two sheets of FACs sandwiching the ionospheric DPY current is only partly confirmed by the simulation....

  10. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Jou...... of these in the Raman signals....

  11. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  12. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  13. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  14. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  15. Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images

    Science.gov (United States)

    Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.

    2015-12-01

    Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.

  16. Field-aligned currents in the dayside cusp and polar cap region during northward IMF

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Olsen, Nils

    2002-01-01

    [1] The field-aligned currents in the dayside cusp and polar cap region are examined using magnetic data from the low-altitude polar-orbiting satellite Orsted. The study is confined to cases where the interplanetary magnetic field (IMF) has a steady northward component and to a rather narrow region...

  17. Local Simulations of Instabilities in Relativistic Jets I: Morphology and Energetics of the Current-Driven Instability

    CERN Document Server

    O'Neill, Sean M; Begelman, Mitchell C

    2012-01-01

    We present the results of a numerical investigation of current-driven instability in magnetized jets. Utilizing the well-tested, relativistic magnetohydrodynamic code Athena, we construct an ensemble of local, co-moving plasma columns in which initial radial force balance is achieved through various combinations of magnetic, pressure, and rotational forces. We then examine the resulting flow morphologies and energetics to determine the degree to which these systems become disrupted, the amount of kinetic energy amplification attained, and the non-linear saturation behaviors. Our most significant finding is that the details of initial force balance have a pronounced effect on the resulting flow morphology. Models in which the initial magnetic field is force-free deform, but do not become disrupted. Systems that achieve initial equilibrium by balancing pressure gradients and/or rotation against magnetic forces, however, tend to shred, mix, and develop turbulence. In all cases, the linear growth of current-drive...

  18. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability.

    Science.gov (United States)

    Uzdensky, D A; Loureiro, N F

    2016-03-11

    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.

  19. 3-d resistive MHD simulations of magnetic reconnection and the tearing mode instability in current sheets

    CERN Document Server

    Murphy, G C; Pelletier, Guy

    2008-01-01

    Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...

  20. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    Science.gov (United States)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  1. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    Science.gov (United States)

    Wyper, P. F.; Pontin, D. I.

    2013-03-01

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers.

  2. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    Energy Technology Data Exchange (ETDEWEB)

    Wyper, P. F. [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Pontin, D. I. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

    2013-03-15

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers.

  3. Sausage instabilities on top of kinking lengthening current-carrying magnetic flux tubes

    Science.gov (United States)

    von der Linden, Jens; You, Setthivoine

    2017-05-01

    We theoretically explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments can involve topological changes faster than time scales predicted by resistive magnetohydrodynamics. Recent laboratory experiments suggest that hierarchies of instabilities, such as kink and Rayleigh-Taylor, could be responsible for initiating fast topological changes by locally accessing two-fluid and kinetic regimes. Sausage instabilities can also provide this coupling mechanism between disparate scales. Flux tube experiments can be classified by the flux tube's evolution in a configuration space described by a normalized inverse aspect-ratio k ¯ and current-to-magnetic flux ratio λ ¯ . A lengthening current-carrying magnetic flux tube traverses this k ¯ - λ ¯ space and crosses stability boundaries. We derive a single general criterion for the onset of the sausage and kink instabilities in idealized magnetic flux tubes with core and skin currents. The criterion indicates a dependence of the stability boundaries on current profiles and shows overlapping kink and sausage unstable regions in the k ¯ - λ ¯ space with two free parameters. Numerical investigation of the stability criterion reduces the number of free parameters to a single one that describes the current profile and confirms the overlapping sausage and kink unstable regions in k ¯ - λ ¯ space. A lengthening, ideal current-carrying magnetic flux tube can therefore become sausage unstable after it becomes kink unstable.

  4. Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2004-01-01

    Full Text Available During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned accelerated electron precipitation coincides with the strong (≥2–7μA/m2 upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5–1km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.

    Key words. Ionosphere (electric fiels and

  5. Firing wave instability of the current filaments in a semiconductor. An analogy with neurodynamics

    Science.gov (United States)

    Aoki, K.; Yamamoto, K.

    1983-10-01

    Periodic oscillations and chaos have been observed in the firing density wave of the current filaments in n-GaAs at 4.2 K. The mechanism of the firing-wave instability has been discussed by an analogy with neurodynamics.

  6. Instability of current sheets with a localized accumulation of magnetic flux

    Science.gov (United States)

    Pritchett, P. L.

    2015-06-01

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small "normal" Bz component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing Bz profile and the other with a localized Bz "hump." The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no Bz accumulation even in the presence of open boundary conditions.

  7. Kink-like mode of a double gradient instability in a compressible plasma current sheet

    Science.gov (United States)

    Korovinskiy, D.B.; Ivanova, V.V.; Erkaev, N.V.; Semenov, V.S.; Ivanov, I.B.; Biernat, H.K.; Zellinger, M.

    2011-01-01

    A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called “double gradient instability”, – a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet. PMID:22053125

  8. Admittance Modeling of Voltage and Current Controlled Inverter for Harmonic Instability Studies

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Bak, Claus Leth

    2016-01-01

    This paper proposes an impedance/admittance based model for voltage and current controlled inverters with passive elements suitable for harmonic instability study of grid connected inverters in frequency domain. This linearized model of inverters, significantly simplifies investigation of resonance...... instability and control loop interaction of wind turbines with each other and/or with the grid, while they are installed in wind farms. The derived impedance ratio at point of common connection demonstrates how the inverters participate in harmonic stability of the grid....

  9. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  10. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  11. Field-aligned currents in the dayside cusp and polar cap region during northward IMF

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Olsen, Nils

    2002-01-01

    [1] The field-aligned currents in the dayside cusp and polar cap region are examined using magnetic data from the low-altitude polar-orbiting satellite Orsted. The study is confined to cases where the interplanetary magnetic field (IMF) has a steady northward component and to a rather narrow region...... spanning similar to 4 hours around magnetic noon. We examine individual passes using a maximum variance analysis method, and we complement, for a single event, with ground-based data from the Greenland meridian chain of magnetometers. We suggest that when an east-west component B-y of the IMF exists...... for positive IMF B-z, the two NBZ (northward B-z) field-aligned currents that prevail over the polar region rotate to form the two field-aligned currents equatorward and poleward of the east-west flowing ionospheric DPY current in the dayside. The high accuracy of the Orsted data makes it possible to uncover...

  12. Sausage Instabilities on top of Kinking Lengthening Current-Carrying Magnetic Flux Tubes

    Science.gov (United States)

    von der Linden, Jens; You, Setthivoine

    2015-11-01

    Observations indicate that the dynamics of magnetic flux tubes in our cosmos and terrestrial experiments involve fast topological change beyond MHD reconnection. Recent experiments suggest that hierarchies of instabilities coupling disparate plasma scales could be responsible for this fast topological change by accessing two-fluid and kinetic scales. This study will explore the possibility of sausage instabilities developing on top of a kink instability in lengthening current-carrying magnetic flux tubes. Current driven flux tubes evolve over a wide range of aspect ratios k and current to magnetic flux ratios λ . An analytical stability criterion and numerical investigations, based on applying Newcomb's variational approach to idealized magnetic flux tubes with core and skin currents, indicate a dependence of the stability boundaries on current profiles and overlapping kink and sausage unstable regions in the k - λ trajectory of the flux tubes. A triple electrode planar plasma gun (Mochi.LabJet) is designed to generate flux tubes with discrete core and skin currents. Measurements from a fast-framing camera and a high resolution magnetic probe are being assembled into stability maps of the k - λ space of flux tubes. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  13. Role of magnetic shear on the electrostatic current driven ion-cyclotron instability in the presence of parallel electric field

    Indian Academy of Sciences (India)

    Harsha Jalori; A K Gwal

    2001-06-01

    Recent observation and theoretical investigations have led to the significance of electrostatic ion cyclotron (EIC) waves in the electrodynamics of acceleration process. The instability is one of the fundamental of a current carrying magnetized plasma. The EIC instability has the lowest threshold current among the current driven instabilities. On the basis of local analysis where inhomogeneities like the magnetic shear and the finite width current channel, have been ignored which is prevalent in the magnetospheric environment. On the basis of non-local analysis interesting modification has been incorporated by the inclusion of magnetic shear. In this paper we provide an analytical approach for the non-local treatment of current driven electrostatic waves in presence of parallel electric field. The growth rate is significantly influenced by the field aligned electron drift. The presence of electric field enhances the growth of EIC waves while magnetic shear stabilizes the system.

  14. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  15. Effect of hall currents on thermal instability of dusty couple stress fluid

    Directory of Open Access Journals (Sweden)

    Aggarwal Amrish Kumar

    2016-09-01

    Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.

  16. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    CERN Document Server

    Wyper, P F

    2013-01-01

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz (KH) nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is...

  17. Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Ritoku; Sato, Tetsuya [Theory and Computer Simulation Center, National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-06-01

    Generation of anomalous resistivity and dynamical development of collisionless reconnection in the vicinity of a magnetically neutral sheet are investigated by means of a three-dimensional particle simulation. For no external driving source, two different types of plasma instabilities are excited in the current layer. The lower hybrid drift instability (LHDI) is observed to grow in the periphery of current layer in an early period, while a drift kink instability (DKI) is triggered at the neutral sheet in a late period as a result of the nonlinear deformation of the current sheet by the LHDI. A reconnection electric field grows at the neutral sheet in accordance with the excitation of the DKI. When an external driving field exists, the convective electric field penetrates into the current layer through the particle kinetic effect and collisionless reconnection is triggered by the convective electric field earlier than the DKI is excited. It is also found that the anisotropic ion distribution is formed through the anomalous ion heating by the DKI. (author)

  18. Spatial Growth of the Current-Driven Instability in Relativistic Jets

    CERN Document Server

    Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2014-01-01

    We have investigated the influence of velocity shear and a radial density profile on the spatial development of the current driven kink instability along helically magnetized relativistic jets via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we use a non-periodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers growth of the kink instability. If the velocity shear radius is located inside the characteristic radius of the helical magnetic field, a static non-propagating current driven kink is excited as the perturbation propagates down the jet. Temporal growth disrupts the initial flow across the computational grid not too far from the inlet. On the other hand, if the velocity shear radius is outside the characteristic radius of the helical magnetic field, the kink is advected with the flow and grows spatially down the jet. In this case flow is maintained to much larger distances from ...

  19. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets.

    Science.gov (United States)

    Loureiro, N F; Schekochihin, A A; Uzdensky, D A

    2013-01-01

    A two-dimensional (2D) linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of reduced magnetohydrodynamics. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al., Phys. Plasmas 14, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids (k(max)L(CS)~S(3/8), where k(max) is the wave number of fastest growing mode, S=L(CS)V(A)/η is the Lundquist number, L(CS) is the length of the sheet, V(A) is the Alfvén speed, and η is the plasma resistivity), which grows super Alfvénically fast (γ(max)τ(A)~S(1/4), where γ(max) is the maximum growth rate, and τ(A)=L(CS)/V(A)). For typical background profiles, the growth rate and the wave number are found to increase in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfvén speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability γ(max)τ(A)~k(max)L(CS)~S(1/2). The effect of viscosity (ν) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers Pm=ν/η, it is found that γ(max)~S(1/4)Pm(-5/8) and k(max)L(CS)~S(3/8)Pm(-3/16), leading to the prediction that the critical Lundquist number for plasmoid instability in the Pm>1 regime is S(crit)~10(4)Pm(1/2). These results are verified via direct numerical simulation of the linearized equations, using an analytical 2D SP equilibrium solution.

  20. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    Energy Technology Data Exchange (ETDEWEB)

    Jay R. Johnson and Hideo Okuda

    2008-05-20

    Nearly half of the time, auroral displays exhibit thin, bright layers known as \\enhanced aurora." There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  1. Secondary magnetic islands generated by the Kelvin-Helmholtz instability in a reconnecting current sheet.

    Science.gov (United States)

    Fermo, R L; Drake, J F; Swisdak, M

    2012-06-22

    Magnetic islands or flux ropes produced by magnetic reconnection have been observed on the magnetopause, in the magnetotail, and in coronal current sheets. Particle-in-cell simulations of magnetic reconnection with a guide field produce elongated electron current layers that spontaneously produce secondary islands. Here, we explore the seed mechanism that gives birth to these islands. The most commonly suggested theory for island formation is the tearing instability. We demonstrate that in our simulations these structures typically start out, not as magnetic islands, but as electron flow vortices within the electron current sheet. When some of these vortices first form, they do not coincide with closed magnetic field lines, as would be the case if they were islands. Only after they have grown larger than the electron skin depth do they couple to the magnetic field and seed the growth of finite-sized islands. The streaming of electrons along the magnetic separatrix produces the flow shear necessary to drive an electron Kelvin-Helmholtz instability and produce the initial vortices. The conditions under which this instability is the dominant mechanism for seeding magnetic islands are explored.

  2. Dynamo-driven plasmoid formation from a current-sheet instability

    Science.gov (United States)

    Ebrahimi, F.

    2016-12-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from (1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and (2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.

  3. Dynamo-driven plasmoid formation from a current-sheet instability

    CERN Document Server

    Ebrahimi, F

    2016-01-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from 1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and 2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetic fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time a dynamo poloidal flux amplification is observed at the reconnetion site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplificatio...

  4. Macroscopic Transport of Mega-ampere Electron Currents in Aligned Carbon-Nanotube Arrays

    Science.gov (United States)

    Chatterjee, Gourab; Singh, Prashant Kumar; Ahmed, Saima; Robinson, A. P. L.; Lad, Amit D.; Mondal, Sudipta; Narayanan, V.; Srivastava, Iti; Koratkar, Nikhil; Pasley, John; Sood, A. K.; Kumar, G. Ravindra

    2012-06-01

    We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated mega-ampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (1018-1019)W/cm2 was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.

  5. Current stress induced electrical instability in transparent zinc tin oxide thin-film transistors.

    Science.gov (United States)

    Cheong, Woo-Seok; Shin, Jae-Heon; Chung, Sung Mook; Hwang, Chi-Sun; Lee, Jeong-Min; Lee, Jong-Ho

    2012-04-01

    Transparent zinc tin oxide thin-film transistors (ZTO-TFTs) [Zn:Sn = 4:1-2:1] have been fabricated so as to estimate the electrical instability under constant current stress. The relative intensity of the drain current noise power spectra density has been shown to have a typical 1/f-noise character, and it is implied that the mobility fluctuation in ZTO-TFT [Zn:Sn = 4:1] can be enhanced by a short-range ordering in amorphous Zn-Sn-oxide, causing a larger shift of the threshold voltage (deltaV(th)).

  6. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets

    CERN Document Server

    Loureiro, N F; Uzdensky, D A

    2012-01-01

    A 2D linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of Reduced MHD. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al, Phys. Plasmas {\\bf 14}, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids ($k_{\\rm max}\\Lsheet \\sim S^{3/8}$, where $k_{\\rm max}$ is the wave-number of fastest growing mode, $S=\\Lsheet V_A/\\eta$ is the Lundquist number, $\\Lsheet$ is the length of the sheet, $V_A$ is the Alfv\\'en speed and $\\eta$ is the plasma resistivity), which grows super-Alfv\\'enically fast ($\\gmax\\tau_A\\sim S^{1/4}$, where $\\gmax$ is the maximum growth rate, and $\\tau_A=\\Lsheet/V_A$). For typical background profiles, the growth rate and the wave-number are found to {\\it increase} in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability...

  7. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  8. DMSP F7 observations of a substorm field-aligned current

    Science.gov (United States)

    Lopez, R. E.; Spence, H. E.; Meng, C.-I.

    1991-01-01

    Observations are described of a substorm field-aligned current (FAC) system traversed by the DMSP F7 spacecraft just after 0300 UT on April 25, 1985. It is shown that the substorm FAC portion of the current system was located equatorward of the boundary between open and closed field lines. The equatorward boundary of the substorm FAC into the magnetotail was mapped using the Tsyganenko (1987) model, showing that the boundary corresponds to 6.9 earth radii. The result is consistent with the suggestion of Akasofu (1972) and Lopez and Lui (1990) that the region of substorm initiation lies relatively close to the earth and the concept that an essential feature of substorms is the disruption and diversion of the near-earth current sheet.

  9. Dielectric permittivity tensor and low frequency instabilities of a magnetoactive current-driven plasma with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)

    2015-12-15

    The dielectric permittivity tensor of a magnetoactive current-driven plasma is obtained by employing the kinetic theory based on the Vlasov equation and Lorentz transformation formulas with an emphasize on the q-nonextensive statistics. By deriving the q-generalized dispersion relation of the low frequency modes in this plasma system, the possibility and properties of filamentation and ion acoustic instabilities are then studied. It is shown that the occurrence and the growth rate of these instabilities depend strongly on the nonextensive parameters, external magnetic field strength, and drift velocity. It is observed that the growth rate of ion acoustic instability is affected by the magnetic field strength much more than that of the filamentation instability in the low frequency range. The external magnetic field facilitates the development of the ion-acoustic instability. It is also shown that the filamentation is the dominant instability only for the high value of drift velocity.

  10. Saturn's auroral morphology and field-aligned currents during a solar wind compression

    Science.gov (United States)

    Badman, S. V.; Provan, G.; Bunce, E. J.; Mitchell, D. G.; Melin, H.; Cowley, S. W. H.; Radioti, A.; Kurth, W. S.; Pryor, W. R.; Nichols, J. D.; Jinks, S. L.; Stallard, T. S.; Brown, R. H.; Baines, K. H.; Dougherty, M. K.

    2016-01-01

    On 21-22 April 2013, during a coordinated auroral observing campaign, instruments onboard Cassini and the Hubble Space Telescope observed Saturn's aurora while Cassini traversed Saturn's high latitude auroral field lines. Signatures of upward and downward field-aligned currents were detected in the nightside magnetosphere in the magnetic field and plasma measurements. The location of the upward current corresponded to the bright ultraviolet auroral arc seen in the auroral images, and the downward current region was located poleward of the upward current in an aurorally dark region. Within the polar cap magnetic field and plasma fluctuations were identified with periods of ∼20 and ∼60 min. The northern and southern auroral ovals were observed to rock in latitude in phase with the respective northern and southern planetary period oscillations. A solar wind compression impacted Saturn's magnetosphere at the start of 22 April 2013, identified by an intensification and extension to lower frequencies of the Saturn kilometric radiation, with the following sequence of effects: (1) intensification of the auroral field-aligned currents; (2) appearance of a localised, intense bulge in the dawnside (04-06 LT) aurora while the midnight sector aurora remained fainter and narrow; and (3) latitudinal broadening and poleward contraction of the nightside aurora, where the poleward motion in this sector is opposite to that expected from a model of the auroral oval's usual oscillation. These observations are interpreted as the response to tail reconnection events, initially involving Vasyliunas-type reconnection of closed mass-loaded magnetotail field lines, and then proceeding onto open lobe field lines, causing the contraction of the polar cap region on the night side.

  11. How the Strength and Thickness of Field-aligned Currents Depend on Solar Wind and Ionospheric Parameters

    Science.gov (United States)

    Johnson, J.; Wing, S.

    2012-12-01

    Recently, Wing et al. [2011] examined the dependence of field-aligned currents, peak electron energy, and electron energy flux on solar wind parameters. We provide an analytical analysis of how velocity shear layers couple to the ionosphere via field-aligned currents. In the model, we use the Knight relation to express the field-aligned current in terms of the potential drop between the magnetosphere and ionosphere and solve for the ionospheric potential using current continuity. We obtain an analytic expression for the dependence of the current, the current maximum, and the current thickness on the magnetosheath velocity, magnetopause shear layer thickness, magnetospheric density and temperature, and ionospheric conductivity. We compare the analytical results for the current profiles using the magnetic field instruments on board the DMSP satellites. Estimates for FAC strength and thickness allow us to constrain the model to estimate the thickness of the magnetopause velocity shear layer, which is consistent with in situ observations and kinetic simulations. Finally, we discuss how the presence of waves could affect the field-aligned currents. Wing, S., S. Ohtani, J. R. Johnson, M. Echim, P. T. Newell, T. Higuchi, G. Ueno, and G. R. Wilson (2011), Solar wind driving of dayside field-aligned currents, J. Geophys. Res., 116, A08208, doi:10.1029/2011JA016579.

  12. Visco-resistive plasmoid instability in Sweet-Parker current sheets

    Science.gov (United States)

    Grasso, Daniela; Comisso, Luca

    2016-10-01

    The linear analysis by Loureiro et al. is generalized to investigate the plasmoid instability in visco-resistive Sweet-Parker sheets. We cover both the linear and nonlinear growth of the plasmoids. The linear growth rate and the wavenumber scale as S 1 / 4 (1 +Pm)- 5 / 8 and S 3 / 8 (1 +Pm)- 3 / 16 with respect to the Lundquist number S and the magnetic Prandtl number Pm. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. The time-scale of the nonlinear growth of the plasmoids is found to be τNL S - 3 / 16 (1 +Pm)19/32τA , L . We also discuss how the plasmoid instability can enable fast magnetic reconnection in visco-resistive plasmas. In this regime, the global reconnection rate is shown to be 0.01vA , uBu (1 +Pm)- 1 / 2. The same author will present another poster in a closely related topic: ``Generalized Plasmoid Instability in Time Evolving Current Sheets''. Hence, we request the committee to ensure that these 2 posters are placed alongside each other.

  13. Relaxation of Pulsar Wind Nebula via Current-Driven Kink Instability

    Science.gov (United States)

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    We have investigated the relaxation of a hydrostatic hot plasma column containing toroidal magnetic field by the Current-Driven (CD) kink instability as a model of pulsar wind nebulae. In our simulations the CD kink instability was excited by a small initial velocity perturbation and developed turbulent structure inside the hot plasma column. We demonstrated that, as envisioned by Begelman, the hoop stress declines and the initial gas pressure excess near the axis decreases. The magnetization parameter "σ", the ratio of the magnetic energy to the thermal energy for a hot plasma, declined from an initial value of 0.3 to about 0.01 when the CD kink instability saturated. Our simulations demonstrated that axisymmetric models strongly overestimate the elongation of the pulsar wind nebulae. Therefore, the previous requirement for an extremely low pulsar wind magnetization can be abandoned. The observed structure of the pulsar wind nebulae do not contradict the natural assumption that the magnetic energy flux still remains a good fraction of the total energy flux after dissipation of alternating fields.

  14. Excitation of zero-frequency magnetic field-aligned currents by ionospheric heating

    Directory of Open Access Journals (Sweden)

    A. V. Streltsov

    2011-06-01

    Full Text Available Time-dependent, three-dimensional numerical simulations of the reduced MHD model describing shear Alfvén waves in the magnetosphere provide an interesting prediction superficially similar to results of several ionospheric heating experiments conducted at high altitudes. In these experiments, heating of the ionospheric F-region with a constant/zero-frequency beam of HF waves causes luminous structures in the ionosphere in the form of a ring or a solid spot with a characteristic size comparable to the size of the heated spot. Simulations suggest that spots/rings or similar optical appearance might be associated with a magnetic field-aligned current system produced by the ionospheric heating. Two of the most interesting features of this current system are (1 strong localization across the ambient magnetic field and (2 distinctive non-symmetrical luminous signatures (ring/spot in magnetically conjugate locations in the ionosphere.

  15. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2011-02-15

    The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle

  16. Thermal instability and current-voltage scaling in superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Zeimetz, B [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Tadinada, K [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Eves, D E [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Coombs, T A [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom); Evetts, J E [Department of Materials Science and Metallurgy, Cambridge University, Pembroke Street, Cambridge CB1 3QZ (United Kingdom); Campbell, A M [Department of Engineering, Cambridge University, Trumpington Road, Cambridge CB2 1PZ (United Kingdom)

    2004-04-01

    We have developed a computer model for the simulation of resistive superconducting fault current limiters in three dimensions. The program calculates the electromagnetic and thermal response of a superconductor to a time-dependent overload voltage, with different possible cooling conditions for the surfaces, and locally variable superconducting and thermal properties. We find that the cryogen boil-off parameters critically influence the stability of a limiter. The recovery time after a fault increases strongly with thickness. Above a critical thickness, the temperature is unstable even for a small applied AC voltage. The maximum voltage and maximum current during a short fault are correlated by a simple exponential law.

  17. Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them

    CERN Document Server

    Weber, Norbert; Stefani, Frank; Weier, Tom

    2013-01-01

    The use of liquid metal batteries is considered as one promising option for electric grid stabilisation. While large versions of such batteries are preferred in view of the economies of scale, they are susceptible to various magnetohydrodynamic instabilities which imply a risk of short-circuiting the battery due to the triggered fluid flow. Here we focus on the current driven Tayler instability and give critical electrical currents for its onset as well as numerical estimates for the appearing flow structures and speeds. Scaling laws for different materials, battery sizes and geometries are found. We further discuss and compare various means for preventing the instability.

  18. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  19. Ion-Cyclotron Instability in Current-Carrying Lorentzian (Kappa) and Maxwellian Plasmas with Anisotropic Temperatures: A Comparative Study

    Science.gov (United States)

    2011-09-26

    in the solar wind and in many space plasmas often exhibit non - Maxwellian suprathermal tails that decrease as a power-law of the velocity.1 Such...AFRL-RV-PS- AFRL-RV-PS- TR-2011-0164 TR-2011-0164 ION-CYCLOTRON INSTABILITY IN CURRENT- CARRYING LORENTZIAN (KAPPA) AND MAXWELLIAN PLASMAS...1 Oct 2007 – 9 Sep 2011 4. TITLE AND SUBTITLE Ion-Cyclotron Instability in Current-Carrying Lorentzian (Kappa) and Maxwellian Plasmas 5a. CONTRACT

  20. Current Hypotheses on How Microsatellite Instability Leads to Enhanced Survival of Lynch Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Kristen M. Drescher

    2010-01-01

    Full Text Available High levels of microsatellite instability (MSI-high are a cardinal feature of colorectal tumors from patients with Lynch Syndrome. Other key characteristics of Lynch Syndrome are that these patients experience fewer metastases and have enhanced survival when compared to patients diagnosed with microsatellite stable (MSS colorectal cancer. Many of the characteristics associated with Lynch Syndrome including enhanced survival are also observed in patients with sporadic MSI-high colorectal cancer. In this review we will present the current state of knowledge regarding the mechanisms that are utilized by the host to control colorectal cancer in Lynch Syndrome and why these same mechanisms fail in MSS colorectal cancers.

  1. Current concepts in the management of recurrent anterior gleno-humeral joint instability with bone loss

    Science.gov (United States)

    Ramhamadany, Eamon; Modi, Chetan S

    2016-01-01

    The management of recurrent anterior gleno-humeral joint instability is challenging in the presence of bone loss. It is often seen in young athletic patients and dislocations related to epileptic seizures and may involve glenoid bone deficiency, humeral bone deficiency or combined bipolar lesions. It is critical to accurately identify and assess the amount and position of bone loss in order to select the most appropriate treatment and reduce the risk of recurrent instability after surgery. The current literature suggests that coracoid and iliac crest bone block transfers are reliable for treating glenoid defects. The treatment of humeral defects is more controversial, however, although good early results have been reported after arthroscopic Remplissage for small defects. Larger humeral defects may require complex reconstruction or partial resurfacing. There is currently very limited evidence to support treatment strategies when dealing with bipolar lesions. The aim of this review is to summarise the current evidence regarding the best imaging modalities and treatment strategies in managing this complex problem relating particularly to contact athletes and dislocations related to epileptic seizures. PMID:27335809

  2. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ruifeng; Meng Chuizhou; Zhu Feng; Li Qunqing; Liu Changhong; Fan Shoushan; Jiang Kaili, E-mail: JiangKL@tsinghua.edu.cn [Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084 (China)

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 {mu}g cm{sup -2}), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co{sub 3}O{sub 4} or Mn{sub 2}O{sub 3} nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance ({approx}500 F g{sup -1}, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g{sup -1} at 155 A g{sup -1}).

  3. Current-Driven Instability of the Quantum Anomalous Hall Effect in Ferromagnetic Topological Insulators

    Science.gov (United States)

    Kawamura, Minoru; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Kawasaki, Masashi; Tokura, Yoshinori

    2017-07-01

    The instability of the quantum anomalous Hall (QAH) effect has been studied as a function of the electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughly proportional to the Hall-bar width, indicating that the Hall electric field is relevant to the breakdown. We also find that electron transport is dominated by variable range hopping (VRH) at low temperatures. Combining the current and temperature dependences of the conductivity in the VRH regime, the localization length of the QAH state is evaluated to be about 5 μ m . The long localization length suggests a marginally insulating nature of the QAH state due to a large number of in-gap states.

  4. Intense field-aligned currents in the polar cap as evidenced from the Swarm satellite constellation

    Science.gov (United States)

    Luhr, H.; Kervalishvili, G.; Huang, T.

    2015-12-01

    Traditionally the polar cap has been considered as a region of low activity and reduced energy input. More recent observations, however, evidence more and more exceptions from that. For example, CHAMP and GRACE recorded significant mass density anomalies over the polar cap practically during every magnetic storm. The question is, which process provides enough Joule heating and/or particle precipitation along the open field lines. A promising mechanism is field-aligned currents (FACs). In the past it has been difficult to make reliable estimates of FACs in the polar cap from single satellite magnetic field measurements. An important assumption that the currents are organized in sheets is often not fulfilled in the polar cap. As a consequence current densities are largely underestimated. Only recently ESA's Swarm constellation mission offers reliable FAC estimates from dual-satellite measurements. Significant differences between single and dual-satellite estimates are found in the polar cap. We will show the relation between polar cap FAC patches and IMF orientation and solar wind conditions. Based on these results suggestions for possible current drivers are made.

  5. The impact of intrinsic alignment on current and future cosmic shear surveys

    CERN Document Server

    Krause, Elisabeth; Blazek, Jonathan

    2015-01-01

    Intrinsic alignment (IA) of source galaxies is one of the major astrophysical systematics for ongoing and future weak lensing surveys. This paper presents the first forecasts of the impact of IA on cosmic shear measurements for current and future surveys (DES, Euclid, LSST, WFIRST) using simulated likelihood analyses and realistic covariances that include higher-order moments of the density field in the computation. We consider a range of possible IA scenarios and test mitigation schemes, which parameterize IA by the fraction of red galaxies, normalization, luminosity and redshift dependence of the IA signal (for a subset we consider joint IA and photo-z uncertainties). Compared to previous studies we find smaller biases in time-dependent dark energy models if IA is ignored in the analysis; the amplitude and significance of these biases vary as a function of survey properties (depth, statistical uncertainties), luminosity function, and IA scenario: Due to its small statistical errors and relatively shallow ob...

  6. Field-aligned currents' scale analysis performed with the Swarm constellation

    DEFF Research Database (Denmark)

    Lühr, Hermann; Park, Jaeheung; Gjerløv, Jesper Wittendorff

    2015-01-01

    We present a statistical study of the temporal- and spatial-scale characteristics of different field-aligned current (FAC) types derived with the Swarm satellite formation. We divide FACs into two classes: small-scale, up to some 10 km, which are carried predominantly by kinetic Alfve´n waves......, and large-scale FACs with sizes of more than 150 km. For determining temporal variability we consider measurements at the same point, the orbital crossovers near the poles, but at different times. From correlation analysis we obtain a persistent period of small-scale FACs of order 10 s, while large-scale...... FACs can be regarded stationary for more than 60 s. For the first time we investigate the longitudinal scales. Large-scale FACs are different on dayside and nightside. On the nightside the longitudinal extension is on average 4 times the latitudinal width, while on the dayside, particularly in the cusp...

  7. A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents

    Science.gov (United States)

    Lee, S.; Shiokawa, K.; McFadden, J. P.

    2010-12-01

    The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field-aligned

  8. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    Science.gov (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  9. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    Science.gov (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  10. Climatology of the inter-hemispheric field-aligned currents system over the Nigeria ionosphere

    Science.gov (United States)

    Bolaji, O. S.; Rabiu, A. B.; Oyeyemi, E. O.; Yumoto, K.

    2012-11-01

    Records of the declination (D) magnetic field data for the year 2009 from the Magnetic Data Acquisition System (MAGDAS) facilities at University of Ilorin were employed for this work. From the minutes value of the D-component, the deduced hourly values of the D-component (Sq(QD)) were used to estimate its diurnal (Sq(D)) values with the most five quietest days identified. The monthly mean (MSq(D)) of the most five quietest days and their seasonal (SSq(D)) variabilities were investigated. The inter-hemispheric field aligned currents (IHFACs) exhibit downward and upward inter-hemispheric field-aligned sheet current that appears as a pair at all local times of the Sq(D), MSq(D), and SSq(D) variations. From these variabilities, the IHFACs were observed to flow from the winter to summer hemisphere during noon and dusk sector and flowing in opposite direction during the dawn sector. The Sq(D) variability patterns that were observed in May, June, August September are gentle compared to the disturbed variabilities in January, February, March and November. The highest positive (˜1.7 arc-min) and negative (˜-2.7 arc min) MSq(D) maxima values were observed in August during the dawn and noon sectors respectively. These values indicated that the IHFACs flow in August is strongly southbound (positive) and northbound (negative) in the dawn and noon sectors respectively. Dusk-side IHFACs as can be observed by MAGDAS are weakly northbound in all the seasons. The direction of IHFACs does not flip at the equinoxes but in June and November and does not become largest at solstices but in August. The IHFACs was observed to exhibit longitudinal variability, which indicated that larger amplitude of winter-to-summer IHFACs is observed to be greater in June solstice (northbound/negative IHFACs) than in the December solstice (southbound/positive IHFACs) during the noon sector.

  11. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.

  12. Influence of Rayleigh-Bénard convection on electrokinetic instability in overlimiting current conditions

    Science.gov (United States)

    de Valença, Joeri C.; Kurniawan, Aziz; Wagterveld, R. Martijn; Wood, Jeffery A.; Lammertink, Rob G. H.

    2017-03-01

    We investigate the influence of buoyancy on electroconvection at an ion-exchange membrane in an aqueous electrolyte solution. Electrokinetic instabilities (EKIs) and Rayleigh-Bénard (RB) convection are both known to mix the appearing concentration gradient layer and overcome the limiting current arising from diffusional limitations. The different physics, as well as the interplay between them, are investigated by electrical, flow, and concentration characterization. In the buoyancy stable orientation, an EKI mixing layer, having a low concentration, grows till saturated size. In the buoyancy unstable orientation, RB occurs and dominates the advective transport due to the large system size. When current density i 5 ilim EKI starts before RB and hastens the onset of RB. Upon onset of RB, EKI is suppressed while the overall resistance is still decreased. The onset times of EKI and RB could be predicted using a simple diffusion-migration model based on Fick's second law.

  13. Current modes of failure in TKA: infection, instability, and stiffness predominate.

    Science.gov (United States)

    Le, David H; Goodman, Stuart B; Maloney, William J; Huddleston, James I

    2014-07-01

    Historically, polyethylene wear and its sequelae (osteolysis, late instability, aseptic loosening) were common causes for revision total knee arthroplasty (TKA). Recently, polyethylene manufacturing has become more consistent; furthermore, a clearer understanding of the importance of oxidation on polyethylene performance led to packaging of the polyethylene bearings in an inert environment. This improved the quality and consistency of polyethylene used in TKA, raising the question of whether different failure modes now predominate after TKA. The purpose of this study was to determine the current reasons for (1) early and (2) late failures after TKA at one high-volume arthroplasty center. We reviewed all first-time revision TKAs performed between 2001 and 2011 at one institution, yielding a group of 253 revision TKAs in 251 patients. Mean age at the time of revision was 64 years (SD 10 years). Mean time to revision was 35 months (SD 23 months). Preoperative evaluations, laboratory data, radiographs, and intraoperative findings were used to determine causes for revision. Early failure was defined as revision within 2 years of the index procedure. The primary failure mechanism was determined by the operating surgeon. Early failure accounted for 46% (116 of 253) of all revisions with infection (28 of 116 [24%]), instability (30 of 116 [26%]), and stiffness (21 of 116 [18%]) being the leading causes. Late failure accounted for 54% (137 of 253) of all revisions with the most common causes including infection (34 of 137 [25%]), instability (24 of 137 [18%]), and stiffness (19 of 253 [14%]). Polyethylene wear was implicated as the failure mechanism in 2% of early cases (two of 116) and 9% of late cases (13 of 137). In contrast to previous studies, wear-related implant failure in TKA was relatively uncommon in this series. Changes in polyethylene manufacturing, sterilization, and storage may have accounted for some of this difference; however, longer-term followup will

  14. Collisional effects on the current-filamentation instability in a dense plasma

    Institute of Scientific and Technical Information of China (English)

    HAO Biao; SHENG Zheng-Ming; ZHANG Jie

    2009-01-01

    The collisional current-filamentation instability (CFI) is studied for a nonrelativistic electron beampenetrating an infinite uniform plasma.It is analytically shown that the CFI is driven by the drift-anisotropyrather than the classical anisotropy of the beam and the background plasma.Therefore,collisional effects can either attenuate or enhance the CFI depending on the drift-anisotropy of the beam-plasma system.Numerical results are given for some typical parameters,which show that collisional effects cannot stabilize but enhance the CFI in a dense plasma.Thus,the CFI may play a dominant role in the fast electron transport and deposition relevant to the fast ignition scenario(FIS).

  15. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant

    2015-01-01

    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  16. Suppression of vertical instability in elongated current-carrying plasmas by applying stellarator rotational transform

    Energy Technology Data Exchange (ETDEWEB)

    ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Maurer, D. A.; Pandya, M. D.; Traverso, P. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2014-05-15

    The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium.

  17. Space Technology 5 (ST-5) Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  18. Helicity and alpha-effect by current-driven instabilities of helical magnetic fields

    CERN Document Server

    Gellert, M; Hollerbach, R

    2011-01-01

    Helical magnetic background fields with adjustable pitch angle are imposed on a conducting fluid in a differentially rotating cylindrical container. The small-scale kinetic and current helicities are calculated for various field geometries, and shown to have the opposite sign as the helicity of the large-scale field. These helicities and also the corresponding $\\alpha$-effect scale with the current helicity of the background field. The $\\alpha$-tensor is highly anisotropic as the components $\\alpha_{\\phi\\phi}$ and $\\alpha_{zz}$ have opposite signs. The amplitudes of the azimuthal $\\alpha$-effect computed with the cylindrical 3D MHD code are so small that the operation of an $\\alpha\\Omega$ dynamo on the basis of the current-driven, kink-type instabilities of toroidal fields is highly questionable. In any case the low value of the $\\alpha$-effect would lead to very long growth times of a dynamo in the radiation zone of the Sun and early-type stars of the order of mega-years.

  19. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    Science.gov (United States)

    Timalsina, Yukta P.

    In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device

  20. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  1. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  2. On the spreading and instability of gravity current fronts of arbitrary shape

    Science.gov (United States)

    Zgheib, N.; Bonometti, T.; Balachandar, S.

    2012-11-01

    Experiments, simulations and theoretical analysis were carried out to study the influence of geometry on the spreading of gravity currents. The horizontal spreading of three different intial planforms of initial release were investigated: an extended ellipse, a cross, and a circle. The experiments used a pulley system for a swift nearly instantaneous release. The case of the axisymmetric cylinder compared favorably with earlier simulations. We ran experiments for multiple aspect ratios for all three configurations. Perhaps the most intriguing of the three cases is the ``ellipse,'' which within a short period of release flipped the major and minor axes. This behavior cannot be captured by current theoretical methods (such as the Box Model). These cases have also been investigated using shallow water and direct numerical simulations. Also, in this study, we investigate the possibility of a Rayleigh-Taylor (RT) instability of the radially moving, but decelerating front. We present a simple theoretical framework based on the inviscid Shallow Water Equations. The theoretical results are supplemented and compared to highly resolved three-dimensional simulations with the Boussinesq approximation. Chateaubriand Fellowship - NSF PIRE grant OISE-0968313.

  3. Growth instability due to lattice-induced topological currents in limited-mobility epitaxial growth models.

    Science.gov (United States)

    Kanjanaput, Wittawat; Limkumnerd, Surachate; Chatraphorn, Patcha

    2010-10-01

    The energetically driven Ehrlich-Schwoebel barrier had been generally accepted as the primary cause of the growth instability in the form of quasiregular moundlike structures observed on the surface of thin film grown via molecular-beam epitaxy (MBE) technique. Recently the second mechanism of mound formation was proposed in terms of a topologically induced flux of particles originating from the line tension of the step edges which form the contour lines around a mound. Through large-scale simulations of MBE growth on a variety of crystalline lattice planes using limited-mobility, solid-on-solid models introduced by Wolf-Villain and Das Sarma-Tamborenea in 2+1 dimensions, we show that there exists a topological uphill particle current with strong dependence on specific lattice crystalline structure. Without any energetically induced barriers, our simulations produce spectacular mounds very similar, in some cases, to what have been observed in many recent MBE experiments. On a lattice where these currents cease to exist, the surface appears to be scale invariant, statistically rough as predicted by the conventional continuum growth equation.

  4. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    CERN Document Server

    Hoelzl, M; Merkel, P; Atanasiu, C; Lackner, K; Nardon, E; Aleynikova, K; Liu, F; Strumberger, E; McAdams, R; Chapman, I; Fil, A

    2014-01-01

    The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realist...

  5. Relation between electric field and field-aligned currents data from the satellite Interkosmos-Bolgariya-1600

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, N.S.; Dubinin, E.M.; Izrailevich, P.L.; Podgornyi, I.M.

    1988-11-01

    We present the results of measuring the electric and magnetic field sin the auroral region. The measurements were made by independent instruments on Interkosmos-Bolgariya-1300. We show that in regions where field-aligned currents are flowing, the profiles of electric and magnetic fields are similar. This is apparently one of the phenomena of ionosphere-magnetosphere connections, where closure of the field-aligned currents occurs via meridional Pedersen currents, and the Hall current is divergenceless. In regions where E/sub x/ and /triangle/B/sub y/ are proportional, we have estimated the Pedersen conductivity. The results of these calculations are in agreement with the values of conductivity obtained from electron spectra which were measured simultaneously by the same satellite.

  6. On the Difference in Quality between Current Heuristic and Optimal Solutions to the Protein Structure Alignment Problem

    Directory of Open Access Journals (Sweden)

    Mauricio Arriagada

    2013-01-01

    Full Text Available The importance of pairwise protein structural comparison in biomedical research is fueling the search for algorithms capable of finding more accurate structural match of two input proteins in a timely manner. In recent years, we have witnessed rapid advances in the development of methods for approximate and optimal solutions to the protein structure matching problem. Albeit slow, these methods can be extremely useful in assessing the accuracy of more efficient, heuristic algorithms. We utilize a recently developed approximation algorithm for protein structure matching to demonstrate that a deep search of the protein superposition space leads to increased alignment accuracy with respect to many well-established measures of alignment quality. The results of our study suggest that a large and important part of the protein superposition space remains unexplored by current techniques for protein structure alignment.

  7. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Amicucci, L., E-mail: luca.amicucci@enea.it; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A. [EUROfusion-ENEA, Centro Ricerche Frascati, Unità Fusione, Frascati (Italy); Ding, B. J.; Li, M. H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  8. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Science.gov (United States)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  9. The Dependence of the Strength and Thickness of Field-Aligned Currents on Solar Wind and Ionospheric Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay R. [PPPL; Wing, Simon [Johns Hopkins University

    2014-08-01

    Sheared plasma flows at the low-latitude boundary layer correlate well with early afternoon auroral arcs and eld-aligned currents [Sonnerup, 1980; Lundin and Evans, 1985]. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents in a region of sheared velocity, such as the low latitude boundary layer. We compare the predictions of the model with DMSP observations and nd remarkably good scaling of the currents with solar wind and ionospheric parameters. The sheared boundary layer thickness is inferred to be around 3000km consistent with observational studies. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data.

  10. The Onset of Magnetic Reconnection: Tearing Instability in Current Sheets with a Guide Field

    Science.gov (United States)

    Daldorff, Lars K. S.; Klimchuk, James A.; Leake, James E.; Knizhnik, Kalman

    2017-08-01

    Magnetic reconnection is fundamental to many solar phenomena, ranging from coronal heating, to jets, to flares and CMEs. A poorly understood yet crucial aspect of reconnection is that it does not occur until magnetic stresses have built to sufficiently high levels for significant energy release. If reconnection were to happen too soon, coronal heating would be weak and flares would be small. As part of our program to study the onset conditions for magnetic reconnection, we have investigated the instability of current sheets to tearing. Surprisingly little work has been done on this problem for sheets that include a guide field, i.e., for which the field rotates by less than 180 degrees. This is the most common situation on the Sun. We present numerical 3D resistive MHD simulations of several sheets and show how the behavior depends on the shear angle (rotation). We compare our results to the predictions of linear theory and discuss the nonlinear evolution in terms of plasmoid formation and the interaction of different oblique tearing modes. The relevance to the Sun is explained.

  11. CRITICAL SUCCESS FACTORS FOR BUSINESS – IT ALIGNMENT:A REVIEW OF CURRENT RESEARCH

    OpenAIRE

    Ilir Kurti; Ezmolda Barolli; Kozeta Sevrani

    2013-01-01

    Business-IT alignment still remains one of the three main research streams in IS literature, and from 1994 it constantly ranks among the top three concerns of CIOs. While a lot of research has been published around business-IT alignment in the last three decades, a number of models have been proposed to structure the concept into various dimensions and levels. However, only a few studies have been made regarding the critical success factors. Moreover, we were unable to find any systematically...

  12. CRITICAL SUCCESS FACTORS FOR BUSINESS – IT ALIGNMENT:A REVIEW OF CURRENT RESEARCH

    OpenAIRE

    Ilir Kurti; Ezmolda Barolli; Kozeta Sevrani

    2013-01-01

    Business-IT alignment still remains one of the three main research streams in IS literature, and from 1994 it constantly ranks among the top three concerns of CIOs. While a lot of research has been published around business-IT alignment in the last three decades, a number of models have been proposed to structure the concept into various dimensions and levels. However, only a few studies have been made regarding the critical success factors. Moreover, we were unable to find any systematically...

  13. Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  14. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. II. Relaxation of Pulsar Wind Nebula

    CERN Document Server

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E

    2010-01-01

    We have investigated the relaxation of a hydrostatic hot plasma column containing toroidal magnetic field by the Current-Driven (CD) kink instability as a model of pulsar wind nebulae. In our simulations the CD kink instability is excited by a small initial velocity perturbation and develops turbulent structure inside the hot plasma column. We demonstrate that, as envisioned by Begelman, the hoop stress declines and the initial gas pressure excess near the axis decreases. The magnetization parameter \\sigma, the ratio of the Poynting to the kinetic energy flux, declines from an initial value of 0.3 to about 0.01 when the CD kink instability saturates. Our simulations demonstrate that axisymmetric models strongly overestimate the elongation of the pulsar wind nebulae. Therefore, the previous requirement for an extremely low pulsar wind magnetization can be abandoned. The observed structure of the pulsar wind nebulae do not contradict the natural assumption that the magnetic energy flux still remains a good frac...

  15. Plasma Instabilities in the Context of Current Helium Sedimentation Models: Dynamical Implications for the ICM in Galaxy Clusters

    CERN Document Server

    Berlok, Thomas

    2015-01-01

    Understanding whether Helium can sediment to the core of galaxy clusters is important for a number of problems in cosmology and astrophysics. All current models addressing this question are one-dimensional and do not account for the fact that magnetic fields can effectively channel ions and electrons, leading to anisotropic transport of momentum, heat, and particle diffusion in the weakly collisional intracluster medium (ICM). This anisotropy can lead to a wide variety of instabilities, which could be relevant for understanding the dynamics of heterogeneous media. In this paper, we consider the radial temperature and composition profiles as obtained from a state-of-the-art Helium sedimentation model and analyze its stability properties. We find that the associated radial profiles are unstable, to different kinds of instabilities depending on the magnetic field orientation, at all radii. The fastest growing modes are usually related to generalizations of the Magnetothermal Instability (MTI) and the Heat-flux-d...

  16. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    Science.gov (United States)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  17. Small spatial scale field aligned currents in middle and low latitudes as observed by the CHAMP satellite and verification of their current circuit model

    Science.gov (United States)

    Nakanishi, K.; Iyemori, T.; Luhr, H.

    2013-12-01

    The magnetic field observation by the CHAMP satellite shows the global and frequent appearance of small scale (1-5 nT) magnetic fluctuations with period around a few tens seconds along the satellites. They have the following characteristics. 1. The signal is perpendicular to the geomagnetic main field, and the amplitude of the zonal component is larger than that of the meridional component. 2. Around the dip equator, as the latitude becomes lower, the period and amplitudes of the two components perpendicular to the main field respectively tend to become longer and smaller (to nearly zero on the dip equator). 3. The amplitude of the magnetic fluctuations on the dayside is larger than that on the night side by around one order in magnitude, which highly correlates to the electric conductivity of the ionospheric dynamo layer. 4. The amplitude shows symmetry about the magnetic dip equator which indicates a magnetic conjugacy to a certain extent. 5. The amplitude shows almost no dependence on the solar wind parameters such as the IMF cone angle nor the solar wind speed, which strongly suggests no association with the Pc3 micro pulsation. 6. The amplitude also shows almost no dependence on the geomagnetic activity. 7. The amplitude has a clear seasonal dependence with topographical characteristics. They can be interpreted as the spatial structure of small scale field-aligned currents generated by the ionospheric dynamo driven by atmospheric gravity waves propagating from the lower atmosphere. The mechanism is the following; first, the gravity waves generated by the lower atmospheric disturbance propagate to the ionosphere; the neutral winds oscillate, cause ionospheric dynamo and Pedersen and Hall currents flow; because the dynamo region is finite, the currents cause polarized electric fields; and the polarized electric fields propagate along the geomagnetic filed as Alfven waves accompanied by field-aligned currents, at the same time, the ionospheric currents divert to

  18. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  19. Electron/ion whistler instabilities and magnetic noise bursts

    Science.gov (United States)

    Akimoto, K.; Gary, S. Peter; Omidi, N.

    1987-01-01

    Two whistler instabilities are investigated by means of the linear Vlasov dispersion equation. They are called the electron/ion parallel and oblique whistler instabilities, and are driven by electron/ion relative drifts along the magnetic field. It is demonstrated that the enhanced fluctuations from these instabilities can explain several properties of magnetic noise bursts in and near the plasma sheet in the presence of ion beams and/or field-aligned currents. At sufficiently high plasma beta, these instabilities may affect the current system in the magnetotail.

  20. Spatial growth of current-driven instability in relativistic rotating jets and the search for magnetic reconnection

    CERN Document Server

    Singh, Chandra B; Pino, Elisabete M de Gouveia Dal

    2016-01-01

    Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purpose of our study, we used a non-periodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light as well as heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field and the flow is accelerated due to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic rec...

  1. THERMAL INSTABILITY OF COMPRESSIBLE WALTERS' (MODEL B' FLUID IN THE PRESENCE OF HALL CURRENTS AND SUSPENDED PARTICLES

    Directory of Open Access Journals (Sweden)

    Urvashi GUPTA

    2011-01-01

    Full Text Available Effect of Hall currents and suspended particles is considered on the hydromagnetic stability of a compressible, electrically conducting Walters' (Model B' elastico-viscous fluid. After linearizing the relevant hydromagnetic equations, the perturbation equations are analyzed in terms of normal modes. A dispersion relation governing the effects of visco-elasticity, magnetic field, Hall currents and suspended particles is derived. It has been found that for stationary convection, the Walters' (Model B' fluid behaves like an ordinary Newtonian fluid due to the vanishing of the visco-elastic parameter. The compressibility and magnetic field have a stabilizing effect on the system, as such their effect is to postpone the onset of thermal instability whereas Hall currents and suspended particles are found to hasten the onset of thermal instability for permissible range of values of various parameters. Also, the dispersion relation is analyzed numerically and the results shown graphically. The critical Rayleigh numbers and the wavenumbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The visco-elasticity, suspended particles and Hall currents (hence magnetic field introduce oscillatory modes in the system which were non-existent in their absence.

  2. Instability of Wind Turbine Converters during Current Injection to Low Voltage Grid Faults and PLL Frequency Based Stability Solution

    DEFF Research Database (Denmark)

    Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth;

    2014-01-01

    In recent grid codes for wind power integration, wind turbines are required to stay connected during grid faults even when the grid voltage drops down to zero; and also to inject reactive current in proportion to the voltage drop. However, a physical fact, instability of grid-connected converters...... during current injection to very low (close to zero) voltage faults, has been omitted, i.e., failed to be noticed in the previous wind power studies and grid code revisions. In this paper, the instability of grid side converters of wind turbines defined as loss of synchronism (LOS), where the wind...... turbines lose synchronism with the grid fundamental frequency (e.g., 50 Hz) during very deep voltage sags, is explored with its theory, analyzed and a novel stability solution based on PLL frequency is proposed; and both are verified with power system simulations and by experiments on a grid...

  3. EISCAT radar observations of enhanced incoherent scatter spectra; their relation to red aurora and field-aligned currents

    Energy Technology Data Exchange (ETDEWEB)

    Collis, P.N. (EISCAT, Kiruna (Sweden)); Haeggstroem, I. (IRF, Kiruna (Sweden)); Kaila, K. (Univ. of Oulu (Finland)); Rietveld, M.T. (EISCAT, Ramfjordmoen (Norway))

    1991-06-01

    Enhancements of one, or both, of the ion-acoustic peaks of incoherent scatter spectra in the auroral ionosphere have been observed with the EISCAT UHF and VHF radars. All occurrences for which optical data are available show these events to coincide with active, unusually intense, red auroral forms in the vicinity of the radar beam at high altitudes. Both the optical and the radar signatures are expected to be caused by large fluxes of low energy electrons. Analyses of the measured spectra, in which the electron drift speed is estimated, imply field-aligned current densities up to several mA m{sup {minus}2}. The vertically-directed VHF observations from {approximately}1,000 km altitude reveal that the spectral enhancements, which are transient features in field-aligned measurements, can exist for up to several minutes.

  4. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A., E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wahab, Muhammad A.; Alam, Muhammad A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Li, Yuhang [Institute of Solid Mechanics, Beihang University, Beijing 100191 (China); Tomic, Bojan [Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Huang, Jiyuan [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burns, Branden [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Song, Jizhou [Department of Engineering Mechanics and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China); Huang, Yonggang [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Center for Engineering and Health, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  5. The three-dimensional evolution of ion-scale current sheets: tearing and drift-kink instabilities in the presence of proton temperature anisotropy

    CERN Document Server

    Gingell, Peter; Matteini, Lorenzo

    2014-01-01

    We present the first three-dimensional hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent three-dimensional structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the three-dimensional evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of three-dimensional current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of...

  6. Theory of the Current-Driven Ion Cyclotron Instability in the Bottomside Ionosphere.

    Science.gov (United States)

    1985-11-11

    Instability in the Bottomside Ionosphere (0 P. SATYANARAYANA AND P. K. CHATURVEDI Science Applications International Corporation McLean, VA 22102 M. J...Bottomside Ionosphere 𔃼 PERSONAL AUTHOR(S) Satyanarayana . P..* Chaturvedi. P.K..* Keskinen, M.J., Huba, J.D. and Ossakow, S.L. !3a TYPE OF REPORT 13b TIME...17 ACKNOWLEDGMENTS ...................................... 21 REFERENCES ............................................ 32 - v - 3at .o"i ii

  7. The Study Of Low-Frequency Instabilities Of Current Sheaths Of Space Plasma Within The Quasi-Linear Theory

    Science.gov (United States)

    Lyahov, Vladimir; Neshchadim, Vladimir

    2015-04-01

    Investigation of the stability nonelectroneutral current sheets in the linear approximation [1-4] gives information only on the initial stage of development of perturbations when their amplitudes are small. Within the framework of the quasi-linear theory one can give an answer to the question of how long the initial perturbations can grow and how change the equilibrium state of the plasma current sheet under the reverse effect of these perturbations. We derive a system of nonlinear kinetic equation with self-consistent electromagnetic field in order to study the evolution of the distribution function of the background plasma current sheet in the approximation of low-frequency eigenmodes of instabilities. Evolution equation was obtained for the perturbation of the electromagnetic field and the instability growth rate in the current sheet. Algorithms were tested for solutions of the equations obtained. 1. Lyahov V.V., Neshchadim V.M. Kinetic theory of the current sheath. I. On polarization of an equilibrium current sheath// Advances in Space Research. -2012. -Vol. 50. -P. 318-326. 2. Lyahov V.V., Neshchadim V.M. Kinetic theory of the current sheath. II. Effect of polarization on the stability of a current sheath.// Advances in Space Research.-2013. -Vol. 51. -P. 730-741. 3. Lyahov V.V., Neshchadim V.M. The Effect of Polarization on the Stability of Current Sheaths in Space Plasma // EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-1379, 04/2013, Bibliographic Code: 2013EGUGA..15.1379L 4. Lyahov V.V., Neshchadim V.M. About the eguilibrium and stability of nonelectroneutral current sheats // Advances in Space Research.-2014. -Vol. 54. -P. 901-907.

  8. Field-Aligned Currents at the PSBL on 17 August 2001 Storm:Relationships with solar Wind Conditions

    Institute of Scientific and Technical Information of China (English)

    CHENG Zheng-Wei; SHI Jian-Kui; ZHANG Tie-Long; WANG Sheng-Guo; LIU Zhen-Xing

    2011-01-01

    @@ Using magnetic field and plasma data acquired with Cluster spacecrafts,we investigate the relationship between the field-aligned currents(FACs)at the plasma sheet boundary layer(PSBL)and solar wind dynamic pressure,as well as the interplanetary magnetic field(IMF)By on 17 August 2001 storm.Our studies reveal that FAC density at the PSBL in the magnetotail in the storm time is controlled mainly by the solar wind dynamic pressure rather than IMF By.The FACs at the PSBL are associated with the low-altitude region-1 current and have the same polarity as region-1 current in the dawn sector.In the polar region,the footprints of the FACs at the appeared in this storm time when a substorm just occurred.%Using magnetic field and plasma data acquired with Cluster spacecrafts, we investigate the relationship between the field-aligned currents (FACs) at the plasma sheet boundary layer (PSBL) and solar wind dynamic pressure, as well as the interplanetary magnetic field (IMF) Bv on 17 August 2001 storm. Our studies reveal that FAC density at the PSBL in the magnetotail in the storm time is controlled mainly by the solar wind dynamic pressure rather than IMF By. The FACs at the PSBL are associated with the low-altitude region-1 current and have the same polarity as region-1 current in the dawn sector. In the polar region, the footprints of the FACs at the PSBL expand equatorward. The data analysis also shows that a very strong FAC with a density over 40nA-m~2 appeared in this storm time when a substorm just occurred.

  9. Upper Extremity Injured Workers Stratified by Current Work Status: An Examination of Health Characteristics, Work Limitations and Work Instability

    Directory of Open Access Journals (Sweden)

    H Grant

    2010-06-01

    Full Text Available Background: Upper extremity injured workers are an under-studied population. A descriptive comparison of workers with shoulder, elbow and hand injuries reporting to a Canadian Workplace Safety and Insurance Board (WSIB clinic was undertaken.Objective: To determine if differences existed between injury groups stratified by current work status.Methods: All WSIB claimants reporting to our upper extremity clinic between 2003 and 2008 were approached to participate in this descriptive study. 314 working and 146 non-working WSIB claimants completed the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH; Short Form health survey (SF36; Worker’s Limitations Questionnaire and the Work Instability Scale. Various parametric and non-parametric analyses were used to assess significant differences between groups on demographic, work and health related variables.Results: Hand, followed by the shoulder and elbow were the most common site of injury. Most non-workers listed their current injury as the reason for being off work, and attempted to return to work once since their injury occurrence. Non-workers and a subset of workers at high risk for work loss showed significantly worse mental functioning. Workers identified physical demands as the most frequent injury-related on the job limitation. 60% of current workers were listed as low risk for work loss on the Work Instability Scale.Conclusions: Poorer mental functioning, being female and sustaining a shoulder injury were risk factors for work instability. Our cohort of injured non-workers were unable to return to work due to their current injury, reinforcing the need to advocate for modified duties, shorter hours and a work environment where stress and injury recurrence is reduced. Future studies examining pre-injury depression as a risk factor for prolonged work absences are warranted.

  10. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  11. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries

    Science.gov (United States)

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-11-01

    Thin films of the iron-based superconductor BaFe2(As1-xPx)2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (Jc). The Ba122:P film exhibited higher Jc at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe2As2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.

  12. Roles of initial current carrier in the distribution of field-aligned current in 3-D Hall MHD simulations

    Institute of Scientific and Technical Information of China (English)

    ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi

    2008-01-01

    A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,

  13. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    Science.gov (United States)

    Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.

    2014-11-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.

  14. A fast alignment method for breast MRI follow-up studies using automated breast segmentation and current-prior registration

    Science.gov (United States)

    Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.

    2015-03-01

    In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.

  15. Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages

    Directory of Open Access Journals (Sweden)

    J. D. Nichols

    2005-03-01

    Full Text Available We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.

  16. Investigation of sounding rocket observations of field-aligned currents and electron temperature

    Science.gov (United States)

    Cohen, I. J.; Lessard, M.; Zettergren, M. D.; Moen, J.; Lynch, K. A.; Heavisides, J. M.

    2014-12-01

    Strangeway et al. [2005] and other authors have concluded that the establishment of the ambipolar field by the deposition of energy from soft electron precipitation is a significant driver of type-2 ion upflows. Likewise, Clemmons et al. [2008] and Zhang et al. [2012] proposed processes by which soft electron precipitation may play a role in heating neutrals and contribute to neutral upwelling. In both situations the thermal ionospheric electron population plays a crucial role in both generation of the ambipolar field and in collisional energy exchange with the atmosphere through a variety of processes. In this study we examine the dynamics of the electron population, specifically the temperature, in a slightly different context - focusing on the auroral downward current region (DCR). In many cases auroral DCRs may be depleted of plasma, which sets up interesting conditions involving thermoelectric heat fluxes (which flow upward - in the opposite direction from the current), adiabatic expansion due to the high (upward) speed of the electrons carrying the downward current, heat exchange from ions which have elevated temperatures due to frictional heating, and direct frictional heating of the electrons. A detailed understanding of the electron temperature in auroral DCRs is necessary to make quantitative statements about recombination, upflow, cavitation and a host of other processes relevant to ion outflow. In this study, we compare in situ rocket observations of electron temperature, density, and current densities with predictions from the Zettergren and Semeter [2012] model in an attempt to better understand the dynamics and relationships between these parameters in DCRs.

  17. Alignment validation

    Energy Technology Data Exchange (ETDEWEB)

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  18. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  19. Negative differential conductivity induced current instability in two-dimensional electron gas system in high magnetic fields

    Science.gov (United States)

    Lee, Ching-Ping; Komiyama, Susumu; Chen, Jeng-Chung

    2015-03-01

    High mobility two-dimensional electron gas (2DEG) formed in the interface of a GaAs/AlGaAs hetero-structure in high magnetic field (B) exhibits interring nonlinear response either under microwave radiation or to a dc electric field (E). It is general believed that this kind nonlinear behavior is closely related to the occurrence of negative-differential conductance (NDC) in the presence of strong B and E. We observe a new type NDC state driven by a direct current above a threshold value (Ith) applied to a 2DEG as a function of B at relatively high temperatures (T). A current instability is observed in 2DEG system at high B ~6-8 T and at high T ~ 20- 30 K while the applied current is over Ith. The longitudinal voltage Vxx shows sub-linear behavior with the increase of I. As the current exceed Ith, Vxx suddenly drops a ΔVxx and becomes irregular associated with the appearance of hysteresis with sweeping I. We find that Ith increases with the increase of B and of T; meanwhile, ΔVxx is larger at higher B but lower T. Data analysis suggest that the onset of voltage fluctuation can be described by a NDC model proposed by Kurosawa et al. in 1976. The general behaviors of T and B dependence of current instability are analog to those recently reported at lower both T and B. This consistence suggests the same genuine mechanism of NDC phenomena observed in 2DEG system.

  20. Tests of a boundary layer model of field-aligned currents using S3-3 data

    Energy Technology Data Exchange (ETDEWEB)

    Cattell, C. [Univ. of Minnesota, Minneapolis, MN (United States); Somoza, M. [Univ. of California, Berkeley, CA (United States); Siscoe, G. [Boston Univ., Boston, MA (United States); Roeder, J. [Aerospace Corporation, Los Angeles, CA (United States)

    1996-03-01

    Data obtained from the low altitude, polar orbiting S3-3 satellite are utilized to test the model of field-aligned currents and electric fields within the auroal zone developed by Siscoe and Maynard. This model, for which the cross polar cap potential drop is the input parameter, combines the boundary layer-driven field-aligned current model of Siscoe et al. for Region 1 with a model for Region 2 currents based on Vasyliunas. Many general features of the observations are reproduced by the model. The main discrepancies may be explained by two simplifications which were made in the model: (1) the time independence of the boundary layer, in particular, of the scale length of magnetosphere-ionosphere coupling, l; and (2) the uniform ionospheric conductivity. When the expected time dependence of l is taken into account, the disagreement between the model gradients, latitudinal extents, and maxima in the fields and those observed in S3-3 data in the poleward (Region 1) auroal zone is readily accounted for in the context of a refined boundary layer model. The fact that the observed Region 2 Currents are usually larger and narrower than the predicted currents may be due to the underestimate of the Region 1 current explained above and the fact that the ionospheric conductivity was constant. These results suggest that the two most important modifications needed to improve the model are the inclusion of local-time dependence in the magnetosphere-ionosphere coupling parameter (as was done by Phan et al.) and of latitude and local time dependence in the ionospheric conductivity. There is also some evidence that the low-latitude boundary layer (LBL) parameters have cross polar cap potential dependencies which must be included in a model of this type. The S3-3 field data used the convection reversal as a marker for the polar cap boundary, whereas the model used the polarward edge of the low-latitude boundary layer. 33 refs., 4 fig.

  1. Field-aligned currents observed by MMS in the near-Earth plasma sheet during large-scale substorm dipolarizations.

    Science.gov (United States)

    Nakamura, Rumi; Nagai, Tsugunobu; Giles, Barbara; Le Contel, Olivier; Stawarz, Julia; Khotyaintsev, Yuri; Artemyev, Anton

    2017-04-01

    During substorms significant energy conversion has been reported to take place at the sharp dipolarization front in the flow braking region where the probability of observing bursty bulk flows (BBFs) significantly drops. On 10 August 2016, MMS traversed the pre-midnight near-Earth plasma sheet when dipolarization disturbances were detected in an extended nightside local time region by Cluster, Geotail, GOES 13, 14 and 15, and the Van Allen Probes. In an expanding plasma sheet during the dipolarization, MMS detected sub-ion scale field-aligned current layers that are propagating both Earthward (equatorward) as well as tailward (outward). These multi-scale multi-point observations enable a unique investigation of both the meso-scale evolution of the disturbances and the detailed kinetic structures of the fronts and boundaries relevant to the dipolarizations.

  2. Field-aligned currents in Saturn's magnetosphere: Local time dependence of southern summer currents in the dawn sector between midnight and noon

    Science.gov (United States)

    Hunt, G. J.; Cowley, S. W. H.; Provan, G.; Bunce, E. J.; Belenkaya, E. S.; Alexeev, I. I.; Kalegaev, V. V.; Dougherty, M. K.; Coates, A. J.

    2016-12-01

    We examine and compare the magnetic field perturbations associated with field-aligned ionosphere-magnetosphere coupling currents at Saturn, observed by the Cassini spacecraft during two sequences of highly inclined orbits in 2006/7 and 2008 under late southern summer conditions. These sequences explore the southern currents in the dawn-noon and midnight sectors, respectively. This allows investigation of possible origins of the local time (LT) asymmetry in auroral Saturn kilometric radiation (SKR) emissions, which peak in power at 8 h LT in the dawn-noon sector. We first show that the dawn-noon field data generally have the same four-sheet current structure as found previously in the midnight data, and that both are similarly modulated by "planetary period oscillation" (PPO) currents, these being associated with the 10.7 h magnetic field oscillations observed throughout Saturn's magnetosphere. We then separate the averaged PPO-independent (e.g., subcorotation) and PPO-related currents for both LT sectors using the latter current system symmetry properties. Surprisingly, we find that the PPO-independent currents are essentially identical within uncertainties in the dawn-dusk and midnight sectors, thus providing no explanation for the LT dependence of the SKR emissions. The main PPO-related currents are, however, found to be slightly stronger and narrower in latitudinal width at dawn-noon than at midnight, leading to estimated precipitating electron powers, and hence emissions, that are on average a factor of 1.3 larger at dawn-noon than at midnight, inadequate to account for the observed LT asymmetry in SKR power by a factor of 2.7. Some other factor must also be involved, such as a LT asymmetry in the hot magnetospheric auroral source electron population.

  3. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    OpenAIRE

    Perron, P. J. G.; J.-M. A. Noël; Kabin, K.; St-Maurice, J.-P.

    2013-01-01

    Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius...

  4. Lysophosphatidic acid increases the electrophysiological instability of adult rabbit ventricular myocardium by augmenting L-type calcium current.

    Directory of Open Access Journals (Sweden)

    Yong Wei

    Full Text Available Lysophosphatidic acid (LPA has diverse actions on the cardiovascular system and is widely reported to modulate multiple ion currents in some cell types. However, little is known about its electrophysiological effects on cardiac myocytes. This study investigated whether LPA has electrophysiological effects on isolated rabbit myocardial preparations. The results indicate that LPA prolongs action potential duration at 90% repolarization (APD(90 in a concentration- and frequency-dependent manner in isolated rabbit ventricular myocytes. The application of extracellular LPA significantly increases the coefficient of APD(90 variability. LPA increased L-type calcium current (I(Ca,L density without altering its activation or deactivation properties. In contrast, LPA has no effect on two other ventricular repolarizing currents, the transient outward potassium current (I(to and the delayed rectifier potassium current (I(K. In arterially perfused rabbit left ventricular wedge preparations, the monophasic action potential duration, QT interval, and Tpeak-end are prolonged by LPA. LPA treatment also significantly increases the incidence of ventricular tachycardia induced by S(1S(2 stimulation. Notably, the effects of LPA on action potentials and I(Ca,L are PTX-sensitive, suggesting LPA action requires a G(i-type G protein. In conclusion, LPA prolongs APD and increases electrophysiological instability in isolated rabbit myocardial preparations by increasing I(Ca,L in a G(i protein-dependent manner.

  5. Simultaneous prenoon and postnoon observations of three field-aligned current systems from Viking and DMSP-F7

    Science.gov (United States)

    Ohtani, S.; Potemra, T. A.; Newell, P. T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Yamauchi, M.; Elphinstone, R. D.; De La Beauijardie, O.; Blomberg, L. G.

    1995-01-01

    The spatial structure of dayside large-scale field-aligned current (FAC) systems is examined by using Viking and Defense Meteorological Satellite Program-F7 (DMSP-F7) data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region O) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region O system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a mulit-instrumental data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPD) at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (2) Midday region O currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocites decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the disctortion ofthe convection pattern associated with interplanetary magnetic field (IMF) B(sub Y) is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region O and a part of the region 1 systems are closely coupled to the same source.

  6. Are small-scale field-aligned currents and magneto sheath-like particle precipitation signatures of the same low-altitude cusp?

    DEFF Research Database (Denmark)

    Watermann, J.; Stauning, P.; Luhr, H.

    2009-01-01

    We examined some 75 observations from the low-altitude Earth orbiting DMSP, Orsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation...... of the satellites were converted into AACGM coordinates, and the geomagnetic latitude of the cusp boundaries (as indicated by precipitating particles and small-scale field-aligned currents) set in relation to the IMF-B-z dependent latitude of the equatorward boundary of the statistical cusp. We find...... that intense small-scale field-aligned currents are generated in the cusp but also in the transition zone between the low-latitude boundary layer (LLBL) and the cusp, probably within both regimes, the cusp and the open LLBL. The small-scale field-aligned currents are possibly a consequence of turbulence and...

  7. Analysis of current instabilities of thin AlN/GaN/AlN double heterostructure high electron mobility transistors

    Science.gov (United States)

    Zervos, Ch; Adikimenakis, A.; Bairamis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    The current instabilities of high electron mobility transistors (HEMTs), based on thin double AlN/GaN/AlN heterostructures (˜0.5 μm total thickness), directly grown on sapphire substrates, have been analyzed and compared for different AlN top barrier thicknesses. The structures were capped by 1 nm GaN and non-passivated 1 μm gate-length devices were processed. Pulsed I-V measurements resulted in a maximum cold pulsed saturation current of 1.4 A mm-1 at a gate-source voltage of +3 V for 3.7 nm AlN thickness. The measured gate and drain lag for 500 ns pulse-width varied between 6%-12% and 10%-18%, respectively. Furthermore, a small increase in the threshold voltage was observed for all the devices, possibly due to the trapping of electrons under the gate contact. The off-state breakdown voltage of V br = 70 V, for gate-drain spacing of 2 μm, was approximately double the value measured for a single AlN/GaN HEMT structure grown on a thick GaN buffer layer. The results suggest that the double AlN/GaN/AlN heterostructures may offer intrinsic advantages for the breakdown and current stability characteristics of high current HEMTs.

  8. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    Science.gov (United States)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  9. Investigation of the Influence of Magnetospheric Sources of Field-Aligned Currents on the Equatorial Electric Fields

    Science.gov (United States)

    Beloushko, Konstantin; Knyazeva, Mariya

    The urgency of studying electrodynamic processes related to the influence of spatial and temporal heterogeneities of the electromagnetic field in the Earth's upper atmosphere to the functioning of modern technological systems , satellite navigation systems , radio propagation Fundamentally new is the use of various third-party electrodynamic models in the total open loop model of the atmosphere based on the Upper Atmosphere Model (UAM) [1,2]. Performing calculations on model UAM using different spatial and temporal distributions of field-aligned currents and brands Lukianova and Papitashvili. A comparison of model results with data Jicamarca Incoherent Scatter Radar (Peru). References begin{enumerate} Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., Gluschenko T.A., Naumova N.M. Global model of the thermosphere-ionosphere-protonosphere system. Pure and Applied Geophysics. № 2/3, 127, 219-254, 1988. Namgaladze A.A., Martynenko O.V., Namgaladze A.N. Global model of the upper atmosphere with variable latitudinal steps of numerical integration, IUGG XXI General Assembly, Boulder, 1995, Abstracts, GAB41F-6, B150, 1995, and (in Russian) Geamagn. Aeron., 36, 89-95, 1996a.

  10. Field-aligned current associated with low-latitude plasma blobs as observed by the CHAMP satellite

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-03-01

    Full Text Available Here we give two examples of low-latitude plasma blobs accompanied by linearly polarized perpendicular magnetic deflections which imply that associated field-aligned currents (FACs have a 2-D sheet structure located at the blob walls. The estimated FAC density is of the order of 0.1 μA/m2. The direction of magnetic deflections points westward of the magnetic meridian and there is a linear correlation between perpendicular and parallel variations. All these properties are similar to those of equatorial plasma bubbles (EPBs. According to CHAMP observations from August 2000 to July 2004, blobs show except for these two good examples no clear signatures of 2-D FAC sheets at the walls. Generally, perpendicular magnetic deflections inside blobs are weaker than inside EPBs on average. Our results are consistent with existing theories: if a blob exists, (1 a significant part of EPB FAC will be closed through it, exhibiting similar perpendicular magnetic deflection inside EPBs and blobs, (2 the FAC closure through blobs leads to smaller perpendicular magnetic deflection at its poleward/downward side, and (3 superposition of different FAC elements might result in a complex magnetic signature around blobs.

  11. Overview of the Cassini In-Situ Observations of Auroral Field-Aligned Currents During the 2013 Saturn Aurora Campaign

    Science.gov (United States)

    Bunce, E. J.; Badman, S. V.; Cowley, S. W.; Dougherty, M. K.; Gurnett, D. A.; Jinks, S.; Kurth, W. S.; Mitchell, D. G.; Nichols, J. D.; Provan, G.; Pryor, W. R.

    2013-12-01

    The Saturn Aurora Campaign 2013 is a coordinated effort to provide a clearer understanding of Saturn's auroral emissions at multiple wavelengths in the upper atmosphere, and their associated magnetospheric signatures and dynamics. Structures such as Corotating Interaction Regions (CIRs) are known to play a significant role in the modulation of Saturn's auroral emissions via abrupt changes in the dynamic pressure associated with forward shocks at the start of the CIR compression regions. Recent observations from the Cassini spacecraft at Saturn have also taught us that the 'magnetosphere oscillations' observed in magnetic field perturbations in the northern and southern hemispheres, which are associated with the SKR modulations in each hemisphere, also significantly modulate the magnetosphere and auroral emissions. Here we present an overview of the in situ magnetosphere measurements during the campaign, along with an overview of the solar wind conditions upstream of Saturn inferred from the Saturn Kilometric Radiation (SKR) emissions. We will discuss evidence of the high-latitude field-aligned currents and plasma boundaries (e.g. the open-closed field line (or related) boundary) from the magnetic field data, plasma signatures and/or auroral hiss observations (using the Cassini magnetometer-MAG, the Magnetospheric Imaging Instrument-MIMI, and the Radio Plasma Wave Science-RPWS instruments respectively). We will attempt to characterise the morphology and variability (e.g. co-latitude, intensity) of the current system(s) from both the knowledge of the northern or southern magnetosphere oscillation phase (according to the location of the spacecraft) and the inferred solar wind conditions. We will compare these results with available IR/UV auroral images from the campaign.

  12. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM)

    Indian Academy of Sciences (India)

    Sachin Kaothekar

    2016-09-01

    The effects of finite ion Larmor radius (FLR) corrections, Hall current and radiative heat--loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effects of finite electrical resistivity, thermal conductivity and permeability for star formation in interstellar medium have been investigated. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion gets modified into radiative instability criterion. The finite electrical resistivity removes the effect of magnetic field and the viscosity of the medium removes the effect of FLR from the condition of radiative instability. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. Numerical calculation shows stabilizing effect of viscosity, heat--loss function and FLR corrections, and destabilizing effect of finite resistivity and permeability on the thermal instability. The outcome of the problem discussed the formation of star in the interstellar medium.

  13. [Carpal instability].

    Science.gov (United States)

    Redeker, J; Vogt, P M

    2011-01-01

    Carpal instability can be understood as a disturbed anatomical alignment between bones articulating in the carpus. This disturbed balance occurs either only dynamically (with movement) under the effect of physiological force or even statically at rest. The most common cause of carpal instability is wrist trauma with rupture of the stabilizing ligaments and adaptive misalignment following fractures of the radius or carpus. Carpal collapse plays a special role in this mechanism due to non-healed fracture of the scaphoid bone. In addition degenerative inflammatory alterations, such as chondrocalcinosis or gout, more rarely aseptic bone necrosis of the lunate or scaphoid bones or misalignment due to deposition (Madelung deformity) can lead to wrist instability. Under increased pressure the misaligned joint surfaces lead to bone arrosion with secondary arthritis of the wrist. In order to arrest or slow down this irreversible process, diagnosis must occur as early as possible. Many surgical methods have been thought out to regain stability ranging from direct reconstruction of the damaged ligaments, through ligament replacement to partial stiffening of the wrist joint.

  14. Current instabilities under HF electron gas heating in semiconductors with negative differential conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, Yu. G.; Logvinov, G. N. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico); Laricheva, N. [Datmouth College, New Hampshire (United States); Mashkevich, O. L. [Kharkov University, Kharkov (Ukraine)

    2001-10-01

    A nonlinear temperature dependence of the kinetic coefficients of semiconductor plasma can result in the appearance of regions of negative differential conductivity (NDC) in both the high-frequency (HF) and static current-voltage characteristics (CVC). In the present paper the formation of the static NDC under simultaneous electron gas heating by HF and static electric field is studied. As is shown below, in this case the heating electromagnetic wave has a pronounced effect on the appearance of NDC caused by the overheating mechanisms and the type of the static CVC as a whole. [Spanish] Una dependencia no lineal de la temperatura de los coeficientes cineticos del plasma del semiconductor puede llevar a la aparicion de regiones con conductividad diferencial negativa (CDN) en las caracteristicas corriente voltaje (CCV) de alta frecuencia (AF) y estatica. En este articulo se estudia la formacion de la CDN estatica bajo la accion simultanea del calentamiento del gas de electrones por AF y el campo electrico estatico. Como se muestra mas adelante, en este caso la onda electromagnetica que calienta a los electrones ejerce un fuerte efecto en la aparicion de la CDN; que se obtiene por mecanismos de sobrecalentamiento, y en el tipo de CCV estatica.

  15. Field-aligned currents and ionospheric parameters deduced from EISCAT radar measurements in the post-midnight sector

    Directory of Open Access Journals (Sweden)

    M. Sugino

    Full Text Available Attempting to derive the field-aligned current (FAC density using the EISCAT radar and to understand the role of the ionosphere on closing FACs, we conducted special radar experiments with the EISCAT radar on 9 October 1999. In order to derive the gradient of the ionospheric conductivity (grad S and the divergence of the electric field (div E nearly simultaneously, a special experiment employed an EISCAT radar mode which let the transmitting antenna sequentially point to four directions within 10 min; two pairs of the four directions formed two orthogonal diagonals of a square. 

    Our analysis of the EISCAT radar data disclosed that SP div E and E · grad SP produced FACs with the same direction inside a stable broad arc around 05:00 MLT, when the EISCAT radar presumably crossed the boundary between the large-scale upward and downward current regions. In the most successfully observed case, in which the conductances and the electric field were spatially varying with little temporal variations, the contribution of SP div E was nearly twice as large as that of E · grad SP . On the other hand, the contribution of (b × E · grad SH was small and not effective in closing FACs. The present EISCAT radar mode along with auroral images also enables us to focus on the temporal or spatial variation of high electric fields associated with auroral arcs. In the present experiment, the electric field associated with a stable arc was confined in a spatially restricted region, within ~ 100 km from the arc, with no distinct depletion of electron density. We also detected a region of the high arc-associated electric field, accompanied by the depletion of electron density

  16. Self-Aligned ALD AlOx T-gate Insulator for Gate Leakage Current Suppression in SiNx-Passivated AlGaN/GaN HEMTs

    Science.gov (United States)

    2010-01-01

    Self-aligned ALD AlOx T-gate insulator for gate leakage current suppression in SiNx-passivated AlGaN/ GaN HEMTs David J. Meyer *, Robert Bass, D...concept metal–insulator–semiconductor (MIS) AlGaN/ GaN high-electron mobility transistor ( HEMT ) that uses a self-aligned 10 nm AlOx gate insulator and...Au gate metal layers to fabri- cate submicron insulated T-gates for AlGaN/ GaN high-electron mobility transistors ( HEMTs ). Metal–insulator

  17. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  18. A modified FitzHugh-Nagumo model for cardiac instabilities: The replacement of a conductance variable with Ca current as a slow variable

    Science.gov (United States)

    Osaka, Motohisa

    2013-02-01

    The FitzHugh-Nagumo model of nerve conduction is also used as a model of cardiac excitability. We propose the replacement of a gating variable of the conductance of K+ current with Ca2+ current as a slow variable of the model, in which plays a key role in the cardiac action potential. Since ion currents conduct transversely as well as longitudinally through gap junctions between myocytes, particularly in ischemia, a respective diffusion term is involved to both equations of a fast variable and a slow variable. We show that only a small increase of a coefficient of the diffusion term of Ca2+ current may cause cardiac instabilities, which are presumed to cause breakup of conduction and finally a lethal arrhythmia, ventricular fibrillation. Particularly, these instabilities do not occur without the diffusion term of Ca2+ current.

  19. Source Driver Channel Reduction Schemes Employing Corresponding Pixel Alignments for Current Programming Active-Matrix Organic Light-Emitting Diode Displays

    Science.gov (United States)

    Hong, Soon-Kwang; Oh, Du-Hwan; Jeong, Seok-Hee; Park, Young-Ju; Kim, Byeong-Koo; Ha, Yong-Min; Jang, Jin

    2008-03-01

    We propose two types of novel scheme for reducing the number of output channels of driver-integrated circuit (D-IC) for the current programming compensation pixel structures of active-matrix organic light-emitting diodes (AMOLEDs). One is a 2:1 data demultiplexing technique that can reduce the number of output channels of D-IC by half. The proposed second scheme is a vertically aligned red (R), green (G), and blue (B) subpixel scheme instead of a horizontally aligned R-G-B subpixel one, which is regarded as the conventional pixel alignment scheme. We have also successfully implemented these schemes in a 2.4-in.-sized QCIF + (176 × RGB × 220) AMOLED using p-type excimer laser annealing (ELA) low-temperature polycrystalline silicon (LTPS) technology and evaluated key performance characteristics.

  20. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron

    2013-03-01

    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  1. Initial results on the correlation between the magnetic and electric fields observed from the DE-2 satellite in the field-aligned current regions

    Science.gov (United States)

    Sugiura, M.; Maynard, N. C.; Farthing, W. H.; Heppner, J. P.; Ledley, B. G.; Cahill, L. J., Jr.

    1982-01-01

    Initial results of the electric and magnetic field observations from the DE-2 satellite show a remarkably good correlation between the north-south component of the electric field and the east-west component of the magnetic field in many passes of the field-aligned current regions. For a dayside cusp pass on August 15, 1981 the coefficient of correlation between these components was 0.996. A preliminary inspection of the available data from the first 6 months of the DE operation indicates that the similarity between the electric and magnetic field signatures of the field-aligned currents is a commonly observed feature at all local times. This high correlation is interpreted to be an indication that the closure of the field-aligned current is essentially meridional. When the correlation between these components is not good, the closure current is likely to be flowing along the auroral belt. When the correlation between the electric and magnetic fields is high, it is possible to estimate the height-integrated Pedersen conductivity from the observed field components.

  2. Statistical Association: Alignment of Current U.S. High School Textbooks with the Common Core State Standards for Mathematics

    Science.gov (United States)

    Tran, Dung

    2016-01-01

    This study examined the alignment of three selected U.S. high school textbooks series with the Common Core State Standards for Mathematics (CCSSM) regarding the treatment of statistical association. A framework grounded in the literature for inclusion and exclusion of reasoning about association topics was developed, and textbook entries were…

  3. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    electrons and isotropic ion precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.

    Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  4. Asymmetric structures of field-aligned currents and convection of ionospheric plasma controlled by the IMF azimuthal component and season of year

    DEFF Research Database (Denmark)

    Lukianova, R. Yu.; Kozlovsky, A.; Christiansen, Freddy

    2010-01-01

    We present the results of using the statistical model of field-aligned currents (FACs) based on satellite data and the numerical model of the electric potential distribution in order to detect the asymmetric part in FAC structures and ionospheric plasma convection controlled by the IMF azimuthal (B...... y ) component at different seasons of the year. These structures can be identified by plotting diagrams, which represent differences in corresponding maps for opposite signs of IMF B y . Circular near-pole current symmetric about the noon meridian and corresponding convection vortices around...

  5. Mitigation of ion-induced drift instability in electron plasma by a transverse current through the Landau-resonant layer

    Science.gov (United States)

    Kabantsev, A. A.; Driscoll, C. F.

    2016-10-01

    Experiments and theory on electron columns have characterized an algebraic damping of diocotron modes, caused by a flux of electrons through the resonance (critical) layer. This flux-driven damping also eliminates the ion-induced exponential instability of diocotron modes. Our plasmas rotate at rate ωE × B, and the (nominally stable) diocotron modes are described by amplitude Ad ,kz = 0 ,mθ = 1 , 2 , . . , frequency ωd(mθ) , and a wave/plasma critical radius rc(mθ) , where ωE × B(rc) =ωd/mθ mθ. External fields produce a low density (1/100) halo of electrons moving radially outward from the plasma core, with flux rate F ≡(- 1/-1Ne) dNe/dt) dNe dt. We find that algebraicdamping of the diocotron modes begins when the halo reaches the critical radius rc(mθ) , proceeding as Ad(Δt) =Ad(0) - γΔt , with γ = β(mθ) F . We also investigated the diocotron instability which occurs when a small number of ions are transiting the electron plasma. Dissimilar bounce-averaged drifts of electrons and ions polarize the diocotron mode density perturbations, developing instability analogous to the classical flute instability. The exponential growth rate Γ is proportional to the fractional neutralization (Ni/Ne) and to the separation between electrons and ions in the wave perturbation. We have found that the algebraic damping can suppress the exponential ion-induced instability only for amplitudes satisfying Ad <= βF/Γ. Supported by NSF Grant PHY-1414570, DOE Grants DE-SC0002451.

  6. Models of field-aligned currents needful to simulate the substorm variations of the electric field and other parameters observed by EISCAT

    Directory of Open Access Journals (Sweden)

    M. A. Volkov

    Full Text Available We have used the global numerical model of the coupled ionosphere-thermosphere-protonosphere system to simulate the electric-field, ion- and electron-temperature and -concentration variations observed by EISCAT during the substorm event of 25 March 1987. In our previous studies we adopted the model input data for field-aligned currents and precipitating electron fluxes to obtain an agreement between observed and modelled ionospheric variations. Now, we have calculated the field-aligned currents needful to simulate the substrom variations of the electric field and other parameters observed by EISCAT. The calculations of the field-aligned currents have been performed by means of numerical integration of the time-dependent continuity equation for the cold magnetospheric electrons. This equation was added to the system of the modelling equations including the equation for the electric-field potential to be solved jointly. In this case the inputs of the model are the spatial and time variations of the electric-field potential at the polar-cap boundaries and those of the cold magnetospheric electron concentration which have been adopted to obtain the agreement between the observed and modelled ionospheric variations for the substorm event of 25 March 1987. By this means it has been found that during the active phase of the substorm the current wedge is formed. It is connected with the region of the decreased cold magnetospheric electron content travelling westwards with a velocity of about 1 km s–1 at ionospheric levels.

  7. Gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors with an asymmetric graphene electrode

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2015-09-01

    Full Text Available The gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors (a-IGZO TFTs having an asymmetric graphene electrode structure are studied. A large positive shift in the threshold voltage, which is well fitted to a stretched-exponential equation, and an increase in the subthreshold slope are observed when drain current stress is applied. This is due to an increase in temperature caused by power dissipation in the graphene/a-IGZO contact region, in addition to the channel region, which is different from the behavior in a-IGZO TFTs with a conventional transparent electrode.

  8. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    Science.gov (United States)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  9. Alignment and Elongation of Human Adipose-Derived Stem Cells in Response to Direct-Current Electrical Stimulation

    OpenAIRE

    Tandon, Nina; Goh, Brian; Marsano, Anna; Chao, Pen-Hsiu Grace; Montouri-Sorrentino, Chrystina; Gimble, Jeffrey; Vunjak-Novakovic, Gordana

    2009-01-01

    In vivo, direct current electric fields are present during embryonic development and wound healing. In vitro, direct current (DC) electric fields induce directional cell migration and elongation. For the first time, we demonstrate that cultured human adipose tissue-derived stem cells (hASCs) respond to the presence of direct-current electric fields. Cells were stimulated for 2–4 hours with DC electric fields of 6 V/cm that were similar to those encountered in vivo post-injury. Upon stimulatio...

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2011-01-01

    The Muon Alignment work now focuses on producing a new track-based alignment with higher track statistics, making systematic studies between the results of the hardware and track-based alignment methods and aligning the barrel using standalone muon tracks. Currently, the muon track reconstruction software uses a hardware-based alignment in the barrel (DT) and a track-based alignment in the endcaps (CSC). An important task is to assess the muon momentum resolution that can be achieved using the current muon alignment, especially for highly energetic muons. For this purpose, cosmic ray muons are used, since the rate of high-energy muons from collisions is very low and the event statistics are still limited. Cosmics have the advantage of higher statistics in the pT region above 100 GeV/c, but they have the disadvantage of having a mostly vertical topology, resulting in a very few global endcap muons. Only the barrel alignment has therefore been tested so far. Cosmic muons traversing CMS from top to bottom are s...

  11. Evaporative instabilities in climbing films

    Science.gov (United States)

    Hosoi, A. E.; Bush, John W. M.

    2001-09-01

    We consider flow in a thin film generated by partially submerging an inclined rigid plate in a reservoir of ethanol or methanol water solution and wetting its surface. Evaporation leads to concentration and surface tension gradients that drive flow up the plate. An experimental study indicates that the climbing film is subject to two distinct instabilities. The first is a convective instability characterized by flattened convection rolls aligned in the direction of flow and accompanied by free-surface deformations; in the meniscus region, this instability gives rise to pronounced ridge structures aligned with the mean flow. The second instability, evident when the plate is nearly vertical, takes the form of transverse surface waves propagating up the plate.

  12. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    Akinwande Department of Electrical Engineering and Computer Science and Microsystems Technology Laboratories, Massachusetts Institute of Technology ...Cambridge, MA 02139, USA E-mail: guerrera@alum.mit.edu Received 16 September 2015, revised 2 December 2015 Accepted for publication 11 January 2016...series with the tip. Using the current voltage characteristics and with the aid of numerical device models , we estimated the tip radius of our field

  13. Simulation of beamline alignment operations

    Energy Technology Data Exchange (ETDEWEB)

    Annese, C; Miller, M G

    1999-02-02

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control systems. The simulator project used a three-prong approach that studied object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. The National Ignition Facility's (NIF) optical alignment system was modeled to study control system operations. The alignment of NIF's 192 beamlines is a large complex operation involving more than 100 computer systems and 8000 mechanized devices. The alignment process is defined by a detailed set of procedures; however, many of the steps are deterministic. The alignment steps for a poorly aligned component are similar to that of a nearly aligned component; however, additional operations/iterations are required to complete the process. Thus, the same alignment operations will require variable amounts of time to perform depending on the current alignment condition as well as other factors. Simulation of the alignment process is necessary to understand beamline alignment time requirements and how shared resources such as the Output Sensor and Target Alignment Sensor effect alignment efficiency. The simulation has provided alignment time estimates and other results based on documented alignment procedures and alignment experience gained in the laboratory. Computer communication time, mechanical hardware actuation times, image processing algorithm execution times, etc. have been experimentally determined and incorporated into the model. Previous analysis of alignment operations utilized average implementation times for all alignment operations. Resource sharing becomes rather simple to model when only average values are used. The time required to actually implement the many individual alignment operations will be quite dynamic. The simulation model estimates the time to complete an operation using

  14. Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries

    Science.gov (United States)

    Wang, Ke; Wu, Yang; Wu, Hengcai; Luo, Yufeng; Wang, Datao; Jiang, Kaili; Li, Qunqing; Li, Yadong; Fan, Shoushan; Wang, Jiaping

    2017-05-01

    Cross-stacked super-aligned carbon nanotube (SACNT) films are promising for use as current collectors in lithium-ion batteries because of their outstanding capability to decrease the weight and thickness of inactive material and strong adhesion to the electrodes. However, the relatively poor conductivity of SACNT films may limit their application to large-size electrodes or at high current rate. Herein, a facile approach is proposed to improve the conductivity of SACNT films by electron-beam deposition of a thin metal film on their surface. Such modification lowers the sheet resistance by three orders of magnitude while keeping the extremely small fraction of SACNT current collectors. The metal-coated SACNT films strongly inhibit polarization during the electrochemical reaction, resulting in improved cell performance compared with that of metal and uncoated CNT current collectors. The improvement in conductivity and cell performance achieved by this approach is so large that the effect of the increase of inactive material is overwhelmed, leading to increased gravimetric energy density.

  15. Stability of the lower hybrid instability excited by longitudinal currents in a collisional, multi-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Chandu [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Kurian, M J [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Antony, S [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Anilkumar, C P [Indian Institute of Geomagnetism, Tirunelveli-627 011, Tamil Nadu (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram-695 581, Kerala (India)

    2007-05-15

    We have investigated the stability of the lower hybrid wave in a collisional plasma containing hydrogen and positively and negatively charged oxygen ions. The collisions of all the species in the plasma have been considered. The electrons, streaming parallel to the magnetic field, can excite the instability if their drift velocity exceeds the parallel phase velocity of the wave. This is true for both the weakly as well as the strongly collisional cases. If the ion collisions are neglected, the growth/damping rate depends on the electron collision frequency and is modified by a factor dependent directly on the number densities and square of the charges on the oxygen ions and inversely on the masses of these ions. Ion collisions, however only damp the wave; this damping being dependent also on the ion collision frequencies, in addition to the above dependencies. We find that the dispersion relation in the low collisional limit can account for lower hybrid waves in the observed frequency range.

  16. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    The alignment of shape data to a common mean before its subsequent processing is an ubiquitous step within the area shape analysis. Current approaches to shape analysis or, as more specifically considered in this work, shape classification perform the alignment in a fully unsupervised way......, not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two......-dimensional shapes from a two-class recognition problem....

  17. Particle-in-cell simulations of an alpha channeling scenario: electron current drive arising from lower hybrid drift instability of fusion-born ions

    Science.gov (United States)

    Cook, James; Chapman, Sandra; Dendy, Richard

    2010-11-01

    Particle-in-cell (PIC) simulations of fusion-born protons in deuterium plasmas demonstrate a key alpha channeling phenomenon for tokamak fusion plasmas. We focus on obliquely propagating modes at the plasma edge, excited by centrally born fusion products on banana orbits, known to be responsible for observations of ion cyclotron emission in JET and TFTR. A fully self-consistent electromagnetic 1D3V PIC code evolves a ring-beam distribution of 3MeV protons in a 10keV thermal deuterium-electron plasma with realistic mass ratio. A collective instability occurs, giving rise to electromagnetic field activity in the lower hybrid range of frequencies. Waves spontaneously excited by this lower hybrid drift instability undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the distribution of electron parallel velocities, which constitutes a net current. These simulations demonstrate a key building block of some alpha channeling scenarios: the direct collisionless coupling of fusion product energy into a form which can help sustain the equilibrium of the tokamak.

  18. Instability, Turbulence, and 3D Magnetic Reconnection in a Line-Tied, Zero Net Current Screw Pinch

    Science.gov (United States)

    Brookhart, Matthew I.; Stemo, Aaron; Zuberbier, Amanda; Zweibel, Ellen; Forest, Cary B.

    2015-04-01

    This Letter reports the first experimental investigation into a line-tied plasma with a reversed current profile. Discrete current sources create a cylindrical plasma equilibrium with an axial field and zero net current. Detailed magnetic measurements show that an internal m =1 mode with no external character grows exponentially. The nonlinear evolution of the mode drives 3D reconnection events that reorganize the plasma equilibrium. The plasma is turbulent and exhibits reconnection events on a range of scales. These data are consistent with recent simulations of coronal loops and the nanoflare coronal heating mechanism.

  19. Instability, turbulence, and 3D magnetic reconnection in a line-tied, zero net current screw pinch.

    Science.gov (United States)

    Brookhart, Matthew I; Stemo, Aaron; Zuberbier, Amanda; Zweibel, Ellen; Forest, Cary B

    2015-04-10

    This Letter reports the first experimental investigation into a line-tied plasma with a reversed current profile. Discrete current sources create a cylindrical plasma equilibrium with an axial field and zero net current. Detailed magnetic measurements show that an internal m=1 mode with no external character grows exponentially. The nonlinear evolution of the mode drives 3D reconnection events that reorganize the plasma equilibrium. The plasma is turbulent and exhibits reconnection events on a range of scales. These data are consistent with recent simulations of coronal loops and the nanoflare coronal heating mechanism.

  20. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    Science.gov (United States)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  1. Ionospheric conductivity dependence of dayside region-0, 1, and 2 field-aligned current systems: statistical study with DMSP-F7

    Directory of Open Access Journals (Sweden)

    K. Haraguchi

    2004-09-01

    Full Text Available The present study statistically examines the dependence of the intensities of dayside (MLT=8-12h large-scale field-aligned currents (FACs on the ionospheric conductance using the summary data of DMSP-F7 constructed by the procedure of Higuchi and Ohtani (2000. We have found that, in the dayside region, R1 and R0 have a higher correlation between ionospheric conductivity and FAC intensity than R2, suggesting that R0 and R1 are driven by a more voltage-like source than R2. This result is consistent with the idea that R1 and R0 are driven by the interaction between the solar wind and the open magnetospheric magnetic field. We have also found that dayside FAC intensities are latitudinally well balanced when they have a three sheet structure (R0, R1 and R2; on the other hand, for a two sheet structure (R1 and R2, the intensity of R1 is larger than that of R2, so that the net current has the polarity of R1.

  2. Seasonal effects in the ionosphere-thermosphere response to the precipitation and field-aligned current variations in the cusp region

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth's upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer Hemisphere obtained

  3. Propagating Instabilities in Solids

    Science.gov (United States)

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  4. Random instabilities of current-voltage curves of BSCCO-2223/Ag multifilamentary tapes in LN2 at 77 K

    CERN Document Server

    Usak, P

    2003-01-01

    The measurement of the current-voltage (I-V) characteristics of BSCCO-2223/Ag multifilamentary tapes in a silver matrix has been performed on short samples (of several centimetres) as well as on long tape (1 m), wound in the form of a helical one-layer coil. Measurements at 77 K and in zero external magnetic field have revealed good reproducibility of the I-V hysteresis in most runs. Nevertheless, strange irregularities have sometimes been observed in the I-V curve behaviour during current ramping up and down. Quasi-reproducible drops from the ascending hysteretic branch in the direction of the descending one have been measured at higher voltage levels (approx 1 mV cm sup - sup 1) on the curve measured on the helical coil. These have recently been explained by a sudden change in the heat transfer coefficient [1]. Rarely and non-reproducibly we have also observed these drops on short samples at E approx 1 x 10 sup - sup 2 V m sup - sup 1 , (and even under 1 x 10 sup - sup 3 V m sup - sup 1). The accidental dro...

  5. Mitigation of numerical Cerenkov radiation and instability using a hybrid finite difference-FFT Maxwell solver and a local charge conserving current deposit

    CERN Document Server

    Yu, Peicheng; Tableman, Adam; Decyk, Viktor K; Tsung, Frank S; Fiuza, Frederico; Davidson, Asher; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    A hybrid Maxwell solver for fully relativistic and electromagnetic (EM) particle-in-cell (PIC) codes is described. In this solver, the EM fields are solved in $k$ space by performing an FFT in one direction, while using finite difference operators in the other direction(s). This solver eliminates the numerical Cerenkov radiation for particles moving in the preferred direction. Moreover, the numerical Cerenkov instability (NCI) induced by the relativistically drifting plasma and beam can be eliminated using this hybrid solver by applying strategies that are similar to those recently developed for pure FFT solvers. A current correction is applied for the charge conserving current deposit to correctly account for the EM calculation in hybrid Yee-FFT solver. A theoretical analysis of the dispersion properties in vacuum and in a drifting plasma for the hybrid solver is presented, and compared with PIC simulations with good agreement obtained. This hybrid solver is applied to both 2D and 3D Cartesian and quasi-3D (...

  6. Beyond Alignment

    DEFF Research Database (Denmark)

    Beyond Alignment: Applying Systems Thinking to Architecting Enterprises is a comprehensive reader about how enterprises can apply systems thinking in their enterprise architecture practice, for business transformation and for strategic execution. The book's contributors find that systems thinking...... is a valuable way of thinking about the viable enterprise and how to architect it....

  7. Mechanical instability

    CERN Document Server

    Krysinski, Tomasz

    2013-01-01

    This book presents a study of the stability of mechanical systems, i.e. their free response when they are removed from their position of equilibrium after a temporary disturbance. After reviewing the main analytical methods of the dynamical stability of systems, it highlights the fundamental difference in nature between the phenomena of forced resonance vibration of mechanical systems subjected to an imposed excitation and instabilities that characterize their free response. It specifically develops instabilities arising from the rotor-structure coupling, instability of control systems, the se

  8. Collective instabilities

    Energy Technology Data Exchange (ETDEWEB)

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  9. Some aspects of SR beamline alignment

    Energy Technology Data Exchange (ETDEWEB)

    Gaponov, Yu.A., E-mail: Yury.Gaponov@maxlab.lu.se [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden); Cerenius, Y. [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden); Nygaard, J. [Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C (Denmark); Ursby, T.; Larsson, K. [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden)

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  10. Onorbit IMU alignment error budget

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  11. Mixing through shear instabilities

    CERN Document Server

    Brüggen, M

    2000-01-01

    In this paper we present the results of numerical simulations of the Kelvin-Helmholtz instability in a stratified shear layer. This shear instability is believed to be responsible for extra mixing in differentially rotating stellar interiors and is the prime candidate to explain the abundance anomalies observed in many rotating stars. All mixing prescriptions currently in use are based on phenomenological and heuristic estimates whose validity is often unclear. Using three-dimensional numerical simulations, we study the mixing efficiency as a function of the Richardson number and compare our results with some semi-analytical formalisms of mixing.

  12. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  13. Recombination instability

    DEFF Research Database (Denmark)

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b) an af...

  14. An Overview of Multiple Sequence Alignment Systems

    CERN Document Server

    Saeed, Fahad

    2009-01-01

    An overview of current multiple alignment systems to date are described.The useful algorithms, the procedures adopted and their limitations are presented.We also present the quality of the alignments obtained and in which cases(kind of alignments, kind of sequences etc) the particular systems are useful.

  15. Midcarpal instability: a radiological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Toms, Andoni Paul [Norfolk and Norwich University Hospital NHS Trust, Department of Radiology, Norwich, Norfolk (United Kingdom); Radiology Academy, Cotman Centre, Norwich, Norfolk (United Kingdom); Chojnowski, Adrian [Norfolk and Norwich University Hospital NHS Trust, Department of Orthopaedic Surgery, Norwich, Norfolk (United Kingdom); Cahir, John G. [Norfolk and Norwich University Hospital NHS Trust, Department of Radiology, Norwich, Norfolk (United Kingdom)

    2011-05-15

    Midcarpal instability (MCI) is the result of complex abnormal carpal motion at the midcarpal joint of the wrist. It is a form of non-dissociative carpal instability (CIND) and can be caused by various combinations of extrinsic ligament injuries that then result in one of several subtypes of MCI. The complex patterns of injury and the kinematics are further complicated by competing theories, terminology and classifications of MCI. Palmar, dorsal, ulna midcarpal instability, and capitolunate or chronic capitolunate instability are all descriptions of types of MCI with often overlapping features. Palmar midcarpal instability (PMCI) is the most commonly reported type of MCI. It has been described as resulting from deficiencies in the ulna limb of the palmar arcuate ligament (triquetrohamate-capitate) or the dorsal radiotriquetral ligaments, or both. Unstable carpal articulations can be treated with limited carpal arthrodesis or the ligamentous defects can be treated with capsulorrhaphy or ligament reconstruction. Conventional radiographic abnormalities are usually limited to volar intercalated segment instability (VISI) patterns of carpal alignment and are not specific. For many years stress view radiographs and videofluoroscopy have been the methods of choice for demonstrating carpal instability and abnormal carpal kinematics respectively. Dynamic US can be also used to demonstrate midcarpal dyskinesia including the characteristic triquetral ''catch-up'' clunk. Tears of the extrinsic ligaments can be demonstrated with MR arthrography, and probably with CT arthrography, but intact yet redundant ligaments are more difficult to identify. The exact role of these investigations in the diagnosis, categorisation and management of midcarpal instability has yet to be determined. (orig.)

  16. Equilibrium Electro-osmotic Instability

    CERN Document Server

    Rubinstein, Isaak

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  17. RF Jitter Modulation Alignment Sensing

    Science.gov (United States)

    Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.

    2017-01-01

    We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.

  18. Massive Rock Detachments from the Continental slope of the Balsas River Submarine Delta that occur due to Instability of Sediments which Produce Turbidity Currents and Tsunamis

    Science.gov (United States)

    Sandoval-Ochoa, J.; Aguayo-Camargo, J.

    2007-05-01

    During the NOAA oceanographic delivery cruise of the US R/V "Roger Revelle" to the Scripps Institution of Oceanography at the University of California in San Diego, California USA, in July 1996; a well calibrated bathymetric equipment, the SeaBeam* 2012, was tested. Good resolutions in data allowed bathymetric mapping to visualize the sea floor relief. Detailed colorful chartographic images showed a portion of the continental slope between the Balsas River Delta and the Middle America Trench and between the Balsas Canyon and La Necesidad Canyon. The surveyed area covered more than 3 000 square kilometers. After the delivery cruise, one of the goals was to measure and analyze the Morphobathymetry of the uneven lower portion of the Balsas River Submarine Delta. So far some of the findings with the morphometric analyses consist of several isolated slump scars that each comprise more than 12 cubic kilometers in volume and a multiple slump scar with an evident steep hollow about 200 cubic kilometers absent of rock. These volumes of rock apparently underwent a remobilization from the slope during the Late Quaternary. The rock detachments occured in relatively small portions but in instantaneous massive displacements because of their instability as well as other identified factors in the region. Over time more and more authors have accepted that coastal cuts or submarine slump scars have been left by sudden movements of rock and fluids. The phenomena that occur in the region in general, are accompanied on one side by potential and kinetic energies like falling bodies, flows and gravity waves, and on the other side, by mass transfer of rock and fluid mobilization like turbidity currents, accumulations, sea wave surges or tsunamis. In some cases the phenomena is produced by another natural triggering forces or by an earthquake. We propose that events like these, i.e. massive detachments and their products such as accumulations, turbidity currents and depositional debrites

  19. FINANCIAL INSTABILITY AND POLITICAL INSTABILITY

    Directory of Open Access Journals (Sweden)

    Ionescu Cristian

    2012-12-01

    Full Text Available There is an important link between the following two variables: financial instability and political instability. Often, the link is bidirectional, so both may influence each other. This is way the lately crisis are becoming larger and increasingly complex. Therefore, the academic environment is simultaneously talking about economic crises, financial crises, political crises, social crises, highlighting the correlation and causality between variables belonging to the economic, financial, political and social areas, with repercussions and spillover effects that extend from one area to another. Given the importance, relevance and the actuality of the ones described above, I consider that at least a theoretical analysis between economic, financial and political factors is needed in order to understand the reality. Thus, this paper aims to find links and connections to complete the picture of the economic reality.

  20. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    CERN Document Server

    Cook, J W S; Dendy, R O

    2010-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a regime relevant to tokamak fusion plasmas, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes under conditions approximating the outer mid-plane edge in a large tokamak, through which there pass confined centrally born fusion products on banana orbits that have large radial excursions. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the in...

  1. Microphysics of cosmic ray driven plasma instabilities

    CERN Document Server

    Bykov, A M; Malkov, M A; Osipov, S M

    2013-01-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  2. Galaxy alignments: Theory, modelling and simulations

    CERN Document Server

    Kiessling, Alina; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L; Rassat, Anais

    2015-01-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in large-scale structure tend to align the shapes and angular momenta of nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both $N$-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the ...

  3. Aligning for Innovation - Alignment Strategy to Drive Innovation

    Science.gov (United States)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  4. Aligning for Innovation - Alignment Strategy to Drive Innovation

    Science.gov (United States)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  5. Current evidence for effectiveness of interventions for cubital tunnel syndrome, radial tunnel syndrome, instability, or bursitis of the elbow: a systematic review.

    Science.gov (United States)

    Rinkel, Willem D; Schreuders, Ton A R; Koes, Bart W; Huisstede, Bionka M A

    2013-12-01

    To provide an evidence-based overview of the effectiveness of interventions for 4 nontraumatic painful disorders sharing the anatomic region of the elbow: cubital tunnel syndrome, radial tunnel syndrome, elbow instability, and olecranon bursitis. The Cochrane Library, PubMed, Embase, PEDro, and CINAHL were searched to identify relevant reviews and randomized clinical trials (RCTs). Two reviewers independently extracted data and assessed the quality of the methodology. A best-evidence synthesis was used to summarize the results. One systematic review and 6 RCTs were included. For the surgical treatment of cubital tunnel syndrome (1 review, 3 RCTs), comparing simple decompression with anterior ulnar nerve transposition, no evidence was found in favor of either one of these. Limited evidence was found in favor of medial epicondylectomy versus anterior transposition and for early postoperative therapy versus immobilization. No evidence was found for the effect of local steroid injection in addition to splinting. No RCTs were found for radial tunnel syndrome. For olecranon bursitis (1 RCT), limited evidence for effectiveness was found for methylprednisolone acetate injection plus naproxen. Concerning elbow instability, including 2 RCTs, one showed that nonsurgical treatment resulted in similar results compared with surgery, whereas the other found limited evidence for the effectiveness in favor of early mobilization versus 3 weeks of immobilization after surgery. In this review no, or at best, limited evidence was found for the effectiveness of nonsurgical and surgical interventions to treat painful cubital tunnel syndrome, radial tunnel syndrome, elbow instability, or olecranon bursitis. Well-designed and well-conducted RCTs are clearly needed in this field.

  6. Aligning application architecture to the business context

    NARCIS (Netherlands)

    Wieringa, R.J.; Blanken, H.M.; Fokkinga, M.M.; Grefen, P.W.P.J.; Eder, J.; Missikoff, M.

    2003-01-01

    Alignment of application architecture to business architecture is a central problem in the design, acquisition and implementation of information systems in current large-scale information-processing organizations. Current research in architecture alignment is either too strategic or too software imp

  7. CELT optics Alignment Procedure

    Science.gov (United States)

    Mast, Terry S.; Nelson, Jerry E.; Chanan, Gary A.; Noethe, Lothar

    2003-01-01

    The California Extremely Large Telescope (CELT) is a project to build a 30-meter diameter telescope for research in astronomy at visible and infrared wavelengths. The current optical design calls for a primary, secondary, and tertiary mirror with Ritchey-Chretién foci at two Nasmyth platforms. The primary mirror is a mosaic of 1080 actively-stabilized hexagonal segments. This paper summarizes a CELT report that describes a step-by-step procedure for aligning the many degrees of freedom of the CELT optics.

  8. Dynamical effects in nuclear collisions in the Fermi energy range: aligned breakup of heavy projectiles 24.75.+i; 25.70.Mn; 25.70.Pq; Heavy ions reactions at intermediate energy; Fragment correlations; Fission and aligned breakup; Deformation and neck instability

    CERN Document Server

    Bocage, F; Louvel, M; Auger, G; Bacri, C O; Bellaize, N; Borderie, B; Bougault, R; Brou, R; Buchet, P; Charvet, J L; Chbihi, A; Cussol, D; Dayras, R; De Cesare, N; Demeyer, A N; Doré, D; Durand, D; Frankland, J D; Galíchet, E; Genouin-Duhamel, E; Gerlic, E; Guinet, D; Lautesse, P; Laville, J L; Lecolley, J F; Legrain, R; Le Neindre, N; López, O; Maskay, A M; Nalpas, L; Nguyen, A D; Pârlog, M; Péter, J; Plagnol, E; Rivet, M F; Rosato, E; Saint-Laurent, F; Salou, S; Steckmeyer, J C; Stern, M; Tabacaru, G; Tamain, B; Tirel, O; Tassan-Got, L; Vient, E; Vigilante, M; Volant, C; Wieleczko, J P; Le Brun, C; Genoux-Lubain, A; Rudolf, G; Stuttgé, L

    2000-01-01

    Recent experimental results concerning heavy systems (Pb + Au, Pb + Ag, Pb + Al, Gd + C, Gd + U, Xe + Sn, etc) obtained at GANIL with the INDRA and NAUTILUS 4 pi arrays will be presented. The study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can decay into various decay modes from evaporation to multifragmentation including fission. However, deviations from this simple picture have been found by analyzing angular and velocity distributions of light charged particles, and fragments. Indeed, there is a certain amount of matter in excess emitted between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last possibility has been suggested by analyzing in detail the angular distributio...

  9. Shaft MisalignmentDetectionusing Stator Current Monitoring

    Directory of Open Access Journals (Sweden)

    Alok Kumar Verma, Somnath Sarangi and M.H. Kolekar

    2013-03-01

    Full Text Available This paper inspects the misaligned of shaft by usingdiagnostic medium such as current and vibration.Misalignments in machines can cause decrease inefficiency and in the long-run it may cause failurebecause of unnecessary vibration, stress on motor,bearings and short-circuiting in stator and rotorwindings.In this study, authors investigate the onsetof instability on a shaft mounted on journal bearings.Shaft displacement and stator current samples duringmachine run up under misaligned condition aremeasured, analyzed and presented here. Verificationof shaft alignment is done by precision laseralignment kit. Result shows that misalignment is theparameter that is more responsible for the cause ofinstability.

  10. Shear instabilities in shallow-water magnetohydrodynamics

    CERN Document Server

    Mak, Julian; Hughes, D W

    2016-01-01

    Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...

  11. Vibrating wire alignment technique

    CERN Document Server

    Xiao-Long, Wang; lei, Wu; Chun-Hua, Li

    2013-01-01

    Vibrating wire alignment technique is a kind of method which through measuring the spatial distribution of magnetic field to do the alignment and it can achieve very high alignment accuracy. Vibrating wire alignment technique can be applied for magnet fiducialization and accelerator straight section components alignment, it is a necessary supplement for conventional alignment method. This article will systematically expound the international research achievements of vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation and the relation between wire amplitude and magnetic induction intensity. On the basis of model analysis this article will introduce the alignment method which based on magnetic field measurement and the alignment method which based on amplitude and phase measurement. Finally, some basic questions will be discussed and the solutions will be given.

  12. Aligning Assessments for COSMA Accreditation

    Science.gov (United States)

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  13. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez.

    Since June of 2009, the muon alignment group has focused on providing new alignment constants and on finalizing the hardware alignment reconstruction. Alignment constants for DTs and CSCs were provided for CRAFT09 data reprocessing. For DT chambers, the track-based alignment was repeated using CRAFT09 cosmic ray muons and validated using segment extrapolation and split cosmic tools. One difference with respect to the previous alignment is that only five degrees of freedom were aligned, leaving the rotation around the local x-axis to be better determined by the hardware system. Similarly, DT chambers poorly aligned by tracks (due to limited statistics) were aligned by a combination of photogrammetry and hardware-based alignment. For the CSC chambers, the hardware system provided alignment in global z and rotations about local x. Entire muon endcap rings were further corrected in the transverse plane (global x and y) by the track-based alignment. Single chamber track-based alignment suffers from poor statistic...

  14. Simulation of the interchange instability in a magnetospheric substorm site

    Directory of Open Access Journals (Sweden)

    O. V. Mingalev

    2006-07-01

    Full Text Available We perform modeling of the interchange instability driven by longitudinal pressure asymmetry in the region of the pressure buildup that forms in the inner magnetosphere at the substorm growth phase. The simulation refers to the dawnward side of the Harang discontinuity and times after Bz IMF turning northward. The solution for the equilibrium state indicates tailward flows associated with vortices, which is in agreement with a previous finding of Ashour-Abdalla et al. (1999, 2002. We show that in the regions of equilibrium field-aligned currents (FACs, small initial perturbations in pVγ (p is the isotropic plasma pressure, V is the unit magnetic flux tube volume, γ=5/3 the adiabatic exponent, set up as ripples inclined to azimuth, grow in time. For the background FAC of ~10-6 A/m2, the linear growth rate of the instability is ~6 min. Starting from the 12th min of evolution, the perturbations exhibit nonlinear deformations, develop undulations and front steepening. An interesting peculiarity in the distribution of the associated small-scale FACs is that they become asymmetric with time. Specifically, the downward currents are more localised, reaching densities up to 15×10-6 A/m2 at the nonlinear stage. The upward FACs are more dispersed. When large enough, these currents are likely to produce the aurora. We also run our simulation for the initial perturbations of large transverse scales in order to demonstrate that the interchange instability can be responsible for pressure and cross-tail current spatial variations of great extent.

  15. Controlling the Numerical Cerenkov Instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    CERN Document Server

    Li, Fei; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S; Fonseca, Ricardo A; Lu, Wei; Mori, Warren B

    2016-01-01

    In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift ($\\hat 1$ direction). We show that this eliminates the main NCI modes with moderate $\\vert k_1 \\vert$, while keeps additional main NCI modes well outside the range of physical interest with higher $\\vert k_1 \\vert$. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can...

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and J. Pivarski

    2011-01-01

    Alignment efforts in the first few months of 2011 have shifted away from providing alignment constants (now a well established procedure) and focussed on some critical remaining issues. The single most important task left was to understand the systematic differences observed between the track-based (TB) and hardware-based (HW) barrel alignments: a systematic difference in r-φ and in z, which grew as a function of z, and which amounted to ~4-5 mm differences going from one end of the barrel to the other. This difference is now understood to be caused by the tracker alignment. The systematic differences disappear when the track-based barrel alignment is performed using the new “twist-free” tracker alignment. This removes the largest remaining source of systematic uncertainty. Since the barrel alignment is based on hardware, it does not suffer from the tracker twist. However, untwisting the tracker causes endcap disks (which are aligned ...

  17. Stream instabilities in relativistically hot plasma

    CERN Document Server

    Shaisultanov, Rashid; Eichler, David

    2011-01-01

    The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.

  18. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  19. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  20. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    The main developments in muon alignment since March 2010 have been the production, approval and deployment of alignment constants for the ICHEP data reprocessing. In the barrel, a new geometry, combining information from both hardware and track-based alignment systems, has been developed for the first time. The hardware alignment provides an initial DT geometry, which is then anchored as a rigid solid, using the link alignment system, to a reference frame common to the tracker. The “GlobalPositionRecords” for both the Tracker and Muon systems are being used for the first time, and the initial tracker-muon relative positioning, based on the link alignment, yields good results within the photogrammetry uncertainties of the Tracker and alignment ring positions. For the first time, the optical and track-based alignments show good agreement between them; the optical alignment being refined by the track-based alignment. The resulting geometry is the most complete to date, aligning all 250 DTs, ...

  1. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  2. Simulation of feedback instability in the coupled magnetosphere-ionosphere system

    Science.gov (United States)

    Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya

    2010-08-01

    Quiet auroral arcs formation has been investigated theoretically and numerically in a self-consistent dynamic way. By using a three-dimensional magneto-hydro-dynamics simulation of a dipole magnetosphere-ionosphere coupling system, it is shown that multiple longitudinally striated structures of the ionospheric plasma density and the field-aligned current are formed, resulting from nonlinear feedback instability. The areas where these structures appear are consistent with the prediction by the integrated feedback theory that includes the effects of the spatially non-uniform electric field and non-uniform plasma density. Effects of the difference of the field line lengths between the ionosphere and the magnetospheric equator over the auroral latitudes are also discussed on the feedback instability.

  3. Research on aviation fuel instability

    Science.gov (United States)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1984-01-01

    The problems associated with aircraft fuel instability are discussed. What is currently known about the problem is reviewed and a research program to identify those areas where more research is needed is discussed. The term fuel instability generally refers to the gums, sediments, or deposits which can form as a result of a set of complex chemical reactions when a fuel is stored for a long period at ambient conditions or when the fuel is thermally stressed inside the fuel system of an aircraft.

  4. Electron heat flux instability

    Science.gov (United States)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  5. EURRECA—Framework for Aligning Micronutrient Recommendations

    NARCIS (Netherlands)

    Veer, van 't P.; Grammatikaki, E.; Matthys, C.; Raats, M.M.; Contor, L.

    2013-01-01

    There is currently no standard approach for deriving micronutrient recommendations, and large variations exist across Europe, causing confusion among consumers, food producers, and policy makers. More aligned information could influence dietary behaviors and potentially lead to a healthier populatio

  6. Technology Alignment and Portfolio Prioritization (TAPP)

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    Technology Alignment and Portfolio Prioritization (TAPP) is a method being developed by the Advanced Concepts Office, at NASA Marshall Space Flight Center. The TAPP method expands on current technology assessment methods by incorporating the technological structure underlying technology development, e.g., organizational structures and resources, institutional policy and strategy, and the factors that motivate technological change. This paper discusses the methods ACO is currently developing to better perform technology assessments while taking into consideration Strategic Alignment, Technology Forecasting, and Long Term Planning.

  7. Evaluating shoulder instability treatment

    NARCIS (Netherlands)

    van der Linde, J.A.

    2016-01-01

    Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the

  8. Jeans instability in superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Hason, Itamar; Oz, Yaron [Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel)

    2014-11-15

    We analyze the effect of a gravitational field on the sound modes of superfluids. We derive an instability condition that generalizes the well-known Jeans instability of the sound mode in normal fluids. We discuss potential experimental implications. (orig.)

  9. Laboratory blast wave driven instabilities

    Science.gov (United States)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  10. Two-Fluid Interface Instability Being Studied

    Science.gov (United States)

    Niederhaus, Charles E.

    2003-01-01

    The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.

  11. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  12. Nonlinear tides in a homogeneous rotating planet or star: global modes and elliptical instability

    CERN Document Server

    Barker, Adrian J; Ogilvie, Gordon I

    2016-01-01

    We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders $\\ell\\leq 5$, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when $\\frac{n}{\\Omega}\\lesssim -1$, where $n$ and $\\Omega$ are the orbital and spin angular freque...

  13. Ontology alignment with OLA

    OpenAIRE

    Euzenat, Jérôme; Loup, David; Touzani, Mohamed; Valtchev, Petko

    2004-01-01

    euzenat2004d; International audience; Using ontologies is the standard way to achieve interoperability of heterogeneous systems within the Semantic web. However, as the ontologies underlying two systems are not necessarily compatible, they may in turn need to be aligned. Similarity-based approaches to alignment seems to be both powerful and flexible enough to match the expressive power of languages like OWL. We present an alignment tool that follows the similarity-based paradigm, called OLA. ...

  14. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    2010-01-01

    Most of the work in muon alignment since December 2009 has focused on the geometry reconstruction from the optical systems and improvements in the internal alignment of the DT chambers. The barrel optical alignment system has progressively evolved from reconstruction of single active planes to super-planes (December 09) to a new, full barrel reconstruction. Initial validation studies comparing this full barrel alignment at 0T with photogrammetry provide promising results. In addition, the method has been applied to CRAFT09 data, and the resulting alignment at 3.8T yields residuals from tracks (extrapolated from the tracker) which look smooth, suggesting a good internal barrel alignment with a small overall offset with respect to the tracker. This is a significant improvement, which should allow the optical system to provide a start-up alignment for 2010. The end-cap optical alignment has made considerable progress in the analysis of transfer line data. The next set of alignment constants for CSCs will there...

  16. Facet stability of crystals I. Factors determining the polyhedral (in)-stability of silver single crystals during electrocrystallization at high current densities

    Science.gov (United States)

    Nanev, Chr. N.; Rashkov, R. St.

    1992-06-01

    Loss of the polyhedral stability as a result of emerging depressions on crystal faces has been observed during both vapour and solution growth under diffusion control, as well as by electrocrystallization at high current densities. A difference was found only when a quantitative comparison of the stability of the crystal shapes with the existing theoretical predictions was attempted. With the growth of zinc and cadmium single crystals from the vapour phase this phenomenon appears earlier, i.e. at smaller sizes than the expected figures, while the silver single crystals are more steady — they withstand one order of magnitude higher of current densities than the calculated values before the appearance of the depressions, in spite of the fact that the presence of an (inhomogeneous) electrical field in the second case has to decrease the polyhedral stability. One possible explanation of this fact is that the electrocrystallization of silver proceeds in highly concentrated solutions, for which Seeger's equation, laying in the base of the quantitative elucidations in this case, does not hold true. Correspondingly, here (part I of the paper) we are trying a more general approach, while part II represents a new, alternative way for explaining the higher stability of the faceted forms of the silver single crystals.

  17. Relativistic Gravothermal Instabilities

    CERN Document Server

    Roupas, Zacharias

    2014-01-01

    The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...

  18. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    Since December, the muon alignment community has focused on analyzing the data recorded so far in order to produce new DT and CSC Alignment Records for the second reprocessing of CRAFT data. Two independent algorithms were developed which align the DT chambers using global tracks, thus providing, for the first time, a relative alignment of the barrel with respect to the tracker. These results are an important ingredient for the second CRAFT reprocessing and allow, for example, a more detailed study of any possible mis-modelling of the magnetic field in the muon spectrometer. Both algorithms are constructed in such a way that the resulting alignment constants are not affected, to first order, by any such mis-modelling. The CSC chambers have not yet been included in this global track-based alignment due to a lack of statistics, since only a few cosmics go through the tracker and the CSCs. A strategy exists to align the CSCs using the barrel as a reference until collision tracks become available. Aligning the ...

  19. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    The main progress of the muon alignment group since March has been in the refinement of both the track-based alignment for the DTs and the hardware-based alignment for the CSCs. For DT track-based alignment, there has been significant improvement in the internal alignment of the superlayers inside the DTs. In particular, the distance between superlayers is now corrected, eliminating the residual dependence on track impact angles, and good agreement is found between survey and track-based corrections. The new internal geometry has been approved to be included in the forthcoming reprocessing of CRAFT samples. The alignment of DTs with respect to the tracker using global tracks has also improved significantly, since the algorithms use the latest B-field mapping, better run selection criteria, optimized momentum cuts, and an alignment is now obtained for all six degrees of freedom (three spatial coordinates and three rotations) of the aligned DTs. This work is ongoing and at a stage where we are trying to unders...

  20. 3-D nonlinear evolution of MHD instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  1. Physics of Grain Alignment

    CERN Document Server

    Lazarian, A

    2000-01-01

    Aligned grains provide one of the easiest ways to study magnetic fields in diffuse gas and molecular clouds. How reliable our conclusions about the inferred magnetic field depends critically on our understanding of the physics of grain alignment. Although grain alignment is a problem of half a century standing recent progress achieved in the field makes us believe that we are approaching the solution of this mystery. I review basic physical processes involved in grain alignment and show why mechanisms that were favored for decades do not look so promising right now. I also discuss why the radiative torque mechanism ignored for more than 20 years looks right now the most powerful means of grain alignment.

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  3. SPEAR3 Construction Alignment

    Energy Technology Data Exchange (ETDEWEB)

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers,; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  4. Shoulder instability; Schulterinstabilitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, Karl-Friedrich [Mainiz Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2014-06-15

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  5. Rotational Alignment Altered by Source Position Correlations

    Science.gov (United States)

    Jacobs, Chris S.; Heflin, M. B.; Lanyi, G. E.; Sovers, O. J.; Steppe, J. A.

    2010-01-01

    In the construction of modern Celestial Reference Frames (CRFs) the overall rotational alignment is only weakly constrained by the data. Therefore, common practice has been to apply a 3-dimensional No-Net-Rotation (NNR) constraint in order to align an under-construction frame to the ICRF. We present evidence that correlations amongst source position parameters must be accounted for in order to properly align a CRF at the 5-10 (mu)as level of uncertainty found in current work. Failure to do so creates errors at the 10-40 (mu)as level.

  6. Shuttle onboard IMU alignment methods

    Science.gov (United States)

    Henderson, D. M.

    1976-01-01

    The current approach to the shuttle IMU alignment is based solely on the Apollo Deterministic Method. This method is simple, fast, reliable and provides an accurate estimate for the present cluster to mean of 1,950 transformation matrix. If four or more star sightings are available, the application of least squares analysis can be utilized. The least squares method offers the next level of sophistication to the IMU alignment solution. The least squares method studied shows that a more accurate estimate for the misalignment angles is computed, and the IMU drift rates are a free by-product of the analysis. Core storage requirements are considerably more; estimated 20 to 30 times the core required for the Apollo Deterministic Method. The least squares method offers an intermediate solution utilizing as much data that is available without a complete statistical analysis as in Kalman filtering.

  7. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  8. MD 751: Train Instability Threshold

    CERN Document Server

    Carver, Lee Robert; Metral, Elias; Salvant, Benoit; Levens, Tom; Nisbet, David; Zobov, M; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the octupole current thresholds for stability for a single bunch, and then make an immediate comparison (with the same operational settings) for a train of 72 bunches separated by 25ns. From theory, the expected thresholds should be similar. Any discrepancy between the two cases will be of great interest as it could indicate the presence of additional mechanisms that contribute to the instability threshold, for example electron cloud.

  9. Galaxy alignments: An overview

    CERN Document Server

    Joachimi, Benjamin; Kitching, Thomas D; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-01-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  10. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.

  11. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    Science.gov (United States)

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  12. Can technology improve alignment during knee arthroplasty.

    Science.gov (United States)

    Thienpont, Emmanuel; Fennema, Peter; Price, Andrew

    2013-09-01

    Component malalignment remains a concern in total knee arthroplasty (TKA); therefore, a series of technologies have been developed to improve alignment. The authors conducted a systematic review to compare computer-assisted navigation with conventional instrumentation, and assess the current evidence for patient-matched instrumentation and robot-assisted implantation. An extensive search of the PubMed database for relevant meta-analyses, systematic reviews and original articles was performed, with each study scrutinised by two reviewers. Data on study characteristics and outcomes were extracted from each study and compared. In total 30 studies were included: 10 meta-analyses comparing computer-assisted navigation and conventional instrumentation, 13 studies examining patient-matched instrumentation, and seven investigating robot-assisted implantation. Computer-assisted navigation showed significant and reproducible improvements in mechanical alignment over conventional instrumentation. Patient-matched instrumentation appeared to achieve a high degree of mechanical alignment, although the majority of studies were of poor quality. The data for robot-assisted surgery was less indicative. Computer-assisted navigation improves alignment during TKA over conventional instrumentation. For patient-matched instrumentation and robot-assisted implantation, alignment benefits have not been reliably demonstrated. For all three technologies, clinical benefits cannot currently be assumed, and further studies are required. Although current technologies to improve alignment during TKA appear to result in intra-operative benefits, their clinical impact remains unclear, and surgeons should take this into account when considering their adoption.

  13. Shod wear and foot alignment in clinical gait analysis.

    Science.gov (United States)

    Louey, Melissa Gar Yee; Sangeux, Morgan

    2016-09-01

    Sagittal plane alignment of the foot presents challenges when the subject wears shoes during gait analysis. Typically, visual alignment is performed by positioning two markers, the heel and toe markers, aligned with the foot within the shoe. Alternatively, software alignment is possible when the sole of the shoe lies parallel to the ground, and the change in the shoe's sole thickness is measured and entered as a parameter. The aim of this technical note was to evaluate the accuracy of visual and software foot alignment during shod gait analysis. We calculated the static standing ankle angles of 8 participants (mean age: 8.7 years, SD: 2.9 years) wearing bilateral solid ankle foot orthoses (BSAFOs) with and without shoes using the visual and software alignment methods. All participants were able to stand with flat feet in both static trials and the ankle angles obtained in BSAFOs without shoes was considered the reference. We showed that the current implementation of software alignment introduces a bias towards more ankle dorsiflexion, mean=3°, SD=3.4°, p=0.006, and proposed an adjusted software alignment method. We found no statistical differences using visual alignment and adjusted software alignment between the shoe and shoeless conditions, p=0.19 for both. Visual alignment or adjusted software alignment are advised to represent foot alignment accurately.

  14. Impedance and instabilities in the NLC damping rings

    Energy Technology Data Exchange (ETDEWEB)

    Corlett,J.; Li, D.; Pivi, M.; Rimmer, R.; DeSantis, S.; Wolski, A.; Novokhatski,A.; Ng, C.

    2001-06-12

    We report on impedance calculations and single-bunch and multi-bunch instabilities in the NLC damping rings. Preliminary designs of vacuum chambers and major components have addressed beam impedance issues, with the desire to increase instability current thresholds and reducing growth rates. MAFIA calculations of short-range and long-range wakefields have allowed computations of growth rates and thresholds, which are presented here. Resistive wall instability dominates long-range effects, and requires a broadband feedback system to control coupled-bunch motion. Growth rates are within the range addressable by current feedback system technologies. Single-bunch instability thresholds are safely above nominal operating current.

  15. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  16. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  17. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2012-01-01

      A new muon alignment has been produced for 2012 A+B data reconstruction. It uses the latest Tracker alignment and single-muon data samples to align both DTs and CSCs. Physics validation has been performed and shows a modest improvement in stand-alone muon momentum resolution in the barrel, where the alignment is essentially unchanged from the previous version. The reference-target track-based algorithm using only collision muons is employed for the first time to align the CSCs, and a substantial improvement in resolution is observed in the endcap and overlap regions for stand-alone muons. This new alignment is undergoing the approval process and is expected to be deployed as part of a new global tag in the beginning of December. The pT dependence of the φ-bias in curvature observed in Monte Carlo was traced to a relative vertical misalignment between the Tracker and barrel muon systems. Moving the barrel as a whole to match the Tracker cures this pT dependence, leaving only the &phi...

  18. Incremental Alignment Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Zhi Han; De-Yu Meng; Zong-Sen Xu; Nan-Nan Gu

    2011-01-01

    A new manifold learning method, called incremental alignment method (IAM), is proposed for nonlinear dimensionality reduction of high dimensional data with intrinsic low dimensionality. The main idea is to incrementally align low-dimensional coordinates of input data patch-by-patch to iteratively generate the representation of the entire dataset. The method consists of two major steps, the incremental step and the alignment step. The incremental step incrementally searches neighborhood patch to be aligned in the next step, and the alignment step iteratively aligns the low-dimensional coordinates of the neighborhood patch searched to generate the embeddings of the entire dataset. Compared with the existing manifold learning methods, the proposed method dominates in several aspects: high efficiency, easy out-of-sample extension, well metric-preserving, and averting of the local minima issue. All these properties are supported by a series of experiments performed on the synthetic and real-life datasets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically argued and experimentally demonstrated.

  19. A Method for Recommending Ontology Alignment Strategies

    Science.gov (United States)

    Tan, He; Lambrix, Patrick

    In different areas ontologies have been developed and many of these ontologies contain overlapping information. Often we would therefore want to be able to use multiple ontologies. To obtain good results, we need to find the relationships between terms in the different ontologies, i.e. we need to align them. Currently, there already exist a number of different alignment strategies. However, it is usually difficult for a user that needs to align two ontologies to decide which of the different available strategies are the most suitable. In this paper we propose a method that provides recommendations on alignment strategies for a given alignment problem. The method is based on the evaluation of the different available alignment strategies on several small selected pieces from the ontologies, and uses the evaluation results to provide recommendations. In the paper we give the basic steps of the method, and then illustrate and discuss the method in the setting of an alignment problem with two well-known biomedical ontologies. We also experiment with different implementations of the steps in the method.

  20. Cavitation Instabilities in Inducers

    Science.gov (United States)

    2006-11-01

    gas handling turbomachines . The fluctuation of the cavity length is plotted in Fig.8 under the surge mode oscillation vi . The major differences...Cavitation Instabilities of Turbomachines .” AIAA Journal of Propulsion and Power, Vol.17, No.3, 636-643. [5] Tsujimoto, Y., (2006), “Flow Instabilities in

  1. Instability in evolutionary games.

    Directory of Open Access Journals (Sweden)

    Zimo Yang

    Full Text Available BACKGROUND: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner's dilemma and incorporating three mechanisms: (i imitation and mutation, (ii preferred selection on successful individuals, and (iii networking effects. METHODOLOGY/PRINCIPAL FINDINGS: We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner's dilemma. CONCLUSIONS/SIGNIFICANCE: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system's composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.

  2. Treatment of hip instability.

    Science.gov (United States)

    Robbins, G M; Masri, B A; Garbuz, D S; Greidanus, N; Duncan, C P

    2001-10-01

    Instability after total hip arthroplasty is a major source of patient morbidity, second only to aseptic loosening. Certain patient groups have been identified as having a greater risk of instability, including patients undergoing revision arthroplasty as early or late treatment for proximal femoral fractures.

  3. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  4. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    Energy Technology Data Exchange (ETDEWEB)

    Ojkic, Nikola; Vavylonis, Dimitrios [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Wu Jianqiu, E-mail: vavylonis@lehigh.edu [Department of Molecular Genetics and Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210 (United States)

    2011-09-21

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  5. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    Science.gov (United States)

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  6. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    Science.gov (United States)

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  7. Metal pad instabilities in liquid metal batteries

    CERN Document Server

    Zikanov, Oleg

    2015-01-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current and deformation of interfaces in liquid metal batteries. It is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known for aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  8. MaxAlign: maximizing usable data in an alignment

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Sackett, Peter Wad; Pedersen, Anders Gorm

    2007-01-01

    BACKGROUND: The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. RESULTS: MaxAlign is a program that optimizes...... the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical...... analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign...

  9. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Gervasio Gomez

    2012-01-01

      The new alignment for the DT chambers has been successfully used in physics analysis starting with the 52X Global Tag. The remaining main areas of development over the next few months will be preparing a new track-based CSC alignment and producing realistic APEs (alignment position errors) and MC misalignment scenarios to match the latest muon alignment constants. Work on these items has been delayed from the intended timeline, mostly due to a large involvement of the muon alignment man-power in physics analyses over the first half of this year. As CMS keeps probing higher and higher energies, special attention must be paid to the reconstruction of very-high-energy muons. Recent muon POG reports from mid-June show a φ-dependence in curvature bias in Monte Carlo samples. This bias is observed already at the tracker level, where it is constant with muon pT, while it grows with pT as muon chamber information is added to the tracks. Similar studies show a much smaller effect in data, at le...

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2010-01-01

    For the last three months, the Muon Alignment group has focussed on providing a new, improved set of alignment constants for the end-of-year data reprocessing. These constants were delivered on time and approved by the CMS physics validation team on November 17. The new alignment incorporates several improvements over the previous one from March for nearly all sub-systems. Motivated by the loss of information from a hardware failure in May (an entire MAB was lost), the optical barrel alignment has moved from a modular, super-plane reconstruction, to a full, single loop calculation of the entire geometry for all DTs in stations 1, 2 and 3. This makes better use of the system redundancy, mitigating the effect of the information loss. Station 4 is factorised and added afterwards to make the system smaller (and therefore faster to run), and also because the MAB calibration at the MB4 zone is less precise. This new alignment procedure was tested at 0 T against photogrammetry resulting in precisions of the order...

  11. MUON DETECTORS: ALIGNMENT

    CERN Document Server

    M. Dallavalle

    2013-01-01

    A new Muon misalignment scenario for 2011 (7 TeV) Monte Carlo re-processing was re-leased. The scenario is based on running of standard track-based reference-target algorithm (exactly as in data) using single-muon simulated sample (with the transverse-momentum spectrum matching data). It used statistics similar to what was used for alignment with 2011 data, starting from an initially misaligned Muon geometry from uncertainties of hardware measurements and using the latest Tracker misalignment geometry. Validation of the scenario (with muons from Z decay and high-pT simulated muons) shows that it describes data well. The study of systematic uncertainties (dominant by now due to huge amount of data collected by CMS and used for muon alignment) is finalised. Realistic alignment position errors are being obtained from the estimated uncertainties and are expected to improve the muon reconstruction performance. Concerning the Hardware Alignment System, the upgrade of the Barrel Alignment is in progress. By now, d...

  12. Ergodic Secret Alignment

    CERN Document Server

    Bassily, Raef

    2010-01-01

    In this paper, we introduce two new achievable schemes for the fading multiple access wiretap channel (MAC-WT). In the model that we consider, we assume that perfect knowledge of the state of all channels is available at all the nodes in a causal fashion. Our schemes use this knowledge together with the time varying nature of the channel model to align the interference from different users at the eavesdropper perfectly in a one-dimensional space while creating a higher dimensionality space for the interfering signals at the legitimate receiver hence allowing for better chance of recovery. While we achieve this alignment through signal scaling at the transmitters in our first scheme (scaling based alignment (SBA)), we let nature provide this alignment through the ergodicity of the channel coefficients in the second scheme (ergodic secret alignment (ESA)). For each scheme, we obtain the resulting achievable secrecy rate region. We show that the secrecy rates achieved by both schemes scale with SNR as 1/2log(SNR...

  13. Buckling Instability in Liquid Crystalline Physical Gels

    Science.gov (United States)

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A.; Meyer, Robert B.

    2006-04-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil side-group liquid-crystalline polymer coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to room temperature. We model the instability using the molecular theory of nematic rubber elasticity, and the theory correctly captures the change in pitch length with sample thickness and polymer concentration. This buckling instability is a clear example of a low-energy deformation that arises in materials where polymer network strains are coupled to the director orientation.

  14. Nonlinear tides in a homogeneous rotating planet or star: global simulations of the elliptical instability

    CERN Document Server

    Barker, Adrian J

    2016-01-01

    I present results from the first global hydrodynamical simulations of the elliptical instability in a tidally deformed gaseous planet (or star) with a free surface. The elliptical instability is potentially important for tidal evolution of the shortest-period hot Jupiters. I model the planet as a spin-orbit aligned or anti-aligned, and non-synchronously rotating, tidally deformed, homogeneous fluid body. A companion paper presented an analysis of the global modes and instabilities of such a planet. Here I focus on the nonlinear evolution of the elliptical instability. This is observed to produce bursts of turbulence that drive the planet towards synchronism with its orbit in an erratic manner. If the planetary spin is initially anti-aligned, the elliptical instability also drives spin-orbit alignment on a similar timescale as the spin synchronisation. The instability generates differential rotation inside the planet in the form of zonal flows, which play an important role in the saturation of the instability,...

  15. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  16. FMIT alignment cart

    Energy Technology Data Exchange (ETDEWEB)

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance.

  17. Nonlinear helical MHD instability

    Energy Technology Data Exchange (ETDEWEB)

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  18. Strategic Alignment of Business Intelligence

    OpenAIRE

    Cederberg, Niclas

    2010-01-01

    This thesis is about the concept of strategic alignment of business intelligence. It is based on a theoretical foundation that is used to define and explain business intelligence, data warehousing and strategic alignment. By combining a number of different methods for strategic alignment a framework for alignment of business intelligence is suggested. This framework addresses all different aspects of business intelligence identified as relevant for strategic alignment of business intelligence...

  19. PILOT optical alignment

    Science.gov (United States)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  20. Group Based Interference Alignment

    CERN Document Server

    Ma, Yanjun; Chen, Rui; Yao, Junliang

    2010-01-01

    in $K$-user single-input single-output (SISO) frequency selective fading interference channels, it is shown that the achievable multiplexing gain is almost surely $K/2$ by using interference alignment (IA). However when the signaling dimensions is limited, allocating all the resource to all the users simultaneously is not optimal. According to this problem, a group based interference alignment (GIA) scheme is proposed and a search algorithm is designed to get the group patterns and the resource allocation among them. Analysis results show that our proposed scheme achieves a higher multiplexing gain when the resource is limited.

  1. Orientation and Alignment Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Hartmann, J -M; Faucher, O; Gershnabel, E; Prior, Y; Averbukh, I Sh

    2015-01-01

    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses.

  2. Metal pad instabilities in liquid metal batteries

    Science.gov (United States)

    Zikanov, Oleg

    2016-11-01

    Strong variations between the electrical conductivities of electrolyte and metal layers in a liquid metal battery indicate the possibility of 'metal pad' instabilities. Deformations of the electrolyte-metal interfaces cause strong perturbations of electric currents, which, hypothetically, can generate Lorentz forces enhancing the deformations. We investigate this possibility using two models: a mechanical analogy and a two-dimensional linearized approximation. It is found that the battery is prone to instabilities of two types. One is similar to the sloshing-wave instability observed in the Hall-Héroult aluminum reduction cells. Another is new and related to the interactions of current perturbations with the azimuthal magnetic field induced by the base current. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269).

  3. Nonaxisymmetric linear instability of cylindrical magnetohydrodynamic Taylor-Couette flow

    CERN Document Server

    Child, Adam; Hollerbach, Rainer

    2015-01-01

    We consider the nonaxisymmetric modes of instability present in Taylor-Couette flow under the application of helical magnetic fields, mainly for magnetic Prandtl numbers close to the inductionless limit, and conduct a full examination of marginal stability in the resulting parameter space. We allow for the azimuthal magnetic field to be generated by a combination of currents in the inner cylinder and fluid itself, and introduce a parameter governing the relation between the strength of these currents. A set of governing eigenvalue equations for the nonaxisymmetric modes of instability are derived and solved by spectral collocation with Chebyshev polynomials over the relevant parameter space, with the resulting instabilities examined in detail. We find that by altering the azimuthal magnetic field profiles the azimuthal magnetorotational instability, nonaxisymmetric helical magnetorotational instability, and Tayler instability yield interesting dynamics, such as different preferred mode types, and modes with a...

  4. Alignment correlation term in the {beta}-ray angular distribution from spin aligned {sup 20}Na

    Energy Technology Data Exchange (ETDEWEB)

    Minamisono, K. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Matsuta, K. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Minamisono, T. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Nagatomo, T. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Ogura, M. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Sumikama, T. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Behr, J.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Jackson, K.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, B. C., V6T 2A3 (Canada); Fujiwara, H. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Mihara, M. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka 560-0043, Osaka (Japan)

    2004-12-27

    The alignment correlation term in the {beta}-ray angular distribution from nuclear-spin aligned {sup 20}Na(I{sup {pi}} = 2{sup +}, T{sub 1/2} = 449.7 ms) has been measured for the first time. A large enhancement of the time component d in the main axial vector current was preliminarily obtained and the higher order matrices j{sub 2} and j{sub 3} were also evaluated. In order to extract very small G-parity violating induced tensor term, the alignment correlation term of the mirror partner {sup 20}F have to be measured.

  5. Gravitational instabilities in astrophysical fluids

    Science.gov (United States)

    Tohline, Joel E.

    1990-01-01

    Over the past decade, the significant advancements that have been made in the development of computational tools and numerical techniques have allowed astrophysicists to begin to model accurately the nonlinear growth of gravitational instabilities in a variety of physical systems. The fragmentation or rotationally driven fission of dynamically evolving, self-gravitating ``drops and bubbles'' is now routinely modeled in full three-dimensional generality as we attempt to understand the behavior of protostellar clouds, rotating stars, galaxies, and even the primordial soup that defined the birth of the universe. A brief review is presented here of the general insights that have been gained from studies of this type, followed by a somewhat more detailed description of work, currently underway, that is designed to explain the process of binary star formation. A short video animation sequence, developed in conjunction with some of the research being reviewed, illustrates the basic-nature of the fission instability in rotating stars and of an instability that can arise in a massive disk that forms in a protostellar cloud.

  6. Alignment and theory of mind in schizophrenia.

    Science.gov (United States)

    Stewart, Suzanne L K; Corcoran, Rhiannon; Drake, Richard J

    2008-09-01

    We predicted that participants with schizophrenia would be able to successfully "align" during conversation in the context of impaired theory of mind. Alignment is a process by which interlocutors' representations of the conversational situation converge; and it may, in part, explain how people with schizophrenia can often participate successfully in dialogue despite experiencing impaired mentalising. Fifty-nine people with schizophrenia and 38 healthy adults completed a standardised, empirical conversational alignment task with a mentalising component and a measure of current IQ. The patients also completed two independent theory of mind tests. We used ANCOVAs to compare the groups' performances. The participants with schizophrenia and the healthy participants demonstrated equivalent alignment skills even though the schizophrenia participants displayed clear theory of mind difficulties. Symptom subtype analyses found no differences between subtype groups in alignment, but healthy controls and remitted patients performed significantly better on the mentalising component than the paranoia group. These results are consistent with the schizophrenia participants having intact alignment skills alongside mentalising impairments. We propose that this explains why people with schizophrenia can often participate successfully in conversation but have difficulties with more complex dialogues, with resolving misunderstandings, and with untangling ambiguities during conversation.

  7. Erasing errors due to alignment ambiguity when estimating positive selection.

    Science.gov (United States)

    Redelings, Benjamin

    2014-08-01

    Current estimates of diversifying positive selection rely on first having an accurate multiple sequence alignment. Simulation studies have shown that under biologically plausible conditions, relying on a single estimate of the alignment from commonly used alignment software can lead to unacceptably high false-positive rates in detecting diversifying positive selection. We present a novel statistical method that eliminates excess false positives resulting from alignment error by jointly estimating the degree of positive selection and the alignment under an evolutionary model. Our model treats both substitutions and insertions/deletions as sequence changes on a tree and allows site heterogeneity in the substitution process. We conduct inference starting from unaligned sequence data by integrating over all alignments. This approach naturally accounts for ambiguous alignments without requiring ambiguously aligned sites to be identified and removed prior to analysis. We take a Bayesian approach and conduct inference using Markov chain Monte Carlo to integrate over all alignments on a fixed evolutionary tree topology. We introduce a Bayesian version of the branch-site test and assess the evidence for positive selection using Bayes factors. We compare two models of differing dimensionality using a simple alternative to reversible-jump methods. We also describe a more accurate method of estimating the Bayes factor using Rao-Blackwellization. We then show using simulated data that jointly estimating the alignment and the presence of positive selection solves the problem with excessive false positives from erroneous alignments and has nearly the same power to detect positive selection as when the true alignment is known. We also show that samples taken from the posterior alignment distribution using the software BAli-Phy have substantially lower alignment error compared with MUSCLE, MAFFT, PRANK, and FSA alignments.

  8. Spondylolisthesis and Posterior Instability

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, P.; Beyer, H.K.; Frey, H.; Grosskurth, D. (Privatpraxis fuer Upright MRT, Koeln (Germany)); Simons, P.; Kuchta, J. (Media Park Klinik, Koeln (Germany))

    2009-04-15

    We present the case of a patient with a spondylolisthesis of L5 on S1 due to spondylolysis at the level L5/S1. The vertebral slip was fixed and no anterior instability was found. Using functional magnetic resonance imaging (MRI) in an upright MRI scanner, posterior instability at the level of the spondylolytic defect of L5 was demonstrated. A structure, probably the hypertrophic ligament flava, arising from the spondylolytic defect was displaced toward the L5 nerve root, and a bilateral contact of the displaced structure with the L5 nerve root was shown in extension of the spine. To our knowledge, this is the first case described of posterior instability in patients with spondylolisthesis. The clinical implications of posterior instability are unknown; however, it is thought that this disorder is common and that it can only be diagnosed using upright MRI.

  9. Aligning Responsible Business Practices

    DEFF Research Database (Denmark)

    Weller, Angeli E.

    2017-01-01

    This article offers an in-depth case study of a global high tech manufacturer that aligned its ethics and compliance, corporate social responsibility, and sustainability practices. Few large companies organize their responsible business practices this way, despite conceptual relevance and calls...... and managers interested in understanding how responsible business practices may be collectively organized....

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez and Y. Pakhotin

    2012-01-01

      A new track-based alignment for the DT chambers is ready for deployment: an offline tag has already been produced which will become part of the 52X Global Tag. This alignment was validated within the muon alignment group both at low and high momentum using a W/Z skim sample. It shows an improved mass resolution for pairs of stand-alone muons, improved curvature resolution at high momentum, and improved DT segment extrapolation residuals. The validation workflow for high-momentum muons used to depend solely on the “split cosmics” method, looking at the curvature difference between muon tracks reconstructed in the upper or lower half of CMS. The validation has now been extended to include energetic muons decaying from heavily boosted Zs: the di-muon invariant mass for global and stand-alone muons is reconstructed, and the invariant mass resolution is compared for different alignments. The main areas of development over the next few months will be preparing a new track-based C...

  11. Aligning Theory with Practice

    Science.gov (United States)

    Kurz, Terri L.; Batarelo, Ivana

    2009-01-01

    This article describes a structure to help preservice teachers get invaluable field experience by aligning theory with practice supported by the integration of elementary school children into their university mathematics methodology course. This course structure allowed preservice teachers to learn about teaching mathematics in a nonthreatening…

  12. Alignment of concerns

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn;

    2014-01-01

    The emergence of patient-centered eHealth systems introduces new challenges, where patients come to play an increasingly important role. Realizing the promises requires an in-depth understanding of not only the technology, but also the needs of both clinicians and patients. However, insights from...... as a design rationale for successful eHealth, termed 'alignment of concerns'....

  13. Aligning Mental Representations

    DEFF Research Database (Denmark)

    Kano Glückstad, Fumiko

    2013-01-01

    on the application of the BMG to publicly available datasets, the Leuven natural concept database [3] representing semantic structures of domain knowledge possessed by individual subjects [3]. Results indicate that the BMG is potentially a model applicable to simulating the alignment of domain knowledge from...

  14. Theory of electrohydrodynamic instabilities in electrolytic cells

    Science.gov (United States)

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  15. Instabilities in nuclei

    CERN Document Server

    Csernai, László P; Papp, G

    1995-01-01

    The evolution of dynamical perturbations is examined in nuclear multifragmentation in the frame of Vlasov equation. Both plane wave and bubble type of perturbations are investigated in the presence of surface (Yukawa) forces. An energy condition is given for the allowed type of instabilities and the time scale of the exponential growth of the instabilities is calculated. The results are compared to the mechanical spinodal region predictions. PACS: 25.70 Mn

  16. Prediction of Algebraic Instabilities

    Science.gov (United States)

    Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael

    2016-11-01

    A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.

  17. Scaling statistical multiple sequence alignment to large datasets

    Directory of Open Access Journals (Sweden)

    Michael Nute

    2016-11-01

    Full Text Available Abstract Background Multiple sequence alignment is an important task in bioinformatics, and alignments of large datasets containing hundreds or thousands of sequences are increasingly of interest. While many alignment methods exist, the most accurate alignments are likely to be based on stochastic models where sequences evolve down a tree with substitutions, insertions, and deletions. While some methods have been developed to estimate alignments under these stochastic models, only the Bayesian method BAli-Phy has been able to run on even moderately large datasets, containing 100 or so sequences. A technique to extend BAli-Phy to enable alignments of thousands of sequences could potentially improve alignment and phylogenetic tree accuracy on large-scale data beyond the best-known methods today. Results We use simulated data with up to 10,000 sequences representing a variety of model conditions, including some that are significantly divergent from the statistical models used in BAli-Phy and elsewhere. We give a method for incorporating BAli-Phy into PASTA and UPP, two strategies for enabling alignment methods to scale to large datasets, and give alignment and tree accuracy results measured against the ground truth from simulations. Comparable results are also given for other methods capable of aligning this many sequences. Conclusions Extensions of BAli-Phy using PASTA and UPP produce significantly more accurate alignments and phylogenetic trees than the current leading methods.

  18. ABS: Sequence alignment by scanning

    KAUST Repository

    Bonny, Mohamed Talal

    2011-08-01

    Sequence alignment is an essential tool in almost any computational biology research. It processes large database sequences and considered to be high consumers of computation time. Heuristic algorithms are used to get approximate but fast results. We introduce fast alignment algorithm, called Alignment By Scanning (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the well-known alignment algorithms, the FASTA (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 76% enhancement in alignment score when it is compared with the FASTA Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  19. Fast global sequence alignment technique

    KAUST Repository

    Bonny, Mohamed Talal

    2011-11-01

    Bioinformatics database is growing exponentially in size. Processing these large amount of data may take hours of time even if super computers are used. One of the most important processing tool in Bioinformatics is sequence alignment. We introduce fast alignment algorithm, called \\'Alignment By Scanning\\' (ABS), to provide an approximate alignment of two DNA sequences. We compare our algorithm with the wellknown sequence alignment algorithms, the \\'GAP\\' (which is heuristic) and the \\'Needleman-Wunsch\\' (which is optimal). The proposed algorithm achieves up to 51% enhancement in alignment score when it is compared with the GAP Algorithm. The evaluations are conducted using different lengths of DNA sequences. © 2011 IEEE.

  20. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment

    Directory of Open Access Journals (Sweden)

    Daniels Noah M

    2012-10-01

    Full Text Available Abstract Background The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. Results We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. Conclusions Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.

  1. Inflation by alignment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [PH -TH Division, CERN,CH-1211, Genève 23 (Switzerland); Department of Physics & Astronomy, McMaster University,1280 Main Street West, Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo ON (Canada); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  2. Aligning component upgrades

    Directory of Open Access Journals (Sweden)

    Roberto Di Cosmo

    2011-08-01

    Full Text Available Modern software systems, like GNU/Linux distributions or Eclipse-based development environment, are often deployed by selecting components out of large component repositories. Maintaining such software systems by performing component upgrades is a complex task, and the users need to have an expressive preferences language at their disposal to specify the kind of upgrades they are interested in. Recent research has shown that it is possible to develop solvers that handle preferences expressed as a combination of a few basic criteria used in the MISC competition, ranging from the number of new components to the freshness of the final configuration. In this work we introduce a set of new criteria that allow the users to specify their preferences for solutions with components aligned to the same upstream sources, provide an efficient encoding and report on the experimental results that prove that optimising these alignment criteria is a tractable problem in practice.

  3. Inflation by Alignment

    CERN Document Server

    Burgess, Cliff

    2015-01-01

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f > Mp, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  4. Aligning component upgrades

    CERN Document Server

    Di Cosmo, Roberto; Michel, Claude; 10.4204/EPTCS.65.1

    2011-01-01

    Modern software systems, like GNU/Linux distributions or Eclipse-based development environment, are often deployed by selecting components out of large component repositories. Maintaining such software systems by performing component upgrades is a complex task, and the users need to have an expressive preferences language at their disposal to specify the kind of upgrades they are interested in. Recent research has shown that it is possible to develop solvers that handle preferences expressed as a combination of a few basic criteria used in the MISC competition, ranging from the number of new components to the freshness of the final configuration. In this work we introduce a set of new criteria that allow the users to specify their preferences for solutions with components aligned to the same upstream sources, provide an efficient encoding and report on the experimental results that prove that optimising these alignment criteria is a tractable problem in practice.

  5. Alignment of concerns

    DEFF Research Database (Denmark)

    Andersen, Tariq Osman; Bansler, Jørgen P.; Kensing, Finn

    E-health promises to enable and support active patient participation in chronic care. However, these fairly recent innovations are complicated matters and emphasize significant challenges, such as patients’ and clinicians’ different ways of conceptualizing disease and illness. Informed by insight...... from medical phenomenology and our own empirical work in telemonitoring and medical care of heart patients, we propose a design rationale for e-health systems conceptualized as the ‘alignment of concerns’....

  6. Orbit IMU alignment: Error analysis

    Science.gov (United States)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  7. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  8. Coherent Instabilities of ILC Damping Ring

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Stupakov, G.; Bane, K.; /SLAC

    2006-09-27

    The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.

  9. Diffusive Magnetohydrodynamic Instabilities beyond the Chandrasekhar Theorem

    Science.gov (United States)

    Rüdiger, Günther; Schultz, Manfred; Stefani, Frank; Mond, Michael

    2015-10-01

    We consider the stability of axially unbounded cylindrical flows that contain a toroidal magnetic background field with the same radial profile as their azimuthal velocity. For ideal fluids, Chandrasekhar had shown the stability of this configuration if the Alfvén velocity of the field equals the velocity of the background flow, i.e., if the magnetic Mach number {Mm}=1. We demonstrate that magnetized Taylor-Couette flows with such profiles become unstable against non-axisymmetric perturbations if at least one of the diffusivities is finite. We also find that for small magnetic Prandtl numbers {Pm} the lines of marginal instability scale with the Reynolds number and the Hartmann number. In the limit {Pm}\\to 0 the lines of marginal instability completely lie below the line for {Mm}=1 and for {Pm}\\to ∞ they completely lie above this line. For any finite value of {Pm}, however, the lines of marginal instability cross the line {Mm}=1, which separates slow from fast rotation. The minimum values of the field strength and the rotation rate that are needed for the instability (slightly) grow if the rotation law becomes flat. In this case, the electric current of the background field becomes so strong that the current-driven Tayler instability (which also exists without rotation) appears in the bifurcation map at low Hartmann numbers.

  10. Seeking the perfect alignment

    CERN Multimedia

    2002-01-01

    The first full-scale tests of the ATLAS Muon Spectrometer are about to begin in Prévessin. The set-up includes several layers of Monitored Drift Tubes Chambers (MDTs) and will allow tests of the performance of the detectors and of their highly accurate alignment system.   Monitored Drift Chambers in Building 887 in Prévessin, where they are just about to be tested. Muon chambers are keeping the ATLAS Muon Spectrometer team quite busy this summer. Now that most people go on holiday, the beam and alignment tests for these chambers are just starting. These chambers will measure with high accuracy the momentum of high-energy muons, and this implies very demanding requirements for their alignment. The MDT chambers consist of drift tubes, which are gas-filled metal tubes, 3 cm in diameter, with wires running down their axes. With high voltage between the wire and the tube wall, the ionisation due to traversing muons is detected as electrical pulses. With careful timing of the pulses, the position of the muon t...

  11. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, M.R. de

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  12. Closed loop control of the sawtooth instability in nuclear fusion

    NARCIS (Netherlands)

    Witvoet, G.; Steinbuch, M.; Westerhof, E.; Doelman, N.J.; Baar, M.R. de

    2010-01-01

    In nuclear fusion the sawtooth instability is an important plasma phenomenon, having both positive and negative effects on the tokamak plasma. Control of its period is essential in future nuclear fusion reactors. This paper presents a control oriented model of the sawtooth instability, with current

  13. Automatic alignment of audiobooks in Afrikaans

    CSIR Research Space (South Africa)

    Van Heerden, CJ

    2012-11-01

    Full Text Available to generate the text corresponding to existing audio. Secondly, ASR can be used to enhance the level of mark-up for books that are currently only aligned at chapter level. Finer grained alignments between audio and text enable word level search... be investigated for an under-resourced language for which, until fairly recently, only limited text and speech resources were available, namely Afrikaans. The ultimate aim of the work reported here is to improve the level of mark-up for existing books in any...

  14. Review of Alignment Activities at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Curtis

    2002-12-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) comprises a 5 GeV continuous electron beam accelerator (CEBAF) delivering beam to three experimental halls, and a kilowatt range tunable free electron laser (FEL), currently being upgraded to a 10 kW machine. The progression into steady state experimental runs at the facility has allowed the alignment group the opportunity to incorporate new developments into the alignment system. Two of these are discussed, together with some of the more unusual (e.g. gyrotheodolite survey) and the more routine surveys performed at the lab over the last three years.

  15. RECAT - Redundant Channel Alignment Technique

    Science.gov (United States)

    2016-06-07

    distribution unlimited 13. SUPPLEMENTARY NOTES NUWC2015 14. ABSTRACT A problem in the analog-to- digital , (A/D), conversion of broadband tape recorded...Alignment Technique, is used to align data taken on one pass with data from any other pass. The accuracy of this alignment is a function of the digital ...Redundant Channel Alignment Technique; analog-to- digital ; A/D; Broadband Bearing Time Processing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  16. MR imaging in sports-related glenohumeral instability

    Energy Technology Data Exchange (ETDEWEB)

    Woertler, Klaus; Waldt, Simone [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Radiology, Munich (Germany)

    2006-12-15

    Sports-related shoulder pain and injuries represent a common problem. In this context, glenohumeral instability is currently believed to play a central role either as a recognized or as an unrecognized condition. Shoulder instabilities can roughly be divided into traumatic, atraumatic, and microtraumatic glenohumeral instabilities. In athletes, atraumatic and microtraumatic instabilities can lead to secondary impingement syndromes and chronic damage to intraarticular structures. Magnetic resonance (MR) arthrography is superior to conventional MR imaging in the diagnosis of labro-ligamentous injuries, intrinsic impingement, and SLAP (superior labral anteroposterior) lesions, and thus represents the most informative imaging modality in the overall assessment of glenohumeral instability. This article reviews the imaging criteria for the detection and classification of instability-related injuries in athletes with special emphasis on the influence of MR findings on therapeutic decisions. (orig.)

  17. Method for alignment of microwires

    Energy Technology Data Exchange (ETDEWEB)

    Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce

    2017-01-24

    A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.

  18. Visco-Resistive Plasmoid Instability

    CERN Document Server

    Comisso, Luca

    2016-01-01

    The plasmoid instability in visco-resistive current sheets is analyzed in both the linear and nonlinear regimes. The linear growth rate and the wavenumber are found to scale as $S^{1/4} {\\left( {1 + {P_m}} \\right)}^{-5/8}$ and $S^{3/8} {\\left( {1 + {P_m}} \\right)}^{-3/16}$ with respect to the Lundquist number $S$ and the magnetic Prandtl number $P_m$. Furthermore, the linear layer width is shown to scale as $S^{-1/8} {(1+P_m)}^{1/16}$. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. In particular, the time-scale of the nonlinear growth of the plasmoids is found to be $\\tau_{NL} \\sim S^{-3/16} {(1 + P_m)^{19/32}}{\\tau _{A,L}}$. The nonlinear growth of the plasmoids is radically different from the linear one and it is shown to be essential to understand the global current sheet disruption. It is also discussed how the plasmoid instability enables fast magnetic reconnection in visco-resistive plasmas. In particular, it is shown t...

  19. Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field.

    Science.gov (United States)

    Zenitani, S; Hoshino, M

    2005-08-26

    The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.

  20. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  1. Longitudinal Single Bunch Instability Study on BEPCII

    CERN Document Server

    Dou, Wang; Zhe, Duan; Na, Wang; Li, Wang; Lin, Wang; Jie, Gao

    2013-01-01

    In order to study the single bunch longitudinal instability in BEPCII, experiments on the positron ring (BPR) for the bunch lengthening phenomenon were made. By analyzing the experimental data based on Gao's theory, the longitudinal loss factor for the bunch are obtained. Also, the total wake potential and the beam current threshold are estimated.

  2. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  3. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    , genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other...... scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  4. Self-Aligned Interdigitated Transducers for Acoustofluidics

    Directory of Open Access Journals (Sweden)

    Zhichao Ma

    2016-11-01

    Full Text Available The surface acoustic wave (SAW is effective for the manipulation of fluids and particles at microscale. The current approach of integrating interdigitated transducers (IDTs for SAW generation into microfluidic channels involves complex and laborious microfabrication steps. These steps often require full access to clean room facilities and hours to align the transducers to the precise location. This work presents an affordable and innovative method for fabricating SAW-based microfluidic devices without the need for clean room facilities and alignment. The IDTs and microfluidic channels are fabricated using the same process and thus are precisely self-aligned in accordance with the device design. With the use of the developed fabrication approach, a few types of different SAW-based microfluidic devices have been fabricated and demonstrated for particle separation and active droplet generation.

  5. Alignment of suprathermally rotating grains

    Science.gov (United States)

    Lazarian, A.

    1995-12-01

    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.

  6. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily...... connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster...

  7. Revisiting the Flowers-Ruderman instability of magnetic stars

    CERN Document Server

    Marchant, Pablo; Akgün, Taner

    2010-01-01

    In 1977, Flowers and Ruderman described a perturbation that destabilises a purely dipolar magnetic field in a fluid star. They considered the effect of cutting the star in half along a plane containing the symmetry axis and rotating each half by $90\\degr$ in opposite directions, which would cause the energy of the magnetic field in the exterior of the star to be greatly reduced, just as it happens with a pair of aligned magnets. We formally solve for the energy of the external magnetic field and check that it decreases monotonously along the entire rotation. We also describe the instability using perturbation theory, and see that it happens due to the work done by the interaction of the magnetic field with surface currents. Finally, we consider the stabilising effect of adding a toroidal field by studying the potential energy perturbation when the rotation is not done along a sharp cut, but with a continuous displacement field that switches the direction of rotation across a region of small but finite width. ...

  8. ATLAS Inner Detector Alignment

    CERN Document Server

    Bocci, A

    2008-01-01

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider at CERN. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements have to be known to a precision better than 10 μm. Several track-based alignment algorithms have been developed for the Inner Detector. An extensive validation has been performed with simulated events and real data coming from the ATLAS. Results from such validation are reported in this paper.

  9. TSGC and JSC Alignment

    Science.gov (United States)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  10. Comparison of Two Forced Alignment Systems for Aligning Bribri Speech

    Directory of Open Access Journals (Sweden)

    Rolando Coto-Solano

    2017-04-01

    Full Text Available Forced alignment provides drastic savings in time when aligning speech recordings and is particularly useful for the study of Indigenous languages, which are severely under-resourced in corpora and models. Here we compare two forced alignment systems, FAVE-align and EasyAlign, to determine which one provides more precision when processing running speech in the Chibchan language Bribri. We aligned a segment of a story narrated in Bribri and compared the errors in finding the center of the words and the edges of phonemes when compared with the manual correction. FAVE-align showed better performance: It has an error of 7% compared to 24% with EasyAlign when finding the center of words, and errors of 22~24 ms when finding the edges of phonemes, compared to errors of 86~130 ms with EasyAlign. In addition to this, EasyAlign failed to detect 7% of phonemes, while also inserting 58 spurious phones into the transcription. Future research includes verifying these results for other genres and other Chibchan languages. Finally, these results provide additional evidence for the applicability of natural language processing methods to Chibchan languages and point to future work such as the construction of corpora and the training of automated speech recognition systems.

  11. Pressure-driven instabilities in astrophysical jets

    CERN Document Server

    Longaretti, Pierre-Yves

    2008-01-01

    Astrophysical jets are widely believed to be self-collimated by the hoop-stress due to the azimuthal component of their magnetic field. However this implies that the magnetic field is largely dominated by its azimuthal component in the outer jet region. In the fusion context, it is well-known that such configurations are highly unstable in static columns, leading to plasma disruption. It has long been pointed out that a similar outcome may follow for MHD jets, and the reasons preventing disruption are still not elucidated, although some progress has been accomplished in the recent years. In these notes, I review the present status of this open problem for pressure-driven instabilities, one of the two major sources of ideal MHD instability in static columns (the other one being current-driven instabilities). I first discuss in a heuristic way the origin of these instabilities. Magnetic resonances and magnetic shear are introduced, and their role in pressure-driven instabilities discussed in relation to Suydam'...

  12. All about alignment

    CERN Multimedia

    2006-01-01

    The ALICE absorbers, iron wall and superstructure have been installed with great precision. The ALICE front absorber, positioned in the centre of the detector, has been installed and aligned. Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m. In addition to these, ALICE technicians have installed a 300-tonne iron filter wall made of blocks that fit together like large Lego pieces and a surrounding metal support structure to hold the tracking and trigger chambers. The absorbers house the vacuum chamber and are also the reference surface for the positioning of the tracking and trigger chambers. For this reason, the ab...

  13. Proceedings of the first international workshop on accelerator alignment

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report contains papers on the following accelerator topics: current alignment topics; toolboxes: instrumentation, software, and methods; fiducialization of conventional magnets; fiducialization of superconducting magnets; and next generation linear colliders.

  14. The electrostatic ion-cyclotron instability-a two-dimensional potential relaxation instability

    DEFF Research Database (Denmark)

    Popa, G.; Schrittwieser, R.; Juul Rasmussen, Jens;

    1985-01-01

    An experimental investigation shows that the electrostatic ion-cyclotron instability, driven by an electron current to a positively biased collector, is accompanied by strong coherent two-dimensional fluctuations of the plasma potential in front of the collector. These results suggest that this i......An experimental investigation shows that the electrostatic ion-cyclotron instability, driven by an electron current to a positively biased collector, is accompanied by strong coherent two-dimensional fluctuations of the plasma potential in front of the collector. These results suggest...

  15. Testing the tidal alignment model of galaxy intrinsic alignment

    CERN Document Server

    Blazek, Jonathan; Seljak, Uros

    2011-01-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w_{g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes (the latter of which is zero in the linear tidal alignment theory); (4) the alignment correlation function, w_g(r_p,theta), a recently developed statistic that generalizes the galaxy correlation func...

  16. Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement

    Science.gov (United States)

    Lee, Byeong Soo; Kim, Young Ha; Hwang, Hyunwoo; Lee, Jeongjin; Kong, Jeong Heung; Kang, Young Seog; Paarhuis, Bart; Kok, Haico; de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; Mason, Christopher; Aarts, Igor; de Boeij, Wim P.

    2016-03-01

    Overlay is one of the key factors which enables optical lithography extension to 1X node DRAM manufacturing. It is natural that accurate wafer alignment is a prerequisite for good device overlay. However, alignment failures or misalignments are commonly observed in a fab. There are many factors which could induce alignment problems. Low alignment signal contrast is one of the main issues. Alignment signal contrast can be degraded by opaque stack materials or by alignment mark degradation due to processes like CMP. This issue can be compounded by mark sub-segmentation from design rules in combination with double or quadruple spacer process. Alignment signal contrast can be improved by applying new material or process optimization, which sometimes lead to the addition of another process-step with higher costs. If we can amplify the signal components containing the position information and reduce other unwanted signal and background contributions then we can improve alignment performance without process change. In this paper we use ASML's new alignment sensor (as was introduced and released on the NXT:1980Di) and sample wafers with special stacks which can induce poor alignment signal to demonstrate alignment and overlay improvement.

  17. Shock instability in dissipative gases

    OpenAIRE

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  18. Pareto optimal pairwise sequence alignment.

    Science.gov (United States)

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  19. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    Directory of Open Access Journals (Sweden)

    Emanuel Santos

    Full Text Available Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  20. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    in societal and industrial environmental awareness and improvements. The coordination of these elements – covered by the notion of coherence – is seen as the most important mechanism for bringing about a change in environmental impact. The elements comprise of regulatory regimes and available technology......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... time and in combination with other social processes establish more aligned and standardized environmental performance between countries. However, examples of the introduction of environmental management suggests that EMS’ only plays a minor role in developing the actual environmental objectives...

  1. Lunar Alignments - Identification and Analysis

    Science.gov (United States)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  2. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  3. Genetic instability in Gynecological Cancer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-hua; ZHOU Hong-lin

    2003-01-01

    Defects of mismatch repair (MMR) genes also have beenidentified in many kinds of tumors. Loss of MMR functionhas been linked to genetic instability especially microsatelliteinstability that results in high mutation rate. In this review, wediscussed the microsatellite instability observed in thegynecological tumors. We also discussed defects in the DNAmismatch repair in these tumors and their correlation to themicrosatellite instability, as well as the gene mutations due tothe microsatellite instability in these tumors. From thesediscussion, we tried to understand the mechanism ofcarcinogenesis in gynecological tumors from the aspect ofgenetic instability due to mismatch repair defects.

  4. Instabilities in sensory processes

    Science.gov (United States)

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  5. Modulation instability: The beginning

    Science.gov (United States)

    Noskov, Roman; Belov, Pavel; Kivshar, Yuri

    2012-11-01

    The study of metal nanoparticles plays a central role in the emerging novel technologies employing optics beyond the diffraction limit. Combining strong surface plasmon resonances, high intrinsic nonlinearities and deeply subwavelength scales, arrays of metal nanoparticles offer a unique playground to develop novel concepts for light manipulation at the nanoscale. Here we suggest a novel principle to control localized optical energy in chains of nonlinear subwavelength metal nanoparticles based on the fundamental nonlinear phenomenon of modulation instability. In particular, we demonstrate that modulation instability can lead to the formation of long-lived standing and moving nonlinear localized modes of several distinct types such as bright and dark solitons, oscillons, and domain walls. We analyze the properties of these nonlinear localized modes and reveal different scenarios of their dynamics including transformation of one type of mode to another. We believe this work paves a way towards the development of nonlinear nanophotonics circuitry.

  6. Instability and internet design

    Directory of Open Access Journals (Sweden)

    Sandra Braman

    2016-09-01

    Full Text Available Instability - unpredictable but constant change in one’s environment and the means with which one deals with it - has replaced convergence as the focal problem for telecommunications policy in general and internet policy in particular. Those who designed what we now call the internet during the first decade of the effort (1969-1979, who in essence served simultaneously as its policy-makers, developed techniques for coping with instability of value for network designers today and for those involved with any kind of large-scale sociotechnical infrastructure. Analysis of the technical document series that was medium for and record of that design process reveals coping techniques that began with defining the problem and went on to include conceptual labour, social practices, and technical approaches.

  7. Gravitational instabilities of superspinars

    CERN Document Server

    Pani, Paolo; Berti, Emanuele; Cardoso, Vitor

    2010-01-01

    Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound (cJ/GM^2>1). Recent studies analyzed the observable consequences of gravitational lensing and accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly absorbing boundary conditions at the "surface" of the superspinar. We find that these objects are unstable independently of the boundary conditions, and that the instability is strongest for relatively small values of the spin. Also, we give a physical interpretation of the various instabilities that we find. Our results (together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars are very unlikely astrophysical alternatives to black holes.

  8. The instability of markets

    CERN Document Server

    Huberman, B A; Huberman, Bernardo A; Youssefmir, Michael

    1995-01-01

    Recent developments in the global liberalization of equity and currency markets, coupled to advances in trading technologies, are making markets increasingly interdependent. This increased fluidity raises questions about the stability of the international financial system. In this paper, we show that as couplings between stable markets grow, the likelihood of instabilities is increased, leading to a loss of general equilibrium as the system becomes increasingly large and diverse.

  9. Modulation instability: The beginning

    Science.gov (United States)

    Zakharov, V. E.; Ostrovsky, L. A.

    2009-03-01

    We discuss the early history of an important field of “sturm and drang” in modern theory of nonlinear waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous publications by many different authors on modulation instability, a phenomenon resulting in a variety of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples from water wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.

  10. Carpal instability nondissociative.

    Science.gov (United States)

    Wolfe, Scott W; Garcia-Elias, Marc; Kitay, Alison

    2012-09-01

    Carpal instability nondissociative (CIND) represents a spectrum of conditions characterized by kinematic dysfunction of the proximal carpal row, often associated with a clinical "clunk." CIND is manifested at the midcarpal and/or radiocarpal joints, and it is distinguished from carpal instability dissociative (CID) by the lack of disruption between bones within the same carpal row. There are four major subcategories of CIND: palmar, dorsal, combined, and adaptive. In palmar CIND, instability occurs across the entire proximal carpal row. When nonsurgical management fails, surgical options include arthroscopic thermal capsulorrhaphy, soft-tissue reconstruction, or limited radiocarpal or intercarpal fusions. In dorsal CIND, the capitate subluxates dorsally from its reduced resting position. Dorsal CIND usually responds to nonsurgical management; refractory cases respond to palmar ligament reefing and/or dorsal intercarpal capsulodesis. Combined CIND demonstrates signs of both palmar and dorsal CIND and can be treated with soft-tissue or bony procedures. In adaptive CIND, the volar carpal ligaments are slackened and are less capable of inducing the physiologic shift of the proximal carpal row from flexion into extension as the wrist ulnarly deviates. Treatment of choice is a corrective osteotomy to restore the normal volar tilt of the distal radius.

  11. Chromosomal instability in meningiomas.

    Science.gov (United States)

    van Tilborg, Angela A G; Al Allak, Bushra; Velthuizen, Sandra C J M; de Vries, Annie; Kros, Johan M; Avezaat, Cees J J; de Klein, Annelies; Beverloo, H Berna; Zwarthoff, Ellen C

    2005-04-01

    Approximately 60% of sporadic meningiomas are caused by inactivation of the NF2 tumor suppressor gene on chromosome 22. No causative gene is known for the remaining 40%. Cytogenetic analysis shows that meningiomas caused by inactivation of the NF2 gene can be divided into tumors that show monosomy 22 as the sole abnormality and tumors with a more complex karyotype. Meningiomas not caused by the NF2 gene usually have a diploid karyotype. Here we report that, besides the clonal chromosomal aberrations, the chromosome numbers in many meningiomas varied from one metaphase spread to the other, a feature that is indicative of chromosomal instability. Unexpectedly and regardless of genotype, a subgroup of tumors was observed with an average number of 44.9 chromosomes and little variation in the number of chromosomes per metaphase spread. In addition, a second subgroup was recognized with a hyperdiploid number of chromosomes (average 48.5) and considerable variation in numbers per metaphase. However, this numerical instability resulted in a clonal karyotype with chromosomal gains and losses in addition to loss of chromosome 22 only in meningiomas caused by inactivation of the NF2 gene. In cultured cells of all tumor groups, bi- and multinucleated cells were seen, as well as anaphase bridges, residual chromatid strings, multiple spindle poles, and unseparated chromatids, suggesting defects in the mitotic apparatus or kinetochore. Thus, we conclude that even a benign and slow-growing tumor like a meningioma displays chromosomal instability.

  12. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning

    Science.gov (United States)

    Carnell, Lisa S.; Siochi, Emilie J.; Wincheski, Russell A.; Holloway, Nancy M.; Clark, Robert L.

    2009-01-01

    Control of electrospun fiber placement and distribution was investigated by examining the effect of electric field parameters on the electrospinning of fibers. The experimental set-up used in this study eliminated the bending instability and whipping, allowing the jet to be modeled as a stable trajectory. Coupling of experimental and computational results suggests the potential for predicting aligned fiber distribution in electrospun mats.

  13. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning

    Science.gov (United States)

    Carnell, Lisa S.; Siochi, Emilie J.; Wincheski, Russell A.; Holloway, Nancy M.; Clark, Robert L.

    2009-01-01

    Control of electrospun fiber placement and distribution was investigated by examining the effect of electric field parameters on the electrospinning of fibers. The experimental set-up used in this study eliminated the bending instability and whipping, allowing the jet to be modeled as a stable trajectory. Coupling of experimental and computational results suggests the potential for predicting aligned fiber distribution in electrospun mats.

  14. Arthroscopic Findings in Anterior Shoulder Instability

    Science.gov (United States)

    Hantes, Michael; Raoulis, Vasilios

    2017-01-01

    Background: In the last years, basic research and arthroscopic surgery, have improved our understanding of shoulder anatomy and pathology. It is a fact that arthroscopic treatment of shoulder instability has evolved considerably over the past decades. The aim of this paper is to present the variety of pathologies that should be identified and treated during shoulder arthroscopy when dealing with anterior shoulder instability cases. Methods: A review of the current literature regarding arthroscopic shoulder anatomy, anatomic variants, and arthroscopic findings in anterior shoulder instability, is presented. In addition, correlation of arthroscopic findings with physical examination and advanced imaging (CT and MRI) in order to improve our understanding in anterior shoulder instability pathology is discussed. Results: Shoulder instability represents a broad spectrum of disease and a thorough understanding of the pathoanatomy is the key for a successful treatment of the unstable shoulder. Patients can have a variety of pathologies concomitant with a traditional Bankart lesion, such as injuries of the glenoid (bony Bankart), injuries of the glenoid labrum, superiorly (SLAP) or anteroinferiorly (e.g. anterior labroligamentous periosteal sleeve avulsion, and Perthes), capsular lesions (humeral avulsion of the glenohumeral ligament), and accompanying osseous-cartilage lesions (Hill-Sachs, glenolabral articular disruption). Shoulder arthroscopy allows for a detailed visualization and a dynamic examination of all anatomic structures, identification of pathologic findings, and treatment of all concomitant lesions. Conclusion: Surgeons must be well prepared and understanding the normal anatomy of the glenohumeral joint, including its anatomic variants to seek for the possible pathologic lesions in anterior shoulder instability during shoulder arthroscopy. Patient selection criteria, improved surgical techniques, and implants available have contributed to the enhancement of

  15. Pyro-Align: Sample-Align based Multiple Alignment system for Pyrosequencing Reads of Large Number

    CERN Document Server

    Saeed, Fahad

    2009-01-01

    Pyro-Align is a multiple alignment program specifically designed for pyrosequencing reads of huge number. Multiple sequence alignment is shown to be NP-hard and heuristics are designed for approximate solutions. Multiple sequence alignment of pyrosequenceing reads is complex mainly because of 2 factors. One being the huge number of reads, making the use of traditional heuristics,that scale very poorly for large number, unsuitable. The second reason is that the alignment cannot be performed arbitrarily, because the position of the reads with respect to the original genome is important and has to be taken into account.In this report we present a short description of the multiple alignment system for pyrosequencing reads.

  16. Toward an integrated view of ionospheric plasma instabilities: Altitudinal transitions and strong gradient case

    Science.gov (United States)

    Makarevich, Roman A.

    2016-04-01

    A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.

  17. Nonmodal analysis of helical and azimuthal magnetorotational instabilities

    CERN Document Server

    Mamatsashvili, G

    2016-01-01

    The helical and the azimuthal magnetorotational instabilities operate in rotating magnetized flows with relatively steep negative or extremely steep positive shear. The corresponding lower and upper Liu limits of the shear, which determine the threshold of modal growth of these instabilities, are continuously connected when some axial electrical current is allowed to pass through the rotating fluid. We investigate the nonmodal dynamics of these instabilities arising from the nonnormality of shear flow in the local approximation, generalizing the results of the modal approach. It is demonstrated that moderate transient/nonmodal amplification of both types of magnetorotational instability occurs within the Liu limits, where the system is stable according to modal analysis. We show that for the helical magnetorotational instability this magnetohydrodynamic behavior is closely connected with the nonmodal growth of the underlying purely hydrodynamic problem.

  18. Mitigation of Electrothermal Instabilities with Thick Insulating Coatings

    Science.gov (United States)

    Peterson, Kyle; Awe, Thomas; Yu, Edmund; Sinars, Daniel; Cuneo, Michael

    2013-10-01

    We will show results of recent experiments on Sandia's Z facility that demonstrate a dramatic reduction in instability growth when thick insulating coatings are used to mitigate electrothermal instability growth in magnetically driven imploding liners. These results also provide further evidence that the inherent surface roughness as a result of target fabrication is not the dominant seed for the growth of Magneto-Rayleigh-Taylor (MRT) instabilities in liners with carefully machined smooth surfaces (~100 nm surface RMS or better), but rather electrothermal instabilities that form early in the electrical current pulse as Joule heating melts and vaporizes the liner surface. More importantly, these results suggest a mechanism for possibly reducing the integral MRT instability growth substantially in magnetically driven inertial confinement fusion concepts such as MagLIF. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Modeling the Parker instability in a rotating plasma screw pinch

    CERN Document Server

    Khalzov, I V; Katz, N; Forest, C B; 10.1063/1.3684240

    2012-01-01

    We analytically and numerically study the analogue of the Parker (magnetic buoyancy) instability in a uniformly rotating plasma screw pinch confined in a cylinder. Uniform plasma rotation is imposed to create a centrifugal acceleration, which mimics the gravity required for the classical Parker instability. The goal of this study is to determine how the Parker instability could be unambiguously identified in a weakly magnetized, rapidly rotating screw pinch, in which the rotation provides an effective gravity and a radially varying azimuthal field is controlled to give conditions for which the plasma is magnetically buoyant to inward motion. We show that an axial magnetic field is also required to circumvent conventional current driven magnetohydrodynamic (MHD) instabilities such as the sausage and kink modes that would obscure the Parker instability. These conditions can be realized in the Madison Plasma Couette Experiment (MPCX). Simulations are performed using the extended MHD code NIMROD for an isothermal...

  20. Shoulder instability; Schultergelenkinstabilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, J.; Imhof, H. [Abteilung Osteoradiologie, Univ.-Klinik fuer Radiodiagnostik Wien (Austria)

    2004-06-01

    Shoulder instability is a common clinical feature leading to recurrent pain and limitated range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging. (orig.) [German] Die Schultergelenkinstabilitaet ist haeufig fuer wiederholt auftretende Schmerzen sowie eine eingeschraenkte Beweglichkeit im Glenohumeralgelenk verantwortlich. Sie kann als Folge eines vorangegangenen Traumas, einer generellen Hyperlaxitaet oder infolge wiederholter Mikrotraumen entstehen. Die Differenzierung zwischen traumatischer und atraumatischer Form der Gelenkinstabilitaet erfordert eine sorgfaeltige Anamnese und eine genaue klinische Untersuchung. Die Gelelenklaxitaet als Differenzialdiagnose muss von der echten Instabilitaet unterschieden werden, die Instabilitaet wird dann im Rahmen des klinischen Status nach Grad und Richtung der glenohumeralen Translation unterteilt. Zur Diagnose knoecherner Laesionen werden das konventionelle Roentgen sowie die CT herangezogen. MRT sowie MR-Arthrographie dienen zur Detektion

  1. Mask alignment system for semiconductor processing

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  2. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    OpenAIRE

    Yuki Fujitsuka; Takahide Oya

    2012-01-01

    A functional carbon-nanotube (CNT)-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity) despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC) field was hypothesized to increase ...

  3. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    2014-01-01

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and alig...... the methods based on the Sankoff algorithm. All the practical implementations of the algorithm use heuristics to make them run in reasonable time and memory. These heuristics are also described in this chapter.......Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...... two or more sequences. The advantage of this algorithm over those that separate the folding and alignment steps is that it makes better predictions. The disadvantage is that it is slower and requires more computer memory to run. The amount of computational resources needed to run the Sankoff algorithm...

  4. Lexical alignment in triadic communication.

    Science.gov (United States)

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one's interlocutor's lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants' lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment.

  5. CATO: The Clone Alignment Tool.

    Directory of Open Access Journals (Sweden)

    Peter V Henstock

    Full Text Available High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1 a top-level summary of the top candidate sequences aligned to each reference sequence, 2 a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3 a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  6. CATO: The Clone Alignment Tool.

    Science.gov (United States)

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  7. Robustness of the filamentation instability as shock mediator in arbitrarily oriented magnetic field

    CERN Document Server

    Bret, Antoine

    2011-01-01

    The filamentation instability (sometimes also referred to as "Weibel") is a key process in many astrophysical scenario. In the Fireball model for Gamma Ray Bursts, this instability is believed to mediate collisionless shock formation from the collision of two plasma shells. It has been known for long that a flow aligned magnetic field can completely cancel this instability. We show here that in the general case where there is an angle between the field and the flow, the filamentation instability can never be stabilized, regardless of the field strength. The presented model analyzes the stability of two symmetric counter-streaming cold electron/proton plasma shells. Relativistic effects are accounted for, and various exact analytical results are derived. This result guarantees the occurrence of the instability in realistic settings fulfilling the cold approximation.

  8. Alignments in the nobelium isotopes

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Zie; XU Fu-Rong; YUAN Cen-Xi; QI Chong

    2009-01-01

    Total-Routhian-Surface calculations have been performed to investigate the deformation and align-ment properties of the No isotopes. It is found that normal deformed and superdeformed states in these nuclei can coexist at low excitation energies. In neutron-deficient No isotopes, the superdeformed shapes can even become the ground states. Moreover, we plotted the kinematic moments of inertia of the No isotopes, which follow very nicely available experimental data. It is noted that, as the rotational frequency increases, align-ments develop at hω=0.2-0.3 MeV. Our calculations show that the occupation of the vj orbital plays an important role in the alignments of the No isotopes.

  9. Alignment of flexible protein structures.

    Science.gov (United States)

    Shatsky, M; Fligelman, Z Y; Nussinov, R; Wolfson, H J

    2000-01-01

    We present two algorithms which align flexible protein structures. Both apply efficient structural pattern detection and graph theoretic techniques. The FlexProt algorithm simultaneously detects the hinge regions and aligns the rigid subparts of the molecules. It does it by efficiently detecting maximal congruent rigid fragments in both molecules and calculating their optimal arrangement which does not violate the protein sequence order. The FlexMol algorithm is sequence order independent, yet requires as input the hypothesized hinge positions. Due its sequence order independence it can also be applied to protein-protein interface matching and drug molecule alignment. It aligns the rigid parts of the molecule using the Geometric Hashing method and calculates optimal connectivity among these parts by graph-theoretic techniques. Both algorithms are highly efficient even compared with rigid structure alignment algorithms. Typical running times on a standard desktop PC (400 MHz) are about 7 seconds for FlexProt and about 1 minute for FlexMol.

  10. The CMS Silicon Tracker Alignment

    CERN Document Server

    Castello, R

    2008-01-01

    The alignment of the Strip and Pixel Tracker of the Compact Muon Solenoid experiment, with its large number of independent silicon sensors and its excellent spatial resolution, is a complex and challenging task. Besides high precision mounting, survey measurements and the Laser Alignment System, track-based alignment is needed to reach the envisaged precision.\\\\ Three different algorithms for track-based alignment were successfully tested on a sample of cosmic-ray data collected at the Tracker Integration Facility, where 15\\% of the Tracker was tested. These results, together with those coming from the CMS global run, will provide the basis for the full-scale alignment of the Tracker, which will be carried out with the first \\emph{p-p} collisions.

  11. Interference Alignment for Secrecy

    CERN Document Server

    Koyluoglu, Onur Ozan; Lai, Lifeng; Poor, H Vincent

    2008-01-01

    This paper studies the frequency/time selective $K$-user Gaussian interference channel with secrecy constraints. Two distinct models, namely the interference channel with confidential messages and the one with an external eavesdropper, are analyzed. The key difference between the two models is the lack of channel state information (CSI) about the external eavesdropper. Using interference alignment along with secrecy pre-coding, it is shown that each user can achieve non-zero secure Degrees of Freedom (DoF) for both cases. More precisely, the proposed coding scheme achieves $\\frac{K-2}{2K-2}$ secure DoF {\\em with probability one} per user in the confidential messages model. For the external eavesdropper scenario, on the other hand, it is shown that each user can achieve $\\frac{K-2}{2K}$ secure DoF {\\em in the ergodic setting}. Remarkably, these results establish the {\\em positive impact} of interference on the secrecy capacity region of wireless networks.

  12. Space Mirror Alignment System

    Science.gov (United States)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  13. Downlink Interference Alignment

    CERN Document Server

    Suh, Changho; Tse, David

    2010-01-01

    We develop an interference alignment (IA) technique for a downlink cellular system. In the uplink, IA schemes need channel-state-information exchange across base-stations of different cells, but our downlink IA technique requires feedback only within a cell. As a result, the proposed scheme can be implemented with a few changes to an existing cellular system where the feedback mechanism (within a cell) is already being considered for supporting multi-user MIMO. Not only is our proposed scheme implementable with little effort, it can in fact provide substantial gain especially when interference from a dominant interferer (base-station) is significantly stronger than the remaining interference: it is shown that in the two-isolated cell layout, our scheme provides four-fold gain in throughput performance over a standard multi-user MIMO technique. We show through simulations that our technique provides respectable gain under more realistic scenarios: it gives approximately 55% and 20% gain for a linear cell layou...

  14. Splign: algorithms for computing spliced alignments with identification of paralogs

    Directory of Open Access Journals (Sweden)

    Tatusova Tatiana

    2008-05-01

    Full Text Available Abstract Background The computation of accurate alignments of cDNA sequences against a genome is at the foundation of modern genome annotation pipelines. Several factors such as presence of paralogs, small exons, non-consensus splice signals, sequencing errors and polymorphic sites pose recognized difficulties to existing spliced alignment algorithms. Results We describe a set of algorithms behind a tool called Splign for computing cDNA-to-Genome alignments. The algorithms include a high-performance preliminary alignment, a compartment identification based on a formally defined model of adjacent duplicated regions, and a refined sequence alignment. In a series of tests, Splign has produced more accurate results than other tools commonly used to compute spliced alignments, in a reasonable amount of time. Conclusion Splign's ability to deal with various issues complicating the spliced alignment problem makes it a helpful tool in eukaryotic genome annotation processes and alternative splicing studies. Its performance is enough to align the largest currently available pools of cDNA data such as the human EST set on a moderate-sized computing cluster in a matter of hours. The duplications identification (compartmentization algorithm can be used independently in other areas such as the study of pseudogenes. Reviewers This article was reviewed by: Steven Salzberg, Arcady Mushegian and Andrey Mironov (nominated by Mikhail Gelfand.

  15. Numerical Study About the Nonlinear Instability of the Sweet-Parker Thin Current Sheet With Shearing Flows%有剪切速度的Sweet-Parker薄电流片在非线性阶段的不稳定性研究

    Institute of Scientific and Technical Information of China (English)

    倪蕾; 杨志良

    2011-01-01

    以HarrisSheet作为初始条件,使用数值模拟的方法,研究了二级磁岛不稳定重联的一些性质.在模拟中随着初始扰动的加入,HarrisSheet将演化到非线性阶段,形成更薄的有剪切速度的电流片,并伴有一级磁岛产生.当Lundquist数大于或等于10^5时,非均匀剪切速度的Sweet-Parker电流片开始不稳定,并有二级磁岛出现.不稳定Sweet—Parker电流片对应的临界长宽比为65.Lundquist数越大,演化形成的Sweet—Parker电流片越薄,更多的二级磁岛将出现,且沿电流片两边向外喷出%In this paper, numerical simulation results of nonlinear Plasmoid instabilities are presented. A two dimensional incompressible MHD code is used to calculate the results. The adaptive mesh refinement and MPI techniques are enable in this code. Harris sheets are used as the initial equilibrium conditions and small perturbations of the current density are applied to make the system unstable. Sequences of plasmoid instability processses for different Lundquist numbers have been studied. The Harris sheets will always evolve in to thinner Sweet-Parker current sheets with shearing flows in the early stage. As the Lundquist number S 〉/10^5, the Sweet-Parker thin current sheets are unstable and secondary islands appear. The critical aspect ratio for the unstable Sweet-Parker thin current sheet is around 65. The larger the Lundquist number is, the thinner the Sweet-Parker sheet, and the more secondary islands appear. These secondary islands are ejected out along the current sheet, grow bigger with time and coalesce with each other in the later stage. The reconnection rate of the current sheet has been increased a lot due to secondary instabilities. The peak reeonnection rates in each reconneetion processes for different Lundquist number are picked about to study the relationship between the Lundquist number and the reconnection rate, which has been found no longer scales with

  16. AlignNemo: a local network alignment method to integrate homology and topology.

    Science.gov (United States)

    Ciriello, Giovanni; Mina, Marco; Guzzi, Pietro H; Cannataro, Mario; Guerra, Concettina

    2012-01-01

    Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.

  17. Alignment-Annotator web server: rendering and annotating sequence alignments.

    Science.gov (United States)

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Magnetic alignment and the Poisson alignment reference system

    Science.gov (United States)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  19. Wakefields and Instabilities in Linear Accelerators

    CERN Document Server

    Ferrario, M; Palumbo, L

    2014-01-01

    When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.

  20. Radiation Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  1. Isolated digit recognition without time alignment

    Science.gov (United States)

    Gay, Jeffrey Mark

    1994-12-01

    This thesis examines methods for isolated digit recognition without using time alignment. Resource requirements for isolated word recognizers that use time alignment can become prohibitively large as the vocabulary to be classified grows. Thus, methods capable of achieving recognition rates comparable to those obtained with current methods using these techniques are needed. The goals of this research are to find feature sets for speech recognition that perform well without using time alignment, and to identify classifiers that provide good performance with these features. Using the digits from the TI46 database, baseline speaker-independent recognition rates of 95.2% for the complete speaker set and 98.1% for the male speaker set are established using dynamic time warping (DTW). This work begins with features derived from spectrograms of each digit. Based on a critical band frequency scale covering the telephone bandwidth (300-3000 Hz), these critical band energy features are classified alone and in combination with several other feature sets, with several different classifiers. With this method, there is one 'short' feature vector per word. For speaker-independent recognition using the complete speaker set and a multi-layer perceptron (MLP) classifier, a recognition rate of 92.4% is achieved. For the same classifier with the male speaker set, a recognition rate of 97.1% is achieved. For the male speaker set, there is no statistical difference between results using DTW, and those using the MLP and no time alignment. This shows that there are feature sets that may provide high recognition rates for isolated word recognition without the need for time alignment.

  2. Order and instabilities in dense bacterial colonies

    Science.gov (United States)

    Tsimring, Lev

    2012-02-01

    The structure of cell colonies is governed by the interplay of many physical and biological factors, ranging from properties of surrounding media to cell-cell communication and gene expression in individual cells. The biomechanical interactions arising from the growth and division of individual cells in confined environments are ubiquitous, yet little work has focused on this fundamental aspect of colony formation. By combining experimental observations of growing monolayers of non-motile strain of bacteria Escherichia coli in a shallow microfluidic chemostat with discrete-element simulations and continuous theory, we demonstrate that expansion of a dense colony leads to rapid orientational alignment of rod-like cells. However, in larger colonies, anisotropic compression may lead to buckling instability which breaks perfect nematic order. Furthermore, we found that in shallow cavities feedback between cell growth and mobility in a confined environment leads to a novel cell streaming instability. Joint work with W. Mather, D. Volfson, O. Mondrag'on-Palomino, T. Danino, S. Cookson, and J. Hasty (UCSD) and D. Boyer, S. Orozco-Fuentes (UNAM, Mexico).

  3. Electronegative Plasma Instabilities in Industrial Pulsed Plasmas

    Science.gov (United States)

    Pribyl, Patrick; Hansen, Anders; Gekelman, Walter

    2016-10-01

    Electronegative gases that are important for industrial etch processes have a series of instabilities that occur at process relevant conditions. These have been studied since the 1990s, but are becoming a much more important today as plasma reactors are being pushed to produce ever finer features, and tight control of the etch process is becoming crucial. The experiments are being done in a plasma etch tool that closely simulates a working industrial device. ICP coils in different configurations are driven by a pulsed RF generators operating at 2-5 MHz. A computer controlled automated probe drive can access a volume above the substrate. The probe can be a Langmuir probe, a ``Bdot'' probe, or an emissive probe the latter used for more accurate determination of plasma potential. A microwave interferometer is available to measure line-averaged electron density. The negative ion instability is triggered depending upon the gas mix (Ar,SF6) , pressure and RF power. The instability can be ``burned through'' by rapidly pulsing the RF power. In this study we present measurements of plasma current and density distribution over the wafer before, after and during the rapid onset of the instability. Work suported by NSF-GOALI Award and done at the BAPSF.

  4. Kinetic Simulations of Rayleigh-Taylor Instabilities

    CERN Document Server

    Sagert, Irina; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance

    2014-01-01

    We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is i...

  5. Mechanisms of cadmium induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Filipic, Metka, E-mail: metka.filipic@nib.si [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana (Slovenia)

    2012-05-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  6. Cosmological information in the intrinsic alignments of luminous red galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora Elisa [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Dvorkin, Cora, E-mail: nchisari@astro.princeton.edu, E-mail: cdvorkin@ias.edu [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  7. Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere

    CERN Document Server

    Gogoberidze, G; Poedts, S; De Keyser, J

    2013-01-01

    We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. On the contrary, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales...

  8. 寰枢关节不稳或脱位患者上颈椎曲度改变对下颈椎的影响%The influence of occipitoaxial alignment on subaxial cervical spine in patients with atlantoxial dislocation and instability

    Institute of Scientific and Technical Information of China (English)

    王圣林; 王超; Kirkham B.Wood; Peter G.Passias; 李刚; 闫明; 周海涛

    2009-01-01

    目的:探讨寰枢关节不稳或脱位患者上颈椎的曲度变化对下颈椎力线和退变的影响.方法:在148例寰枢关节不稳定或脱位患者的颈椎中立位X线片上测量CO-1、C1-2、CO-2及C2-7角度,评估颈椎间盘的退变程度.分析上、下颈椎曲度之间以及颈椎曲度与年龄、病程之间的相关性,观察不同年龄组上颈椎曲度对下颈椎椎间盘退行变的影响.结果:CO-1角度为-22.9°18.6°(n=88);CI-2角度为-31.7°~39.1°(n=88);CO-2角度为-35.2°~44.8°(n=148);C2-7角度为-17.4°77.8.(n=148).C1-2和C2-7角度之间、C0-2与C2-7角度间、C0-1与C1-2角度之间存在显著负相关性.上、下颈椎曲度与病程、年龄无相关性.30~39岁组、40~49岁组及50~59岁组C5/6椎间盘退变、60岁以上组C2/3椎间盘退变与上颈椎角度(C0-2角度)之间存在显著负相关.结论:上、下颈椎曲度间存在密切关系,寰椎前脱位可导致下颈椎出现代偿性过度前凸,即鹅颈畸形,鹅颈畸形可能加速下颈椎的退变进程.%Objective:To explore the impact of alignment of occipitoaxial on alignment and degeneration of subaxial cervical spine in patients with atlantoaxial subluxation and dislocation.Method :Angles of CO-CI ,C1-C2,CO-C2 and C2-C7 were measured in 148 cases with aflantoaxial dislocation.The relationship between alignment of occipitoaxial and subaxial cervical spine was evaluated,as well as age-related and course-related cervical alignment.The relation between upper cervical alignment and cervical disc degeneration were reviewed on different age group.Result:The angle at CO-1 was -22.9°~18.6°(n=88), C1-2 of-31.7°~39.1°(n=88);C0-2 of-35.2°~44,8°(n=148);C2-7 of-17.4°~77.8°(n=148).Statistically significant correlations were observed be-tween the angles of C1-C2 and C2-C7,CO-C2 and C2-C7,and CO-C1 and C1-C2 respectively.The admission age was no significant correlative to the angles of CI-C2,CO-C2 and C2-C7,as well as the disease

  9. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    T Mithun; K Porsezian

    2014-02-01

    We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.

  10. Political Instability and Economic Growth

    OpenAIRE

    Swagel, Phillip; Roubini, Nouriel; Ozler, Sule; Alesina, Alberto

    1992-01-01

    This paper investigates the relationship between political instability and per capita GDP growth in a sample of 113 countries for the period 1950-1982. We define ?political instability? as the propensity of a government collapse, and we estimate a model in which political instability and economic growth are jointly determined. The main result of this paper is that in countries and time periods with a high propensity of government collapse, growth is significantly lower than otherwise. This ef...

  11. Weibel instability with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hui-Bin; Liu, Shi-Bing [Strong-field and Ultrafast Photonics Lab, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-10-15

    Weibel instability in plasma, where the ion distribution is isotropic and the electron component of the plasma possesses the anisotropic temperature distribution, is investigated based on the kinetic theory in context of nonextensive statistics mechanics. The instability growth rate is shown to be dependent on the nonextensive parameters of both electron and ion, and in the extensive limit, the result in Maxwellian distribution plasma is recovered. The instability growth rate is found to be enhanced as the nonextensive parameter of electron increases.

  12. Planetesimals Born Big by Clustering Instability?

    Science.gov (United States)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Simon, Justin I.; Estrada, Paul R.

    2017-01-01

    Roughly 100km diameter primitive bodies (today's asteroids and TNOs; [1]) are thought to be the end product of so-called "primary accretion". They dominated the initial mass function of planetesimals, and precipitated the onset of a subsequent stage, characterized by runaway gravitational effects, which proceeded onwards to planetary mass objects, some of which accreted massive gas envelopes. Asteroids are the parents of primitive meteorites; meteorite data suggest that asteroids initially formed directly from freelyfloating nebula particles in the mm-size range. Unfortunately, the process by which these primary 100km diameter planetesimals formed remains problematic. We review the most diagnostic primitive parent body observations, highlight critical aspects of the nebula context, and describe the issues facing various primary accretion models. We suggest a path forward that combines current scenarios of "turbulent concentration" (TC) and "streaming instabilities" (SI) into a triggered formation process we call clustering instability (CI). Under expected conditions of nebula turbulence, the success of these processes at forming terrestrial region (mostly silicate) planetesimals requires growth by sticking into aggregates in the several cm size range, at least, which is orders of magnitude more massive than allowed by current growth-by-sticking models using current experimental sticking parameters [2-4]. The situation is not as dire in the ice-rich outer solar system; however, growth outside of the snowline has important effects on growth inside of it [4] and at least one aspect of outer solar system planetesimals (high binary fraction) supports some kind of clustering instability.

  13. Secondary fast reconnecting instability in the sawtooth crash

    CERN Document Server

    Del Sarto, Daniele

    2016-01-01

    In this work we consider magnetic reconnection in thin current sheets with both resistive and electron inertia effects. When the current sheet is produced by a primary instability of the internal kink type, the analysis of secondary instabilities indicates that reconnection proceeds on a time scale much shorter than the primary instability characteristic time. In the case of a sawtooth crash, non-collisional physics becomes important above a value of the Lundquist number which scales like S ~ (R/d_e)^{12/5}, in terms of the tokamak major radius R and of the electron skin depth d_e. This value is commonly achieved in present day devices. As collisionality is further reduced, the characteristic rate increases, approaching Alfv\\'enic values when the primary instability approaches the collisionless regime.

  14. Limitation of the ECRIS performance by kinetic plasma instabilities (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J. [Department of Physics, University of Jyväskylä, 40500 Jyväskylä (Finland); Izotov, I.; Mansfeld, D. [Institute of Applied Physics, RAS, 46 Ul’yanova St., 603950 Nizhny Novgorod (Russian Federation); Skalyga, V. [Institute of Applied Physics, RAS, 46 Ul’yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Toivanen, V. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland); Machicoane, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropic electron velocity distribution. The instabilities are associated with strong microwave emission and periodic bursts of energetic electrons escaping the magnetic confinement. The instabilities explain the periodic ms-scale oscillation of the extracted beam current observed with several high performance ECRISs and restrict the parameter space available for the optimization of extracted beam currents of highly charged ions. Experiments with the JYFL 14 GHz ECRIS have demonstrated that due to the instabilities the optimum B{sub min}-field is less than 0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of ECRISs.

  15. Orbit Alignment in Triple Stars

    Science.gov (United States)

    Tokovinin, Andrei

    2017-08-01

    The statistics of the angle Φ between orbital angular momenta in hierarchical triple systems with known inner visual or astrometric orbits are studied. A correlation between apparent revolution directions proves the partial orbit alignment known from earlier works. The alignment is strong in triples with outer projected separation less than ∼50 au, where the average Φ is about 20^\\circ . In contrast, outer orbits wider than 1000 au are not aligned with the inner orbits. It is established that the orbit alignment decreases with the increasing mass of the primary component. The average eccentricity of inner orbits in well-aligned triples is smaller than in randomly aligned ones. These findings highlight the role of dissipative interactions with gas in defining the orbital architecture of low-mass triple systems. On the other hand, chaotic dynamics apparently played a role in shaping more massive hierarchies. The analysis of projected configurations and triples with known inner and outer orbits indicates that the distribution of Φ is likely bimodal, where 80% of triples have {{Φ }}< 70^\\circ and the remaining ones are randomly aligned.

  16. Evryscope Robotilter automated camera / ccd alignment system

    Science.gov (United States)

    Ratzloff, Jeff K.; Law, Nicholas M.; Fors, Octavi; Ser, Daniel d.; Corbett, Henry T.

    2016-08-01

    We have deployed a new class of telescope, the Evryscope, which opens a new parameter space in optical astronomy - the ability to detect short time scale events across the entire sky simultaneously. The system is a gigapixel-scale array camera with an 8000 sq. deg. field of view, 13 arcsec per pixel sampling, and the ability to detect objects brighter than g = 16 in each 2-minute exposure. The Evryscope is designed to find transiting exoplanets around exotic stars, as well as detect nearby supernovae and provide continuous records of distant relativistic explosions like gamma-ray-bursts. The Evryscope uses commercially available CCDs and optics; the machine and assembly tolerances inherent in the mass production of these parts introduce problematic variations in the lens / CCD alignment which degrades image quality. We have built an automated alignment system (Robotilters) to solve this challenge. In this paper we describe the Robotilter system, mechanical and software design, image quality improvement, and current status.

  17. Instabilities in mimetic matter perturbations

    Science.gov (United States)

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  18. [Aspirin suppresses microsatellite instability].

    Science.gov (United States)

    Wallinger, S; Dietmaier, W; Beyser, K; Bocker, T; Hofstädter, F; Fishel, R; Rüschoff, J

    1999-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit cancer preventive effects and have been shown to induce regression of adenomas in FAP patients. In order to elucidate the probable underlying mechanism, the effect of NSAIDs on mismatch repair related microsatellite instability was investigated. Six colorectal cancer cell lines all but one deficient for human mismatch repair (MMR) genes were examined for microsatellite instability (MSI) prior and after treatment with Aspirin or Sulindac. For rapid in vitro analysis of MSI a microcloning assay was developed by combining Laser microdissection and random (PEP-) PCR prior to specific MSI-PCR. Effects of NSAIDs on cell cycle and apoptosis were systematically investigated by using flow cytometry and cell-sorting. MSI frequency in cells deficient of MMR genes (hMSH2, hMLH1, hMSH6) was markedly reduced after long-term (> 10 weeks) NSAID treatment. This effect was reversible, time- and concentration dependent. However, in the hPMS2 deficient endometrial cancer cell line (HEC-1-A) the MSI phenotype kept unchanged. According to cell sorting, non-apoptotic cells were stable and apoptotic cells were unstable. These results suggest that aspirin/sulindac induces a genetic selection for microsatellite stability in a subset of MMR-deficient cells and may thus provide an effective prophylactic therapy for HNPCC related colorectal carcinomas.

  19. Instability of enclosed horizons

    CERN Document Server

    Kay, Bernard S

    2013-01-01

    We study the classical massless scalar wave equation on the region of 1+1-dimensional Minkowski space between the two branches of the hyperbola $x^2-t^2=1$ with vanishing boundary conditions on it. We point out that there are initially finite-energy initially, say, right-going waves for which the stress-energy tensor becomes singular on the null-line $t+x=0$. We also construct the quantum theory of this system and show that, while there is a regular Hartle-Hawking-Israel-like state, there are coherent states built on this for which there is a similar singularity in the expectation value of the renormalized stress-energy tensor. We conjecture that in 1+3-dimensional situations with 'enclosed horizons' such as a (maximally extended) Schwarzschild black hole in equilibrium in a stationary box or the (maximally extended) Schwarzschild-AdS spacetime, there will be a similar singularity at the horizon and that would signal an instability when matter perturbations and/or gravity are switched on. Such an instability ...

  20. Libration driven multipolar instabilities

    CERN Document Server

    Cébron, David; Herreman, Wietze

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that...

  1. Electromagnetic effects on rippling instability and tokamak edge fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Sadayoshi; Saleem, Hamid [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-07-01

    Electromagnetic effects on rippling mode are investigated as a cause of low frequency electromagnetic fluctuations in tokamak edge region. It is shown that, in a current-carrying resistive plasma, the purely growing electrostatic rippling mode can turn out to be an electromagnetic oscillatory instability. The resistivity fluctuation and temperature gradient are the main sources of this instability, which requires both parallel and perpendicular wave vectors. The Alfven waves in a coupled dispersion relation are found heavily damped in such dissipative plasmas. (author)

  2. Magnetic axis alignment and the Poisson alignment reference system

    Science.gov (United States)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  3. Cervical spine alignment, sagittal deformity, and clinical implications: a review.

    Science.gov (United States)

    Scheer, Justin K; Tang, Jessica A; Smith, Justin S; Acosta, Frank L; Protopsaltis, Themistocles S; Blondel, Benjamin; Bess, Shay; Shaffrey, Christopher I; Deviren, Vedat; Lafage, Virginie; Schwab, Frank; Ames, Christopher P

    2013-08-01

    This paper is a narrative review of normal cervical alignment, methods for quantifying alignment, and how alignment is associated with cervical deformity, myelopathy, and adjacent-segment disease (ASD), with discussions of health-related quality of life (HRQOL). Popular methods currently used to quantify cervical alignment are discussed including cervical lordosis, sagittal vertical axis, and horizontal gaze with the chin-brow to vertical angle. Cervical deformity is examined in detail as deformities localized to the cervical spine affect, and are affected by, other parameters of the spine in preserving global sagittal alignment. An evolving trend is defining cervical sagittal alignment. Evidence from a few recent studies suggests correlations between radiographic parameters in the cervical spine and HRQOL. Analysis of the cervical regional alignment with respect to overall spinal pelvic alignment is critical. The article details mechanisms by which cervical kyphotic deformity potentially leads to ASD and discusses previous studies that suggest how postoperative sagittal malalignment may promote ASD. Further clinical studies are needed to explore the relationship of cervical malalignment and the development of ASD. Sagittal alignment of the cervical spine may play a substantial role in the development of cervical myelopathy as cervical deformity can lead to spinal cord compression and cord tension. Surgical correction of cervical myelopathy should always take into consideration cervical sagittal alignment, as decompression alone may not decrease cord tension induced by kyphosis. Awareness of the development of postlaminectomy kyphosis is critical as it relates to cervical myelopathy. The future direction of cervical deformity correction should include a comprehensive approach in assessing global cervicalpelvic relationships. Just as understanding pelvic incidence as it relates to lumbar lordosis was crucial in building our knowledge of thoracolumbar deformities, T

  4. Pattern Formation and Secondary Instabilities for Convection in Porous Media

    Science.gov (United States)

    Behringer, R. P.; Fiering, J.

    1996-11-01

    In recent work(Howle et al. Nature 362), 230 (1993); JFM to appear we showed that the pattern formation for convection in porous media could be studied by means of a simple shadowgraph if there is a line of sight through the medium which does not encounter curved fluid-medium interfaces. This work focused primarily on pattern formation near onset and was carried out in relatively small aspect ratios, Γ (the ratio of the horizontal dimension of the layer to the height, d). We present new studies with both higher Γ, and at high enough Rayleigh number R to encounter the secondary instabilities for the convection roll patterns. In a Γ = radius/d = 10.7 cylindrical experiment with a medium made from stacked bars, we find well aligned convection rolls with wavelength, λ in good agreement with theory. The alignment direction is determined by the periodic structure of the medium. In two other experiments, also with bar stackings for the medium, we have studied the secondary instabilities. The experiments have Γ = 4 and 8, respectively (with square planform), and consist of 8 and 4 layers of bars. In both cases, the instability is to cross rolls. In the Γ = 8 case, the strong symmetry of the system leads to heteroclinic orbits between different patterns.

  5. Aligning Ambition and Incentives

    DEFF Research Database (Denmark)

    Koch, Alexander; Peyrache, Eloïc

    Labor turnover creates longer term career concerns incentives that motivate employees in addition to the short term monetary incentives provided by the current employer. We analyze how these incentives interact and derive implications for the design of incentive contracts and organizational choic...

  6. Aligning Ambition and Incentives

    DEFF Research Database (Denmark)

    Koch, Alexander; Peyrache, Eloïc

    Labor turnover creates longer term career concerns incentives that motivate employees in addition to the short term monetary incentives provided by the current employer. We analyze how these incentives interact and derive implications for the design of incentive contracts and organizational choice...

  7. Aligning ambition and incentives

    DEFF Research Database (Denmark)

    Koch, Alexander; Peyrache, Eloïc

    2011-01-01

    Labor turnover creates longer term career concerns incentives that motivate employees in addition to the short term monetary incentives provided by the current employer. We analyze how these incentives interact, and derive implications for the design of incentive contracts and organizational choice...

  8. Calibration of shaft alignment instruments

    Science.gov (United States)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  9. Bony instability of the shoulder.

    Science.gov (United States)

    Bushnell, Brandon D; Creighton, R Alexander; Herring, Marion M

    2008-09-01

    Instability of the shoulder is a common problem treated by many orthopaedists. Instability can result from baseline intrinsic ligamentous laxity or a traumatic event-often a dislocation that injures the stabilizing structures of the glenohumeral joint. Many cases involve soft-tissue injury only and can be treated successfully with repair of the labrum and ligamentous tissues. Both open and arthroscopic approaches have been well described, with recent studies of arthroscopic soft-tissue techniques reporting results equal to those of the more traditional open techniques. Over the last decade, attention has focused on the concept of instability of the shoulder mediated by bony pathology such as a large bony Bankart lesion or an engaging Hill-Sachs lesion. Recent literature has identified unrecognized large bony lesions as a primary cause of failure of arthroscopic reconstruction for instability, a major cause of recurrent instability, and a difficult diagnosis to make. Thus, although such bony lesions may be relatively rare compared with soft-tissue pathology, they constitute a critically important entity in the management of shoulder instability. Smaller bony lesions may be amenable to arthroscopic treatment, but larger lesions often require open surgery to prevent recurrent instability. This article reviews recent developments in the diagnosis and treatment of bony instability.

  10. Cinerama sickness and postural instability

    NARCIS (Netherlands)

    Bos, J.E.; Ledegang, W.D.; Lubeck, A.J.A.; Stins, J.F.

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min af

  11. Marital instability after midlife.

    Science.gov (United States)

    Wu, Z; Penning, M J

    1997-09-01

    "Divorce in later life has been shown to produce dramatic declines in the economic, psychological, and physical well-being of marital partners. This study examines the prevalence and determinants of marital disruption after midlife using Becker's theory of marital instability. Using recent Canadian national data, the marital outcomes of women and men who were married as of age 40 are tracked across the remaining years of the marriage. Cox proportional hazard regression models indicate stabilizing effects of the duration of the marriage, the age at first marriage, the presence of young children, as well as of remarriage for middle-aged and older persons. Other significant risk factors include education, heterogamous marital status, premarital cohabitation, number of siblings, and region."

  12. Instability and Information

    CERN Document Server

    Patzelt, Felix

    2015-01-01

    Many complex systems exhibit extreme events far more often than expected for a normal distribution. This work examines how self-similar bursts of activity across several orders of magnitude can emerge from first principles in systems that adapt to information. Surprising connections are found between two apparently unrelated research topics: hand-eye coordination in balancing tasks and speculative trading in financial markets. Seemingly paradoxically, locally minimising fluctuations can increase a dynamical system's sensitivity to unpredictable perturbations and thereby facilitate global catastrophes. This general principle is studied in several domain-specific models and in behavioural experiments. It explains many findings in both fields and resolves an apparent antinomy: the coexistence of stabilising control or market efficiency and perpetual instabilities resembling critical phenomena in physical systems.

  13. Structural and Material Instability

    DEFF Research Database (Denmark)

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three...... use of interface elements) is used successfully to model cases where the path of the discontinuity is known in advance, as is the case of the analysis of pull-out of fibers embedded in a concrete matrix. This method is applied to the case of non-straight fibers and fibers with forces that have....... Numerical problems associated with the use of elements with embedded cracks based on the extended finite element method are presented in the next part of this work. And an alternative procedure is used in order to successfully remove these numerical problems. In the final part of this work, a computer...

  14. The bar instability revisited

    CERN Document Server

    Chiodi, Filippo; Claudin, Philippe

    2012-01-01

    The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relation does not present any maximum of the growth rate when the sediment transport is assumed to be locally saturated. The analysis therefore reveals the fundamental importance of the relaxation of sediment transport towards equilibrium as it it is responsible for the stabilisation of small wavelength modes. This dynamical mechanism is characterised by the saturation number, defined as the ratio of the saturation length to the water depth Lsat/H. This dimensionless number controls the transition from ripples (transverse patte...

  15. Magnetic reconnection from a multiscale instability cascade.

    Science.gov (United States)

    Moser, Auna L; Bellan, Paul M

    2012-02-15

    Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the 'microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas.

  16. Some Features of Transverse Instability of Partly Compensated Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Vadim Dudnikov

    2001-10-23

    suppression of generation and accumulation of secondary particles is a traditional method for suppression the transverse electron-proton instability: improve the vacuum, use a gap in beam for electron removing, use cleaning electrodes, suppressing secondary emission. But opposite solution is also possible. Transverse e-p instability in proton rings can be damped by increasing beam density and the rate of secondary particles generation above a threshold level, with decrease of the unstable wavelength below a transverse beam size. In high current Proton Storage Rings (PSR) such as, the LANSCE PSR it is possible to reach this island of stability by multiturn, concentrated charge exchange injection without painting and by enhanced generation of secondary plasma. This possibility was demonstrated in smaller scale PSR at the INP, Novosibirisk [1]. Damping of the e-p instability allowed to accumulate a coasting, space charge compensated, circulating proton beam with intensity, corresponding to the Laslett tune shift of {Delta}{nu} = 5 in the ring with original tune of {nu} = 0.85. In the other PSR transverse instability of bunched beam was damped by a simple feed back [2,3]. In this article they discuss experimental observations of transverse instability of proton beams in different accelerators and storage rings and consider methods to damp the instability. The presented experimental dates could be useful for verification of computer simulation tools developed for investigation of space charge effects and beam instabilities in realistic conditions [4,5].

  17. Instability in Shocked Granular Gases

    CERN Document Server

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  18. Instability in shocked granular gases

    Science.gov (United States)

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2014-05-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  19. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  20. General Theory of the Plasmoid Instability

    CERN Document Server

    Comisso, L; Huang, Y -M; Bhattacharjee, A

    2016-01-01

    A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived, and shown to depend on the initial perturbation amplitude $\\left({\\hat w}_0\\right)$, the characteristic rate of current sheet evolution $\\left(1/\\tau\\right)$, and the Lundquist number $\\left(S\\right)$. They are not simple power laws, and are proportional to $S^{\\alpha} \\tau^{\\beta} \\left[\\ln f(S,\\tau,{\\hat w}_0)\\right]^\\sigma$. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.

  1. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  2. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  3. Baroclinic Instability on Hot Extrasolar Planets

    CERN Document Server

    Polichtchouk, Inna

    2012-01-01

    We investigate baroclinic instability in flow conditions relevant to hot extrasolar planets. The instability is important for transporting and mixing heat, as well as for influencing large-scale variability on the planets. Both linear normal mode analysis and non-linear initial value calculations are carried out -- focusing on the freely-evolving, adiabatic situation. Using a high-resolution general circulation model (GCM) which solves the traditional primitive equations, we show that large-scale jets similar to those observed in current GCM simulations of hot extrasolar giant planets are likely to be baroclinically unstable on a timescale of few to few tens of planetary rotations, generating cyclones and anticyclones that drive weather systems. The growth rate and scale of the most unstable mode obtained in the linear analysis are in qualitative, good agreement with the full non-linear calculations. In general, unstable jets evolve differently depending on their signs (eastward or westward), due to the chang...

  4. Camber Angle Inspection for Vehicle Wheel Alignments

    Science.gov (United States)

    Young, Jieh-Shian; Hsu, Hong-Yi; Chuang, Chih-Yuan

    2017-01-01

    This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU)-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ±0.015∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi. PMID:28165365

  5. Camber Angle Inspection for Vehicle Wheel Alignments

    Directory of Open Access Journals (Sweden)

    Jieh-Shian Young

    2017-02-01

    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  6. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  7. Sensing Characteristics of A Precision Aligner Using Moire Gratings for Precision Alignment System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lizhong; Hideo Furuhashi; Yoshiyuki Uchida

    2001-01-01

    Sensing characteristics of a precision aligner using moire gratings for precision alignment sysem has been investigated. A differential moire alignment system and a modified alignment system were used. The influence of the setting accuracy of the gap length and inclination of gratings on the alignment accuracy has been studied experimentally and theoretically. Setting accuracy of the gap length less than 2.5μm is required in modified moire alignment. There is no influence of the gap length on the alignment accuracy in the differential alignment system. The inclination affects alignment accuracies in both differential and modified moire alignment systems.

  8. Study on computer-aided alignment method of reflective zoom systems

    Science.gov (United States)

    Zhou, Jide; Chang, Jun; Xie, Guijuan; Zhang, Ke

    2015-08-01

    Computer-aided alignment is an effective method to improve the imaging quality of high-precision, complex, and off-axis optical systems. However, how to determine the misalignment quickly, exactly and constantly is essential to the technology of computer-aided alignment. Owing to the varying optical characteristics of a zoom system, sensitivity matrices are used in the alignment rather than a single matrix. Thus, the processing of sensitivity matrices is important for the computer-aided alignment of the reflective zoom system. So, the total least squares is proposed in order to solve the problems of the numerical instability and the result inaccuracy which result from the solution of the least squares method directly. Finally, the simulant calculation is processed using the numerical analysis model established in the essay. The results demonstrate that the computation method is rational and effective.

  9. Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses.

    Science.gov (United States)

    Kobayashi, Toshiki; Orendurff, Michael S; Zhang, Ming; Boone, David A

    2013-04-26

    Alignment is important for comfortable and stable gait of lower-limb prosthesis users. The magnitude of socket reaction moments in the multiple planes acting simultaneously upon the residual limb may be related to perception of comfort in individuals using prostheses through socket interface pressures. The aim of this study was to investigate the effect of prosthetic alignment changes on sagittal and coronal socket reaction moment interactions (moment-moment curves) and to characterize the curves in 11 individuals with transtibial amputation using novel moment-moment interaction parameters measured by plotting sagittal socket reaction moments versus coronal ones under various alignment conditions. A custom instrumented prosthesis alignment component was used to measure socket reaction moments during walking. Prosthetic alignment was tuned to a nominally aligned condition by a prosthetist, and from this position, angular (3° and 6° of flexion, extension, abduction or adduction of the socket) and translational (5mm and 10mm of anterior, posterior, medial or lateral translation of the socket) alignment changes were performed in either the sagittal or the coronal plane in a randomized manner. A total of 17 alignment conditions were tested. Coronal angulation and translation alignment changes demonstrated similar consistent changes in the moment-moment curves. Sagittal alignment changes demonstrated more complex changes compared to the coronal alignment changes. Effect of sagittal angulations and translations on the moment-moment curves was different during 2nd rocker (mid-stance) with extension malalignment appearing to cause medio-lateral instability. Presentation of coronal and sagittal socket reaction moment interactions may provide useful visual information for prosthetists to understand the biomechanical effects of malalignment of transtibial prostheses.

  10. MHD instabilities developing in a conductor exploding in the skin effect mode

    Science.gov (United States)

    Oreshkin, V. I.; Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Mesyats, G. A.; Oreshkin, E. V.; Ratakhin, N. A.; Rybka, D. V.

    2016-12-01

    The results of experiments with exploding copper conductors, performed on the MIG facility (providing currents of amplitude of about 2.5 MA and rise time of 100 ns), are analyzed. With an frame optical camera, large-scale instabilities of wavelength 0.2-0.5 mm were detected on the conductor surface. The instabilities show up as plasma "tongues" expanding with a sound velocity in the opposite direction to the magnetic field gradient. Analysis performed using a two-dimensional MHD code has shown that the structures observed in the experiments were formed most probably due to flute instabilities. The growth of flute instabilities is predetermined by the development of thermal instabilities near the conductor surface. The thermal instabilities arise behind the front of the nonlinear magnetic diffusion wave propagating through the conductor. The wavefront on its own is not subject to thermal instabilities.

  11. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  12. Spontaneous magnetic alignment behaviour in free-living lizards

    Science.gov (United States)

    Diego-Rasilla, Francisco J.; Pérez-Mellado, Valentín; Pérez-Cembranos, Ana

    2017-04-01

    Several species of vertebrates exhibit spontaneous longitudinal body axis alignment relative to the Earth's magnetic field (i.e., magnetic alignment) while they are performing different behavioural tasks. Since magnetoreception is still not fully understood, studying magnetic alignment provides evidence for magnetoreception and broadens current knowledge of magnetic sense in animals. Furthermore, magnetic alignment widens the roles of magnetic sensitivity in animals and may contribute to shed new light on magnetoreception. In this context, spontaneous alignment in two species of lacertid lizards ( Podarcis muralis and Podarcis lilfordi) during basking periods was monitored. Alignments in 255 P. muralis and 456 P. lilfordi were measured over a 5-year period. The possible influence of the sun's position (i.e., altitude and azimuth) and geomagnetic field values corresponding to the moment in which a particular lizard was observed on lizards' body axis orientation was evaluated. Both species exhibited a highly significant bimodal orientation along the north-northeast and south-southwest magnetic axis. The evidence from this study suggests that free-living lacertid lizards exhibit magnetic alignment behaviour, since their body alignments cannot be explained by an effect of the sun's position. On the contrary, lizard orientations were significantly correlated with geomagnetic field values at the time of each observation. We suggest that this behaviour might provide lizards with a constant directional reference while they are sun basking. This directional reference might improve their mental map of space to accomplish efficient escape behaviour. This study is the first to provide spontaneous magnetic alignment behaviour in free-living reptiles.

  13. Nonaxisymmetric linear instability of cylindrical magnetohydrodynamic Taylor-Couette flow.

    Science.gov (United States)

    Child, Adam; Kersalé, Evy; Hollerbach, Rainer

    2015-09-01

    We consider the nonaxisymmetric modes of instability present in Taylor-Couette flow under the application of helical magnetic fields, mainly for magnetic Prandtl numbers close to the inductionless limit, and conduct a full examination of marginal stability in the resulting parameter space. We allow for the azimuthal magnetic field to be generated by a combination of currents in the inner cylinder and fluid itself and introduce a parameter governing the relation between the strength of these currents. A set of governing eigenvalue equations for the nonaxisymmetric modes of instability are derived and solved by spectral collocation with Chebyshev polynomials over the relevant parameter space, with the resulting instabilities examined in detail. We find that by altering the azimuthal magnetic field profiles the azimuthal magnetorotational instability, nonaxisymmetric helical magnetorotational instability, and Tayler instability yield interesting dynamics, such as different preferred mode types and modes with azimuthal wave number m>1. Finally, a comparison is given to the recent WKB analysis performed by Kirillov et al. [Kirillov, Stefani, and Fukumoto, J. Fluid Mech. 760, 591 (2014)JFLSA70022-112010.1017/jfm.2014.614] and its validity in the linear regime.

  14. Automated whole-genome multiple alignment of rat, mouse, and human

    Energy Technology Data Exchange (ETDEWEB)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  15. Using structure to explore the sequence alignment space of remote homologs.

    Directory of Open Access Journals (Sweden)

    Andrew Kuziemko

    2011-10-01

    Full Text Available Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.

  16. The azimuthal magnetorotational instability (AMRI)

    CERN Document Server

    Ruediger, G; Schultz, M; Hollerbach, R; Stefani, F

    2013-01-01

    We consider the interaction of differential rotation and toroidal fields that are current-free in the gap between two corotating axially unbounded cylinders. It is shown that nonaxisymmetric perturbations are unstable if the rotation rate and Alfven frequency of the field are of the same order almost independent of the magnetic Prandtl number Pm. For the very steep rotation law \\Omega\\propto R^{-2} (the Rayleigh limit) this Azimuthal MagnetoRotational Instability (AMRI) scales with the ordinary Reynolds number and the Hartmann number, which allows a laboratory experiment with liquid metals like sodium or gallium in a Taylor-Couette container. The growth rate of AMRI scales with \\Omega^2 in the low-conductivity limit and with \\Omega in the high-conductivity limit. For the weakly nonlinear system the numerical values of the kinetic energy and the magnetic energy are derived for magnetic Prandtl numbers between 0.05 and unity. We find that the magnetic energy scales with the magnetic Reynolds number Rm, while th...

  17. Abelianization of QCD plasma instabilities

    Science.gov (United States)

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  18. BFAST: an alignment tool for large scale genome resequencing.

    Directory of Open Access Journals (Sweden)

    Nils Homer

    Full Text Available BACKGROUND: The new generation of massively parallel DNA sequencers, combined with the challenge of whole human genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy of short reads, in the 25-100 base range, in the presence of errors and true biological variation. METHODOLOGY: We introduce a new algorithm specifically optimized for this task, as well as a freely available implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps to support the detection of small indels. CONCLUSIONS: We compare BFAST to a selection of large-scale alignment tools -- BLAT, MAQ, SHRiMP, and SOAP -- in terms of both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest computer cluster in less than 24 hours. BFAST is available at (http://bfast.sourceforge.net.

  19. New observations of ionospheric instabilities in the equatorial electrojet

    Science.gov (United States)

    Alken, P.; Maus, S.

    2009-12-01

    The equatorial electrojet (EEJ) is an intense current system flowing along the magnetic equator in the ionospheric E-region on the day-side. Early attempts to model the EEJ found that ionospheric instabilities led to significant changes in the current which had to be accounted for. Early modelers used ad-hoc empirical correction factors in the relevant ionospheric parameters to attempt to account for instability effects. Modern EEJ models continue to use these correction factors, which are still not well understood theoretically. In the last decade, a wealth of new data has been recorded by both satellites and ground radars which allows us to revisit the issue of modeling these ionospheric instabilities. In this work, we use radar and magnetic field measurements at Jicamarca in addition to magnetometer measurements from the CHAMP satellite to study the effects of ionospheric instabilities on the EEJ. We find that the effects of ionospheric instabilities lead to non-linear behavior between the eastward electric field strength and the resulting electrojet current. As predicted, the ratio of current to electric field is highest for westward and weak eastward electric fields, and the ratio decreases with stronger eastward electric fields. Quantifying this non-linearity should help improve the accuracy of equatorial electrodynamic models.

  20. DIDA: Distributed Indexing Dispatched Alignment.

    Directory of Open Access Journals (Sweden)

    Hamid Mohamadi

    Full Text Available One essential application in bioinformatics that is affected by the high-throughput sequencing data deluge is the sequence alignment problem, where nucleotide or amino acid sequences are queried against targets to find regions of close similarity. When queries are too many and/or targets are too large, the alignment process becomes computationally challenging. This is usually addressed by preprocessing techniques, where the queries and/or targets are indexed for easy access while searching for matches. When the target is static, such as in an established reference genome, the cost of indexing is amortized by reusing the generated index. However, when the targets are non-static, such as contigs in the intermediate steps of a de novo assembly process, a new index must be computed for each run. To address such scalability problems, we present DIDA, a novel framework that distributes the indexing and alignment tasks into smaller subtasks over a cluster of compute nodes. It provides a workflow beyond the common practice of embarrassingly parallel implementations. DIDA is a cost-effective, scalable and modular framework for the sequence alignment problem in terms of memory usage and runtime. It can be employed in large-scale alignments to draft genomes and intermediate stages of de novo assembly runs. The DIDA source code, sample files and user manual are available through http://www.bcgsc.ca/platform/bioinfo/software/dida. The software is released under the British Columbia Cancer Agency License (BCCA, and is free for academic use.

  1. General Alignment Concept of the CMS experiment

    CERN Document Server

    Lampen, T

    2006-01-01

    Efficient and accurate track reconstruction requires proper alignment of the tracking devices used. Here we describe the general alignment strategy envisaged for the CMS experiment. The hardware alignment devices of CMS are presented as well as the different track based alignment approaches.

  2. Photosensitive Polymers for Liquid Crystal Alignment

    Science.gov (United States)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.; Muravsky, A. A.; Murauski, A. A.

    The peculiarities of alignment of liquid crystal (LC) materials by the layers of photocrosslinkable polymers with side benzaldehyde groups are considered. The investigation of mechanism of photostimulated alignment by rubbed benzaldehyde layer is performed. The methods of creation of multidomain aligning layers on the basis of photostimulated rubbing alignment are described.

  3. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  4. Microsatellite instability in bladder cancer

    DEFF Research Database (Denmark)

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K;

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X...... chromosome for three tumors. Single locus alterations were detected in three tumors, while three other tumors revealed changes in two or more loci. In one tumor we found microsatellite instability in all five loci analyzed on chromosome 9. The alterations detected were either minor 2-base pair changes...

  5. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  6. Subject to Instability

    Directory of Open Access Journals (Sweden)

    Karen Bouwer

    2000-06-01

    Full Text Available For Plantier, language constitutes reality and is male dominated. Readers of texts, she says, are at a disadvantage because the author imposes a logic that we must accept in order to understand the text. The discourses shaping our social reality have the same effect. Plantier has struggled against individual voices, discourses, and the very fabric of language informed by these discourses. "Subject to Instability" examines the impact on her generic evolution of a changing sense of self, of who her interlocutors are, and of those for whom she is speaking. I argue that her increasing attempt to juggle many different voices destabilizes her "monologic," poetical voice, resulting in a blurring of generic boundaries and eventually the abandonment of poetry. Recognizing that our entry into language is a form of alienation also unsettles Plantier because it undermines the very identity that allows her to speak for others. She concludes that each woman needs to become a Subject in her own right, but she continues to struggle against dominant discourses, modeling "resisting reader" strategies. If she can no longer practice "monologic steadfastness," this does not deter her from attempting to dismantle patriarchal language and striving to make her voice prevail over others.

  7. Adaptive Processing for Sequence Alignment

    KAUST Repository

    Zidan, Mohammed Affan

    2012-01-26

    Disclosed are various embodiments for adaptive processing for sequence alignment. In one embodiment, among others, a method includes obtaining a query sequence and a plurality of database sequences. A first portion of the plurality of database sequences is distributed to a central processing unit (CPU) and a second portion of the plurality of database sequences is distributed to a graphical processing unit (GPU) based upon a predetermined splitting ratio associated with the plurality of database sequences, where the database sequences of the first portion are shorter than the database sequences of the second portion. A first alignment score for the query sequence is determined with the CPU based upon the first portion of the plurality of database sequences and a second alignment score for the query sequence is determined with the GPU based upon the second portion of the plurality of database sequences.

  8. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  9. Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score

    Directory of Open Access Journals (Sweden)

    Skolnick Jeffrey

    2008-12-01

    Full Text Available Abstract Background Protein tertiary structure comparisons are employed in various fields of contemporary structural biology. Most structure comparison methods involve generation of an initial seed alignment, which is extended and/or refined to provide the best structural superposition between a pair of protein structures as assessed by a structure comparison metric. One such metric, the TM-score, was recently introduced to provide a combined structure quality measure of the coordinate root mean square deviation between a pair of structures and coverage. Using the TM-score, the TM-align structure alignment algorithm was developed that was often found to have better accuracy and coverage than the most commonly used structural alignment programs; however, there were a number of situations when this was not true. Results To further improve structure alignment quality, the Fr-TM-align algorithm has been developed where aligned fragment pairs are used to generate the initial seed alignments that are then refined using dynamic programming to maximize the TM-score. For the assessment of the structural alignment quality from Fr-TM-align in comparison to other programs such as CE and TM-align, we examined various alignment quality assessment scores such as PSI and TM-score. The assessment showed that the structural alignment quality from Fr-TM-align is better in comparison to both CE and TM-align. On average, the structural alignments generated using Fr-TM-align have a higher TM-score (~9% and coverage (~7% in comparison to those generated by TM-align. Fr-TM-align uses an exhaustive procedure to generate initial seed alignments. Hence, the algorithm is computationally more expensive than TM-align. Conclusion Fr-TM-align, a new algorithm that employs fragment alignment and assembly provides better structural alignments in comparison to TM-align. The source code and executables of Fr-TM-align are freely downloadable at: http://cssb.biology.gatech.edu/skolnick/files/FrTMalign/.

  10. Sawtooth Instability in the Compact Toroidal Hybrid

    Science.gov (United States)

    Herfindal, J. L.; Maurer, D. A.; Hartwell, G. J.; Ennis, D. A.; Knowlton, S. F.

    2015-11-01

    Sawtooth instabilities have been observed in the Compact Toroidal Hybrid (CTH), a current-carrying stellarator/tokamak hybrid device. The sawtooth instability is driven by ohmic heating of the core plasma until the safety factor drops below unity resulting in the growth of an m = 1 kink-tearing mode. Experiments varying the vacuum rotational transform from 0.02 to 0.13 are being conducted to study sawtooth property dependance on vacuum flux surface structure. The frequency of the sawtooth oscillations increase from 2 kHz to 2.8 kHz solely due the decrease in rise time of the oscillation, the crash time is unchanged. CTH has three two-color SXR cameras, a three-channel 1mm interferometer, and a new bolometer system capable of detecting the signatures of sawtooth instabilities. The new bolometer system consists of two cameras, each containing a pair of diode arrays viewing the plasma directly or through a beryllium filter. Electron temperature measurements are found with the two-color SXR cameras through a ratio of the SXR intensities. Impurity radiation can drastically affect the electron temperature measurement, therefore new filters consisting of aluminum and carbon were selected to avoid problematic line radiation while maximizing the signal for a 100 eV plasma. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  11. Coherent structures of electrokinetic instability in microflows

    Science.gov (United States)

    Dubey, Kaushlendra; Gupta, Amit; Bahga, Supreet Singh

    2016-11-01

    Electrokinetic instabilities occur in fluid flow where gradients in electrical properties of fluids, such as conductivity and permittivity, lead to a destabilizing body force. We present an experimental investigation of electrokinetic instability (EKI) in a microchannel flow with orthogonal conductivity gradient and electric field, using time-resolved visualization of a passive fluorescent scalar. This particular EKI has applications in rapid mixing at low Reynolds number in microchannels. Previous studies have shown that such EKI can be characterized by the electric Rayleigh number (Rae) which is the ratio of diffusive and electroviscous time scales. However, these studies were limited to temporal power spectra and time-delay phase maps of fluorescence data at a single spatial location. In the current work, we use dynamic mode decomposition (DMD) of time-resolved snapshots of EKI to investigate the spatio-temporal coherent structures of EKI for a wide range of Rae . Our analysis yields spatial variation of modes in EKI along with their corresponding temporal frequencies. We show that EK instability with orthogonal conductivity-gradient and electric field can be characterized by transverse and longitudinal coherent structures which depend strongly on Rae .

  12. Hydrodynamics of pedestrians' instability in floodwaters

    Science.gov (United States)

    Arrighi, Chiara; Oumeraci, Hocine; Castelli, Fabio

    2017-01-01

    People's safety is the first objective to be fulfilled by flood risk mitigation measures, and according to existing reports on the causes of casualties, most of the fatalities are due to inappropriate behaviour such as walking or driving in floodwaters. Currently available experimental data on people instability in floodwaters suffer from a large dispersion primarily depending on the large variability of the physical characteristics of the subjects. This paper introduces a dimensionless mobility parameter θP for people partly immersed in flood flows, which accounts for both flood and subject characteristics. The parameter θP is capable of identifying a unique threshold of instability depending on a Froude number, thus reducing the scatter of existing experimental data. Moreover, a three-dimensional (3-D) numerical model describing the detailed geometry of a human body and reproducing a selection of critical pairs of water depth and velocity is presented. The numerical results in terms of hydrodynamic forces and force coefficients are analysed and discussed. Both the mobility parameter θP and the numerical results hint at the crucial role of the Froude number and relative submergence as the most relevant dimensionless numbers to interpret the loss of stability. Finally, the mobility parameter θP is compared with an analogous dimensionless parameter for vehicles' instability in floodwaters, providing a new contribution to support flood risk management and educating people.

  13. Information technology strategy and alignment issues in health care organizations.

    Science.gov (United States)

    Iveroth, Einar; Fryk, Pontus; Rapp, Birger

    2013-01-01

    Information technology (IT) plays a key role in public health care management because it could improve quality, efficiency, and patient care. Researchers and practitioners repeatedly contend that a health care organization's information systems strategy should be aligned with its objectives and strategies, a notion commonly known as IT alignment. Actor-related IT alignment issues in health care institutions were explored in this study. More specifically, it explores the possibility of moving beyond the current IT alignment perspective and, in so doing, explores whether IT alignment-as currently conceptualized in the dominant body of research-is sufficient for attaining improved quality, efficiency, and patient care in health care organizations. The findings are based on a qualitative and longitudinal study of six health care organizations in the Stockholm metropolitan area. The empirical data were gathered over the 2005-2011 period from interviews, a focus group, observations, and archival material. The data suggest recurrent misalignments between IT strategy and organizational strategy and operations due to the failure to deconstruct the IT artifact and to the existence of various levels of IT maturity. A more complex picture of IT alignment in health care that goes beyond the current perspective is being offered by this study. It argues that the previously common way of handling IT as a single artifact and applying one IT strategy to the entire organizational system is obsolete. MANAGERIAL IMPLICATIONS: The article suggests that considerable benefits can be gained by assessing IT maturity and its impact on IT alignment. The article also shows that there are different kinds of IT in medical care that requires diverse decisions, investments, prioritizations, and implementation approaches.

  14. Status report on the survey and alignment activities at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O' Sheg; /Fermilab

    2004-10-01

    The surveying and alignment activities at Fermilab are the responsibility of the Alignment and Metrology Group. The Group supports and interacts with physicists and engineers working on any particular project, from the facility construction phase to the installation and final alignment of components in the beam line. One of the goals of the Alignment and Metrology Group is to upgrade the old survey networks in the tunnel using modern surveying technology, such as the Laser Tracker for tunnel networks and GPS for the surface networks. According to the job needs, all surveys are done with Laser Trackers and/or Videogrammetry (V-STARS) systems for spatial coordinates; optical and electronic levels are used for elevations, Gyro-Theodolite for azimuths, Mekometer for distances and GPS for baseline vectors. The group has recently purchased two new API Laser Trackers, one INCA3 camera for the V-Stars, and one DNA03 digital level. This report presents the projects and major activities of the Alignment and Metrology Group at Fermilab during the period of 2000 to 2004. It focuses on the most important current projects, especially those that have to be completed during the currently scheduled three-month shutdown period. Future projects, in addition to the status of the current projects, are also presented.

  15. XUV ionization of aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kelkensberg, F.; Siu, W.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Lucchini, M. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Lucchese, R. R. [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  16. The alignment-distribution graph

    Science.gov (United States)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  17. Position list word aligned hybrid

    DEFF Research Database (Denmark)

    Deliege, Francois; Pedersen, Torben Bach

    2010-01-01

    Compressed bitmap indexes are increasingly used for efficiently querying very large and complex databases. The Word Aligned Hybrid (WAH) bitmap compression scheme is commonly recognized as the most efficient compression scheme in terms of CPU efficiency. However, WAH compressed bitmaps use a lot...... of storage space. This paper presents the Position List Word Aligned Hybrid (PLWAH) compression scheme that improves significantly over WAH compression by better utilizing the available bits and new CPU instructions. For typical bit distributions, PLWAH compressed bitmaps are often half the size of WAH...

  18. SPA: a probabilistic algorithm for spliced alignment.

    Directory of Open Access Journals (Sweden)

    Erik van Nimwegen

    2006-04-01

    Full Text Available Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5' and 3' ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non

  19. Convergent algorithms for protein structural alignment

    Directory of Open Access Journals (Sweden)

    Martínez José

    2007-08-01

    Full Text Available Abstract Background Many algorithms exist for protein structural alignment, based on internal protein coordinates or on explicit superposition of the structures. These methods are usually successful for detecting structural similarities. However, current practical methods are seldom supported by convergence theories. In particular, although the goal of each algorithm is to maximize some scoring function, there is no practical method that theoretically guarantees score maximization. A practical algorithm with solid convergence properties would be useful for the refinement of protein folding maps, and for the development of new scores designed to be correlated with functional similarity. Results In this work, the maximization of scoring functions in protein alignment is interpreted as a Low Order Value Optimization (LOVO problem. The new interpretation provides a framework for the development of algorithms based on well established methods of continuous optimization. The resulting algorithms are convergent and increase the scoring functions at every iteration. The solutions obtained are critical points of the scoring functions. Two algorithms are introduced: One is based on the maximization of the scoring function with Dynamic Programming followed by the continuous maximization of the same score, with respect to the protein position, using a smooth Newtonian method. The second algorithm replaces the Dynamic Programming step by a fast procedure for computing the correspondence between Cα atoms. The algorithms are shown to be very effective for the maximization of the STRUCTAL score. Conclusion The interpretation of protein alignment as a LOVO problem provides a new theoretical framework for the development of convergent protein alignment algorithms. These algorithms are shown to be very reliable for the maximization of the STRUCTAL score, and other distance-dependent scores may be optimized with same strategy. The improved score optimization

  20. Atlantoaxial instability in Down's syndrome

    OpenAIRE

    J Gordon Millichap

    1987-01-01

    The radiographs and clinical evaluations of 90 children with Down’s syndrome were reassessed after an interval of 5 years in a study of atlantoaxial instability (AAI) at the Derbyshire Children’s Hospital and Infirmary, Derby, UK.

  1. Intrinsic Instability of Coronal Streamers

    CERN Document Server

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  2. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  3. Instability following total knee arthroplasty.

    Science.gov (United States)

    Rodriguez-Merchan, E Carlos

    2011-10-01

    Background Knee prosthesis instability (KPI) is a frequent cause of failure of total knee arthroplasty. Moreover, the degree of constraint required to achieve immediate and long-term stability in total knee arthroplasty (TKA) is frequently debated. Questions This review aims to define the problem, analyze risk factors, and review strategies for prevention and treatment of KPI. Methods A PubMed (MEDLINE) search of the years 2000 to 2010 was performed using two key words: TKA and instability. One hundred and sixty-five initial articles were identified. The most important (17) articles as judged by the author were selected for this review. The main criteria for selection were that the articles addressed and provided solutions to the diagnosis and treatment of KPI. Results Patient-related risk factors predisposing to post-operative instability include deformity requiring a large surgical correction and aggressive ligament release, general or regional neuromuscular pathology, and hip or foot deformities. KPI can be prevented in most cases with appropriate selection of implants and good surgical technique. When ligament instability is anticipated post-operatively, the need for implants with a greater degree of constraint should be anticipated. In patients without significant varus or valgus malalignment and without significant flexion contracture, the posterior cruciate ligament (PCL) can be retained. However, the PCL should be sacrificed when deformity exists particularly in patients with rheumatoid arthritis, previous patellectomy, previous high tibial osteotomy or distal femoral osteotomy, and posttraumatic osteoarthritis with disruption of the PCL. In most cases, KPI requires revision surgery. Successful outcomes can only be obtained if the cause of KPI is identified and addressed. Conclusions Instability following TKA is a common cause of the need for revision. Typically, knees with deformity, rheumatoid arthritis, previous patellectomy or high tibial osteotomy, and

  4. Vectorcardiographic loop alignment for fetal movement detection using the expectation-maximization algorithm and support vector machines.

    Science.gov (United States)

    Vullings, R; Mischi, M

    2013-01-01

    Reduced fetal movement is an important parameter to assess fetal distress. Currently, no suitable methods are available that can objectively assess fetal movement during pregnancy. Fetal vectorcardiographic (VCG) loop alignment could be such a method. In general, the goal of VCG loop alignment is to correct for motion-induced changes in the VCGs of (multiple) consecutive heartbeats. However, the parameters used for loop alignment also provide information to assess fetal movement. Unfortunately, current methods for VCG loop alignment are not robust against low-quality VCG signals. In this paper, a more robust method for VCG loop alignment is developed that includes a priori information on the loop alignment, yielding a maximum a posteriori loop alignment. Classification, based on movement parameters extracted from the alignment, is subsequently performed using support vector machines, resulting in correct classification of (absence of) fetal movement in about 75% of cases. After additional validation and optimization, this method can possibly be employed for continuous fetal movement monitoring.

  5. Instability of enclosed horizons

    Science.gov (United States)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  6. Vector-Resonance-Multimode Instability

    Science.gov (United States)

    Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.

    2017-01-01

    The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.

  7. Kelvin-Helmholtz Instability in the Solar Atmosphere, Solar Wind and Geomagnetosphere

    Science.gov (United States)

    Mishin, V. V.; Tomozov, V. M.

    2016-11-01

    Modern views on the nature of the Kelvin-Helmholtz (KH) instability and its manifestations in the solar corona, in the interplanetary medium, and at the geomagnetospheric boundary are under consideration. We briefly describe the main theoretical results of the KH instability obtained in the linear approximation. Analysis of observational data, confirming the occurrence of the KH instability in magnetic formations of the solar coronal plasma and on the daytime magnetopause, was mainly performed in the approximation of incompressibility. We show that the Rayleigh-Taylor instability can significantly enhance the KH instability in the above regions due to interface accelerations or its curvature. Special attention is focused on the compressibility effect on the supersonic shear flow instability in the solar wind (SW) and at the geomagnetic tail boundary where this instability is usually considered to be ineffective. We have shown that the phase velocity of oblique perturbations is substantially less than the flow velocity, and values of the growth rate and frequency range are considerably higher than when only taking velocity-aligned disturbances into account. We emphasize that the magnetic field and plasma density inhomogeneity which weaken the KH instability of subsonic shear flows, in the case of a supersonic velocity difference weaken the stabilizing effect of the medium compressibility, and can significantly increase the instability. Effective generation of oblique disturbances by the supersonic KH instability explains the observations of magnetosonic waves and the formation of diffuse shear flows in the SW and on the distant magnetotail boundary, as well as the SW-magnetosphere energy and impulse transfer.

  8. Aligned natural inflation with modulations

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kiwoon, E-mail: kchoi@ibs.re.kr [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon, 34051 (Korea, Republic of); Kim, Hyungjin, E-mail: hjkim06@kaist.ac.kr [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon, 34051 (Korea, Republic of); Department of Physics, KAIST, Daejeon, 305-701 (Korea, Republic of)

    2016-08-10

    The weak gravity conjecture applied for the aligned natural inflation indicates that generically there can be a modulation of the inflaton potential, with a period determined by sub-Planckian axion scale. We study the oscillations in the primordial power spectrum induced by such modulation, and discuss the resulting observational constraints on the model.

  9. Aligned natural inflation with modulations

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-08-01

    Full Text Available The weak gravity conjecture applied for the aligned natural inflation indicates that generically there can be a modulation of the inflaton potential, with a period determined by sub-Planckian axion scale. We study the oscillations in the primordial power spectrum induced by such modulation, and discuss the resulting observational constraints on the model.

  10. The Rigors of Aligning Performance

    Science.gov (United States)

    2015-06-01

    organization must consider and work closely with its many stakeholders so as to guarantee satisfaction ; this idea is especially important as there is no...define success. Methodology includes a literature review, employee and customer surveys and a Strength, Weaknesses, Opportunities, Threats...bearing in mind customer perceptions. Recommendations include employee training centered on goal alignment, which is vital to highlight the

  11. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2008-01-01

    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  12. Various regimes of instability and formation of coastal eddies along the shelf bathymetry

    Science.gov (United States)

    Cimoli, Laura; Stegner, Alexandre; Roullet, Guillaume

    2016-04-01

    The impact of shelf slope on the stability of coastal currents and the nonlinear formation of coastal meanders and eddies are investigated by linear analysis and numerical simulations using an idealized channel configuration of the ROMS model. The impact of the shelf bathymetry leads to different regimes of instability of coastal currents that can both enhance or prevent the cross-shore transport. While keeping unchanged a coastal jet, we tested its unstable evolution for various depth and topographic slopes. Unlike standard linear stability analysis devoted to the very first stage of instability we focus on the non-linear end state, i.e. the formation of coastal eddies or meanders, to classify the various dynamical regimes. Two dimensionless numbers are used to quantify the parameter space of theses various regimes: the vertical aspect ratio gamma and the topographic parameter Tp, which is defined as the ratio of the topographic Rossby waves speed over the jet speed and is proportional to the shelf slope. We found four distinct regimes of instability, namely: standard baroclinic instability, horizontal shear instability, trapped coastal instability and quasi-stable jet. Our results show that Tp is the key parameter that controls the non-linear saturation of the coastal current, while gamma controls the transition from the standard baroclinic instability to the horizontal shear instability. Moreover, our analysis exhibit a new regime of formation of submeso-scale eddies. Contrary to the standard baroclinic instability regime, these eddies are trapped over the slope and never escape off-shore.

  13. Parallel progressive multiple sequence alignment on reconfigurable meshes

    Directory of Open Access Journals (Sweden)

    Nguyen Ken D

    2011-12-01

    Full Text Available Abstract Background One of the most fundamental and challenging tasks in bio-informatics is to identify related sequences and their hidden biological significance. The most popular and proven best practice method to accomplish this task is aligning multiple sequences together. However, multiple sequence alignment is a computing extensive task. In addition, the advancement in DNA/RNA and Protein sequencing techniques has created a vast amount of sequences to be analyzed that exceeding the capability of traditional computing models. Therefore, an effective parallel multiple sequence alignment model capable of resolving these issues is in a great demand. Results We design O(1 run-time solutions for both local and global dynamic programming pair-wise alignment algorithms on reconfigurable mesh computing model. To align m sequences with max length n, we combining the parallel pair-wise dynamic programming solutions with newly designed parallel components. We successfully reduce the progressive multiple sequence alignment algorithm's run-time complexity from O(m × n4 to O(m using O(m × n3 processing units for scoring schemes that use three distinct values for match/mismatch/gap-extension. The general solution to multiple sequence alignment algorithm takes O(m × n4 processing units and completes in O(m time. Conclusions To our knowledge, this is the first time the progressive multiple sequence alignment algorithm is completely parallelized with O(m run-time. We also provide a new parallel algorithm for the Longest Common Subsequence (LCS with O(1 run-time using O(n3 processing units. This is a big improvement over the current best constant-time algorithm that uses O(n4 processing units.

  14. Surface mixed layer deepening through wind shear alignment in a seasonally stratified shallow sea

    Science.gov (United States)

    Lincoln, B. J.; Rippeth, T. P.; Simpson, J. H.

    2016-08-01

    Inertial oscillations are a ubiquitous feature of the surface ocean. Here we combine new observations with a numerical model to investigate the role of inertial oscillations in driving deepening of the surface mixed layer in a seasonally stratified sea. Observations of temperature and current structure, from a mooring in the Western Irish Sea, reveal episodes of strong currents (>0.3 m s-1) lasting several days, resulting in enhanced shear across the thermocline. While the episodes of strong currents are coincident with windy periods, the variance in the shear is not directly related to the wind stress. The shear varies on a subinertial time scale with the formation of shear maxima lasting several hours occurring at the local inertial period of 14.85 h. These shear maxima coincide with the orientation of the surface current being at an angle of approximately 90° to the right of the wind direction. Observations of the water column structure during windy periods reveal deepening of the surface mixed layer in a series of steps which coincide with a period of enhanced shear. During the periods of enhanced shear gradient, Richardson number estimates indicate Ri-1 ≥ 4 at the base of the surface mixed layer, implying the deepening as a result of shear instability. A one-dimensional vertical exchange model successfully reproduces the magnitude and phase of the shear spikes as well as the step-like deepening. The observations and model results therefore identify the role of wind shear alignment as a key entrainment mechanism driving surface mixed layer deepening in a shallow, seasonally stratified sea.

  15. Progressive multiple sequence alignments from triplets

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2007-07-01

    Full Text Available Abstract Background The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors. Research Here we present a modified variant of progressive sequence alignments that addresses both issues. Instead of pairwise alignments we use exact dynamic programming to align sequence or profile triples. This avoids a large fractions of the ambiguities arising in pairwise alignments. In the subsequent aggregation steps we follow the logic of the Neighbor-Net algorithm, which constructs a phylogenetic network by step-wisely replacing triples by pairs instead of combining pairs to singletons. To this end the three-way alignments are subdivided into two partial alignments, at which stage all-gap columns are naturally removed. This alleviates the "once a gap, always a gap" problem of progressive alignment procedures. Conclusion The three-way Neighbor-Net based alignment program aln3nn is shown to compare favorably on both protein sequences and nucleic acids sequences to other progressive alignment tools. In the latter case one easily can include scoring terms that consider secondary structure features. Overall, the quality of resulting alignments in general exceeds that of clustalw or other multiple alignments tools even though our software does not included heuristics for context dependent (mismatch scores.

  16. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  17. Higher-level process theory motors of Strategic Information Systems (SIS) alignment: an exploratory study

    OpenAIRE

    McCarthy, John

    2013-01-01

    The need for IS Strategies to be optimally aligned with business strategies in order to maximize both value for the business and usability of technology has lead to an understandable emphases on strategic IS alignment for both academics and practitioners (Henderson and Venkatraman, 1999; Galliers and Newell, 2003). However, on review of both the IS strategy and alignment literatures, important limits in current understanding were identified. Although there has been an increasing acceptance of...

  18. {beta}-ray Angular Distribution from Purely Nuclear Spin Aligned {sup 20}Na

    Energy Technology Data Exchange (ETDEWEB)

    Minamisono, K., E-mail: minamiso@nscl.msu.edu [NSCL/MSU (United States); Matsuta, K.; Minamisono, T. [Osaka University, Department of Physics (Japan); Levy, C. D. P. [TRIUMF (Canada); Nagatomo, T.; Ogura, M. [Osaka University, Department of Physics (Japan); Sumikama, T. [RIKEN (Japan); Behr, J. A.; Jackson, K. P. [TRIUMF (Canada); Fujiwara, H.; Mihara, M.; Fukuda, M. [Osaka University, Department of Physics (Japan)

    2004-12-15

    The alignment correlation term in the {beta}-decay angular distribution from purely nuclear spin aligned {sup 20}Na has been measured for the first time. The final objective is to test the G parity symmetry, one of the fundamental symmetry in the weak nucleon current. For artificial creation of the alignment, the knowledge of the hyperfine interaction of {sup 20}Na implanted in a single-crystal ZnO was utilized.

  19. {beta}-Ray angular distribution from purely nuclear spin aligned {sup 20}F

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp [RIKEN Nishina Center (Japan); Matsuta, K. [Osaka University (Japan); Minamisono, K. [NSCL/MSU (United States); Sumikama, T. [Tokyo University of Science (Japan); Mihara, M. [Osaka University (Japan); Ozawa, A.; Tagishi, Y. [University of Tsukuba (Japan); Ogura, M.; Matsumiya, R.; Fukuda, M. [Osaka University (Japan); Yamaguchi, M.; Yasuno, T.; Ohta, H.; Hashizume, Y. [University of Tsukuba (Japan); Fujiwara, H. [Osaka University (Japan); Chiba, A. [University of Tsukuba (Japan); Minamisono, T. [Fukui University of Technology (Japan)

    2007-11-15

    The alignment correlation term in the {beta}-ray angular distribution from purely nuclear spin aligned {sup 20}F has been measured to test the G-parity conservation law which is one of the fundamental symmetries in the weak nucleon current. We utilized the hyperfine interaction of {sup 20}F in an MgF{sub 2} single crystal and successfully created the pure alignment from the polarization by means of the spin manipulation technique based on the {beta}-NMR method.

  20. Elliptic and magneto-elliptic instabilities

    Directory of Open Access Journals (Sweden)

    Lyra Wladimir

    2013-04-01

    Full Text Available Vortices are the fundamental units of turbulent flow. Understanding their stability properties therefore provides fundamental insights on the nature of turbulence itself. In this contribution I briely review the phenomenological aspects of the instability of elliptic streamlines, in the hydro (elliptic instability and hydromagnetic (magneto-elliptic instability regimes. Vortex survival in disks is a balance between vortex destruction by these mechanisms, and vortex production by others, namely, the Rossby wave instability and the baroclinic instability.