WorldWideScience

Sample records for current ac electric

  1. The AC (Alternating Current) Electrical Behavior of Multi-layered Thermoelectric Devices

    Science.gov (United States)

    Alim, Mohammad A.; Budak, Satilmis; Bhattacharjee, Sudip

    2016-11-01

    In this study the ac (alternating current) small-signal electrical data in the frequency range 5 Hz ≤ f ≤ 13 MHz are obtained for the multi-layered thermoelectric (TE) devices to extract underlying operative mechanisms via an equivalent circuit model. This model is developed from the complex plane plots in conjunction with the Bode plot. It is observed that the inductive behavior is prevalent for both unbombarded and bombarded TE devices regardless of the doses as both types are observed as somewhat weak in thermoelectric properties. The bombarded multi-layered devices followed a systematic pattern in ac behavior via semicircular relaxation both in the impedance and admittance planes for the same measured data. This pattern is attributed to the transition from one lumped behavior to two distinct mechanisms. It is observed that the conductive nature of the equivalent circuit model via non-blocking (non-capacitive) elements, attributed to the underlying operative electrical paths between the two opposite electrodes across the multi-layered device exists, satisfying direct current conditions of the equivalent circuit model. The inductive behavior at high frequencies originates from the conductive aspect of the lumped response of the device in addition to the contribution of the electrode leads. Thus, the proposed equivalent circuit model contains external inductance that verifies a meaningful representation of the multi-layered TE device, though weak in thermoelectric properties.

  2. Finite element modelling of electric currents in AC submerged arc furnaces

    CSIR Research Space (South Africa)

    Mc Dougall, I

    2007-01-01

    Full Text Available . ANSYS/Multiphysics was used to predict the current density distribution in the electrodes, raw material, slag and molten metal as a result of the three phases AC current. The effect of the electrode immersion on the current path was studied...

  3. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    Science.gov (United States)

    Spottorno, J.; Multigner, M.; Rivero, G.; Álvarez, L.; de la Venta, J.; Santos, M.

    2008-03-01

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours.

  4. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current

    Energy Technology Data Exchange (ETDEWEB)

    Spottorno, J; Rivero, G; Venta, J de la [Instituto de Magnetismo Aplicado (ADIF-UCM-CSIC), PO Box 155, Las Rozas, Madrid 28230 (Spain); Multigner, M [Departamento de Fisica de Materiales, UCM, Ciudad Universitaria, 28040 Madrid (Spain); Alvarez, L; Santos, M [Centro de Investigacion Biomedica en Red en BioingenierIa, Biomateriales y Nanomedicina (CIBER-BBN), Madrid (Spain)

    2008-03-21

    The purpose of this work is to study the changes of the bioimpedance from its 'in vivo' value to the values measured in a few hours after the excision from the body. The evolution of electrical impedance with time after surgical extraction has been studied on two porcine organs: the liver and the kidney. Both in vivo and ex vivo measurements of electrical impedance, measuring its real and imaginary components, have been performed. The in vivo measurements have been carried out with the animal anaesthetized. The ex vivo measurements have been made more than 2 h after the extraction of the organ. The latter experiment has been carried out at two different stabilized temperatures: at normal body temperature and at the standard preservation temperature for transplant surgery. The measurements show a correlation between the biological evolution and the electrical bioimpedance of the organs, which increases from its in vivo value immediately after excision, multiplying its value by 2 in a few hours.

  5. MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-03-01

    Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes

  6. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  7. Transcranial alternating current stimulation (tACS

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2013-06-01

    Full Text Available Transcranial alternating current stimulation (tACS seems likely to open a new era of the field of noninvasive electrical stimulation of the human brain by directly interfering with cortical rhythms. It is expected to synchronize (by one single resonance frequency or desynchronize (e.g. by the application of several frequencies cortical oscillations. If applied long enough it may cause neuroplastic effects. In the theta range it may improve cognition when applied in phase. Alpha rhythms could improve motor performance, whereas beta intrusion may deteriorate them. TACS with both alpha and beta frequencies has a high likelihood to induce retinal phosphenes. Gamma intrusion can possibly interfere with attention. Stimulation in the ripple range induces intensity dependent inhibition or excitation in the motor cortex most likely by entrainment of neuronal networks, whereas stimulation in the low kHz range induces excitation by neuronal membrane interference. TACS in the 200 kHz range may have a potential in oncology.

  8. Nanorod dynamics in ac electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruda, H E; Shik, A [Centre for Advanced Nanotechnology, University of Toronto, Toronto, M5S 3E3 (Canada)

    2010-06-11

    Metal and semiconductor nanorods polarized by an external electric field tend to align parallel to this field. We derived the equation of motion for this alignment, taking into account electrostatic forces, thermal fluctuations and viscous resistance of the liquid the nanorods are suspended in. It was solved for a strong ac electric field, as well as for the combination of strong dc and weak ac fields. The results were used for calculations of the capacity of the nanorod solution, its frequency dispersion and dependence on the field strength. Modification of the nanorod absorption spectra under the influence of an electric field was also considered. It was shown that metal nanorods in laser radiation, with the frequency belonging to the interval between longitudinal and transverse plasmon modes, tend to align perpendicular, rather than parallel, to the optical electric field.

  9. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  10. Electric current locator

    Science.gov (United States)

    King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  11. Total AC loss of YBCO coated conductor carrying AC transport current in AC transverse magnetic field with various orientations

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, Naoyuki [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Jiang, Zhenan [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Iijima, Yasuhiro [Materials Research Laboratory, Fujikura Ltd, 1-5-1 Kiba, Koto, Tokyo 135-8512 (Japan); Kakimoto, Kazuomi [Materials Research Laboratory, Fujikura Ltd, 1-5-1 Kiba, Koto, Tokyo 135-8512 (Japan); Saitoh, Takashi [Materials Research Laboratory, Fujikura Ltd, 1-5-1 Kiba, Koto, Tokyo 135-8512 (Japan)

    2004-08-01

    Using an electro-magnetic method, we measured the total AC loss of a YBCO coated conductor carrying an AC transport current in an AC transverse magnetic field with various orientations. We measured the magnetization loss (energy flow from the external magnetic field) and the transport loss (energy flow from the transport current circuit) independently during simultaneous application of an AC transverse magnetic field and AC transport current. Their sum gave us the total AC loss. The transport loss increases with increasing AC transverse magnetic field, and the magnetization loss increases with increasing AC transport current. The AC transverse magnetic field and the AC self magnetic field interact with each other at the conductor edges. This nonlinear interaction is a possible cause of the increase in AC loss. Due to the high aspect ratio of YBCO coated conductors, this increase in AC loss due to the interaction between the AC transverse and AC self magnetic fields is observed even when the transverse magnetic field is nearly parallel to the conductor wide-face. When the total AC losses for various transport currents and various field orientations are plotted against a transverse magnetic field component which is perpendicular to the conductor wide-face, the plots with different field angles but identical transport current all agree quite well with each other. The total AC loss is dominated by the self magnetic field and the perpendicular component of the transverse magnetic field, both of which mostly penetrate from the conductor edges.

  12. Measurement of Current Profile in a Tokamak Through AC Modulation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz~900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form of (1 - r2/a2)α with a parameter α, which is fitted with the experimental data, can be determined. The effects of magnetic shear in a tokamak field configuration on the current penetration are taken into account in the numerical simulation. The measurement method and obtained results are discussed.

  13. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  14. Cascading failures in ac electricity grids

    Science.gov (United States)

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q ≈1.6 . Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  15. Electrical Model of Balanced AC HTS Power Cable

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Willén, D.; Melnik, I.; Geschiere, A.

    The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and more underground transmission and distribution will be put up. Use of high temperature superconducting (HTS) power cables provides solutions to many of the future grid problems caused by these trends. In this paper we present an electrical model of a balanced 6 km-long three phase triaxial HTS power cable for the Dutch project being developed by a consortium of Alliander, Ultera™ and TUD. The cable currents in all three phases are balanced by selecting proper twist pitches and insulation thickness. The paper focuses on determining inductances, capacitances and AC losses of the balanced cable. Using the developed model, we also determine the voltage drop as function of the cable length, the neutral current and the effect of the imbalanced capacitances on the current distribution of the Dutch distribution cable. The model is validated and it can be used for accurate simulation of the electrical behaviour of triaxial HTS cables in electrical grids.

  16. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS)

    NARCIS (Netherlands)

    Witkowski, M.; Garcia Cossio, E.; Chander, B.S.; Braun, C.; Birbaumer, N.; Robinson, S.E.; Soekadar, S.R.

    2016-01-01

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly

  17. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  18. EHV AC undergrounding electrical power performance and planning

    CERN Document Server

    Benato, Roberto

    2014-01-01

    Analytical methods of cable performance in EHV AC electrical power are discussed in this comprehensive reference. Descriptions of energization, power quality, cable safety constraints and more, guide readers in cable planning and power network operations.

  19. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    Science.gov (United States)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  20. Power converters and AC electrical drives with linear neural networks

    CERN Document Server

    Cirrincione, Maurizio

    2012-01-01

    The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,

  1. Numeric description of space charge in polyethylene under ac electric fields

    Science.gov (United States)

    Zhao, J.; Xu, Z.; Chen, G.; Lewin, P. L.

    2010-12-01

    Space charge in polyethylene-based insulation materials and its effect on the local electric field under a dc environment have been extensively examined over the last few decades while the behavior of space charge under ac stress has received less attention. Space charge phenomenon under ac electric fields becomes an important issue with increased operating field strength in many applications, such as next generation high voltage cables. In this paper, a bipolar charge transport model has been developed to simulate space charge in polymers under ac electric fields. Obtained simulation results show that there is a small quantity of phase-dependent bipolar charge accumulation in the vicinity of the electrodes that does not move into the bulk under ac stress. This causes a slight distortion of the local field in the bulk. However, at lower frequencies less than 1 Hz, there is increased charge accumulation and penetration. Comparison with available experimental data suggests that the model is capable of describing the underlying physics of charge behavior when a dielectric material is subjected to ac electric fields. Due to the weak charge movement in the bulk, the conduction current density is small and hence the displacement component dominates the total current density and this increases linearly with ac frequency.

  2. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  3. Heat Transfer Analysis for Industrial AC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdali; Murat Tun(c)

    2005-01-01

    The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some suggestions about decreasing heat losses were presented.

  4. The Topological AC and HMW Effects, and the Dual Current in 2+1 Dimensions

    CERN Document Server

    He, X G; He, Xiao-Gang

    2001-01-01

    We study the Aharonov-Casher (AC) effect and the related He-McKellar-Wilkens (HMW) effect in 2+1 dimensions. In this restricted space these effects are the result of the interaction of the electromagnetic field tensor with the dual of a current. Transferring the dual operation from the current to the field tensor shows that %these effects are this interaction may be reinterpreted as due to the interaction of an effective vector potential and a current, and the AC and HMW effects follow immediately. A general proof of this for particles with an arbitrary spin is provided. The restriction to 2+1 dimensions, with this interpretation, provides a unified way of treating the AC and HMW effects for an arbitrary spin. Perhaps more interestingly the treatment shows that a spin-0 particle can show AC and HMW effects, although it has no magnetic or electric dipole moment in the usual sense.

  5. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    Science.gov (United States)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  6. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin.

    Science.gov (United States)

    Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando

    2017-07-01

    The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.

  7. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  8. Study of ac electrical properties of aluminium-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Elimat, Z M [Applied Science Department, Ajloun University College, Al-Balqa Applied University, Amman (Jordan); Zihlif, A M [Physics Department, University of Jordan, Amman (Jordan); Ragosta, G [Institute of Chemistry and Polymer Technology (ICTP), CNR-Possouli, Napoli (Italy)], E-mail: adzh@ju.edu.jo

    2008-08-21

    Ac electrical properties of aluminium flakes-epoxy composites were studied as a function of the composition, frequency and temperature. The dielectric constant increased smoothly with an increase in the concentration of aluminium. An increase in the dielectric constant was observed with the temperature as well as with a decrease in the frequency. The observed increase in the values of the dielectric constant with the aluminium concentration was attributed to interfacial polarization. It was found that ac electrical conductivity increases with increasing content of aluminium, temperature and frequency. The observed enhancement in ac conductivity is attributed to the increase in the number of conduction paths created by the aluminium flake contacts in the composite to give a higher electrical conductivity. Also, the activation energy of aluminium flakes-epoxy composites was determined, as well as the values of the dielectric constant. Compared with various theoretical models, Bruggman's formula gives a better fit. The universal power-law model of ac conductivity is observed in epoxy-aluminium composites. The calculated power exponent (about unity) is physically acceptable within this applied model.

  9. AC losses in monofilamentary MgB{sub 2} round wire carrying alternating transport currents

    Energy Technology Data Exchange (ETDEWEB)

    Kajikawa, K [Research Institute of Superconductor Science and Systems, Kyushu University, Fukuoka 819-0395 (Japan); Kawano, T [Department of Electrical and Electronic Systems Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Osaka, R [Department of Electrical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Nakamura, T [Department of Electrical Engineering, Kyoto University, Kyoto 615-8510 (Japan); Sugano, M [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Takahashi, M; Wakuda, T, E-mail: kajikawa@sc.kyushu-u.ac.j [Hitachi Research Laboratory, Hitachi, Ltd, Hitachi 319-1292 (Japan)

    2010-04-15

    AC losses in a monofilamentary MgB{sub 2} round wire with niobium and copper metal sheaths and carrying alternating transport currents are evaluated at several temperatures and frequencies. First, the transport current losses are observed electrically using a lock-in amplifier. Experimental results show that the AC losses decrease with an increase in the temperature if the amplitude of the transport current normalized by the corresponding critical current is maintained constant. On the other hand, the AC losses increase slightly with the frequency. Next, the AC losses are calculated numerically by a finite difference method. The numerical results for the superconductor filament show a good agreement with the results of the conventional theoretical expression formulated using the Bean model over a wide range of current amplitudes. It is also found that the AC losses in the niobium sheath are negligible whereas those in the copper sheath are comparable with those in the superconductor. On the basis of the numerical calculations, an expression is analytically derived for estimating the eddy current loss occurring in a metal sheath. The derived expression well reproduces the AC loss properties of both the copper and niobium sheaths.

  10. AC losses in monofilamentary MgB2 round wire carrying alternating transport currents

    Science.gov (United States)

    Kajikawa, K.; Kawano, T.; Osaka, R.; Nakamura, T.; Sugano, M.; Takahashi, M.; Wakuda, T.

    2010-04-01

    AC losses in a monofilamentary MgB2 round wire with niobium and copper metal sheaths and carrying alternating transport currents are evaluated at several temperatures and frequencies. First, the transport current losses are observed electrically using a lock-in amplifier. Experimental results show that the AC losses decrease with an increase in the temperature if the amplitude of the transport current normalized by the corresponding critical current is maintained constant. On the other hand, the AC losses increase slightly with the frequency. Next, the AC losses are calculated numerically by a finite difference method. The numerical results for the superconductor filament show a good agreement with the results of the conventional theoretical expression formulated using the Bean model over a wide range of current amplitudes. It is also found that the AC losses in the niobium sheath are negligible whereas those in the copper sheath are comparable with those in the superconductor. On the basis of the numerical calculations, an expression is analytically derived for estimating the eddy current loss occurring in a metal sheath. The derived expression well reproduces the AC loss properties of both the copper and niobium sheaths.

  11. On the Application of TLS Techniques to AC Electrical Drives

    Directory of Open Access Journals (Sweden)

    M. Cirrincione

    2005-03-01

    Full Text Available This paper deals with the application of a new neuron, the TLS EXIN neuron, to AC induction motor drives. In particular, it addresses two important subjects of AC induction motor drives: the on-line estimation of the electrical parameters of the machine and the speed estimation in sensorless drives. On this basis, this work summarizes the parameter estimation and sensorless techniques already developed by the authors over these last few years, all based on the TLS EXIN. With regard to sensorless, two techniques are proposed: one based on the MRAS and the other based on the full-order Luenberger observer. The work show some of the most significant results obtained by the authors in these fields and stresses the important potentiality of this new neural technique in AC induction machine drives.

  12. AC propulsion system for an electric vehicle, phase 2

    Science.gov (United States)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  13. ac current generation in chiral magnetic insulators and Skyrmion motion induced by the spin Seebeck effect.

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D; Reichhardt, Charles; Saxena, Avadh

    2014-05-09

    We show that a temperature gradient induces an ac electric current in multiferroic insulators when the sample is embedded in a circuit. We also show that a thermal gradient can be used to move magnetic Skyrmions in insulating chiral magnets: the induced magnon flow from the hot to the cold region drives the Skyrmions in the opposite direction via a magnonic spin transfer torque. Both results are combined to compute the effect of Skyrmion motion on the ac current generation and demonstrate that Skyrmions in insulators are a promising route for spin caloritronics applications.

  14. AC Loss of Ripple Current in Superconducting DC Power Transmission Cable

    Science.gov (United States)

    Yoshitomi, K.; Otabe, E. S.; Vyatkin, V. S.; Kiuchi, M.; Matsushita, T.; Hamabe, M.; Yamaguchi, S.; Inada, R.

    As a method of largely reducing the transmission loss in the electric power grid, superconducting direct current (DC) power transmission cable has been investigated. Using superconducting DC power transmission cables, large amounts of current and energy can be transferred compared to conventional copper cables. In this case, an alternating current (AC) is converted to DC and superposed AC which is known as ripple current, and the energy loss by the ripple current is generated. Therefore it is desired to estimate the energy loss density for the case of DC current and superposed AC current for a design of DC transmission cable system. In this study, the hysteresis loss for DC current of 2 kA rectified from 60 Hz alternating current is calculated using the Bean model, and coupling loss was also estimated. The diameter of the cable was 40 mm. The ripple currents generated by multi-pulse rectifiers, 6-pulse, 12-pulse, and 24-pulse were considered. It is found that the total AC loss including the hysteresis loss and the coupling loss is considerably smaller than the supposed heat loss of 0.5 W/m which is obtained with a newly developed cable.

  15. AC losses in HTS coils for high-frequency and non-sinusoidal currents

    Science.gov (United States)

    de Bruyn, B. J. H.; Jansen, J. W.; Lomonova, E. A.

    2017-09-01

    AC losses in racetrack coils that are wound of YBCO tapes are measured for sinusoidal and non-sinusoidal transport currents with fundamental frequencies up to 1 kHz. An electrical method to measure losses for non-sinusoidal currents is developed for this purpose. The measured losses are compared to the losses calculated by 2D finite element models with power-law material models. The frequency and waveform-dependency of the measured losses are shown and compared to the results of the models over a wide range of frequencies and waveforms. Finally, it is shown that the finite element models can accurately predict AC losses resulting from non-sinusoidal transport currents as are present in highly dynamic motors with AC armature coils.

  16. Modelling ac ripple currents in HTS coated conductors

    Science.gov (United States)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  17. Current Control of Grid Converters Connected with Series AC Capacitor

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...

  18. DNA Generated Electric Current Biosensor.

    Science.gov (United States)

    Hu, Lanshuang; Hu, Shengqiang; Guo, Linyan; Shen, Congcong; Yang, Minghui; Rasooly, Avraham

    2017-02-21

    In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm(2). This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm(2) in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.

  19. Modeling AC ripple currents in HTS coated conductors by integral equations

    Science.gov (United States)

    Grilli, Francesco; Xu, Zhihan

    2016-12-01

    In several HTS applications, the superconducting tapes experience the simultaneous presence of DC and AC excitations. For example in high-current DC cables, where the transport current is not perfectly constant, but it exhibits some ripples at different frequencies introduced by the rectification process (AC-DC conversion). These ripples give rise to dissipation, whose magnitude and possible influence on the device's cooling requirements need to be evaluated. Here we report a study of the AC losses in a HTS coated conductor subjected to DC currents and AC ripples simultaneously. The modeling approach is based on an integral equation method for thin superconductors: the superconducting tape is modeled as a 1-D object with a non-linear resistivity, which includes the dependence of the critical current density Jc on the magnetic field. The model, implemented in a commercial finite-element program, runs very fast (the simulation of one AC cycle typically takes a few seconds on standard desktop workstation): this allows simulating a large number of cycles and estimating when the AC ripple losses stabilize to a constant value. The model is used to study the influence of the flux creep power index n on the stabilization speed and on the AC loss values, as well as the effect of using a field-dependent Jc instead of a constant one. The simulations confirm that the dissipation level should not be a practical concern in HTS DC cables. At the same time, however, they reveal a strong dependence of the results upon the power index n and the form of Jc , which spurs the question whether the power-law is the most suitable description of the superconductor's electrical behavior for this kind of analysis.

  20. Contact-Free Templating of 3-D Colloidal Structures Using Spatially Nonuniform AC Electric Fields.

    Science.gov (United States)

    Raveendran, Joshua; Wood, Jeffery A; Docoslis, Aristides

    2016-09-20

    The formation of ordered and regularly shaped structures of colloidal particles with the aid of spatially nonuniform electric fields is a modern research area of great interest. This work illustrates how alternating current (AC) electrokinetic effects (dielectrophoresis, electroosmosis) can serve as contact-free templates, inside which colloidal microspheres can assemble into a variety of shapes and sizes. We show how three-dimensional colloidal structures of square, circular, and diamond shape of many tens of micrometers in size can be reproducibly formed with a single set of quadrupolar microelectrodes. Numerical simulations performed help to explain the role of AC electroosmosis and AC dielectrophoresis on the shaping of these structures as a function of applied voltage and frequency. We also demonstrate how the templating repertoire is further enhanced with the simultaneous application of a second, individually controlled AC electric field, which enables a variety of asymmetric colloidal structures to be produced using the same set of quadrupolar microelectrodes. As the preservation of shape and size of such electric-field templated structures after medium evaporation still remains a big challenge, here we also report on a novel method that permits the stabilization and isolation of these particle assemblies through medium gelation and subsequent hydrogel removal with a UV/ozone treatment.

  1. Electric Current Circuits in Astrophysics

    CERN Document Server

    Kuijpers, Jan; Fletcher, Lyndsay

    2014-01-01

    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting flux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms.

  2. Long-range response in ac electricity grids

    Science.gov (United States)

    Jung, Daniel; Kettemann, Stefan

    2016-07-01

    Local changes in the topology of electricity grids can cause overloads far away from the disturbance [D. Witthaut and M. Timme, Eur. Phys. J. B 86, 377 (2013), 10.1140/epjb/e2013-40469-4], making the prediction of the robustness against changes in the topology—for example, caused by power outages or grid extensions—a challenging task. The impact of single-line additions on the long-range response of dc electricity grids has recently been studied [D. Labavić, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, Eur. Phys. J.: Spec. Top. 223, 2517 (2014), 10.1140/epjst/e2014-02273-0]. By solving the real part of the static ac load flow equations, we conduct a similar investigation for ac grids. In a regular two-dimensional grid graph with cyclic boundary conditions, we find a power law decay for the change of power flow as a function of distance to the disturbance over a wide range of distances. The power exponent increases and saturates for large system sizes. By applying the same analysis to the German transmission grid topology, we show that also in real-world topologies a long-ranged response can be found.

  3. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  4. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  5. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  6. Elastic constant of Dendrobium protoplasts in AC electric fields

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available This work reports elongation of Dendrobium protoplasts in an ac electric field between two cylindrical electrodes. A protoplast firstly was translated towards an electrode by dielectrophoretic force in 17 kV.m-1 field strength at 1 MHz, and secondly it was elongated due to an interaction between an induced electric dipole (μ and the electric field (E. Protoplast elongation was observed by varying both the field strength at 30, 45, 60, and 85 kV.m-1 and field frequency at 0.5, 1, 5, and 10 MHz. For a given field frequency and field strength, a parameter a/b (major/minor axis was measured as the protoplast elongation.Two-step elongation and restoration phases were observed. The former was completed within 2 minutes of field exposure, and the latter was completed within 15 seconds regardless of the field exposure time between 3 and 20 minutes. The evidence of a complete restoration indicated that the elasticity of the protoplast membrane obeyed Hooke’s law. This study also found that elastic constant k of the membrane varied non-linearly with the field strength. It was found to be from 0.04 to 0.08 mN.m-1, dependent on the field frequency.

  7. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  8. Spinning Janus doublets driven in uniform AC electric fields

    CERN Document Server

    Boymelgreen, Alicia; Park, Sinwook; Miloh, Touvia

    2013-01-01

    We provide an experimental proof-of-concept for a robust, continuously rotating microstructure - consisting of two metallodielectric (gold-polystyrene)Janus particles rigidly attached to each other - which is driven in uniform ac fields by asymmetric induced-charge electroosmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for non-linear electrokinetics. A simple kinematic rigid body model is used to predict the paths and double velocities (angular and linear) based on th...

  9. Delocalization of disturbances and the stability of ac electricity grids

    Science.gov (United States)

    Kettemann, Stefan

    2016-12-01

    In order to study how local disturbances affect the ac grid stability, we start from nonlinear power balance equations and map them to complex linear wave equations. Having obtained stationary solutions with phases φi at generator and consumer nodes i , we next study the dynamics of deviations. Starting with an initially localized perturbation, it is found to spread in a periodic grid diffusively throughout the grid. We find the parametric dependence of diffusion constant D . We apply the same solution strategy to general grid topologies and analyze their stability against local perturbations. The perturbation remains either localized or becomes delocalized, depending on grid topology, power capacity, and distribution of consumers and generator power Pi. Delocalization is found to increase the lifetime of perturbations and thereby their influence on grid stability, whereas localization results in an exponentially fast decay of perturbations at all grid sites. These results may therefore lead to new strategies to control the stability of electricity grids.

  10. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  11. Input current shaped ac-to-dc converters

    Science.gov (United States)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  12. Input-current shaped ac to dc converters

    Science.gov (United States)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  13. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  14. Critical current density measurement of thin films by AC susceptibility based on the penetration parameter h

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaofen, E-mail: xiaofenli@gmail.com [Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Grivel, Jean-Claude; Abrahamsen, Asger B.; Andersen, Niels H. [Materials Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2012-07-15

    We have numerically proved that the dependence of AC susceptibility {chi} of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical current density J{sub c} of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of J{sub c} from a normally applied {chi}(T) measurement. A fitting equation J{sub c} = 1.9H{sub a} Divides {chi} Prime Divides {sup 0.69}/d, -0.4 < {chi} Prime < -0.001 derived from the critical state case (Bean model) can be used in most situations, where H{sub a} is the amplitude of the applied AC field, {chi} Prime is the real part of the normalized susceptibility and d is the thickness of the film. The method is valid for the cases where the film is fully penetrated. We also discuss how the finite London penetration depth affects the susceptibility when the film is screened. Measurements with varying T, H{sub a} and DC background field H{sub dc} are performed to support the arguments.

  15. Critical current density measurement of thin films by AC susceptibility based on the penetration parameter h

    Science.gov (United States)

    Li, Xiao-Fen; Grivel, Jean-Claude; Abrahamsen, Asger B.; Andersen, Niels H.

    2012-07-01

    We have numerically proved that the dependence of AC susceptibility χ of a E(J) power law superconducting thin disc on many parameters can be reduced to one penetration parameter h, with E the electric field and J the current density. Based on this result, we propose a way of measuring the critical current density Jc of superconducting thin films by AC susceptibility. Compared with the normally used method based on the peak of the imaginary part, our method uses a much larger range of the AC susceptibility curve, thus allowing determination of the temperature (T) dependence of Jc from a normally applied χ(T) measurement. A fitting equation Jc = 1.9Ha∣χ‧∣0.69/d, -0.4 Bean model) can be used in most situations, where Ha is the amplitude of the applied AC field, χ‧ is the real part of the normalized susceptibility and d is the thickness of the film. The method is valid for the cases where the film is fully penetrated. We also discuss how the finite London penetration depth affects the susceptibility when the film is screened. Measurements with varying T, Ha and DC background field Hdc are performed to support the arguments.

  16. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    DEFF Research Database (Denmark)

    Ainslie, Mark D; Rodriguez Zermeno, Victor Manuel; Hong, Zhiyong

    2011-01-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils...... Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings...... on the performance of the motor are discussed....

  17. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-01

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  18. Characteristics of ac capillary discharge produced in electrically conductive water solution

    Science.gov (United States)

    DeBaerdemaeker, F.; Simek, M.; Schmidt, J.; Leys, C.

    2007-05-01

    Basic electrical, optical and calorimetric characteristics of an ac (50 Hz) driven capillary discharge produced in a water solution were studied for initial water solution conductivity in the range 50-1000 µS cm-1. Typical current and voltage waveforms and emission intensities produced by several electronically excited species were recorded with high time resolution. The evolution of the electrical current, power and capillary resistance was inspected during positive ac half-cycle for various operational regimes. A fast relaxation of the discharge following a breakdown event was observed. Optical measurements indicate that radiative species are mostly generated during the first few hundreds of nanoseconds of plasma generation and that the average duration of plasma emission induced by a discharge pulse is of the order of a few microseconds. Results of calorimetric measurements are in good agreement with average electrical measurements and support the assumption that the discharge is a constant source of heat delivered to the liquid. Assuming that only a fraction of the heat released inside the capillary can be transported by conduction through the capillary wall and via its orifices, the processes of bubble formation, expulsion and re-filling the capillary with 'fresh' water must play a key role in maintaining a thermal balance during long-time steady-state operation of the device. Furthermore, a simplified numerical model and a first order energy deposition calculation prove the plausibility of the bubble breakdown mechanism.

  19. Alternating Current All-electrical Gun Control System in Tanks

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-07-01

    Full Text Available The ac all-electrical gun control system is composed of permanent magnetic synchronous machine-drive control systems and the ball-screw by replacing the complicated electrohydraulic systems. At the same time, the variable-structure system with sliding modes makes the gun control systems to have higher performances using the only rate flexure gyroscope. Thereby, vehicle hull gyroscope and angular gyroscope are left out.The new ac all-electrical gun control systems developed are reduced by 40 per cent in weight, decreased by 30 per cent in volume, increased by 35 per cent in efficiency, and enhanced by three times in service life as compared to the current gun control systems.

  20. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    Science.gov (United States)

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  1. Spinning Janus doublets driven in uniform ac electric fields

    Science.gov (United States)

    Boymelgreen, Alicia; Yossifon, Gilad; Park, Sinwook; Miloh, Touvia

    2014-01-01

    We provide an experimental proof of concept for a robust, continuously rotating microstructure—consisting of two metallodielectric (gold-polystyrene) Janus particles rigidly attached to each other—which is driven in uniform ac fields by asymmetric induced-charge electro-osmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for nonlinear electrokinetics. A simple kinematic rigid body model is used to predict the paths and doublet velocities (angular and linear) based on their relative orientations with good agreement.

  2. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  3. Space charge and charge trapping characteristics of cross-linked polyethylene subjected to ac electric stresses

    Science.gov (United States)

    Chong, Y. L.; Chen, G.; Miyake, H.; Matsui, K.; Tanaka, Y.; Takada, T.

    2006-04-01

    This paper reports on the result of space charge evolution in cross-linked polyethylene (XLPE) planar samples approximately 220 µm thick. The space charge measurement technique used in this study is the pulsed electroacoustic method. There are two phases to this experiment. In the first phase, the samples were subjected to dc 30 kVdc mm-1 and ac (sinusoidal) electric stress levels of 30 kVpk mm-1 at frequencies of 1, 10 and 50 Hz ac. In addition, ac space charge under 30 kVrms mm-1 and 60 kVpk mm-1 electric stress at 50 Hz was also investigated. The volts-off results showed that the amount of charge trapped in XLPE sample under dc electric stress is significantly bigger than samples under ac stress even when the applied ac stresses are substantially higher. The second phase of the experiment involves studying the dc space charge evolution in samples that were tested under ac stress during the first phase of the experiment. Ac ageing causes positive charge to become more dominant over negative charge. It was also discovered that ac ageing creates deeper traps, particularly for negative charge. This paper also gives a brief overview of the data processing methods used to analyse space charge under ac electric stress.

  4. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  5. Development of dielectrophoresis separator with an insulating porous membrane using DC-Offset AC Electric Fields.

    Science.gov (United States)

    Hakoda, Masaru

    2016-09-01

    Our previous studies revealed that the dielectrophoresis method is effective for separating cells having different dielectric properties. The purpose of this study was to evaluate the separation characteristics of two kinds of cells by direct current (DC) voltage offset/alternating current (AC) voltage using an insulating porous membrane dielectrophoretic separator. The separation device gives dielectrophoretic (DEP) force and electrophoretic (EP) force to dispersed particles by applying the DC-offset AC voltage. This device separates cells of different DEP properties by adopting a structure in which only the parallel plate electrodes and the insulating porous membrane are disposed in the flow path through which the cell-suspension flows. The difference in the retention ratios of electrically homogeneous 4.5 μm or 20.0 μm diameter standard particles was a maximum of 82 points. Furthermore, the influences of the AC voltage or offset voltage on the retention ratios of mouse hybridoma 3-2H3 cells and horse red blood cells (HRBC) were investigated. The difference in the retention ratio of the two kinds of cells was a maximum of 56 points. The separation efficiency of this device is expected to be improved by changing the device shape, number of pores, and pore placement. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1292-1300, 2016.

  6. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  7. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  8. Advances in Electrical Current Collection

    Science.gov (United States)

    1982-01-01

    temperature rise at sliding electrical contacts ....................... 29 E. Rabinowicz (Cambridge, MA, U.S.A.) Thermal stability in graphite contacts...I. IR. McNab, J. L. Johnson, P. Reichner, J. J. Schreurs, P. K. Lee and E. Rabinowicz for * helpful discussions, the Westinghouse Research and...to express their appreciation to I. R, McNab, J. L. Johnson, P. Reichner, J. J. Schreurs, P. K. Lee and E. Rabinowicz forIhelpful discussions, the

  9. Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films.

    Science.gov (United States)

    Kahouli, Abdelkader; Sylvestre, Alain; Jomni, Fethi; Yangui, Béchir; Legrand, Julien

    2012-01-26

    The electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined. From frequency- and temperature-conductivity characteristics, the activation energy is found to be 1.27 eV for direct current (DC) conduction interpreted in terms of ionic conduction mechanism. The power law dependence of AC conductivity is interpreted in terms of electron hopping with a density N(E(F)) (~10(18) eV cm(-3)) over a 0.023-0.03 eV high barrier across a distance of 1.46-1.54 Å.

  10. Computational thermodynamics in electric current metallurgy

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Qin, R.S.

    2015-01-01

    A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature....... The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations....

  11. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  12. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    Science.gov (United States)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-12-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  13. Electron-radiation effects on the ac and dc electrical properties and unpaired electron densities of three aerospace polymers

    Science.gov (United States)

    Long, Sheila Ann T.; Long, Edward R., Jr.; Ries, Heidi R.; Harries, Wynford L.

    1986-01-01

    The effects of gigarad-level total absorbed doses from 1-MeV electrons on the post-irradiation alternating-current (ac) and direct-current (dc) electrical properties and the unpaired electron densities have been studied for Kapton, Ultem, and Mylar. The unpaired electron densities (determined from electron paramagnetic resonance spectroscopy) and the dc electrical conductivities of the irradiated materials were monitored as functions of time following the exposures to determine their decay characteristics at room temperature. The elevated-temperature ac electrical dissipations of the Ultem and Mylar were affected by the radiation. The dc conductivity of the Kapton increased by five orders of magnitude, while the dc conductivities of the Ultem and Mylar increased by less than an order of magnitude, due to the radiation. The observed radiation-generated changes in the ac electrical dissipations are explained in terms of known radiation-generated changes in the molecular structures of the three materials. A preliminary model relating the dc electrical conductivity and the unpaired electron density in the Kapton is proposed.

  14. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Eva González-Romera

    2011-09-01

    Full Text Available The expected increase in the penetration of electric vehicles (EV and plug-in hybrid electric vehicles (PHEV will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V mode, and also in vehicle-to-grid (V2G mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  15. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  16. Alternating current(AC) corrosion analyzed by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Hyun; Kim, Dae Kyeong; Bae, Jeong Hyo; Lee, Hyun Goo; Lee, Sung Jin [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2002-12-15

    So far, many research results on AC corrosion have been reported but each one is not consistent with another. In order to understand the characteristics and factors affecting on AC corrosion, Electrochemical impedance spectroscopy (E.I.S) was used and changes in kinetics and surface properties was analyzed. Generally, E.I.S. test has been used mainly for the diagnosis of the concrete corrosion and coating material. However, considering the outstanding functions of E.I.S. test, it can be adopted as a good method to study AC corrosion. Electrolyte resistance (R{sub sol}), double layer capacitance (C{sub dl}) and polarization resistance (R{sub p}) are the basic circuit elements. Using the model which is consist of these basic elements, various results of E.I.S. test can be interpreted. And through this method the mechanism and characteristics of AC corrosion can be explained

  17. Control the aggregation of model amyloid insulin protein under ac-electric fields

    Science.gov (United States)

    Zheng, Zhongli; Jing, Benxin; Zhu, Y. Elaine

    2013-03-01

    In vitro experiments have been widely used to characterize the misfolding/unfolding pathway characteristic of amylodogenic proteins. Conversion from natively folded amyloidogenic proteins to oligomers via nucleation is the accepted path to fibril formation upon heating over a certain lag time period. In an alternative engineering approach to manipulate and control protein aggregation, we have investigated the aggregation kinetics of insulin, a well-established amyloid model protein, under applied ac-electric fields of varied ac-frequency and voltage at room temperature. Using fluorescence correlation spectroscopy and fluorescence imaging, we have observed that the insulin aggregation can occur at much shortened lag time under applied ac-electric fields, when a critical ac-voltage is exceeded. The strong dependence of lag time on ac-frequency over a narrow range of 500 Hz-5 kHz indicates the effect of ac-electroosmosis on the diffusion controlled process of insulin nucleation. Yet, no difference of conformational structure is detected with insulin under applied ac-fields, suggesting the equivalence of ac-polarization to the conventional thermal activation process for insulin aggregation.

  18. Electric current arising from unpolarized polyvinyl formal

    Indian Academy of Sciences (India)

    P K Khare; P L Jain; R K Pandey

    2000-10-01

    An appreciable electric current is observed in a system consisting of a polyvinyl formal (PVF) film in a sandwich configuration, in the temperature range 30–110°C. The maximum value of the current during first heating is found to be of the order of 10–10 A and its thermograms exhibit one transition (i.e. current peak) at around 60°C. The position of the current peak in thermal spectrum shifts with the heating rate. A temperature dependence of the open circuit voltage is also observed. The activation energy of the process responsible for the current is determined. The magnitude of the current is more in the case of dissimilar electrode systems. It is proposed that the electric current arising from unpolarized metal–polymer–metal system is a water activated phenomenon, which is influenced by the transitional changes of the polymer.

  19. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    Institute of Scientific and Technical Information of China (English)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons.The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied.It is found that self-sustained rhythmic firing patterns,which are closely correlated with the cognitive functions,are significantly modified due to the self-organizing of the network in the weak AC field.The activities of the neural networks are affected by the synaptic connection strength,the external stimuli,and so on.In the presence of learning rules,the synaptic connections can be modulated by the external stimuli,which will further enhance the sensitivity of the network to the external signal.The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.

  20. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  1. Electrical Model of Balanced AC HTS Power Cable

    NARCIS (Netherlands)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J.J.; Willen, D.; Melnik, I.; Geschiere, A.

    2012-01-01

    The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and mor

  2. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  3. Analysis of energy processes in pulse converters of AC electric power

    Directory of Open Access Journals (Sweden)

    Kadatsky A.F.

    2015-02-01

    Full Text Available The article presents the analysis of energy processes in switched-mode AC-AC converters of buck, boost and buck-boost types. The mathematical model of energy processes is obtained. The mathematical model is generalized to DC-DC and AC-AC converters, to three basic types of converters and considers possibility of autotransformer inclusion of an inductor. It is shown that the use of bi-directional switches allows both DC and AC conversion of electrical energy regardless of the load type and also supports recuperation of electrical energy back to the source. It is shown that the maximum value of instant power in a load circuit in AC—AC converters exceeds twice the rated value of load power in comparison with DC—DC converters. It is shown that the energy capacity of an inductor in AC—AC converters exceeds twice the energy capacity of DC—DC converters at the identical rated power of conversion. It is shown that the energy capacity of an inductor in converters of buck and boost types depends on the ratio of input and output voltage. Also, the energy capacity of an inductor in converters of buck-boost type does not depend on the ratio of input and output voltage. It is shown that the energy capacity of an inductor in converters of buck and boost types is lower than the energy capacity of an inductor in the converter of buck-boost type.

  4. Electro-worming: The Behaviors of Caenorhabditis (C.) elegans in DC and AC Electric Fields

    CERN Document Server

    Chuang, Han-Sheng; Dabbish, Nooreen; Bau, Haim

    2010-01-01

    The video showcases how C. elegans worms respond to DC and AC electrical stimulations. Gabel et al (2007) demonstrated that in the presence of DC and low frequency AC fields, worms of stage L2 and larger propel themselves towards the cathode. Rezai et al (2010) have demonstrated that this phenomenon, dubbed electrotaxis, can be used to control the motion of worms. In the video, we reproduce Rezai's experimental results. Furthermore, we show, for the first time, that worms can be trapped with high frequency, nonuniform electric fields. We studied the effect of the electric field on the nematode as a function of field intensity and frequency and identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) avoid blue light, indicating that at least some of the nervous system functions remain unimpaired in the presence of the electric field. DEP is useful to dynamically confine nematodes for observati...

  5. DC Vs AC - War Of Currents For Future Power Systems A HVDC Technology Overview

    Directory of Open Access Journals (Sweden)

    Anil K. Rai

    2015-08-01

    Full Text Available DC vs AC discussion began in 1880s with development of first commercial power transmission in Wall Street New York. Later when AC technology came into notice by efforts of inventor and researcher Sir Nicola Tesla soon the advantages of AC transmission and AC devices overtook the DC technology. It was hoped that DC technology had lost battle of currents. Today with researches going on FACTS devices and bulk power transmission HVDC has again gained a reputation in power sector. Solution of this centuries old debate is to develop HVDC systems that assists HVAC systems for better performance stability and control

  6. Study of DC and AC electric field effect on Pisum sativum seeds growth

    Science.gov (United States)

    Mahmood, Bahar; Jaleh, Sojoodi; Yasaman, Yasaie

    2014-07-01

    In this research the effect of electric field on two groups of wet and dry Pisum sativum seeds growth was studied. To generate the required electric field a parallel-plate capacitor with round copper plates of 30 cm diameter was used. The experiments were performed once in fixed exposure duration of 8 min in variable DC electric field of 0.25-1.5 kV/m. The other experiments were performed in variable fields of 50-125 kV/m in fixed exposure duration of 8 min, in two groups of AC and DC electric fields. The experiments were repeated three times. In each experiment 10 seeds were used and there was a sham exposed group for comparison, too. After application of electric field, the seeds were kept for six days in the same growth chamber with the temperature of 25 ± 1 °C and 12 h light/12 h darkness. On the 6th day length of stems and height of roots were measured. After doing statistical analysis, in low intensities of DC electric field, the highest significant increase of mean growth (The average of stem length and the height of roots) was seen in 1.5 kV/m in wet seeds. In high intensities of DC and AC electric fields, the highest significant increase of mean growth was seen in AC electric field of 100 kV/m in wet seeds.

  7. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  8. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.

    Science.gov (United States)

    Huang, Y; Wang, Y L; Wong, T N

    2017-08-22

    Monodispersity and fast generation are innate advantages of microfluidic droplets. Other than the normally adopted simple Newtonian fluids such as a water/oil emulsion system, fluids with complex rheology, namely, non-Newtonian fluids, which are being widely adopted in industries and bioengineering, have gained increasing research interest on the microscale. However, challenges occur in controlling the dynamic behavior due to their complex properties. In this sense, the AC electric field with merits of fast response and easiness in fulfilling "Lab on a chip" has attracted our attention. We design and fabricate flow-focusing microchannels with non-contact types of electrodes for the investigation. We firstly compare the formation of a non-Newtonian droplet with that of a Newtonian one under an AC electric field and discover that viscoelasticity contributes to the discrepancies significantly. Then we explore the effect of AC electric fields on the filament thinning and droplet formation dynamics of one non-Newtonian fluid which has a similar rheological behavior to bio samples, such as DNA or blood samples. We investigate the dynamics of the thinning process of the non-Newtonian filament under the influence of an AC electric field and implement a systematic exploration of the non-Newtonian droplet generation influenced by parameters such as the flow conditions (flow rate Q, capillary number Ca), fluid property (Weissenberg number Wi), applied voltage (U) and frequency (f) of the AC electric field. We present the dependencies of the flow condition and electric field on the non-Newtonian droplet formation dynamics, and conclude with an operating diagram, taking into consideration all the above-mentioned parameters. Results show that the electric field plays a critical role in controlling the thinning process of the filament and the size of the generated droplet. Furthermore, for the first time, we quantitatively measure the flow field of the non-Newtonian droplet

  9. Experimental Investigations on PV Powered SVM-DTC Induction Motor without AC Phase Current Sensors

    Directory of Open Access Journals (Sweden)

    T. Muthamizhan

    2014-05-01

    Full Text Available The paper presents a low-cost, phase-current reconstruction algorithm for space vector modulated direct torque controlled induction motor using the information obtained from only one shunt resistor which is in series with low side switches in a conventional three-phase inverter. The aim is to develop a low-cost high - performance induction motor drive. It uses the dc-link voltage and dc current to reconstruct the stator currents needed to estimate the motor flux and the electromagnetic torque. Photovoltaic arrays convert solar power to dc electric power; uses chopper and dc-ac inverter to fed three phase Induction Motor. The chopper used here is current fed full bridge boost dc-dc converter, which is preferred and extensively used in high voltage applications and advantageous over voltage fed converters. The inverter switches are controlled by PWM techniques obtained from SVM-DTC of IM. The experimental investigations are given to prove the ability of the proposed scheme of reproducing the performances of a SVM- DTC IM drive.

  10. Simulational studies of epitaxial semiconductor superlattices: Quantum dynamical phenomena in ac and dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Joseph [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Using high-accuracy numerical methods the author investigates the dynamics of independent electrons in both ideal and realistic superlattices subject to arbitrary ac and/or dc electric fields. For a variety of superlattice potentials, optically excited initial wave packets, and combinations of ac and dc electric fields, he numerically solves the time-dependent Schroedinger equation. In the case of ideal periodic superlattice potentials, he investigates a long list of dynamical phenomena involving multiple miniband transitions and time-dependent electric fields. These include acceleration effects associated with interminiband transitions in strong fields, Zener resonances between minibands, dynamic localization with ac fields, increased single-miniband transport with an auxiliary resonant ac field, and enhanced or suppressed interminiband probability exchange using an auxiliary ac field. For all of the cases studied, the resulting time-dependent wave function is analyzed by projecting the data onto convenient orthonormal bases. This allows a detailed comparison with approximately analytic treatments. In an effort to explain the rapid decay of experimentally measured Bloch oscillation (BO) signals the author incorporates a one-dimensional representation of interface roughness (IR) into their superlattice potential. He shows that as a result of IR, the electron dynamics can be characterized in terms of many discrete, incommensurate frequencies near the Block frequency. Chapters 2, 3, 4 and 5 have been removed from this report and will be processed separately.

  11. Current injection electrodes for electrical impedance tomography.

    Science.gov (United States)

    Armstrong, S; Jennings, D

    2004-08-01

    Current conveyors have been identified as a possible component within the current injection electrodes of an electrical impedance tomography system, where accurate current generation or precise measurement of the current injected is required. Several circuit configurations have been investigated through simulation to determine the most suitable to meet the specifications of the EIT system. A bipolar (floating source) circuit configuration employing the use of current conveyors has been designed, which achieves greater than 12 mA output current without saturation, over an accepted body impedance range. Simulations were performed over frequencies in excess of 1 MHz, and the output phase shift was less than 0.15 degrees up to 250 kHz, and 0.6 degrees up to 1 MHz.

  12. Large A.C. machines theory and investigation methods of currents and losses in stator and rotor meshes including operation with nonlinear loads

    CERN Document Server

    Boguslawsky, Iliya; Hayakawa, Masashi

    2017-01-01

    In this monograph the authors solve the modern scientific problems connected with A.C. motors and generators, based first on the detailed consideration of their physical phenomena. The authors describe the theory and investigative methods they developed and applied in practice, which are considered to be of essential interest for specialists in the field of the electrical engineering industry in European countries, the USA, Argentina, and Brazil, as well as in such countries as India, China, and Iran. This book will be of interest to engineers specialized in the field of the manufacture, operation, and repair of A.C. machines (motors and generators) as well as electric drives; to professors, lecturers, and post-graduate students of technical universities, who are specializing in the field of electric machine engineering and electric drives; and to students who are engaged in the field of high current techniques, electric drives, and electric machine engineering.

  13. Truthful Mechanisms for Combinatorial AC Electric Power Allocation

    Science.gov (United States)

    2014-05-01

    REFERENCES [1] National Electrical Code (NEC) NFPA 70-2005. [2] P. Briest, P. Krysta, and B. Vocking. Approximation techniques for utilitarian mechanism... Theory . Cambridge University Press, 2007. [11] Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms. J. Artif. Int. Res., 29(1):19–47, May

  14. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  15. AC and DC Electrical Conductivity Measurements on Glycine Family of Nonlinear Optical (NLO Single Crystals

    Directory of Open Access Journals (Sweden)

    Suresh Sagadevan

    2014-04-01

    Full Text Available In the present work, the AC/DC conductivity studies were carried out on Glycine family of NLO single crystals such as Trisglycine Zinc Chloride (TGZC, Triglycine Acetate (TGAc and Glycine Lithium Sulphate (GLS. The AC conductivity measurements were carried out using HIOKI 3532-50 LCR HITESTER in the frequency range of 50 Hz to 5 MHz for the grown NLO single crystals. The DC electrical conductivity measurements were also carried out for the crystals using the conventional two – probe technique in the temperature range of 313 – 423 K. The present study indicates that both the AC and DC conductivity of the samples increase with the increase in temperature. The activation energies were also calculated from AC/DC conductivity studies.

  16. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  17. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped......We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... graphene are strongly influenced by the ac field. We also show that the intensity of the external field is the critical control parameter for the stability of these excitations....

  18. Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields

    KAUST Repository

    Lim, Seung Jae

    2014-12-30

    An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

  19. Computer Aided Mass Balance Analysis for AC Electric Arc Furnace Steelmaking

    Institute of Scientific and Technical Information of China (English)

    (ü)nal Camdali; Murat Tunc

    2005-01-01

    A mass balance analysis was undertaken for liquid steel production using a computer program specially developed for the AC electric arc furnace at an important alloy steel producer in Turkey. The data obtained by using the computer program were found to be very close to the actual production ones.

  20. Exergy analysis and efficiency in an industrial AC electric ARC furnace

    Energy Technology Data Exchange (ETDEWEB)

    Camdali, U. [Development Bank of Turkey, Ankara (Turkey); Tunc, M. [Yeditepe University, Istanbul (Turkey). Faculty of Engineering

    2003-12-01

    In this study, the steel production process in the AC electric arc furnace (EAF) is discussed and an exergy analysis has been undertaken for the EAF with scrap preheating for an alloyed steel producer in Turkey. Exergy analysis has been employed to obtain optimum design parameters and operation conditions. In this work; obtained results are compared with measured values and previous literature. (author)

  1. Russian electricity market. Current state and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Abdurafikov, R.

    2009-06-15

    The Russian electricity market is currently in transition. The restructuring of the sector has been completed and former public vertically integrated monopolies have been unbundled and partly privatised. The government retained control in all the network companies, the system operator, nuclear generation, and hydro generation. The state retains control also via owner-ship in several TGCs and WGCs in the strategic regions of Moscow and Saint-Petersburg via the state owned gas monopoly Gazprom. The liberalization takes place within two price zones, Europe and Siberia, where more than 90%, 913 TWh in 2007, of Russian electricity consumption takes place. In the rest of Russia, e.g. the Far East and isolated areas like Kaliningrad, electricity is supplied at regulated rates. Only a minor part of electricity in the price zones is currently traded at free prices. The share of electricity traded at free market prices will increase according to the liberalization schedule, reaching ca 90%, all except households, by 2011. Wholesale electricity market bids are aggregated in a detailed power system model of the Russian power grid, taking into account the physical locations of the facilities. The resulting 7700+ nodal market prices, scattered across the 7 time zones of the Russian market area, capture costs of congestion and load losses in the grid. The price level of electricity seems to be rather low at a glance - about 21 euro and 15 euro per MWh in Europe and Siberia respectively. On the other hand, wholesale market buyers have to pay for capacity availability, on average around 3000 euro/MW monthly. With greater share of electricity traded at free prices there will be an increased need to hedge price risks. For this reason a financial market is planned. There are also plans for support schemes for renewable generation and to limit environmental pollution as well as ancillary services markets. Some areas do not experience a likewise opening of the competition in Russia, for

  2. Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Kailash Prasad [Landcare Research, Palmerston North 4442 (New Zealand); Raj, Ashish [Computer Science in Radiology, Weill Medical College, Cornell University, NY 10022 (United States); Brandt, Ernst Helmut [Max-Planck-Institut fuer Metallforschung, PO B 800665, D-70506 Stuttgart (Germany); Kvitkovic, Jozef; Pamidi, Sastry V, E-mail: thakurk@landcareresearch.co.nz, E-mail: asr2004@med.cornell.edu, E-mail: ehb@mf.mpg.de, E-mail: kvitkovic@caps.fsu.edu, E-mail: pamidi@caps.fsu.edu [Center for Advanced Power System, Florida State University, Tallahassee, FL 32310 (United States)

    2011-06-15

    The frequency-dependent critical current of a superconductor strip and Roebel cable has been studied using a 2D finite element simulation. It is shown that the critical current of the superconductor increases with frequency as f{sup 1/n}, where n is the exponent of the power law flux creep model. Transport ac loss in a superconductor strip decreases with frequency as f{sup -2/n} when the amplitude of the applied ac current is far less than its critical current. However, when the applied current is large and becomes comparable to the critical current, the transport ac loss decreases with frequency as 1/f. The analytical results are substantiated with available experimental data and the results of a 2D finite element simulation.

  3. Sub-micrometer particles produced by a low-powered AC electric arc in liquids.

    Science.gov (United States)

    Jaworski, Jacek A; Fleury, Eric

    2012-01-01

    The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.

  4. Modeling and Simulation Analysis of Power Frequency Electric Field of UHV AC Transmission Line

    Directory of Open Access Journals (Sweden)

    Chen Han

    2015-02-01

    Full Text Available In order to study the power frequency electric field of UHV AC transmission lines, this paper which models and calculates using boundary element method simulates various factors influencing the distribution of the power frequency electric field, such as the conductor arrangement, the over-ground height, the split spacing and the sub conductor radius. Different influence of various factors on the electric field distribution will be presented. In a single loop, using VVV triangular arrangement is the most secure way; in a dual loop, the electric field intensity using reverse phase sequence is weaker than that using positive phase sequence. Elevating the over-ground height and reducing the conductor split spacing will both weaken the electric field intensity, while the change of sub conductor radius can hardly cause any difference. These conclusions are important for electric power company to detect circuit.

  5. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  6. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  7. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Science.gov (United States)

    Ainslie, Mark D.; Rodriguez-Zermeno, Victor M.; Hong, Zhiyong; Yuan, Weijia; Flack, Timothy J.; Coombs, Timothy A.

    2011-04-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  8. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2016-06-01

    Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.

  9. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    Science.gov (United States)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  10. INFLUENCE OF FEEDING ELECTRIC ENERGY QUALITY ON HEATING OF THE AUXILIARY MA-CHINES OF AC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    O. YU. Baliichuk

    2014-04-01

    Full Text Available Purpose. The article aims to study the problem of increase the reliability of auxiliary machines for AC electric trains during operation in real conditions. Methodology. The peculiarity of system construction of auxiliary machines for AC electric rolling stock is the use of asynchronous motors for general industrial purpose. An engineering method of influence determination on the feeding voltage asymmetry and its deviation from the nominal value on heating of auxiliary machines insulation was proposed. Findings. It is found out that in case when the auxiliary machines of AC electric trains work under asymmetry factor of the voltage 10% or more and feeding voltage deviation from the nominal order 0.6 relative unit then it is possible the overheat of their isolation, even if it has class H. Originality. For the first time the issue of the total insulation heating under such boundary parameters combinations of energy quality, when each of them contributes to the heating insulation increase as compared to the nominal regime of the "rotating phase splitter−auxiliary machinery" system was illuminated. Practical value. Conducted research allow us to establish the boundary parameter values of feeding energy quality (asymmetry factor, feeding voltage deviations from the nominal value, at which additional isolation overheating of this class under the effect of specified factors will not exceed the agreed value.

  11. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung

    2012-08-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  12. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    Science.gov (United States)

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence.

  13. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    Science.gov (United States)

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  14. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS-fMRI study.

    Science.gov (United States)

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2016-10-15

    Many studies have proven transcranial alternating current stimulation (tACS) to manipulate brain activity. Until now it is not known, however, how these manipulations in brain activity are represented in brain metabolism or how spatially specific these changes are. Alpha-tACS has been shown to enhance the amplitude of the individual alpha frequency (IAF) and a negative correlation between alpha amplitude and occipital BOLD signal was reported in numerous EEG/fMRI experiments. Thus, alpha-tACS was chosen to test the effects of tACS on the BOLD signal. A reduction thereof was expected during alpha-tACS which shows the spatial extent of tACS effects beyond modeling studies. Three groups of subjects were measured in an MRI scanner, receiving tACS at either their IAF (N=11), 1Hz (control; N=12) or sham (i.e., no stimulation - a second control; N=11) while responding to a visual vigilance task. Stimulation was administered in an interleaved pattern of tACS-on runs and tACS-free baseline periods. The BOLD signal was analyzed in response to tACS-onset during resting state and in response to seldom target stimuli. Alpha-tACS at 1.0mA reduced the task-related BOLD response to visual targets in the occipital cortex as compared to tACS-free baseline periods. The deactivation was strongest in an area where the BOLD signal was shown to correlate negatively with alpha amplitude. A direct effect of tACS on resting state BOLD signal levels could not be shown. Our findings suggest that tACS-related changes in BOLD activity occur only as a modulation of an existing BOLD response.

  15. Electric current characteristic of anodic bonding

    Science.gov (United States)

    He, Jun; Yang, Fang; Wang, Wei; Zhang, Li; Huang, Xian; Zhang, Dacheng

    2015-06-01

    In this paper, a novel current-time model of anodic bonding is proposed and verified experimentally in order to investigate underlying mechanisms of anodic bonding and to achieve real-time monitoring of bonding procedure. The proposed model provides a thorough explanation for the electric current characteristic of anodic bonding. More significantly, it explains two issues which other models cannot explain. One is the sharp rise in current when a voltage is initially applied during anodic bonding. The other is the unexpected large width of depletion layers. In addition, enlargement of the intimately contacted area during anodic bonding can be obtained from the proposed model, which can be utilized to monitor the bonding process. To verify the proposed model, Borofloat33 glass and silicon wafers were adopted in bonding experiments in SUSS SB6 with five different bonding conditions (350 °C 1200 V 370 °C 1200 V 380 °C 1200 V 380 °C 1000 V and 380 °C 1400 V). The results indicate that the observed current data highly coincide with the proposed current-time model. For widths of depletion layers, depth profiling using secondary ion mass spectrometry demonstrates that the calculated values by the model are basically consistent with the experimental values as well.

  16. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    Science.gov (United States)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  17. Contactless cell trapping by the use of a uniform AC electric field.

    Science.gov (United States)

    Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira; Santo, Yudai

    2013-01-01

    The AC electric field-driven manipulation of suspended polarizable particles has become a major technique in micro- and nano-devices. In the present study, suspensions of cultured HeLa cells in isotonic solution were used to explore the mechanisms underlying the suspension behaviors during exposure to a uniform AC electric field of strength E(rms)=1.67×10(4) V/m at frequency 1 kHz. Molecular dynamics (MD) simulations based on the Langevin equation of particle kinetics were performed to elucidate the corresponding problem. A theoretical model to compute the trajectories of individual cells under the action of electro-mechanical, viscous and gravitational forces in the suspending medium was newly developed. Numerical computations demonstrated that the suspended cells began to aggregate to form chainlike clusters along the direction of the uniform AC electric field at an earlier stage of the field application. Moreover, the predicted results were similar to the experimental results. These findings indicate that the chain-like cell clustering arises from the long-range dipole-dipole interaction of neighboring cells, but under the action of the gravitational force that likely hinders the growth of clusters in the vertical direction.

  18. AC transport current loss in a coated superconductor in the Bean model

    Energy Technology Data Exchange (ETDEWEB)

    Carr, W.J. [LEI, 700 Technology Drive, Pittsburgh, PA 15219 (United States)]. E-mail: wjamescarrjr@att.net

    2004-10-15

    A new and straightforward calculation is made of the loss in a very thin superconducting strip of rectangular cross-section (e.g. the coating on a coated superconductor) carrying ac transport current in zero applied magnetic field, with a similar strip acting as the return path. The computation is made assuming only that the strip is composed of uniform material which obeys Maxwell's equations and the Bean model. An important consequence of the Bean model is the existence of a field-free region about the middle of the superconductor cross-section. The present loss calculation is novel in two respects: (1) It uses for the first time an actual computation of the shape of the field-free region rather than using qualitative assumptions, and (2) it uses a new approach for making the loss calculation, based on a rigorous solution of Maxwell's equations for this problem. The rigorous solution correctly treats the problem as three-dimensional, having a time-dependent charge on the surface of the superconductor, and having the electric field described by both a vector and a scalar potential. Loss computations are made for the ratio of peak current to critical current in the approximate range of one-half to one, where within this range the loss decreases by about two powers of 10. The most important result coming out of the present calculation (made for the case of a distant return path large compared with the conductor cross-section dimensions but small compared with the length of the conductor), is a confirmation of Norris's previously estimated loss expression which he obtained in a different way.

  19. AC LED的研究现状与发展%Current research and development of AC LED

    Institute of Scientific and Technical Information of China (English)

    满瑞; 李秋俊

    2012-01-01

    介绍了AC LED的特征及其工作原理,分析了AC LED相比于DC LED的优缺点,概述了AC LED在国内外的研究进展及其应用现状,讨论了AC LED技术发展过程中面临的挑战,并展望了其发展趋势.%The characteristics and operation principles of AC LED were presented.The advantages and disadvantages of AC LED compared with the DC LED were analyzed.The development and the latest application of AC LED were described.The challenges of the competition with the traditional light source were discussed,as well as the development trend of AC LED.

  20. Behavior of Electric Current Subjected to ELF Electromagnetic Radiation

    CERN Document Server

    De Aquino, F

    2002-01-01

    Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. It is demonstrated that flux from high power density ELF radiation will cause transitory interruptions in electric current conduction.

  1. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    Science.gov (United States)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  2. Improvement of Interfacial Shear Strength of Mendong Fiber (Fimbristylis globulosa Reinforced Epoxy Composite Using the AC Electric Fields

    Directory of Open Access Journals (Sweden)

    Heru Suryanto

    2015-01-01

    Full Text Available The effects of the AC electric field treatment on the interfacial shear strength of mendong fiber-reinforced epoxy composites were investigated. For this purpose, the epoxy (DGEBA with a cycloaliphatic amine curing agent was treated by the AC electric field during the curing process. The heat generated during the epoxy polymerization process was monitored. Structure of the epoxy was studied by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR, and Scanning Electron Microscope, respectively. The interfacial shear strength (IFSS was also measured using a single fiber pull-out test. XRD analyzes indicated that the treatment of AC electric fields was able to form a crystalline phase of epoxy. IFSS of the mendong fiber-reinforced epoxy composites was optimum increased by 38% in the AC electric fields treatment of 750 V/cm.

  3. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. On the theory of the electric field and current density in a superconductor carrying transport current

    Energy Technology Data Exchange (ETDEWEB)

    Carr, W.J. [LEI 700 Technology Dr., Pittsburgh, PA 15219 (United States)]. E-mail: wjamescarrjr@att.net

    2005-09-15

    A theory is given to explain the physics behind the flow of low-frequency ac transport current around a closed superconducting circuit, where the circuit consists of two long, straight, parallel, uniform conductors, connected to each other at one end and to an applied emf at the other end. Thus one conductor is the return path for the other. A question of interest is what drives the current at any given point in the circuit. The answer given here is a surface charge, where the purpose of the surface charge is to spread the local emf around the circuit, so that at each point in the conductor it produces, together with the electric field of the vector potential, the electric field necessary for the current to flow. But it is then necessary to explain how the surface charge gets there, which is the central problem of the present analysis. The conclusion is that the total current density consists of the superposition of a large transport current and a very much smaller current system of a different symmetry. The transport current density is defined as a two-dimensional current density with no divergence. It flows uniformly along the conductor length, but can vary over the cross-section. The small additional current density has a much different symmetry, being three-dimensional and diverging at the surface of the conductor. Based on a slightly modified Bean model the transport current is treated as supercurrent having the value {+-}J {sub c}, while the small additional system of current is like normal current, with a density given by the electric field divided by a resistivity. The electric field is computed from the sum of the negative time derivative of the vector potential and the negative gradient of the scalar potential due to the surface charge. It has components parallel and perpendicular to the long axis of the conductor. Thus the small normal current density has a perpendicular component which flows into or out of the surface thereby creating the surface charge

  5. Improvement of Interfacial Shear Strength of Mendong Fiber (Fimbristylis globulosa) Reinforced Epoxy Composite Using the AC Electric Fields

    OpenAIRE

    Heru Suryanto; Eko Marsyahyo; Yudy Surya Irawan; Rudy Soenoko; Aminudin

    2015-01-01

    The effects of the AC electric field treatment on the interfacial shear strength of mendong fiber-reinforced epoxy composites were investigated. For this purpose, the epoxy (DGEBA) with a cycloaliphatic amine curing agent was treated by the AC electric field during the curing process. The heat generated during the epoxy polymerization process was monitored. Structure of the epoxy was studied by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscope...

  6. Series Solution for Localization and Entanglement of an Exciton in a Quantum Dot Molecule by an ac Electric Field

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Schr(o)dinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the Schr(o)dinger equation have been obtained for the first time. The analytical expressions can further describe the dynamical behaviors of an interacting electron-hole pair in a double coupled quantum dot molecule under an ac electric field accurately.

  7. Space Weather Effects on Current and Future Electric Power Systems

    Science.gov (United States)

    Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.

    2016-12-01

    This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.

  8. Compensation methods applied in current control schemes for large AC drive systems

    DEFF Research Database (Denmark)

    Rus, D. C.; Preda, N. S.; Teodorescu, Remus;

    2012-01-01

    The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching...

  9. Electric currents in networks of interconnected memristors.

    Science.gov (United States)

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit Theory 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov et al. [Nature (London) 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network's strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect.

  10. Effective Response of Nonlinear Composite under External AC and DC Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang

    2005-01-01

    A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.

  11. The ac and dc electric field meters developed for the US Department of Energy

    Science.gov (United States)

    Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.

    1987-01-01

    Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.

  12. Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Villavicencio, J [Facultad de Ciencias, Universidad Autonoma de Baja California, Ensenada (Mexico); Maldonado, I [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico); Cota, E [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Ensenada (Mexico); Platero, G, E-mail: villavics@uabc.edu.mx [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain)

    2011-02-15

    The dynamics of electrons in ac-driven double quantum dots have been extensively analyzed by means of Floquet theory. In these systems, coherent destruction of tunneling has been shown to occur for certain ac field parameters. In this work we analyze, by means of Floquet theory, the electron dynamics of a triple quantum dot in series attached to electric contacts, where the central dot position oscillates. In particular, we analyze the quasienergy spectrum of this ac-driven nanoelectromechanical system as a function of the intensity and frequency of the ac field and of external dc voltages. For strong driving fields, we derive, by means of perturbation theory, analytical expressions for the quasienergies of the driven oscillator system. From this analysis, we discuss the conditions for coherent destruction of tunneling (CDT) to occur as a function of detuning and field parameters. For zero detuning, and from the invariance of the Floquet Hamiltonian under a generalized parity transformation, we find analytical expressions describing the symmetry properties of the Fourier components of the Floquet states under such a transformation. By using these expressions, we show that in the vicinity of the CDT condition, the quasienergy spectrum exhibits exact crossings which can be characterized by the parity properties of the corresponding eigenvectors.

  13. Progress on advanced dc and ac induction drives for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  14. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    Science.gov (United States)

    Erdogan, Muzaffer

    2016-12-01

    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  15. The effects of bending strain on the critical current and AC loss of BSCCO/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo Min [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Schwartz, Justin [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Sastry, P V P S S [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Lin Liangzhen [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Xiao Liye [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Yu Yunjia [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2004-08-01

    When a coil or a winding is made, the superconducting tapes must be bent to different curvatures. Bending of high temperature superconducting (HTS) tapes can result in degradation of the critical current density and thus increase the AC losses of the tapes. Therefore, the effects of bending strain on the critical current and AC loss should be considered in the design of high temperature superconducting apparatus. In this paper, the dependence of critical current and AC loss on the bending diameter of the superconductor tape was experimentally investigated. The diameters of the curved tape were varied from 110 to 36 mm. AC loss measurements were taken at 77 K, 50 Hz. Analysis of the bending strain effects on the critical current and AC loss are presented. An expression describing the dependence of AC losses on bending strain is proposed by modifying Norris' formula. The experimental results are presented and compared with the calculated values.

  16. 9 CFR 313.30 - Electrical; stunning or slaughtering with electric current.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Electrical; stunning or slaughtering with electric current. 313.30 Section 313.30 Animals and Animal Products FOOD SAFETY AND INSPECTION... Electrical; stunning or slaughtering with electric current. The slaughtering of swine, sheep, calves,...

  17. Statistical evaluation of telephone noise interference caused by AC power line harmonic currents

    Energy Technology Data Exchange (ETDEWEB)

    Kuussaari, M. (Imatran Voima Oy, Vantaa (Finland))

    1993-04-01

    A statistical approach is applied for the evaluation of the limits for harmonic currents in AC power lines, the goal being to prevent excessive telephone noise interference voltages in subscriber cables in rural areas. The analysis is based on Monte-Carlo simulation which takes into account the effect of the experiental probability distributions of the relevant parameters. In the Finnish conditions, the properties of communication cables permit equivalent disturbing phase currents of 8 to 10 A. The digital exchanges permit approximately the same currents. Some new telephone types that have a low balance may make it necessary to limit the currents to a level that is somewhat lower.

  18. Modelling and analysis of current-programmed ac/dc converters

    Science.gov (United States)

    Tymerski, R. P. E.; Daly, K. C.

    1985-03-01

    Current-programmed dc/dc converters operating at a fixed switching frequency are analyzed using state-space averaged modeling. For converters operating in the continuous conduction mode, general closed form expressions that describe the dynamic ac small signal characteristics of the converter are obtained. A reduced order model is used to derive the control current input-to-output voltage, audio susceptibility and output impedance small signal ac transfer functions for the ideal buck, boost, and buck-boost converters operating in the continuous conduction model. It is shown that state-space averaging can correctly predict instability on the buck converter. Current-programmed converters operating in the discontinuous conduction mode are addressed, showing that the transfer functions are represented by a finite pole and a zero at infinity. Instability is predicted for the buck converter when an external ramp is omitted and the output-to-input voltage ratio is greater than or equal to two-thirds.

  19. DSP Based Control Implementation of an AC/DC Converter with Improved Input Current Distortion

    Directory of Open Access Journals (Sweden)

    WISUTMETHEEKORN, P.

    2011-05-01

    Full Text Available This paper presents a digital signal processor based control of an AC/DC converter with nearly unity power factor. Normally, the output voltage of a single-phase AC/DC converter comprises a voltage ripple with twice line-frequency. This affects the voltage control loop and leads to the converter input current distortion. The purposed method is designed to avoid the effect of the output voltage ripple. To verify the proposed control method, MATLAB/Simulink is used for system simulation. A hardware prototype is setup. A low cost digital signal processing chip dsPIC30F4011 is employed as a digital controller to control a CUK AC/DC converter. The converter specifications are 48V output voltage and 250W output power. From the simulation and the experimental results shown that the input current distortion of the purposed system is reduced and lower than the AC/DC converter that controlled by the conventional proportional-integral controller.

  20. The effect of 10 Hz transcranial alternating current stimulation (tACS on corticomuscular coherence

    Directory of Open Access Journals (Sweden)

    Claudia eWach

    2013-08-01

    Full Text Available Synchronous oscillatory activity at alpha (8-12 Hz, beta (13-30 Hz, and gamma (30-90 Hz fre-quencies is assumed to play a key role for motor control. Corticomuscular coherence (CMC represents an established measure of the pyramidal system’s integrity. Transcranial alternating current stimulation (tACS offers the possibility to modulate ongoing oscillatory activity. Behaviourally, 20 Hz tACS in healthy subjects has been shown to result in movement slowing. However, the neurophysiological changes underlying these effects are not entirely understood yet. The present study aimed at ascertaining the effects of tACS at 10 and 20 Hz in healthy subjects on CMC and local power of the primary sensorimotor cortex. Neuromagnetic activity was recorded during isometric contraction before and at two time points (2-10 min and 30-38 min after tACS of the left primary motor cortex (M1, using a 306 channel whole head magnetoencephalo-graphy (MEG system. Additionally, electromyography (EMG of the right extensor digitorum communis (EDC muscle was measured. TACS was applied at 10 and 20 Hz, respectively, for 10 min at 1 mA. Sham stimulation served as control condition. The data suggest that 10 Hz tACS significantly reduced low gamma band CMC during isometric contraction. This implies that tACS does not necessarily cause effects at stimulation frequency. Rather, the findings suggest cross-frequency interplay between alpha and low gamma band activity modulating functional interaction between motor cortex and muscle.

  1. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible lines of ... humans. AC electric power produces electric and magnetic fields that create weak electric currents in humans. Being exposed to some kinds ...

  2. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  3. Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field

    Science.gov (United States)

    Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng

    2016-09-01

    Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.

  4. Automatic Control Systems (ACS for Generation and Sale of Electric Power Under Conditions of Industry-Sector Liberalization

    Directory of Open Access Journals (Sweden)

    Yu. Petrusha

    2013-01-01

    Full Text Available Possible risks pertaining to transition of electric-power industry to market relations have been considered in the paper. The paper presents an integrated ACS for generation and sale of electric power as an improvement of methodology for organizational and technical management. The given system is based on integration of operating Automatic Dispatch Control System (ADCS and developing Automatic Electricity Meter Reading System (AEMRS. The paper proposes to form an inter-branch sector of ACS PLC (Automatic Control System for Prolongation of Life Cycle users which is oriented on provision of development strategy.

  5. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields.

    Science.gov (United States)

    Low, Jonathan; Hogan, S John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T) not equal-E(t+T2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity sigma_{a}>0 and dielectric anisotorpy _{a}conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  6. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  7. Effect of arc current on droplet ejection from tungsten-based electrode in multiphase AC arc

    Science.gov (United States)

    Hashizume, Taro; Tanaka, Manabu; Watanabe, Takayuki

    2017-05-01

    The dynamic behavior of droplet ejection from a tungsten electrode was successfully visualized using a high-speed camera and an appropriate band-pass filter. The effect of arc current on droplet ejection was investigated to understand the electrode erosion mechanism in the multiphase AC arc. The rate of erosion by droplet ejection increased with increasing current. This result was examined on the basis of the time variation in forces on a pending droplet at the electrode tip during the AC cycle. The relationship among electromagnetic force, surface tension, and ion pressure on the molten tip during the cathodic period is crucial for controling droplet ejection. The molten tip becomes hemispherical forming the pending droplet with an increase in the instantaneous value of arc current during the AC cycle. The pending droplet detaches from the electrode surface when electromagnetic force becomes the dominant force. Consequently, a higher rate of erosion by droplet ejection with a higher arc current resulted from a stronger electromagnetic force.

  8. Using electric current to surpass the microstructure breakup limit

    Science.gov (United States)

    Qin, Rongshan

    2017-01-01

    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones.

  9. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew Robert Tomkins

    2015-01-01

    Full Text Available A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  10. Behavior of Electric Current Subjected to ELF Electromagnetic Radiation

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. An apparatus has been constructed to test the behavior of current subjected to ELF radiation. The experimental results are in agreement with theoretical predictions and show that ELF radiation can cause transitory interruptions in electric current conduction.

  11. Current distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2010-01-01

    The Finite-Element-Method (FEM) was used for the simulations of the effect of a changing current distribution during AC impedance spectrum recording on electroceramic point contact and thin film model electrodes. For pure electronic conducting point contact electrodes the transition from the prim......The Finite-Element-Method (FEM) was used for the simulations of the effect of a changing current distribution during AC impedance spectrum recording on electroceramic point contact and thin film model electrodes. For pure electronic conducting point contact electrodes the transition from...... regarding its significance is provided. The associated characteristic impedance spectrum shape change is simulated and its origin discussed. Furthermore, the characteristic shape of impedance spectra of thin electroceramic film electrodes with lateral ohmic resistance is studied as a function...

  12. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  13. Surface magnetic properties of Co{sub 69}Fe{sub 4}Si{sub 15}B{sub 12} when DC and AC currents flow through the ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Fal-Miyar, Vanessa [Departamento de Fisica. Universidad de Oviedo, c/ Calvo Sotelo s.n., 33007, Oviedo (Spain); Kurlyandskaya, Galina V. [Universidad del Pais Vasco UPV-EHU, Dpto. Electricidad y Electronica, Apdo. 644, 48080, Bilbao (Spain); Garcia, Jose A. [Departamento de Fisica. Universidad de Oviedo, c/ Calvo Sotelo s.n., 33007, Oviedo (Spain); Elbaile, Laura [Departamento de Fisica. Universidad de Oviedo, c/ Calvo Sotelo s.n., 33007, Oviedo (Spain)]. E-mail: elbaile@uniovi.es; Crespo, Rosario D. [Departamento de Fisica. Universidad de Oviedo, c/ Calvo Sotelo s.n., 33007, Oviedo (Spain); Tejedor, Marcos [Departamento de Fisica. Universidad de Oviedo, c/ Calvo Sotelo s.n., 33007, Oviedo (Spain)

    2006-09-15

    Surface magnetic properties of Co{sub 69}Fe{sub 4}Si{sub 15}B{sub 12} amorphous ribbons with longitudinal and transverse anisotropies when an electrical current flows through the ribbons has been studied. Observations were performed by the transverse magnetooptical Kerr effect. A DC electrical current caused a shift of the transverse hysteresis loop and AC current produced an increase of the coercive field.

  14. Structural, Optical and AC Electrical Properties of Ce3+-Doped TiO2-SiO2 Matrices

    Science.gov (United States)

    Vidyadharan, Viji; Vasudevan, Prathibha; Karthika, S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2015-08-01

    We report the structural, photoluminescence and alternating current (AC) electrical properties of Ce3+-doped titanosilicate matrices prepared by nonhydrolytic sol-gel method, with different annealing temperatures. The structural characterization of the prepared samples was done by x-ray diffraction, energy dispersive spectrum and Fourier transform infrared spectroscopy measurements. The thermal stability of the prepared matrices was studied by the differential scanning calorimetric analysis. The photoluminescence spectrum shows two luminescence bands centered at 360 nm and 464 nm corresponding to the transitions 2D3/2 to 2F7/2 and 2F5/2, respectively. The dielectric responses of the samples were investigated for the frequency range 1 kHz-3 MHz at room temperature. The variation of AC conductivity, real part of dielectric constant ɛ' and imaginary part of dielectric constant ɛ″ with frequency were also studied. The Cole-Cole parameters were calculated and the semicircles observed in the plots indicate a single relaxation process which can be modelled by an equivalent parallel resistor-capacitor circuit.

  15. Direct current electrical stimulation chamber for treating cells in vitro.

    Science.gov (United States)

    Mobini, Sahba; Leppik, Liudmila; Barker, John H

    2016-02-01

    Electrical stimulation has been shown to promote healing and regeneration in skin, bone, muscle, and nerve tissues in clinical studies. Recently, studies applying electrical stimulation to influence cell behavior associated with proliferation, differentiation, and migration have provided a better understanding of the underlying mechanisms of electrical stimulation-based clinical treatments and improved tissue-engineered products through electro-bioreactor technologies. Here, we present a novel device for delivering direct current (DC) electrical stimulation (ES) to cultivated cells in vitro. Our simplified electro-bioreactor is customized for applying DC electrical current simultaneously in six individual tissue culture wells. The design overcomes previous experimental replicate limitations, thus reducing experimental time and cost.

  16. Influence of constant and ac electric fields on ferromagnetic resonance in magnetoelectric composites

    Science.gov (United States)

    Tatarenko, A. S.; Bichurin, M. I.; Petrov, V. M.; Fillipov, D. A.; Srinivasan, G.

    2004-03-01

    A composite of ferromagnetic and ferroelectric phases is expected to show magnetoelectric coupling that is mediated by mechanical deformation. For such composites, we proposed a model to treat the magnetoelectric (ME) coupling at frequencies corresponding to ferromagnetic resonance (FMR) [1,2]. The effect manifests as a shift in the resonance field when subjected to a constant electric field. Here we discuss a theory for the influence of both dc and high frequency electric fields on FMR in the composites. The model predicts a significant increase in the strength of ME coupling when the electric field is tuned to the electromechanical resonance (EMR) frequency. We assume the composite to be a homogeneous medium. By solving combined elastostatics, electrostatics and magnetostatics equations, we estimate the ME constants using effective parameters. The calculations are for 3-0, 0-3 and 2-2 connectivities. Expressions for ME coefficients are obtained as a function of interface coupling and the volume fraction for the piezoelectric phase. Under the influence of a constant electric field E, our model predicts a shift in the ferromagnetic resonance field that is proportional to ME constants. In the presence of an ac electric field, we estimate a strong ME coupling when the frequency is tuned to EMR. As an example, the FMR field shift at 9.3 GHz due an ac electrical field tuned to EMR at 350 kHz is determined for multilayer and bulk composites of nickel ferrite - lead zirconate titanate. It is shown that ME interactions are enhanced by several orders of magnitude compared to off resonance values. 1. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 64, 094409 (2001). 2. M.I. Bichurin, V. M. Petrov, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 66, 134404 (2002). - supported by grants from the Russian Ministry of Education (Å02-3.4-278), the Universities of Russia Foundation (UNR 01.01.007), and the National Science

  17. Effect of electric current on the cast microstructure of Al-Si alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effect of electric current on the cast microstructure of Al-Si alloy was investigated. It was found that the microstructure of Al-Si alloy was refined as the electric current was applied during solidification. When DC (Direct Current) was applied in solidification, the eutectic Si flakes are similar to those solidified without current, but its length was shortened and its distribution was changed ,with most of the Si flakes arrange in the radial direction, because of the electromagnetic force that resulted from the DC. On the other hand, when AC (Alternating Current) was applied during the solidification of Al-Si alloy, most of the minute hooks on the silicon flakes that were found under DC or without any applied current were broken into small silicon particles. Through silicon concentration measurement by electron microprobe, it was found that the silicon content in the α-Al matrix increased with the current application during solidification, and the effect is more obvious when AC was applied.

  18. Analysis of the ac SQUID with low inductance and low critical current

    DEFF Research Database (Denmark)

    Sørensen, O. H.

    1976-01-01

    The properties of the ac SQUID magnetometer has been analyzed. The results are valid in the low-inductance low-critical-current regime, where the Lri0 producted is belowthe value at which the relation between the enclosed and externally applied magnetic dc flux becomes reentrant. The effects...... of the screening current circulating in the SQUID ring as well as of the SQUID-ring time constant, tau-Lr/R9 are taken into account. Here LR IS THE SQUID-ring inductance, and R is the shunt resistance in the shunted junction model assumed to describe the weak link. It is shown that for finite values of omegatau...

  19. Approach for Wide Use of Diagnostic Method for XLPE Cables Using Harmonics in AC Loss Current

    Science.gov (United States)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 130 lines. In case of cable lines terminated at gas-insulated switchgear (GIS), we have to remove the lightning arrestor (LA) and the potential transformer (PT) out of the test circuit. The reason is that we are afraid that each of LA and PT disturbs the degradation signal from cable lines. It takes extra time (1 or 2 days) and costs more to remove LA and PT in GIS out of a circuit. In order to achieve easy and reasonable diagnosis, we have developed a new method for cable lines terminated at GIS, by utilizing a technique, which enables to reduce signal of LA and PT from disturbed signal of cable lines. We confirmed the effect of the new method by experiments with actual cables.

  20. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; YAN Limin; ZHANG Hao; LI Guoxiu

    2016-01-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V,0-500 Hz) and DC (0-3300 V) electric fields were studied.Ⅰ-Ⅴ curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA,the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone.At the same time,the meso-scale premixed flame conductivity 10-4-10-3 Ω-1.m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitnde estimate.Moreover,the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed,based on the combination of simulation and theoretical analysis.As a result,the electrode sheath dimension was evaluated to less than 0.5 mm,which indicatcd a complex effect of the collisiou sheath on the current measurements.The surface contamination effect of an active electrode was further analyzed using the SEM imaging method,which showed elements immigration during the contamination layer formation process.

  1. Integrated analysis of DFIG drive-train and power electronics dynamics during electrical AC faults and wind disturbances

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Sørensen, Poul Ejnar; Anaya-Lara, Olimpo

    2013-01-01

    The dynamics of a 2 MW DFIG wind turbine are studied during electrical AC faults, and wind disturbances. A simulation platform that couples HAWC2, and Matlab/Simulink was used. High frequencies of the gear box, and power electronics are neglected. It was shown that the dynamics of the dc-link are......The dynamics of a 2 MW DFIG wind turbine are studied during electrical AC faults, and wind disturbances. A simulation platform that couples HAWC2, and Matlab/Simulink was used. High frequencies of the gear box, and power electronics are neglected. It was shown that the dynamics of the dc...

  2. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    CERN Document Server

    Peterlin, Primoz

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modelled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kHz range, and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied AC electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys. J. 95:L19--L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of m...

  3. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen

    2014-03-01

    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  4. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    Science.gov (United States)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  5. On the optical and electrical properties of rf and a.c. plasma polymerized aniline thin films

    Indian Academy of Sciences (India)

    U S Sajeev; C Joseph Mathai; S Saravanan; Rajeev R Ashokan; S Venkatachalam; M R Anantharaman

    2006-04-01

    Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques.

  6. Lorentz Dispersion Law from classical Hydrogen electron orbits in AC electric field via geometric algebra

    CERN Document Server

    Perez, Uzziel; Sugon, Quirino M; McNamara, Daniel J; Yoshikawa, Akimasa

    2015-01-01

    We studied the orbit of an electron revolving around an infinitely massive nucleus of a large classical Hydrogen atom subject to an AC electric field oscillating perpendicular to the electron's circular orbit. Using perturbation theory in geometric algebra, we show that the equation of motion of the electron perpendicular to the unperturbed orbital plane satisfies a forced simple harmonic oscillator equation found in Lorentz dispersion law in Optics. We show that even though we did not introduce a damping term, the initial orbital position and velocity of the electron results to a solution whose absorbed energies are finite at the dominant resonant frequency $\\omega=\\omega_0$; the electron slowly increases its amplitude of oscillation until it becomes ionized. We computed the average power absorbed by the electron both at the perturbing frequency and at the electron's orbital frequency. We graphed the trace of the angular momentum vector at different frequencies. We showed that at different perturbing frequen...

  7. Experimental Study on the Influence of AC Stray Current on the Cathodic Protection of Buried Pipe

    Directory of Open Access Journals (Sweden)

    Qingmiao Ding

    2016-01-01

    Full Text Available The size of the damaged area of the coating and its position on the pipeline impacted the cathodic protection potential, and there was a damaged area of the greatest impact value. When damaged area was 300 mm2, the IR drop was the largest, and this situation could easily lead to inadequate protection; when the parallel spacing between pipeline and interference source was unchanged, the measured value curves of cathodic protection potential presented “U” shaped trend with the increasing stray current interference intensity. Under certain parallel spacing between pipeline and interference source, high alternating stray current intensity would cause serious negative offsets, so that the overprotection of the pipeline occurred, and make the coating crack; there was a parallel threshold length. When less than the threshold, the pipe-ground potential increases rapidly with the parallel length increasing. In order to judge whether a pipeline was interference by AC stray current and the risk of stray current corrosion, we should make a comprehensive analysis of the cathodic protection energizing potential, the switch-off potential, AC pipe-soil potential, IR drops, and so on.

  8. Reducing current reversal time in electric motor control

    Science.gov (United States)

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  9. Electric breakdown during the pulsed current spreading in the sand

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-03-15

    Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.

  10. Equivalent Resistance in Pulse Electric Current Sintering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sintering resistance for conductive TiB2 and non-conductive Al2O3 as well as empty die during pulse current sintering were investigated in this paper.Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions.It is found that the current paths for conductive are different from those for non-conductive materials.For non-conductive materials,sintering resistances are influenced by powder sizes and heating rates,which indicates that pulse current has some interaction with non-conductive powders.For conductive TiB2,sintering resistances are influenced by heating rates and ball-milling time,which indicates the effect of powders activated by spark.

  11. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current.

    Science.gov (United States)

    Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed

    2016-01-15

    This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency.

  12. Contaminación acústica por grupos electrógenos // Acoustic contamination by diesel driven electric plant.

    Directory of Open Access Journals (Sweden)

    Yanexy Cepero-Aguilera

    2009-05-01

    Full Text Available El trabajo tiene como tema el impacto ambiental por ruido de grupos electrógenos (GE. Semuestran diferentes definiciones y conceptos referidos a la explotación de los GE y lasconsecuencias que puede provocar a las personas que permanezcan cerca de ellos durante sufuncionamiento. Los grupos electrógenos son además de generadores de energía, generadores deruido y por tanto contribuyen a la contaminación acústica del lugar donde estén situados. En eldocumento se aborda la importancia del correcto uso y selección de los protectores auditivos paraaquellas personas que trabajen directamente en las baterías de grupos electrógenos, así comoalgunas formas de atenuar el ruido. También se caracteriza la emisión sonora de estos a partir deestudios realizados.Palabras claves: ruido, nivel sonoro, sonido.________________________________________________________________________AbstractThis paper concerns with the environmental damage due to noise emission introduced by EngineGenerator Sets. Definitions and concepts about Engine Generator operation are shown as well asthe consequences over the personnel who stand near the Engine Generators during theiroperation. Obviously, such kind of machines generates energy but they also generate noise whichcontaminates the environment around them. The paper states how important are the rightselection and use of noise protection devices for those whose main job is to operate enginegenerator sets. Some methods for noise damping are also shown. Finally, some case studies arepresented in order to describe the noise emission registered in the real world.Key words: noise, sound level, sound.

  13. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...... therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects...... indeed affect the pump performance in a way that we can rationalize by physical arguments....

  14. Prediction of Pollution Flashover Voltage Based on Leakage Current Under AC Operating Voltage

    Institute of Scientific and Technical Information of China (English)

    MEI Hongwei; WANG Liming; GUAN Zhicheng; MAO Yingke

    2012-01-01

    This paper presented a model to predict the AC flashover voltage of contaminated suspension insulators.The prediction method is based on the maximum leakage current under AC operating voltage.Three kinds of widely used suspension insulators were tested in various contamination states such as pollution layers with different equivalent salt deposit density(ESDD),different composition of the conductive components,different non-soluble deposit density(NSDD) and different pollution distribution states to simulate the contamination states in nature.The effective ESDD was proposed and calculated.Influences of contamination states to maximum leakage current and flashover voltage were studied.Then,the relationships between flashover voltage and leakage current in these states were presented.Finally,considering the difference of insulator profiles,a new parameter is defined and a model to estimate the flashover voltage based on this parameter is developed.The model could be used in all kinds of suspension insulators in different contamination states and was validated by the test results.

  15. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    Science.gov (United States)

    Akune, Tadahiro; Sakamoto, Nobuyoshi

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-Tc superconductor. The critical current densities of the proximity-induced superconducting matrix Jcm can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain Jcm, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of Jcm estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  16. Critical current densities estimated from AC susceptibilities in proximity-induced superconducting matrix of multifilamentary wire

    Energy Technology Data Exchange (ETDEWEB)

    Akune, Tadahiro; Sakamoto, Nobuyoshi, E-mail: akune@te.kyusan-u.ac.j [Department of Electrical Engineering and Information Technology, Kyushu Sangyo University, 2-3-1 Matsukadai, Fukuoka 813-8503 (Japan)

    2009-03-01

    In a multifilamentary wire proximity-currents between filaments show a close resemblance with the inter-grain current in a high-T{sub c} superconductor. The critical current densities of the proximity-induced superconducting matrix J{sub cm} can be estimated from measured twist-pitch dependence of magnetization and have been shown to follow the well-known scaling law of the pinning strength. The grained Bean model is applied on the multifilamentary wire to obtain J{sub cm}, where the filaments are immersed in the proximity-induced superconducting matrix. Difference of the superconducting characteristics of the filament, the matrix and the filament content factor give a variety of deformation on the AC susceptibility curves. The computed AC susceptibility curves of multifilamentary wires using the grained Bean model are favorably compared with the experimental results. The values of J{sub cm} estimated from the susceptibilities using the grained Bean model are comparable to those estimated from measured twist-pitch dependence of magnetization. The applicability of the grained Bean model on the multifilamentary wire is discussed in detail.

  17. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  18. Measuring ac losses in superconducting cables using a resonant circuit:Resonant current experiment (RESCUE)

    DEFF Research Database (Denmark)

    Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten;

    1998-01-01

    be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...

  19. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  20. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  1. Dielectric aggregation kinetics of cells in a uniform AC electric field.

    Science.gov (United States)

    Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira

    2014-01-01

    Cell manipulation and separation technologies have potential biological and medical applications, including advanced clinical protocols such as tissue engineering. An aggregation model was developed for a human carcinoma (HeLa) cell suspension exposed to a uniform AC electric field, in order to explore the field-induced structure formation and kinetics of cell aggregates. The momentum equations of cells under the action of the dipole-dipole interaction were solved theoretically and the total time required to form linear string-like cluster was derived. The results were compared with those of a numerical simulation. Experiments using HeLa cells were also performed for comparison. The total time required to form linear string-like clusters was derived from a simple theoretical model of the cell cluster kinetics. The growth rates of the average string length of cell aggregates showed good agreement with those of the numerical simulation. In the experiment, cells were found to form massive clusters on the bottom of a chamber. The results imply that the string-like cluster grows rapidly by longitudinal attraction when the electric field is first applied and that this process slows at later times and is replaced by lateral coagulation of short strings. The findings presented here are expected to enable design of methods for the organization of three-dimensional (3D) cellular structures without the use of micro-fabricated substrates, such as 3D biopolymer scaffolds, to manipulate cells into spatial arrangement.

  2. Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis

    Science.gov (United States)

    González, A.; Ramos, A.; García-Sánchez, P.; Castellanos, A.

    2010-01-01

    In this work, we extend previous analyses of ac electro-osmosis to account for the combined action of two experimentally relevant effects: (i) Faradaic currents from electrochemical reactions at the electrodes and (ii) differences in ion mobilities of the electrolyte. In previous works, the ac electro-osmotic motion has been analyzed theoretically under the assumption that only forces in the diffuse (Debye) layer are relevant. Here, we first show that if the ion mobilities of a 1-1 aqueous solution are different, the charged zone expands from the Debye layer to include the diffusion layer. We later include the Faradaic currents and, as an attempt to explore both factors simultaneously, we perform a thin-layer, low-frequency, linear analysis of the system. Finally, the model is applied to the case of an electrolyte actuated by a traveling-wave signal. A steady liquid motion in opposite direction to the applied signal is predicted for some ranges of the parameters. This could serve as a partial explanation for the observed flow reversal in some experiments.

  3. Exposure of unionid mussels to electric current: Assessing risks associated with electrofishing

    Science.gov (United States)

    Holliman, F.M.; Kwak, T.J.; Cope, W.G.; Levine, J.F.

    2007-01-01

    Electric current is routinely applied in freshwater for scientific sampling of fish populations (i.e., electrofishing). Freshwater mussels (families Margaritiferidae and Unionidae) are distributed worldwide, but their recent declines in diversity and abundance constitute an imperilment of global significance. Freshwater mussels are not targeted for capture by electrofishing, and any exposure to electric current is unintentional. The effects of electric shock are not fully understood for mussels but could disrupt vital physiological processes and represent an additional threat to their survival. In a controlled laboratory environment, we examined the consequences of exposure to two typical electrofishing currents, 60-Hz pulsed DC and 60-Hz AC, for the survival of adult and early life stages of three unionid species; we included fish as a quality control measure. The outcomes suggest that electrical exposure associated with typical electrofishing poses little direct risk to freshwater mussels. That is, adult mussel survival and righting behaviors (indicators of sublethal stress) were not adversely affected by electrical exposure. Glochidia (larvae that attach to and become parasites on fish gills or fins) showed minimal immediate reduction in viability after exposure. Metamorphosis from glochidia to free-living juvenile mussels was not impaired after electric current simulated capture-prone behaviors (stunning) in infested host fish. In addition, the short-term survival of juvenile mussels was not adversely influenced by exposure to electric current. Any minimal risk to imperiled mussels must be weighed at the population level against the benefits gained by using the gear for scientific sampling of fish in the same waters. However, scientists sampling fish by electrofishing should be aware of mussel reproductive periods and processes in order to minimize the harmful effects to host fish, especially in areas where mussel conservation is a concern. ?? Copyright by the

  4. Contaminación acústica por grupos electrógenos

    Directory of Open Access Journals (Sweden)

    Yanexy Cepero-Aguilera

    2009-05-01

    Full Text Available El trabajo tiene como tema el impacto ambiental por ruido de grupos electrógenos (GE. Se muestran diferentes definiciones y conceptos referidos a la explotación de los GE y las consecuencias que puede provocar a las personas que permanezcan cerca de ellos durante su funcionamiento. Los grupos electrógenos son además de generadores de energía, generadores de ruido y por tanto contribuyen a la contaminación acústica del lugar donde estén situados. En el documento se aborda la importancia del correcto uso y selección de los protectores auditivos para aquellas personas que trabajen directamente en las baterías de grupos electrógenos, así como algunas formas de atenuar el ruido. También se caracteriza la emisión sonora de estos a partir de estudios realizados.This paper concerns with the environmental damage due to noise emission introduced by Engine Generator Sets. Definitions and concepts about Engine Generator operation are shown as well as the consequences over the personnel who stand near the Engine Generators during their operation. Obviously, such kind of machines generates energy but they also generate noise which contaminates the environment around them. The paper states how important are the right selection and use of noise protection devices for those whose main job is to operate engine generator sets. Some methods for noise damping are also shown. Finally, some case studies are presented in order to describe the noise emission registered in the real world.

  5. An “Off-the-Shelf” System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Robert E., E-mail: Robert.Neal@alfred.org.au; Kavnoudias, Helen; Thomson, Kenneth R. [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia)

    2015-06-15

    IntroductionIrreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators.MethodsWe describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator.ResultsAccuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues.ConclusionsThis system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents—sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  6. Hysteresis Current Control Based Shunt Active Power Filter for Six Pulse Ac/Dc Converter

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Pandey

    2017-02-01

    Full Text Available In this paper the simulation of Shunt Active power Filter using P-Q theory and PI controller has been presented. This SAPF compensates the harmonic currents drawn by three phase six pulse AC/DC converter. The process of compensation is done by calculating the instantaneous reactive power losses using p-q theory and the PI controller to reduce the ripple voltage of the dc capacitor of the PWM-VSI. This approach is different from conventional approach and provides very effective solution. In this simulation we use hysteresis band current controller (HCC for switching the VSI inverter. The simulation has been done for both steady state and transient conditions

  7. Online Fault Location on AC Cables in Underground Transmission Systems using Sheath Currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkarab, Kasun; Rajapakse, Athula

    2014-01-01

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using sheath currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  8. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  9. Prevention of Staphylococcus epidermidis biofilm formation using electrical current.

    Science.gov (United States)

    Del Pozo, Jose L; Rouse, Mark S; Euba, Gorane; Greenwood-Quaintance, Kerryl E; Mandrekar, Jayawant N; Steckelberg, James M; Patel, Robin

    2014-09-05

    A technique for the prevention of staphylococcal adhesion by electrical current exposure was investigated. Teflon coupons were exposed to a continuous flow of 103 cfu/ml Staphylococcus epidermidis with or without 2000 microA DC electrical current delivered by electrodes on opposite sides of a coupon, touching neither each other nor the coupon. A mean 3.46 (SD, 0.20) and 5.70 (SD, 1.03) log10 cfu/cm2 were adhered to the non-electrical current exposed coupons after 4 h and 24 h, respectively. A mean 2.46 (SD, 0.31) and 1.47 (SD, 0.73) log10 cfu/cm2 were adhered after 4 h and 24 h with exposure to 2000 microA electrical current delivered by graphite electrodes. A mean 2.21 (SD, 0.14) and 0.55 (SD, 0.00) log10 cfu/cm2 were adhered after 4 h and 24 h with exposure to 2000 microA electrical current delivered by stainless steel electrodes. Electrical current may be useful in the prevention of staphylococcal adhesion to biomaterials.

  10. Routing Physarum with electrical flow/current

    CERN Document Server

    Tsuda, Soichiro; Adamatzky, Andrew; Mills, Jonathan

    2012-01-01

    Plasmodium stage of Physarum polycephalum behaves as a distributed dynamical pattern formation mechanism who's foraging and migration is influenced by local stimuli from a wide range of attractants and repellents. Complex protoplasmic tube network structures are formed as a result, which serve as efficient `circuits' by which nutrients are distributed to all parts of the organism. We investigate whether this `bottom-up' circuit routing method may be harnessed in a controllable manner as a possible alternative to conventional template-based circuit design. We interfaced the plasmodium of Physarum polycephalum to the planar surface of the spatially represented computing device, (Mills' Extended Analog Computer, or EAC), implemented as a sheet of analog computing material whose behaviour is input and read by a regular 5x5 array of electrodes. We presented a pattern of current distribution to the array and found that we were able to select the directional migration of the plasmodium growth front by exploiting pla...

  11. Application of direct torque control to electric screw presses for speeding up torque response and reducing starting current

    Institute of Scientific and Technical Information of China (English)

    FENG Yi; HUANG Shu-huai; LI Jun-chao; XIONG Xiao-hong

    2009-01-01

    Fast response and stable torque output are crucial to the performance of electric screw presses. This paper describes the design of a direct torque control (DTC) system for speeding up torque response and reducing the starting current of electric screw presses and its application to the J58K series of numerical control electric screw presses with a dual-motor drive. The DTC drive system encompasses speed control, torque reference control, and switching frequency control. Comparison of the DTC duaI-AC induction motor drive with corresponding AC servo motor drive showed that for the J58K-315 electric screw press, the DTC drive system attains a higher maximum speed (786 r/min) within a shorter time (1.13 s) during a 250 mm stroke and undergoes smaller rise in temperature (42.0 ℃) in the motor after running for 2 h at a 12 min strike fi'equency than the AC servo motor drive does (751 r/min within 1.19 s, and 50.6 ℃ rise). Moreover, the DTC AC induction motor drive, with no need for a tachometer or position encoder to feed back the speed or position of the motor shaft, enjoys increased reliability in a strong-shock work environment.

  12. Modeling the interaction of electric current and tissue: importance of accounting for time varying electric properties.

    Science.gov (United States)

    Evans, Daniel J; Manwaring, Mark L

    2007-01-01

    Time varying computer models of the interaction of electric current and tissue are very valuable in helping to understand the complexity of the human body and biological tissue. The electrical properties of tissue, permittivity and conductivity, are vital to accurately modeling the interaction of the human tissue with electric current. Past models have represented the electric properties of the tissue as constant or temperature dependent. This paper presents time dependent electric properties that change as a result of tissue damage, temperature, blood flow, blood vessels, and tissue property. Six models are compared to emphasize the importance of accounting for these different tissue properties in the computer model. In particular, incorporating the time varying nature of the electric properties of human tissue into the model leads to a significant increase in tissue damage. An important feature of the model is the feedback loop created between the electric properties, tissue damage, and temperature.

  13. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long......Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... the output from the switch arrangement and designed such that a high impedance at a frequency range below the switching frequency is obtained, seen from the output terminals. Switches implemented by normally-on-devices are preferred, e.g. in the form of a JFET. The converter circuit may be in different...

  14. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik;

    2010-01-01

    be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...... with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology....

  15. Vector Control Algorithm for Electric Vehicle AC Induction Motor Based on Improved Variable Gain PID Controller

    Directory of Open Access Journals (Sweden)

    Gang Qin

    2015-01-01

    Full Text Available The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor. Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the AC induction motor experiment set is constructed to verify the effect of proposed controller.

  16. Deformation analysis of vesicles in an alternating-current electric field.

    Science.gov (United States)

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  17. Electrical synapses and synchrony: the role of intrinsic currents.

    Science.gov (United States)

    Pfeuty, Benjamin; Mato, Germán; Golomb, David; Hansel, David

    2003-07-16

    Electrical synapses are ubiquitous in the mammalian CNS. Particularly in the neocortex, electrical synapses have been shown to connect low-threshold spiking (LTS) as well as fast spiking (FS) interneurons. Experiments have highlighted the roles of electrical synapses in the dynamics of neuronal networks. Here we investigate theoretically how intrinsic cell properties affect the synchronization of neurons interacting by electrical synapses. Numerical simulations of a network of conductance-based neurons randomly connected with electrical synapses show that potassium currents promote synchrony, whereas the persistent sodium current impedes it. Furthermore, synchrony varies with the firing rate in qualitatively different ways depending on the intrinsic currents. We also study analytically a network of quadratic integrate-and-fire neurons. We relate the stability of the asynchronous state of this network to the phase-response function (PRF), which characterizes the effect of small perturbations on the firing timing of the neurons. In particular, we show that the greater the skew of the PRF toward the first half of the period, the more stable the asynchronous state. Combining our simulations with our analytical results, we establish general rules to predict the dynamic state of large networks of neurons coupled with electrical synapses. Our work provides a natural explanation for surprising experimental observations that blocking electrical synapses may increase the synchrony of neuronal activity. It also suggests different synchronization properties for LTS and FS cells. Finally, we propose to further test our predictions in experiments using dynamic clamp techniques.

  18. Electric Current Induced Light Emission from C60

    NARCIS (Netherlands)

    Palstra, T.T.M.; Haddon, R.C.; Lyons, K.B.

    1997-01-01

    We report the luminescence of C60 crystals and films due to the passage of an electrical current. The current-voltage behavior is highly non-linear with light-emission beyond a threshold voltage. The emission spectrum is featureless and resembles black-body radiation with an effective temperature on

  19. The problem of introducing an electrical current into liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Yavoyskiy, V.I.; Khanov, V.K.; Kovalev, P.I.; Povkh, I.L.

    1984-01-01

    The question of introducing an electrical current into a liquid metal by means of steel electrode plates mounted in the walls of groove fettling is examined. The contact between the electrodes and the liquid cast iron and steel was accomplished through openings in the fettling. The supply of current was accomplished through a circuit in which an electrical current, which traveled along the electrode downward and then through the openings in the fettling into the liquid metal, is fed to the upper part of the electrode. The results are of interest for studies of liquid metallic magnetohydrodynamic installations.

  20. Is Coronal X-ray Emission Energized By Electric Currents?

    Science.gov (United States)

    Ishibashi, Kazunori; Metcalf, T.; Lites, B.

    2007-05-01

    We examine the spatial correlation between coronal X-ray emission observed with the Hinode X-Ray Telescope and electric currents observed with the Hinode Solar Optical Telescope Spectro-polarimeter. We determine to what extent the X-ray brightness is correlated with electric current density and hence to what extent the hot corona is energized by electric currents which flow through the photosphere. We will also consider whether the currents reach the corona to heat the coronal plasma or whether they predominantly close below the corona. Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, development and operation of the mission.

  1. Rethinking Sediment Biogeochemistry After the Discovery of Electric Currents

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through......The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted...... from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most...

  2. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    ][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric......Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these /`cable bacteria/' establish and sustain electric...... conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total...

  3. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these /`cable bacteria/' establish and sustain electric...... conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total......][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric...

  4. Rethinking sediment biogeochemistry after the discovery of electric currents.

    Science.gov (United States)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils

    2015-01-01

    The discovery of electric currents in marine sediments arose from a simple observation that conventional biogeochemistry could not explain: Sulfide oxidation in one place is closely coupled to oxygen reduction in another place, centimeters away. After experiments demonstrated that this resulted from electric coupling, the conductors were found to be long, multicellular, filamentous bacteria, now known as cable bacteria. The spatial separation of oxidation and reduction processes by these bacteria represents a shortcut in the conventional cascade of redox processes and may drive most of the oxygen consumption. In addition, it implies a separation of strong proton generators and consumers and the formation of measurable electric fields, which have several effects on mineral development and ion migration. This article reviews the work on electric currents and cable bacteria published through April 2014, with an emphasis on general trends, thought-provoking consequences, and new questions to address.

  5. An Examination of AC/HVDC Power Circuits for Interconnecting Bulk Wind Generation with the Electric Grid

    Directory of Open Access Journals (Sweden)

    Daniel Ludois

    2010-06-01

    Full Text Available The application of high voltage dc (HVDC transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV ac transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed ‘bridge of bridge’ converters (BoBC has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that maybe used by wind energy/bulk transmission developers for performing engineering trade-off studies.

  6. An examination of AC/HVDC power circuits for interconnecting bulk wind generation with the electric grid

    Energy Technology Data Exchange (ETDEWEB)

    Ludois, D.; Venkataramanan, G. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison 1415 Engineering Dr. Madison WI 53706 (United States)

    2010-06-15

    The application of high voltage DC (HVDC) transmission for integrating large scale and/or off-shore wind generation systems with the electric grid is attractive in comparison to extra high voltage (EHV) AC transmission due to a variety of reasons. While the technology of classical current sourced converters (CSC) using thyristors is well established for realization of large HVDC systems, the technology of voltage sourced converters (VSC) is emerging to be an alternative approach, particularly suitable for multi-terminal interconnections. More recently, a more modular scheme that may be termed 'bridge of bridge' converters (BoBC) has been introduced to realize HVDC systems. While all these three approaches are functionally capable of realizing HVDC systems, the converter power circuit design trade-offs between these alternatives are not readily apparent. This paper presents an examination of these topologies from the point of view of power semiconductor requirements, reactive component requirements, operating losses, fault tolerance, multi-terminal operation, modularity, complexity, etc. Detailed analytical models will be used along with a benchmark application to develop a comparative evaluation of the alternatives that may be used by wind energy/bulk transmission developers for performing engineering trade-off studies. (author)

  7. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  8. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Science.gov (United States)

    Mathur, Vinay; Tanger, Ramesh; Gupta, Arun Kumar

    2016-01-01

    Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation. PMID:27170922

  9. Succession of cable bacteria and electric currents in marine sediment

    OpenAIRE

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U.; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-01-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these ‘cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established through...

  10. Low Voltage Electric Current Causing Ileal Perforation: A Rare Injury

    Directory of Open Access Journals (Sweden)

    Aditya Pratap Singh

    2016-04-01

    Full Text Available Post-electric burn ileal perforation is a rare but severe complication leading to high morbidity and mortality if there is delay in diagnosis and management. We are describing a case of electric current injury of left forearm, chest, and abdominal wall with perforation of ileum in an 8-year old boy. Patient was successfully managed by primary closure of the ileal perforation.

  11. A nontrivial factor in determining current distribution in an ac HTS cable-proximity effect

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A superconductor has zero resistance at the superconducting state. This unique property creates many exceptional phenomena, of which some are known and the others are not. Our experiments with multilayer high temperature superconductor (HTS) cable samples revealed a new phenomenon that alternating current had a tendency to flow in the inner and outer layers of the cables. We attribute the cause of this phenomenon to the electromagnetic interaction in an infinite electrical conductivity medium and term it "super-proximity-effect". This effect will greatly affect the performance of a multilayer superconducting cable and other superconducting devices which are involved with alternating current transportation.

  12. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system...... coils if the screen currents contain the necessary information for accurate fault location. In this paper, this is examined by analysis of field measurements and through a study of simulations. The wavelet transform and visual inspection methods are used and the accuracy is compared. Field measurements...... and simulations are compared for testing the reliability of using simulations for studying fault location methods....

  13. Three-Dimensional Interaction of a Large Number of Dense DEP Particles on a Plane Perpendicular to an AC Electrical Field

    Directory of Open Access Journals (Sweden)

    Chuanchuan Xie

    2017-01-01

    Full Text Available The interaction of dielectrophoresis (DEP particles in an electric field has been observed in many experiments, known as the “particle chains phenomenon”. However, the study in 3D models (spherical particles is rarely reported due to its complexity and significant computational cost. In this paper, we employed the iterative dipole moment (IDM method to study the 3D interaction of a large number of dense DEP particles randomly distributed on a plane perpendicular to a uniform alternating current (AC electric field in a bounded or unbounded space. The numerical results indicated that the particles cannot move out of the initial plane. The similar particles (either all positive or all negative DEP particles always repelled each other, and did not form a chain. The dissimilar particles (a mixture of positive and negative DEP particles always attracted each other, and formed particle chains consisting of alternately arranged positive and negative DEP particles. The particle chain patterns can be randomly multitudinous depending on the initial particle distribution, the electric properties of particles/fluid, the particle sizes and the number of particles. It is also found that the particle chain patterns can be effectively manipulated via tuning the frequency of the AC field and an almost uniform distribution of particles in a bounded plane chip can be achieved when all of the particles are similar, which may have potential applications in the particle manipulation of microfluidics.

  14. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  15. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    Science.gov (United States)

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  16. Anomalous Power Law Dispersions in ac Conductivity and Permittivity Shown to be Characteristics of Microstructural Electrical Networks

    Science.gov (United States)

    Almond, D. P.; Bowen, C. R.

    2004-04-01

    The frequency dependent ac conductivity and permittivity of porous lead zirconate titanate ceramic with the pore volume filled with water are shown to match the simulated electrical response of a large network of randomly positioned resistors and capacitors. Anomalous power law dispersions in conductivity and permittivity are shown to be an electrical response characteristic of the microstructural network formed by the porous lead zirconate titanate pore structure. The anomalous power law dispersions of a wide range of materials are also suggested to be microstructural network characteristics.

  17. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Török, T.; Titov, V. S.; Mikić, Z. [Predictive Science, Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Archontis, V. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Linton, M. G. [U.S. Naval Research Lab, 4555 Overlook Avenue, SW Washington, DC 20375 (United States); Dalmasse, K.; Aulanier, G. [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Kliem, B. [Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam (Germany)

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  18. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    Science.gov (United States)

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air.

  19. Dedicated algorithm and software for the integrated analysis of AC and DC electrical outputs of piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eum [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-10-15

    DC electrical outputs of a piezoelectric vibration energy harvester by nonlinear rectifying circuitry can hardly be obtained either by any mathematical models developed so far or by finite element analysis. To address the issue, this work used an equivalent electrical circuit model and newly developed an algorithm to efficiently identify relevant circuit parameters of arbitrarily-shaped cantilevered piezoelectric energy harvesters. The developed algorithm was then realized as a dedicated software module by adopting ANSYS finite element analysis software for the parameters identification and the Tcl/Tk programming language for a graphical user interface and linkage with ANSYS. For verifications, various AC electrical outputs by the developed software were compared with those by traditional finite element analysis. DC electrical outputs through rectifying circuitry were also examined for varying values of the smoothing capacitance and load resistance.

  20. Electric currents and coronal heating in NOAA active region 6952

    Science.gov (United States)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  1. Syncing your brain: electric currents to enhance cognition

    NARCIS (Netherlands)

    Schutter, D.J.L.G.

    2014-01-01

    Contemporary studies in cognitive neuroscience demonstrate that cognitive performance can be enhanced by applying exogenous low-intensity electric currents to the brain. These findings have resulted in a widespread interest from both scientists and popular media, particularly, regarding the host of

  2. Syncing your brain: electric currents to enhance cognition

    NARCIS (Netherlands)

    Schutter, D.J.L.G.

    2014-01-01

    Contemporary studies in cognitive neuroscience demonstrate that cognitive performance can be enhanced by applying exogenous low-intensity electric currents to the brain. These findings have resulted in a widespread interest from both scientists and popular media, particularly, regarding the host of

  3. Gender differences in current received during transcranial electrical stimulation

    Directory of Open Access Journals (Sweden)

    Michael eRussell

    2014-08-01

    Full Text Available Low current transcranial electrical stimulation is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation (GETS modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, Proton Density MRIs from 24 adult subjects (12 male and 12 female were modeled with virtual electrodes placed at F3, F4, C3 and C4. Two sizes of electrodes 20 mm round and 50 x 45 mm square were examined at 0.5, 1 and 2 mA input currents. The intensity of current received was sampled in a one centimeter sphere placed at the cortex directly under each scalp electrode. There was a tenfold range in the current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P <0.05. Larger electrodes delivered somewhat larger amounts of current then the smaller ones (P <0.01. Electrodes in the frontal regions delivered less current than those in the parietal region (P<0.05. There were large individual differences in current levels the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancellous parietal bone and females more dense parietal bone (p<0.01. These differences should be considered when planning transcranial electrical stimulation studies and call into question earlier reports of gender differences due to hormonal influences.

  4. Novel method for immunofluorescence staining of mammalian eggs using non-contact alternating-current electric-field mixing of microdroplets.

    Science.gov (United States)

    Hiromitsu, Shirasawa; Jin, Kumagai; Emiko, Sato; Katsuya, Kabashima; Yukiyo, Kumazawa; Wataru, Sato; Hiroshi, Miura; Ryuta, Nakamura; Hiroshi, Nanjo; Yoshihiro, Minamiya; Yoichi, Akagami; Yukihiro, Terada

    2015-10-19

    Recently, a new technique was developed for non-catalytically mixing microdroplets. In this method, an alternating-current (AC) electric field is used to promote the antigen-antibody reaction within the microdroplet. Previously, this technique has only been applied to histological examinations of flat structures, such as surgical specimens. In this study, we applied this technique for the first time to immunofluorescence staining of three-dimensional structures, specifically, mammalian eggs. We diluted an antibody against microtubules from 1:1,000 to 1:16,000, and compared the chromatic degree and extent of fading across dilutions. In addition, we varied the frequency of AC electric-field mixing from 5 Hz to 46 Hz and evaluated the effect on microtubule staining. Microtubules were more strongly stained after AC electric-field mixing for only 5 minutes, even when the concentration of primary antibody was 10 times lower than in conventional methods. AC electric-field mixing also alleviated microtubule fading. At all frequencies tested, AC electric-field mixing resulted in stronger microtubule staining than in controls. There was no clear difference in a microtubule staining between frequencies. These results suggest that the novel method could reduce antibody consumption and shorten immunofluorescence staining time.

  5. Structural, optical and ac electrical characterization of CBD synthesized NiO thin films: Influence of thickness

    Science.gov (United States)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-09-01

    We have studied the electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of nickel oxide (NiO) thin films synthesized by chemical bath deposition (CBD) method. Thickness dependent structural, optical and ac electrical characterization has been carried out and deposition time was varied to control the thickness. The material has been characterized using X-ray diffraction and UV-VIS spectrophotometer. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for films deposited with higher deposition time. Decrease of grain size in thicker films were confirmed from XRD analysis and activation energy of the material for electrical charge hopping process was increased with thickness of the film. Decrease in band gap in thicker films were observed which could be associated with creation of additional energy levels in the band gap of the material. Cole-Cole plot shows contribution of both grain and grain boundary towards total resistance and capacitance. The overall resistance was found to decrease from 14.6 × 105 Ω for 30 min deposited film ( 120 nm thick) to 2.42 × 105 Ω for 120 min deposited film ( 307 nm thick). Activation energy value to electrical conduction process evaluated from conductivity data was found to decrease with thickness. Identical result was obtained from relaxation time approach suggesting hopping mechanism of charge carriers.

  6. Causal Analysis of the Inadvertent Contact with an Uncontrolled Electrical Hazardous Energy Source (120 Volts AC)

    Energy Technology Data Exchange (ETDEWEB)

    David E. James; Dennis E. Raunig; Sean S. Cunningham

    2014-10-01

    On September 25, 2013, a Health Physics Technician (HPT) was performing preparations to support a pneumatic transfer from the HFEF Decon Cell to the Room 130 Glovebox in HFEF, per HFEF OI 3165 section 3.5, Field Preparations. This activity involves an HPT setting up and climbing a portable ladder to remove the 14-C meter probe from above ball valve HBV-7. The HPT source checks the meter and probe and then replaces the probe above HBV-7, which is located above Hood ID# 130 HP. At approximately 13:20, while reaching past the HBV-7 valve position indicator switches in an attempt to place the 14-C meter probe in the desired location, the HPT’s left forearm came in contact with one of the three sets of exposed terminals on the valve position indication switches for HBV 7. This resulted in the HPT receiving an electrical shock from a 120 Volt AC source. Upon moving the arm, following the electrical shock, the HPT noticed two exposed electrical connections on a switch. The HPT then notified the HFEF HPT Supervisor, who in turn notified the MFC Radiological Controls Manager and HFEF Operations Manager of the situation. Work was stopped in the area and the hazard was roped off and posted to prevent access to the hazard. The HPT was escorted by the HPT Supervisor to the MFC Dispensary and then preceded to CFA medical for further evaluation. The individual was evaluated and released without any medical restrictions. Causal Factor (Root Cause) A3B3C01/A5B2C08: - Knowledge based error/Attention was given to wrong issues - Written Communication content LTA, Incomplete/situation not covered The Causal Factor (root cause) was attention being given to the wrong issues during the creation, reviews, verifications, and actual performance of HFEF OI-3165, which covers the need to perform the weekly source check and ensure placement of the probe prior to performing a “rabbit” transfer. This resulted in the hazard not being identified and mitigated in the procedure. Work activities

  7. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    Science.gov (United States)

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain.

  8. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    Science.gov (United States)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.; Beggan, C.; Olsen, N.; Spain, T.; Aruliah, A.

    2013-09-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data. Zonal current density from sources in only the region between the two satellites is estimated for the first time. Six years of mutually available vector magnetic data allows overlaps spanning the full 24 h range of local time twice. Solutions are computed on an event-by-event basis after correcting for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications remains an open issue. We compare our results with current density predictions made by the Coupled Thermosphere-Ionosphere-Plasmasphere model, a self-consistent, first-principles, three-dimensional numerical dynamic model of ionospheric composition and temperatures. This independent validation of our current density estimates highlights good agreement in the broad spatiotemporal trends we identify, which increases confidence in our results.

  9. DC current and AC impedance measurements on boron-doped single crystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Haitao; Gaudin, O.; Jackman, R.B. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Muret, P.; Gheeraert, E. [Laboratoire d' Etudes des Proprietes Electroniques des Solides, BP166, 38042 Grenoble Cedex 9 (France)

    2003-09-01

    In this paper, we report the first measurement of impedance on boron-doped single crystalline diamond films from 0.1 Hz to 10 MHz with the temperature ranging from -100 C up to 300 C. The Cole-Cole (Z' via Z{sup ''}) plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 70 G{omega} at -100 C to 5 k{omega} at 300 C. The linear curve fitting from -100 C to 150 C shows the sample has an activation energy of 0.37 eV, which is consistent with the theoretical value published of this kind of material. The equivalent capacitance is maintained at the level of pF up to 300 C suggesting that no grain boundaries are being involved, as expected from a single crystal diamond. The activation energy from the dc current-temperature curves is 0.36 eV, which is consistent with the value from ac impedance. The potential of this under-used technique for diamond film analysis will be discussed. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electric field profiling by current transients in silicon diodes

    CERN Document Server

    Menichelli, D; Borchi, E; Toci, G

    2002-01-01

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 mu m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  11. Electric field profiling by current transients in silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, D. E-mail: menichelli@ingfil.ing.unifi.it; Serafini, D.; Borchi, E.; Toci, G

    2002-01-11

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 {mu}m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  12. DNA transport in 20nm nanoslits by AC and DC electrical fields

    NARCIS (Netherlands)

    Salieb-Beugelaar, G.B.; Castillo-Fernandez, O.; Arundell, M.; Samitier, J.; Berg, van den A.; Eijkel, J.C.T.; Kim, T.S.; Lee, Y-S; Chung, T-D; Jeon, N.L.; Lee, S-H.; Suh, K-Y; Choo, J.; Kim, Y-K.

    2009-01-01

    We investigated the transport of λ-DNA in 20 nm nanoslits under the influence of applied AC and DC fields. At DC fields below 15 kV/m it was found that the addition of 1 kHz AC fields with maximum strengths between 10 and 200 kV/m significantly increased the mobility. At DC fields above 15 kV/m no i

  13. Succession of cable bacteria and electric currents in marine sediment.

    Science.gov (United States)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper U; Tataru Bjerg, Jesper J; B Jørgensen, Bo; Schramm, Andreas; Nielsen, Lars Peter

    2014-06-01

    Filamentous Desulfobulbaceae have been reported to conduct electrons over centimetre-long distances, thereby coupling oxygen reduction at the surface of marine sediment to sulphide oxidation in sub-surface layers. To understand how these 'cable bacteria' establish and sustain electric conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15 mm of the sediment, and after 21 days the filament density peaked with a total length of 2 km cm(-2). Cells elongated and divided at all depths with doubling times over the first 10 days of 98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30 mm, the electric current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement to establish and exploit the spatially separated half-reactions of sulphide oxidation and oxygen consumption.

  14. kT-scale colloidal interactions in high-frequency inhomogeneous AC electric fields. II. Concentrated ensembles.

    Science.gov (United States)

    Juárez, Jaime J; Liu, Brian G; Cui, Jing-Qin; Bevan, Michael A

    2011-08-02

    We report nonintrusive optical microscopy measurements of ensembles of polystyrene colloids in inhomogeneous AC electric fields as a function of field frequency and particle size. By using an inverse Monte Carlo (MC) simulation analysis of time-averaged particle microstructures, we sensitively measure induced dipole-dipole interactions on the kT energy scale. Measurements are reported for frequencies when the particle polarizability is greater and less than the medium, as well as the crossover between these conditions when dipole-dipole interactions vanish. By using measured single dipole-field interactions and associated parameters from Part I as input in the inverse analysis, the dipole-dipole interactions in this work are accurately modeled with no adjustable parameters for conditions away from the crossover frequency (i.e., |f(CM)| > 0). As dipolar interactions vanish at the crossover, a single frequency-dependent parameter is introduced to account for microstructures that appear to result from weak AC electro-osmotic flow induced interactions. By connecting quantitative measures of equilibrium microstructures and kT-scale dipole-field and dipole-dipole interactions, our findings provide a basis to understand colloidal assembly in inhomogeneous AC electric fields.

  15. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  16. Determinants of the electric field during transcranial direct current stimulation.

    Science.gov (United States)

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    Science.gov (United States)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  18. Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles

    Science.gov (United States)

    Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.

    1983-01-01

    A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.

  19. Measurement of AC transport current losses in YBCO coated conductor%高温超导YBCO带材的交流传输电流损耗测量

    Institute of Scientific and Technical Information of China (English)

    李晓群; 何清; 金涛; 周世平; 李敬东; 任丽; 唐跃进

    2012-01-01

    In this paper, the AC transport current losses of YBCO coated conductor was studied under different currents and different frequencies respectively. The YBCO tape used in this experiment was SCS4050 produced by Superpower Inc. , which was measured in liquid nitrogen (77 K) by a sensitive electrical method with a lock -in amplifier. The measured AC transport current losses results were compared with the Norris formula calculative results when the power frequency equaled to 50 Hz. The measured results in different frequencies which varied from 15Hz to 300Hz were also provided.%文中对不同频率不同幅值的交变电流下高温超导体YBCO带材的交流传输损耗进行了实验研究.实验在77K下,对Superpower公司生产的SCS4050型号带材采用电测法通过锁相放大器进行了交流损耗值的测量,并将其工作电流为50Hz时的测量结果与Norris矩形模型估算值进行了对比,同时也给出了15Hz到300Hz不同频率下交流损耗测量结果的比较分析.

  20. Modeling Electric Current Flow in 3D Fractured Media

    Science.gov (United States)

    Demirel, S.; Roubinet, D.; Irving, J.

    2014-12-01

    The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on

  1. Experimental and theoretical study of AC electrical conduction mechanisms of Bis (4-acetylanilinium) tetrachloridozincate

    Energy Technology Data Exchange (ETDEWEB)

    Amine Fersi, M., E-mail: fersi_amine@yahoo.fr; Chaabane, I.; Gargouri, M.

    2014-07-01

    The Bis (4-acetylanilinium) tetrachloridozincate [C{sub 8}H{sub 10}NO]{sub 2}[ZnCl{sub 4}] compound was obtained by slow evaporation at room temperature and characterized by XRD. It is crystallized in an orthorhombic system (Cmca space group). The material was characterized by impedance spectroscopy technique measured in the 209 Hz–5 MHz frequency range from 423 to 498 K. Besides, the Cole–Cole (Z″ versus Z′) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experimental results indicated that AC conductivity (σ{sub ac}) was proportional to Aω{sup S1}+Bω{sup S2}(0AC conductivity behavior of [C{sub 8}H{sub 10}NO]{sub 2}[ZnCl{sub 4}] can be explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  2. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  3. An effective electrical sensing scheme using AC electrothermal flow on a biosensor platform based on a carbon nanotube network

    Science.gov (United States)

    Lee, Won Cheol; Lee, Hoseok; Lim, Jaeheung; Park, Young June

    2016-11-01

    We report a simple and efficient electrical sensing scheme that can be used to overcome the "diffusion limit" of affinity-based biosensors by incorporating the structural advantage of a concentric electrode biosensor platform and the microstirring effect of AC electrothermal flow (ACEF). To prove the effect of ACEF on the biosensor performance, we performed both simulations and experiments for the detection of cardiac troponin-I, which is a biomarker for acute myocardial infarction. The finite element simulation results indicate that AC bias to the electrode (which has a concentric structure in our device) can induce fast convection flow, which facilitates the transport of the target molecules to the binding region located between the two electrodes. In our device, the channel region made of a carbon nanotube network decorated with gold nanoparticles, which act as the attaching sites of the probe molecules, is used as a highly sensitive electrical channel. We find that the electrical sensing method exhibited extremely fast sensing speeds compared with those under no bias (diffusion-limited) conditions.

  4. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  5. Aggregation of Electric Current Consumption Features to Extract Maintenance KPIs

    Science.gov (United States)

    Simon, Victor; Johansson, Carl-Anders; Galar, Diego

    2017-09-01

    All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine's future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.

  6. On the Nature of Electric Current in the Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Baturalp Yalcinkaya

    2013-01-01

    Full Text Available The electric currents between electrodes in the electrospinning process are based on the movement of charge carriers through the spinning space. The majority of the charge carriers are formed by ionization of the air close to the metallic needle and to the polymer jet. The salt contained in the polymer solution contributes to the concentration of charge carriers, depending on its amount. The conductivity of polymer jets does not significantly affect the current since the jets do not link the electrodes.

  7. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  8. Designed patterns: flexible control of precipitation through electric currents.

    Science.gov (United States)

    Bena, I; Droz, M; Lagzi, I; Martens, K; Rácz, Z; Volford, A

    2008-08-15

    Understanding and controlling precipitation patterns formed in reaction-diffusion processes is of fundamental importance with high potential for technical applications. Here we present a theory showing that precipitation resulting from reactions among charged agents can be controlled by an appropriately designed, time-dependent electric current. Examples of current dynamics yielding periodic bands of prescribed wavelength, as well as more complicated structures are given. The pattern control is demonstrated experimentally using the reaction-diffusion process 2AgNO3 + K2Cr2O7-->under Ag2Cr2O7 + 2KNO3.

  9. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data....... Zonal current density from sources in only the region between the two satellites is estimated for the first time. Six years of mutually available vector magnetic data allows overlaps spanning the full 24 h range of local time twice. Solutions are computed on an event-by-event basis after correcting...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...

  10. An electric current associated with gravity sensing in maize roots

    Science.gov (United States)

    Bjorkman, T.; Leopold, A. C.

    1987-01-01

    The study of gravisensing would be greatly enhanced if physiological events associated with gravity sensing could be detected separately from subsequent growth processes. This report presents a means to discriminate sensing from the growth processes. By using a vibrating probe, we have found an electric current generated by the gravity sensing region of the root cap of maize (Zea mays cv Merit) in response to gravistimulation. On the upper surface of the root cap, the change from the endogenous current has a density of 0.55 microampere per square centimeter away from gravity. The onset of the current shift has a characteristic of lag of three to four minutes after gravistimulation, which corresponds to the presentation time for gravity sensing in this tissue. A description of the current provides some information about the sensing mechanism, as well as being a valuable means to detect gravity sensing independently of differential growth.

  11. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    Science.gov (United States)

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  12. Hard X-ray emitting energetic electrons and photospheric electric currents

    CERN Document Server

    Musset, Sophie; Bommier, Véronique

    2015-01-01

    The energy released during solar flares is believed to be stored in non-potential magnetic fields associated with electric currents flowing in the corona. While no measurements of coronal electric currents are presently available, maps of photospheric electric currents can now be derived from SDO/HMI observations. Photospheric electric currents have been shown to be the tracers of the coronal electric currents. Particle acceleration can result from electric fields associated with coronal electric currents. We revisit here some aspects of the relationship between particle acceleration in solar flares and electric currents in the active region. We study the relation between the energetic electron interaction sites in the solar atmosphere, and the magnitudes and changes of vertical electric current densities measured at the photospheric level, during the X2.2 flare on February 15 2011 in AR NOAA 11158. X-ray images from RHESSI are overlaid on magnetic field and electric current density maps calculated from the s...

  13. Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field.

    Science.gov (United States)

    Koizumi, H; Uda, S; Fujiwara, K; Nozawa, J

    2011-07-05

    The effect of an external ac electric field on the nucleation rate of hen egg white lysozyme crystals increased with an increase in the concentration of the precipitant used, which enabled the design of an electric double layer (EDL) formed at the inner surface of the drop in the oil. This is attributed to the thickness of the EDL controlled by the ionic strength of the precipitant used. Control of the EDL formed at the interface between the two phases is important to establishing this novel technique for the crystallization of proteins under the application of an external ac electric field. © 2011 American Chemical Society

  14. Iridium satellites help map electrical currents in space

    Science.gov (United States)

    Showstack, Randy

    The satellite constellation of Iridium LLC, which filed for Chapter 11 bankruptcy in 1999 after it failed to win enough business for its commercial satellite communications services, is still orbiting at an altitude of about 780 kilometers. Now, however, the satellites are helping to write a new chapter in understanding space weather.Magnetometers onboard each of the system's 66 polar-orbiting satellites are working in conjunction with the high-frequency, multinational Super Dual Auroral Radar Network, or SuperDARN, to provide the first continuous measurements of electrical currents between Earth's upper atmosphere and space. These tools also are generating the first global maps of electrical power flowing into the polar upper atmosphere.

  15. Electric machine and current source inverter drive system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  16. Control of Hall angle of Skyrmion driven by electric current

    Science.gov (United States)

    Gao-Bin, Liu; Da, Li; de Chatel, P. F.; Jian, Wang; Wei, Liu; Zhi-Dong, Zhang

    2016-06-01

    Skyrmions are very promising for applications in spintronics and magnetic memory. It is desired to manipulate and operate a single skyrmion. Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal. The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque, an effect of the transverse and longitudinal Skyrmions drift velocities, thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density, which can be used as a Skyrmion valve. Project supported by the National Natural Science Foundation of China (Grant No. 51331006) and the Fund from the Chinese Academy of Sciences (Grant No. KJZD-EW-M05).

  17. All-electrical generation of spin-polarized currents in quantum spin Hall insulators

    Science.gov (United States)

    Tao, L. L.; Cheung, K. T.; Zhang, L.; Wang, J.

    2017-03-01

    The control and generation of spin-polarized current (SPC) without magnetic materials and an external magnetic field is a big challenge in spintronics and normally requires a spin-flip mechanism. In this Rapid Communication, we show the theoretical discovery of all-electrical generation of SPC without relying on spin-flip spin-orbit coupling (SOC). We find that the SPC can be produced as long as an energy-dependent phase difference between the spin up and down electrons can be established. We verify this through quantum transport calculations on a gated stanene zigzag nanoribbon, which is a quantum spin Hall (QSH) insulator. Our calculations indicate that the transient current as well as ac conductance are significantly spin polarized, which results from the genetic phase difference between spin up and down electrons after traversing the system. Our results are robust against edge imperfections and generally valid for other QSH insulators, such as silicene and germanene, etc. These findings establish a different route for generating SPCs by purely electrical means and open the door for interesting applications of semiconductor spintronics.

  18. Dynamic Localization of a One-Dimensional Quantum Dot Array in an ac Electric Field

    Institute of Scientific and Technical Information of China (English)

    罗莹; 段素青; 范文斌; 赵宪庚; 王立民; 马本堃

    2002-01-01

    We investigate the dynamics of two interaction electrons confined to one-dimensional quantum dot array in an acelectric field. We find that initially localized electrons will remain localized in the absence of Coulomb interactionif the ratio of the ac field magnitude to the frequency is a root of the ordinary zero-order Bessel function. Incontrast to the case without Coulomb interaction, no matter what the value is, the electrons are delocalized andthe delocalization effect depends on the ratio U/ω and eaE/ω, where U is the strength of Coulomb interaction,a is the lattice constant, and E and ω are the ac field amplitude and frequency, respectively.

  19. Development of Harmonic-Noise Reduction Technology in Diagnostic Method using AC Loss Current for Water Treed XLPE Cable

    Science.gov (United States)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 120 lines. In this method, it is sometimes said that the degradation signal (3rd harmonic in loss current) is affected by the 3rd harmonic in the test voltage. To indicate and solve this problem, we investigated the extent of influence by 3rd harmonic in the test voltage, and found the rule of the influence. As a result, we developed a new technique of harmonic-noise reduction in loss current method that enabled a more highly accurate diagnosis and confirmed the effectiveness of this new technique by simulations and experiments with actual cables.

  20. Landau-Squire jet in a radially diverging electrical current

    Energy Technology Data Exchange (ETDEWEB)

    Boyarevich, V.V.; Shilova, E.I.

    1977-07-01

    An examination is made of a precise solution to the classical Landau-Squire problem in a radially diverging electrical current. The formulated problem was shown to be described by two parameters one of which characterizes the electromagnetic effect, and the other - the hydrodynamic impulse. Determinations were made of the regions of permissible parameter values at which the solution remains limited. Flow pictures are presented in relation to the input ratio of electromagnetic forces and the hydrodynamic impulse. 10 references, 6 figures, 2 tables.

  1. Heat generation by electric current in mesoscopic devices

    OpenAIRE

    Sun, Qing-Feng; Xie, X. C.

    2006-01-01

    We study the heat generation in a nano-device with an electric current passing through the device. For the first time, a general formula for the heat generation is derived by using the nonequilibrium Keldysh Green functions. This formula can be applied in both the linear and nonlinear transport regions, for time-dependent systems, and with multi-terminal devices. The formula is also valid when the nano-device contains various interactions. As an application of the formula, the heat generation...

  2. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Somyia, E-mail: somyia.elsayed@yahoo.com [Physics Department, Faculty of Science and Education, Taif University (Saudi Arabia); Physics Department, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt); Abel-Baset, Tarob; Elfadl, Azza Abou [Physics Department, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt); Hassen, Arafa [Physics Department, Faculty of Science and Education, Taif University (Saudi Arabia); Physics Department, Faculty of Science, Fayoum University, 63514 El Fayoum (Egypt)

    2015-05-01

    Nanosilica (NS) was synthesized by a sol–gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV–vis range, and the optical energy band gap, E{sub g}, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σ{sub ac}, of the samples were studied within 300–425 K and 0.1 kHz–5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σ{sub ac}(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  3. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  4. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    Science.gov (United States)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  5. DNA- and AC electric field-assisted assembly of two-dimensional colloidal photonic crystals and their controlled defect insertion

    Science.gov (United States)

    Kim, Sejong

    Photonic crystals (PC) are structures in which the refractive index is a periodic function in space. The ability of photonic crystals to localize and manipulate electromagnetic waves has attracted considerable attention from the scientific community. The self-assembly of monodisperse micrometer scale colloidal spheres into hexagonal closed-packed colloidal crystals provides a simple, fast, and cheap materials chemistry approach to PCs. Employing DNA supramolecular recognition, 2-dimensional (2D) photonic crystal monolayer was fabricated with monodisperse polystyrene colloidal microspheres. Amine-terminated DNA oligomers were covalently attached onto carboxy-decorated microspheres and enabled their DNA-functionalization while preserving their colloidal stability and organization properties. Following a capillary-force-assisted organization of DNA-decorated microspheres into close-packed 2D opaline arrays, the first monolayer was immobilized by DNA hybridization. Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. The previously obtained DNA-hybridization type binding of 2D-opaline arrays provides a heat-sensitive "adhesive" between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto a single microsphere of the opaline array induces localized heating that enables the microsphere to detach, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive index mismatch were investigated and found to correlate with heat-induced DNA dehybridization. In addition, AC (alternating current) electrokinetic force was also utilized to obtain assembly of colloidal

  6. Submerged electricity generation plane with marine current-driven motors

    Science.gov (United States)

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  7. Submerged electricity generation plane with marine current-driven motors

    Energy Technology Data Exchange (ETDEWEB)

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  8. Current distribution mapping in insulated (Gd,Y)BCO based stabilizer-free coated conductor after AC over-current test for R-SFCL application

    Science.gov (United States)

    Kar, Soumen; Li, Xiao-Fen; Selvamanickam, Venkat; Rao, V. V.

    2017-02-01

    Uniformity of critical current (Ic ) over long lengths of (GdY)-Ba-Cu-O ((Gd,Y)BCO)-based high temperature superconducting (HTS) tapes after long periods of AC current excitation is an important criterion in their selection for resistive type superconducting fault current limiter (R-SFCL). The present work describes such critical current (Ic ) uniformity measurements performed over 1m long, stabilizer-free (SF), 12 mm wide, 2nd generation (2G) (Gd,Y)BCO based HTS tape. A non-destructive method using a static hall probe (Tapestar®) with moving HTS tape configuration was employed for estimation of Ic uniformity. Scanning Hall probe microscopy (SHPM) was then used to examine the weak superconducting regions (i.e. less Ic ) with a static HTS tape. Remanent field distribution on the HTS tape was measured to yield the critical current density distribution. Except for small degradation of Ic at some locations, these studies confirmed near-uniform critical current distribution over meter-long (Gd,Y)BCO tapes, both in virgin state and after exposure to AC over current.

  9. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  10. Asymmetry-induced electric current rectification in permselective systems.

    Science.gov (United States)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

  11. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    Science.gov (United States)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  12. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements.

    Science.gov (United States)

    Varlet, Manuel; Wade, Alanna; Novembre, Giacomo; Keller, Peter E

    2017-03-18

    Human rhythmic movements spontaneously entrain to external rhythmic stimuli. Such sensory-motor entrainment can attract movements to different tempi and enhance their efficiency, with potential clinical applications for motor rehabilitation. Here we investigate whether entrainment of self-paced rhythmic movements can be induced via transcranial alternating current stimulation (tACS), which uses alternating currents to entrain spontaneous brain oscillations at specific frequencies. Participants swung a handheld pendulum at their preferred tempo with the right hand while tACS was applied over their left or right primary motor cortex at frequencies equal to their preferred tempo (Experiment 1) or in the alpha (10Hz) and beta (20Hz) ranges (Experiment 2). Given that entrainment generally occurs only if the frequency difference between two rhythms is small, stimulations were delivered at frequencies equal to participants' preferred movement tempo (≈1Hz) and ±12.5% in Experiment 1, and at 10Hz and 20Hz, and ±12.5% in Experiment 2. The comparison of participants' movement frequency, amplitude, variability, and phase synchrony with and without tACS failed to reveal entrainment or movement modifications across the two experiments. However, significant differences in stimulation-related side effects reported by participants were found between the two experiments, with phosphenes and burning sensations principally occurring in Experiment 2, and metallic tastes reported marginally more often in Experiment 1. Although other stimulation protocols may be effective, our results suggest that rhythmic movements such as pendulum swinging or locomotion that are low in goal-directedness and/or strongly driven by peripheral and mechanical constraints may not be susceptible to modulation by tACS.

  13. Theoretical analysis of AC electric field transmission into biological tissue through frozen saline for electroporation.

    Science.gov (United States)

    Xiao, Chunyan; Rubinsky, Boris

    2014-12-01

    An analytical model was used to explore the feasibility of sinusoidal electric field transmission across a frozen saline layer into biological tissue. The study is relevant to electroporation and permeabilization of the cell membrane by electric fields. The concept was analyzed for frequencies in the range of conventional electroporation frequencies and electric field intensity. Theoretical analysis for a variety of tissues show that the transmission of electroporation type electric fields through a layer of frozen saline into tissue is feasible and the behavior of this composite system depends on tissue type, frozen domain temperature, and frequency. Freezing could become a valuable method for adherence of electroporation electrodes to moving tissue surfaces, such as the heart in the treatment of atrial fibrillation or blood vessels for the treatment of restenosis.

  14. Relation between magnetic fields and electric currents in plasmas

    Directory of Open Access Journals (Sweden)

    V. M. Vasyliunas

    2005-10-01

    Full Text Available Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/cJ implies a time-varying electric field (displacement current which acts to change both terms (in order to bring them toward equality; the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe. On larger scales, the evolution of B (and hence also of ∇×B is governed by

  15. Enhanced Absorption Performance of Carbon Nanostructure Based Metamaterials and Tuning Impedance Matching Behavior by an External AC Electric Field.

    Science.gov (United States)

    Gholipur, Reza; Khorshidi, Zahra; Bahari, Ali

    2017-04-12

    Metamaterials have surprisingly broadened the range of available practical applications in new devices such as shielding, microwave absorbing, and novel antennas. More research has been conducted related to tuning DNG frequency bands of ordered or disordered metamaterials, and far less research has focused on the importance of impedance matching behavior, with little effort and attention given to adjusting the magnitude of negative permittivity values. This is particularly important if devices deal with low-amplitude signals such as radio or TV antennas. The carbon/hafnium nickel oxide (C/Hf0.9Ni0.1Oy) nanocomposites with simultaneously negative permittivity and negative permeability, excellent metamaterial performance, and good impedance matching could become an efficient alternative for the ordered metamaterials in wave-transparent, microwave absorbing, and solar energy harvesting fields. In this study, we prepared C/Hf0.9Ni0.1Oy nanocomposites by the solvothermal method, and we clarified how the impedance matching and double-negative (DNG) behaviors of C/Hf0.9Ni0.1Oy can be tuned by an external AC electric field created by an electric quadrupole system. An external electric field allows for the alignment of the well-dispersed nanoparticles of carbon with long-range orientations order. We believe that this finding broadens our understanding of moderate conductive material-based random metamaterials (MCMRMs) and provides a novel strategy for replacing high-loss ordered or disordered metamaterials with MCMRMs.

  16. Electric currents of a substorm current wedge on 24 February 2010

    Science.gov (United States)

    Connors, Martin; McPherron, Robert L.; Anderson, Brian J.; Korth, Haje; Russell, Christopher T.; Chu, Xiangning

    2014-07-01

    The three-dimensional "substorm current wedge" (SCW) was postulated by McPherron et al. (1973) to explain substorm magnetic perturbations. The origin and coherence as a physical system of this important paradigm of modern space physics remained unclear, however, with progress hindered by gross undersampling, and uniqueness problems in data inversion. Complementing AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) space-derived radial electric currents with ground magnetic data allowing us to determine currents from the ionosphere up, we overcome problems of uniqueness identified by Fukushima (1969, 1994). For a substorm on 24 February 2010, we quantify SCW development consistently from ground and space data. Its westward electrojet carries 0.5 MA in the more poleward part of the auroral oval, in Region 1 (R1) sense spanning midnight. The evening sector electrojet also feeds into its upward current. We thus validate the SCW concept and obtain parameters needed for quantitative study of substorms.

  17. Electromagnetic fields and electrical currents in deep turbulent convective clouds

    Science.gov (United States)

    Benmoshe, Nir; Khain, Alexander

    2013-04-01

    Charge separation and lightning formation in a thunderstorm is explicitly simulated using spectral bin microphysics the Hebrew University Cloud Model (HUCM) with resolution of 50 m. The model microphysics is based on solving equations for eight size distribution functions for aerosols, drops, three types of ice crystals, aggregates, graupel and hail. Each size distribution is defined on a mass grid containing 43 bins. The model describes the processes of nucleation of cloud particles, diffusion growth, collisions between all types of hydrometeors, differential sedimentation, freezing, melting, breakup of droplets and aggregates, etc' using the equations basing on the first principles, without any parameterization assumptions. Turbulence effects on droplet collisions are taken into account. Charge separation is calculated by collisions between graupel, hail and ice crystals in the presence of liquid water. The charge obtained by particles as a result of collisions depends on the particle size, the temperature, the presence of liquid water, following laboratory results by Takahashi. These charges are transported by convective motions and differential sedimentation depending on mass and type of particles air density. The charges are redistributed between different hydrometeors in course of particle collisions, as well as during freezing, melting and breakup. These charge transformations create time dependent electricity field. The field of electrical potential is determined by solving the Poisson equation. The recursive procedure similar to that developed by Mansell (2002) is used to calculate the lightning path with connects zones where the potential gradients exceeded the breakdown threshold. The electric currents in the clouds are being calculated. The magnetic field near and inside the clouds are shown. The relationship between lightning intensity and cloud microstructure is investigated. It is shown, for instance, that increase in aerosol concentration leads to

  18. Directed Current Induced by an Symmetrically ac Force Coexisting with a Time-Delayed Feedback

    Institute of Scientific and Technical Information of China (English)

    易述婷; 宋晖; 欧志娥; 艾保全; 熊建文

    2012-01-01

    We study the transport of overdamped Brownian particles in a symmetricaJly periodic potential in the presence of an asymmetrically ac driving force and a time-delayed feedback. It is found that for low frequencies, the average velocity can be negative by changing the driving amplitude, for high frequencies, there exists an optimized driving amplitude at which the average velocity takes its maximum value. Additionally, there is a threshold value of driving amplitude below which no directed transport can be obtained for high frequencies. For the large value of the delay time, the average velocity is independent of the delay time.

  19. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  20. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  1. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  2. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    Science.gov (United States)

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.

  3. Fine structure of flare ribbons and evolution of electric currents

    CERN Document Server

    Sharykin, I N

    2014-01-01

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains the flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of C2.1 flare of August 15, 2013, observed with New Solar Telescope (NST) of Big Bear Solar Observatory, Solar Dynamics Observatory (SDO), GOES and FERMI spacecraft. The observations reveal previously unresolved sub-arcsecond structure of the flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe red-blue asymmetry of H alpha flare ribbons with a width as small as 100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be r...

  4. Controlled Levitation of Colloids through Direct Current Electric Fields.

    Science.gov (United States)

    Silvera Batista, Carlos A; Rezvantalab, Hossein; Larson, Ronald G; Solomon, Michael J

    2017-07-07

    We report the controlled levitation of surface-modified colloids in direct current (dc) electric fields at distances as far as 75 μm from an electrode surface. Instead of experiencing electrophoretic deposition, colloids modified through metallic deposition or the covalent bonding of poly(ethylene glycol) (PEG) undergo migration and focusing that results in levitation at these large distances. The levitation is a sensitive function of the surface chemistry and magnitude of the field, thus providing the means to achieve control over the levitation height. Experiments with particles of different surface charge show that levitation occurs only when the absolute zeta potential is below a threshold value. An electrodiffusiophoretic mechanism is proposed to explain the observed large-scale levitation.

  5. Polymeric salt bridges for conducting electric current in microfluidic devices

    Science.gov (United States)

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  6. Repair of nonunions by electrically pulsed current stimulation.

    Science.gov (United States)

    Zichner, L

    1981-01-01

    Five congenital and 52 acquired nonunions of bone were stimulated using an invasive device. The unit delivered a constant but pulsed right-angled current of positive polarity measuring 20 to 25 muAmps (voltage of 750 mV) and a frequency of 20 Hz. The power pack encapsulated in epoxy resin was implanted at the time of operative fragment stabilization. THe cathode was inserted at the site of the nonunion gap. After two to 12 months, all but two of the acquired nonunions and one of the congenital pseudarthroses healed. In the unsuccessful cases, the bone ends were often totally necrotic. Four cases required reimplantation because of broken wires or expiration of the battery, and two cases failed owing to purulent infection. Electrostimulation is an adjuvant treatment to fragment stabilization in hyporeactive and hypovascular or congenital pseudarthroses. Electrical stimuli may be assumed to simulate conditions which are essential for bone healing.

  7. Chaos control by electric current in an enzymatic reaction.

    Science.gov (United States)

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  8. Effect of Electric Field on Spin Polarized Current in Ferromagnetic/ Organic Semiconductor Systems

    Institute of Scientific and Technical Information of China (English)

    MA Yan-Ni; REN Jun-Feng; ZHANG Yu-Bin; LIU De-Sheng; XIE Shi-Jie

    2007-01-01

    Considering the special carriers in organic semiconductors, the spin polarized current under electric field in a ferromagnetic/organic semiconductor system is theoretically studied. Based on the spin-diffusion theory, the current spin polarization under the electric field is obtained. It is found that electric field can enhance the current spin polarization.

  9. Finite element model predicts current density distribution for clinical applications of tDCS and tACS

    Directory of Open Access Journals (Sweden)

    Toralf eNeuling

    2012-09-01

    Full Text Available Transcranial direct current stimulation (tDCS has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA, tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm2 are commonly used and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite element (FE models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. Toface the challenge to predict the location, magnitude and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS, we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to theirusability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.

  10. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect

    KAUST Repository

    Kim, Minkuk

    2012-03-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally by applying AC electric fields at low frequency below 60. Hz together with DC in the single electrode configuration. The blowoff velocity has been measured for varying AC voltage and frequency. A transition frequency between low and high frequency regimes has been identified near 40-50. Hz, where AC electric fields have minimal effect on flame stabilization. In the low frequency regime, the blowoff velocity decreased linearly with AC voltage such that the flames became less stable. This was consistent with the DC result, implying the influence of the ionic wind effect. The variation of blowoff velocity with AC frequency showed a non-monotonic behavior in that the velocity decreased and then increased, exhibiting minimum blowoff velocity near 6-8. Hz. Based on the molecular kinetic theory, the developing degree of ionic wind was derived. By considering the ionic wind effects arising from both positive and negative ions in a flame zone, the bi-ionic wind effect successfully explained the non-monotonic behavior of blowoff velocity with AC frequency in the low frequency regime. © 2011 The Combustion Institute.

  11. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    M. B. Nanda Prakash

    2013-01-01

    Full Text Available PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 was observed in 4% of CdCl2 in PVA polymer blend. Crystallite ellipsoids for different concentrations of CdCl2 are computed here using whole pattern powder fitting (WPPF indicating that crystallite area decreases with increase in the ionic conductivity.

  12. AC current driven dynamic vortex state in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, A.; Frey, A.; Yang, R.; Luepke, G. [The College of William and Mary, Department of Applied Science, Williamsburg, VA (United States); Grilli, F. [Los Alamos National Laboratory, Superconductivity Technology Center, Los Alamos, NM (United States); Haugan, T.; Levin, G.; Barnes, P. [Air Force Research Laboratory, Wright-Patterson AFB, OH (United States)

    2007-09-15

    Time-resolved magneto-optical imaging measurements show that an ac current enables the vortex matter in YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films to reorganize into two coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite-element calculations consistent with the critical state model show good agreement with the measured field profiles in the quasi-static state but predict a larger hysteretic behavior in the dynamic state. (orig.)

  13. Destruction of Emulsions by an AC Electric Field: Importance of Partial Merging

    Science.gov (United States)

    Thiam, Abdou Rachid; Bremond, Nicolas; Bibette, Jerome

    2010-03-01

    Electrocoalescence is basically the process of blending droplets by the application of an electric field. The approach is used in petroleum refineries for the separation of water in oil emulsions (that is, by coalescing water droplets), and more recently in biotechnology industry, for the fusion of micro reactors. In a first step, we will focus on the coalesce condition for two drops under a given electric field. Microfluidics offers a comfortable setup therefore, as we sought to span a range of initial conditions in terms of the distance between the droplets, their sizes, and also a region of the applied electric field. Thus, we could establish a stability diagram according to the initial conditions and droplets' composition, which displays three domains referred to as: coalescence, no coalescence and a third one of partial coalescence, where the droplets coalesce for a brief moment then separate right afterwards. We proceeded then by generalizing the setup to the case of a stream of droplets, and we found that the evolution of the stream can be predicted by the behaviour of the local pairs of droplets, as seen in the previous step. The main outcome of that study is the total destruction of an emulsion above a critical volume fraction for a given amplitude of electric field.

  14. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  15. Electrical heterogeneity of canine right ventricular transient outward potassium currents

    Institute of Scientific and Technical Information of China (English)

    杨新春; 周鹏; 李翠兰

    2004-01-01

    Background Some studies have confirmed that the right ventricular walls of most rodents, such as canines and humans, have evident transient outward potassium current (lto1) heterogeneity, and this heterogeneity is closely related to J point elevation, J wave formation, and some ventricular tachycardias such as ventricular fibrillations caused by Brugada syndrome. This study is designed to investigate transmural electrical heterogeneity of the canine right ventricle during repolarization (phase 1) from the viewpoint of 4-aminopyridine sensitive and calcium-independent lto1.Methods Adult canine single right ventricular epicardial (Epi) cells, mid-myocardial (M) cells, and endocardial (Endo) cells were enzymatically dissociated. Whole cell voltage-clamp recordings were made to compare the lto1 values of the three cell types.Results At 37℃ and using 0.2 Hz and + 70 mV depolarizing test potentials, the average peak lto1 values of Epi cells and M cells averaged (4070±1720) pA and (3540±1840) pA, respectively. The activated and inactivated Epi and M cells kinetic processes were in accordance with the Boltzmann distribution. Compared with lto1 in Epi cells and M cells, the average peak lto1 in Endo cells was very low, averaged (470±130) pA.Conclusions These results suggest that there are evident differences and potent gradients in lto1 between the three cardiac cell types, especially between Epi and Endo cells. These differences are among the prominent manifestations of right ventricular electrical heterogeneity, and may form an important ionic basis and prerequisite for some malignant arrhythmias in the right ventricle, including those arising from Brugada syndrome and other diseases.

  16. Polarization of nanorods submerged in an electrolyte solution and subjected to an ac electrical field.

    Science.gov (United States)

    Zhao, Hui; Bau, Haim H

    2010-04-20

    Recently, there has been growing interest in utilizing electrical fields to position and separate rod-shaped particles such as DNA molecules, actin filaments, microtubules, viruses, bacteria, nanotubes, and nanorods. The polarization of the electrical double layer, enveloping the rod, plays a critical role in determining the magnitude and direction of the rod's dipole moment. We consider noninteracting, rod-shaped (spherocylinder) particles and calculate the induced dipole moment as a function of the electrical field frequency, the rod's aspect ratio (length/radius), the rod's free surface charge, and the double-layer thickness. To this end, we solve the Poisson-Nernst-Planck (PNP) equations for the ions' migration, diffusion, and convection. When the surface charge is small and the rod is short, the dipole moment is negative. As the rod's length increases, the dipole moment increases and eventually changes sign from negative to positive. The dipole coefficient of a rod, whose length is greater than some critical value, increases linearly with length. This latter observation simplifies the estimation of the dipole moment of particles with large aspect ratios (length/radius). The theoretical predictions are compared and favorably agree with experimental data for double-stranded, short DNA molecules.

  17. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields

    Science.gov (United States)

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.

  18. The Space Charge Effect on the Discharge Current in Cross-Linked Polyethylene under High AC Voltages

    Science.gov (United States)

    Kwon, Yoon-Hyeok; Hwangbo, Seung; Lee, June-Ho; Yi, Dong-Young; Han, Min-Koo

    2003-12-01

    The space charge distributions in solid dielectrics have been usually investigated by means of the pulsed electroacoustic (PEA) method. However, most previous studies have been limited to the phenomenological analysis under DC voltages. In our study, the space charge distribution in cross-linked polyethylene (XLPE) has been measured using AC voltages by means of the modified PEA method. Simultaneously, the streamer discharges in an air gap have been measured in order to investigate the relationship between space charge and discharge current, and the relationship has been adapted to the case of dielectric barrier discharge. At high AC voltages, discharge current increases to the critical point, but no further increase is exhibited over the critical voltage and the discharge pattern is resolved by the space charge. This result indicates that the frequency effect and space charge characteristics of dielectric materials are preferred to the voltage effect in the adaptation to dielectric barrier discharge. The results well explain the space charge effect on partial discharge and the dielectric barrier discharge phenomenon.

  19. 灭弧室结构对交流接触器电寿命影响的试验研究%Test Study of Arc Extinguish Chamber Structure’s Impact on Electrical Life of AC Contactor

    Institute of Scientific and Technical Information of China (English)

    汪从礼

    2014-01-01

    Introduction was made to the principle and method of arc extinction of contactor and analysis was made to the arc extinguish cham-ber structure of AC contactor and the impacts of effective gas escape area on electrical life. Taking the arc extinguish chamber structure of frame 150 A contactor as an example, AC-4 electrical life test was carried out for 3 sample machines. The test result shows that for same current frame contactors, its arc extinguish chamber structure has vitally important impact on electrical life, and providing the requirement of electric gap and distance is met, the bigger the effective gas escape area is, the larger the number of electrical life times is.%介绍了接触器的灭弧原理及方式,分析了交流接触器灭弧室结构及有效排气孔面积对电寿命的影响。以框架为150 A 接触器的灭弧室结构为例,对3个样机进行 AC-4电寿命试验,试验结果表明对于同电流框架的接触器,其灭弧室结构对电寿命影响至关重要,且在满足电气间隙和爬电距离时,有效排气孔面积越大,电寿命次数越大。

  20. Modelling the effect of electrical current flow on the hydration process of cement-based materials

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.; Koenders, E.A.B.

    2014-01-01

    Stray current is essentially an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based systems, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to

  1. Modelling the effect of electrical current flow on the hydration process of cement-based materials

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.; Koenders, E.A.B.

    2014-01-01

    Stray current is essentially an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based systems, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to

  2. Increase of energy efficiency of testing of traction electric machines of direct and pulsating current

    Directory of Open Access Journals (Sweden)

    A.M. Afanasov

    2015-03-01

    Full Text Available The results of the analysis of the effect of the load current of traction electric machines when tested for heating on the total electricity consumption for the test are presented. It is shown that increase of load current at the heating test permits to significantly reduce the consumption of electrical energy, and reduce the testing time without reducing its quality.

  3. MEMS electrostatic inductive transformer using potassium ion electrets for up- or down-conversion of AC current

    Science.gov (United States)

    Suzuki, Masato; Moriyama, Takashi; Toshiyoshi, Hiroshi; Hashiguchi, Gen

    2016-10-01

    In this paper, we report on a novel MEMS electrostatic inductive transformer using potassium ion electrets on mechanically movable silicon microelectrodes. The device consists of a pair of electrostatic comb drive actuators that share a common mass in the middle part of a spring-mass-spring system. When an excitation AC voltage is applied to the electrode of the input-port comb drive at its mechanical resonant frequency, the mass in the middle oscillates to generate electrostatic inductive charges on the electrodes of the output-port comb drive, which could be read out as an output current. By appropriately designing the ratio of force factors of input- and output-port comb drives, the device operates as a transformer to amplify the current at a high efficiency over of 90% under the optimal load condition.

  4. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria Ruiz-Ruigomez

    2016-01-01

    Full Text Available New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p<0.05. Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.; a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials.

  5. Current Situation and Countermeasures for Green Electricity in Shanghai

    Institute of Scientific and Technical Information of China (English)

    Zhang Rui; Gao Yang

    2007-01-01

    @@ The present situation of the green electricity in Shanghai is briefly introduced. The author analyzes various advantages in natural environment, market environment and social environment as well as various disadvantages in the respects of cost, price, economy for Shanghai to develop green electricity. It is pointed out that governments, non-government organizations, consumers and enterprises shall jointly make efforts to promote the green electricity in Shanghai. Finally,concrete countermeasures and suggestions are put forward.

  6. Quench behavior of Sr0.6K0.4Fe2As2/Ag tapes with AC and DC transport currents at different temperature

    Science.gov (United States)

    Liu, Qi; Zhang, Guomin; Yang, Hua; Li, Zhenming; Liu, Wei; Jing, Liwei; Yu, Hui; Liu, Guole

    2016-09-01

    In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr0.6K0.4Fe2As2 (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K-30 K), varying transport current and operating frequency (50 Hz-250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  7. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.

    Science.gov (United States)

    Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen

    2015-12-01

    Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.

  8. Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yingliang, E-mail: chengyingliang@hnu.edu.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Matykina, Enzhe [Dpt. Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Madrid 28040 (Spain); Skeldon, Peter; Thompson, George [Corrosion and Protection Centre, School of Materials, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom)

    2011-10-01

    Highlights: > ZrO{sub 2} coatings are grown on Zircaloy-4 by AC plasma electrolytic oxidation. > Tetragonal and monoclinic ZrO{sub 2} are formed using silicate electrolyte. > Pyrophosphate electrolyte results in flawed coatings of monoclinic ZrO{sub 2}. > Silicate favours formation of tetragonal ZrO{sub 2}, with coating hardness {approx}8 GPa. > Microstructures are related to temperature gradients and solidification rates. - Abstract: Plasma electrolytic oxidation was undertaken on Zircaloy-4 in alkaline silicate and pyrophosphate electrolytes, with a square waveform AC current regime. The resultant coatings were examined using scanning electron spectroscopy, X-ray diffraction and nanoindentation. The coatings formed in silicate electrolyte comprised mainly a porous inner layer and a more compact outer layer, with characteristic solidification structures being evident following prolonged treatment. The coatings contained monoclinic and tetragonal ZrO{sub 2}, the latter being mainly present in the outer layer, which was of hardness up to {approx}8 GPa. In contrast, extensively cracked coatings resulted from use of pyrophosphate electrolyte; the coating integrity was improved by the addition of silicate to the pyrophosphate electrolyte. The different morphologies of the coatings appeared to be related to the differing nature of the microdischarges and to the incorporation of silicon species that enhanced the formation of t-ZrO{sub 2}.

  9. Comparative study between an alternating current (AC) and a direct current (DC) electrification of an urban railway

    OpenAIRE

    Garriga Turu, Jordi

    2015-01-01

    This study will evaluate technically, energetic and economically the traction electrification network of the line Barcelona – Vallès operated by Ferrocarrils de la Generalitat de Catalunya (FGC) in the existing voltage system (1500 Vdc) and a new electrification under alternative current (25 kVac) will be proposed to be as well studied. The results obtained will be compared in order to obtain decision factors on which system best fits.

  10. Electric bicycles in The Netherlands: Current developments and future possibilities

    NARCIS (Netherlands)

    Rooijen, T. van

    2010-01-01

    Developments with electric bicycles in the Netherlands are progressing rapidly. The number of electric bicycles sold is rises every year. Cycling is a very popular mode of transport in The Netherlands. In 2008 more than one million bicycles were sold. At the moment one out of ten bicycles sold is al

  11. Electric bicycles in The Netherlands: Current developments and future possibilities

    NARCIS (Netherlands)

    Rooijen, T. van

    2010-01-01

    Developments with electric bicycles in the Netherlands are progressing rapidly. The number of electric bicycles sold is rises every year. Cycling is a very popular mode of transport in The Netherlands. In 2008 more than one million bicycles were sold. At the moment one out of ten bicycles sold is

  12. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    , extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...

  13. Simulation studies of direct-current microdischarges for electric propulsion

    Science.gov (United States)

    Deconinck, Thomas Dominique

    The structure of direct-current microdischarges is investigated using a detailed two-dimensional multi-species continuum model. Microdischarges are direct-current discharges that operate at a relatively high pressure of about 100 Torr and geometric dimensions in the 10-100 micrometer range. Our motivation for the study of microdischarges comes from a potential application of these devices in microthrusters for small satellite propulsion. The Micro Plasma Thruster (MPT) concept consists of a direct-current microdischarge in a geometry comprising a constant area flow section followed by a diverging exit nozzle. A detailed description of the plasma dynamics inside the MPT including power deposition, ionization, coupling of the plasma phenomena with high-speed flow, and propulsion system performance is reported in this study. A two-dimensional model is developed as part of this study. The model consists of a plasma module coupled to a flow module and is solved on a hybrid unstructured mesh framework. The plasma module provides a self-consistent, multi-species, multi-temperature description of the microdischarge phenomena while the flow module provides a description of the low Reynolds number compressible flow through the system. The plasma module solves conservation equations for plasma species continuity and electron energy, and Poisson's equation for the self-consistent electric field. The flow module solves mass, bulk gas momentum and energy equations. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species energy equations. Discretization of the Joule heating term on unstructured meshes requires special attention. We propose a new robust method for the numerical discretization of the Joule heating term on such meshes using a cell-centered, finite volume approach. A prototypical microhollow cathode discharge (MHCD) is studied to guide and validate the modeling

  14. Virtual Impedance Based Fault Current Limiters for Inverter Dominated AC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Wang, Jianhui; Guerrero, Josep M.

    2017-01-01

    In this paper, a virtual impedance based fault current limiter (VI-FCL) is proposed for islanded microgrids comprised of multiple inverter interfaced distributed generators (DGs). Considering the increased fault current capability induced by high penetration of renewable energy sources (RESs), FC......, and the stability analysis in consideration of VI-FCLs is thereby studied. MATLAB/Simulink model comprised of three inverter-interfaced DGs is implemented to verify the feasibility of the proposed method....

  15. AC over-current characteristics of YBCO coated conductor with copper stabilizer layer considering insulation layer

    Science.gov (United States)

    Du, H.-I.; Kim, M.-J.; Kim, Y.-J.; Lee, D.-H.; Han, B.-S.; Song, S.-S.

    2010-11-01

    Compared with the first-generation BSCCO wire, the YBCO thin-film wire boasts low material costs and high Jc and superior magnetic-field properties, among other strengths. Meanwhile, the previous BSCCO wire material for superconducting cables has been researched on considerably with regard to its post-wire quenching characteristics during the application of an alternating over-current. In this regard, the promising YBCO thin-film wire has yet to be further researched on. Moreover, still lacking is research on the YBCO thin-film wire with insulating layers, which is essential in the manufacture of superconducting cables, along with the testing of the application of an alternating over-current to the wire. In this study, YBCO thin-film wires with copper-stabilizing layers were used in testing alternating over-current application according to the presence or absence of insulating layers and to the thickness of such layers, to examine the post-quenching wire resistance increase and quenching trends. The YBCO thin-film wire with copper-stabilizing layers has a critical temperature of 90 K and a critical current of 85 A rms. Moreover, its current application cycle is 5.5 cycles, and its applied currents are 354, 517, 712, and 915 A peak. These figures enabled the YBCO thin-film wires with copper-stabilizing layers to reach 90, 180, 250, and 300 K, respectively, in this study. These temperatures serve as a relative reference to examine the post-quenching wire properties following the application of an alternating over-current.

  16. Electric Current-induced Failure of 200-nm-thick Gold Interconnects

    Institute of Scientific and Technical Information of China (English)

    Bin ZHANG; Qingyuan YU; Jun TAN; Guangping ZHANG

    2008-01-01

    200-nm-thick Au interconnects on a quartz substrate were tested in-situ inside a dual-beam microscope by applying direct current,alternating current and alternating current with a small direct current component.The failure behavior of the Au interconnects under three kinds of electric currents were characterized in-situ by scanning electron microscopy.It is found that the formation of voids and subsequent growth perpendicular to the interconnect direction is the fatal failure mode for all the Au interconnects under three kinds of electric currents.The failure mechanism of the ultrathin metal lines induced by the electric currents was analyzed.

  17. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    Science.gov (United States)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  18. Hysteresis losses in MgB2 superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    DEFF Research Database (Denmark)

    Magnusson, N.; Abrahamsen, Asger Bech; Liu, Dawei

    2014-01-01

    a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting...... equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB2 DC coils in the 1–4T range with low AC magnetic field and current ripples....

  19. Angular dependence of direct current decay in a closed YBCO double-pancake coil under external AC magnetic field and reduction by magnetic shielding

    Science.gov (United States)

    Geng, J.; Zhang, H.; Li, C.; Zhang, X.; Shen, B.; Coombs, T. A.

    2017-03-01

    High T c superconducting (HTS) coils are ideal candidates in the use of high field magnets. HTS coils carrying a direct current, however, suffer a non-negligible loss when they are exposed to an external AC magnetic field. Although this phenomenon is well known, no study concerning AC magnetic field angular dependence of direct current decay has ever been shown. In this work, we experimentally investigate the direct current decay characteristics in a closed double pancake coil made of a YBCO coated conductor under external AC field. AC field of different angles with respect to the coil plane is applied. Results show that the current decay rate presents a strong angular dependence. The fastest decay occurs when the field is parallel to the coil plane, in which case the surface of the tape in the outermost layer experiences most flux variation. To reduce the decay rate, we propose wrapping superconducting tapes around the outermost layer of the coil to shield external AC field. This method significantly reduces direct current decay rate under parallel field, without affecting the perpendicular self-field of the coil.

  20. Unipolar Electric Machines with Liquid-Metal Current Pickup,

    Science.gov (United States)

    1984-03-08

    A new homopolar motor , e4ournal of the Franklin Institute*. 1954, v. 258, Ne 1. %4 144093, Bjo.1.leTeJb H3o6peTeHxA. 1962,. 14 1. 30. X oao p o a...VIII. Motor Mode of Unipolar Electrical Machine ............... 301 Chapter IX. Bases of Theory and Calculation of Nonpolar Dynamos without...unipolar electric motors . Are examined questions of the classification of acyclic machines, their electromagnetic field, calculation of magnetic circuit

  1. 直接AC/AC变换器输出电压及电流纹波分析%Analysis of Output Voltage and Current Ripple for Direct AC/AC Converter

    Institute of Scientific and Technical Information of China (English)

    文锋; 赵冉; 刘菁

    2009-01-01

    为解决直接AC/AC交换器的输出纹波计算问题,本文建立了以DC/DC变换器结构为基础的六种AC/AC变换器的理想模型.利用这些理想模型,DC/DC变换器的一般分析方法可方便地引入到AC/AC变换器的分析中,然后,论文以Buck型AC/AC变换器为例,给出其电路输出纹波系数的计算公式.为了证明理论分析的正确性,搭建了实验电路,实验结果与理论计算得到了很好的吻合.

  2. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    Directory of Open Access Journals (Sweden)

    Thierry Jacq

    2010-08-01

    Full Text Available This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee and they are centralized and stored on a PC computer.

  3. Generation of longitudinal electric current by the transversal electromagnetic field in classical and quantum plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with degenerate collisionless classical and quantum plasmas is carried out. Formulas for calculation electric current in degenerate collisionless classical and quantum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical degenerate Fermi plasmas and Fermi-Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum degenerate plasmas is carried out. Also comparison of dependence of density of electric current of quantum degenerate plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ...

  4. Generation of longitudinal electric current by transversal electromagnetic field in Maxwellian plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with Maxwellian collisionless classical and quntum plasmas is carried out. Formulas for calculation electric current in Maxwellian collisionless classical and quntum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical Maxwellian plasmas and Fermi---Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum Maxwellian plasmas is carried out. Also comparison of dependence of density of electric current of quantum Maxwellian plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ou...

  5. Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO2/p-GaAs(110) MIS structures

    Science.gov (United States)

    Şafak Asar, Yasemin; Asar, Tarık; Altındal, Şemsettin; Özçelik, Süleyman

    2015-09-01

    In this study, we investigated temperature and voltage dependence of dielectric properties and ac electrical conductivity (σac) of (AuZn)/TiO2/p-GaAs(110) metal-insulator-semiconductor structures in the temperature range of 80-290 K using the capacitance-voltage ? and conductance-voltage ? measurements at 1 MHz. The intersection/crossing behaviour of C-V plots at sufficiently high forward biases and the increase in σac with increasing temperature was attributed to the lack of sufficient number of enough free charge carriers at low temperatures. The values of the dielectric constant (ε‧), dielectric loss (ε″), loss tangent ?, ac electrical conductivity (σac), the real and imaginary parts of electric modulus (?) were found to be strong functions of temperature and applied bias voltage. The Cole-Cole plots between ? have shown only one semicircle for each temperature. This indicates one of the relaxation processes was suppressed and this can be attributed to the surface polarization effect. On the other hand, ? plot has a peak for each temperature. The ? plots revealed two linear regions with different slopes for sufficiently high forward biases (0.0, 0.5, and 1.0 V) which correspond to low (80-200 K) and moderate/intermediate (230-290 K) temperatures. Thus, the values of activation energy (Ea) were obtained from the slope of these Arrhenius plots for two linear regions as 87.3 and 3.4 meV, respectively, at 1.0 V. On the other hand, Mott plots have only one linear region except for 260 and 290 K and Mott parameters were determined from these plots at 0.0, 0.5 and 1.0 V.

  6. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.

    Science.gov (United States)

    Glowacki, B A; Majoros, M

    2009-06-24

    Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties.

  7. Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current

    Institute of Scientific and Technical Information of China (English)

    TU Chuan-jun; CHEN Zhen-hua; CHEN Ding; YAN Hong-ge; HE Feng-yi

    2008-01-01

    The resin-matrix pantograph contact strip (RMPCS), which has excellent abrasion resistance with electrical current and friction-reducing function, was developed in view of the traditional contact strips with high maintenance cost, high wear rate with electrical current and severe damage to the copper conducting wire. The characteristics of worn surfaces, cross-section and typical elemental distributions of RMPCS were studied by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).The wear behavior and arc discharge of RMPCS against copper were investigated with self-made electrical wear tester. The results show that the electrical current plays a critical role in determining the wear behavior, and the wear rate of the RMPCS against copper with electrical current is 2.7-5.8 times higher than the value without electrical current. The wear rate of the contact strip increases with the increase of the sliding speed and electrical current density. The main wear mechanism of RMPCS against copper without electrical current is low stress grain abrasive and slightly adhesive wear, while arc erosion wear and oxidation wear are the dominate mechanism with electrical current, which is accompanied by adhesive wear during the process of wear.

  8. Effective variable switching point predictive current control for ac low-voltage drives

    Science.gov (United States)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  9. High current electric arcs above the In-Ga-Sn eutectic alloy

    Science.gov (United States)

    Klementyeva, I. B.; Pinchuk, M. E.

    2016-11-01

    The results of investigations of high-current dc and ac arc discharges of atmospheric pressure emerging above the free surface of liquid metal (In-Ga-Sn eutectic alloy) are presented in the paper. The mechanism of the arc formation due to pinch-effect is discussed here.

  10. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    Science.gov (United States)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  11. Electroluminescence in Potassium Iodide Single Crystals Containing Potassium Metal Colloids (VII) -Theory of the Frequency Dependence of the Threshold a.c. Electric Field-

    OpenAIRE

    HAGIHARA, Takeshi; HAYASHIUCHI, Yoshihiro

    1996-01-01

    Electroluminescence(EL) in colored KI single crystals containing potassium metal colloids has been studied theoretically to understand the characteristics of the EL. A simple rate equation is introduced to describe the dynamical change in numbers of both luminescence centers and conduction electrons produced from the potassium metal colloids by external high a.c. electric field excitation. The present model explains well the EL experimental results reported previously, e.g., the frequency dep...

  12. Coupling between Surface Plasmon Resonance and electric current in Au stripes

    Science.gov (United States)

    Garcia, Miguel Angel; Serrano, Aida; de La Venta, Jose

    2009-03-01

    Surface Plasmon Resonance (SPR) is the most outstanding feature of noble metal films. SPR consists on a collective oscillation of the conduction electrons when excited optically in the appropriate geometrical and energy conditions. The electrical current passing trough the metal film involves also the movement of conduction electrons. Thus, coupling effects are expected between SPR and electrical resistivity. A modification of the SPR when a electrical current passes through the film, could allow the modulation of an optical signal by a electrical one. Similarly, when the film is illuminated at the SPR conditions, the oscillation of the conduction electrons and local heating can induce an enhancement of the electric resistivity that can be used to translate an optical signal into a electric one. Those effects could be useful in the development of new fast optoelectronic transducers. We present here results on Au stripes illuminated to induce the SPR while electric currents flow with different orientation with respect to the light polarization

  13. Effects of thermal agents on electrical sensory threshold and current tolerance when applied prior to neuromuscular electrical stimulation.

    Science.gov (United States)

    Çıtak Karakaya, İlkim; Güney, Ömer Faruk; Aydın, Yasemin; Karakaya, Mehmet Gürhan

    2014-01-01

    This study aimed to investigate the effects of thermal agents on electrical sensory threshold and current tolerance when applied prior to neuromuscular electrical stimulation. In this single-blind and cross-over trial, electrical sensory threshold and current tolerance of 24 healthy volunteers were evaluated by using biphasic symmetrical pulses (240 μsec, 50 pps), before and after thermal agent (cold pack, hot pack and ultrasound) applications. Electrical sensory threshold increased after cold-pack, and current tolerance reduced after hot-pack applications (p< 0.05). Inter-agent comparisons of pre and post-application differences of the investigated parameters revealed that the most obvious effects were caused by application of hot pack. Hot pack application prior to neuromuscular electrical stimulation (NMES) may reduce current tolerance and limit to reach the desired current intensity for strengthening the electrically induced contractions. Results are considered to be valuable for physiotherapists, who apply thermal agents and NMES consecutively, in their treatment programs.

  14. Time-Resolved Magneto-Optical Imaging of Y1Ba2Cu3O7-delta Thin Films in High-Frequency AC Current Regime (Postprint)

    Science.gov (United States)

    2012-02-01

    ΘF=αB laser pulseAC time φ Figure 1. Schematic diagram of the time-resolved MO imaging setup. time-resolved imaging, we use a Q- switched Nd:YLF diode...controlled power source in order to obtain time-resolved MO images of the current flow in the sample. We use a 6 µm thick epitaxial grown ferrite ...the AC current. Ultimately the time resolution achievable with this method will be limited to sub-nanoseconds by the magnetization switching time of the

  15. Correlation of Electrical Noise with Non-radiative Current for High Power QWLs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The characteristics of low-frequency electrical noise, voltage-current (V-I) and electrical derivation for 980nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditions. The correlation of the low-frequency electrical noise with surface non-radiative current of devices is discussed. The results indicate the low-frequency electrical noise of 980nm DQWLs with high power is mainly 1/f noise and has good relation with the device surface current at low injection.

  16. Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

  17. Hardware Model Of A Shipboard Zonal Electrical Distribution System (ZEDS): Alternating Current/Direct Current (AC/DC)

    Science.gov (United States)

    2010-06-01

    Tach Tach K8061 USB Board DC 1 Power Supply Wall Outlet Power Supply Zach’s FPGA Board Computer Cycle Counter OpAmp B o ard DC 2...the Frequency (Counter) Opamp circuit card iv. Connect the 5v and ±12 Volts commons f. Verify power supply two (PS2), I used the White power...to Cooling Fans 131 The Circuit Board Architectures USB Board Schematic 132 Zach’s FPGA Board 133 Rachel’s OpAmp /Cycle

  18. Hardware Model of a Shipboard Zonal Electrical Distribution System (ZEDS): Alternating Current/Direct Current (AC/DC)

    Science.gov (United States)

    2010-06-01

    shown in Figure 38. HFA60MC60C Ultrafast, Soft Recovery Diode ) OLA T ED EASE VR = 00V + V(tYP ) = 1 V F 6OA Qrr (typ) 2000C DC power Motors ANGCE...Massachusetts Institute of Technology, 2009 [13] "LabJack UE9 User’s Guide," Mar . 10, 2010. [Online] Available: [Accessed May 12, 2010]. [14] E

  19. Pulsed Direct Current Electric Fields Enhance Osteogenesis in Adipose-Derived Stromal Cells

    OpenAIRE

    Hammerick, Kyle E.; James, Aaron W.; Huang, Zubin; Prinz, Fritz B.; Michael T. Longaker

    2009-01-01

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fie...

  20. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    OpenAIRE

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-oc...

  1. Baseline and Verification Tests of the Electric Vehicle Associates’ Current Fare Station Wagon.

    Science.gov (United States)

    1983-01-01

    the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle . The...standard Ford Fairmont station wagon which has been converted to an electric vehicle (Figures 1 anil 2). It is powered I% 22 6-V lead-acid batteries2...D-R132 549 BASELINE AND VERIFICATION TESTS OF THE ELECTRIC VEHICLE 112 ASSOCIATES’ CURRE..(U) ARMY MOBILITY EQUIPMENT RESEARCH AIND DEVELOPMENT

  2. Unusual dc electric fields induced by a high frequency alternating current in superconducting Nb films under a perpendicular magnetic field

    Science.gov (United States)

    Aliev, F. G.; Levanyuk, A. P.; Villar, R.; Sierra, J. F.; Pryadun, V. V.; Awad, A.; Moshchalkov, V. V.

    2009-06-01

    We report a systematic study of dc electric fields produced by sinusoidal high frequency ac currents in Nb superconducting films subject to a constant magnetic field perpendicular to the film plane. At frequencies in the 100 kHz to MHz range appears a new rectification effect which has not been previously observed at lower frequencies. We have observed the dc electric field generated in this regime in films without intentionally created anisotropic pinning centres, i.e. plain films, both in strip geometry as in cross-shape geometry, and also in films with symmetric periodic pinning centres. The electric field appears in both directions along and transverse to the alternating current and is essentially different at opposite film sides. It depends strongly on the intensity of the magnetic field and may exceed by nearly an order of magnitude the rectified electric fields recently reported at lower frequencies (few kHz) in systems with artificially induced anisotropic vortex pinning. The effect has a non-monotonic dependence on the drive current frequency, being maximum around a few 100 kHz to MHz, and shows a complicated temperature dependence. It is found to be different in long strips and cross shape samples. In the case of films with symmetric periodic pinning centres the rectified voltage shows a lower magnitude than in plain films, and shows an interesting structure when the applied magnetic field crosses the matching fields. We are only able to put forward tentative ideas to explain this phenomenon, which irrespective of its explanation should be taken into account in experimental studies of rectification effects in superconductors.

  3. DOE Fundamentals Handbook: Electrical Science, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  4. DOE Fundamentals Handbook: Electrical Science, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  5. DOE Fundamentals Handbook: Electrical Science, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  6. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  7. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  8. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    Directory of Open Access Journals (Sweden)

    A. Fakhouri

    2014-01-01

    Full Text Available The paper focuses on the quantitative analysis of Israeli Government’s targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government’s goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  9. Backup of Renewable Energy for an Electrical Island: Case Study of Israeli Electricity System—Current Status

    Science.gov (United States)

    Fakhouri, A.; Kuperman, A.

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources. PMID:24624044

  10. Backup of renewable energy for an electrical island: case study of Israeli electricity system--current status.

    Science.gov (United States)

    Fakhouri, A; Kuperman, A

    2014-01-01

    The paper focuses on the quantitative analysis of Israeli Government's targets of 10% renewable energy penetration by 2020 and determining the desired methodology (models) for assessing the effects on the electricity market, addressing the fact that Israel is an electricity island. The main objective is to determine the influence of achieving the Government's goals for renewable energy penetration on the need for backup in the Israeli electricity system. This work presents the current situation of the Israeli electricity market and the study to be taken in order to assess the undesirable effects resulting from the intermittency of electricity generated by wind and solar power stations as well as presents some solutions to mitigating these phenomena. Future work will focus on a quantitative analysis of model runs and determine the amounts of backup required relative to the amount of installed capacity from renewable resources.

  11. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    Science.gov (United States)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  12. Optimum Method for RC Snubber of High-Capacity AC-DC Converter in Ship Electric Propulsion System%船舶大功率AC-DC变换器阻容缓冲器优化方法

    Institute of Scientific and Technical Information of China (English)

    赵凯岐; 张殿华; 兰海; 岳文杰; 张强

    2011-01-01

    In design process of high-capacity AC-DC converter in ship electric propulsion system, the RC snubber circuit should be connected to the thyristor in parallel in order to absorb the energy generated at the moment of thyristor switching and suppress overvoltage impulses and high voltage change rate du/dt.However, parameter selection, which is generally depended on empirical formula, sometimes leads to a rather great error. Once the selection of protection parameters is unreasonable, a high spike voltage is likely to occur and render power electronic components will be easily damaged, which threatens the operation safety of equipments. In this paper, a new optimal design method of RC snubber circuit is proposed for thyristor in high-capacity AC-DC converter, R and C parameters and resistor power is deduced more accurately, and the reliability of the AC-DC converter is improved as a result. Numerical simulations and physical experiments are conducted to verify the feasibility and viability of the method.%船舶电力推进系统大功率AC-DC变换器设计时,必须在晶闸管的两端并联阻容缓冲器,以吸收器件关断过程反向恢复电流的能量,抑制高的过电压冲击及高的电压应力du/dt.但是,阻容参数的设计大多依靠经验公式,参数选取有时产生很大偏差,一旦选取不合理,便会产生很高的尖峰过电压,造成电力电子器件的损坏,影响系统安全运行.针对大功率AC-DC变换器晶闸管阻容缓冲器进行研究,提出了阻容缓冲器优化设计方法,推导出较精确的阻容参数值和电阻的功率,提高大功率AC-DC变换器的可靠性,仿真及实验验证了本方法的可行性.

  13. Electrical characterization of p-GeSn/n-Ge diodes with interface traps under dc and ac regimes

    Science.gov (United States)

    Baert, B.; Gupta, S.; Gencarelli, F.; Loo, R.; Simoen, E.; Nguyen, N. D.

    2015-08-01

    In this work, the electrical properties of p-GeSn/n-Ge diodes are investigated in order to assess the impact of defects at the interface between Ge and GeSn using temperature-dependent current-voltage and capacitance-voltage measurements. These structures are made from GeSn epitaxial layers grown by CVD on Ge with in situ doping by Boron. As results, an average ideality factor of 1.2 has been determined and an activation energy comprised between 0.28 eV and 0.30 eV has been extracted from the temperature dependence of the reverse-bias current. Based on the comparison with numerical results obtained from device simulations, we explain this activation energy by the presence of traps located near the GeSn/Ge interface.

  14. On the presence of electric currents in the solar atmosphere. I - A theoretical framework

    Science.gov (United States)

    Hagyard, M.; Low, B. C.; Tandberg-Hanssen, E.

    1981-01-01

    The general magnetic field above the solar photosphere is divided by an elementary analysis based on Ampere's law into two parts: a potential field due to electric currents below the photosphere and a field produced by electric currents above the photosphere combined with the induced mirror currents. The latter, by symmetry, has a set of field lines lying in the plane taken to be the photosphere which may be constructed from given vector magnetograph measurements. These field lines also represent all the information on the electric currents above the photosphere that a magnetograph can provide. Theoretical illustrations are given, and implications for data analysis are discussed.

  15. Experimental investigations of electric current under transverse and longitudinal electric field in uniaxially deformed p-Ge

    Science.gov (United States)

    Abramov, A. A.; Akimov, V. I.; Dalakyan, A. T.; Tulupenko, Victor N.; Zaitsev, A. M.; Danilov, S. N.; Firsov, D. A.; Shalygin, V. A.

    1999-11-01

    Comparison between cases of longitudinal and transverse directions of uniaxial pressure and strong electric field, affected the bulk hole germanium, to use it for lasting in far IR region has been carried out. Conclusion about preference of crossed directions is made. Threshold pressure, at which stimulated radiation arises, independence of crystallographic direction, along which external influences are applied, is also discussed. The results of experimental investigations of the crossed directions of uniaxial pressure and electric current are given.

  16. Hysteresis losses in MgB{sub 2} superconductors exposed to combinations of low AC and high DC magnetic fields and transport currents

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, N., E-mail: niklas.magnusson@sintef.no [SINTEF Energy Research, NO-7465 Trondheim (Norway); Abrahamsen, A.B. [DTU Wind Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Liu, D. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands); Runde, M. [SINTEF Energy Research, NO-7465 Trondheim (Norway); Polinder, H. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands)

    2014-11-15

    Highlights: • A method for calculating hysteresis losses in the low AC – high DC magnetic field and transport current range has been shown. • The method can be used in the design of wind turbine generators for calculating the losses in the generator DC rotor. • First estimates indicate tolerable current ripple in the 0.1% range for a 4 T DC MgB{sub 2} generator rotor coil. - Abstract: MgB{sub 2} superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC – low AC current and magnetic field region experimental results still lack for MgB{sub 2} conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB{sub 2} DC coils in the 1–4 T range with low AC magnetic field and current ripples.

  17. Intrawire resistance, AC loss and strain dependence of critical current in MgB2 wires with and without cold high-pressure densification

    NARCIS (Netherlands)

    Zhou, C.; Gao, P.; Krooshoop, H.J.G.; Dhallé, M.M.J.; Sumption, M.D.; Rindfleisch, M.; Tomsic, M.; Küllich, M.; Senatore, C.; Nijhuis, A.

    2014-01-01

    The intrawire resistance and alternating current (AC) loss of two MgB2 wires with filaments surrounded by Nb barriers have been measured and analyzed. Relatively high values of filament-to-matrix contact resistivity are found in the MgB2 wires; the values are two or three orders higher than those co

  18. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    Institute of Scientific and Technical Information of China (English)

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  19. A comparative study of modelling AC electric arc by one-dimensional interpolation for power system harmonics analysis

    OpenAIRE

    Liu Yu-Jen; Hung Jen-Pan; Chen Shang-I; Lin Cheng-Wei

    2016-01-01

    Electric arc is a discharge phenomenon caused by particular electrical events and arc produced facilities in power system, for example the occurrence of short-circuit fault in feeders and the use of electric arc furnace for steel-making. All of these electric arcs have a highly nonlinear nature and can be considered as a significant source of power quality problems. To investigate the impacts of the electric arcs on power quality studies the development of the electric arc models for simulati...

  20. Effects of bonding structure from niobium carbide buffer layer on the field electric emission properties of a-C films

    Science.gov (United States)

    Xu, L.; Wang, C.; Hu, C. Q.; Zhao, Z. D.; Yu, W. X.; Zheng, W. T.

    2009-04-01

    We investigate the field electron emission for amorphous carbon (a-C) films deposited on Si (100) substrates through a niobium carbide buffer layer at different flow rate ratios of CH4/(CH4+Ar) in a CH4/Ar mixture discharge, and find that the composition and chemical bonding of the buffer layer can substantially affect the electron field emission properties of a-C films. The high ratio of Nb-C/Nb-Nb bonds in the buffer layer promotes the electron emission of a-C film. The first-principles calculated results show that the work function of NbC is lower than that of Nb, which is the reason why the high ratio of Nb-C/Nb-Nb bonds in the buffer layer favors the field emission of a-C film.

  1. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun-Qing; QIAO Shi-Zhu; JIA Zhen-Feng; ZHANG Ning-Yu; JI Yan-Ju; PANG Yan-Tao; CHEN Ying; FU Gang

    2008-01-01

    @@ We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations.With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions.The results show that the SCD inhibits the current polarization.Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices.

  2. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    OpenAIRE

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the r...

  3. Independent Manipulation of Heat and Electrical Current via Bifunctional Metamaterials

    Directory of Open Access Journals (Sweden)

    Massimo Moccia

    2014-05-01

    Full Text Available Spatial tailoring of the material constitutive properties is a well-known strategy to mold the local flow of given observables in different physical domains. Coordinate-transformation-based methods (e.g., transformation optics offer a powerful and systematic approach to design anisotropic, spatially inhomogeneous artificial materials (metamaterials capable of precisely manipulating wave-based (electromagnetic, acoustic, elastic as well as diffusion-based (heat phenomena in a desired fashion. However, as versatile as these approaches have been, most designs have thus far been limited to serving single-target functionalities in a given physical domain. Here, we present a step towards a “transformation multiphysics” framework that allows independent and simultaneous manipulation of multiple physical phenomena. As a proof of principle of this new scheme, we design and synthesize (in terms of realistic material constituents a metamaterial shell that simultaneously behaves as a thermal concentrator and an electrical “invisibility cloak.” Our numerical results open up intriguing possibilities in the largely unexplored phase space of multifunctional metadevices, with a wide variety of potential applications to electrical, magnetic, acoustic, and thermal scenarios.

  4. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

    Directory of Open Access Journals (Sweden)

    Jelena Loncarski

    2015-04-01

    Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

  5. A Study on Properties of Electrical Conductive Bricks for Direct Current Electrical Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In this expeiment,the effects of temperature and graphite content on the electricl conductivity of MgO-C materials are studied,Experimental results indicated:the proper ontent of graphite is 10%-12%,The specific electrical resistance of MgO-C materials tends to decrease as the preheat treatment temerature rises.After heat treatment,the specific electrical resistance of MgO-C materials is nearly independent of temperature.

  6. Critical-current density of melt-grown single-grain Y-Ba-Cu-O disks determined by ac susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D-X [ICREA and Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Sanchez, A; Navau, C [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Shi, Y-H; Cardwell, D A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2008-08-15

    The field amplitude and frequency dependent complex ac susceptibility {chi}(H{sub m},f) of three Y-Ba-Cu-O disks made by a top-seeded melt growth technique has been measured at 77 K with the ac field applied along the c-axis of the samples (parallel to their thickness). A procedure based on the Bean model has been developed to calculate the critical-current density J{sub c} near the surface of the sample from the measured {chi}(H{sub m}) for the case where the maximum imaginary component {chi}{sup ''} is not reached.

  7. One connector for DC and AC charging of electric vehicles with an international standard; Standardisierter Kombistecker fuer DC- und AC-Laden von Elektroautos

    Energy Technology Data Exchange (ETDEWEB)

    Toth, Michael [Audi AG, Ingolstadt (Germany); Weber, Robert [BMW Group, Muenchen (Germany); Benecke, Juergen [Daimler AG, Sindelfingen (Germany); Remisch, Dirk [Porsche AG, Weissach (Germany); Kuebel, Matthias [Volkswagen AG, Wolfsburg (Germany)

    2012-12-15

    Audi, BMW, Daimler, Porsche and Volkswagen have designed a universal charging system for electric vehicles for global deployment - the Combined Charging System. This System was designed in close cooperation with major American automobile manufacturers and development partners Phoenix Contact and Rema. This new concept has the potential to supersede many regional solutions which, up to now, have impeded standardisation and resulted in a costly coexistence of different systems worldwide. (orig.)

  8. Electrical energy generation in Europe the current and future role of conventional energy sources in the regional generation of electricity

    CERN Document Server

    Morales Pedraza, Jorge

    2014-01-01

    Maximizing reader insights into the current use of conventional energy sources (such as fossil fuels) in the generation of electricity in the European region, this book addresses several key issues including: potential ways European countries could expand their energy sector in the coming years; the impact on the climate, the level of energy reserves, different efficiency measures that could be adopted to reduce the consumption of fossil fuels in the generation of electricity, and current and future energy production and consumption trends, amongst other topics.   Covering both how the use

  9. 基于DDS技术的交流恒流源设计%Design of AC constant current source based on DDS

    Institute of Scientific and Technical Information of China (English)

    黄怡然; 李娜

    2011-01-01

    The design and the implement method of AC constant current source with the ML2035 sine signal generator based on DOS was introduced in this paper, the AC constant current source was a closed-loop control system, and current negative feedback loop circuit. The testing results show the output current is between 100-200 mA.%介绍了运用直接数字合成技术( DDS )研制的ML2035正弦信号发生器来实现交流恒流源的设计思想和实现方法.该恒流源是一闭环控制系统、电流负反馈电路,测试结果表明,输出电流在100~ 200 mA范围内.

  10. Current approaches to model extracellular electrical neural microstimulation

    Directory of Open Access Journals (Sweden)

    Sébastien eJoucla

    2014-02-01

    Full Text Available Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include 1 the computation of the electrical potential field created by the stimulation in the tissue, and 2 the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron’s response in a cable equation framework (compartmentalized neuron models. Then, we present a whole finite element approach allows the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation.

  11. Influence of Critical Current Density on Guidance Force Decay of HTS Bulk Exposed to AC Magnetic Field Perturbation in a Maglev Vehicle System

    Science.gov (United States)

    Longcai, Zhang; Jianguo, Kong

    2012-07-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to AC external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, we studied the guidance force decay of the YBCO bulk over the NdFdB guideway used in the High-temperature superconducting maglev vehicle system with the application of the AC external magnetic field, and calculated the guidance force decay as a function of time based on an analytic model. In this paper, we investigated the influence of the critical current density on the guidance force decay of HTS bulk exposed to AC field perturbation in the maglev vehicle system and try to adopt a method to suppress the decay. From the results, it was found that the guidance force decay rate was higher for the bulk with lower critical current density. Therefore, we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by improving critical current density of the bulk.

  12. A parametric study of AC electric field-induced toroidal vortex formation in laminar nonpremixed coflow flames

    KAUST Repository

    Xiong, Yuan

    2017-05-02

    This study presents an experimental work investigating the controlling parameters on the formation of an electrically-induced inner toroidal vortex (ITV) near a nozzle rim in small, laminar nonpremixed coflow flames, when an alternating current is applied to the nozzle. A systematic parametric study was conducted by varying the flow parameters of the fuel and coflowing-air velocities, and the nozzle diameter. The fuels tested were methane, ethylene, ethane, propane, n-butane, and i-butane, each representing different ion-generation characteristics and sooting tendencies. The results showed that the fluid dynamic effects on ITV formation were weak, causing only mild variation when altering flow velocities. However, increased fuel velocity resulted in increased polycyclic aromatic hydrocarbon (PAH) formation, which promoted ITV formation. When judging the ITV-formation tendency based on critical applied voltage and frequency, it was qualitatively well correlated with the PAH concentration and the relative location of PAHs to the nozzle rim. The sooting tendency of the fuels did not affect the results much. A change in the nozzle diameter highlighted the importance of the relative distance between the PAH zone and the nozzle rim, indicating the role of local electric-field intensity on ITV formation. Detailed onset conditions, characteristics of near-nozzle flow patterns, and PAH distributions are also discussed.

  13. Electric currents in REBaCuO superconducting tapes

    Science.gov (United States)

    Jirsa, M.; Rameš, M.; Ďuran, I.; Melíšek, T.; Kováč, P.; Viererbl, L.

    2017-04-01

    Magnetic induction and current transport techniques were employed to test the electromagnetic performance of 22 samples of superconducting REBaCuO tapes of several manufacturers with the aim to select the best candidates for wiring new generation superconducting magnets for fusion reactors. An extraordinary shape of pinning force density as a function of magnetic field was observed in ‘advanced pinning, AP’ SuperPower tapes. The induced currents enabled us to classify the tapes and show the best ones, at low temperatures and high magnetic fields on the one hand and at high temperatures and low magnetic fields on the other hand. Transport current experiments confirmed the results. Moreover, they provided information on current anisotropy, which appeared to be specific for each tape type. The present results formed a basis for the ongoing study of neutron irradiation impact on the tapes’ properties. The first experiment showed that neutron irradiation by the fluence of 2.1 E22 m‑2 either enhances, reduces, or has no effect on the tape’s properties, according to the tape pinning structure.

  14. Method for Estimating Low-Frequency Return Current of DC Electric Railcar

    Science.gov (United States)

    Hatsukade, Satoru

    The Estimation of the harmonic current of railcars is necessary for achieving compatibility between train signaling systems and railcar equipment. However, although several theoretical analyses methods for estimating the harmonic current of railcars using switching functions exist, there are no theoretical analysis methods estimating a low-frequency current at a frequency less than the power converter's carrier frequency. This paper describes a method for estimating the spectrum (frequency and amplitude) of the low-frequency return current of DC electric railcars. First, relationships between the return current and characteristics of the DC electric railcars, such as mass and acceleration, are determined. Then, the mathematical (not numerical) calculation results for low-frequency current are obtained from the time-current curve for a DC electric railcar by using Fourier series expansions. Finally, the measurement results clearly show the effectiveness of the estimation method development in this study.

  15. Leakage current and induced electrical energy dissipation in nonlinear oscillation of dielectric elastomer actuators

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-09-01

    Subject to a high voltage, leakage current and induced electrical energy dissipation inevitably occur during the actuation of dielectric elastomers (DEs). In this article, a theoretical model is developed to investigate the dissipative performance of DEs in dynamic actuation. Effects of three different actuation conditions, including DE materials’ viscoelasticity intensity, amplitude of applied voltage, and mechanical tensile force, are considered. Numerical calculations are employed to detect the dynamic dissipative performance of DEs including leakage current, electrical power density, and electrical energy density in certain vibrational periods. Leakage current and induced electrical energy dissipation are enhanced with the enlargement of amplitude of applied voltage and mechanical force, and are suppressed as the intensity of DEs’ viscoelastic creep increases. The electrical energy for dissipation and actuation is also analyzed and compared.

  16. Vertical coupling between troposphere and lower ionosphere by electric currents and fields at equatorial latitudes

    Science.gov (United States)

    Tonev, P. T.; Velinov, P. I. Y.

    2016-04-01

    Thunderstorms play significant role in the upward electrical coupling between the troposphere and lower ionosphere by quasi-static (QS) electric fields generated by quiet conditions (by slow variations of electric charges), as well as during lightning discharges when they can be strong enough to produce in the nighttime lower ionosphere sprites. Changes are caused in lower ionosphere by the QS electric fields before a sprite-producing lightning discharge which can play role in formation of the stronger sprite-driving transient QS electric fields due to lightning. These changes include electron heating, modifications of conductivity and electron density, etc. We demonstrate that such changes depend on the geomagnetic latitude determining the magnetic field lines inclination, and thus, the anisotropic conductivity. Our previous results show that the QS electric fields in the lower ionosphere above equatorial thunderstorms are much bigger and have larger horizontal extension than those generated at high and middle altitudes by otherwise same conditions. Now we estimate by modeling the electric currents and fields generated in lower ionosphere above equatorial thunderstorms of different horizontal dimensions during quiet periods and of their self-consistent effects to conductivity whose modifications can play role in formation of post-lightning sprite-producing electric fields. Specific electric currents configurations and distributions of related electric fields are estimated first by ambient conductivity. Then, these are evaluated self-consistently with conductivity modification. The electric currents are re-oriented above ~85 km and flow in a narrow horizontal layer where they dense. Respectively, the electric fields and their effect on conductivity have much larger horizontal scale than at middle latitudes (few hundred of kilometers). Horizontally large sources, such as mesoscale convective structures, cause enhancements of electric fields and their effects. These

  17. Induction cascade with electro-explosive commutation of current for amplification of electric pulse power

    CERN Document Server

    Grabovskij, E V; Kuznetsov, V V; Lototskij, A P; Khaustov, E V; Khalimullin, Y A; Kasyanov, N Y; Kormilitsyn, A I; Filatov, V A; Shkolnikov, E Y

    2002-01-01

    Paper describes a circuit of power amplification induction cascade based on a two-loop solenoid and electrically exploded conductors serving as current breakers. Due to retention of the general magnetic flow current breaking in the first loop of accumulator results in current amplification in the second loop and in accelerated actuation of the second electrically exploded conductor. Current switching to load occurs with 20-fold reduction of charging current front duration and increase of its amplitude. Time to charge coil is selected within 300-350 mu s limits

  18. Uncertainty evaluation in the measurement of power frequency electric and magnetic fields from AC overhead power lines.

    Science.gov (United States)

    Ztoupis, I N; Gonos, I F; Stathopulos, I A

    2013-11-01

    Measurements of power frequency electric and magnetic fields from alternating current power lines are carried out in order to evaluate the exposure levels of the human body on the general public. For any electromagnetic field measurement, it is necessary to define the sources of measurement uncertainty and determine the total measurement uncertainty. This paper is concerned with the problems of measurement uncertainty estimation, as the measurement uncertainty budget calculation techniques recommended in standardising documents and research studies are barely described. In this work the total uncertainty of power frequency field measurements near power lines in various measurement sites is assessed by considering not only all available equipment data, but also contributions that depend on the measurement procedures, environmental conditions and characteristics of the field source, which are considered to increase the error of measurement. A detailed application example for power frequency field measurements is presented here by accredited laboratory.

  19. Two-dimensional electric current effects on a magnetized plasma in contact with a surface

    NARCIS (Netherlands)

    Shumack, A. E.; de Blank, H. J.; Westerhout, J.; van Rooij, G. J.

    2012-01-01

    Significant electric fields both parallel and perpendicular to a magnetic field have been observed and modeled self-consistently in an ITER divertor relevant plasma–wall experiment. Due to magnetization, electric current is found to penetrate the plasma beam outside of the cascaded arc plasma source

  20. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    CERN Document Server

    Lazar, Markus

    2013-01-01

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  1. Stored Energy of Coupled Electric and Magnetic Currents and the Lower Bound on Q

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2015-01-01

    —New expressions for the stored energy and radiated power of an arbitrary combination of electric and magnetic currents in free space are presented. These expressions enable the calculation of the fundamental lower bound on Q for arbitraryshaped electrically small antennas of finite size....

  2. Method for the formation of cylindrical current and its application to evaluate electrical resistivity

    Science.gov (United States)

    Li, T.-C.; Chang, C.-S.; Liang, W.-L.; Tsai, W.-F.; Ai, C.-F.; Lin, J.-F.

    2012-07-01

    A cylindrical current method is developed to obtain a stable and precise electrical resistivity of a specimen with or without a coating film. The electrical resistivity of a standard silicon wafer doped with boron at a concentration can be measured using the proposed method if the experimental results of electrical voltage varying with the distance from the center line of the cylindrical current are available. A comparison of the electrical resistivity obtained using the present method and the theoretical reference value indicates that the proposed method produces reliable and precise measurements. Using four test samples, the experimental results of electrical resistivity measured by the present method are shown to be reproducible and more precise than those measured by the four-terminal sensing method and the van der Pauw method. The electrical voltage and current obtained at various distances from the center line of the cylindrical current are almost independent of the distance and the direction of measurements. The effect of specimen's crystallinity appears to be the governing factor of electrical resistivity. Electrical resistivity decreases with increasing crystallinity generally.

  3. Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM

    1999-01-01

    Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe

  4. Non-perceptible body current ELF effects as defined by electric shock safety data.

    Science.gov (United States)

    Bridges, Jack E

    2002-10-01

    Non-perceptible body currents that arise from contacting exposed conductors that are part of household appliances, are considered in the light of past electric shock safety studies. When these appliances are touched, the older, nongrounded appliances exhibited orders of magnitude greater in-tissue electric fields than the newer grounded appliances or other grounded, exposed, household conductors, such as water faucets.

  5. Study of the electric field and wall voltage in a high pressure ac-PDP cell by laser induced fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Zhou Yan; K. W. Whang; J. H. Yang; D. C. Jeong; C.H.Ha; Y.W. Choi

    2004-01-01

    The electric field in a surface discharge type ac-PDP cell with He or He/Xe(0.1%) mixture has been measured over a wide range of pressure (5 50kP1 using laser induced fluorescence detection. The wall voltage was estimated from the measured electric field. The Stark manifolds of triplet atomic helium Rydberg state (2s3S) with principal quantum numbers (n=8 and 9) have been used to measure the electric field, as the lifetime of 2s3S is longer than the single atomic helium Rydberg state (2s1S) in high pressure discharge. Comparison of the Stark manifolds between the n=9 and n=8shows that the measurement accuracy of electric field can be increased by 10%. The maximum electric field strength during discharge and the wall voltage at the end of pulse decreases with the increase of pressure. The comparison of He and He/Xe(0.1%) discharge at 13kPa showed that He/Xe gas mixture discharge can accumulate more wall charge on MgO surface and the electric field was somewhat higher than those of pure helium discharge during pulse off period under the same discharge conditions.

  6. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation

    Science.gov (United States)

    Pelletier, Simon J.; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin

    2015-01-01

    Background: The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Methods: Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. Results: In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. Conclusion: We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. PMID:25522422

  7. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  8. The Use of Current Generators in Electrical Converter Drives for Stepper Motors

    Directory of Open Access Journals (Sweden)

    Emanoil Toma

    2014-09-01

    Full Text Available This paper presents some ways to realize electrical converters for stepper motor drives. The first part analyzes aspects for unipolar stepper motor and use of constant current generators. The second part present current sources based on peak limiting current trough the inductance of motor coil. A complete drive module for bipolar stepper motor was conceived and simulation results confirm their functionability.

  9. Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis

    NARCIS (Netherlands)

    van der Borden, AJ; van der Mei, HC; Busscher, H

    2005-01-01

    In vitro Studies investigating the influence of electric DC current on bacterial detachment have demonstrated that continuous currents of only 25-125 mu A stimulated Staphylococcal strains to detach from surgical stainless steel. However, DC Currents produce more power that has to be dissipated by t

  10. Mechanical, electrical and microstructural properties of cement-based materials in conditions of stray current flow

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Copuroglu, O.; Van Beek, C.; Van Breugel, K.

    2013-01-01

    This investigation presents a comparative study on mechanical properties, electrical resistivity and microstructure of mortar under DC current, compared to mortar in rest (no current) conditions. Monitoring was performed from 24h after casting until 84 days of cement hydration. A current

  11. In vivo assessment of human brain oscillations during application of transcranial electric currents

    NARCIS (Netherlands)

    Soekadar, S.R.; Witkowski, M.; García Cossio, E.; Birbaumer, N.; Robinson, S.E.; Cohen, L.G.

    2013-01-01

    Brain oscillations reflect pattern formation of cell assemblies’ activity, which is often disturbed in neurological and psychiatric diseases like depression, schizophrenia and stroke. In the neurobiological analysis and treatment of these conditions, transcranial electric currents applied to the

  12. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  13. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  14. Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.50.95Ba0.05TiO3 ceramic

    Directory of Open Access Journals (Sweden)

    Ansu K. Roy

    2013-06-01

    Full Text Available Lead-free piezoelectric perovskite ceramic (Bi0.5Na0.50.95Ba0.05TiO3 (BNT-BT0.05, prepared by conventional high temperature solid state reaction technique at 1160 °C/3h in air atmosphere, is investigated by impedance and modulus spectroscopy in a temperature range 35–400 °C, over a frequency range 100 Hz–1 MHz. The crystal structure, microstructure, and piezoelectric properties as well as the AC conductivity of the sample were studied. Powder X-ray diffraction pattern derived from the resulting data at the room temperature subjected to Rietveld refinements and Williamson-Hall plot analysis confirmed the formation of phase pure compound with monoclinic unit cells having a crystallite-size ~33.8 nm. Observed SEM micrograph showed a uniform distribution of grains inside the sample having an average grain size ~3 mm. Longitudinal piezoelectric charge coefficient of the sample poled under a DC electric field of ~ 2.5 kV/mm at 80 °C in a silicone oil bath was found to be equal to 95 pC/N. The frequency and temperature dependent electrical data analysed in the framework of AC conductivity, complex impedance as well as electric modulus formalisms showed negative temperature coefficient of resistance (NTCR character of the material and the dielectric relaxation in the material to be of non-Debye type. Double power law for the frequency-dependence of AC conductivity and Jump Relaxation Model (JRM were found to explain successfully the mechanism of charge transport in BNT-BT0.05.

  15. High dislocation density of tin induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan, R. O. C (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan, R. O. C (China)

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  16. Electric Machine with Boosted Inductance to Stabilize Current Control

    Science.gov (United States)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  17. Beta band transcranial alternating (tACS and direct current stimulation (tDCS applied after initial learning facilitate retrieval of a motor sequence

    Directory of Open Access Journals (Sweden)

    Vanessa eKrause

    2016-01-01

    Full Text Available The primary motor cortex (M1 contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS and direct current stimulation (tDCS. Alpha (10 Hz, beta (20 Hz or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for ten minutes. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions.Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. TDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioural modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization.

  18. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    Science.gov (United States)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  19. Investigation and comparison of AC losses on stabilizer-free and copper stabilizer HTS tapes

    Science.gov (United States)

    Shen, Boyang; Li, Jing; Geng, Jianzhao; Fu, Lin; Zhang, Xiuchang; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Coombs, T. A.

    2017-10-01

    This paper presents the measurement and simulation of Alternating Current (AC) losses on the Stabilizer-free and Copper Stabilizer High Temperature Superconducting (HTS) Tapes: SuperPower SF12100 and SCS12050. The AC loss measurement utilised electrical method to obtain overall losses with AC transport currents. The 2D H-formulation by COMSOL Multiphysics has been used to simulate the real geometry and multi-layer HTS tapes. Ferromagnetic AC losses of substrate have been assumed to be ignored as the substrates of SF12100 and SCS12050 are non-magnetic. Hysteresis AC losses in the superconducting layer, and eddy-current AC losses in copper stabilizer, silver overlayer and substrate were concerned in this investigation. The measured AC losses were compared to the AC losses from simulation, with 3 cases of different AC frequency 10, 100, and 1000 Hz. The eddy-current AC losses of copper stabilizer at frequency 1000 Hz were determined from both experiment and simulation. The estimation of AC losses with frequency at 10,000 Hz was also carried out using simulation method. Finally, the frequency dependence of AC losses from Stabilizer-free Tape and Copper Stabilizer Tape were compared and analysed.

  20. Indications, Knives, and Electric Current: What's the Best?

    Science.gov (United States)

    Lee, Bo-In

    2012-09-01

    Endoscopic submucosal dissection (ESD) was developed to overcome the limitations of conventional endoscopic mucosal resection (EMR), and ESD has been also applied for large colorectal neoplasms. Since colorectal ESD is still associated with higher perforation rate, a longer procedure time, and increased technical difficulty, the indications should be strictly considered. Generally, colorectal tumors without deep submucosal invasion or minimal possibility of lymph node metastasis, for which en bloc resection using conventional EMR is difficult, are good candidates for colorectal ESD. The ideal knife for colorectal ESD should avoid making perforations but can make a clean cut of optimal depth at one time. The ideal current for ESD differs depending on the procedure used, the surgical devices used, the tissue to be dissected, and the operator's preference. Application of the optimal indications and improvements in the technical skill and surgical devices are required for easier and safer colorectal ESD.

  1. Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan

    Science.gov (United States)

    Westjohn, D.B.; Carter, P.J.

    1989-01-01

    Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.

  2. DOE Fundamentals Handbook: Electrical Science, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  3. The Study of Electron Coherence Effects in Metallic Systems with High Frequency AC Electric Fields: Weak Localization and Mesoscopic Photovoltaic Effects.

    Science.gov (United States)

    Liu, Jin

    We have studied the effect of a high-frequency microwave electric field on electron phase coherence in thin Sb films and wires. The phase coherence is monitored through the effect of weak localization on the conductance. Through careful experimental design, we were able to calibrate the high frequency electric field. The ac effect was separated from the Joule heating with either dc measurements or the application of a magnetic field. This has made it possible to make a detailed, quantitative comparison with the theory with no free parameters. We have found good agreements between the experiments and the theory for both one and two dimensional cases. We have used the simple dc heating experiment to study the electron heating effects in Sb films. The electron temperature was reflected in the resistance, as an especially striking manner, to be quite different from the lattice temperature. This experiment was also used to study the electron-phonon scattering time in thin Sb films in the temperature range 1-4K. The magnitude of the scattering time is in reasonable accord with the theory, while the temperature dependence is of the form tau_{E_{ph}} ~ T^{-alpha }, with alpha ~ 1.4. The value of alpha appears to be significantly smaller than predicted by the theory, and is not understood. We have also studied the high frequency heating effects of thin AuPd, AuFe, and Au films at low temperatures. The analysis of the experiments yield consistent results with the theory for AuPd films with high values of the sheet resistance. However, for low-sheet-resistance films of AuPd, AuFe, and Au, the analysis suggests either that Joule heating is suppressed at microwave frequencies (as compared with that found for the same field strength at lower frequencies), or that a microwave field enhances the contribution of electron-electron interactions to the resistance. Either of these results would be at odds with current theories. Another experiment in which we were involved was the

  4. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    Science.gov (United States)

    Cha, Y. S.; Niemann, R. C.; Hull, J. R.; Youngdahl, C. A.; Lanagan, M. T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A(sub rms) for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used.

  5. Experimental study on directional solidification of Al-Si alloys under the influence of electric currents

    Science.gov (United States)

    Räbiger, D.; Zhang, Y.; Galindo, V.; Franke, S.; Willers, B.; Eckert, S.

    2016-07-01

    The application of electric currents during solidification can cause grain refinement in metallic alloys. However, the knowledge about the mechanisms underlying the decrease in grain size remains fragmentary. This study considers the solidification of Al-Si alloys under the influence of electric currents for the configuration of two parallel electrodes at the free surface. Solidification experiments were performed under the influence of both direct currents (DC) and rectangular electric current pulses (ECP). The interaction between the applied current and its own induced magnetic field causes a Lorentz force which produces an electro-vortex flow. Numerical simulations were conducted to calculate the Lorentz force, the Joule heating and the induced melt flow. The numerical predictions were confirmed by isothermal flow measurements in eutectic GaInSn. The results demonstrate that the grain refining effect observed in our experiments can be ascribed solely to the forced melt flow driven by the Lorentz force.

  6. Effect of melt pulse electric current and thermal treatment on A356 alloy

    Institute of Scientific and Technical Information of China (English)

    何树先; 王俊; 江莞; 孙宝德; 周尧和

    2003-01-01

    Effects of the melt pulse electric current and thermal treatment on solidification structures of A356 alloywere investigated. In the experiments, the low temperature melt(953 K and 903 K) treated by pulse electric currentwas mixed with high temperature melt(1 223 K). By the control experiments, the results show that the solidificationstructure of A356 alloy is refined apparently by the pulse electric current togeth er with melt thermal treatmentprocess, and the mechanical properties, especially the elongation ratio of the specimen treated is improved greatly.The structure change of the melt by pulse electric current and melt thermal treatment is the main reason for the re-finement of the solidification structure of A356 alloy.

  7. Physicochemical Properties of Biopolymer Hydrogels Treated by Direct Electric Current

    Directory of Open Access Journals (Sweden)

    Żaneta Król

    2016-07-01

    Full Text Available The objective of this study was to evaluate the changes within the physicochemical properties of gelatine (2%; 4%; 8%, carrageenan (1.5%; 2%; 2.5% and sodium alginate (0.75%; 1%; 1.25% hydrogels with different sodium chloride concentrations that were triggered by applying direct current (DC of 400 mA for a duration of five minutes. There were three types of gels prepared for the purpose of the study: C, control; H, gels on the basis of hydrosols that were treated with DC; and G, gels treated with DC. In the course of the study, the authors carried out the following analyses: Texture Profile Analysis (TPA, Fourier Transform Infrared spectroscopy (FTIR, Scanning Electron Microscopy (SEM and Swelling Ratio (SR. Furthermore, the color and pH of hydrogels were measured. The FTIR spectra showed that the structures of gelatine, carrageenan and sodium alginate do not significantly change upon applying DC. The results of TPA, SR, color and pH measurement indicate that hydrogels’ properties are significantly dependent on the type of polymer, its concentration and the type of the gel. By changing those parameters, the characteristics of such gels can be additionally tuned, which extends their applicability, e.g., in the food industry. Moreover, the analysis revealed that SR of H gel gelatine after 72 h of storage was 1.84-times higher than SR of the control sample, which indicated that this gel may be considered as a possible component for wound dressing materials.

  8. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    Science.gov (United States)

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  9. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  10. Non-stationary corona around multi-point system in atmospheric electric field: I. Onset electric field and discharge current

    Science.gov (United States)

    Bazelyan, E. M.; Raizer, Yu. P.; Aleksandrov, N. L.

    2014-03-01

    The properties of a non-stationary glow corona maintained near the tips of a multi-point ground system in a time-varying thundercloud electric field have been studied numerically and analytically. Computer and analytical models were developed to simulate the corona discharge initiated from a system of identical vertical conductive electrodes distributed uniformly over a grounded plane surface. The simulation was based on a solution of the electrostatic equation for electric field and continuity equations for light and aerosol ions. The development of individual corona space charge layers from different points and the formation of a united plane layer were considered. The effect of system dimensions and that of the distance between electrodes on the external electric field corresponding to corona onset near the rod tips was investigated. The evolution in time of the corona current was calculated for systems with various numbers of coronating rods in time-varying atmospheric electric field. In the limit of infinite number of coronating rods, reasonable agreement was obtained between numerical calculations and analytical theory considering the effect of surrounding rods on the corona discharge from a given rod in a simplified integral way. Conditions were determined under which the corona properties of a multi-point system are similar to the properties of a plane surface emitting ions into the atmosphere. In this case, the corona current density is governed by the time derivative of the thundercloud electric field and is independent of the ion mobility and of the coronating system dimensions. The total corona space charge injected into the atmosphere per unit area by a given instant is controlled by the thundercloud electric field at this instant and depends on the geometrical parameters of the system only indirectly, through the corona onset atmospheric electric field. This simple model could be used to simulate a corona discharge during thunderstorms at the earth

  11. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  12. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; James, Aaron W; Huang, Zubin; Prinz, Fritz B; Longaker, Michael T

    2010-03-01

    Adipose-derived stromal cells (ASCs) constitute a promising source of cells for regenerative medicine applications. Previous studies of osteogenic potential in ASCs have focused on chemicals, growth factors, and mechanical stimuli. Citing the demonstrated role electric fields play in enhancing healing in bone fractures and defects, we investigated the ability of pulsed direct current electric fields to drive osteogenic differentiation in mouse ASCs. Employing 50 Hz direct current electric fields in concert with and without osteogenic factors, we demonstrated increased early osteoblast-specific markers. We were also able to establish that commonly reported artifacts of electric field stimulation are not the primary mediators of the observed effects. The electric fields caused marked changes in the cytoskeleton. We used atomic force microscopy-based force spectroscopy to record an increase in the cytoskeletal tension after treatment with electric fields. We abolished the increased cytoskeletal stresses with the rho-associated protein kinase inhibitor, Y27632, and did not see any decrease in osteogenic gene expression, suggesting that the pro-osteogenic effects of the electric fields are not transduced via cytoskeletal tension. Electric fields may show promise as candidate enhancers of osteogenesis of ASCs and may be incorporated into cell-based strategies for skeletal regeneration.

  13. Simplification Study of FE Model for 1000kV AC Transmission Line Insulator String Voltage and Grading Ring Surface Electric Field Distribution Calculation

    Directory of Open Access Journals (Sweden)

    Guoli Wang

    2013-09-01

    Full Text Available The finite element model of the 1000kV Ultra High Voltage (UHV AC transmission line porcelain insulator string voltage distribution and grading ring surface electric field distribution calculation has the characteristics of large size, complicated structure and various mediums. To insure the accuracy, related influencing factors should be considered to simplify the model reasonably for improving computational efficiency. A whole model and a simplified 3D finite element model of UHV AC transmission line porcelain insulator string were built. The influencing factors including tower, phase conductors, hardware fittings, yoke plate and phase interaction were considered in the analysis. And finally, the rationality of the simplified model was validated. The results comparison show that building a simplified model of three-phase bundled conductors within a certain length, simplifying the tower reasonably, omitting the hardware fittings and yoke plate and containing only single-phase insulator string model is feasible. The simplified model could replace the whole model to analyze the voltage distribution along the porcelain insulator string and the electric field distribution on the grading ring surface, and it can reduce the calculation scale, improve optimization efficiency of insulators string and grading ring parameters.

  14. Interaction of atomized colloid with an ac electric field in a dielectric barrier discharge reactor used for deposition of nanocomposite coatings

    Science.gov (United States)

    Profili, Jacopo; Dap, Simon; Levasseur, Olivier; Naude, Nicolas; Belinger, Antoine; Stafford, Luc; Gherardi, Nicolas

    2017-02-01

    Nanocomposite thin films can be obtained by polymerization of a colloidal solution in a dielectric barrier discharge (DBD) at atmospheric pressure. In such a process, the dispersion of nanoparticles into the matrix is driven by the charging, transport, and deposition dynamics of the atomized colloid. This work examines the interaction of atomized TiO2 nanoparticles with ac electric fields in a plane-to-plane dielectric barrier discharge reactor. Experiments are performed with the discharge off to examine transport and deposition phenomena over a wide range of experimental conditions with a fixed particle charge distribution. Scanning electron microscopy reveals that the size distribution of TiO2 nanoparticles collected at different locations along the substrate surface placed on the bottom electrode of the DBD reactor can judiciously be controlled by varying the amplitude and frequency of the ac electric field. These results are also compared to the predictions of a simple particle motion model accounting for the electrostatic force, the gravitational force, and the neutral drag force in the laminar flow. It is found that while the initial charge distribution of atomized particles strongly influences the total deposition yield, its maximal position on the substrate, and the width of the deposited area, the initial size distribution of the particles at the entrance of the reactor mostly changes the size distribution at each position along the substrate surface.

  15. Generation of longitudinal electric current by the transversal electromagnetic field in collisional plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    From kinetic Vlasov equation for collisional plasmas distribution function is received in square-law approximation on size of electromagnetic field. The formula for calculation electric current is deduced at any temperature (any degree of degeneration electronic gas). This formula contains one-dimension quadrature. It is shown, that the nonlinearity account leads to occurrence the longitudinal electric current directed along a wave vector. This longitudinal current is perpendicular to the known transversal classical current, received at the linear analysis. When frequency of collisions tends to zero, all received results for collisional plasma pass in known corresponding formulas for collisionless plasma. The case of small values of wave number is considered. It is shown, that the received quantity of longitudinal current at tendency of frequency of collisions to zero also passes in known corresponding expression of current for collisionless plasmas. Graphic comparison of dimensionless size of current is spen...

  16. Marine electrical practice

    CERN Document Server

    Watson, G O

    1991-01-01

    Marine Engineering Series: Marine Electrical Practice, Sixth Edition focuses on changes in the marine industry, including the application of programmable electronic systems, generators, and motors. The publication first ponders on insulation and temperature ratings of equipment, protection and discrimination, and AC generators. Discussions focus on construction, shaft-drive generators, effect of unbalanced loading, subtransient and transient reactance, protection discrimination, fault current, measurement of ambient air temperature, and basis of machine ratings. The text then examines AC switc

  17. The effect of electrical stray current on material properties of mortar specimens

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Beek, C.; Van Breugel, K.

    2013-01-01

    Well known is that stray electrical current i.e. current with a spatial distribution in any conductive environment, can affect civil structures, e.g. initiate or enhance steel corrosion or affect microstructural and mechanical properties of the cement-based bulk matrix. While the former is related

  18. Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study.

    Science.gov (United States)

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2013-01-01

    This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.

  19. Two New Theories for the Current Charge Relativity and the Electric Origin of the Magnetic Force Between Two Filamentary Current Elements

    CERN Document Server

    Shadid, Waseem G T

    2016-01-01

    This paper presents two new theories and a new current representation to explain the magnetic force between two filamentary current elements as a result of electric force interactions between current charges. The first theory states that a current has an electric charge relative to its moving observer. The second theory states that the magnetic force is an electric force in origin. The new current representation characterizes a current as equal amounts of positive and negative point charges moving in opposite directions at the speed of light. Previous work regarded electricity and magnetism as different aspects of the same subject. One effort was made by Johnson to unify the origin of electricity and magnetism, but this effort yielded a formula that is unequal to the well-known magnetic force law. The explanation provided for the magnetic force depends on three factors: 1) representing the electric current as charges moving at the speed of light, 2) considering the relative velocity between moving charges, an...

  20. STATISTIC, PROBABILISTIC, CORRELATION AND SPECTRAL ANALYSES OF REGENERATIVE BRAKING CURRENT OF DC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2014-04-01

    Full Text Available Purpose. Defining and analysis of the probabilistic and spectral characteristics of random current in regenerative braking mode of DC electric rolling stock are observed in this paper. Methodology. The elements and methods of the probability theory (particularly the theory of stationary and non-stationary processes and methods of the sampling theory are used for processing of the regenerated current data arrays by PC. Findings. The regenerated current records are obtained from the locomotives and trains in Ukraine railways and trams in Poland. It was established that the current has uninterrupted and the jumping variations in time (especially in trams. For the random current in the regenerative braking mode the functions of mathematical expectation, dispersion and standard deviation are calculated. Histograms, probabilistic characteristics and correlation functions are calculated and plotted down for this current too. It was established that the current of the regenerative braking mode can be considered like the stationary and non-ergodic process. The spectral analysis of these records and “tail part” of the correlation function found weak periodical (or low-frequency components which are known like an interharmonic. Originality. Firstly, the theory of non-stationary random processes was adapted for the analysis of the recuperated current which has uninterrupted and the jumping variations in time. Secondly, the presence of interharmonics in the stochastic process of regenerated current was defined for the first time. And finally, the patterns of temporal changes of the correlation current function are defined too. This allows to reasonably apply the correlation functions method in the identification of the electric traction system devices. Practical value. The results of probabilistic and statistic analysis of the recuperated current allow to estimate the quality of recovered energy and energy quality indices of electric rolling stock in the

  1. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  2. Method and system for a gas tube-based current source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  3. In Vitro Assessment of Electric Currents Increasing the Effectiveness of Vancomycin Against Staphylococcus epidermidis Biofilms.

    Science.gov (United States)

    Haddad, Peter A; Mah, Thien-Fah; Mussivand, Tofy

    2016-08-01

    Biofilms are communities of bacteria that can cause infections which are resistant to the immune system and antimicrobial treatments, posing a significant threat for patients with implantable and indwelling medical devices. The purpose of our research was to determine if utilizing specific parameters for electric currents in conjunction with antibiotics could effectively treat a highly resistant biofilm. Our study evaluated the impact of 16 μg/mL of vancomycin with or without 22 or 333 μA of direct electric current (DC) generated by stainless steel electrodes against 24-, 48-, and 72-h-old Staphylococcus epidermidis biofilms formed on titanium coupons. An increase in effectiveness of vancomycin was observed with the combination of 333 μA of electric current against 48-h-old biofilms (P value = 0.01) as well as in combination with 22 μA of electric current against 72-h-old biofilms (P value = 0.04); 333 μA of electric current showed the most significant impact on the effectiveness of vancomycin against S. epidermidis biofilms demonstrating a bioelectric effect previously not observed against this strain of bacteria.

  4. EHV systems technology - A look at the principles and current status. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1983-01-01

    An examination of the basic principles and practices of systems engineering is undertaken in the context of their application to the component and subsystem technologies involved in electric and hybrid vehicle (EHV) development. The limitations of purely electric vehicles are contrasted with hybrid, heat engine-incorporating vehicle technology, which is inherently more versatile. A hybrid vehicle concept assessment methodology is presented which employs current technology and yet fully satisfies U.S. Department of Energy petroleum displacement goals.

  5. The distribution of the electric current in a watt-balance coil

    CERN Document Server

    Sasso, Carlo Paolo; Mana, Giovanni

    2013-01-01

    In the watt balance experiment, separate measurements of the Lorentz and electromotive forces in a coil in a radial magnetic field enable a virtual comparison between mechanical and electric powers to be carried out, which lead to an accurate measurement of the Planck constant. This paper investigates the effect of a spatially inhomogeneous distribution of the electric current in the coil due to the higher or lower resistance of the outer or inner paths.

  6. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Zheng-Zhong; Shen Rui; Sheng Li; Wang Rui-Qiang; Wang Bai-Gen; Xing Ding-Yu

    2011-01-01

    A single-molecule magnet (SMM)coupled to two normal metallic electrodes can both switch spin-up and spindown electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  7. Electrical Discharge Machining Flyback Converter using UC3842 Current Mode PWM Controller

    Directory of Open Access Journals (Sweden)

    Nazriah Mahmud

    2014-10-01

    Full Text Available This paper presents a current mode Pulse Width Modulation (PWM controlled Flyback converter using UC3842 for Electrical Discharge Machining current generator control circuit. Circuit simplicity and high efficiency can be achieved by a Flyback converter with current mode PWM controller. The behaviors of the system's operation is analyzed and discussed by varying the load resistance. Matlab sofware is used to simulate the Flyback converter where a prototype has been built and tested to verify it's performance.

  8. Influence of the Thomson effect on the pulse heating of high-current electrical contacts

    Science.gov (United States)

    Merkushev, A. G.; Pavleino, M. A.; Pavleino, O. M.; Pavlov, V. A.

    2014-09-01

    Pulse heating of high-current contacts is notable for the presence of considerable temperature gradients in the contact area, which cause the Thomson effect—the appearance of thermoelectric currents. The amount of this effect against conventional Joule heat release is quantitatively estimated. Pulse heating of electrical contacts is numerically simulated with the use of the Comsol program package. It is demonstrated that thermoelectric currents make a negligible contribution to heating in the case of copper contacts.

  9. Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts.

    Science.gov (United States)

    Ren, Jian; Chew, Daniel J; Biers, Suzanne; Thiruchelvam, Nikesh

    2016-03-01

    In this review, we focus on the current attempts of electrical nerve stimulation for micturition in spinal cord injury (SCI) patients. A literature search was performed through PubMed using "spinal cord injury," "electrical nerve stimulation AND bladder," "sacral anterior root stimulation/stimulator" and "Brindley stimulator" from January 1975 to January 2014. Twenty studies were selected for this review. Electrical nerve stimulation is a clinical option for promoting micturition in SCI patients. Well-designed, randomized and controlled studies are essential for further investigation. © 2015 Wiley Periodicals, Inc.

  10. ESTIMATION OF INDUCED CURRENTS IN THE SHIELDS OF ELECTRICAL POWER CABLES WITH XLPE INSULATION

    Directory of Open Access Journals (Sweden)

    I. V. Oleksyuk

    2015-01-01

    Full Text Available Electrical power cables with Cross-Linked Polyethylene Insulation (XLPE-insulation are currently utilized in projects of the electric-power supply systems of modern facilities. However, the higher costs, the incomplete design, installation and maintenance normativetechnical basis as well as certain constructional features of the XLPE-insulated cable lines hinder their large-scale implementation.The cables with XLPE insulation are mostly produced in a single-conductor core version being provided with a composite copper shield whose cross-section may vary while the electric conductor cross-section remains uniform. Earthing the cable shields on both sides causes the flow of electricity in them. The course of operational service of the XLPE-insulated cable lines revealed the following fact – the currents induced in the cable shields can run up to the levels commeasurable with those in the conductor-cores themselves. That, in its turn, leads to electrical safety-level reduction, cable lines failure, and economic losses. The currents induced in the shields may occur both in symmetric (normal and emergency and asymmetric operating modes of the power grid with values of the induced currents reaching 80 % of the conducting core currents. Many factors affect the level of the current induced in the shield: the midpoint conductor modes, the values of the core longitudinal currents in the normal and emergency operating modes, failure mode, the cross-section area of the shield, the cables mutual disposition, and the distance between them.The paper claims experimental existence conformation of the cable-shield current induced by that in the conductor-core and demonstrates its measured value. The author establishes that induction of dangerous currents in the cable shields demands elaboration of measures on reducing their level.

  11. Technology of Zero-Current Breaking of Intelligent AC Contactor%智能交流接触器零电流分断技术

    Institute of Scientific and Technical Information of China (English)

    鲍光海; 张培铭

    2012-01-01

    Zero-current breaking technology is an important content in the research of intelligent AC contactor, In this paper, the optimization calculation aimed to breaking quickly of the electromagnetic mechanism of the intelligent AC contactor is conducted, by using the ANSYS electromagnetic software and the artificial fish swarm optimization algorithm based on genetic algorithm. This method not only ensures the reliable contact process of the intelligent AC contactor, but also realizes a quick release of the executive mechanism, thus greatly reduces the influence to the stability and accuracy of the three-phase contactors, especially the first opening phase when zero-current breaking, which improves the reliability of zero-current breaking and increases the technology research level of the intelligent AC contactor. A prototype is made based on the results of the optimization designation. The testing results show that the breaking time of the intelligent AC contactor is shortened greatly, and the stability of the breaking time is improved significantly too, so the reliability of the zero-current breaking increases significantly.%零电流分断技术是交流接触器智能化研究的重要内容。本文采用Ansys电磁场软件和基于遗传算法的人工鱼群优化算法对智能交流接触器电磁动作机构进行以快速分断为目标的优化计算,不仅保证智能交流接触器可靠与优化的接通过程,而且实现了动作机构快速释放,从而大幅度减小机构分散性对三相触头特别是首开相触头零电流分断准确性与稳定性影响,提高零电流分断的可靠性,从而提高了交流接触器智能化技术的研究水平。根据优化设计结果加工了样机,对样机测试与试验的结果表明,智能交流接触器的分断时间大幅缩短,三相触头分断时间稳定性也得到明显改善,因此零电流分断的可靠性显著提高。

  12. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Energy Technology Data Exchange (ETDEWEB)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  13. Analytical solutions of ac electrokinetics in interdigitated electrode arrays: Electric field, dielectrophoretic and traveling-wave dielectrophoretic forces

    Science.gov (United States)

    Sun, Tao; Morgan, Hywel; Green, Nicolas G.

    2007-10-01

    Analysis of the movement of particles in a nonuniform field requires accurate knowledge of the electric field distribution in the system. This paper describes a method for analytically solving the electric field distribution above interdigitated electrode arrays used for dielectrophoresis (DEP) and traveling wave dielectrophoresis (twDEP), using the Schwarz-Christoffel mapping method. The electric field solutions are used to calculate the dielectrophoretic force in both cases, and the traveling wave dielectrophoretic force and the electrorotational torque for the twDEP case. This method requires no approximations and can take into account the Neumann boundary condition used to represent an insulating lid and lower substrate. The analytical results of the electric field distributions are validated for different geometries by comparison with numerical simulations using the finite element method.

  14. Stress-induced electric current fluctuations in rocks: a superstatistical model

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  15. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    Science.gov (United States)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed.

  16. Induced current magnetic resonance electrical impedance tomography with z-gradient coil.

    Science.gov (United States)

    Eroğlu, Hasan H; Eyüboğlu, B Murat

    2014-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is a medical imaging method that provides images of electrical conductivity at low frequencies (0-1 kHz). In MREIT, electrical current is applied to the body via surface electrodes and corresponding magnetic flux density is measured by means of Magnetic Resonance (MR) phase imaging techniques. By utilizing the magnetic flux density measurements and surface potential measurements images of true conductivity distribution can be reconstructed. In order to overcome difficulties regarding current application via surface electrodes, Induced Current MREIT (ICMREIT) have been proposed in the past. In ICMREIT, electrical currents and corresponding magnetic flux density are generated in the object through electromagnetic induction by means of externally placed coils driven with time varying currents. In this study, use of z-gradient, z-Helmholtz, and circular coil configurations in ICMREIT are proposed and investigated. Finite Element Method (FEM) is used to solve the forward problem of ICMREIT. Consequently, excitation performances and clinical applicability of different coil configurations are analyzed.

  17. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    Science.gov (United States)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (Tdependence of ac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  18. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    Science.gov (United States)

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.

    2008-01-01

    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  19. Modeling and simulation of dielectrophoretic collective dynamics in a suspension of polarizable particles under the action of a gradient AC electric field.

    Science.gov (United States)

    Tada, Shigeru; Shen, Yan; Qiu, Zhiyong

    2017-06-01

    When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  1. ELECTRIC MOTOR DIAGNOSTICS OF SWITCHES BASED ON THE NEURAL NETWORK DATA MODELING THE SPECTRAL DECOMPOSITION OF THE CURRENTS

    Directory of Open Access Journals (Sweden)

    O. M. Shvets

    2009-07-01

    Full Text Available The method of automated diagnostics of electric motors is offered. It uses a neural network revealing the electric motor faults on the basis of analysis of frequency spectrum of current flowing through the motor.

  2. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration.

    Science.gov (United States)

    Zapata-Solvas, E; Gómez-García, D; Domínguez-Rodríguez, A; Todd, R I

    2015-02-17

    Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena.

  3. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    Science.gov (United States)

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  4. AC Electrical Conduction of Cr-Doped SrTiO3 Thin Films with an Oxygen-Deficient Interface Layer

    Science.gov (United States)

    Phan, Bach Thang; Eom, Ki Tae; Lee, Jaichan

    2017-06-01

    The ac electrical conduction of Cr-doped SrTiO3 thin films with an oxygen-deficient interface layer was investigated as a function of temperature and frequency. The Cr-doped SrTiO3 (Cr-STO) thin films with an ultra-thin (˜2 nm) oxygen-deficient layer inserted between the top electrode and the Cr-STO layer exhibited two ac conduction mechanisms, i.e., variable-range hopping and small-polaron hopping conduction, accompanied by a relaxation process. Since high oxygen deficiency induces large lattice distortion in the depletion layer, the first relaxation process occurs at low frequencies in the thin oxygen depletion layer Cr-SrTiO3- δ , and the corresponding conduction behavior follows the small-polaron tunneling model. In the high frequency range, an additional relaxation process is involved and is associated with the variable-range hopping between the localized states in the band gap of the thick Cr-SrTiO3 layer.

  5. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao, E-mail: egnever@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  6. The Evolution of the Electric Current during the Formation and Eruption of Active-region Filaments

    Science.gov (United States)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  7. An Improvement on Current Sharing Characteristics of Poloidal Field (PF)-AC-DC Converters%An Improvement on Current Sharing Characteristics of Poloidal Field (PF)-AC-DC Converters

    Institute of Scientific and Technical Information of China (English)

    陈鹏; 傅鹏; 宋执权

    2011-01-01

    In response to the current imbalance phenomenon and its harmfulness, a current sharing circuit model is built up, which reveals the underlying causes for the current imbalance through a quantitative analysis. Then, a feasible approach of improvement, namely enlargement of the length of connection busbars, is proposed. After the amendment, it can be seen that the current sharing coefficient is ahnost unity under rated or fault current conditions.

  8. Influence of a Transverse Electric Field on the Alternating Currents Rectification Effect in Superstructures with Non-additive Energy Spectrum

    Directory of Open Access Journals (Sweden)

    V.I. Konchenkov

    2015-12-01

    Full Text Available It is investigated the effect of mutual rectification of alternating currents, induced by an electric field of two uniformly polarized electromagnetic waves with different frequencies in two-dimensional superlattice with non-additive energy spectrum under the influence of a constant transverse electric field. The possibility of control of constant component of electric current (amplification, change of sign, suppression by the transverse electric field is shown. The abilities of the practical use of the results are discussed.

  9. Role of substorm-associated impulsive electric fields in the ring current development during storms

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2005-02-01

    Full Text Available Particles with different energies produce varying contributions to the total ring current energy density as the storm progresses. Ring current energy densities and total ring current energies were obtained using particle data from the Polar CAMMICE/MICS instrument during several storms observed during the years 1996-1998. Four different energy ranges for particles are considered: total (1-200keV, low (1-20keV, medium (20-80keV and high (80-200keV. Evolution of contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases is followed. To model this evolution we trace protons with arbitrary pitch angles numerically in the drift approximation. Tracing is performed in the large-scale and small-scale stationary and time-dependent magnetic and electric field models. Small-scale time-dependent electric field is given by a Gaussian electric field pulse with an azimuthal field component propagating inward with a velocity dependent on radial distance. We model particle inward motion and energization by a series of electric field pulses representing substorm activations during storm events. We demonstrate that such fluctuating fields in the form of localized electromagnetic pulses can effectively energize the plasma sheet particles to higher energies (>80keV and transport them inward to closed drift shells. The contribution from these high energy particles dominates the total ring current energy during storm recovery phase. We analyse the model contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases. By comparing these results with observations we show that the formation of the ring current is a combination of large-scale convection and pulsed inward shift and consequent energization of the ring current particles.

  10. Extracellular stimulation of nerve cells with electric current spikes induced by voltage steps

    OpenAIRE

    2016-01-01

    A new stimulation paradigm is presented for the stimulation of nerve cells by extracellular electric currents. In the new paradigm stimulation is achieved with the current spike induced by a voltage step whenever the voltage step is applied to a live biological tissue. By experimental evidence and theoretical arguments, it is shown that this spike is well suited for the stimulation of nerve cells. Stimulation of the human tongue is used for proof of principle. Charge injection thresholds are ...

  11. [Stimulation of longitudinal growth of long bones through electrical current. Scintigraphic examinations on ribbit tibiae].

    Science.gov (United States)

    Klems, H; Venohr, H; Weigert, M

    1975-01-01

    Report on szintigraphical examinations using 87-mSr in young rabbits treated by direct current of different intensity varying from 2.5 to 40 micro-Ampère. The current was applicated to one tibia using the other as comparison. Corresponding to the realised growth-increase by electric stimulation there was found an increased uptake of 87m-Sr in the electro-stimulated tibia in all 16 rabbits.

  12. Influence of metallic trays on the ac resistance and ampacity of low-voltage cables under non-sinusoidal currents

    Energy Technology Data Exchange (ETDEWEB)

    Demoulias, Charis; Labridis, Dimitris P.; Dokopoulos, Petros; Gouramanis, Kostas [Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, Thessaloniki (Greece)

    2008-05-15

    This paper investigates the influence of metallic trays on the ac resistance of PVC insulated, low-voltage (0.6/1.0 kV) cables made according to CENELEC standard HD603. The investigation is made with a validated finite element model for the fundamental and higher harmonic frequencies. It is shown that the cable's effective resistance is affected significantly by the relative magnetic permeability and specific conductivity of the tray, while the tray's dimensions do not affect it. The orientation of the cable with respect to the tray also influences the ac resistance of the phase and neutral conductors. An ampacity derating factor is defined and calculated for various cable cross-sections and harmonic loads. The presence of a metallic tray is shown to cause an additional derating of cable's ampacity which is relatively significant at large cable cross-sections. Working examples demonstrate the application of the results in calculating the ampacity of low-voltage cables and in assessing the energy savings that will result from the use of active harmonic filters. (author)

  13. Electric Current Filamentation at a Non-potential Magnetic Null-point Due to Pressure Perturbation

    Science.gov (United States)

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-01

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh-Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  14. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    Energy Technology Data Exchange (ETDEWEB)

    Jelínek, P. [University of South Bohemia, Faculty of Science, Institute of Physics and Biophysics, Branišovská 10, CZ-37005 České Budějovice (Czech Republic); Karlický, M. [Academy of Sciences of the Czech Republic, v. v. i., Astronomical Institute, Fričova 258, CZ-25165 Ondřejov (Czech Republic); Murawski, K., E-mail: pjelinek@prf.jcu.cz [Maria Curie-Skłodowska University, Institute of Physics, Group of Astrophysics, Radziszewskiego 10, PL-20031 Lublin (Poland)

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  15. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    NARCIS (Netherlands)

    Holsheimer, J.

    1987-01-01

    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were mea

  16. Effect of Polya Problem-Solving Model on Senior Secondary School Students' Performance in Current Electricity

    Science.gov (United States)

    Olaniyan, Ademola Olatide; Omosewo, Esther O.; Nwankwo, Levi I.

    2015-01-01

    This study was designed to investigate the Effect of Polya Problem-Solving Model on Senior School Students' Performance in Current Electricity. It was a quasi experimental study of non- randomized, non equivalent pre-test post-test control group design. Three research questions were answered and corresponding three research hypotheses were tested…

  17. Low-level electrical currents and brain indicators of behavioral activation

    Directory of Open Access Journals (Sweden)

    F. Lolas

    1977-12-01

    Full Text Available Distinguishing between slow brain potential correlates of arousal and activation on the basis of their functional role and temporal involvement during a reaction-time task, data are presented which suggest that weak electrical polarizing currents applied to the head in human subjects modify predominantly activation indicators rather than arousal ones.

  18. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis

    NARCIS (Netherlands)

    Holsheimer, J.

    1987-01-01

    The microstructure of the layers in the hippocampal CA1 area suggests that differences may exist between the electrical conductivities of these layers. In order to quantify these differences a sinusoidal current was applied to hippocampal slices in a bathing medium and potential differences were

  19. Electrical transport properties of oligothiophene based molecular films studied by current sensing Atomic Force Microscopy

    NARCIS (Netherlands)

    Hendriksen, Bas L.M.; Martin, Florent; Qi, Yabing; Qi, Y.; Mauldin, Clayton; Vukmirovic, Nenad; Ren, JunFeng; Wormeester, Herbert; Katan, Allard J.; Altoe, Virginia; Aloni, Shaul; Frechet, Jean M.J.; Wang, Lin-Wang; Salmeron, Miquel

    2011-01-01

    Using conducting probe atomic force microscopy (CAFM) we have investigated the electrical conduction properties of monolayer films of a pentathiophene derivative on a SiO2/Si-p+ substrate. By a combination of current–voltage spectroscopy and current imaging we show that lateral charge transport

  20. A Circulating-Current Suppression Method for Parallel Connected Voltage Source Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    applications. The basic concept of the proposed circulating-current suppression method is to modify the original current references by using the current difference among the parallel inverters. In the proposed approach, both of cross circulating-current and zero-sequence circulating-current are considered...... on the virtual impedance. Further, a circulating-current control loop is added to improve the average current-sharing performance among parallel VSIs. Experimental results are presented to show the effectiveness of the proposed control method to suppress both of the cross and zero-sequence circulating-currents....

  1. Effect of electric current pulse on grain growth in superplastic deformation of 2091 Al-Li alloy

    Institute of Scientific and Technical Information of China (English)

    刘志义; 许晓嫦; 崔建忠

    2003-01-01

    The effect of electric current pulse on the grain growth in the superplastic deformation of 2091 Al-Li alloy was investigated. Optical metallographic microstructure observation and average linear intercept measuring results show that at same strain, the grain size in the superplastic deformation loaded with electric current pulse is smaller than that unemploying electric current pulse, and so does the grain growth rate. TEM observation shows that the dislocation density at grain boundary in the superplastic deformation applied with electric current pulse is lower than that unemploying electric current pulse.It indicates that electric current pulse increases the rate of dislocation slip and climb in grain boundary, which leads to a decrease of both the density of the dislocation slipping across grain boundary at same strain rate and the driving force for grain growth, therefore the rate of grain growth decreases.The established model for grain growth shows an exponential relation of grain size with strain.

  2. AC Losses of Prototype HTS Transmission Cables

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Dresner, L.; Hughey, R.L.; Lue, J.W.; Olsen, S.K.; Sinha, U.; Tolbert, J.C.

    1998-09-13

    Since 1995 Southwire Company and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested nine, l-m long, high temperature superconducting (HTS) transmission cable prototypes. This paper summarizes the AC loss measurements of five of the cables not reported elsewhere, and compares the losses with each other and with theory developed by Dresner. Losses were measured with both a calorimetric and an electrical technique. Because of the broad resistive transition of the HTS tapes, the cables can be operated stably beyond their critical currents. The AC losses were measured in this region as well as below critical currents. Dresner's theory takes into account the broad resistive transition of the HTS tapes and calculates the AC losses both below and above the critical current. The two sets of AC 10SS data agree with each other and with the theory quite welL In particular, at low currents of incomplete penetration, the loss data agree with the theoretical prediction of hysteresis loss based on only the outer two Iayers carrying the total current.

  3. Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles

    Science.gov (United States)

    Jiménez-Marín, E.; Torres-Torres, C.; Mercado-Zúñiga, C.; Vargas-García, J. R.; Trejo-Valdez, M.; Cervantes-Sodi, F.; Torres-Martínez, R.

    2016-11-01

    Described herein is a spatially selective modification in the conductive effects exhibited by multi-wall carbon nanotubes decorated with platinum nanoparticles. The samples were prepared by a chemical vapor deposition processing route. The changes in the conductivity of the samples in thin film form were achieved and explored by a fringe irradiance pattern impinging on the nanohybrid materials. A vectorial two-wave mixing configuration was performed for varying the electrical behavior of the irradiated film. A noticeable reversible modification in the conductivity of the samples was induced by nanosecond pulses at a 532 nm wavelength in our experiments. The rotation of the angle between the planes of polarization of the incident waves allowed us to switch the electrical currents in a circuit with one input and two outputs. The current-conduction terminals were specifically monitored for cases where the incident beams were displaying parallel or mutually orthogonal polarizations. It was considered that functionalization and metallic decoration processes present opposite responsibilities for the evolution of the electrical phenomena in carbon nanotubes. Impedance spectroscopy measurements were undertaken and a strong dependence on electrical frequency that corresponds to an inductive action in the sample was observed. It was highlighted that the manipulation of the vectorial nature of light can be a useful tool for tuning the electrical response in nanosystems. Potential applications for developing photoconductive and filtering functions can be contemplated.

  4. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Jr., James R. (Los Alamos, NM)

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  5. The excitation conditions of magnetospheric convection by the electric current generated in the bow shock

    Science.gov (United States)

    Sedykh, P. A.; Ponomarev, E. A.

    The solar wind undergoes the greatest change of its parameters during the passage through the bow shock front Its density in this case increases by the factor of four and gas and magnetic pressure increase more than by an order of magnitude In this paper we re-examine the consequences of the fact of electric current generation at the bow shock front that we considered at an earlier date and the dependence of the direction of this current on the sign of IMF Bz-component The first consequence is the closure of the aforementioned current through the magnetosphere It was found that this process is a two-stage one Initially the electric field penetrates and establishes in the medium a new convective regime After that depending on the degree of flow inhomogeneity a plasma density distribution can be established which corresponds to the electric current equal to the external current The new steady state to which the new convection velocity field and the new plasma pressure field correspond is established within the time of the order of the transit time taken by the magnetosonic wave to propagate through the entire system Also a linkage between the power dissipated inside the magnetosphere and the parameters of plasma convection existing therein is shown

  6. Linear Response of Field-Aligned Currents to the Interplanetary Electric Field

    DEFF Research Database (Denmark)

    Weimer, D. R.; R. Edwards, T.; Olsen, Nils

    2017-01-01

    Many studies that have shown that the ionospheric, polar cap electric potentials (PCEP) exhibit a “saturation” behavior in response to the level of the driving by the solar wind. As the magnitude of the interplanetary magnetic field (IMF) and electric field (IEF) increase, the PCEP response...... of the field-aligned currents (FAC) with the solar wind/magnetosphere/ionosphere system has a role. As the FAC are more difficult to measure, their behavior in response to the level of the IEF has not been investigated as thoroughly. In order to resolve the question of whether or not the FAC also exhibit...... saturation, we have processed the magnetic field measurements from the Ørsted, CHAMP, and Swarm missions, spanning more than a decade. As the amount of current in each region needs to be known, a new technique is used to separate and sum the current by region, widely known as R0, R1, and R2. These totals...

  7. Releasing dye encapsulated in proteinaceous microspheres on conductive fabrics by electric current.

    Science.gov (United States)

    Shimanovich, Ulyana; Perelshtein, Ilana; Cavaco-Paulo, Artur; Gedanken, Aharon

    2012-06-27

    The current paper reports on the relase properties of conductive fabrics coated with proteinaceous microspheres containing a dye. The release of the dye was achieved by passing an electric current through the fabric. The conductivity of the polyester fibers resulted from nanosilver (Ag NPs) coated on the surface of these fibers. Both types of coatings (nanosilver coating and the coating of the proteinaceous microspheres) were performed using high-intensity ultrasonic waves. Two different types of dyes, hydrophilic RBBR (Remazol Brilliant Blue R) and hydrophobic ORO (Oil Red O), were encapsulated inside the microspheres (attached to the surface of polyester) and then released by applying an electric current. The Proteinaceous Microsphere (PM)-coated conductive fabrics could be used in medicine for drug release. The encapsulated dye can be replaced with a drug that could be released from the surface of fabrics by applying a low voltage.

  8. Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    CERN Document Server

    Lyubarsky, Yuri

    2012-01-01

    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the ...

  9. Influence of Direct Current Electric Field on Corrosion Behavior of Tin Under a Thin Electrolyte Layer

    Science.gov (United States)

    Huang, H. L.; Bu, F. R.; Tian, J.; Liu, D.

    2017-08-01

    The influence of a direct current electric field (DCEF) on corrosion behavior of tin under a thin electrolyte layer was investigated based on an array electrode technology by polarization, electrochemical impedance spectroscopy and surface analysis. The experimental results indicate that the corrosion rate of tin near the positive plate of DCEF increases with increased electric field intensity, which could be attributed to the acceleration of the migration of ions, the removal of corrosion products under DCEF and the damage of tin surface oxide film. Furthermore, tin at different positions in a DCEF exhibits different corrosion behavior, which could be ascribed to the difference of the local corrosion environment caused by the DCEF.

  10. Electrical current mediated interconversion between graphene oxide to reduced grapene oxide

    Science.gov (United States)

    Teoh, H. F.; Tao, Y.; Tok, E. S.; Ho, G. W.; Sow, C. H.

    2011-04-01

    In this work, we demonstrate that graphene oxide (GO) can be reversibly converted to reduced-graphene-oxide (rGO) through the use of electric current. Strong electric field could cause ionization of water molecules in air to generate H+ ions at cathode, causing GO to be reduced. When the bias is reversed, the same electrode becomes positive and OH- ions are produced. According to Le Chatelier Principle, it then favors the reverse reaction, converting rGO back to GO, GO+2H++2e-=>rGO+H2O. X-ray spectroscopy and Raman spectroscopy were carried to verify the conversion reversibility in the reversed process.

  11. Some features of horizontally oriented low-current electric arc in air

    Energy Technology Data Exchange (ETDEWEB)

    Tazmeev, Kh. K., E-mail: tazmeevh@mail.ru [Kazan (Volga Region) Federal University, Naberezhnye Chelny Institute (Russian Federation); Tazmeev, B. Kh., E-mail: tazmeevb@mail.ru [National Research Technical University, Naberezhnye Chelny Branch (Russian Federation)

    2016-01-15

    The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.

  12. Leakage current measurement of protective equipment insulating materials used in electrical installations

    Science.gov (United States)

    Buică, G.; Dobra, R.; Păsculescu, D.; Tătar, A.

    2016-06-01

    This research describes the behaviour of equipment and safety devices during use in extreme environmental conditions, in order to establish the technical conditions and additional health and safety requirements during operation, to ensure the health and safety of users, regardless of conditions and working environment in which they are use. The studies have been conducted both on new equipment and means of protection used in electrical installations. There has been evaluated protective equipment made of insulating rubber, reinforced fiberglass or PVC. They have been followed the technical characteristics and protection against electric shock by measuring the leakage current of different insulating materials.

  13. Heating the sun's lower transition region with fine-scale electric currents

    Science.gov (United States)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  14. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  15. Global Electric Circuit Implications of Total Current Measurements over Electrified Clouds

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2009-01-01

    We determined total conduction (Wilson) currents and flash rates for 850 overflights of electrified clouds spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative Wilson currents. We combined these individual storm overflight statistics with global diurnal lightning variation data from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to estimate the thunderstorm and electrified shower cloud contributions to the diurnal variation in the global electric circuit. The contributions to the global electric circuit from lightning producing clouds are estimated by taking the mean current per flash derived from the overflight data for land and ocean overflights and combining it with the global lightning rates (for land and ocean) and their diurnal variation derived from the LIS/OTD data. We estimate the contribution of non-lightning producing electrified clouds by assuming several different diurnal variations and total non-electrified storm counts to produce estimates of the total storm currents (lightning and non-lightning producing storms). The storm counts and diurnal variations are constrained so that the resultant total current diurnal variation equals the diurnal variation in the fair weather electric field (+/-15%). These assumptions, combined with the airborne and satellite data, suggest that the total mean current in the global electric circuit ranges from 2.0 to 2.7 kA, which is greater than estimates made by others using other methods.

  16. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper...... loop is added to acquire a better average current sharing performance among parallel VSIs, which can effectively suppress both of the cross and zero-sequence circulating currents. Experimental results are presented in order to verify the effectiveness of the proposed control strategy....

  17. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A. C – SYSTEM “ELECTRIC – TRACTION – NETWORK – LOCOMOTIVE” 2. SWITCH ON THE MAIN LOCOMOTIVE’S POWER CONVERTER IN “FREE PAY” MODE; DEFINITION AND ANALYSIS CURRENT SURGE OF MAGNETIZATION

    Directory of Open Access Journals (Sweden)

    T. M. Mischenko

    2010-12-01

    Full Text Available The article is a continuation of analysis of mathematical models for AC systems, in which the elements of electric-traction network and switch-on of power transformer in an idling mode are gradually connected. The numerical calculations and analysis of current of transformer magnetization are executed.

  18. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  19. Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field

    Institute of Scientific and Technical Information of China (English)

    MISRA J.C.; CHANDRA S.

    2013-01-01

    Studies on electro-osmotic flows of various types of fluids in microcharmel are of great importance owing to their multifold applications in the transport of liquids,particularly when the ionized liquid flows with respect to a charged surface in the presence of an external electric field.In the case of viscoelastic fluids,the volumetric flow rate differs significantly from that of Newtonian fluids,even when the flow takes place under the same pressure gradient and the same electric field.With this end in view,this paper is devoted to a study concerning the flow pattern of an electro-osmotic flow in a porous microchannel,which is under the action of an alternating electric field.The influence of various rheologieal and electro-osmotic parameters,e.g.,the Reynolds number,Debye-Huckel parameter,shape factor and fluid viscoelasticity on the kinematics of the fluid,has been investigated for a second-grade viscoelastic fluid.The problem is first treated by using analytical methods,but the quantitative estimates are obtained numerically with the help of the software MATHEMATICA.The results presented here are applicable to the cases where the channel height is much greater than the thickness of the electrical double layer comprising the Stern and diffuse layers.The study reveals that a larger value of the Debye-Huckel parameter creates sharper profile near the wall and also that the velocity of electro-osmotic flow increases as the permeability of the porous microchannel is enhanced.The study further shows that the electro-osmotic flow dominates at lower values of Reynolds number.The results presented here will be quite useful to validate the observations of experimental investigations on the characteristics of electro-osmotic flows and also the results of complex numerical models that are necessary to deal with more realistic situations,where electro-osmotic flows come into the picture,as in blood flow in the micro-circulatory system subject to an electric field.

  20. Electricity sector in Mexico. Current status. Contribution of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Cancino-Solorzano, Yoreley [Departamento de Ing. Electrica-Electronica, Instituto Tecnologico de Veracruz, Calzada Miguel A. de Quevedo 2779, 91860 Veracruz (Mexico); Villicana-Ortiz, Eunice; Gutierrez-Trashorras, Antonio J.; Xiberta-Bernat, Jorge [Departamento de Energia, Escuela Tecnica Superior de Ingenieros de Minas, Universidad de Oviedo, C/Independencia, 13, 2a Planta, 33004 Oviedo (Spain)

    2010-01-15

    The challenge facing the world electricity sector is the cost incurred in maintaining the system and seeing to the environmental effects it causes. In Mexico the grid is supplied by thermal plants fed by oil products. Its great potential of renewable energies clearly shown in studies by national and international scholars has led the government to become more committed to take advantage of these energies. The goal is to reduce dependence on fossil fuels to generate electricity and to reduce the emission of greenhouse gases. In this article we analyse the current state of renewable energies, the conditions needed to foster them and the legislative changes already introduced to promote their greater part in the national electricity grid. (author)

  1. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  2. The residential electricity sector in Denmark: A description of current conditions

    DEFF Research Database (Denmark)

    Kitzing, Lena; Katz, Jonas; Schröder, Sascha Thorsten

    We provide an overview of the current conditions and framework for residential electricity consumption in Denmark. This includes a general overview of the sector, the retail market and the regulatory framework. We describe the regulations currently in place and changes which have been decided for...... in the area, which are listed in the Glossary towards the end of the report. We also attach a list and description of the major sources of information and data that can be obtained and downloaded for analysis of the Danish residential electricity sector.......We provide an overview of the current conditions and framework for residential electricity consumption in Denmark. This includes a general overview of the sector, the retail market and the regulatory framework. We describe the regulations currently in place and changes which have been decided...... for the coming years. The information and data described are all publicly available, though much of it only in Danish language. This description is to our knowledge one of the first comprehensive overviews of the Danish residential sector in English language. We have translated a number of terms commonly used...

  3. A Radio Frequency Electric Current Enhances Antibiotic Efficacy against Bacterial Biofilms

    Science.gov (United States)

    Caubet, R.; Pedarros-Caubet, F.; Chu, M.; Freye, E.; de Belém Rodrigues, M.; Moreau, J. M.; Ellison, W. J.

    2004-01-01

    Bacterial biofilms are notably resistant to antibiotic prophylaxis. The concentration of antibiotic necessary to significantly reduce the number of bacteria in the biofilm matrix can be several hundred times the MIC for the same bacteria in a planktonic phase. It has been observed that the addition of a weak continuous direct electric current to the liquid surrounding the biofilm can dramatically increase the efficacy of the antibiotic. This phenomenon, known as the bioelectric effect, has only been partially elucidated, and it is not certain that the electrical parameters are optimal. We confirm here the bioelectric effect for Escherichia coli biofilms treated with gentamicin and with oxytetracycline, and we report a new bioelectric effect with a radio frequency alternating electric current (10 MHz) instead of the usual direct current. None of the proposed explanations (transport of ions within the biofilm, production of additional biocides by electrolysis, etc.) of the direct current bioelectric effect are applicable to the radio frequency bioelectric effect. We suggest that this new phenomenon may be due to a specific action of the radio frequency electromagnetic field upon the polar parts of the molecules forming the biofilm matrix. PMID:15561841

  4. Comparison of current perception threshold electrical testing to clinical sensory testing for lingual nerve injuries.

    Science.gov (United States)

    Ziccardi, Vincent B; Dragoo, Joel; Eliav, Eli; Benoliel, Rafael

    2012-02-01

    We performed a retrospective study of lingual nerve injury assessment comparing the techniques of current perception threshold testing versus clinical sensory testing. We designed and implemented a cross-sectional study and enrolled a patient sample with lingual nerve injuries presenting for treatment to the principal investigator. The predictor variables were clinical sensory testing modalities (ie, temperature, nocioception, vibration, 2-point discrimination, brush stroke, and von Frey monofilament perception). The primary outcome variable was the electrical current perception thresholds of the tongue dorsum (neurometer measurements at 5, 250, and 2,000 Hz). Comparisons were established with the ipsilateral affected and contralateral unaffected lingual nerve distributions. The associations between the clinical sensory testing and current perception threshold measurements were assessed using correlation coefficients, with the level of statistical significance set at P thresholds at 2,000 Hz and the 2-point discrimination, reaction to brushing, reaction to vibration, and von Frey fiber thresholds, between the electrical stimulation thresholds at 250 Hz to the nociceptive and thermal thresholds, and between the electrical stimulation thresholds at 5 Hz to thermal stimuli. The significant correlations observed in the present study indicate that current perception threshold can be a complementary or alternative tool in the assessment and evaluation of lingual nerve injuries. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Comparative evaluation of different strengths of electrical current in the management of dentinal hypersensitivity

    Directory of Open Access Journals (Sweden)

    Sandhu Sharn

    2010-01-01

    Full Text Available Background : Dentinal hypersensitivity is a commonly occurring but less understood and poorly managed problem of the teeth. Iontophoresis is a technique wherein desensitizing agents can be transferred under electrical pressure into the tooth structure to manage hypersensitivity. Aim : The purpose of present study is to compare the effect of different strengths of electrical current used for varying lengths of time, keeping the electrical dosage constant with the iontophoretic unit in the management of dentinal hypersensitivity. Materials and Methods : This study was conducted among the patients attending the Periodontal Department of the Government Dental College and Hospital, Patiala, Punjab, specifically complaining of tooth hypersensitivity. The Verbal Rating Scale (VRS was used to record scores pre-, during, and post-treatment. Ten percent SrCl2 solution was applied with an iontophoretic unit. Three applications were performed at weekly intervals, up to the second week, using the same electric current dosage. The data compiled was statistically analyzed. Results : A remarkable reduction in dentinal hypersensitivity to both air blast and cold water stimuli was noted at the end of two months after iontophoresis with each current group / method, namely, I (0.25 mA for 4 minutes, II (0.5 mA for 2 minutes, and III (1 mA for 1 minute. However, the differences in effectiveness / improvement within the three current groups during the entire duration of the study were found to be statistically insignificant. Conclusion : Within the limits of this study, it could be implied that for relieving hypersensitivity, iontophoresis for all three current groups was almost equally effective, and it was found that repeated applications (up to three gave good relief. Iontophoresis was found to be effective and safe.

  6. Development of a “Current Energy Mix Scenario” and a “Electricity as Main Energy Source Scenario” for electricity demand up to 2100

    Directory of Open Access Journals (Sweden)

    Mário J. S. Brito

    2014-06-01

    Full Text Available In this work, we develop a model to forecast world electricity production up to 2100. We analyze historical data for electricity production, population and GDP per Capita for the period 1900–2008. We show that electricity production follows general trends. First, there is an electricity intensity target of 0.20-0.25 kWh per unit of GDP (US$2012 as economies mature, except in countries traditionally relying heavily on renewable electricity (hydroelectricity, for whom this target ranges between 0.50 to 0.80 kWh per unit GDP. Also, countries that belong to the same region tend to follow the evolution of electricity production and GDP/Capita of a regional “modelcountry”. Equations that describe the behavior of these model countries are used to forecast electricity production per capita up to 2100 under a low and a high scenario for the evolution of GDP per Capita. For electricity production two main scenarios were set: “Current Energy MixScenario” and “Electricity as Main Energy Source Scenario”, with two additional sub scenarios considering slightly different electric intensities. Forecasts up to 2100 yield a demand forelectricity production 3.5 to 5 times higher than the current production for the “Current EnergyMix Scenario” and about 9 to 14 times for the “Electricity as Main Energy Source Scenario”. Forecasts for the “Current Energy Mix Scenario” matched well with forecasts from IEA/EIA (International Energy Agency/ Energy Information Administration while the forecasts for the“Electricity as the Main Energy Source Scenario” are much higher than current predictions.

  7. DC injection into low voltage AC networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.

  8. Summary of Almost 20 Years of Storm Overflight Electric Field, Conductivity, Flash Rates, and Electric Current Statistics

    Science.gov (United States)

    Blakeslee, Richard J.; Mach, Douglas M.; Bateman, Monte J.; Bailey, Jeffrey C.

    2011-01-01

    We determined total conduction currents and flash rates for around 900 high-altitude aircraft overflights of electrified clouds over 17 years. The overflights include a wide geographical sample of storms over land and ocean, with and without lightning, and with positive (i.e., upward-directed) and negative current. Peak electric field, with lightning transients removed, ranged from -1.0 kV m(sup -1) to 16. kV m(sup -1), with mean (median) of 0.9 kV m(sup -1) (0.29 kV m(sup -1)). Total conductivity at flight altitude ranged from 0.6 pS m(sup -1) to 3.6 pS m(sup -1), with mean and median of 2.2 pS m(sup -1). Peak current densities ranged from -2.0 nA m(sup -2) to 33.0 nA m(sup -2) with mean (median) of 1.9 nA m(sup -2) (0.6 nA m(sup -2)). Total upward current flow from storms in our dataset ranged from -1.3 to 9.4 A. The mean current for storms with lightning is 1.6 A over ocean and 1.0 A over land. The mean current for electrified shower clouds (i.e. electrified storms without lightning) is 0.39 A for ocean and 0.13 A for land. About 78% (43%) of the land (ocean) storms have detectable lightning. Land storms have 2.8 times the mean flash rate as ocean storms (2.2 versus 0.8 flashes min(sup -1), respectively). Approximately 7% of the overflights had negative current. The mean and median currents for positive (negative) polarity storms are 1.0 and 0.35 A (-0.30 and -0.26 A). We found no regional or latitudinal-based patterns in our storm currents, nor support for simple scaling laws between cloud top height and lightning flash rate.

  9. Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yun Seng; Koh, Siong Lee [Department of Physical Science, Electrical and Electronic Engineering, Tunku Abdul Rahman University (Malaysia)

    2010-05-15

    Malaysia is heavily dependent on fossil fuel for electricity generation. With the rapidly diminishing of its fuel reserve and the increasingly negative effects of fossil fuels to the environment, the government has begun to utilise bio-fuel and solar radiation for electricity generation. However, the potential of harnessing other renewable sources, particular ocean energy, in Malaysia has not been fully realised. Therefore, studies were carried out to identify the potential of harnessing ocean energy for electricity generation. The Princeton Ocean Model was used to create a three-dimensional numerical ocean model for Malaysia which was calibrated against measurement by a means of adjoint data assimilation approach. A set of reliable tidal speed and tidal elevation data was therefore generated to determine the types of tides available in Malaysia, the potential areas of installing marine current turbines (MCTs), the total amount of electricity to be generated by MCT, the economical viability and the environmental benefits of using MCT in Malaysia. This paper presents the findings on the studies, encompassing the technical, economical and environmental aspects of installing MCT in Malaysia. The results are critical to policy makers and the potential investors on tidal energy in Malaysia for decision making. It may also help the neighboring countries to realize the possible potential of their ocean energy for electricity generation. (author)

  10. Three-Dimensional Nanometer Features of Direct Current Electrical Trees in Low-Density Polyethylene.

    Science.gov (United States)

    Pallon, Love K H; Nilsson, Fritjof; Yu, Shun; Liu, Dongming; Diaz, Ana; Holler, Mirko; Chen, Xiangrong R; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2017-03-08

    Electrical trees are one reason for the breakdown of insulating materials in electrical power systems. An understanding of the growth of electrical trees plays a crucial role in the development of reliable high voltage direct current (HVDC) power grid systems with transmission voltages up to 1 MV. A section that contained an electrical tree in low-density polyethylene (LDPE) has been visualized in three dimensions (3D) with a resolution of 92 nm by X-ray ptychographic tomography. The 3D imaging revealed prechannel-formations with a lower density with the width of a couple of hundred nanometers formed around the main branch of the electrical tree. The prechannel structures were partially connected with the main tree via paths through material with a lower density, proving that the tree had grown in a step-by-step manner via the prestep structures formed in front of the main channels. All the prechannel structures had a size well below the limit of the Paschen law and were thus not formed by partial discharges. Instead, it is suggested that the prechannel structures were formed by electro-mechanical stress and impact ionization, where the former was confirmed by simulations to be a potential explanation with electro-mechanical stress tensors being almost of the same order of magnitude as the short-term modulus of low-density polyethylene.

  11. Direct current electric field assembly of colloidal crystals displaying reversible structural color.

    Science.gov (United States)

    Shah, Aayush A; Ganesan, Mahesh; Jocz, Jennifer; Solomon, Michael J

    2014-08-26

    We report the application of low-voltage direct current (dc) electric fields to self-assemble close-packed colloidal crystals in nonaqueous solvents from colloidal spheres that vary in size from as large as 1.2 μm to as small as 0.1 μm. The assemblies are created rapidly (∼2 min) from an initially low volume fraction colloidal particle suspension using a simple capacitor-like electric field device that applies a steady dc electric voltage. Confocal microscopy is used to observe the ordering that is produced by the assembly method. This spatial evidence for ordering is consistent with the 6-fold diffraction patterns identified by light scattering. Red, green, and blue structural color is observed for the ordered assemblies of colloids with diameters of 0.50, 0.40, and 0.29 μm, respectively, consistent with spectroscopic measurements of reflectance. The diffraction and spectrophotometry results were found to be consistent with the theoretical Bragg's scattering expected for closed-packed crystals. By switching the dc electric field from on to off, we demonstrate reversibility of the structural color response on times scales ∼60 s. The dc electric field assembly method therefore represents a simple method to produce reversible structural color in colloidal soft matter.

  12. Assessing The Current Indonesia’s Electricity Market Arrangements and The Opportunities to Reform

    Directory of Open Access Journals (Sweden)

    Dhani Setyawan

    2014-02-01

    Full Text Available Existing subsidy arrangements and institutional settings in the Indonesian electricity sector distort investment decisions and lead to higher cost. Electricity supply is characterized by natural monopoly characteristics, requiring different management by governments than sectors with more straightforward market characteristics. Many countries have undergone significant re-structuring of their electricity sectors, away from one, state owned and vertically integrated monopoly supplier to a setting whereby competition has emerged either at the generation level and/or the retail level. Transmission and distribution networks are typically heavily regulated and transparent access arrangements are put in place as part of the restructuring efforts. The analysis showed that the current structure of Indonesia’s electricity sector firmly within Model 2 (the single buyer model and highlights that Indonesia is currently towards the less-competitive end of the spectrum of Model 2, identifying significant potential for efficiency enhancing reforms within this structure. Constitutional limitations have hampered previous efforts to restructure the sector in Indonesia but there is significant room for incremental reform to improve incentives in the sector and reduce the cost of generation in the process.

  13. Smart grids in the colombian electric system: Current situation and potential opportunities

    Directory of Open Access Journals (Sweden)

    William Mauricio Giral Ramírez

    2017-07-01

    Full Text Available Context: This paper focuses on providing a functional analysis of smart grids, with the purpose of establishing a framework to identify the main characteristics of the current electric interconnection system in Colombia. It also names the positive incentives proposed by the Colombian government to support both research and development projects that implement non-conventional energy sources and promoting energy management based on efficiency. Method: An architecture model that describes the components interoperability of a smart grid is presented using a descriptive methodology. Results: The results include a list of the objectives established by the Colombian public and private entities related to energy development, specially focusing on the opportunities to provide some kind of artificial intelligence to the current electrical system. Conclusions: It is necessary for the Colombian energy system to supply the energy demand considering electrical safety, social equity, and the minimum environmental impact. These restrictions impose new challenges for the energy system itself: From a technical point of view, the traditional electrical grid must be outfitted with the characteristics of a smart grid, and from a legal perspective, it is essential to generate a clear regulatory framework that promotes the development of this type of technology.

  14. On the electric double-layer structure at carbon electrode/organic electrolyte solution interface analyzed by ac impedance and electrochemical quartz-crystal microbalance responses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan); Morita, Masayuki, E-mail: morita@yamaguchi-u.ac.jp [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan)

    2011-08-30

    Highlights: {center_dot} We monitored resonance frequency change of smooth surface carbon electrode to determine mass changes during electrochemical polarization.{center_dot} This was done from viewpoints of ensuring the electric double-layer structure in organic electrolytes.{center_dot} Clear difference was observed in the mass changes among the electrolyte composition.{center_dot} It were related with differences in the double-layer capacitance at carbon. - Abstract: ac impedance and electrochemical quartz crystal microbalance (EQCM) techniques have been applied to analyze the structure of electric double-layer formed at carbon/organic electrolyte solution interface using a sputtered carbon electrode. The mass changes caused by electrochemical adsorption (accumulation) of ions have been estimated in the solutions of propylene carbonate (PC) dissolving tetrafluoroborate (BF{sub 4}{sup -}) salts of lithium (Li{sup +}), tetraethylammonium (TEA{sup +}) and tetra-n-butylammonium (TBA{sup +}) cations. The observed mass changes during the cathodic polarization in the solutions containing TEA{sup +} and TBA{sup +} were well consistent with those expected by the calculation based on mono-layer adsorption of the cations with giving the consideration to the surface roughness. On the other hand, the mass change observed in the solution containing Li{sup +} salt showed that the solvation of Li{sup +} with three or four molecules of PC would be the charge compensation species at the interface. Comparison of the quantity of the electricity passed during the EQCM measurements with that from theoretical calculation with simple Helmholtz-layer model revealed that the major part of the double-layer capacitance would be based on the electrostatic polarization of the solvent molecule directly adsorbed at the carbon surface.

  15. Ionospheric conductances and currents of a morning sector auroral arc from Swarm-A electric and magnetic field measurements

    Science.gov (United States)

    Juusola, L.; Archer, W. E.; Kauristie, K.; Burchill, J. K.; Vanhamäki, H.; Aikio, A. T.

    2016-11-01

    We show the first ionospheric Hall and Pedersen conductances derived from Swarm magnetic and electric field measurements during a crossing of a morning sector auroral arc. Only Swarm-A was used, with assumptions of negligible azimuthal gradients and vanishing eastward electric field. We find upward field-aligned current, enhanced Hall and Pedersen conductances, and relatively weak electric field coincident with the arc. Poleward of the arc, the field-aligned current was downward, conductances lower, and the electric field enhanced. The arc was embedded in a westward electrojet, immediately equatorward of the peak current density. The equatorward portion of the electrojet could thus be considered conductance dominant and the poleward portion electric field dominant. Although the electric field measured by Swarm was intense, resulting in conductances lower than those typically reported, comparable electric fields have been observed earlier. These results demonstrate how Swarm data can significantly contribute to our understanding of the ionospheric electrodynamics.

  16. Calculated spinal cord electric fields and current densities for possible neurite regrowth from quasi-DC electrical stimulation.

    Science.gov (United States)

    Greenebaum, Ben

    2015-12-01

    The prime goal of this work was to model essentially steady (DC) fields from electrodes, implanted in several ways, which have been suggested as possible means to encourage nerve fiber regrowth in spinal cord injuries. A simplified model of the human spinal cord in the lumbar region and the SEMCAD-X computer program were used to calculate electric field and current density patterns from electrodes outside vertebrae and those inserted extradurally within the spinal canal. DC electric fields guide nerve growth in developing organisms and in vitro. They also have been shown to encourage healing of injured peripheral nerves, and application of a longitudinal field has been used in attempts to bridge spinal cord injuries. When calculated results are scaled to the experimental level used in the literature, all modeled electrodes produced fields in the spinal cord below fields needed in the literature for stimulation of spinal as well as peripheral nerve growth in vitro, in dogs, and in a published clinical human trial. The highly-conducting cerebrospinal fluid appeared to provide effective shielding; there was also a very high degree of polarization at electrodes. © 2015 Wiley Periodicals, Inc.

  17. Development of fiber-optic current sensing technique and its applications in electric power systems

    Science.gov (United States)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  18. Current-voltage characteristics of light-emitting diodes under optical and electrical excitation

    Institute of Scientific and Technical Information of China (English)

    Wen Jing; Wen Yumei; Li Ping; Li Lian

    2011-01-01

    The factors influencing the current-voltage (Ⅰ-Ⅴ) characteristics of light-emitting diodes (LEDs) are investigated to reveal the connection of Ⅰ-Ⅴ characteristics under optical excitation and those under electrical excitation.By inspecting the Ⅰ-Ⅴ curves under optical and electrical excitation at identical injection current,it has been found that the Ⅰ-Ⅴ curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the Ⅰ-Ⅴ characteristics under two diverse excitation ways will be the same.

  19. Performance evaluation of high-temperature superconducting current leads for electric utility SMES systems

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Rey, C. M.; Dixon, K. D.

    As part of the U.S. Department of Energy's Superconductivity Technology Program, Argonne National Laboratory and Babcock & Wilcox are developing high-temperature super-conductor (HTS) current leads for application to electric utility superconducting magnetic energy storage systems. A 16,000-A HTS lead has been designed and is being constructed. An evaluation program for component performance was conducted to confirm performance predictions and/or to qualify the design features for construction. Performance of the current lead assemblies will be evaluated in a test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of the evaluations to date are presented.

  20. A diagnostic system for electrical faults in a high current discharge plasma setup.

    Science.gov (United States)

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ∼4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.